WO2019078459A1 - 변성 공액디엔계 중합체의 제조방법 - Google Patents
변성 공액디엔계 중합체의 제조방법 Download PDFInfo
- Publication number
- WO2019078459A1 WO2019078459A1 PCT/KR2018/008489 KR2018008489W WO2019078459A1 WO 2019078459 A1 WO2019078459 A1 WO 2019078459A1 KR 2018008489 W KR2018008489 W KR 2018008489W WO 2019078459 A1 WO2019078459 A1 WO 2019078459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- polymer
- decanoate
- formula
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/20—Incorporating sulfur atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/22—Incorporating nitrogen atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F136/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F136/02—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F136/04—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F136/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F136/02—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F136/04—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F136/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/14—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/54—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/54—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
- C08F4/545—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof rare earths being present, e.g. triethylaluminium + neodymium octanoate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/34—Introducing sulfur atoms or sulfur-containing groups
- C08F8/38—Sulfohalogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
- C08K5/5445—Silicon-containing compounds containing nitrogen containing at least one Si-N bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
- C08K5/5477—Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
Definitions
- the present invention relates to a method for producing a modified conjugated diene-based polymer having excellent formability and improved processability.
- Natural rubbers, polyisoprene rubbers, polybutadiene rubbers, and the like are known as rubber materials having a small hysteresis loss, but these have a problem of low wet skid resistance.
- a conjugated diene (co) polymer such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) is prepared by emulsion polymerization or solution polymerization and is used as a rubber for a tire .
- a filler such as silica or carbon black is usually blended together in order to obtain tire required properties.
- a filler such as silica or carbon black is usually blended together in order to obtain tire required properties.
- the affinity of the BR or SBR with the filler is poor, there is a problem that physical properties including abrasion resistance, crack resistance, workability and the like are deteriorated.
- the filler such as SBR and silica or carbon black
- a method of modifying the polymerizable active site of the conjugated diene polymer obtained by anionic polymerization using organolithium with a functional group capable of interacting with the filler For example, there has been proposed a method in which the polymerization active terminal of the conjugated diene polymer is modified with a tin compound, an amino group is introduced, or an alkoxysilane derivative is modified.
- a living polymer obtained by coordination polymerization using a catalyst composition containing a lanthanide-based rare-earth element compound as a method for enhancing the dispersibility of a filler such as BR and silica or carbon black the living active terminal is reacted with a specific coupling agent A method of denaturation by a denaturant has been developed.
- the affinity with the filler is improved to improve the compounding properties, such as tensile properties and viscoelastic properties.
- the compounding processability is greatly reduced and the processability is poor.
- the present invention has been made to overcome the problems of the prior art, and an object of the present invention is to provide a method for producing a modified conjugated diene polymer having excellent formability and improved processability.
- a process for producing an activated polymer comprising the steps of: (1) polymerizing a conjugated diene monomer in a hydrocarbon solvent in the presence of a catalyst composition to produce an active polymer; Reacting the active polymer with a modifier represented by the formula (1) to prepare a first polymer (step 2); And adding a sulfur halide to the first polymer and mixing for more than 15 minutes (step 3).
- R 1 to R 3 are each independently at least one substituent selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and -R 6 COOR 7 A substituted trivalent hydrocarbon group; Or an unsubstituted divalent hydrocarbon group of 1 to 10 carbon atoms,
- R 1 to R 3 are simultaneously a trivalent hydrocarbon group; Or a divalent hydrocarbon group,
- R 4 is a single bond, an alkylene group having 1 to 20 carbon atoms, or a cycloalkylene group having 3 to 20 carbon atoms,
- R 5 is a silyl group substituted or unsubstituted with an alkyl group having 1 to 20 carbon atoms; halogen; Cyano; Or -COR 8 ,
- R 6 is a single bond, an alkylene group having 1 to 20 carbon atoms, or a cycloalkylene group having 3 to 20 carbon atoms,
- R 7 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms,
- R 8 represents an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms, a heterocycloalkyl group having 2 to 10 carbon atoms, a heterocyclic amine group having 2 to 10 carbon atoms, ≪ / RTI > and the like.
- the process according to the present invention can be carried out by preparing a first polymer containing a functional group by using a modifier represented by the general formula (1) and mixing the first polymer with a sulfur halide, thereby having excellent affinity with a filler, It is possible to produce a modified conjugated diene polymer having excellent compounding properties such as properties and high branching degree and excellent blending processability.
- the present invention provides a method for producing the modified conjugated diene polymer capable of producing a modified conjugated diene polymer having excellent compounding properties such as tensile properties and viscoelastic properties and high branching degree and improved blending processability.
- a process for producing an active polymer by polymerizing a conjugated diene monomer in a hydrocarbon solvent in the presence of a catalyst composition (step 1); Reacting the active polymer with a modifier represented by the following formula (1) to prepare a first polymer (step 2); And adding the sulfur halide to the first polymer and mixing for more than 15 minutes (step 3).
- R 1 to R 3 are each independently at least one substituent selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and -R 6 COOR 7 A substituted trivalent hydrocarbon group; Or an unsubstituted divalent hydrocarbon group of 1 to 10 carbon atoms,
- R 1 to R 3 are simultaneously a trivalent hydrocarbon group; Or a divalent hydrocarbon group,
- R 4 is a single bond, an alkylene group having 1 to 20 carbon atoms, or a cycloalkylene group having 3 to 20 carbon atoms,
- R 5 is a silyl group substituted or unsubstituted with an alkyl group having 1 to 20 carbon atoms; halogen; Cyano; Or -COR 8 ,
- R 6 is a single bond, an alkylene group having 1 to 20 carbon atoms, or a cycloalkylene group having 3 to 20 carbon atoms,
- R 7 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms,
- R 8 represents an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms, a heterocycloalkyl group having 2 to 10 carbon atoms, a heterocyclic amine group having 2 to 10 carbon atoms, ≪ / RTI > and the like.
- tricyclic hydrocarbon group substituted with a substituent used in the present invention means a triple substituted hydrocarbon group from the bond (divalent) in the ring containing N atom and the bond (monovalent) with the above-defined substituent
- the substituted trivalent hydrocarbon group may be a trivalent hydrocarbon group having 1 to 10 carbon atoms, or 1 to 5 carbon atoms, which rings together with the N atom except for the carbon number of the substituent group defined above.
- " single bond " used in the present invention may mean a single covalent bond itself, which does not include a separate atom or a molecular end.
- sil group substituted or unsubstituted with an alkyl group having 1 to 20 carbon atoms used in the present invention means one kind selected from the group consisting of unsubstituted monovalent silyl groups and bivalent to tetravalent silyl groups substituted with the alkyl groups can do.
- Step 1 is a step for preparing an active polymer containing an activated organometallic moiety derived from a catalyst composition rotor and may be carried out by polymerizing a conjugated diene monomer in the presence of a catalyst composition in a hydrocarbon solvent.
- conjugated diene monomer examples include, but are not limited to, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, -1,3-butadiene, and the like.
- the hydrocarbon solvent is not particularly limited, but may be one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
- the catalyst composition may contain a lanthanide-based rare earth element-containing compound.
- the catalyst composition may be used in an amount such that the amount of the lanthanum-based rare-earth element-containing compound is from 0.1 mmol to 0.5 mmol based on 100 g of the conjugated dienic monomer. Specifically, the lanthanide rare earth element- And 0.1 mmol to 0.4 mmol, more specifically 0.1 mmol to 0.25 mmol, based on 100 g of the total monomer.
- the lanthanide-based rare earth element-containing compound is not particularly limited, but may be any one or two or more compounds selected from among rare earth metals having atomic numbers of 57 to 71 such as lanthanum, neodymium, cerium, gadolinium or praseodymium, , Lanthanum, and gadolinium.
- the lanthanide-based rare earth element-containing compound may be at least one selected from the group consisting of the rare earth element-containing carboxylate (for example, neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium gluconate, neodymium citrate, neodymium fumarate, neodymium lactate, Neodymium maleate, neodymium oxalate, neodymium 2-ethylhexanoate, neodymium neodecanoate, etc.); Organic phosphoric acid salts such as neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, neodymium dioctyl phosphate, neodymium bis (1-
- -diketonate for example, neodymium acetylacetonate, neodymium trifluoroacetylacetonate, neodymium hexafluoroacetylacetonate or neodymium benzoyl acetonate
- Alkoxide or allyoxide e.g., neodymium methoxide, neodymium ethoxide, neodymium isopropoxide, neodymium phenoxide or neodymium nonylphenoxide
- Halide or pseudohalide such as neodymium fluoride, neodymium chloride, neodymium bromide, neodymium iodide, neodymium cyanide, neodymium cyanate, neodymium thiocyanate, or neodymium azide
- Oxy halides
- the lanthanide-based rare earth element-containing compound may include a neodymium compound represented by the following general formula (3).
- R a to R c independently represent hydrogen or an alkyl group having 1 to 12 carbon atoms, provided that R a to R c are not all hydrogen at the same time.
- the lanthanide rare earth element-containing compound is more specifically represented by the general formula , R a is an alkyl group having 4 to 12 carbon atoms, R b and R c are independently of each other hydrogen or an alkyl group having 2 to 8 carbon atoms, provided that R b and R c are not simultaneously hydrogen.
- R a is an alkyl group of a carbon number of 6 to 8
- R b and R c may each be independently hydrogen, or an alkyl group having 2 to 6 carbon atoms, wherein said R b, and R c is ( 2 , 2- diethyldecanoate) 3 , Nd (2,2-dipropyldecanoate) 3 , Nd (2,2-dibutyldecanoate) ) 3, Nd (2,2- di-hexyl decanoate) 3, Nd (2,2- dioctyl decanoate) 3, Nd (2- ethyl-2-propyl decanoate) 3, Nd (2- ethyl-2-butyl decanoate) 3, Nd (2- ethyl-2-hexyl decanoate) 3, Nd (2- butyl-2-propyl decanoate) 3, Nd (2- propyl-2-hexyl decanoate) 3,
- R a is an alkyl group having 6 to 8 carbon atoms
- R b and R c are each independently an alkyl group having 2 to 6 carbon atoms.
- the neodymium compound represented by Formula 3 includes a carboxylate ligand containing an alkyl group having various lengths of 2 or more carbon atoms at the alpha (alpha) position as a substituent, thereby inducing a three-dimensional change around the neodymium center metal, It is possible to prevent the phenomenon of entanglement between the oligomers and the oligomerization.
- the neodymium compound has a high solubility in a solvent and has a low neodymium ratio in a central portion, which is difficult to convert to a catalytically active species, and thus has a high conversion ratio to a catalytically active species.
- solubility of the lanthanide rare earth element-containing compound according to an embodiment of the present invention may be about 4 g or more per 6 g of the non-polar solvent at room temperature (25 ⁇ ).
- the solubility of a neodymium compound means a degree of dissolving clearly without cloudy phenomenon, and exhibits such high solubility that it can exhibit excellent catalytic activity.
- the lanthanide rare earth element-containing compound according to an embodiment of the present invention may be used in the form of a reactant with a Lewis base.
- This reactant has the effect of improving the solubility of the lanthanide-based rare-earth element-containing compound in a solvent by Lewis base and storing it in a stable state for a long period of time.
- the Lewis base may be used in a proportion of, for example, 30 moles or less, or 1 to 10 moles, per mole of the rare earth element.
- the Lewis base may be, for example, acetylacetone, tetrahydrofuran, pyridine, N, N-dimethylformamide, thiophene, diphenylether, triethylamine, organic phosphorus compounds or monohydric or dihydric alcohols.
- the catalyst composition may further comprise at least one of an alkylating agent, a halide, and a conjugated diene-based monomer together with a lanthanide-based rare earth element-containing compound.
- the catalyst composition according to an embodiment of the present invention may further include at least one of an alkylating agent, a halide, and a conjugated diene-based monomer, including a lanthanide-based rare earth element-containing compound.
- alkylating agent (a), the halide (b), and the conjugated diene monomer (c) will be specifically described.
- the alkylating agent may be an organometallic compound capable of transferring a hydrocarbyl group to another metal and serving as a cocatalyst.
- the alkylating agent is not particularly limited as long as it is used as an alkylating agent in the production of a diene polymer.
- the alkylating agent is soluble in a polymerization solvent, such as an organoaluminum compound, an organomagnesium compound, or an organolithium compound, Based on the total weight of the composition.
- organoaluminum compound examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri- Alkyl aluminum such as aluminum, trihexyl aluminum, tricyclohexyl aluminum and trioctyl aluminum; Di-n-propyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride (DIBAH) Diphenyl aluminum hydride, di-p-tolyl aluminum hydride, dibenzyl aluminum hydride, phenylethyl aluminum hydride, phenyl-n-propyl aluminum hydride, phenyl isopropyl aluminum hydride, phenyl- N-propyl aluminum hydride, p-tolyl isopropyl aluminum hydride,
- Dihydrocarbyl aluminum hydride Dihydrocarbyl aluminum hydride; Hydrocarbylaluminum di-hydrides such as ethylaluminum dihydride, n-propylaluminum dihydride, isopropylaluminum dihydride, n-butylaluminum dihydride, isobutylaluminum dihydride or n- Hydride, and the like.
- organomagnesium compound examples include alkylmagnesium compounds such as diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, dibutylmagnesium, dihexylmagnesium, diphenylmagnesium and dibenzylmagnesium, and Examples of the organic lithium compound include alkyl lithium compounds such as n-butyl lithium and the like.
- the organoaluminum compound may be aluminoxane.
- the aluminoxane may be one prepared by reacting a trihydrocarbyl aluminum compound with water, and specifically may be a straight-chain aluminoxane of the following formula (4a) or a cyclic aluminoxane of the following formula (4b).
- R is a monovalent organic group which is bonded to an aluminum atom through a carbon atom and may be a hydrocarbyl group
- x and y are independently an integer of 1 or more, , And more specifically, an integer of 2 to 50.
- the aluminoxane is selected from the group consisting of methylaluminoxane (MAO), modified methylaluminoxane (MMAO), ethylaluminoxane, n-propylaluminoxane, isopropylaluminoxane, butylaluminoxane, isobutylaluminoxane, n Hexylaluminoxane, n-hexylaluminoxane, n-octylaluminoxane, 2-ethylhexylaluminoxane, cyclohexylaluminoxane, 1-methylcyclopentylaluminoxane, phenylaluminoxane or 2,6- Dimethylphenylaluminoxane, and the like, and any one or a mixture of two or more thereof may be used.
- MAO methylaluminoxane
- MMAO modified methylaluminoxane
- the modified methylaluminoxane is obtained by replacing the methyl group of methylaluminoxane with a silane group (R), specifically a hydrocarbon group having 2 to 20 carbon atoms.
- R silane group
- the modified methylaluminoxane may be a compound represented by the following formula (5).
- R is the same as defined above, and m and n may be independently an integer of 2 or more.
- Me represents a methyl group.
- R is an alkyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, An arylalkyl group having 7 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, an allyl group, or an alkynyl group having 2 to 20 carbon atoms, and more specifically, an alkyl group having 2 to 20 carbon atoms such as an ethyl group, an isobutyl group, To 10 carbon atoms, and more specifically an isobutyl group.
- the modified methylaluminoxane may be obtained by substituting about 50 to 90 mol% of the methyl group of methylaluminoxane with the hydrocarbon group described above.
- the alkylation can be promoted to increase the catalytic activity.
- Such modified methylaluminoxane can be prepared by a conventional method, and specifically, it can be produced using alkylaluminum other than trimethylaluminum and trimethylaluminum.
- the alkylaluminum may be triisobutylaluminum, triethylaluminum, trihexylaluminum or trioctylaluminum, and any one or a mixture of two or more thereof may be used.
- the catalyst composition according to an embodiment of the present invention may contain the alkylating agent in an amount of 1 to 200 molar equivalents, preferably 1 to 100 molar equivalents, more preferably 3 to 20 molar equivalents relative to 1 mol of the lanthanum-based rare earth element-containing compound May include. If the alkylating agent is contained in an amount exceeding 200 molar ratio, it is difficult to control the catalytic reaction during the production of the polymer, and excessive amounts of the alkylating agent may cause side reactions.
- halide examples include, but are not limited to, a halogen group, an interhalogen compound, a hydrogen halide, an organic halide, a non-metal halide, a metal halide or an organic metal halide, One or a mixture of two or more may be used.
- halides any one or a mixture of two or more selected from the group consisting of an organic halide, a metal halide, and an organometallic halide may be used, considering that the catalytic activity is improved and the effect of improving the reactivity is excellent.
- halogen group examples include fluorine, chlorine, bromine and iodine.
- interhalogen compound examples include iodine monochloride, iodine monobromide, iodine trichloride, iodopentafluoride, iodine monofluoride, iodotrifluoride, and the like.
- Examples of the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide.
- organic halide examples include t-butyl chloride (t-BuCl), t-butyl bromide, allyl chloride, allyl bromide, benzyl chloride, benzyl bromide, chloro-di-phenyl methane, bromo- But are not limited to, phenyl methyl chloride, triphenyl methyl bromide, benzylidene chloride, benzylidene bromide, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane (TMSCl), benzoyl chloride, benzoyl bromide, (Also referred to as "iodoform”), tetraiodomethane, 1-iodo-2-iodo-2-methylpropionate, Iodopropane, 1,3-diio
- non-metallic halides include phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, phosphorus oxychloride, oxy-bromide, phosphorus, boron trifluoride, boron trichloride, boron tribromide, used silicon tetrafluoride, silicon tetrachloride (SiCl 4), tetrabromide silicon , Arsenic trichloride, arsenic tribromide, selenium tetrabromide, selenium tetrabromide, tellurium tetrachloride, tellurium tetrabromide, silicon tetrabromide, silicon tetrabromide, arsenic triiodide, tellurium tetraiodide, boron triiodide, phosphorous iodide or selenium tetraiodide .
- metal halide examples include tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony trichloride, antimony tribromide, antimony tribromide, aluminum trifluoride, gallium trichloride, gallium tribromide, gallium trifluoride, There may be mentioned indium tribromide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, zinc dichloride, zinc bromide, zinc fluoride, aluminum triiodide, gallium triiodide, indium triiodide, titanium iodide, zinc iodide, Germanium, tin iodide, tin iodide, antimony triiodide or magnesium iodide.
- organometallic halide examples include dimethylaluminum chloride, diethylaluminum chloride, dimethylaluminum bromide, diethylaluminum bromide, dimethylaluminum fluoride, diethylaluminum fluoride, methylaluminum dichloride, ethylaluminum dichloride, methylaluminum di (EASC), isobutylaluminum sesquichloride, methylmagnesium chloride, methylmagnesium bromide, ethyl bromide, ethyl bromide, ethyl bromide, ethyl bromide, ethyl bromide, Magnesium chloride, ethylmagnesium bromide, n-butylmagnesium chloride, n-butylmagnesium bromide, phenylmagnesium chloride, phenylmagnesium bromide, benzylmagnesium chloride
- the catalyst composition according to an embodiment of the present invention may contain 1 to 20 molar equivalents, more preferably 1 to 5 molar equivalents, and more preferably 2 to 5 molar equivalents of the halide to 1 mol of the lanthanum-based rare earth element- Moles to 3 moles. If the halide is contained in an amount exceeding 20 molar equivalents, the removal of the catalytic reaction is not easy, and excessive halides may cause side reactions.
- the catalyst composition according to an embodiment of the present invention may include a non-coordinating anion-containing compound or a non-coordinating anion precursor compound instead of or in addition to the halide.
- the non-coordinating anion is a sterically bulky anion which does not form a coordination bond with the active center of the catalyst system due to steric hindrance, and is a tetraaryl borate anion or tetraaryl fluoride Borate anions, and the like.
- the compound containing the non-coordinating anion may include a carbonium cation such as a triarylcarbonium cation together with the above-mentioned non-coordinating anion; An ammonium cation such as N, N-dialkyl anilinium cation or the like, or a relative cation such as a phosphonium cation.
- the compound comprising the non-coordinating anion is selected from the group consisting of triphenylcarbonium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarboniumtetra 3,5-bis (trifluoromethyl) phenyl] borate, or N, N-dimethylanilinium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate.
- nonpolar anionic precursors examples include triarylboron compounds (BE 3 , wherein E is a pentafluorophenyl group or a 3,5-bis (trifluoromethyl) phenyl group and the like, which is capable of forming a non- And a strong electron withdrawing aryl group.
- the catalyst composition may further comprise a conjugated diene monomer.
- the catalyst composition may be prepared by preliminarily mixing a part of the conjugated diene monomer used in the polymerization reaction with the catalyst composition for polymerization to prepare a pre- By using it in the form of a premix catalyst composition, not only the activity of the catalyst composition can be improved, but also the active polymer produced can be stabilized.
- preforming refers to the case where a catalyst composition comprising a lanthanide-based rare earth element-containing compound, an alkylating agent and a halide, namely, diisobutylaluminum hydride (DIBAH)
- DIBAH diisobutylaluminum hydride
- a conjugated diene monomer such as 1,3-butadiene
- pre-polymerization is carried out in the catalyst composition system together with 1,3-butadiene addition .
- ≪ / RTI > Also, " premix " may mean that the catalyst composition system is not polymerized and each compound is uniformly mixed.
- the conjugated diene monomer used for preparing the catalyst composition may be one in which the conjugated diene monomer used in the polymerization reaction is used in an amount within a total amount of the conjugated diene monomer.
- the lanthanide rare earth element-containing compound 1 May be used in an amount of 1 to 100 mol, particularly 10 to 50 mol, or 20 to 50 mol, based on the molar amount.
- the catalyst composition according to an embodiment of the present invention may contain at least one of the above-described lanthanum-based rare earth element-containing compound and at least one of an alkylating agent, a halide and a conjugated diene monomer, specifically, a compound containing a lanthanide rare earth element, Cargo, and optionally a conjugated diene-based monomer.
- the organic solvent may be a nonpolar solvent which is not reactive with the components of the catalyst composition.
- the nonpolar solvent may be at least one selected from the group consisting of n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, isopentane, isohexane, isopentane, isooctane, Linear, branched or cyclic aliphatic hydrocarbons having 5 to 20 carbon atoms such as pentane, cyclohexane, methylcyclopentane or methylcyclohexane; A mixed solvent of aliphatic hydrocarbons having 5 to 20 carbon atoms such as petroleum ether or petroleum spirits, or kerosene; Or an aromatic hydrocarbon solvent such as benzene, toluene, ethylbenzene, xylene, etc., and any one or a mixture of two or more of them may be used.
- n-pentane n-hexane,
- the non-polar solvent may be any of the above-described linear, branched or cyclic aliphatic hydrocarbons or aliphatic hydrocarbons of 5 to 20 carbon atoms, more specifically, n-hexane, cyclohexane, .
- organic solvent may be appropriately selected depending on the constituent components of the catalyst composition, particularly, the kind of the alkylating agent.
- an aromatic hydrocarbon solvent can be suitably used because it is not easily dissolved in an aliphatic hydrocarbon-based solvent.
- an aliphatic hydrocarbon-based solvent may be suitably used.
- a single solvent system can be realized together with an aliphatic hydrocarbon-based solvent such as hexane, which is mainly used as a polymerization solvent, so that the polymerization reaction can be more advantageous.
- the aliphatic hydrocarbon-based solvent can promote the catalytic activity, and the reactivity can be further improved by such catalytic activity.
- the organic solvent may be used in an amount of 20 to 20,000 mol, more specifically 100 to 1,000 mol, per mol of the lanthanum-based rare earth element-containing compound.
- the polymerization of the step 1 may be carried out by continuous polymerization in a polymerization reactor containing at least two reactors, or may be carried out in a batch reactor.
- the polymerization may be temperature-raising polymerization, isothermal polymerization or constant temperature polymerization (adiabatic polymerization).
- the constant temperature polymerization represents a polymerization method including a step of polymerizing the catalyst composition into the reaction heat itself without any heat after the addition of the catalyst composition, and the temperature increase polymerization is carried out by a polymerization method
- the isothermal polymerization is a polymerization method in which heat is applied to the catalyst composition after the addition of the catalyst composition to increase heat or heat is maintained to keep the temperature of the reaction product constant.
- the polymerization can be carried out using coordination anionic polymerization or by radical polymerization, specifically, bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, and more specifically, solution polymerization .
- the polymerization may be carried out in a temperature range of -20 ⁇ to 200 ⁇ , specifically in a temperature range of from 50 ⁇ to 150 ⁇ , more specifically from 10 ⁇ to 120 ⁇ or from 60 ⁇ to 90 ⁇ , 3 hours. ≪ / RTI > If the polymerization temperature is higher than 200 ° C, it is difficult to sufficiently control the polymerization reaction and the cis-1,4 bond content of the resultant conjugated diene polymer may be lowered. When the temperature is lower than -20 ° C, The reaction rate and efficiency may be lowered.
- the method for producing the modified conjugated diene-based polymer according to an embodiment of the present invention may further include: a reaction terminator for completing a polymerization reaction such as polyoxyethylene glycol phosphate or the like after the production of the active polymer; Or an additive such as an antioxidant such as 2,6-di-t-butylparacresol or the like may be further used to terminate the polymerization.
- a reaction terminator for completing a polymerization reaction such as polyoxyethylene glycol phosphate or the like after the production of the active polymer
- an additive such as an antioxidant such as 2,6-di-t-butylparacresol or the like may be further used to terminate the polymerization.
- an additive such as a chelating agent, a dispersing agent, a pH adjusting agent, a deoxidizing agent or an oxygen scavenger may be additionally used in addition to the agent for facilitating solution polymerization together with the reaction terminator.
- Step 2 is a step of producing a first polymer containing a functional group by denaturing or coupling reaction of the active polymer, and may be carried out by reacting the active polymer with a denaturant represented by the general formula (1). That is, in one embodiment of the present invention, the first polymer may be a modified polymer in which the functional group derived from the modifier is introduced into at least one end of the conjugated diene-based polymer chain.
- R 1 to R 3 are independently a trivalent hydrocarbon group substituted with -R 6 COOR 7 ; Or unsubstituted divalent hydrocarbon groups of 1 to 10 carbon atoms, provided that R 1 to R 3 are all simultaneously a trivalent hydrocarbon group; Or a divalent hydrocarbon group, R 4 may be a single bond or an alkylene group having 1 to 20 carbon atoms, R 5 is a silyl group substituted with an alkyl group having 1 to 20 carbon atoms; halogen; Cyano; Or -COR 8 , R 6 may be a single bond, R 7 may be an alkyl group having 1 to 20 carbon atoms, R 8 is an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, A heterocyclic group having 2 to 30 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms, a heterocycloalkyl group having 2 to 10 carbon atoms, a
- the modifier represented by Formula 1 may be a compound represented by Formula 2:
- R 1 and R 3 are each independently selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms.
- R 2 may be a trivalent hydrocarbon group substituted with -R 6 COOR 7
- R 4 and R 6 may be a single bond
- R 7 is a carbon number
- R 9 to R 11 each independently may be hydrogen or an alkyl group having 1 to 20 carbon atoms.
- R 1 and R 3 may each independently be an unsubstituted divalent hydrocarbon group having 1 to 10 carbon atoms
- R 2 may be a trivalent hydrocarbon group substituted with -R 6 COOR 7
- R 4 and R 6 may be a single bond
- R 7 may be an alkyl group having 1 to 20 carbon atoms
- R 9 to R 11 each independently may be an alkyl group having 1 to 20 carbon atoms.
- the modifier represented by the formula (2) may be at least one selected from the group consisting of compounds represented by the following formulas (2-1) to (2-3).
- the modifier according to an embodiment of the present invention includes a functional group capable of enhancing affinity with a filler in the molecule, it is possible to improve the compounding property between the polymer and the filler, and furthermore, By incorporating the derivative, the aggregation of the filler in the rubber composition can be prevented and the dispersibility of the filler can be improved.
- silica which is a kind of inorganic filler
- aggregation is likely to occur due to hydrogen bonding between hydroxyl groups present on the surface of silica.
- the cyclized tertiary amino group interferes with hydrogen bonding between the hydroxyl groups of silica, Can be improved.
- the modifier has a structure capable of maximizing the compounding properties of the modified conjugated diene polymer, and can efficiently produce a modified conjugated diene polymer having excellent balance of mechanical properties such as abrasion resistance and processability of the rubber composition.
- the modifier may be used in an amount of 0.5 to 20 mol based on 1 mol of the lanthanum-based rare earth element-containing compound in the catalyst composition. Specifically, the modifier may be used in an amount of 1 to 10 mol based on 1 mol of the lanthanum-based rare earth element-containing compound in the catalyst composition.
- the denaturation reaction may be carried out at 0 ⁇ to 90 ⁇ for 1 minute to 5 hours.
- an isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) or the like may be added to the polymerization reaction system to terminate the polymerization reaction.
- BHT 2,6-di-t-butyl-p-cresol
- the step 3 is a step for increasing the degree of branching of the first polymer.
- the step 3 may be performed by adding sulfur halide to the first polymer and mixing for 15 minutes or more. More specifically, mixing is carried out for 15 minutes to 60 minutes .
- the process according to one embodiment of the present invention comprises preparing a first polymer containing a functional group derived from a modifier and mixing the first polymer with a sulfur halide to form an electrophilic double bond in a polymer chain constituting the polymer, addition can occur to form a long-chain branch in the polymer chain, which can lower the linearity and increase the degree of branching, and consequently improve the compounding processability of the resulting modified conjugated diene polymer.
- the sulfur halide may be used in an amount of 0.1 to 0.3 parts by weight based on 100 parts by weight of the first polymer. If the sulfur halide is used in the above ratio, it is possible to easily form a long chain branch without adversely affecting the polymer chain.
- the sulfur halide may be at least one selected from the group consisting of disulfide disulfide (S 2 Cl 2 ), diphosphorus salt (SCl 2 ) and thionyl chloride (SOCl 2 ).
- the mixing may be carried out at a temperature condition which is raised by 5 ° C to 20 ° C relative to the polymerization temperature in the step 1. If the mixing of the step 3 is carried out under the above conditions, the viscosity of the polymer solution during the reaction can be lowered, the flow can be made easier, and the branching between the polymer chains constituting the polymer can be easily induced.
- the method according to one embodiment of the present invention can obtain the modified conjugated diene polymer through desolvation treatment or vacuum drying treatment such as steam stripping for lowering the partial pressure of the solvent through supply of water vapor after Step 3 .
- the reaction product obtained as a result of the above-mentioned reaction may contain an unmodified active polymer together with the above-mentioned modified conjugated diene polymer.
- the present invention also provides a modified conjugated diene polymer produced through the above-described production method.
- the modified conjugated diene polymer according to an embodiment of the present invention may have properties such as molecular weight distribution, linearity and Mooney viscosity optimized to have excellent compounding properties and compounding processability by the production method described above .
- the modified conjugated diene polymer may have a molecular weight distribution (Mw / Mn) of 2.0 to 3.5.
- the molecular weight distribution may be 2.5 to 3.5, 2.5 to 3.2 or 2.6 to 3.0.
- the molecular weight distribution of the modified conjugated diene polymer can be calculated from the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
- Mn the number average molecular weight
- Mw The molecular weight distribution of the composition is shown. All molecular weight averages can be expressed in grams per mole (g / mol).
- the weight average molecular weight and the number average molecular weight may mean the polystyrene reduced molecular weight as analyzed by gel permeation chromatography (GPC), respectively.
- the modified conjugated diene polymer according to an embodiment of the present invention may have a weight average molecular weight (Mw) of 3 x 10 5 to 1.5 x 10 6 g / mol, satisfying the above-described molecular weight distribution condition, And the molecular weight (Mn) may be 1.0 ⁇ 10 5 to 5.0 ⁇ 10 5 g / mol.
- Mw weight average molecular weight
- Mn molecular weight
- the weight average molecular weight may be, for example, 5 X 10 5 to 1.2 X 10 6 g / mol, or 5 X 10 5 to 8 X 10 5 g / mol, and the number average molecular weight may be 1.5 X 10 5 to 3.5 X 10 5 g / mol, or from 2.0 X 10 5 to 2.7 X 10 5 g / mol.
- the modified conjugated diene polymer according to an embodiment of the present invention satisfies both the weight average molecular weight (Mw) and the number average molecular weight condition together with the molecular weight distribution described above, It has excellent tensile properties, viscoelasticity and processability, and has an excellent balance of physical properties among them.
- the modified conjugated diene polymer according to an embodiment of the present invention may have a linearity (-S / R) at 100 ° C of less than 0.6, and more specifically 0.4 or more, less than 0.6, or 0.44 or more and less than 0.58 .
- the linearity (-S / R: stress / relaxation) indicates a change in stress due to the reaction of the same amount of strain generated in the material.
- the linearity indicates that the modified conjugated diene polymer
- the degree of branching can be predicted. For example, the lower the degree of linearity, the higher the degree of branching.
- the numerical values represent an absolute value.
- the modified conjugated diene polymer according to one embodiment of the present invention has a linearity in the above-mentioned range, it has an excellent effect both of the combination such as tensile property and viscoelasticity and compounding processability when applied to a rubber composition.
- the modified conjugated diene polymer according to an embodiment of the present invention may have a Mooney viscosity (MV) at 100 ° C of 20 or more and 100 or less, and specifically 30 or more and 80 or less, or 35 or more or 75 or less Or 40 or more and 70 or less.
- MV Mooney viscosity
- the modified conjugated diene polymer according to the present invention may have excellent processability by having a Mooney viscosity in the above-mentioned range.
- the Mooney viscosity was measured using a Mooney viscometer, for example, a Monsanto MV2000E Large Rotor at 100 ° C and a rotor speed of 2 ⁇ 0.02 rpm. Specifically, the polymer was allowed to stand at room temperature (23 ⁇ 5 ° C) for 30 minutes or more, 27 ⁇ 3 g was collected, filled in the die cavity, and platen was operated to measure the Mooney viscosity while applying torque. Further, the linearity (-S / R) was obtained by measuring the slope of the Mooney viscosity change as the torque was released after measuring the Mooney viscosity, and subtracting the slope value.
- a Mooney viscometer for example, a Monsanto MV2000E Large Rotor at 100 ° C and a rotor speed of 2 ⁇ 0.02 rpm.
- the polymer was allowed to stand at room temperature (23 ⁇ 5 ° C) for 30 minutes or more, 27 ⁇ 3 g was collected, filled in the die cavity
- the conjugated diene polymer may have a cis-1,4 bond content of not less than 95%, more specifically not less than 98%, as measured by Fourier transform infrared spectroscopy (FT-IR). Accordingly, when applied to a rubber composition, the abrasion resistance, crack resistance and ozone resistance of the rubber composition can be improved.
- FT-IR Fourier transform infrared spectroscopy
- the modified conjugated diene polymer may have a vinyl content of not more than 5%, more specifically not more than 2%, as measured by Fourier transform infrared spectroscopy.
- the vinyl content in the polymer is more than 5%, there is a possibility that the abrasion resistance, crack resistance and ozone resistance of the rubber composition containing the polymer are deteriorated.
- the intracellular cis-1,4 bond content and the vinyl content by the Fourier transform infrared spectroscopy were the same as those of the conjugated diene polymer prepared by using the same cell disulfide carbon as a blank at a concentration of 5 mg / (A, baseline) near 1130 cm -1 of the measurement spectrum, a minimum peak near 967 cm -1 representing trans-1,4 bond (B), the minimum peak value (c) near 911 cm -1 indicating the vinyl bond, and the minimum peak value (d) near 736 cm -1 indicating the cis-1,4 bond, I think.
- FT-IR Fourier transform infrared spectroscopy
- the present invention provides a rubber composition comprising the conjugated diene-based polymer and a molded article produced from the rubber composition.
- the rubber composition according to an embodiment of the present invention contains the modified conjugated diene polymer in an amount of 0.1 to 100% by weight, specifically 10 to 100% by weight, more specifically 20 to 90% by weight May include. If the content of the modified conjugated diene polymer is less than 0.1% by weight, the effect of improving the abrasion resistance and crack resistance of a molded article produced using the rubber composition, such as a tire, may be insignificant.
- the rubber composition may further include other rubber components, if necessary, in addition to the modified conjugated diene polymer, wherein the rubber component may be contained in an amount of 90 wt% or less based on the total weight of the rubber composition. Specifically, it may be contained in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene-based copolymer.
- the rubber component may be natural rubber or synthetic rubber, for example natural rubber (NR) comprising cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber, which are modified or refined with the general natural rubber; Butadiene copolymers (SBR), polybutadiene (BR), polyisoprenes (IR), butyl rubbers (IIR), ethylene-propylene copolymers, polyisobutylene-co-isoprene, neoprene, poly Butadiene), poly (styrene-co-butadiene), poly (styrene-co-butadiene) Synthetic rubber such as polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, butyl rubber, halogenated butyl rubber and the like may be used, and any one or a mixture of two or more thereof may be used have
- the rubber composition may contain 0.1 to 150 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer, and the filler may be silica-based, carbon black or a combination thereof. Specifically, the filler may be carbon black.
- the carbon black filler is not particularly limited, but may have a nitrogen adsorption specific surface area (measured according to N 2 SA, JIS K 6217-2: 2001) of 20 m 2 / g to 250 m 2 / g.
- the carbon black may have a dibutyl phthalate oil absorption (DBP) of 80 cc / 100 g to 200 cc / 100 g. If the nitrogen adsorption specific surface area of the carbon black exceeds 250 m 2 / g, the workability of the rubber composition may deteriorate. If it is less than 20 m 2 / g, the reinforcing performance by carbon black may be insufficient.
- the workability of the rubber composition may decrease. If the DBP oil absorption is less than 80 cc / 100 g, the reinforcing performance by carbon black may be insufficient.
- the silica is not particularly limited, but may be, for example, wet silica (hydrated silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate or colloidal silica.
- the silica may be a wet silica having the most remarkable effect of improving the breaking property and the wet grip.
- the silica has a nitrogen surface area per gram (N 2 SA) of 120 m 2 / g to 180 m 2 / g and a cetyl trimethyl ammonium bromide (CTAB) adsorption specific surface area of 100 m 2 / / g.
- N 2 SA nitrogen surface area per gram
- CTAB cetyl trimethyl ammonium bromide
- the reinforcing performance by silica may be lowered. If it exceeds 180 m < 2 > / g, If the CTAB adsorption specific surface area of the silica is less than 100 m < 2 > / g, the reinforcing performance by the silica as a filler may be deteriorated. If it exceeds 200 m < 2 > / g, the workability of the rubber composition may deteriorate.
- silica when used as the filler, a silane coupling agent may be used together to improve the reinforcing property and the low heat build-up.
- silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide Triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide Triethoxys
- the silane coupling agent may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropyl benzothiazine tetrasulfide.
- the rubber composition according to an embodiment of the present invention may be sulfur-crosslinkable and may further include a vulcanizing agent.
- the vulcanizing agent may be specifically a sulfur powder and may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component. When contained in the above content range, the required elastic modulus and strength of the vulcanized rubber composition can be ensured, and at the same time, the low fuel consumption ratio can be obtained.
- the rubber composition according to one embodiment of the present invention may contain various additives commonly used in the rubber industry, such as a vulcanization accelerator, a process oil, a plasticizer, an antioxidant, a scorch inhibitor, zinc white ), Stearic acid, a thermosetting resin, or a thermoplastic resin.
- a vulcanization accelerator such as a vulcanization accelerator, a process oil, a plasticizer, an antioxidant, a scorch inhibitor, zinc white ), Stearic acid, a thermosetting resin, or a thermoplastic resin.
- the vulcanization accelerator is not particularly limited and specifically includes M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazyl sulfenamide) Based compound, or a guanidine-based compound such as DPG (diphenylguanidine) can be used.
- the vulcanization accelerator may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
- the process oil may be a paraffinic, naphthenic, or aromatic compound. More specifically, considering the tensile strength and abrasion resistance, the process oil may be an aromatic process oil, a hysteresis loss And naphthenic or paraffinic process oils may be used in view of the low temperature characteristics.
- the process oil may be contained in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component. When the content is included in the above amount, the tensile strength and low heat build-up (low fuel consumption) of the vulcanized rubber can be prevented from lowering.
- the antioxidant examples include N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'- 2, 4-trimethyl-1,2-dihydroquinoline, or high-temperature condensates of diphenylamine and acetone.
- the antioxidant may be used in an amount of 0.1 part by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
- the rubber composition according to one embodiment of the present invention can be obtained by kneading by using a kneader such as Banbury mixer, roll, internal mixer or the like by the above compounding formula. Further, the rubber composition can be obtained by a vulcanization step after molding, This excellent rubber composition can be obtained.
- a kneader such as Banbury mixer, roll, internal mixer or the like by the above compounding formula. Further, the rubber composition can be obtained by a vulcanization step after molding, This excellent rubber composition can be obtained.
- the rubber composition can be applied to various members such as tire tread, under-tread, sidewall, carcass coated rubber, belt coated rubber, bead filler, pancake fur, or bead coated rubber, vibration proof rubber, belt conveyor, Can be useful for the production of various industrial rubber products.
- the molded article produced using the rubber composition may be one comprising a tire or tire tread.
- DIBAH diisobutyl aluminum hydride
- DEAC Diethylaluminum
- a modified butadiene polymer was prepared in the same manner as in Example 1, except that disilicide disulfide was added and stirred for 60 minutes to mix with the first polymer.
- a modified butadiene polymer was prepared in the same manner as in Example 1, except that disilicide disulfide was added and stirred for 80 minutes to mix with the first polymer.
- Example 1 a denatured butadiene polymer was prepared in the same manner as in Example 1, except that neodymium versatate was added in an amount of 0.769 mmol in the preparation of the catalyst composition and 0.30 part by weight of disulfur dichloride was added to 100 parts by weight of the monomer Respectively.
- a modified butadiene polymer was prepared in the same manner as in Example 4, except that 0.32 parts by weight of disulfur dichloride was added to 100 parts by weight of the monomer.
- BR1208 (LG Chem) was used as a non-modified butadiene polymer as a comparative example.
- CB25 (Lanxess) was used as the unmodified butadiene polymer as a comparative example.
- DIBAH diisobutyl aluminum hydride
- DEAC diethyl aluminum chloride
- a modified butadiene polymer was prepared in the same manner as in Example 1, except that disilicide disulfide was added and stirred for 5 minutes to mix with the first polymer.
- the amount of cis, trans, and vinyl defects in each polymer was measured using Varian VNMRS 500 Mhz NMR, and 1,1,2,2-tetrachloroethane D2 (Cambridge Isotope) was used as a solvent.
- Each of the polymers was dissolved in tetrahydrofuran (THF) for 30 minutes under the condition of 40 ⁇ ⁇ and loaded on gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- two columns of PLgel Olexis column and one column of PLgel mixed-C column of Polymer Laboratories were used in combination.
- a column of a mixed bed type was used as a new column, and polystyrene was used as a gel permeation chromatography (GPC) standard material.
- the Mooney viscosity (ML1 + 4, @ 100 ° C) (MU) was measured at 100 ° C under Rotor Speed 2 ⁇ 0.02 rpm using Monsanto MV2000E with a large rotor.
- the sample used was allowed to stand at room temperature (23 ⁇ 3 ° C) for more than 30 minutes, and then 27 ⁇ 3 g was sampled and filled in the die cavity. Platen was operated to measure the Mooney viscosity by applying torque. Further, the Mooney viscosity was measured, and the change in Mooney viscosity as the torque was released was observed for 1 minute, and the -S / R value was determined from the slope value.
- the modified conjugated diene polymers of Examples 1 to 5 according to one embodiment of the present invention showed -S / R value of less than 0.6, and in Comparative Examples 1 to 3 4 of the polymer. This is a result indicating that the modified conjugated diene polymer according to an embodiment of the present invention has a high degree of branching.
- the rubber composition was prepared by mixing 70 parts by weight of carbon black, 22.5 parts by weight of process oil, 2 parts by weight of antioxidant (TMDQ), 3 parts by weight of zinc oxide (ZnO) and 100 parts by weight of stearic acid 2 parts by weight of stearic acid were blended to prepare respective rubber compositions. Subsequently, 2 parts by weight of sulfur, 2 parts by weight of a vulcanization accelerator (CZ) and 0.5 parts by weight of a vulcanization accelerator (DPG) were added to each of the rubber compositions, mixed at 50 rpm for 1.5 minutes at 50 rpm, To obtain a vulcanizing blend in sheet form. The obtained vulcanization compound was vulcanized at 160 DEG C for 25 minutes to prepare a rubber specimen.
- Mooney viscosity (ML1 + 4, @ 100 DEG C) (MU) was measured using each of the vulcanized blends prepared above. Specifically, Mooney viscosity (MV) was measured at 100 ° C using Rotor Speed 2 ⁇ 0.02 rpm using a large rotor with Monsanto MV2000E. The sample used was allowed to stand at room temperature (23 ⁇ 3 ° C) for more than 30 minutes, and then 27 ⁇ 3 g was sampled and filled in the die cavity. Platen was operated to measure the Mooney viscosity by applying torque.
- Each vulcanized rubber composition was vulcanized at 150 ⁇ for 90 minutes, and the tensile strength of the vulcanized product, the modulus at 300% elongation (M-300%) and elongation at break were measured according to ASTM D412. The measured value was calculated by calculating the value of Comparative Example 2 as 100 and using the following formula (1).
- the tan ⁇ physical properties which is the most important factor for low fuel efficiency, were measured by using DMTS 500N from Germany Gabo.
- the viscoelasticity (Tan ⁇ ) at 60 °C was measured at a frequency of 10 Hz, 3% of prestrain and 3% of dynamic strain.
- the Tan? Value at 60 ⁇ ⁇ shows the rotational resistance characteristic and the fuel consumption characteristic.
- the measured value was calculated by calculating the value of Comparative Example 2 as 100 and then indexing it.
- the rubber specimens prepared from the rubber compositions containing Examples 1 to 5 according to one embodiment of the present invention exhibited excellent tensile properties and viscoelastic properties as compared with Comparative Examples 1 to 4 Respectively.
- each of the rubber specimens prepared from the rubber composition containing the polymer of Comparative Example 3 and Comparative Example 4 exhibited similar tensile and viscoelastic properties as Example 1, but the workability was lowered. Accordingly, the production method according to an embodiment of the present invention can form a polymer having a high degree of branching by adding a sulfur halide and mixing for 15 minutes or more, and it is possible to form a polymer having a high degree of branching, And the compounding processability can be improved at the same time.
- Example 3 and 5 the viscoelastic characteristics were lowered as compared with Example 1, Example 2, and Example 4.
- sulfur halide was added, Or 0.32 parts by weight of a sulfur halide based on 100 parts by weight of the first polymer.
- -S / R value is less than 0.44. It was confirmed that the compounding property and the compounding processability can be improved to a better level when the amount of the sulfur halide to be used and the mixing time are controlled in the production of the modified conjugated diene polymer.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerization Catalysts (AREA)
Abstract
본 발명은 배합물성이 우수하면서 가공성이 개선된 변성 공액디엔계 중합체의 제조방법에 관한 것이다. 이에 따른 제조방법은 화학식 1로 표시되는 변성제를 이용하여 작용기를 포함하는 제1 중합체를 제조하고, 상기 제1 중합체를 황할로겐화물과 혼합시킴으로써 충진제와의 친화성이 우수하여 인장특성 및 점탄성 특성과 같은 배합 물성이 우수하면서도 분지화도가 높아 배합 가공성이 우수한 변성 공액디엔계 중합체를 제조할 수 있다.
Description
[관련출원과의 상호인용]
본 출원은 2017.10.18자 한국 특허 출원 제10-2017-0135175호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 배합물성이 우수하면서 가공성이 개선된 변성 공액디엔계 중합체의 제조방법에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 주행저항이 적고, 내마모성, 인장 특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 주행저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ 또는 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌고무 또는 폴리부타디엔 고무 등이 알려져있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 (공)중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다.
상기의 BR 또는 SBR을 타이어용 고무 재료로 이용하는 경우에는, 타이어 요구 물성을 얻기 위하여 통상적으로 실리카나 카본블랙 등의 충진제를 함께 블렌딩하여 사용하고 있다. 그러나, 상기 BR 또는 SBR과 충진제의 친화성이 좋지 못하여 오히려 내마모성, 내크랙성 또는 가공성 등을 비롯한 물성이 저하되는 문제가 있다.
이에, SBR과 실리카나 카본블랙 등의 충진제의 분산성을 높이기 위한 방법으로서, 유기 리튬을 이용한 음이온 중합으로 얻어지는 공액디엔계 중합체의 중합활성 부위를 충진제와 상호작용 가능한 관능기로 변성하는 방법이 제안되었다. 예컨대, 공액디엔계 중합체의 중합활성 말단을 주석계 화합물로 변성하거나, 아미노기를 도입하는 방법 또는 알콕시실란 유도체로 변성하는 방법 등이 제안되었다.
또한, BR과 실리카나 카본블랙 등의 충진제의 분산성을 높이기 위한 방법으로서 란탄 계열 희토류 원소 화합물을 포함하는 촉매 조성물을 이용한 배위 중합에 의해 얻어지는 리빙 중합체에 있어서, 리빙 활성 말단을 특정의 커플링제나 변성제에 의해 변성하는 방법이 개발되었다.
한편, 말단이 변성된 중합체의 경우 충진제와의 친화성이 개선되어 배합 물성, 예컨대 인장특성 및 점탄성 특성이 향상되는 장점이 있으나, 그에 반해 배합 가공성이 크게 감소되어 가공성이 좋지 못한 문제가 있다.
따라서, SBR 또는 BR 제조 시, 배합 물성이 우수하면서도 가공성을 개선시킬 수 있는 방법이 요구되고 있는 실정이다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 배합물성이 우수하면서 가공성이 개선된 변성 공액디엔계 중합체의 제조방법을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위하여, 본 발명은 탄화수소 용매 중에서, 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계(단계 1); 상기 활성 중합체와 화학식 1로 표시되는 변성제를 반응시켜 제1 중합체를 제조하는 단계(단계 2); 및 상기 제1 중합체에 황할로겐화물을 첨가하고 15분 이상 혼합하는 단계(단계 3)를 포함하는 변성 공액디엔계 중합체의 제조방법을 제공한다:
[화학식 1]
상기 화학식 1에서,
R1 내지 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기 및 -R6COOR7로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아니며,
R4는 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R5는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기; 할로겐; 시아노기; 또는 -COR8이며,
R6은 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종이다.
본 발명에 따른 제조방법은 화학식 1로 표시되는 변성제를 이용하여 작용기를 포함하는 제1 중합체를 제조하고, 상기 제1 중합체를 황할로겐화물과 혼합시킴으로써 충진제와의 친화성이 우수하여 인장특성 및 점탄성 특성과 같은 배합 물성이 우수하면서도 분지화도가 높아 배합 가공성이 우수한 변성 공액디엔계 중합체를 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 인장특성 및 점탄성 특성와 같은 배합물성이 우수하면서, 분지화도가 높아 배합 가공성이 개선된 변성 공액디엔게 중합체를 제조할 수 있는, 상기 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 제조방법은 탄화수소 용매 중에서, 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계(단계 1); 상기 활성 중합체와 하기 화학식 1로 표시되는 변성제를 반응시켜 제1 중합체를 제조하는 단계(단계 2); 및 상기 제1 중합체에 황할로겐화물을 첨가하고 15분 이상 혼합하는 단계(단계 3)를 포함하는 것을 특징으로 한다.
[화학식 1]
상기 화학식 1에서,
R1 내지 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기 및 -R6COOR7로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아니며,
R4는 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R5는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기; 할로겐; 시아노기; 또는 -COR8이며,
R6은 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종이다.
본 발명에서 사용하는 용어 '치환기로 치환된 3가 탄화수소기'는 N원자를 포함하는 고리 내의 결합(2가) 및 상기 정의된 치환기와의 결합(1가)으로부터 총 3가로 치환된 탄화수소기를 의미할 수 있고, 상기 치환된 3가 탄화수소기는, 상기 정의된 치환기의 탄소수를 제외하고, N원자와 함께 고리를 이루는 탄소수가 1 내지 10인, 또는 1 내지 5인 3가 탄화수소기일 수 있다.
본 발명에서 사용하는 용어 '단일 결합'은 별도의 원자 또는 분자단을 포함하지 않는, 단일 공유 결합 자체를 의미할 수 있다.
본 발명에서 사용하는 용어 '탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기'는 비치환된 1가 실릴기와 상기 알킬기로 치환된 2가 내지 4가 실릴기로 이루어진 군으로부터 선택된 1종을 의미할 수 있다.
상기 단계 1은 촉매 조성물로터 유래된 활성화된 유기금속 부위를 포함하는 활성 중합체를 제조하기 위한 단계로, 탄화수소 용매 중에서 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 수행할 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물을 포함하는 것일 수 있다.
상기 촉매 조성물은 공액디엔계 단량체 총 100 g을 기준으로 란탄 계열 희토류 원소 함유 화합물이 0.1 mmol 내지 0.5 mmol이 되게 하는 양으로 사용하는 것일 수 있으며, 구체적으로는 상기 란탄 계열 희토류 원소 함유 화합물이 공액디엔계 단량체 총 100 g을 기준으로 0.1 mmol 내지 0.4 mmol, 더욱 구체적으로는 0.1 mmol 내지 0.25 mmol이 되게 하는 양으로 사용하는 것일 수 있다.
상기 란탄 계열 희토류 원소 함유 화합물은 특별히 제한되는 것은 아니나, 예컨대 란탄, 네오디뮴, 세륨, 가돌리늄 또는 프라세오디뮴 등과 같은 원자번호 57 내지 71의 희토류 금속 중 어느 하나 또는 둘 이상의 화합물일 수 있으며, 더 구체적으로는 네오디뮴, 란탄 및 가돌리늄으로 이루어진 군에서 선택된 1 이상을 포함하는 화합물일 수 있다.
또한, 상기 란탄 계열 희토류 원소 함유 화합물은 상기한 희토류 원소 함유 카르복실산염(예를 들면, 네오디뮴 초산염, 네오디뮴 아크릴산염, 네오디뮴 메타크릴산염, 네오디뮴 글루콘산염, 네오디뮴 구연산염, 네오디뮴 푸마르산염, 네오디뮴 유산염, 네오디뮴 말레산염, 네오디뮴 옥살산염, 네오디뮴 2-에틸헥사노에이트, 네오디뮴 네오 데카노에이트 등); 유기인산염(예를 들면, 네오디뮴 디부틸 인산염, 네오디뮴 디펜틸 인산염, 네오디뮴 디헥실 인산염, 네오디뮴 디헵틸 인산염, 네오디뮴 디옥틸 인산염, 네오디뮴 비스(1-메틸 헵틸) 인산염, 네오디뮴 비스(2-에틸헥실) 인산염, 또는 네오디뮴 디데실 인산염 등); 유기 포스폰산염(예를 들면, 네오디뮴 부틸 포스폰산염, 네오디뮴 펜틸 포스폰산염, 네오디뮴 헥실 포스폰산염, 네오디뮴 헵틸 포스폰산염, 네오디뮴 옥틸 포스폰산염, 네오디뮴(1-메틸 헵틸) 포스폰산염, 네오디뮴(2-에틸헥실) 포스폰산염, 네오디뮴 디실 포스폰산염, 네오디뮴 도데실 포스폰산염 또는 네오디뮴 옥타데실 포스폰산염 등); 유기 포스핀산염(예를 들면, 네오디뮴 부틸포스핀산염, 네오디뮴 펜틸포스핀산염, 네오디뮴 헥실 포스핀산염, 네오디뮴 헵틸 포스핀산염, 네오디뮴 옥틸 포스핀산염, 네오디뮴(1-메틸 헵틸) 포스핀산염 또는 네오디뮴(2-에틸헥실) 포스핀산염 등); 카르밤산염(예를 들면, 네오디뮴 디메틸 카르밤산염, 네오디뮴 디에틸 카르밤산염, 네오디뮴 디이소프로필 카르밤산염, 네오디뮴 디부틸 카르밤산염 또는 네오디뮴 디벤질 카르밤산염 등); 디티오 카르밤산염(예를 들면, 네오디뮴 디메틸디티오카르바민산염, 네오디뮴 디에틸디티오카르바민산염, 네오디뮴 디이소프로필 디티오 카르밤산염 또는 네오디뮴 디부틸디티오카르바민산염 등); 크산토겐산염(예를 들면, 네오디뮴 메틸 크산토겐산염, 네오디뮴 에틸 크산토겐산염, 네오디뮴 이소프로필 크산토겐산염, 네오디뮴 부틸 크산토겐산염, 또는 네오디뮴 벤질 크산토겐산염 등); β-디케토네이트(예를 들면, 네오디뮴 아세틸아세토네이트, 네오디뮴 트리플루오로아세틸 아세토네이트, 네오디뮴 헥사플루오로아세틸 아세토네이트 또는 네오디뮴 벤조일 아세토네이트 등); 알콕시드 또는 알릴옥시드(예를 들면, 네오디뮴 메톡사이드, 네오디뮴 에톡시드, 네오디뮴 이소프로폭사이드, 네오디뮴 페녹사이드 또는 네오디뮴 노닐 페녹사이드 등); 할로겐화물 또는 의사 할로겐화물(네오디뮴 불화물, 네오디뮴 염화물, 네오디뮴 브롬화물, 네오디뮴 요오드화물, 네오디뮴 시안화물, 네오디뮴 시안산염, 네오디뮴 티오시안산염, 또는 네오디뮴 아지드 등); 옥시할라이드(예를 들면, 네오디뮴 옥시플루오라이드, 네오디뮴 옥시 클로라이드, 또는 네오디뮴 옥시 브로마이드 등); 또는 1 이상의 희토류 원소-탄소 결합을 포함하는 유기 란탄 계열 희토류 원소 함유 화합물(예를 들면, Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, CpLn(사이클로옥타테트라엔), (C5Me5)2LnR, LnR3, Ln(알릴)3, 또는 Ln(알릴)2Cl 등, 상기 식중 Ln은 희토류 금속 원소이고, R은 하이드로카르빌기이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
구체적으로, 상기 란탄 계열 희토류 원소 함유 화합물은 하기 화학식 3으로 표시되는 네오디뮴 화합물을 포함하는 것일 수 있다.
[화학식 3]
상기 화학식 3에서, Ra 내지 Rc는 서로 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기이고, 단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
더 구체적으로, 상기 네오디뮴 화합물은 Nd(2-에틸헥사노에이트)3, Nd(2,2-디메틸 데카노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
또한, 다른 예로, 올리고머화에 대한 우려 없이 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 란탄 계열 희토류 원소 함유 화합물은 보다 구체적으로 상기 화학식 3에서 Ra가 탄소수 4 내지 12의 알킬기이고, Rb 및 Rc는 서로 독립적으로 수소 또는 탄소수 2 내지 8의 알킬기이되, 단 Rb 및 Rc가 동시에 수소가 아닌 네오디뮴계 화합물일 수 있다.
보다 구체적인 예로, 상기 화학식 3에서 상기 Ra는 탄소수 6 내지 8의 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소, 또는 탄소수 2 내지 6의 알킬기일 수 있으며, 이때 상기 Rb 및 Rc는 동시에 수소가 아닐 수 있고, 그 구체적인 예로는 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 중에서도 상기 네오디뮴계 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, 및 Nd(2,2-디옥틸 데카노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
보다 더 구체적으로, 상기 화학식 3에서, 상기 Ra는 탄소수 6 내지 8의 알킬기이고, Rb 및 Rc는 각각 독립적으로 탄소수 2 내지 6의 알킬기일 수 있다.
이와 같이, 상기 화학식 3으로 표시되는 네오디뮴계 화합물은 α(알파) 위치에 탄소수 2 이상의 다양한 길이의 알킬기를 치환기로 포함하는 카르복실레이트 리간드를 포함함으로써, 네오디뮴 중심 금속 주위에 입체적인 변화를 유도하여 화합물 간의 엉김 현상을 차단할 수 있고, 이에 따라, 올리고머화를 억제할 수 있는 효과가 있다. 또한, 이와 같은 네오디뮴계 화합물은 용매에 대한 용해도가 높고, 촉매 활성종으로의 전환에 어려움이 있는 중심 부분에 위치하는 네오디뮴 비율이 감소되어 촉매 활성종으로의 전환율이 높은 효과가 있다.
또한, 본 발명의 일 실시예에 따른 상기 란탄 계열 희토류 원소 함유 화합물의 용해도는 상온(25℃)에서 비극성 용매 6 g 당 약 4 g 이상일 수 있다.
본 발명에 있어서, 네오디뮴계 화합물의 용해도는 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것으로, 이와 같이 높은 용해도를 나타냄으로써 우수한 촉매 활성을 나타낼 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 란탄 계열 희토류 원소 함유 화합물은 루이스 염기와의 반응물의 형태로 사용될 수도 있다. 이 반응물은 루이스 염기에 의해, 란탄 계열 희토류 원소 함유 화합물의 용매에 대한 용해성을 향상시키고, 장기간 안정한 상태로 저장할 수 있는 효과가 있다. 상기 루이스 염기는 일례로 희토류 원소 1 몰 당 30 몰 이하, 또는 1 내지 10 몰의 비율로 사용될 수 있다. 상기 루이스 염기는 일례로 아세틸아세톤, 테트라히드로푸란, 피리딘, N,N-디메틸포름아미드, 티오펜, 디페닐에테르, 트리에틸아민, 유기인 화합물 또는 1가 또는 2가의 알코올 등일 수 있다.
한편, 상기 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물과 함께 알킬화제, 할로겐화물 및 공액디엔계 단량체 중 적어도 하나를 더 포함하는 것일 수 있다.
즉, 본 발명의 일 실시예에 따른 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물을 포함하고, 알킬화제, 할로겐화물 및 공액디엔계 단량체 중 적어도 하나를 더 포함하는 것일 수 있다.
이하, 상기 (a) 알킬화제, (b) 할로겐화물 및 (c) 공액디엔계 단량체를 나누어 구체적으로 설명한다.
(a) 알킬화제
상기 알킬화제는 히드로카르빌기를 다른 금속으로 전달할 수 있는 유기금속 화합물로서 조촉매의 역할을 하는 것일 수 있다. 상기 알킬화제는 통상 디엔계 중합체의 제조시 알킬화제로서 사용되는 것이라면 특별한 제한하지 않고 사용할 수 있으며, 예컨대 유기 알루미늄 화합물, 유기 마그네슘 화합물, 또는 유기 리튬 화합물 등과 같이, 중합 용매에 가용성이며, 금속-탄소 결합을 함유하는 유기금속 화합물일 수 있다.
구체적으로는, 상기 유기 알루미늄 화합물로는 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄 등의 알킬알루미늄; 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 하이드라이드 등의 디히드로카르빌알루미늄 하이드라이드; 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드 또는 n-옥틸알루미늄 디하이드라이드 등과 같은 히드로카르빌알루미늄 디하이드라이드 등을 들 수 있다. 상기 유기 마그네슘 화합물로는 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘, 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물 등을 들 수 있고, 또 상기 유기 리튬 화합물로는 n-부틸리튬 등과 같은 알킬 리튬 화합물 등을 들 수 있다.
또한, 상기 유기 알루미늄 화합물은 알루미녹산일 수 있다.
상기 알루미녹산은 트리히드로카르빌 알루미늄계 화합물에 물을 반응시킴으로써 제조된 것일 수 있으며, 구체적으로는 하기 화학식 4a의 직쇄 알루미녹산 또는 하기 화학식 4b의 환형 알루미녹산일 수 있다.
[화학식 4a]
[화학식 4b]
상기 화학식 4a 및 4b에서, R은 탄소 원자를 통해 알루미늄 원자에 결합하는 1가의 유기기로서, 하이드로카르빌기일 수 일 수 있으며, x 및 y는 서로 독립적으로 1 이상의 정수, 구체적으로는 1 내지 100, 더 구체적으로는 2 내지 50의 정수일 수 있다.
보다 더 구체적으로는, 상기 알루미녹산은 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 또는 2,6-디메틸페닐 알루미녹산 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기를 수식기(R), 구체적으로는 탄소수 2 내지 20의 탄화수소기로 치환한 것으로, 구체적으로는 하기 화학식 5로 표시되는 화합물일 수 있다.
[화학식 5]
상기 화학식 5에서, R은 앞서 정의한 바와 같으며, m 및 n은 서로 독립적으로 2 이상의 정수일 수 있다. 또한, 상기 화학식 5에서, Me는 메틸기(methyl group)을 나타내는 것이다.
구체적으로, 상기 화학식 5에서 상기 R은 탄소수 2 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 7 내지 20의 알킬아릴기, 알릴기 또는 탄소수 2 내지 20의 알키닐기일 수 있으며, 보다 구체적으로는 에틸기, 이소부틸기, 헥실기 또는 옥틸기 등과 같은 탄소수 2 내지 10의 알킬기이고, 보다 더 구체적으로는 이소부틸기일 수 있다.
더 구체적으로, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기의 약 50 몰% 내지 90 몰%를 상기한 탄화수소기로 치환한 것일 수 있다. 변성 메틸알루미녹산 내 치환된 탄화수소기의 함량이 상기 범위 내일 때, 알킬화를 촉진시켜 촉매활성을 증가시킬 수 있다.
이와 같은 변성 메틸알루미녹산은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 트리메틸알루미늄과 트리메틸알루미늄 이외의 알킬알루미늄을 이용하여 제조될 수 있다. 이때 상기 알킬알루미늄은 트리이소부틸알루미늄, 트리에틸알루미늄, 트리헥실알루미늄 또는 트리옥틸알루미늄 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기 알킬화제를 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 내지 200 몰비, 구체적으로는 1 내지 100 몰비, 더욱 구체적으로는 3 내지 20 몰비로 포함하는 것일 수 있다. 만약, 상기 알킬화제를 200 몰비를 초과하여 포함하는 경우에는 중합체 제조 시 촉매 반응 제어가 용이하지 않고, 과량의 알킬화제가 부반응을 일으킬 우려가 있다.
(b) 할로겐화물
상기 할로겐화물은 특별히 제한하는 것은 아니나, 예컨대 할로겐 단체(單體), 할로겐간 화합물(interhalogen compound), 할로겐화수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 또는 유기금속 할라이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 촉매 활성 향상 및 이에 따른 반응성 개선 효과의 우수함을 고려할 때 상기 할로겐화물로는 유기 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 할로겐 단체로는 불소, 염소, 브롬 또는 요오드를 들 수 있다.
또한, 상기 할로겐간 화합물로는 요오드 모노클로라이드, 요오드 모노브로마이드, 요오드 트리클로라이드, 요오드 펜타플루오라이드, 요오드 모노플루오라이드 또는 요오드 트리플루오라이드 등을 들 수 있다.
또한, 상기 할로겐화수소로는 불화수소, 염화수소, 브롬화수소 또는 요오드화수소를 들 수 있다.
또한, 상기 유기 할라이드로는 t-부틸 클로라이드(t-BuCl), t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸 브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란(TMSCl), 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트, 메틸 브로모포르메이트, 요오도메탄, 디요오도메탄, 트리요오도메탄 ('요오도포름'으로도 불리움), 테트라요오도메탄, 1-요오도프로판, 2-요오도프로판, 1,3-디요오도프로판, t-부틸 요오다이드, 2,2-디메틸-1-요오도프로판 ('네오펜틸 요오다이드'로도 불리움), 알릴 요오다이드, 요오도벤젠, 벤질 요오다이드, 디페닐메틸 요오다이드, 트리페닐메틸 요오다이드, 벤질리덴 요오다이드 ('벤잘 요오다이드'로도 불리움), 트리메틸실릴 요오다이드, 트리에틸실릴 요오다이드, 트리페닐실릴 요오다이드, 디메틸디요오도실란, 디에틸디요오도실란, 디페닐디요오도실란, 메틸트리요오도실란, 에틸트리요오도실란, 페닐트리요오도실란, 벤조일 요오다이드, 프로피오닐 요오다이드 또는 메틸 요오도포르메이트 등을 들 수 있다.
또한, 상기 비금속 할라이드로는 삼염화인, 삼브롬화인, 오염화인, 옥시염화인, 옥시브롬화인, 삼불화붕소, 삼염화붕소, 삼브롬화붕소, 사불화규소, 사염화규소(SiCl4), 사브롬화규소, 삼염화비소, 삼브롬화비소, 사염화셀레늄, 사브롬화셀레늄, 사염화텔루르, 사브롬화텔루르, 사요오드화규소, 삼요오드화비소, 사요오드화텔루르, 삼요오드화붕소, 삼요오드화인, 옥시요오드화인 또는 사요오드화셀레늄 등을 들 수 있다.
또한, 상기 금속 할라이드로는 사염화주석, 사브롬화주석, 삼염화알루미늄, 삼브롬화알루미늄, 삼염화안티몬, 오염화안티몬, 삼브롬화안티몬, 삼불화알루미늄, 삼염화갈륨, 삼브롬화갈륨, 삼불화갈륨, 삼염화인듐, 삼브롬화인듐, 삼불화인듐, 사염화티타늄, 사브롬화티타늄, 이염화아연, 이브롬화아연, 이불화아연, 삼요오드화알루미늄, 삼요오드화갈륨, 삼요오드화인듐, 사요오드화티타늄, 이요오드화아연, 사요오드화게르마늄, 사요오드화주석, 이요오드화주석, 삼요오드화안티몬 또는 이요오드화마그네슘을 들 수 있다.
또한, 상기 유기금속 할라이드로는 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드(EASC), 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, n-부틸마그네슘 클로라이드, n-부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디-n-부틸주석 디클로라이드, 디-n-부틸주석 디브로마이드, 트리-n-부틸주석 클로라이드, 트리-n-부틸주석 브로마이드, 메틸마그네슘 요오다이드, 디메틸알루미늄 요오다이드, 디에틸알루미늄 요오다이드, 디-n-부틸알루미늄 요오다이드, 디이소부틸알루미늄 요오다이드, 디-n-옥틸알루미늄 요오다이드, 메틸알루미늄 디요오다이드, 에틸알루미늄 디요오다이드, n-부틸알루미늄 디요오다이드, 이소부틸알루미늄 디요오다이드, 메틸알루미늄 세스퀴요오다이드, 에틸알루미늄 세스퀴요오다이드, 이소부틸알루미늄 세스퀴요오다이드, 에틸마그네슘 요오다이드, n-부틸마그네슘 요오다이드, 이소부틸마그네슘 요오다이드, 페닐마그네슘 요오다이드, 벤질마그네슘 요오다이드, 트리메틸주석 요오다이드, 트리에틸주석 요오다이드, 트리-n-부틸주석 요오다이드, 디-n-부틸주석 디요오다이드 또는 디-t-부틸주석 디요오다이드 등을 들 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기 할로겐화물을 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 몰 내지 20 몰, 보다 구체적으로는 1 몰 내지 5 몰, 보다 구체적으로는 2 몰 내지 3 몰로 포함할 수 있다. 만약, 상기 할로겐화물을 20 몰비를 초과하여 포함하는 경우에는, 촉매 반응의 제거가 용이하지 않고, 과량의 할로겐화물이 부반응을 일으킬 우려가 있다.
또한, 본 발명의 일 실시예에 따른 촉매 조성물은, 상기 할로겐화물 대신에 또는 상기 할로겐화물과 함께, 비배위성 음이온 함유 화합물 또는 비배위 음이온 전구체 화합물을 포함할 수도 있다.
구체적으로, 상기 비배위성 음이온을 포함하는 화합물에 있어서, 비배위성 음이온은 입체 장애로 인해 촉매계의 활성 중심과 배위결합을 형성하지 않는, 입체적으로 부피가 큰 음이온으로서, 테트라아릴보레이트 음이온 또는 불화 테트라아릴보레이트 음이온 등일 수 있다. 또한, 상기 비배위성 음이온을 포함하는 화합물은 상기한 비배위성 음이온과 함께 트리아릴 카르보늄 양이온과 같은 카르보늄 양이온; N,N-디알킬 아닐리늄 양이온 등과 같은 암모늄 양이온, 또는 포스포늄 양이온 등의 상대 양이온을 포함하는 것일 수 있다. 보다 구체적으로, 상기 비배위성 음이온을 포함하는 화합물은, 트리페닐 카르보늄 테트라키스(펜타플루오로 페닐) 보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로 페닐) 보레이트, 트리페닐 카르보늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트, 또는 N,N-디메틸아닐리늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트 등일 수 있다.
또한, 상기 비배위성 음이온 전구체로서는, 반응 조건하에서 비배위성 음이온이 형성 가능한 화합물로서, 트리아릴 붕소 화합물(BE3, 이때 E는 펜타플루오로페닐기 또는 3,5-비스(트리플루오로메틸) 페닐기 등과 같은 강한 전자흡인성의 아릴기임)을 들 수 있다.
(c) 공액디엔계 단량체
또한, 상기 촉매 조성물은 공액디엔계 단량체를 더 포함할 수 있으며, 중합반응에 사용되는 공액디엔계 단량체의 일부를 중합용 촉매 조성물과 미리 혼합하여 전(pre) 중합한 예비중합(preforming) 또는 예비혼합(premix) 촉매 조성물의 형태로 사용함으로써, 촉매 조성물 활성을 향상시킬 수 있을 뿐만 아니라, 제조되는 활성 중합체를 안정화시킬 수 있다.
본 발명에 있어서, 상기 "예비중합(preforming)"이란, 란탄 계열 희토류 원소 함유 화합물, 알킬화제 및 할로겐화물을 포함하는 촉매 조성물, 즉 촉매 시스템에서 디이소부틸알루미늄 하이드라이드(DIBAH) 등을 포함하는 경우, 이와 함께 다양한 촉매 조성물 활성종 생성가능성을 줄이기 위해 1,3-부타디엔 등의 공액디엔계 단량체를 소량 첨가하게 되며, 1,3-부타디엔 첨가와 함께 촉매 조성물 시스템 내에서 전(pre) 중합이 이루어짐을 의미할 수 있다. 또한 "예비혼합(premix)"이란 촉매 조성물 시스템에서 중합이 이루어지지 않고 각 화합물들이 균일하게 혼합된 상태를 의미할 수 있다.
이때, 상기 촉매 조성물의 제조에 사용되는 공액디엔계 단량체는 상기 중합반응에 사용되는 공액디엔계 단량체의 총 사용량 범위 내에서 일부의 양이 사용되는 것일 수 있으며, 예컨대 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 몰 내지 100 몰, 구체적으로는 10 몰 내지 50 몰, 또는 20 몰 내지 50 몰로 사용되는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 촉매 조성물은 유기용매 중에서 전술한 란탄 계열 희토류 원소 함유 화합물 및 알킬화제, 할로겐화물 및 공액디엔계 단량체 중 적어도 하나, 구체적으로는 란탄 계열 희토류 원소 함유 화합물, 알킬화제 및 할로겐화물, 그리고 선택적으로 공액디엔계 단량체를 혼합함으로써 제조할 수 있다. 이때, 상기 유기용매는 상기한 촉매 조성물의 구성 성분들과 반응성이 없는 비극성 용매일 수 있다. 구체적으로, 상기 비극성 용매는 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸, 이소펜탄, 이소헥산, 이소펜탄, 이소옥탄, 2,2-디메틸부탄, 시클로펜탄, 시클로헥산, 메틸시클로펜탄 또는 메틸시클로헥산 등과 같은 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소; 석유 에테르(petroleum ether) 또는 석유 주정제(petroleum spirits), 또는 케로센(kerosene) 등과 같은 탄소수 5 내지 20의 지방족 탄화수소의 혼합용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소계 용매 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 비극성 용매는 상기한 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소 또는 지방족 탄화수소의 혼합용매일 수 있으며, 보다 더 구체적으로는 n-헥산, 시클로헥산, 또는 이들의 혼합물일 수 있다.
또한, 상기 유기용매는 촉매 조성물을 구성하는 구성 성분, 특히 알킬화제의 종류에 따라 적절히 선택될 수 있다.
구체적으로, 알킬화제로서 메틸알루미녹산(MAO) 또는 에틸알루미녹산 등의 알킬알루미녹산의 경우 지방족 탄화수소계 용매에 쉽게 용해되지 않기 때문에 방향족 탄화수소계 용매가 적절히 사용될 수 있다.
또한, 알킬화제로서 변성 메틸알루미녹산이 사용되는 경우, 지방족 탄화수소계 용매가 적절히 사용될 수 있다. 이 경우, 중합 용매로서 주로 사용되는 헥산 등의 지방족 탄화수소계 용매와 함께 단일 용매 시스템의 구현이 가능하므로 중합 반응에 더욱 유리할 수 있다. 또한, 지방족 탄화수소계 용매는 촉매 활성을 촉진시킬 수 있으며, 이러한 촉매 활성에 의해 반응성을 더욱 향상시킬 수 있다.
한편, 상기 유기용매는 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 20 몰 내지 20,000 몰로, 보다 구체적으로는 100 몰 내지 1,000 몰로 사용되는 것일 수 있다.
한편, 상기 단계 1의 중합은 적어도 2기의 반응기를 포함하는 중합 반응기에서 연속식 중합으로 수행하거나, 회분식 반응기에서 수행되는 것일 수 있다.
또한, 상기 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있다.
여기에서, 정온 중합은 촉매 조성물의 투입 후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 나타내는 것이고, 상기 승온 중합은 촉매 조성물의 투입 후 임의로 열을 가하여 온도를 증가시키는 중합방법을 나타내는 것이며, 상기 등온 중합은 촉매 조성물의 투입 후 열을 가하여 열을 증가시키거나 열을 뺏어 반응물의 온도를 일정하게 유지하는 중합방법을 나타내는 것이다.
또한, 상기 중합은 배위 음이온 중합을 이용하여 수행하거나, 라디칼 중합에 의해 수행될 수 있으며, 구체적으로는 벌크중합, 용액중합, 현탁중합 또는 유화중합일 수 있고, 더 구체적으로는 용액중합일 수 있다.
상기 중합은 -20℃ 내지 200℃의 온도범위에서 수행하는 것일 수 있으며, 구체적으로는 50℃ 내지 150℃, 더욱 구체적으로는 10℃ 내지 120℃ 또는 60℃ 내지 90℃의 온도범위에서 15분 내지 3시간 동안 수행하는 것일 수 있다. 만약, 상기 중합 시 온도가 200℃를 초과하는 경우에는 중합 반응을 충분히 제어하기 어렵고, 생성된 공액디엔계 중합체의 시스-1,4 결합 함량이 낮아질 우려가 있으며, 온도가 -20℃ 미만이면 중합반응 속도 및 효율이 저하될 우려가 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은 상기 활성 중합체를 제조한 후 폴리옥시에틸렌글리콜포스페이트 등과 같은 중합반응을 완료시키기 위한 반응정지제; 또는 2,6-디-t-부틸파라크레졸 등과 같은 산화방지제 등의 첨가제를 더 사용하여 중합을 종결시키는 단계를 포함할 수 있다. 이외에도, 반응정지제와 함께 용액중합을 용이하도록 하는 첨가제, 예컨대 킬레이트제, 분산제, pH 조절제, 탈산소제 또는 산소포착제(oxygen scavenger)와 같은 첨가제를 선택적으로 더 사용할 수 있다.
상기 단계 2는 활성 중합체를 변성 또는 커플링반응시켜 작용기를 포함하는 제1 중합체를 제조하는 단계로, 상기 활성 중합체와 화학식 1로 표시되는 변성제를 반응시켜 수행할 수 있다. 즉, 본 발명의 일 실시예에 있어서 제1 중합체는 공액디엔계 중합체 사슬의 적어도 일 말단에 상기 변성제 유래 작용기가 도입되어 있는 변성 중합체일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 -R6COOR7로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기일 수 있고, 단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아닐 수 있으며, R4는 단일 결합, 또는 탄소수 1 내지 20의 알킬렌기일 수 있고, R5는 탄소수 1 내지 20의 알킬기로 치환된 실릴기; 할로겐; 시아노기; 또는 -COR8일 수 있으며, R6은 단일 결합일 수 있고, R7은 탄소수 1 내지 20의 알킬기일 수 있으며, R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종일 수 있다.
또한, 상기 화학식 1로 표시되는 변성제는 하기 화학식 2로 표시되는 화합물일 수 있다:
[화학식 2]
상기 화학식 2에서, R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기일 수 있고, R2는 -R6COOR7로 치환된 3가 탄화수소기일 수 있으며, R4 및 R6은 단일 결합일 수 있고, R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기일 수 있으며, R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기일 수 있다.
또 다른 예로, 상기 화학식 2에서, R1 및 R3은 각각 독립적으로 비치환된 탄소수 1 내지 10의 2가 탄화수소기일 수 있고, R2는 -R6COOR7로 치환된 3가 탄화수소기일 수 있으며, R4 및 R6은 단일 결합일 수 있고, R7은 탄소수 1 내지 20의 알킬기일 수 있으며, R9 내지 R11은 각각 독립적으로 탄소수 1 내지 20의 알킬기일 수 있다.
구체적인 예로, 상기 화학식 2로 표시되는 변성제는 하기 화학식 2-1 내지 2-3으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 2-1]
[화학식 2-2]
[화학식 2-3]
한편, 본 발명의 일 실시예에 따른 상기 변성제는 분자 내에 충진제와 친화력을 높일 수 있는 작용기를 포함함으로써, 중합체와 충진제 간 배합 물성을 향상시킬 수 있고, 나아가, 상기한 바와 같이 고리화 3급 아민 유도체를 포함함으로써, 고무 조성물 내 충진제 간의 응집을 방지하여 충진제의 분산성을 향상시킬 수 있다. 일례로 충진제로서 무기 충진제의 일종인 실리카를 이용하는 경우, 실리카의 표면에 존재하는 수산화기 간의 수소 결합에 의해 응집이 발생하기 쉬운데, 상기 고리화된 3급 아미노기가 실리카의 수산화기 간의 수소 결합을 방해하여 실리카의 분산성을 향상시킬 수 있다. 이와 같이, 상기 변성제는 변성 공액디엔계 중합체의 배합 물성을 최대화할 수 있는 구조를 가져, 고무 조성물의 내마모성 및 가공성 등의 기계적 물성의 밸런스가 우수한 변성 공액디엔계 중합체를 효율적으로 제조할 수 있다.
상기 변성제는 촉매 조성물 내 란탄 계열 희토류 원소 함유 화합물 1 몰 대비 0.5 몰 내지 20 몰로 사용하는 것일 수 있다. 구체적으로는 상기 변성제는 촉매 조성물 내 란탄 계열 희토류 원소 함유 화합물 1 몰 대비 1 몰 내지 10 몰로 사용하는 것일 수 있다.
또한, 상기 변성 반응은 0℃ 내지 90℃에서 1분 내지 5시간 동안 반응을 수행하는 것일 수 있다.
상기한 변성 반응의 종료 후, 2,6-디-t-부틸-p-크레졸(BHT)의 이소프로판올 용액 등을 중합 반응계에 첨가하여 중합 반응을 정지시킬 수 있다.
상기 단계 3은 제1 중합체의 분지화도를 높이기 위한 단계로, 제1 중합체에 황할로겐화물을 첨가하고 15분 이상 혼합하여 수행할 수 있으며, 구체적으로는 15분 이상 60분 이하로 교반하여 혼합할 수 있다.
본 발명에 일 실시예에 따른 제조방법은 변성제로부터 유래된 작용기를 포함하는 제1 중합체를 제조하고, 이를 황할로겐화물과 혼합시킴으로써 중합체를 구성하는 고분자 사슬 내 이중결합과 친전자성 첨가반응(electrophilic addition)이 일어나 중합체 사슬 내에 장쇄분지를 형성시킬 수 있고, 이에 선형도를 낮추고 분지화도를 높일 수 있으며 결과적으로 제조된 변성 공액디엔계 중합체의 배합 가공성을 향상시킬 수 있다.
상기 황할로겐화물은 제1 중합체 100 중량부 대비 0.1 내지 0.3 중량부로 사용되는 것일 수 있다. 만약, 상기 황할로겐화물이 상기의 비율로 사용되는 경우 중합체 사슬에 악영향을 미치지 않으면서 장쇄분지를 용이하게 형성시킬 수 있다.
또한, 상기 황할로겐화물은 이염화이황(S2Cl2), 이염화항(SCl2) 및 염화티오닐(SOCl2)로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
또한, 상기 단계 3에서 혼합은 단계 1에서의 중합 온도 대비 5℃ 내지 20℃ 상승된 온도조건에서 수행하는 것일 수 있다. 만약, 상기 단계 3의 혼합을 상기 조건으로 수행하는 경우 반응 중 중합체 용액의 점도를 낮추고, 유동을 보다 용이하게 할 수 있으며, 이에 중합체를 구성하는 고분자 사슬 간에 분지화를 용이하게 유도할 수 있다.
본 발명의 일 실시예에 따른 상기 제조방법은 단계 3 이후에 수증기의 공급을 통해 용제의 분압을 낮추는 스팀 스트립핑 등의 탈용매 처리나 진공 건조 처리를 거쳐서 변성 공액디엔계 중합체를 수득할 수 있다. 또한, 상기한 반응의 결과로 수득되는 반응생성물 중에는 상기한 변성 공액디엔 중합체와 함께, 변성되지 않은, 활성 중합체가 포함될 수도 있다.
또한, 본 발명은 상기의 제조방법을 통해 제조된 변성 공액디엔계 중합체를 제공한다. 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 전술한 제조방법에 의하여 제조됨으로써 우수한 배합물성 및 배합 가공성을 가질 수 있도록 최적화된 분자량 분포, 선형도, 무니점도 등의 특성을 가질 수 있다.
구체적으로, 상기 변성 공액디엔계 중합체는 2.0 내지 3.5의 분자량 분포(Mw/Mn)을 가질수 있다.
구체적으로, 상기 분자량 분포는 2.5 내지 3.5, 2.5 내지 3.2 또는 2.6 내지 3.0일 수 있다.
본 발명에 있어서, 변성 공액디엔계 중합체의 분자량 분포는 중량평균 분자량(Mw) 대 수평균 분자량(Mn)의 비(Mw/Mn)로부터 계산될 수 있다. 이때 상기 수평균 분자량(Mn)은 n개의 중합체 분자의 분자량을 측정하고 이들 분자량의 총합을 구하여 n으로 나누어 계산한 개별 중합체 분자량의 공통 평균(common average)이며, 상기 중량평균 분자량(Mw)은 고분자 조성물의 분자량 분포를 나타낸다. 모든 분자량 평균은 몰당 그램(g/mol)으로 표현될 수 있다. 또한, 상기 중량평균 분자량 및 수평균 분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량을 의미할 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 상기한 분자량 분포 조건을 충족하는 동시에, 중량평균 분자량(Mw)이 3 X 105 내지 1.5 X 106 g/mol일 수 있고, 수평균 분자량(Mn)이 1.0 X 105 내지 5.0 X 105 g/mol일 수 있으며, 이 범위 내에서 고무 조성물에 적용 시 인장특성이 뛰어나고, 가공성이 우수하여 고무 조성물의 작업성 개선으로 인해 혼반죽이 용이해, 고무 조성물의 기계적 물성 및 물성 밸런스가 우수한 효과가 있다. 상기 중량평균 분자량은 일례로 5 X 105 내지 1.2 X 106 g/mol, 또는 5 X 105 내지 8 X 105 g/mol일 수 있고, 수평균 분자량은 일례로 1.5 X 105 내지 3.5 X 105 g/mol, 또는 2.0 X 105 내지 2.7 X 105 g/mol일 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 상기한 분자량 분포와 함께 중량평균 분자량(Mw) 및 수평균 분자량 조건을 동시에 충족하는 경우, 고무 조성물에 적용 시 고무 조성물에 대한 인장특성, 점탄성 및 가공성이 우수하고, 이들 간의 물성 밸런스가 우수한 효과가 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 100℃에서의 선형도(-S/R)가 0.6 미만일 수 있으며, 구체적으로는 0.4 이상, 0.6 미만, 또는 0.44 이상, 0.58 미만일 수 있다.
상기 선형도(-S/R: stress/relaxation)는 물질내 발생된 동일 양의 변형(strain)에 대한 반응으로 나타나는 스트레스(stress)의 변화를 나타내는 것으로 상기 선형도를 통해 변성 공액디엔계 중합체의 분지화도를 예측할 수 있다. 예컨대 상기 선형도가 낮을수록 분지화도가 높음을 의미한다. 또한, 상기 수치는 절댓값을 나타내는 것이다.
한편, 상기 선형도가 너무 낮은 경우, 즉 분지화도가 너무 높은 경우에는 고무 조성물에 적용시 가공성은 개선되나 회전 저항이 증가하고 기계적 특성이 감소되는 문제가 발생할 수 있다.
그러나, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 상기 범위의 선형도를 가짐으로써 고무 조성물에 적용시 인장특성 및 점탄성 등의 배합물성과 배합 가공성이 모두 우수한 효과가 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 100℃에서의 무니점도(mooney viscosity, MV)가 20 이상 100 이하인 것일 수 있고, 구체적으로는 30 이상 80 이하, 35 이상 75 이하 또는 40 이상 70 이하일 수 있다. 본 발명에 따른 상기 변성 공액디엔계 중합체는 전술한 범위의 무니점도를 가짐으로써 가공성이 우수할 수 있다.
본 발명에서 상기 무니점도는 무니 점도계, 예를 들어, Monsanto사 MV2000E의 Large Rotor를 사용하여 100℃ 및 Rotor Speed 2±0.02rpm의 조건에서 측정하였다. 구체적으로는 중합체를 실온(23±5℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정한 것이다. 또한, 상기 선형도(-S/R)는 상기 무니점도 측정 후 토크가 풀어지면서 나타나는 무니점도 변화의 기울기 값을 측정하고 이의 절댓값으로 얻었다.
또한, 상기 공액디엔계 중합체는 푸리에 변환 적외 분광법(FT-IR)으로 측정한 공액디엔부의 시스-1,4 결합 함량이 95% 이상, 보다 구체적으로는 98% 이상인 것일 수 있다. 이에, 고무 조성물에 적용시 고무 조성물의 내마모성, 내균열성 및 내오존성이 향상될 수 있다.
또한, 상기 변성 공액디엔계 중합체는 푸리에 변환 적외 분광법으로 측정한 공액디엔부의 비닐 함량이 5% 이하, 보다 구체적으로는 2% 이하일 수 있다. 중합체 내 비닐 함량이 5%를 초과할 경우, 이를 포함하는 고무 조성물의 내마모성, 내균열성, 내오존성이 열화될 우려가 있다.
여기에서, 상기 푸리에 변환 적외 분광법(FT-IR)에 의한 중합체 내 시스-1,4 결합 함량 및 비닐 함량은, 동일 셀의 이황화탄소를 블랭크로 하여 5 mg/mL의 농도로 조제한 공액디엔계 중합체의 이황화탄소 용액의 FT-IR 투과율 스펙트럼을 측정한 후, 측정 스펙트럼의 1130 cm-1부근의 최대 피크값(a, 베이스라인), 트랜스-1,4 결합을 나타내는 967 cm-1 부근의 최소 피크값(b), 비닐결합을 나타내는 911 cm-1 부근의 최소 피크값(c), 그리고 시스-1,4 결합을 나타내는 736 cm-1 부근의 최소 피크값(d)을 이용하여 각각의 함량을 구한 것이다.
더 나아가, 본 발명은 상기 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 성형품을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 공액디엔계 중합체를 0.1 중량% 이상 100 중량% 이하, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 공액디엔계 중합체의 함량이 0.1 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 공중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 150 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계, 카본블랙 또는 이들 조합인 것일 수 있다. 구체적으로는, 상기 충진제는 카본블랙인 것일 수 있다.
상기 카본블랙계 충진제는 특별히 제한하는 것은 아니나, 예컨대 질소 흡착 비표면적(N2SA, JIS K 6217-2:2001에 준거해서 측정함)이 20 ㎡/g 내지 250 ㎡/g인 것일 수 있다. 또, 상기 카본블랙은 디부틸프탈레이트 흡유량(DBP)이 80 cc/100g 내지 200 cc/100g인 것일 수 있다. 상기 카본블랙의 질소흡착 비표면적이 250 m2/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 20 m2/g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. 또한, 상기 카본블랙의 DBP 흡유량이 200 cc/100g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 80 cc/100g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다.
또한, 상기 실리카는 특별히 제한하는 것은 아니나, 예컨대 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 구체적으로는, 상기 실리카는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습식 실리카일 수 있다. 또한, 상기 실리카는 질소흡착 비표면적(nitrogen surface area per gram, N2SA)이 120 ㎡/g 내지 180 ㎡/g이고, CTAB(cetyl trimethyl ammonium bromide) 흡착 비표면적이 100 ㎡/g 내지 200 ㎡/g일 수 있다. 상기 실리카의 질소흡착 비표면적이 120 ㎡/g 미만이면 실리카에 의한 보강 성능이 저하될 우려가 있고, 180 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다. 또한, 상기 실리카의 CTAB 흡착 비표면적이 100 ㎡/g 미만이면 충진제인 실리카에 의한 보강 성능이 저하될 우려가 있고, 200 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다.
한편, 상기 충진제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
상기 고무 조성물을 이용하여 제조된 성형품은 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예: 에틸 1-(트리메틸실릴)피페리딘-4-카르복실레이트의 제조
디클로로메탄(CH2Cl2) 중 에틸 피페리딘-4-카르복실레이트 (ethyl piperidine-3-carboxylate) 2 g이 용해된 용액에, 0℃에서 트리에틸아민(Et3N) 1.77 ml 및 염화트리메틸실릴(TMSCl) 1.62 ml를 첨가하고, 이 반응 혼합물을 0℃에서 5시간 동안 교반하였다. 이어서, 생성된 용액 중 용매를 감압 하에 증발시키고, 헥산에 재용해 시킨 후, 여과하여 하기와 같은 구조의 화합물을 수득하고, 1H 핵자기 공명 분광학적 스펙트럼을 관찰하였다.
1H NMR (500 MHz, CDCl3) δ 4.11-4.08 (m, 2H), δ 3.13-3.11 (m, 2H), δ 2.61-2.54 (m, 2H), δ 2.34-2.32 (m, 1H), δ 1.74 (m, 2H), δ 1.42 (m, 2H), δ 1.23-1.22 (m, 3H), δ 0.05-0.00 (m, 9H).
실시예 1
20 L 오토클레이브 반응기에 1,3-부타디엔 550 g 및 n-헥산 3681 g을 넣은 후 반응기 내부 온도를 70℃로 승온하였다. 여기에 촉매 조성물을 첨가한 후, 60분 동안 중합을 진행하였다. 이때, 상기 촉매 조성물은 n-헥산 용매 중에 네오디뮴 베르사테이트(Neodymium versatate(Nd(2-에틸헥사노에이트)3), Solvay 社) 0.715 mmol을 첨가하고, 디이소부틸알루미늄 하이드라이드(DIBAH) 및 염화디에틸알루미늄(DEAC)를 상기 네오디뮴 베르사테이트:DIBAH:DEAC=1:9.5:2.4의 몰비가 되도록 순차 투입한 후 혼합하여 제조하였다. 상기 제조예에서 제조된 화학식 (i)의 화합물을 첨가한 후 30분 동안 변성반응을 진행시켰다(변성제:Nd=5:1 당량). 이후, 중합정지제로 HPSS(HPSS-81, 아이씨케미칼)와 산화방지제로 Wingstay-K를 단량체 100 중량부 대비 각각 0.15 중량부 및 0.4 중량부로 첨가하여 제1 중합체를 제조하였다. 이후, 반응기 내부온도를 80℃로 승온시키고 이염화이황(S2Cl2)을 첨가하고 15분 동안 교반하여 상기 제1 중합체와 혼합하였다. 이때, 이염화이황은 제1 중합체 100 중량부 대비 0.1 중량부로 첨가하였다. 이후, 스팀 스트립핑을 통해 용매를 제거하고, 6인치 Hot Roll(110℃)를 이용하여 4분간 건조하여 변성 부타디엔 중합체를 제조하였다.
실시예 2
실시예 1에서, 이염화이황을 첨가하고 60분 동안 교반하여 제1 중합체와 혼합시킨 것을 제외하고는 실시예 1과 동일한 방법을 통해서 변성 부타디엔 중합체를 제조하였다.
실시예 3
실시예 1에서, 이염화이황을 첨가하고 80분 동안 교반하여 제1 중합체와 혼합시킨 것을 제외하고는 실시예 1과 동일한 방법을 통해서 변성 부타디엔 중합체를 제조하였다.
실시예 4
실시예 1에서, 촉매 조성물 제조시 네오디뮴 베르사테이트를 0.769 mmol로 첨가하고, 이염화이황을 단량체 100 중량부 대비 0.30 중량부로 첨가한 것을 제외하고는 실시예 1과 동일한 방법을 통해서 변성 부타디엔 중합체를 제조하였다.
실시예 5
실시예 4에서, 이염화이황을 단량체 100 중량부 대비 0.32 중량부로 첨가한한 것 제외하고는 실시예 4와 동일한 방법을 통해서 변성 부타디엔 중합체를 제조하였다.
비교예 1
미변성 부타디엔 중합체로서 BR1208(LG 화학)를 비교예로 사용하였다.
비교예 2
미변성 부타디엔 중합체로서 CB25(Lanxess 社)를 비교예로 사용하였다.
비교예 3
20 L 오토클레이브 반응기에 1,3-부타디엔 550 g 및 n-헥산 3681 g을 넣은 후 반응기 내부 온도를 70℃로 승온하였다. 여기에 촉매 조성물을 첨가한 후, 60분 동안 중합을 진행하였다. 이때, 상기 촉매 조성물은 n-헥산 용매 중에 네오디뮴 베르사테이트(Neodymium versatate, Solvay 社) 0.715 mmol을 첨가하고, 디이소부틸알루미늄 하이드라이드(DIBAH) 및 염화디에틸알루미늄(DEAC)를 상기 네오디뮴 베르사테이트:DIBAH:DEAC=1:9.5:2.4의 몰비가 되도록 순차 투입한 후 혼합하여 제조하였다. 상기 제조예에서 제조된 화학식 (i)의 화합물을 첨가한 후 30분 동안 변성반응을 진행시켰다(변성제:Nd=5:1 당량). 이후, 중합정지제로 HPSS와 산화방지제로 Wingstay-K를 단량체 100 중량부 대비 각각 0.15 중량부 및 0.4 중량부로 첨가하였다. 이후, 스팀 스트립핑을 통해 용매를 제거하고, 6인치 Hot Roll(110℃)를 이용하여 4분간 건조하여 변성 부타디엔 중합체를 제조하였다.
비교예 4
실시예 1에서, 이염화이황을 첨가하고 5분 동안 교반하여 제1 중합체와 혼합시킨 것을 제외하고는 실시예 1과 동일한 방법을 통해서 변성 부타디엔 중합체를 제조하였다.
실험예 1
상기 실시예 및 비교예의 중합체에 대해 하기와 같은 방법으로 각각의 물성을 측정하고, 그 결과를 하기 표 1에 나타내었다.
1) 미세구조 분석
Varian VNMRS 500 Mhz NMR을 이용하여 각 중합체 내 시스, 트랜스 및 비닐 결함량을 측정하였으며, 용매로는 1,1,2,2-테트라클로로에탄 D2(Cambridge Isotope 社)를 사용하였다.
2) 중량평균 분자량(Mw), 수평균 분자량(Mn), 및 분자량 분포(MWD)
각 중합체를 40℃ 조건 하에서 테트라히드로퓨란(THF)에 30분간 녹인 후 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 적재하여 흘려주었다. 이때, 칼럼은 폴리머 라보레토리즈사(Polymer Laboratories)의 상품명 PLgel Olexis 칼럼 두 자루와 PLgel mixed-C 칼럼 한 자루를 조합 사용하였다. 또 새로 교체한 칼럼은 모두 혼합상(mixed bed) 타입의 칼럼을 사용하였으며, 겔 투과 크로마토그래피 표준 물질(GPC Standard material)로서 폴리스티렌(Polystyrene)을 사용하였다.
3) 무니점도(RP, Raw polymer) 및 -S/R 값
각 중합체에 대해 Monsanto사 MV2000E로 Large Rotor를 사용하여 100℃에서 Rotor Speed 2±0.02 rpm의 조건에서 무니점도(ML1+4, @100℃)(MU)를 측정하였다. 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정하였다. 또한, 무니점도 측정 후 토크가 풀어지면서 나타나는 무니점도의 변화를 1분간 관찰하고, 그 기울기값으로부터 -S/R값을 결정하였다.
구분 | 실시예 | 비교예 | ||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | ||
미세구조(시스:비닐:트랜스) | 97.4:0.5:2.2 | 96.9:1.0:2.1 | 96.5:1.0:2.5 | 96.6:0.9:2.5 | 96.8:0.9:2.3 | - | - | 97.6:0.5:2.0 | 96.9:1.0:2.1 | |
GPC 결과 | Mn(x105 g/mol) | 2.34 | 2.30 | 2.30 | 2.22 | 2.21 | - | - | 2.44 | 2.42 |
Mw(x105 g/mol) | 6.41 | 6.48 | 6.50 | 6.36 | 6.37 | - | - | 6.26 | 6.28 | |
MWD(Mw/Mn) | 2.73 | 2.81 | 2.83 | 2.86 | 2.88 | - | - | 2.57 | 2.60 | |
무니점도(RP) (ML1+4, @100℃)(MU) | 51 | 53 | 53 | 48 | 52 | 45 | 45 | 49 | 51 | |
-S/R | 0.5782 | 0.5324 | 0.4355 | 0.4709 | 0.4342 | 0.7274 | 0.6585 | 0.7600 | 0.6841 |
상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 5의 변성 공액디엔계 중합체는 -S/R값이 0.6 미만을 나타내었을 뿐 아니라, 비교예 1 내지 비교예 4의 중합체 대비 크게 낮은 수치를 나타내었다. 이는, 본 발명의 일 실시예에 따른 변성 공액디엔 중합체가 높은 분지화도를 가졌음을 의미하는 결과이다.
실험예 2
상기 실시예 1 내지 실시예 5 및 비교예 1 내지 비교예 4에서 제조한 각 중합체를 이용하여 고무 조성물 및 고무 시편을 제조한 후, 하기와 같은 방법으로 무니점도, 인장강도, 300% 모듈러스, 신율 그리고 점탄성 특성(회전 저항성)을 각각 측정하였다. 그 결과를 하기 표 2에 나타내었다.
구체적으로, 상기 고무 조성물은 상기 각 중합체 100 중량부에 카본블랙 70 중량부, 공정오일(process oil) 22.5 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부를 배합하여 각각의 고무 조성물을 제조하였다. 이후, 상기 각 고무 조성물에 황 2 중량부, 가류 촉진제(CZ) 2 중량부 및 가류 촉진제(DPG) 0.5 중량부를 첨가하고 50℃에서 1.5분 동안 50 rpm으로 약하게 혼합한 후 50℃의 롤을 이용하여 시트 형태의 가황 배합물을 얻었다. 얻은 가황 배합물을 160℃에서 25분 동안 가류하여 고무시편을 제조하였다.
1) 무니점도(FMB, Final Master Batch)
무니점도(ML1+4, @100℃)(MU)는 상기 제조된 각 가황 배합물을 이용하여 측정하였다. 구체적으로 Monsanto사 MV2000E로 Large Rotor를 사용하여 100℃에서 Rotor Speed 2±0.02 rpm의 조건에서 무니점도(MV)를 측정하였다. 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정하였다.
2) 인장강도(tensile strength, kg·f/cm2), 300% 모듈러스(300% modulus, kg·f/cm2) 및 신율
상기 각 고무 조성물을 150℃에서 t90분 가류 후 ASTM D412에 준하여 가류물의 인장강도, 300% 신장시의 모듈러스(M-300%) 및 파단시 가류물의 신율을 측정하였다. 측정값은 비교예 2를 결과값을 100으로 하기 수학식 1을 통해 계산하여 지수화(Index)하였다.
[수학식 1]
Index=(측정값/기준값)*100
3) 점탄성 특성(Tanδ @ 60℃)
저 연비 특성에 가장 중요한 Tan δ 물성은 독일 Gabo사 DMTS 500N을 사용하여 주파수 10㎐, Prestrain 3%, Dynamic Strain 3%에서 60℃에서의 점탄성 계수(Tan δ)를 측정하였다. 이때, 60℃에서의 Tanδ 값은 회전저항성 특성 연비성을 나타내는 것이다. 측정값은 비교예 2를 결과값을 100으로 하기 수학식 2를 통해 계산하여 지수화(Index)하였다.
[수학식 2]
Index=(기준값/측정값)*100
구분 | 실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 | 실시예 5 | 비교예 1 | 비교예 2 | 비교예 3 | 비교예 4 | |
무니점도(FMB) | 67 | 69 | 68 | 63 | 66 | 63 | 60 | 72 | 73 | |
△MV | 16 | 16 | 15 | 15 | 14 | 18 | 15 | 23 | 22 | |
인장특성 | M-300% | 109 | 108 | 107 | 105 | 105 | 93 | 100 | 110 | 109 |
인장강도 | 101 | 100 | 101 | 98 | 96 | 94 | 100 | 102 | 100 | |
신율 | 93 | 92 | 95 | 95 | 97 | 101 | 100 | 93 | 94 | |
점탄성 특성 | Tanδ @ 60℃ | 110 | 109 | 102 | 106 | 99 | 88 | 100 | 110 | 110 |
* 무니점도 차(△MV)는 무니점도(FMB)에서 표 1에 기재된 무니점도(RP)를 뺀 값으로, 작을 수록 중합체의 가공성이 우수함을 나타내는 것이다. |
표 2에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 5를 포함하는 고무 조성물로부터 제조된 고무 시편이 비교예 1 내지 비교예 4 대비 인장특성 및 점탄성 특성이 우수하면서 개선된 가공성을 나타내었다.
구체적으로, 비교예 3 및 비교예 4의 중합체를 포함하는 고무 조성물로부터 제조된 각 고무 시편은 실시예 1과 비교하여 인장특성 및 점탄성 특성은 유사한 수준을 나타내었으나 가공성이 저하됨을 확인하였다. 이를 통하여, 본 발명의 일 실시예에 따른 제조방법은 황할로겐화물을 첨가하고 15분 이상 혼합하는 단계를 포함함으로써 높은 분지화도를 갖는 중합체를 형성할 수 있고, 이에 인장특성 및 점탄성 특성와 같은 배합 물성이 우수하면서 동시에 배합 가공성도 개선될 수 있음을 나타내는 확인하였다.
한편, 상기 실시예 3 및 실시예 5는 실시예 1, 실시예 2 및 실시예 4와 비교해서 점탄성 특성이 저하되었으며, 이때 상기 실시예 3 및 실시예 5는 각각 황할로겐화물을 첨가하고 80분을 혼합하여 제조하거나, 황할로겐화물을 제1 중합체 100 중량부 대비 0.32 중량부로 첨가하여 제조한 것으로 상기 표 1에 나타낸 바와 같이 -S/R 값이 0.44 미만을 나타내었다. 이를 통하여, 변성 공액디엔계 중합체의 제조시 황할로겐화물의 사용량과 혼합시간을 조절하는 경우 배합 물성 및 배합 가공성을 동시에 더 우수한 수준으로 개선시킬 수 있음을 확인하였다.
Claims (12)
1) 탄화수소 용매 중에서, 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계;
2) 상기 활성 중합체와 화학식 1로 표시되는 변성제를 반응시켜 제1 중합체를 제조하는 단계; 및
3) 상기 제1 중합체에 황할로겐화물을 첨가하고 15분 이상 혼합하는 단계를 포함하는 것인 변성 공액디엔계 중합체의 제조방법:
[화학식 1]
상기 화학식 1에서,
R1 내지 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기 및 -R6COOR7로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아니며,
R4는 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R5는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기; 할로겐; 시아노기; 또는 -COR8이며,
R6은 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종이다.
청구항 1에 있어서,
상기 황할로겐화물은 제1 중합체 100 중량부 대비 0.1 중량부 내지 0.3 중량부로 사용되는 것인 변성 공액디엔계 중합체의 제조방법.
청구항 1에 있어서,
상기 단계 3)의 혼합은 황할로겐화물을 제1 중합체에 첨가하고 15분 이상 60분 이하로 교반하여 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
청구항 1에 있어서,
상기 황할로겐화물은 이염화이황, 이염화황 및 염화티오닐로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
청구항 1에 있어서,
상기 단계 3)의 혼합은 단계 1)의 중합 온도 대비 5℃ 내지 20℃ 상승된 온도조건에서 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
청구항 1에 있어서,
상기 단계 1)의 중합은 50℃ 이상 100℃ 이하의 온도에서 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
청구항 1에 있어서,
상기 화학식 1로 표시되는 변성제는 하기 화학식 2로 표시되는 것인 변성 공액디엔계 중합체의 제조방법:
[화학식 2]
상기 화학식 2에서,
R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
R2는 -R6COOR7로 치환된 3가 탄화수소기이며,
R4 및 R6은 단일 결합이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
청구항 1에 있어서,
상기 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물을 포함하는 것인 변성 공액디엔계 중합체의 제조방법.
청구항 10에 있어서,
상기 네오디뮴 화합물은 Nd(2-에틸헥사노에이트)3, Nd(2,2-디메틸 데카노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
청구항 1에 있어서,
상기 촉매 조성물은 알킬화제, 할로겐화물 및 공액디엔계 단량체 중 적어도 하나를 포함하는 것인 변성 공액디엔계 중합체의 제조방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019552878A JP6857745B2 (ja) | 2017-10-18 | 2018-07-26 | 変性共役ジエン系重合体の製造方法 |
US16/481,573 US11186661B2 (en) | 2017-10-18 | 2018-07-26 | Method for preparing modified conjugated diene-based polymer |
CN201880010506.7A CN110366568B (zh) | 2017-10-18 | 2018-07-26 | 改性共轭二烯类聚合物的制备方法 |
EP18867903.9A EP3674330B1 (en) | 2017-10-18 | 2018-07-26 | Method for preparing modified conjugated diene-based polymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170135175A KR102173756B1 (ko) | 2017-10-18 | 2017-10-18 | 변성 공액디엔계 중합체의 제조방법 |
KR10-2017-0135175 | 2017-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078459A1 true WO2019078459A1 (ko) | 2019-04-25 |
Family
ID=66173789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/008489 WO2019078459A1 (ko) | 2017-10-18 | 2018-07-26 | 변성 공액디엔계 중합체의 제조방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11186661B2 (ko) |
EP (1) | EP3674330B1 (ko) |
JP (1) | JP6857745B2 (ko) |
KR (1) | KR102173756B1 (ko) |
CN (1) | CN110366568B (ko) |
WO (1) | WO2019078459A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4032921A4 (en) * | 2019-09-19 | 2022-11-30 | LG Chem, Ltd. | PROCESS FOR MAKING A MODIFIED CONJUGATED DIENE POLYMER |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101997596B1 (ko) * | 2016-07-04 | 2019-07-08 | 주식회사 엘지화학 | 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 |
KR102295642B1 (ko) * | 2017-11-21 | 2021-08-31 | 주식회사 엘지화학 | 고무 조성물 |
WO2021086039A1 (ko) * | 2019-10-31 | 2021-05-06 | 주식회사 엘지화학 | 변성제, 변성 공액디엔계 중합체 및 이의 제조방법 |
KR102666895B1 (ko) * | 2019-11-21 | 2024-05-20 | 주식회사 엘지화학 | 변성 공액디엔계 중합체의 제조방법 |
KR102523121B1 (ko) * | 2020-01-31 | 2023-04-19 | 주식회사 엘지화학 | 공액디엔계 중합체의 연속 제조 시스템 |
WO2022065902A1 (ko) * | 2020-09-25 | 2022-03-31 | 주식회사 엘지화학 | 네오디뮴 촉매화 공액디엔계 중합체 및 이를 포함하는 고무 조성물 |
CN118696068A (zh) * | 2022-04-08 | 2024-09-24 | 阿朗新科德国有限责任公司 | 支化的改性二烯橡胶 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030987A (en) * | 1996-05-17 | 2000-02-29 | Fmc Corporation | Insecticidal N-(substituted arylmethyl)-4-[bis(substituted phenyl or pyridyl)methyl]piperidines |
KR20100091969A (ko) * | 2007-10-12 | 2010-08-19 | 가부시키가이샤 브리지스톤 | 헤테로시클릭 니트릴 화합물로 관능화된 중합체 |
KR20150022836A (ko) * | 2012-06-18 | 2015-03-04 | 란세스 도이치란트 게엠베하 | 무니 점프를 갖는 고-무니 ndbr |
KR20160079811A (ko) * | 2013-10-16 | 2016-07-06 | 아란세오 도이치란드 게엠베하 | 몰 질량 감소를 가지는 NdBR |
KR20160086853A (ko) * | 2013-10-24 | 2016-07-20 | 아란세오 도이치란드 게엠베하 | 고무 조성물 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3175350B2 (ja) | 1992-10-15 | 2001-06-11 | ジェイエスアール株式会社 | 高ビニル結合を有するブタジエン系重合体の連続重合方法 |
US5569664A (en) * | 1995-02-16 | 1996-10-29 | Fmc Corporation | Insecticidal n-(substituted arylmethyl)-4-[bis(substituted phenyl) methyl]pi |
US5639763A (en) * | 1994-03-01 | 1997-06-17 | Fmc Corporation | Insecticidal N-(substituted arylmethyl)-4-[bis(substituted phenyl)methyl]piperidines |
DE4436059A1 (de) | 1994-10-10 | 1996-04-11 | Bayer Ag | Verfahren zur Herstellung von mittels Nd-Katalysatoren polymerisierten Dienkautschuken mit niedrigem cold-flow und geringem Eigengeruch |
ES2187652T3 (es) * | 1995-05-19 | 2003-06-16 | Fmc Corp | N-(arimetil-sustutuidas-4-(bis(fenil o piridil sustituidas)metil) piperidinas insecticidas. |
JP5340556B2 (ja) | 2007-04-27 | 2013-11-13 | 株式会社クラレ | 末端ヒンダードアミノ基変性重合体の製造方法 |
BRPI0813678B1 (pt) | 2007-06-18 | 2019-02-19 | Bridgestone Corporation | Polímeros funcionalizados com halossilanos contendo um grupo amino |
CN102361887B (zh) | 2009-01-23 | 2013-06-26 | 株式会社普利司通 | 用包含被保护氨基的腈化合物官能化的聚合物 |
EP2412731B1 (en) * | 2010-07-28 | 2013-08-28 | The Goodyear Tire & Rubber Company | Rubber composition, methof of manufacturing such a rubber composition and tire comprising such a rubber composition |
HUE025588T2 (en) | 2012-02-29 | 2016-05-30 | Trinseo Europe Gmbh | Production Process of Dene Polymers |
US20130340912A1 (en) | 2012-06-21 | 2013-12-26 | Junling Zhao | Tire with chafer component |
JP5900263B2 (ja) * | 2012-09-19 | 2016-04-06 | 信越化学工業株式会社 | カルボニル基とアミノ基を有するオルガノキシシラン化合物及びその製造方法 |
KR101627406B1 (ko) * | 2013-09-26 | 2016-06-03 | 주식회사 엘지화학 | 신규한 네오디뮴 화합물 및 이를 포함하는 디엔 중합용 촉매 |
WO2018008911A1 (ko) * | 2016-07-04 | 2018-01-11 | 주식회사 엘지화학 | 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 |
KR101997596B1 (ko) * | 2016-07-04 | 2019-07-08 | 주식회사 엘지화학 | 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 |
-
2017
- 2017-10-18 KR KR1020170135175A patent/KR102173756B1/ko active IP Right Grant
-
2018
- 2018-07-26 CN CN201880010506.7A patent/CN110366568B/zh active Active
- 2018-07-26 EP EP18867903.9A patent/EP3674330B1/en active Active
- 2018-07-26 US US16/481,573 patent/US11186661B2/en active Active
- 2018-07-26 WO PCT/KR2018/008489 patent/WO2019078459A1/ko unknown
- 2018-07-26 JP JP2019552878A patent/JP6857745B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030987A (en) * | 1996-05-17 | 2000-02-29 | Fmc Corporation | Insecticidal N-(substituted arylmethyl)-4-[bis(substituted phenyl or pyridyl)methyl]piperidines |
KR20100091969A (ko) * | 2007-10-12 | 2010-08-19 | 가부시키가이샤 브리지스톤 | 헤테로시클릭 니트릴 화합물로 관능화된 중합체 |
KR20150022836A (ko) * | 2012-06-18 | 2015-03-04 | 란세스 도이치란트 게엠베하 | 무니 점프를 갖는 고-무니 ndbr |
KR20160079811A (ko) * | 2013-10-16 | 2016-07-06 | 아란세오 도이치란드 게엠베하 | 몰 질량 감소를 가지는 NdBR |
KR20160086853A (ko) * | 2013-10-24 | 2016-07-20 | 아란세오 도이치란드 게엠베하 | 고무 조성물 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3674330A4 * |
ZASUKHA, S. V.: "The first synthesis of chiral dialkylamines with a, a-difluoroethers fragments", JOURNAL OF FLUORINE CHEMISTRY, 2016, pages 197 - 200, XP029520086, DOI: doi:10.1016/j.jfluchem.2016.03.010 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4032921A4 (en) * | 2019-09-19 | 2022-11-30 | LG Chem, Ltd. | PROCESS FOR MAKING A MODIFIED CONJUGATED DIENE POLYMER |
Also Published As
Publication number | Publication date |
---|---|
EP3674330B1 (en) | 2021-06-23 |
EP3674330A4 (en) | 2020-10-28 |
CN110366568A (zh) | 2019-10-22 |
EP3674330A1 (en) | 2020-07-01 |
US20190389987A1 (en) | 2019-12-26 |
JP6857745B2 (ja) | 2021-04-14 |
KR20190043302A (ko) | 2019-04-26 |
KR102173756B1 (ko) | 2020-11-04 |
CN110366568B (zh) | 2022-02-11 |
US11186661B2 (en) | 2021-11-30 |
JP2020512459A (ja) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019078459A1 (ko) | 변성 공액디엔계 중합체의 제조방법 | |
WO2019078653A2 (ko) | 변성 공액디엔계 중합체 및 이의 제조방법 | |
WO2019103383A1 (ko) | 변성 공액디엔계 중합체 및 이의 제조방법 | |
WO2015056898A1 (ko) | 변성 공액 디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물 | |
KR20180065892A (ko) | 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 | |
WO2020130740A1 (ko) | 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 | |
WO2019088634A1 (ko) | 공액디엔 중합용 촉매의 제조방법, 촉매 및 이를 이용한 공액디엔계 중합체의 제조방법 | |
WO2018084546A1 (ko) | 변성 공액디엔계 중합체 및 이의 제조방법 | |
WO2019083092A1 (ko) | 연속식 중합에 의한 공액디엔계 중합체의 제조방법 | |
WO2019083173A1 (ko) | 변성 공액디엔계 중합체 및 이의 제조방법 | |
KR20180050227A (ko) | 변성 공액디엔계 중합체 및 이의 제조방법 | |
WO2021086039A1 (ko) | 변성제, 변성 공액디엔계 중합체 및 이의 제조방법 | |
WO2019066396A2 (ko) | 고무 조성물 | |
WO2021010718A1 (ko) | 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 | |
WO2016209046A1 (ko) | 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체 | |
WO2020130738A1 (ko) | 변성 공액디엔계 중합체 및 이의 제조방법 | |
KR20180048340A (ko) | 변성 공액디엔계 중합체 및 이의 제조방법 | |
WO2016209042A1 (ko) | 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체 | |
WO2018008911A1 (ko) | 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 | |
WO2016085102A1 (ko) | 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법 | |
WO2021054785A1 (ko) | 변성 공액디엔계 중합체의 제조방법 | |
WO2019093579A1 (ko) | 연속식 중합에 의한 공액디엔계 중합체의 제조방법 | |
WO2018008912A1 (ko) | 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 | |
WO2019103457A1 (ko) | 고무 조성물 | |
WO2020130741A1 (ko) | 변성 공액디엔계 중합체의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18867903 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019552878 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018867903 Country of ref document: EP Effective date: 20200518 |