WO2021054785A1 - 변성 공액디엔계 중합체의 제조방법 - Google Patents

변성 공액디엔계 중합체의 제조방법 Download PDF

Info

Publication number
WO2021054785A1
WO2021054785A1 PCT/KR2020/012661 KR2020012661W WO2021054785A1 WO 2021054785 A1 WO2021054785 A1 WO 2021054785A1 KR 2020012661 W KR2020012661 W KR 2020012661W WO 2021054785 A1 WO2021054785 A1 WO 2021054785A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydride
conjugated diene
neodymium
based polymer
modified conjugated
Prior art date
Application number
PCT/KR2020/012661
Other languages
English (en)
French (fr)
Inventor
배효진
김수화
오경환
이태철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022508540A priority Critical patent/JP7462735B2/ja
Priority to CN202080053696.8A priority patent/CN114174354A/zh
Priority to US17/629,877 priority patent/US20220289871A1/en
Priority to EP20865199.2A priority patent/EP4032921A4/en
Publication of WO2021054785A1 publication Critical patent/WO2021054785A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/12Incorporating halogen atoms into the molecule
    • C08C19/14Incorporating halogen atoms into the molecule by reaction with halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/12Incorporating halogen atoms into the molecule
    • C08C19/16Incorporating halogen atoms into the molecule by reaction with hydrogen halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • C08F4/545Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof rare earths being present, e.g. triethylaluminium + neodymium octanoate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition

Definitions

  • the present invention relates to a method for producing a modified conjugated diene polymer having excellent physical properties such as tensile properties and viscoelastic properties with a high modification rate.
  • the polymerization active site of the conjugated diene-based polymer obtained by anionic polymerization using organic lithium is a method to increase the dispersibility of inorganic fillers such as silica or carbon black in the rubber composition.
  • a method for transforming into a functional group has been developed. Specifically, a method of modifying the polymerization active end of the conjugated diene-based polymer with a tin-based compound, introducing an amino group, or modifying it with an alkoxysilane derivative has been proposed.
  • the present invention provides an active polymer by polymerizing a conjugated diene-based monomer in the presence of a catalyst composition including a neodymium compound, a first alkylating agent, a second alkylating agent, and a halide in a hydrocarbon solvent; And reacting or coupling the active polymer with a denaturing agent, wherein the neodymium compound and the second alkylating agent have a molar ratio of 1:20 to 1:35, and the polymerization is carried out at a temperature of 30 to 65°C. It provides a method for producing a phosphorus-modified conjugated diene-based polymer.
  • the conjugated diene-based polymer can be modified with a high modification rate, and the modified conjugated diene-based polymer prepared therefrom is applied to a rubber composition to exhibit excellent processability, tensile properties, and viscoelastic properties. .
  • the method for preparing a modified conjugated diene-based polymer of the present invention comprises polymerizing a conjugated diene-based monomer in the presence of a catalyst composition including a neodymium compound, a first alkylating agent, a second alkylating agent, and a halide in a hydrocarbon solvent to prepare an active polymer.
  • step 2 reacting or coupling the active polymer with a denaturing agent
  • the neodymium compound and the second alkylating agent have a molar ratio of 1:20 to 1:35, and the polymerization is performed at a temperature of 30 to 65°C. It is characterized in that it is performed in.
  • Step 1 is a step of polymerizing a conjugated diene-based monomer in the presence of a catalyst composition including a neodymium compound, a first alkylating agent, a second alkylating agent and a halide in a hydrocarbon solvent to prepare an active polymer, wherein the active polymer is an organometallic It may mean a conjugated diene-based polymer including a moiety.
  • the organometallic moiety may be an activated organometallic moiety at the end of the conjugated diene-based polymer (activated organometallic moiety at the end of the molecular chain), an activated organometallic moiety in the main chain, or an activated organometallic moiety in the side chain (side chain).
  • an activated organometallic portion of the polymer is obtained by anionic polymerization or coordination anionic polymerization
  • the organometallic portion may represent an activated organometallic portion of the terminal.
  • the molar ratio of the neodymium compound and the second alkylating agent contained in the catalyst composition is 1:20 to 1:35.
  • the second alkylating agent may be 20 mol or more, 35 mol or less, or 30 mol or less based on 1 mol of the neodymium compound.
  • the modified conjugated diene-based polymer prepared as described above exhibits excellent processability when applied to a rubber composition and excellent blending properties such as tensile properties and viscoelastic properties.
  • the second alkylating agent is less than 20 moles based on 1 mole of the neodymium compound, the molecular weight of the conjugated diene-based polymer may appear too high, and thus there may be a problem in that an excessive amount of the catalyst composition is used to control this.
  • the production efficiency of the catalyst composition may decrease, and the quality of the prepared catalyst composition may be deteriorated, which in turn leads to a decrease in the modification rate and a decrease in quality of the rubber composition.
  • the second alkylating agent is more than 35 moles based on 1 mole of the neodymium compound, the molecular weight of the conjugated diene-based polymer may appear too low, and the amount of the catalyst composition must be reduced to control this. In this case, the polymerization reaction itself does not proceed sufficiently. There may be a problem that the polymerization conversion rate is greatly reduced. In addition, since the living properties of the active polymer are reduced, the modification rate may be lowered, and thus, quality deterioration such as compounding properties of the rubber composition may occur.
  • the living characteristics of the active polymer are improved, and the denaturing rate can be increased by efficiently binding the functional group derived from the denaturant to the end of the polymer in the denaturation step.
  • a modified conjugated diene-based polymer exhibiting excellent physical properties was prepared.
  • the molar ratio of the neodymium compound, the first alkylating agent, the second alkylating agent, and the halide may be 1: (50 to 200): (20 to 35): (2 to 5).
  • the first alkylating agent based on 1 mol of the neodymium compound may be 50 mol or more, 60 mol or more, 80 mol or more, 90 mol or more, 200 mol or less, 150 mol or less, 120 mol or less, or 110 mol or less.
  • the second alkylating agent may be 20 mol or more and 35 mol or less based on 1 mol of the neodymium compound.
  • the halides based on 1 mole of the neodymium compound may be 2.0 moles or more, 2.1 moles or more, 2.2 moles or more, 2.3 moles or more, 5.0 moles or less, 3.0 moles or less, and 2.5 moles or less.
  • the production efficiency of the catalyst composition may decrease and the quality of the prepared catalyst composition may be deteriorated. This eventually leads to deterioration of physical properties in the modified conjugated diene system and the rubber composition using the same.
  • the neodymium compound is 0.01 to 0.50 mmol based on 100 g of the conjugated diene monomer used in polymerization, specifically 0.01 mmol or more, 0.02 mmol or more, 0.04 mmol or more, 0.05 mmol or more, 0.07 mmol or more, 0.08 mmol or more, 0.50 mmol or less, It may be 0.30 mmol or less, 0.20 mmol or less, 0.19 mmol or less, 0.18 mmol or less, 0.16 mmol or less.
  • it may be more than 0.04 mmol and less than 0.20 mmol, 0.05 to 0.19 mmol, 0.07 to 0.18 mmol, 0.08 to 0.16 mmol, based on 100 g of the conjugated diene monomer.
  • the neodymium compound is used in the above content and has an appropriate concentration, economic efficiency can be secured while exhibiting excellent catalytic activity, and there is an effect of not having to go through a separate demineralization process.
  • the catalyst composition of the present invention may simultaneously satisfy the content range of the neodymium compound based on 100 g of the conjugated diene-based monomer and the molar ratio between the neodymium compound, the first alkylating agent, the second alkylating agent, and the halide.
  • the production method of the present invention is a mixture of a neodymium compound, a first alkylating agent, a second alkylating agent, and a halide at -30 to -20 °C, and 24 at -30 to -20 °C. It may further include; to prepare a catalyst composition by standing for 36 hours.
  • the catalyst composition may be prepared by sequentially adding and mixing a neodymium compound, a first alkylating agent, a second alkylating agent, a halide, and optionally a conjugated diene-based monomer.
  • the catalyst composition may be prepared by sequentially adding and mixing a neodymium compound, a first alkylating agent, a second alkylating agent, a halide, and optionally a conjugated diene-based monomer in a hydrocarbon-based solvent.
  • the hydrocarbon-based solvent may be a non-polar solvent that is not reactive with the constituents of the catalyst composition.
  • the hydrocarbon-based solvent may include an aliphatic hydrocarbon-based solvent such as pentane, hexane, isopentane, heptane, octane, and isooctane; Cycloaliphatic hydrocarbon-based solvents such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; Alternatively, at least one selected from the group consisting of aromatic hydrocarbon-based solvents such as benzene, toluene, ethylbenzene, xylene, and the like may be used.
  • the hydrocarbon-based solvent may be an aliphatic hydrocarbon-based solvent such as hexane.
  • the mixing process may be performed at -30 to -20°C, and allowed to stand for 24 to 36 hours after mixing.
  • the catalyst composition has the above-described composition and is prepared through the above-described method, a modified conjugated diene-based polymer that is applied to the production method of the present invention and exhibits excellent physical properties can be efficiently prepared.
  • the conjugated diene-based monomer for preparing the active polymer may be used without particular limitation as long as it is usually used for preparing the conjugated diene-based polymer.
  • the conjugated diene monomer is 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3- Butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene or 2,4-hexadiene, and the like, any one of them or Mixtures of two or more may be used. More specifically, the conjugated diene-based monomer may be 1,3-butadiene.
  • other monomers copolymerizable with the conjugated diene-based monomer may be further used in consideration of the physical properties of the final prepared active polymer during the polymerization reaction, and the other monomers are specifically styrene, p-methyl styrene, ⁇ -Methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene, and the like may be aromatic vinyl monomers, and the like, and any one of them or Mixtures of two or more may be used.
  • the other monomers may be used in an amount of 20% by weight or less based on the total weight of the monomers used in the polymerization reaction.
  • the conjugated diene-based monomer is not entirely dissolved in a non-polar solvent and used in the amount used for preparing the conjugated diene-based polymer, but a part of the total amount is dissolved in a polymerization solvent and then polymerized, depending on the polymerization conversion rate. It may be divided into one or more times, specifically two or more times, and more specifically two to four times.
  • the hydrocarbon solvent used in step 1 may be a non-polar solvent.
  • the hydrocarbon solvent is an aliphatic hydrocarbon solvent such as pentane, hexane, isopentane, heptane, octane, isooctane, and the like; Cycloaliphatic hydrocarbon solvents such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, and the like; Alternatively, at least one selected from the group consisting of aromatic hydrocarbon solvents such as benzene, toluene, ethylbenzene, and xylene may be used.
  • the hydrocarbon solvent may be an aliphatic hydrocarbon solvent such as hexane.
  • the concentration of the monomer is not particularly limited, but may be 3 to 80% by weight, more specifically 10 to 30% by weight.
  • the polymerization of step 1 may be performed by radical polymerization, and may be performed by various polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization, and also batch method, continuous method, or semi-continuous method. It can also be done by law.
  • the active polymer according to an embodiment of the present invention may be carried out by reacting by adding a conjugated diene-based monomer to the above-described catalyst composition in a polymerization solvent.
  • the polymerization may be elevated temperature polymerization, isothermal polymerization, or constant temperature polymerization (insulation polymerization).
  • the constant-temperature polymerization refers to a polymerization method comprising the step of polymerization by self-reaction heat without optionally applying heat after the addition of the catalyst composition
  • the elevated temperature polymerization is a polymerization method in which heat is optionally applied after the catalyst composition is added to increase the temperature.
  • the isothermal polymerization refers to a polymerization method in which heat is increased by applying heat after the catalyst composition is added, or a temperature of a reactant is maintained constant by taking away heat.
  • step 1 The polymerization of step 1 is carried out at a temperature of 30 to 65°C, specifically 30°C or more, 40°C or more, 45°C or more, 50°C or more, 65°C or less, 60°C or less, and 55°C or less. It can be.
  • the conjugated diene-based polymer can be efficiently prepared even under mild conditions, and the speed and efficiency of the polymerization reaction are not lowered while sufficiently controlling the polymerization reaction. It is characterized by producing a conjugated diene polymer.
  • a modified conjugated diene-based polymer having a lowered linearity as well as a lowered modification rate due to a decrease in the living characteristics of the active polymer may be prepared.
  • the polymerization temperature is less than 30° C., the polymerization reaction rate and efficiency are remarkably deteriorated, so that it is difficult to prepare a conjugated diene polymer.
  • the living characteristics of the active polymer can be improved and the modification rate can be increased even when a catalyst composition using a small amount of the second alkylating agent is used.
  • this effect can be maximized by controlling the polymerization temperature within the above range.
  • the polymerization is carried out for 15 minutes or more, 30 minutes or more, 3 hours or less, 2 hours or less, such as 1 hour, within the temperature range until the polymerization conversion rate reaches 95% or more, 99% or more, and maximum 100% conversion. Can be.
  • the catalyst composition of the present invention may include (a) a neodymium compound, (b) a first alkylating agent, (c) a second alkylating agent, and (d) a halide, and (e) a conjugated diene-based monomer. It may be to include more.
  • the neodymium compound forms a catalytically active species for polymerization of a conjugated diene-based monomer after being activated by a first alkylating agent and a second alkylating agent.
  • the neodymium compound is its carboxylate (e.g., neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium gluconate, neodymium citrate, neodymium fumarate, neodymium lactate, neodymium maleate, neodymium oxalate, neodymium 2 -Ethylhexanoate, neodymium neodecanoate (versatate), etc.); Organophosphates (e.g., neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, neodymium dioctyl phosphate, neodymium bis(1-methylheptyl) phosphat
  • the neodymium compound may be a compound represented by Formula 1 below.
  • R a to R c are each independently hydrogen or an alkyl group having 1 to 12 carbon atoms, provided that all of R a to R c are not hydrogen at the same time.
  • R a in Formula 1 is an alkyl group having 4 to 12 carbon atoms
  • R b And R c may each independently be hydrogen or an alkyl group having 1 to 8 carbon atoms.
  • R a may be an alkyl group having 6 to 10 carbon atoms
  • R b and R c may each independently be hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R a is an alkyl group having 8 to 10 carbon atoms
  • R b and R c may each independently be hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • the neodymium compound represented by Formula 1 includes a carboxylate ligand containing an alkyl group having a variable length of 2 or more carbon atoms as a substituent at the ⁇ (alpha) position, thereby inducing a three-dimensional change around the center of the neodymium metal. It is possible to block agglomeration phenomenon, and accordingly, there is an effect of suppressing oligomerization.
  • such a neodymium compound has a high solubility in a solvent and a reduction in the proportion of neodymium located at a central portion where conversion to the catalytically active species is difficult, thereby increasing the conversion rate to the catalytically active species.
  • the neodymium compound is Nd (neodecanoate) 3 , Nd (2-ethylhexanoate) 3 , Nd (2,2-dimethyl decanoate) 3 , Nd (2,2-diethyl decanoate) Decanoate) 3 , Nd(2,2-dipropyl decanoate) 3 , Nd(2,2-dibutyl decanoate) 3 , Nd(2,2-dihexyl decanoate) 3 , Nd(2 ,2-dioctyl decanoate) 3 , Nd (2-ethyl-2-propyl decanoate) 3 , Nd (2-ethyl-2-butyl decanoate) 3 , Nd (2-ethyl-2-hexyl Decanoate) 3 , Nd (2-propyl-2-butyl decanoate) 3 , Nd (2-propyl-2-butyl decano
  • the solubility of the neodymium compound may be about 4 g or more per 6 g of the non-polar solvent at room temperature (23 ⁇ 5° C.).
  • the solubility of the neodymium compound refers to a degree of clear dissolution without a cloudy phenomenon, and excellent catalytic activity may be exhibited by exhibiting such high solubility.
  • the neodymium compound may be used in the form of a reactant with a Lewis base.
  • This reaction product has the effect of improving the solubility of the neodymium compound in a solvent by Lewis base and allowing it to be stored in a stable state for a long period of time.
  • the Lewis base may be used in a ratio of 30 moles or less, or 1 to 10 moles per 1 mole of the neodymium element.
  • the Lewis base may be, for example, acetylacetone, tetrahydrofuran, pyridine, N,N-dimethylformamide, thiophene, diphenyl ether, triethylamine, an organophosphorus compound, or a monohydric or dihydric alcohol.
  • the first alkylating agent is aluminoxane, for example, the following formula, the aluminoxane may be prepared by reacting water with a trihydrocarbyl aluminum-based compound. Specifically, the aluminoxane may be a straight-chain aluminoxane of Formula 2a or a cyclic aluminoxane of Formula 2b.
  • R is a monovalent organic group bonded to an aluminum atom through a carbon atom, and may be a hydrocarbyl group, and x and y are each independently an integer of 1 or more, specifically 1 to 100, more Specifically, it may be an integer of 2 to 50.
  • the aluminoxane is methylaluminoxane (MAO), modified methylaluminoxane (MMAO), ethylaluminoxane, n-propylaluminoxane, isopropylaluminoxane, n-butylaluminoxane, isobutylaluminoxane.
  • MAO methylaluminoxane
  • MMAO modified methylaluminoxane
  • ethylaluminoxane ethylaluminoxane
  • n-propylaluminoxane isopropylaluminoxane
  • n-butylaluminoxane isobutylaluminoxane.
  • n-pentyl aluminoxane neopentyl aluminoxane, n-hexyl aluminoxane, n-octyl aluminoxane, 2-ethylhexyl aluminoxane, cyclohexyl aluminoxane, 1-methylcyclopentyl aluminoxane, phenyl aluminoxane or 2, 6-dimethylphenylaluminoxane, and the like.
  • the modified methylaluminoxane is obtained by substituting the methyl group of methylaluminoxane with a modifier (R), specifically a hydrocarbon group having 2 to 20 carbon atoms, and may be a compound represented by the following formula (3).
  • a modifier specifically a hydrocarbon group having 2 to 20 carbon atoms
  • R is as defined above, and m and n may each independently be an integer of 2 or more.
  • Me represents a methyl group.
  • R is an alkyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, It may be an arylalkyl group having 7 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, an allyl group or an alkynyl group having 2 to 20 carbon atoms, and more specifically, 2 carbon atoms such as an ethyl group, an isobutyl group, a hexyl group or an octyl group. It is an alkyl group of to 10, and more specifically, it may be an isobutyl group.
  • the modified methylaluminoxane may be obtained by substituting about 50 mol% to 90 mol% of the methyl group of methylaluminoxane with the hydrocarbon group described above.
  • the catalytic activity may be increased by promoting alkylation.
  • Such modified methylaluminoxane may be prepared according to a conventional method, and specifically, may be prepared using trimethylaluminum and alkyl aluminum other than trimethylaluminum.
  • the alkyl aluminum may be triisobutyl aluminum, triethyl aluminum, trihexyl aluminum or trioctyl aluminum, and any one or a mixture of two or more of them may be used.
  • the molecular weight distribution of the modified conjugated diene-based polymer to be prepared can be formed narrow, and accordingly, in terms of improving the physical properties of the polymer, preferably, the first alkylating agent may be methylaluminoxane. .
  • the second alkylating agent according to an embodiment of the present invention may be dihydrocarbyl aluminum hydride or hydrocarbyl aluminum dihydride, and specifically, the second alkylating agent is diethylaluminum hydride, di-n-propyl Aluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride (DIBAH), di-n-octylaluminum hydride, diphenylaluminum hydride, di-p-tolyl Aluminum hydride, dibenzyl aluminum hydride, phenylethylaluminum hydride, phenyl-n-propylaluminum hydride, phenylisopropylaluminum hydride, phenyl-n-butylaluminum hydride, phenylisobutylaluminum hydride, phenyl- n-oc
  • the alkylating agent may serve as a cocatalyst as an organometallic compound capable of transferring a hydrocarbyl group to another metal.
  • the catalyst composition according to an embodiment of the present invention may further include a conventional alkylating agent used as an alkylating agent in the preparation of a conjugated diene-based polymer in addition to the first and second alkylating agents, if necessary.
  • a conventional alkylating agent used as an alkylating agent in the preparation of a conjugated diene-based polymer in addition to the first and second alkylating agents, if necessary.
  • Examples include trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, triisopropyl aluminum, tri-n-butyl aluminum, triisobutyl aluminum, tri-t-butyl aluminum, tripentyl aluminum, trihexyl aluminum, tricyclo Alkyl aluminum such as hexyl aluminum and trioctyl aluminum; Alkyl magnesium compounds such as diethyl magnesium, di-n-propyl magnesium, diisopropyl magnesium, dibutyl magnesium, dihexyl magnesium, diphenyl magnesium, or dibenzyl magnesium, and the like, and the organic lithium compound include n- And alkyl lithium compounds such as butyllithium and the like.
  • the halide is not particularly limited, for example, an elemental compound, an interhalogen compound, a hydrogen halide, an organic halide, a non-metal halide, a metal halide or an organometallic halide, and the like. Any one or a mixture of two or more of them may be used. Among these, when considering the excellent effect of improving catalytic activity and thus improving reactivity, any one or a mixture of two or more selected from the group consisting of an organic halide, a metal halide, and an organometallic halide may be used as the halide.
  • halogen examples include diatomic molecular compounds such as fluorine (F 2 ), chlorine (Cl 2 ), bromine (Br 2 ), or iodine (I 2 ).
  • interhalogen compound examples include iodine monochloride, iodine monobromide, iodine trichloride, iodine pentafluoride, iodine monofluoride or iodine trifluoride.
  • the hydrogen halide may include hydrogen fluoride, hydrogen chloride, hydrogen bromide, or hydrogen iodide.
  • t-butyl chloride t-BuCl
  • t-butyl bromide t-butyl bromide
  • allyl chloride allyl bromide
  • benzyl chloride benzyl bromide
  • chloro-di-phenylmethane bromo-di-phenylmethane
  • tri Phenylmethyl chloride triphenylmethyl bromide
  • benzylidene chloride benzylidene bromide
  • methyltrichlorosilane phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane (TMSCl)
  • benzoyl chloride benzoyl bromide
  • propi Onyl chloride propionyl bromide
  • methyl chloroformate methyl bromoformate
  • iodomethane diiodomethane
  • metal halide tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, antimony tribromide, aluminum trifluoride, gallium trichloride, gallium tribromide, gallium trifluoride, indium trichloride, Indium tribromide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, zinc dichloride, zinc dibromide, zinc difluoride, aluminum triiodide, gallium triiodide, indium triiodide, titanium tetraiodide, zinc iodide, tetraiodide Germanium, tin sayodine, tin iodide, antimony triiodide, or magnesium iodide.
  • the organometallic halide includes dimethyl aluminum chloride, diethyl aluminum chloride, dimethyl aluminum bromide, diethyl aluminum bromide, dimethyl aluminum fluoride, diethyl aluminum fluoride, methyl aluminum dichloride, ethyl aluminum dichloride, methyl aluminum dichloride.
  • the catalyst composition according to an embodiment of the present invention may include a non-coordinating anion-containing compound or a non-coordinating anion precursor compound instead of or together with the halide.
  • the non-coordinating anion is a sterically bulky anion that does not form a coordination bond with the active center of the catalyst system due to steric hindrance, and is a tetraarylborate anion or fluorinated tetraaryl. It may be a borate anion and the like.
  • the compound containing the non-coordinating anion may include a carbonium cation such as a triaryl carbonium cation together with the non-coordinating anion; It may include an ammonium cation such as an N,N-dialkyl anilinium cation, or a counter cation such as a phosphonium cation.
  • the compound containing the non-coordinating anion is triphenyl carbonium tetrakis (pentafluorophenyl) borate, N,N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetra Kis[3,5-bis(trifluoromethyl)phenyl]borate, or N,N-dimethylanilinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, and the like.
  • non-coordinating anion precursor a compound capable of forming a non-coordinating anion under reaction conditions, and a triaryl boron compound (BE 3 , wherein E is a pentafluorophenyl group or a 3,5-bis(trifluoromethyl)phenyl group It is a strong electron-attracting aryl group such as).
  • the catalyst composition may further include a conjugated diene-based monomer, and pre-polymerization or pre-polymerization by pre-mixing a part of the conjugated diene-based monomer used in the polymerization reaction with a polymerization catalyst composition.
  • a conjugated diene-based monomer and pre-polymerization or pre-polymerization by pre-mixing a part of the conjugated diene-based monomer used in the polymerization reaction with a polymerization catalyst composition.
  • the "preforming” means a catalyst composition comprising a neodymium compound, an alkylating agent, and a halide, that is, when the catalyst system includes diisobutylaluminum hydride (DIBAH), etc., various
  • DIBAH diisobutylaluminum hydride
  • a small amount of conjugated diene monomers such as 1,3-butadiene are added, and it may mean that pre-polymerization is performed in the catalyst composition system with the addition of 1,3-butadiene. have.
  • premix may mean a state in which polymerization is not performed in the catalyst composition system and each compound is uniformly mixed.
  • the conjugated diene-based monomer used in the preparation of the catalyst composition may be used in a partial amount within the total amount of the conjugated diene-based monomer used in the polymerization reaction, for example, per 1 mole of the neodymium compound. 1 mole to 100 moles, specifically 10 to 50 moles, or 20 to 50 moles may be used.
  • the method for preparing the modified conjugated diene-based polymer of the present invention includes a reaction terminator or 2,6-di-t-butylpara for completing the polymerization reaction such as polyoxyethylene glycol phosphate after preparing the active polymer. It may include the step of terminating the polymerization by further using an additive such as an antioxidant such as cresol.
  • additives such as a chelating agent, a dispersing agent, a pH adjusting agent, a deoxygenating agent, or an oxygen scavenger may be optionally further used together with the reaction stopping agent to facilitate solution polymerization.
  • a conjugated diene polymer containing an active organometallic moiety derived from a catalyst containing the neodymium compound, more specifically a neodymium catalyzed butadiene containing a 1,3-butadiene monomer unit A polymer is produced.
  • the prepared conjugated diene-based polymer may have living properties or pseudo living properties.
  • Step 2 is a step of reacting or coupling the active polymer with a denaturant, and may be performed by reacting a denaturant with an organometallic portion of the active polymer.
  • the denaturation reaction may be performed by a solution reaction or a solid phase reaction, and as a specific example, it may be performed by a solution reaction.
  • the denaturation reaction may be performed using a batch type reactor, or may be performed continuously using an apparatus such as a multistage continuous type reactor or an in-line mixer.
  • the denaturation reaction may be carried out under the same temperature and pressure conditions as the polymerization reaction, and specifically, in the present invention, a temperature of 30 to 65° C., specifically 30° C. or more, 40° C. or more, 45° C. or more , 50°C or more, 65°C or less, 60°C or less, and 55°C or less.
  • the modifier is not limited to the kind and may be used in the present invention as long as it is a compound capable of imparting a functional group to at least one end of the active polymer or increasing its molecular weight by coupling.
  • the modifier may be used in an amount of 0.5 to 20 moles relative to 1 mole of the neodymium compound in the catalyst composition. Specifically, the modifier may be used in an amount of 1 to 10 moles relative to 1 mole of the neodymium compound in the catalyst composition.
  • an isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) or the like may be added to the polymerization reaction system to stop the polymerization reaction.
  • BHT 2,6-di-t-butyl-p-cresol
  • a modified conjugated diene-based polymer may be obtained through vacuum drying treatment or desolvation treatment such as steam stripping to lower the partial pressure of the solvent through the supply of water vapor.
  • an unmodified active polymer may be included in addition to the above-described modified conjugated diene-based polymer.
  • the method for preparing the modified conjugated diene-based polymer of the present invention may further include a precipitation and separation process for the prepared modified conjugated diene-based polymer. Filtering, separating and drying the precipitated modified conjugated diene-based polymer may be performed according to a conventional method.
  • a modified conjugated diene-based polymer having excellent physical properties including a narrow molecular weight distribution specific example, a neodymium catalyzed butadiene-based polymer is prepared Can be.
  • the present invention provides a modified conjugated diene-based polymer prepared by the above production method.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention is optimized to improve the balance of physical properties such as viscoelasticity, tensile properties, and processability of a rubber composition including the catalyst composition and polymerization temperature by being prepared under the conditions of the catalyst composition and polymerization temperature described above. Characteristics such as molecular weight distribution and high linearity.
  • the modification rate of the modified conjugated diene-based polymer may be 5 to 80 mol%, specifically 10 to 80 mol%, or 20 to 80 mol%. Within this range, the rubber composition containing the modified conjugated diene polymer has excellent mechanical properties such as tensile properties and viscoelastic properties.
  • the modification rate may mean a ratio of a modified conjugated diene-based polymer reacted or coupled with a modifier in step 2 among the active polymers prepared in step 1 above.
  • the modified conjugated diene-based polymer may have a cis-1,4 (cis-1,4) bond content of the conjugated diene portion measured by Fourier transform infrared spectroscopy (FT-IR) of 95% or more, 96% or more, 96.5% or more. have.
  • FT-IR Fourier transform infrared spectroscopy
  • the modified conjugated diene-based polymer may have a vinyl bond content of 5% or less, 3% or less, 1% or less, or 0.7% or less of the conjugated diene portion measured by Fourier transform infrared spectroscopy.
  • vinyl content in the polymer exceeds 5%, there is a concern that the abrasion resistance, crack resistance, and ozone resistance of the rubber composition including the same may be deteriorated.
  • the cis-1,4 bond content and vinyl content in the polymer by FT-IR are FT- of the carbon disulfide solution of the conjugated diene-based polymer prepared at a concentration of 5 mg/mL using carbon disulfide in the same cell as a blank.
  • the maximum peak value around 1130 cm -1 of the measurement spectrum (a, baseline), the minimum peak value around 967 cm -1 representing the trans-1,4 bond (b), and vinyl were added.
  • the contents were obtained using the minimum peak value (c) around 911 cm -1 shown and the minimum peak value (d) around 736 cm -1 showing cis-1,4 bonds.
  • the conjugated diene-based polymer may have a molecular weight distribution (Mw/Mn) of 1.5 to 3.5, and specifically, the conjugated diene-based polymer may have a molecular weight distribution of 2.0 or more, 3.0 or less, and 2.8 or less. In the case of having the narrow molecular weight distribution, when applied to a rubber composition, tensile properties and viscoelastic properties are excellent.
  • the molecular weight distribution can be calculated from the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn), wherein the number average molecular weight (Mn) measures the molecular weight of n polymer molecules and It is the common average of the molecular weights of individual polymers calculated by dividing the total by n, and the weight average molecular weight (Mw) represents the molecular weight distribution of the polymer composition. All molecular weight averages can be expressed in grams per mole (g/mol). In addition, the weight average molecular weight and number average molecular weight may each mean a molecular weight in terms of polystyrene analyzed by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the conjugated diene-based polymer according to an embodiment of the present invention satisfies the above-described molecular weight distribution condition, and the weight average molecular weight (Mw) may be 4 ⁇ 10 5 to 1.0 ⁇ 10 6 g/mol, specifically 4.00 ⁇ 10 5 g/mol or more, 4.50 ⁇ 10 5 g/mol or more, 5.00 ⁇ 10 5 g/mol or more, 6.00 ⁇ 10 5 g/mol or more, 7.00 ⁇ 10 5 g/mol or more, 1.00 ⁇ 10 6 g/mol or less, 9.00 ⁇ 10 5 g May be less than or equal to /mol.
  • the number average molecular weight (Mn) may be 2.0 ⁇ 10 5 to 5.0 ⁇ 10 5 g/mol, 2.00 ⁇ 10 5 g/mol or more, 2.50 ⁇ 10 5 g/mol or more, 2.70 ⁇ 10 5 g/mol It may be greater than or equal to 5.00 ⁇ 10 5 g/mol or less, 4.00 ⁇ 10 5 g/mol or less, and 3.50 ⁇ 10 5 g/mol or less.
  • the conjugated diene-based polymer satisfies the above-described molecular weight distribution, the weight average molecular weight (Mw) and the number average molecular weight (Mn) conditions at the same time, when applied to the rubber composition, tensile properties, viscoelasticity and It is excellent in workability, and there is an effect of having an excellent balance of physical properties therebetween.
  • the modified conjugated diene-based polymer may have a Mooney viscosity (MV) of 20 to 100 at 100°C, and specifically, 20 or more, 30 or more, 35 or more, 40 or more, 50 or more, 100 or less, It may be 80 or less, 75 or less, or 70 or less.
  • MV Mooney viscosity
  • the modified conjugated diene-based polymer according to the present invention may have excellent processability by having a Mooney viscosity in the aforementioned range.
  • the Mooney viscosity can be measured with a Mooney viscometer, for example, Monsanto's MV2000E, using a Large Rotor at 100° C. at a Rotor Speed of 2 ⁇ 0.02 rpm.
  • the sample used at this time can be measured by standing at room temperature (23 ⁇ 3 °C) for at least 30 minutes, collecting 27 ⁇ 3 g, filling it inside the die cavity, and operating a platen.
  • the modified conjugated diene-based polymer may have a beta value of 0.190 or more, specifically 0.195 or more, 0.200 or more, or 0.210 or more. By having a high beta value as described above, resistance characteristics and fuel economy characteristics may be excellent when applied to a rubber composition.
  • the beta value indicates the change in the viscoelastic coefficient according to the frequency change for the same amount of strain, and is an index indicating the linearity of the polymer.
  • the beta value is obtained by using a Rubber Process Analyzer (RPA2000, AlphaTechnologies, Inc.) to obtain a slope of Log(1/tan delta) vs Log(Freq.) by performing a frequency sweep with 7% strain at 100°C, and through this, the slope of Log(1/tan delta) vs. Log(Freq.) It can be obtained by calculating.
  • the Frequency is set to 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000 cpm.
  • the present invention provides a rubber composition comprising the modified conjugated diene-based polymer and a molded article prepared from the rubber composition.
  • the rubber composition may include a modified conjugated diene-based polymer in an amount of 0.1 to 100% by weight, specifically 10 to 100% by weight, or 20 to 90% by weight. If the content of the modified conjugated diene-based polymer is less than 0.1% by weight, as a result, the effect of improving abrasion resistance and crack resistance of a molded article manufactured using the rubber composition, such as a tire, may be insignificant.
  • the rubber composition may further include other rubber components as necessary in addition to the modified conjugated diene-based polymer, and in this case, the rubber component may be included in an amount of 90% by weight or less based on the total weight of the rubber composition. Specifically, it may be included in an amount of 1 to 900 parts by weight based on 100 parts by weight of the modified conjugated diene-based polymer.
  • the rubber component may be a natural rubber or a synthetic rubber, for example, the rubber component is a natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubber such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), hydrogenated natural rubber, etc.
  • NR natural rubber
  • EMR epoxidized natural rubber
  • DPNR deproteinized natural rubber
  • hydrogenated natural rubber etc.
  • Styrene-butadiene copolymer SBR
  • polybutadiene BR
  • polyisoprene IR
  • butyl rubber IIR
  • ethylene-propylene copolymer polyisobutylene-co-isoprene, poly(ethylene-co- Propylene), poly(styrene-co-butadiene), poly(styrene-co-isoprene), poly(styrene-co-isoprene-co-butadiene), poly(isoprene-co-butadiene), poly(ethylene-co-propylene -Co-diene), polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, butyl rubber, halogenated butyl rubber, etc. may be synthetic rubber, any one or a mixture of two or more of them may be used. have.
  • the rubber composition may include 0.1 parts by weight to 150 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene-based polymer, and the filler may be silica-based, carbon black, or a combination thereof. Specifically, the filler may be carbon black.
  • the carbon black-based filler is not particularly limited, but may have a nitrogen adsorption specific surface area ( measured in accordance with N 2 SA, JIS K 6217-2:2001) of 20 m 2 /g to 250 m 2 /g.
  • the carbon black may have a dibutylphthalate oil absorption (DBP) of 80 cc/100 g to 200 cc/100 g.
  • DBP dibutylphthalate oil absorption
  • the silica is not particularly limited, but may be, for example, wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, or colloidal silica.
  • the silica may be a wet silica having the most remarkable effect of improving fracture characteristics and both of wet grip.
  • the silica has a nitrogen surface area per gram (N 2 SA) of 120 m2/g to 180 m2/g, and a specific surface area of CTAB (cetyl trimethyl ammonium bromide) adsorption of 100 m2/g to 200 m2 May be /g.
  • N 2 SA nitrogen surface area per gram
  • CTAB cetyl trimethyl ammonium bromide
  • the nitrogen adsorption specific surface area of the silica is less than 120 m 2 /g, the reinforcing performance by silica may be deteriorated, and when it exceeds 180 m 2 /g, the workability of the rubber composition may decrease.
  • the CTAB adsorption specific surface area of the silica is less than 100 m 2 /g, the reinforcing performance by silica as a filler may be deteriorated, and when it exceeds 200 m 2 /g, the workability of the rubber composition may be reduced.
  • silica when silica is used as the filler, a silane coupling agent may be used together to improve reinforcement and low heat generation.
  • silane coupling agent bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)trisulfide, bis(3-triethoxysilylpropyl)disulfide, bis (2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyltetrasulfur Feed, 3-triethoxysilylpropyl-N,N-di
  • the silane coupling agent may be bis(3-triethoxysilylpropyl)polysulfide or 3-trimethoxysilylpropylbenzothiazyltetrasulfide.
  • the rubber composition of the present invention may be sulfur crosslinkable, and thus may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component. When included in the above content range, the required elastic modulus and strength of the vulcanized rubber composition can be secured, and at the same time, low fuel economy can be obtained.
  • the rubber composition according to an embodiment of the present invention includes various additives commonly used in the rubber industry, specifically, a vulcanization accelerator, a process oil, a plasticizer, an anti-aging agent, an anti-scorch agent, and a zinc white agent. ), stearic acid, a thermosetting resin, or a thermoplastic resin.
  • the vulcanization accelerator is not particularly limited, and specifically, M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), etc.
  • a thiazole-based compound or a guanidine-based compound such as DPG (diphenylguanidine) may be used.
  • the vulcanization accelerator may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, and may specifically be a paraffinic, naphthenic, or aromatic compound, and more specifically, when considering tensile strength and abrasion resistance, the aromatic process oil price, hysteresis loss And when considering low-temperature characteristics, naphthenic or paraffinic process oil may be used.
  • the process oil may be included in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component, and when included in the amount, it is possible to prevent a decrease in tensile strength and low heat generation (low fuel economy) of the vulcanized rubber.
  • the anti-aging agent specifically, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, 6- And oxy-2,2,4-trimethyl-1,2-dihydroquinoline, or a high-temperature condensation product of diphenylamine and acetone.
  • the anti-aging agent may be used in an amount of 0.1 to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition of the present invention can be obtained by kneading using a kneader such as a Banbury mixer, a roll, or an internal mixer according to the above formulation, and a rubber composition having low heat generation and excellent abrasion resistance by a vulcanization process after molding processing Can be obtained.
  • a kneader such as a Banbury mixer, a roll, or an internal mixer according to the above formulation
  • the rubber composition is a tire tread, under tread, side wall, carcass coated rubber, belt coated rubber, bead filler, pancreas, or bead coated rubber, and other tire members, anti-vibration rubber, belt conveyor, hose, etc. It may be useful in the manufacture of various industrial rubber products.
  • the molded article manufactured using the rubber composition may include a tire or a tire tread.
  • the filtered raw material was purified through reduced pressure distillation to obtain a compound of the following structure: ethyl 1-(trimethylsilyl)piperidine-4-carboxylate (ethyl 1-(trimethylsilyl)piperidine-4-carboxylate), and 1 H nucleus
  • ethyl 1-(trimethylsilyl)piperidine-4-carboxylate ethyl 1-(trimethylsilyl)piperidine-4-carboxylate
  • 1 H nucleus The magnetic resonance spectroscopy spectrum was observed.
  • NaO methylaluminoxane
  • DIBAH diisobutylaluminum hydride
  • DEAC diethylaluminum chloride
  • 1,3-butadiene 1,3-butadiene
  • the denaturation reaction was performed for 60 minutes under the same temperature conditions as the polymerization conditions.
  • a hexane solution containing 1.0 g of a polymerization terminator and a hexane solution containing 2.0 g of an antioxidant were added to terminate the reaction to prepare a modified conjugated diene-based polymer.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the reactor was heated to 50°C.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the reactor was heated to 60°C.
  • EXAMPLES A modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Example 2 was used instead of Preparation Example 1 and the reactor was heated to 50°C.
  • EXAMPLES A modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Example 3 was used instead of Preparation Example 1 and the reactor was heated to 50°C.
  • BR1208 (manufactured by LG Chem) was used as the unmodified Nd-BR.
  • EXAMPLE A modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Comparative Preparation Example 1 was used instead of Preparation Example 1, and the reactor was heated to 50°C.
  • EXAMPLE A modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Comparative Preparation Example 1 was used instead of Preparation Example 1, and the reactor was heated to 70°C.
  • EXAMPLE A modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Comparative Preparation Example 2 was used instead of Preparation Example 1, and the reactor was heated to 50°C.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the reactor was heated to 70°C.
  • EXAMPLES A modified conjugated diene polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Example 2 was used instead of Preparation Example 1 and the reactor was heated to 70°C.
  • EXAMPLES A modified conjugated diene polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Example 3 was used instead of Preparation Example 1 and the reactor was heated to 70°C.
  • Example Preparation Example 1 Example Preparation Example 1 1:20 40
  • Example Preparation Example 1 Example Preparation Example 1 1:20 50
  • Example 3 Example Preparation Example 1 1:20 60
  • Example 4 Example Preparation 2 1:30 50
  • Example 5 Example Preparation 3 1:35 50 Comparative Example 1 Unmodified Nd-BR Comparative Example 2 Unmodified Nd-BR Comparative Example 3 Comparative Preparation Example 1 1:10 50 Comparative Example 4 Comparative Preparation Example 1 1:10 70 Comparative Example 5 Comparative Preparation Example 2 1:50 50 Comparative Example 6
  • Example Preparation Example 1 1:20 70 Comparative Example 7 Example Preparation Example 2 1:30 70 Comparative Example 8
  • the cis-1,4 bond content, trans-1,4 bond content, and vinyl content of the conjugated diene portion were measured by Fourier transform infrared spectroscopy (FT-IR).
  • the maximum peak near 1130 cm -1 of the measurement spectrum Value (a, baseline), minimum peak value around 967 cm -1 representing trans-1,4 bonds (b), minimum peak value around 911 cm -1 representing vinyl bonds (c), and cis-1
  • a, baseline minimum peak value around 967 cm -1 representing trans-1,4 bonds
  • b minimum peak value around 911 cm -1 representing vinyl bonds
  • c minimum peak value around 911 cm -1 representing vinyl bonds
  • cis-1 Each content was calculated using the minimum peak value (d) in the vicinity of 736 cm -1 representing ,4 bonds.
  • GPC gel permeation chromatography
  • Mooney viscosity (ML1+4, @100°C) (MU) was measured at 100° C. using a Large Rotor with Monsanto's MV2000E at 2 ⁇ 0.02 rpm. The sample used at this time was left at room temperature (23 ⁇ 3°C) for at least 30 minutes, and then 27 ⁇ 3g was collected and filled into the die cavity, and the Mooney viscosity was measured while applying a torque by operating a platen.
  • the beta value of each polymer was measured using a Rubber Process Analyzer (RPA2000, AlphaTechnologies).
  • each polymer was subjected to a frequency sweep with 7% strain at 100 °C.
  • the frequency was set to 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000 cpm, and the slope of Log(1/tan delta) vs Log(Freq.) was calculated to obtain a beta value. .
  • the denaturation rate was calculated using a chromatogram obtained from chromatographic measurements. Specifically, each polymer was dissolved in tetrahydrofuran (THF) under 40°C conditions to prepare a sample, each sample was injected into gel permeation chromatography (GPC), and tetrahydrofuran was used as an eluent. Was flowed to obtain a chromatogram, and the denaturation rate was calculated from the obtained chromatogram by the following equation.
  • Modification rate (%) [(Peak area of modified polymer)/(Peak area of unmodified polymer + Peak area of modified polymer)] ⁇ 100
  • NdV neodymium compound
  • DIBAH second alkylating agent
  • the rubber composition comprises 100 parts by weight of each polymer, 70 parts by weight of carbon black, 22.5 parts by weight of process oil, 2 parts by weight of anti-aging agent (TMDQ), 3 parts by weight of zinc oxide (ZnO), and stearic acid ( 2 parts by weight of stearic acid) were added to prepare respective rubber compositions. Thereafter, 2 parts by weight of sulfur, 2 parts by weight of vulcanization accelerator (CZ), and 0.5 parts by weight of vulcanization accelerator (DPG) were added to each of the rubber compositions, and gently mixed at 50 rpm for 1.5 minutes at 50° C., and then a roll of 50° C. was used. Thus, a vulcanized formulation in the form of a sheet was obtained. The obtained vulcanized compound was vulcanized at 160° C. for 25 minutes to prepare a rubber specimen.
  • TMDQ anti-aging agent
  • ZnO zinc oxide
  • stearic acid 2 parts by weight of stearic acid
  • the most important Tan ⁇ properties for low fuel efficiency were measured by using DMTS 500N from Gabo, Germany at a frequency of 10 Hz, Prestrain 3%, and Dynamic Strain 3% at 60°C. In this case, the better the Tan ⁇ value at 60°C, the less hysteresis loss is and the rotational resistance is excellent, that is, the fuel economy is excellent.
  • the index value of the tensile properties was calculated through Equation 1 below with the value of Comparative Example 1 being 100, and the Index value of the viscoelastic property was calculated through Equation 2 below with the value of Comparative Example 1 being 100.
  • Examples 1 to 3 and Comparative Example 6 use the catalyst composition of Example Preparation Example 1, Examples 4 and 7 use the catalyst composition of Example Preparation Example 2, Examples 5 and 8 Example The catalyst composition of Preparation Example 3 was used.
  • Examples 1 to 5 were polymerized at 40°C, 50°C, or 60°C included in the scope of the present invention (30 to 65°C), and Comparative Examples 6 to 8 were polymerized at a higher 70°C. I did. Even in this case, the tensile properties and viscoelastic properties were significantly improved in all of Examples 1 to 5 compared to Comparative Examples 6 to 8.
  • the modification rate is It is possible to prepare a modified conjugated diene-based polymer having high and excellent blending properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)

Abstract

본 발명은 인장 특성 및 점탄성 특성 등 우수한 물성의 변성 공액디엔계 중합체를 높은 변성률로 제조할 수 있는 방법에 관한 것이다.

Description

변성 공액디엔계 중합체의 제조방법
관련 출원과의 상호 인용
본 출원은 2019년 9월 19일자 한국 특허 출원 2019-0115575에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 인장 특성 및 점탄성 특성 등 우수한 물성의 변성 공액디엔계 중합체를 높은 변성률로 제조할 수 있는 방법에 관한 것이다.
최근 에너지 절약 및 환경 문제에 대한 관심이 높아짐에 따라 자동차의 저연비화가 요구되고 있다. 이를 실현하기 위한 방법 중의 하나로서, 타이어 형성용 고무 조성물 내 실리카 또는 카본블랙 등의 무기 충전제를 사용하여 타이어의 발열성을 낮추는 방법이 제안되었으나, 고무 조성물 내 상기 무기 충전제의 분산이 용이하지 않아 오히려 내마모성, 내크랙성 또는 가공성 등을 비롯한 고무 조성물의 물성이 전체적으로 저하되는 문제가 있었다.
이와 같은 문제를 해결하기 위해, 고무 조성물 내 실리카 또는 카본블랙 등의 무기 충전제의 분산성을 높이기 위한 방법으로 유기 리튬을 이용한 음이온 중합으로 얻어지는 공액디엔계 중합체의 중합활성 부위를 무기 충전제와 상호작용 가능한 관능기로 변성하는 방법이 개발되었다. 구체적으로는 공액디엔계 중합체의 중합활성 말단을 주석계 화합물로 변성하거나, 아미노기를 도입하는 방법 또는 알콕시실란 유도체로 변성하는 방법 등이 제안되었다.
또 다른 방법으로, 란탄 계열 희토류 원소 화합물을 포함하는 촉매를 이용한 배위 중합에 의해 얻어지는 리빙 중합체에 있어서 리빙 활성 말단을 특정의 커플링제나 변성제에 의해 변성하여 가공성, 물성을 개선하는 방법이 개발되었다.
일례로 네오디뮴 카르복실기염 화합물, 알킬알루미늄 화합물, 할로겐을 함유하는 화합물의 조합으로 이루어진 촉매를 이용하여 비극성 용매 하에서 1,4-시스 폴리부타디엔을 제조한 후 반응정지제와 산화방지제로 반응을 정지시킨 다음 염화황을 첨가하여 분지구조를 도입하는 방법 등이 개시되어 있다.
그러나, 전술한 방법으로 변성 공액디엔계 중합체를 제조하여 고무 조성물에 적용할 경우, 내마모성, 가공성 등의 고무 조성물에 대한 물성 개선 효과가 미미하다. 이에, 변성 공액디엔계 중합체 제조 시 변성률을 개선하여 변성제 유래 작용기를 많이 도입하고, 인장 특성이나 점탄성 특성 등 고무 조성물에서의 배합 물성을 향상시키기 위한 방법이 여전히 요구된다.
[선행기술문헌]
[특허문헌]
한국 공개특허 2017-0077614
본 발명의 목적은 인장 특성 및 점탄성 특성이 우수한 변성 공액디엔계 중합체를 높은 변성률로 제조할 수 있는 변성 공액디엔계 중합체의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명은 탄화수소 용매 중에서, 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물을 포함하는 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계; 및 상기 활성 중합체를 변성제와 반응 또는 커플링시키는 단계;를 포함하고, 상기 네오디뮴 화합물 및 제2 알킬화제의 몰비는 1 : 20 내지 1 : 35이고, 상기 중합은 30 내지 65 ℃의 온도에서 수행하는 것인 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 제조방법을 이용함으로써 높은 변성률로 공액디엔계 중합체를 변성시킬 수 있고, 이로부터 제조된 변성 공액디엔계 중합체는 고무 조성물에 적용되어 우수한 가공성, 인장 특성 및 점탄성 특성을 나타내는 효과가 나타난다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 본 발명을 자세히 설명한다.
본 발명의 변성 공액디엔계 중합체의 제조방법은, 탄화수소 용매 중에서, 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물을 포함하는 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계(단계 1); 및 상기 활성 중합체를 변성제와 반응 또는 커플링시키는 단계(단계 2);를 포함하고, 상기 네오디뮴 화합물 및 제2 알킬화제의 몰비는 1 : 20 내지 1 : 35이고, 상기 중합은 30 내지 65 ℃의 온도에서 수행하는 것을 특징으로 한다.
단계 1
상기 단계 1은 탄화수소 용매 중에서, 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물을 포함하는 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계로, 여기서 활성 중합체는 유기금속 부위를 포함하는 공액디엔계 중합체를 의미할 수 있다.
상기 유기금속 부위는 공액디엔계 중합체의 말단의 활성화된 유기금속 부위(분자쇄 말단의 활성화된 유기금속 부위), 주 사슬 중의 활성화된 유기금속 부위 또는 측쇄(곁사슬) 중의 활성화된 유기금속 부위일 수 있으며, 이 중에서도 음이온 중합 또는 배위 음이온 중합에 의해 중합체의 활성화된 유기금속 부위를 얻는 경우 상기 유기금속 부위는 말단의 활성화된 유기금속 부위를 나타내는 것일 수 있다.
상기 촉매 조성물에 함유된 네오디뮴 화합물 및 제2 알킬화제의 몰비는 1 : 20 내지 1 : 35이다. 구체적으로, 상기 네오디뮴 화합물 1 몰 기준 제2 알킬화제는 20 몰 이상, 35 몰 이하, 30 몰 이하일 수 있다.
본 발명에서는 네오디뮴 화합물 및 제2 알킬화제를 상기 몰비로 포함하여 사용함으로써, 변성 단계에서 공액디엔계 중합체의 말단에 변성제 유래 작용기를 효율적으로 결합시켜 변성률을 높일 수 있다. 또한, 이와 같이 제조된 변성 공액디엔계 중합체는 고무 조성물에 적용시 가공성이 우수하면서도 인장 특성, 점탄성 특성과 같은 배합 물성이 우수하게 나타난다.
네오디뮴 화합물 1 몰 기준 제2 알킬화제가 20 몰 미만일 경우, 공액디엔계 중합체의 분자량이 너무 높게 나타날 수 있어 이를 조절하기 위해 촉매 조성물을 과량 사용해야 하는 문제점이 있을 수 있다. 또한, 촉매 조성물의 제조 효율이 감소하며 제조된 촉매 조성물의 품질 저하가 발생할 수 있으며, 이는 결국 변성률 감소 및 고무 조성물의 품질 저하를 초래한다. 또한, 네오디뮴 화합물 1 몰 기준 제2 알킬화제가 35 몰 초과일 경우, 공액디엔계 중합체의 분자량이 너무 낮게 나타날 수 있어 이를 조절하기 위해 촉매 조성물 양을 줄여야 하는데, 이 경우 중합 반응 자체가 충분히 진행되지 못하여 중합 전환율이 크게 하락하는 문제점이 발생할 수 있다. 또한, 활성 중합체의 리빙 특성이 감소하게 되므로 변성률이 낮아질 수 있으며, 이로 인해 마찬가지로 고무 조성물의 배합 물성 등 품질 저하가 발생할 수 있다.
또한, 네오디뮴 화합물 및 제2 알킬화제의 몰비가 상기 범위를 벗어날 경우, 촉매 조성물의 제조 효율이 감소하고 제조된 촉매 조성물의 품질 저하가 발생하여 변성 공액디엔계 및 이를 이용한 고무 조성물에서 물성 저하를 초래할 수 있다.
이와 같이, 본 발명에서는 제2 알킬화제의 함량을 네오디뮴 화합물 1 몰 기준 20 내지 35 몰로 사용함으로써 활성 중합체의 리빙 특성을 향상시켰고 변성 단계에서 중합체 말단에 변성제 유래 작용기를 효율적으로 결합시켜 변성률을 높일 수 있었으며, 물성이 우수하게 나타나는 변성 공액디엔계 중합체를 제조한 것이다.
상기 촉매 조성물에서, 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물의 몰비는 1 : (50 내지 200) : (20 내지 35) : (2 내지 5)일 수 있다.
보다 구체적으로, 네오디뮴 화합물 1 몰 기준 제1 알킬화제는 50 몰 이상, 60 몰 이상, 80 몰 이상, 90 몰 이상, 200 몰 이하, 150 몰 이하, 120 몰 이하, 110 몰 이하일 수 있다. 또한, 네오디뮴 화합물 1 몰 기준 제2 알킬화제는 20 몰 이상, 35 몰 이하일 수 있다. 또한, 네오디뮴 화합물 1 몰 기준 할로겐화물은 2.0 몰 이상, 2.1 몰 이상, 2.2 몰 이상, 2.3 몰 이상, 5.0 몰 이하, 3.0 몰 이하, 2.5 몰 이하일 수 있다.
네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물의 몰비가 상기 범위를 벗어날 경우, 촉매 조성물의 제조 효율이 감소하고 제조된 촉매 조성물의 품질 저하가 발생할 수 있다. 이는 결국 변성 공액디엔계 및 이를 이용한 고무 조성물에서 물성 저하를 초래하게 된다.
상기 네오디뮴 화합물은 중합에 사용되는 공액디엔계 단량체 100 g 기준 0.01 내지 0.50 mmol, 구체적으로 0.01 mmol 이상, 0.02 mmol 이상, 0.04 mmol 이상, 0.05 mmol 이상, 0.07 mmol 이상, 0.08 mmol 이상, 0.50 mmol 이하, 0.30 mmol 이하, 0.20 mmol 미만, 0.19 mmol 이하, 0.18 mmol 이하, 0.16 mmol 이하일 수 있다. 예컨대, 공액디엔계 단량체 100 g 기준 0.04 mmol 초과 0.20 mmol 미만, 0.05 내지 0.19 mmol, 0.07 내지 0.18 mmol, 0.08 내지 0.16 mmol일 수 있다.
네오디뮴 화합물이 상기 함량으로 사용되어 적정한 농도를 가짐으로써, 우수한 촉매 활성을 발휘하면서도 경제성을 확보할 수 있고, 별도의 탈회 공정을 거치지 않아도 되는 효과가 있다.
또한, 본 발명의 촉매 조성물은, 전술한 공액디엔계 단량체 100 g 기준 네오디뮴 화합물 함량 범위와, 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물 간의 몰비를 동시에 충족할 수 있다.
또한, 본 발명의 제조방법은 상기 활성 중합체를 제조하는 단계 이전에, 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물을 -30 내지 -20 ℃에서 혼합하고, -30 내지 -20 ℃에서 24 내지 36시간 동안 정치시켜 촉매 조성물을 제조하는 단계;를 더 포함할 수 있다.
즉, 상기 촉매 조성물은 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물, 선택적으로 공액디엔계 단량체를 순차로 투입하여 혼합함으로써 제조될 수 있다. 구체적으로, 상기 촉매 조성물은 탄화수소계 용매 중에 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물, 그리고 선택적으로 공액디엔계 단량체를 순차로 투입하여 혼합함으로써 제조될 수 있다. 이 때, 상기 탄화수소계 용매는 상기한 촉매 조성물의 구성 성분들과 반응성이 없는 비극성 용매일 수 있다. 구체적으로 상기 탄화수소계 용매는 펜탄, 헥산, 이소펜탄, 헵탄, 옥탄, 이소옥탄 등과 같은 지방족 탄화수소계 용매; 사이클로펜탄, 메틸사이클로펜탄, 사이클로헥산, 메틸사이클로헥산, 에틸사이클로헥산 등과 같은 사이클로지방족 탄화수소계 용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소계 용매 등으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 구체적인 예로 상기 탄화수소계 용매는 헥산 등과 같은 지방족 탄화수소계 용매일 수 있다.
이 때, 촉매 활성종의 생성을 촉진시키기 위하여, 상기 혼합 공정은 -30 내지 -20 ℃에서 수행될 수 있고, 혼합 후 24 내지 36시간 동안 정치시킬 수 있다.
상기 촉매 조성물은 전술한 바와 같은 조성을 가지고 전술한 방법을 통해 제조됨으로써, 본 발명의 제조방법에 적용되어 우수한 물성을 나타내는 변성 공액디엔계 중합체를 효율적으로 제조할 수 있다.
본 발명에서, 상기 활성 중합체를 제조하기 위한 공액디엔계 단량체는 통상 공액디엔계 중합체의 제조에 사용되는 것이라면 특별한 제한없이 사용가능하다. 상기 공액디엔계 단량체는 구체적으로 1,3-부타디엔, 이소프렌, 1,3-펜타디엔, 1,3-헥사디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 2-메틸-1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔 또는 2,4-헥사디엔 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 공액디엔계 단량체는 1,3-부타디엔일 수 있다.
또한, 상기 중합 반응시 최종 제조되는 활성 중합체의 물성적 특성을 고려하여 상기 공액디엔계 단량체와 공중합 가능한 그 외의 단량체를 더 사용할 수도 있으며, 상기 그 외의 단량체는 구체적으로 스티렌, p-메틸 스티렌, α-메틸스티렌, 1-비닐나프탈렌, 3-비닐톨루엔, 에틸비닐벤젠, 디비닐벤젠, 4-사이클로헥실스티렌, 2,4,6-트리메틸스티렌 등과 같은 방향족 비닐 단량체 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 그 외의 단량체는 중합반응에 사용되는 단량체 총 중량에 대하여 20중량% 이하의 함량으로 사용될 수 있다.
이 때, 상기 공액디엔계 단량체는 공액디엔계 중합체 제조를 위해 사용되는 양이 전체로 비극성 용매에 용해되어 사용되는 것이 아니라, 전체 사용량의 일부가 중합 용매에 용해되어 중합된 후, 중합 전환율에 따라 1회 이상, 구체적으로는 2회 이상, 보다 구체적으로는 2회 내지 4회 분할 투입될 수 있다.
상기 단계 1에 사용되는 탄화수소 용매는 비극성 용매일 수 있다. 구체적으로 상기 탄화수소 용매는 펜탄, 헥산, 이소펜탄, 헵탄, 옥탄, 이소옥탄 등과 같은 지방족 탄화수소 용매; 사이클로펜탄, 메틸사이클로펜탄, 사이클로헥산, 메틸사이클로헥산, 에틸사이클로헥산 등과 같은 사이클로지방족 탄화수소 용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소 용매 등으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 구체적인 예로 상기 탄화수소 용매는 헥산 등과 같은 지방족 탄화수소 용매일 수 있다.
상기 중합 용매의 사용시 단량체의 농도는 특별히 한정되지 않으나, 3 내지 80 중량%, 보다 구체적으로는 10 내지 30 중량%일 수 있다.
상기 단계 1의 중합은 라디칼 중합에 의해 실시될 수 있고, 벌크 중합, 용액 중합, 현탁 중합 또는 유화 중합 등의 다양한 중합 방법으로 수행될 수 있으며, 또 배치(batch)법, 연속법, 또는 반연속법으로 수행될 수도 있다.
구체적으로, 용액 중합에 의해 제조하는 경우, 본 발명의 일 실시예에 따른 활성 중합체는 중합 용매 중에서 상기한 촉매 조성물에 대해 공액디엔계 단량체를 투입하여 반응시킴으로써 수행될 수 있다.
또한, 상기 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있다.
여기에서, 정온 중합은 촉매 조성물의 투입 후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 나타내는 것이고, 상기 승온 중합은 촉매 조성물의 투입 후 임의로 열을 가하여 온도를 증가시키는 중합방법을 나타내는 것이며, 상기 등온 중합은 촉매 조성물의 투입 후 열을 가하여 열을 증가시키거나 열을 뺏어 반응물의 온도를 일정하게 유지하는 중합방법을 나타내는 것이다.
상기 단계 1의 중합은 30 내지 65 ℃의 온도에서 수행되고, 구체적으로는 30 ℃ 이상, 40 ℃ 이상, 45 ℃ 이상, 50 ℃ 이상, 65 ℃ 이하, 60 ℃ 이하, 55 ℃ 이하의 온도에서 수행하는 것일 수 있다.
본 발명에서는 상기와 같이 중합 반응의 온도를 70 ℃ 미만의 낮은 온도로 수행하여 온화한 조건에서도 효율적으로 공액디엔계 중합체를 제조할 수 있고, 중합 반응을 충분히 제어하면서도 중합 반응의 속도 및 효율은 저하되지 않도록 하여 공액디엔계 중합체를 제조한 것이 특징이다.
특히, 중합 온도를 상기와 같이 30 내지 65 ℃로 낮추어 수행함으로써 활성 중합체의 리빙 특성을 향상시킬 수 있으며, 이를 통해 이어지는 변성 단계에서 활성 중합체의 말단에 변성제 유래 작용기를 효율적으로 결합시켜 변성률을 높였다. 또한, 중합 온도를 상기 범위 내로 조절함으로써 더 높은 중합 온도 대비 선형성이 우수한 변성 공액디엔계 중합체가 제조되도록 하였다.
이와 같은 온도 조절을 통해, 동일한 촉매 조성물 및 공액디엔계 단량체를 반응물질로 사용하더라도 인장 특성, 점탄성 특성 등이 더 우수하여 충진제와의 친화성이 뛰어난 변성 공액디엔계 중합체를 제조한 것이다.
중합 온도가 65 ℃ 초과일 경우, 활성 중합체의 리빙 특성이 감소하여 변성률이 낮아질 뿐만 아니라 선형성이 저하된 변성 공액디엔계 중합체가 제조될 수 있다. 결국 변성 공액디엔계 중합체의 충진제 친화성 향상 효과를 개선시키는 것이 어려우며, 이는 고무 조성물의 배합 물성이 저하되는 결과를 초래할 수 있다. 또한 중합 온도가 30 ℃ 미만일 경우, 중합 반응 속도나 효율이 현저히 떨어지므로 공액디엔계 중합체의 제조에 어려움이 생기게 된다.
전술한 바와 같이, 네오디뮴 화합물 및 제2 알킬화제의 몰비가 1 : 20 내지 1 : 35으로 혼합되어 있어 제2 알킬화제를 소량 사용한 촉매 조성물을 사용하여서도 활성 중합체의 리빙 특성을 향상시키고 변성률을 높일 수 있으며, 이와 함께 중합 온도를 상기 범위로 조절함으로써 이러한 효과를 극대화시킬 수 있는 것이다.
또한, 상기 중합은 중합 전환율이 95% 이상, 99% 이상, 최대 100% 전환율에 이를 때까지 상기 온도 범위 내에서 15분 이상, 30분 이상, 3시간 이하, 2시간 이하, 예컨대 1시간 동안 수행될 수 있다.
전술한 바와 같이, 본 발명의 촉매 조성물은 (a) 네오디뮴 화합물, (b) 제1 알킬화제, (c) 제2 알킬화제 및 (d) 할로겐화물을 포함할 수 있으며, (e) 공액디엔계 단량체를 더 포함하는 것일 수 있다.
(a) 네오디뮴 화합물
상기 네오디뮴 화합물은 제1 알킬화제, 제2 알킬화제에 의해 활성화된 후, 공액디엔계 단량체의 중합을 위한 촉매 활성종을 형성한다.
상기 네오디뮴 화합물은 이의 카르복실산염(예를 들면, 네오디뮴 초산염, 네오디뮴 아크릴산염, 네오디뮴 메타크릴산염, 네오디뮴 글루콘산염, 네오디뮴 구연산염, 네오디뮴 푸마르산염, 네오디뮴 유산염, 네오디뮴 말레산염, 네오디뮴 옥살산염, 네오디뮴 2-에틸헥사노에이트, 네오디뮴 네오데카노에이트(베르사테이트) 등); 유기인산염(예를 들면, 네오디뮴 디부틸 인산염, 네오디뮴 디펜틸 인산염, 네오디뮴 디헥실 인산염, 네오디뮴 디헵틸 인산염, 네오디뮴 디옥틸 인산염, 네오디뮴 비스(1-메틸 헵틸) 인산염, 네오디뮴 비스(2-에틸헥실) 인산염, 또는 네오디뮴 디데실 인산염 등); 유기 포스폰산염(예를 들면, 네오디뮴 부틸 포스폰산염, 네오디뮴 펜틸 포스폰산염, 네오디뮴 헥실 포스폰산염, 네오디뮴 헵틸 포스폰산염, 네오디뮴 옥틸 포스폰산염, 네오디뮴(1-메틸 헵틸) 포스폰산염, 네오디뮴(2-에틸헥실) 포스폰산염, 네오디뮴 디실 포스폰산염, 네오디뮴 도데실 포스폰산염 또는 네오디뮴 옥타데실 포스폰산염 등); 유기 포스핀산염(예를 들면, 네오디뮴 부틸포스핀산염, 네오디뮴 펜틸포스핀산염, 네오디뮴 헥실 포스핀산염, 네오디뮴 헵틸 포스핀산염, 네오디뮴 옥틸 포스핀산염, 네오디뮴(1-메틸 헵틸) 포스핀산염 또는 네오디뮴(2-에틸헥실) 포스핀산염 등); 카르밤산염(예를 들면, 네오디뮴 디메틸 카르밤산염, 네오디뮴 디에틸 카르밤산염, 네오디뮴 디이소프로필 카르밤산염, 네오디뮴 디부틸 카르밤산염 또는 네오디뮴 디벤질 카르밤산염 등); 디티오 카르밤산염(예를 들면, 네오디뮴 디메틸디티오카르바민산염, 네오디뮴 디에틸디티오카르바민산염, 네오디뮴 디이소프로필 디티오 카르밤산염 또는 네오디뮴 디부틸디티오카르바민산염 등); 크산토겐산염(예를 들면, 네오디뮴 메틸 크산토겐산염, 네오디뮴 에틸 크산토겐산염, 네오디뮴 이소프로필 크산토겐산염, 네오디뮴 부틸 크산토겐산염, 또는 네오디뮴 벤질 크산토겐산염 등); β-디케토네이트(예를 들면, 네오디뮴 아세틸아세토네이트, 네오디뮴 트리플루오로아세틸 아세토네이트, 네오디뮴 헥사플루오로아세틸 아세토네이트 또는 네오디뮴 벤조일 아세토네이트 등); 알콕시드 또는 알릴옥시드(예를 들면, 네오디뮴 메톡사이드, 네오디뮴 에톡시드, 네오디뮴 이소프로폭사이드, 네오디뮴 페녹사이드 또는 네오디뮴 노닐 페녹사이드 등); 할로겐화물 또는 의사 할로겐화물(네오디뮴 불화물, 네오디뮴 염화물, 네오디뮴 브롬화물, 네오디뮴 요오드화물, 네오디뮴 시안화물, 네오디뮴 시안산염, 네오디뮴 티오시안산염, 또는 네오디뮴 아지드 등); 옥시할라이드(예를 들면, 네오디뮴 옥시플루오라이드, 네오디뮴 옥시 클로라이드, 또는 네오디뮴 옥시 브로마이드 등); 또는 1 이상의 네오디뮴 원소-탄소 결합을 포함하는 유기 네오디뮴 함유 화합물(예를 들면, Cp3Nd, Cp2NdR, Cp2NdCl, CpNdCl2, CpNd(사이클로옥타테트라엔), (C5Me5)2NdR, NdR3, Nd(알릴)3, 또는 Nd(알릴)2Cl 등, 상기 R은 하이드로카르빌기이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
구체적으로, 상기 네오디뮴 화합물은 하기 화학식 1로 표시되는 화합물인 것일 수 있다.
[화학식 1]
Figure PCTKR2020012661-appb-I000001
상기 화학식 1에서,
Ra 내지 Rc는 각각 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기이고, 단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
또한, 올리고머화에 대한 우려 없이 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 화학식 1에서 Ra가 탄소수 4 내지 12의 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소 또는 탄소수 1 내지 8의 알킬기일 수 있다.
보다 구체적인 예로, 상기 화학식 1에서 상기 Ra는 탄소수 6 내지 10의 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기일 수 있다.
보다 더 구체적으로, 상기 화학식 1에서, 상기 Ra는 탄소수 8 내지 10의 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기일 수 있다.
이와 같이, 상기 화학식 1로 표시되는 네오디뮴 화합물은 α(알파) 위치에 탄소수 2 이상의 다양한 길이의 알킬기를 치환기로 포함하는 카르복실레이트 리간드를 포함함으로써, 네오디뮴 중심 금속 주위에 입체적인 변화를 유도하여 화합물 간의 엉김 현상을 차단할 수 있고, 이에 따라, 올리고머화를 억제할 수 있는 효과가 있다. 또한, 이와 같은 네오디뮴 화합물은 용매에 대한 용해도가 높고, 촉매 활성종으로의 전환에 어려움이 있는 중심 부분에 위치하는 네오디뮴 비율이 감소되어 촉매 활성종으로의 전환율이 높은 효과가 있다.
보다 구체적으로, 상기 네오디뮴 화합물은 Nd(네오데카노에이트)3, Nd(2-에틸헥사노에이트)3, Nd(2,2-디메틸 데카노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
또한, 상기 네오디뮴 화합물의 용해도는 상온(23±5 ℃)에서 비극성 용매 6g 당 약 4g 이상일 수 있다. 상기 네오디뮴 화합물의 용해도는 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것으로, 이와 같이 높은 용해도를 나타냄으로써 우수한 촉매 활성을 나타낼 수 있다.
또한, 상기 네오디뮴 화합물은 루이스 염기와의 반응물의 형태로 사용될 수도 있다. 이 반응물은 루이스 염기에 의해, 네오디뮴 화합물의 용매에 대한 용해성을 향상시키고, 장기간 안정한 상태로 저장할 수 있는 효과가 있다. 상기 루이스 염기는 일례로 네오디뮴 원소 1 몰 당 30 몰 이하, 또는 1 내지 10 몰의 비율로 사용될 수 있다. 상기 루이스 염기는 일례로 아세틸아세톤, 테트라하이드로푸란, 피리딘, N,N-디메틸포름아미드, 티오펜, 디페닐에테르, 트리에틸아민, 유기인 화합물 또는 1가 또는 2가의 알코올 등일 수 있다.
(b) 제1 알킬화제
상기 제1 알킬화제는 알루미녹산으로서, 예컨대 하기 화학식 , 상기 알루미녹산은 트리하이드로카르빌 알루미늄계 화합물에 물을 반응시킴으로써 제조된 것일 수 있다. 구체적으로, 상기 알루미녹산은 하기 화학식 2a의 직쇄 알루미녹산 또는 화학식 2b의 환형 알루미녹산일 수 있다.
[화학식 2a]
Figure PCTKR2020012661-appb-I000002
[화학식 2b]
Figure PCTKR2020012661-appb-I000003
상기 화학식 2a 및 2b에서, R은 탄소 원자를 통해 알루미늄 원자에 결합하는 1가의 유기기로서, 하이드로카르빌기일 수 있으며, x 및 y는 각각 독립적으로 1 이상의 정수, 구체적으로는 1 내지 100, 더 구체적으로는 2 내지 50의 정수일 수 있다.
보다 더 구체적으로는, 상기 알루미녹산은 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, n-부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 또는 2,6-디메틸페닐알루미녹산 등일 수 있다.
또한, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기를 수식기(R), 구체적으로는 탄소수 2 내지 20의 탄화수소기로 치환한 것으로, 구체적으로는 하기 화학식 3으로 표시되는 화합물일 수 있다.
[화학식 3]
Figure PCTKR2020012661-appb-I000004
상기 화학식 3에서, R은 앞서 정의한 바와 같으며, m 및 n은 각각 독립적으로 2 이상의 정수일 수 있다. 또한, 상기 화학식 3에서, Me는 메틸기(methyl group)을 나타내는 것이다.
구체적으로, 상기 화학식 3에서 상기 R은 탄소수 2 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 7 내지 20의 알킬아릴기, 알릴기 또는 탄소수 2 내지 20의 알키닐기일 수 있으며, 보다 구체적으로는 에틸기, 이소부틸기, 헥실기 또는 옥틸기 등과 같은 탄소수 2 내지 10의 알킬기이고, 보다 더 구체적으로는 이소부틸기일 수 있다.
더 구체적으로, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기의 약 50 몰% 내지 90 몰%를 상기한 탄화수소기로 치환한 것일 수 있다. 변성 메틸알루미녹산 내 치환된 탄화수소기의 함량이 상기 범위 내일 때, 알킬화를 촉진시켜 촉매 활성을 증가시킬 수 있다.
이와 같은 변성 메틸알루미녹산은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 트리메틸알루미늄과 트리메틸알루미늄 이외의 알킬알루미늄을 이용하여 제조될 수 있다. 이 때 상기 알킬알루미늄은 트리이소부틸알루미늄, 트리에틸알루미늄, 트리헥실알루미늄 또는 트리옥틸알루미늄 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 제조되는 변성 공액디엔계 중합체의 분자량 분포를 좁게 형성할 수 있고, 이에 따른 중합체의 물성 개선 측면에서 바람직하게, 상기 제1 알킬화제는 메틸알루미녹산일 수 있다.
(c) 제2 알킬화제
본 발명의 일 실시예에 따른 상기 제2 알킬화제는 디하이드로카르빌알루미늄 하이드라이드 또는 하이드로카르빌알루미늄 디하이드라이드일 수 있고, 구체적으로 상기 제2 알킬화제는 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 하이드라이드 등의 디하이드로카르빌알루미늄 하이드라이드; 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드, n-옥틸알루미늄 디하이드라이드 등의 하이드로카르빌알루미늄 디하이드라이드; 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다.
한편, 본 발명의 일 실시예에 따른 상기 촉매 조성물에 있어서 알킬화제는 하이드로카르빌기를 다른 금속으로 전달할 수 있는 유기금속 화합물로서 조촉매의 역할을 하는 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 필요에 따라 상기의 제1 및 제2 알킬화제 외 통상 공액디엔계 중합체의 제조시 알킬화제로서 사용되는 통상적인 알킬화제를 더 포함할 수 있으며, 이러한 알킬화제로는 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리사이클로헥실알루미늄, 트리옥틸알루미늄 등의 알킬알루미늄; 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘, 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물 등을 들 수 있고, 유기 리튬 화합물로는 n-부틸리튬 등과 같은 알킬 리튬 화합물 등을 들 수 있다.
(d) 할로겐화물
또한, 상기 할로겐화물은 특별히 제한하는 것은 아니나, 예컨대 할로겐 단체(elemental compound), 할로겐간 화합물(interhalogen compound), 할로겐화수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 또는 유기금속 할라이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 촉매 활성 향상 및 이에 따른 반응성 개선 효과의 우수함을 고려할 때 상기 할로겐화물로는 유기 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 할로겐 단체로는 불소(F2), 염소(Cl2), 브롬(Br2) 또는 요오드(I2)와 같은 이원자분자 화합물을 들 수 있다.
또한, 상기 할로겐간 화합물로는 요오드 모노클로라이드, 요오드 모노브로마이드, 요오드 트리클로라이드, 요오드 펜타플루오라이드, 요오드 모노플루오라이드 또는 요오드 트리플루오라이드 등을 들 수 있다.
또한, 상기 할로겐화수소로는 불화수소, 염화수소, 브롬화수소 또는 요오드화수소를 들 수 있다.
또한, 상기 유기 할라이드로는 t-부틸 클로라이드(t-BuCl), t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸 브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란(TMSCl), 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트, 메틸 브로모포르메이트, 요오도메탄, 디요오도메탄, 트리요오도메탄 ('요오도포름'으로도 불리움), 테트라요오도메탄, 1-요오도프로판, 2-요오도프로판, 1,3-디요오도프로판, t-부틸 요오다이드, 2,2-디메틸-1-요오도프로판 ('네오펜틸 요오다이드'로도 불리움), 알릴 요오다이드, 요오도벤젠, 벤질 요오다이드, 디페닐메틸 요오다이드, 트리페닐메틸 요오다이드, 벤질리덴 요오다이드 ('벤잘 요오다이드'로도 불리움), 트리메틸실릴 요오다이드, 트리에틸실릴 요오다이드, 트리페닐실릴 요오다이드, 디메틸디요오도실란, 디에틸디요오도실란, 디페닐디요오도실란, 메틸트리요오도실란, 에틸트리요오도실란, 페닐트리요오도실란, 벤조일 요오다이드, 프로피오닐 요오다이드 또는 메틸 요오도포르메이트 등을 들 수 있다.
또한, 상기 비금속 할라이드로는 삼염화인, 삼브롬화인, 오염화인, 옥시염화인, 옥시브롬화인, 삼불화붕소, 삼염화붕소, 삼브롬화붕소, 사불화규소, 사염화규소(SiCl4), 사브롬화규소, 삼염화비소, 삼브롬화비소, 사염화셀레늄, 사브롬화셀레늄, 사염화텔루르, 사브롬화텔루르, 사요오드화규소, 삼요오드화비소, 사요오드화텔루르, 삼요오드화붕소, 삼요오드화인, 옥시요오드화인 또는 사요오드화셀레늄 등을 들 수 있다.
또한, 상기 금속 할라이드로는 사염화주석, 사브롬화주석, 삼염화알루미늄, 삼브롬화알루미늄, 삼염화안티몬, 오염화안티몬, 삼브롬화안티몬, 삼불화알루미늄, 삼염화갈륨, 삼브롬화갈륨, 삼불화갈륨, 삼염화인듐, 삼브롬화인듐, 삼불화인듐, 사염화티타늄, 사브롬화티타늄, 이염화아연, 이브롬화아연, 이불화아연, 삼요오드화알루미늄, 삼요오드화갈륨, 삼요오드화인듐, 사요오드화티타늄, 이요오드화아연, 사요오드화게르마늄, 사요오드화주석, 이요오드화주석, 삼요오드화안티몬 또는 이요오드화마그네슘을 들 수 있다.
또한, 상기 유기금속 할라이드로는 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드(EASC), 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, n-부틸마그네슘 클로라이드, n-부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디-n-부틸주석 디클로라이드, 디-n-부틸주석 디브로마이드, 트리-n-부틸주석 클로라이드, 트리-n-부틸주석 브로마이드, 메틸마그네슘 요오다이드, 디메틸알루미늄 요오다이드, 디에틸알루미늄 요오다이드, 디-n-부틸알루미늄 요오다이드, 디이소부틸알루미늄 요오다이드, 디-n-옥틸알루미늄 요오다이드, 메틸알루미늄 디요오다이드, 에틸알루미늄 디요오다이드, n-부틸알루미늄 디요오다이드, 이소부틸알루미늄 디요오다이드, 메틸알루미늄 세스퀴요오다이드, 에틸알루미늄 세스퀴요오다이드, 이소부틸알루미늄 세스퀴요오다이드, 에틸마그네슘 요오다이드, n-부틸마그네슘 요오다이드, 이소부틸마그네슘 요오다이드, 페닐마그네슘 요오다이드, 벤질마그네슘 요오다이드, 트리메틸주석 요오다이드, 트리에틸주석 요오다이드, 트리-n-부틸주석 요오다이드, 디-n-부틸주석 디요오다이드 또는 디-t-부틸주석 디요오다이드 등을 들 수 있다.
또한, 본 발명의 일 실시예에 따른 촉매 조성물은, 상기 할로겐화물 대신에 또는 상기 할로겐화물과 함께, 비배위성 음이온 함유 화합물 또는 비배위 음이온 전구체 화합물을 포함할 수도 있다.
구체적으로, 상기 비배위성 음이온을 포함하는 화합물에 있어서, 비배위성 음이온은 입체 장애로 인해 촉매계의 활성 중심과 배위결합을 형성하지 않는, 입체적으로 부피가 큰 음이온으로서, 테트라아릴보레이트 음이온 또는 불화 테트라아릴보레이트 음이온 등일 수 있다. 또한, 상기 비배위성 음이온을 포함하는 화합물은 상기한 비배위성 음이온과 함께 트리아릴 카르보늄 양이온과 같은 카르보늄 양이온; N,N-디알킬 아닐리늄 양이온 등과 같은 암모늄 양이온, 또는 포스포늄 양이온 등의 상대 양이온을 포함하는 것일 수 있다.
보다 구체적으로, 상기 비배위성 음이온을 포함하는 화합물은, 트리페닐 카르보늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐카르보늄 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트, 또는 N,N-디메틸아닐리늄 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트 등일 수 있다.
또한, 상기 비배위성 음이온 전구체로서는, 반응 조건하에서 비배위성 음이온이 형성 가능한 화합물로서, 트리아릴 붕소 화합물(BE3, 이 때 E는 펜타플루오로페닐기 또는 3,5-비스(트리플루오로메틸)페닐기 등과 같은 강한 전자흡인성의 아릴기임)을 들 수 있다.
(e) 공액디엔계 단량체
또한, 상기 촉매 조성물은 공액디엔계 단량체를 더 포함할 수 있으며, 중합반응에 사용되는 공액디엔계 단량체의 일부를 중합용 촉매 조성물과 미리 혼합하여 전(pre) 중합한 예비중합(preforming) 또는 예비혼합(premix) 촉매 조성물의 형태로 사용함으로써, 촉매 조성물 활성을 향상시킬 수 있을 뿐만 아니라, 제조되는 활성 중합체를 안정화시킬 수 있다.
본 발명에 있어서, 상기 "예비중합(preforming)"이란, 네오디뮴 화합물, 알킬화제 및 할로겐화물을 포함하는 촉매 조성물, 즉 촉매 시스템에서 디이소부틸알루미늄 하이드라이드(DIBAH) 등을 포함하는 경우, 이와 함께 다양한 촉매 조성물 활성종 생성가능성을 줄이기 위해 1,3-부타디엔 등의 공액디엔계 단량체를 소량 첨가하게 되며, 1,3-부타디엔 첨가와 함께 촉매 조성물 시스템 내에서 전(pre) 중합이 이루어짐을 의미할 수 있다. 또한 "예비혼합(premix)"이란 촉매 조성물 시스템에서 중합이 이루어지지 않고 각 화합물들이 균일하게 혼합된 상태를 의미할 수 있다.
이 때, 상기 촉매 조성물의 제조에 사용되는 공액디엔계 단량체는 상기 중합 반응에 사용되는 공액디엔계 단량체의 총 사용량 범위 내에서 일부의 양이 사용되는 것일 수 있으며, 예컨대 상기 네오디뮴 화합물 1 몰에 대하여 1 몰 내지 100 몰, 구체적으로는 10 몰 내지 50 몰, 또는 20 몰 내지 50 몰로 사용되는 것일 수 있다.
또한, 본 발명의 변성 공액디엔계 중합체의 제조방법은, 상기 활성 중합체를 제조한 후, 폴리옥시에틸렌글리콜포스페이트 등과 같은 중합반응을 완료시키기 위한 반응정지제 또는 2,6-디-t-부틸파라크레졸 등과 같은 산화방지제 등의 첨가제를 더 사용하여 중합을 종결시키는 단계를 포함할 수 있다. 이외에도, 반응정지제와 함께 용액 중합을 용이하도록 하는 첨가제, 예컨대 킬레이트제, 분산제, pH 조절제, 탈산소제 또는 산소포착제(oxygen scavenger)와 같은 첨가제를 선택적으로 더 사용할 수 있다.
상기와 같은 중합반응의 결과로서, 상기 네오디뮴 화합물을 포함하는 촉매로부터 유래된 활성 유기금속 부위를 포함하는 공액디엔계 중합체, 보다 구체적으로는 1,3-부타디엔 단량체 단위를 포함하는 네오디뮴 촉매화 부타디엔계 중합체가 생성된다. 상기 제조된 공액디엔계 중합체는 리빙성(living property) 또는 슈도 리빙성(pseudo living property)을 가질 수 있다.
단계 2
상기 단계 2는 상기 활성 중합체를 변성제와 반응 또는 커플링시키는 단계로서, 활성 중합체의 유기금속 부위에 변성제를 반응시켜서 변성을 수행하는 것일 수 있다.
상기 변성 반응은 용액 반응 또는 고상 반응에 의해 수행될 수 있고, 구체적인 예로 용액 반응에 의해 수행될 수 있다. 또 다른 예로, 상기 변성 반응은 배치(batch)식 반응기를 이용하여 수행될 수도 있고, 다단 연속식 반응기나 인라인 믹서 등의 장치를 이용하여 연속식으로 수행될 수도 있다.
또 다른 예로, 상기 변성 반응은 통상 중합반응과 동일한 온도 및 압력 조건에서 수행될 수 있고, 구체적으로, 본 발명에서는 30 내지 65 ℃의 온도, 구체적으로는 30 ℃ 이상, 40 ℃ 이상, 45 ℃ 이상, 50 ℃ 이상, 65 ℃ 이하, 60 ℃ 이하, 55 ℃ 이하의 온도에서 수행될 수 있다.
상기 변성제는 활성 중합체의 적어도 일 말단에 관능기를 부여하거나 또는 커플링에 의해 분자량을 상승시킬 수 있는 화합물이라면 그 종류에 제한되지 않고 본 발명에 사용될 수 있다. 예컨대, 아자사이클로프로판기, 케톤기, 카르복실기, 티오카르복실기, 탄산염, 카르복시산무수물, 카르복시산 금속염, 산할로겐화물, 우레아기, 티오우레아기, 아미드기, 티오아미드기, 이소시아네이트기, 티오이소시아네이트기, 할로겐화 이소시아노기, 에폭시기, 티오에폭시기, 이민기 및 M-Z 결합(단, 여기에서 M은 Sn, Si, Ge 및 P 중에서 선택되고, Z는 할로겐 원자이다) 중에서 선택된 1종 이상의 관능기를 포함하고, 활성 프로톤 및 오늄염을 포함하지 않는 화합물일 수 있다.
상기 변성제는 촉매 조성물 내 네오디뮴 화합물 1 몰 대비 0.5 몰 내지 20 몰로 사용하는 것일 수 있다. 구체적으로는 상기 변성제는 촉매 조성물 내 네오디뮴 화합물 1 몰 대비 1 몰 내지 10 몰로 사용하는 것일 수 있다.
상기한 변성 반응의 종료 후, 2,6-디-t-부틸-p-크레졸(BHT)의 이소프로판올 용액 등을 중합 반응계에 첨가하여 중합 반응을 정지시킬 수 있다. 이후 수증기의 공급을 통해 용제의 분압을 낮추는 스팀 스트립핑 등의 탈용매 처리나 진공 건조 처리를 거쳐서 변성 공액디엔계 중합체가 수득될 수 있다. 또한, 상기한 변성 반응의 결과로 수득되는 반응 생성물 중에는 상기한 변성 공액디엔계 중합체와 함께, 변성되지 않은 활성 중합체가 포함될 수도 있다.
본 발명의 변성 공액디엔계 중합체의 제조방법은, 제조된 변성 공액디엔계 중합체에 대한 침전 및 분리 공정을 더 포함할 수도 있다. 상기 침전된 변성 공액디엔계 중합체에 대한 여과, 분리 및 건조 공정은 통상의 방법에 따라 실시될 수 있다.
상기한 바와 같이, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체에 의하는 경우, 좁은 분자량 분포를 비롯한 우수한 물성적 특성을 갖는 변성 공액디엔계 중합체, 구체적인 예로 네오디뮴 촉매화 부타디엔계 중합체가 제조될 수 있다.
또한, 본 발명은 상기 제조방법으로 제조된 변성 공액디엔계 중합체를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는, 전술한 특징의 촉매 조성물과 중합 온도의 조건 하에 제조됨으로써 이를 포함하는 고무 조성물의 점탄성, 인장 특성 및 가공성 등의 물성 밸런스가 개선되도록 최적화된 분자량 분포 등의 특성, 높은 선형성을 가질 수 있다.
상기 변성 공액디엔계 중합체의 변성률(modification rate)은 5 내지 80 몰%일 수 있고, 구체적으로는 10 내지 80 몰%, 또는 20 내지 80 몰%일 수 있다. 이 범위 내에서 변성 공액디엔계 중합체를 포함하는 고무 조성물의 인장 특성 및 점탄성 특성 등의 기계적 물성이 뛰어난 효과가 있다. 상기 변성률은 상기 단계 1에서 제조된 활성 중합체 중 단계 2에서 변성제와 반응 또는 커플링한 변성 공액디엔계 중합체의 비율을 의미하는 것일 수 있다.
상기 변성 공액디엔계 중합체는 푸리에 변환 적외 분광법(FT-IR)으로 측정한 공액디엔부의 시스-1,4(cis-1,4) 결합 함량이 95% 이상, 96% 이상, 96.5% 이상인 것일 수 있다. 이를 고무 조성물에 적용시 고무 조성물의 내마모성, 내균열성 및 내오존성이 향상될 수 있다.
또한, 상기 변성 공액디엔계 중합체는 푸리에 변환 적외 분광법으로 측정한 공액디엔부의 비닐(vinyl) 결합 함량이 5% 이하, 3% 이하, 1% 이하, 0.7% 이하일 수 있다. 중합체 내 비닐 함량이 5%를 초과할 경우, 이를 포함하는 고무 조성물의 내마모성, 내균열성, 내오존성이 열화될 우려가 있다.
여기에서, 상기 FT-IR에 의한 중합체 내 시스-1,4 결합 함량 및 비닐 함량은 동일 셀의 이황화탄소를 블랭크로 하여 5 mg/mL의 농도로 조제한 공액디엔계 중합체의 이황화탄소 용액의 FT-IR 투과율 스펙트럼을 측정한 후, 측정 스펙트럼의 1130 cm-1 부근의 최대 피크값(a, 베이스라인), 트랜스-1,4 결합을 나타내는 967 cm-1 부근의 최소 피크값(b), 비닐을 나타내는 911 cm-1 부근의 최소 피크값(c), 그리고 시스-1,4 결합을 나타내는 736 cm-1 부근의 최소 피크값(d)을 이용하여 각각의 함량을 구한 것이다.
상기 공액디엔계 중합체는 1.5 내지 3.5의 분자량 분포(Mw/Mn)를 갖는 것일 수 있고, 구체적으로는 상기 공액디엔계 중합체의 분자량 분포는 2.0 이상, 3.0 이하, 2.8 이하일 수 있다. 상기 좁은 분자량 분포를 가지는 경우에는 고무 조성물에 적용 시 인장 특성 및 점탄성이 우수한 효과가 있다.
상기 분자량 분포는 중량평균 분자량(Mw) 대 수평균 분자량(Mn)의 비(Mw/Mn)로부터 계산될 수 있는데, 상기 수평균 분자량(Mn)은 n개의 중합체 분자의 분자량을 측정하고 이들 분자량의 총합을 구하여 n으로 나누어 계산한 개별 중합체 분자량의 공통 평균(common average)이며, 상기 중량평균 분자량(Mw)은 고분자 조성물의 분자량 분포를 나타낸다. 모든 분자량 평균은 몰당 그램(g/mol)으로 표현될 수 있다. 또한, 상기 중량평균 분자량 및 수평균 분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량을 의미할 수 있다.
본 발명의 일 실시예에 따른 상기 공액디엔계 중합체는 상기한 분자량 분포 조건을 충족하는 동시에, 중량평균 분자량(Mw)은 4 × 105 내지 1.0 × 106 g/mol일 수 있고, 구체적으로 4.00 × 105 g/mol 이상, 4.50 × 105 g/mol 이상, 5.00 × 105 g/mol 이상, 6.00 × 105 g/mol 이상, 7.00 × 105 g/mol 이상, 1.00 × 106 g/mol 이하, 9.00 × 105 g/mol 이하일 수 있다.
또한, 수평균 분자량(Mn)은 2.0 × 105 내지 5.0 × 105 g/mol일 수 있고, 2.00 × 105 g/mol 이상, 2.50 × 105 g/mol 이상, 2.70 × 105 g/mol 이상, 5.00 × 105 g/mol 이하, 4.00 × 105 g/mol 이하, 3.50 × 105 g/mol 이하일 수 있다.
상기 범위 내에서 고무 조성물에 적용 시 인장 특성이 뛰어나고, 가공성이 우수하여 고무 조성물의 작업성 개선으로 인해 혼반죽이 용이해, 고무 조성물의 기계적 물성 및 물성 밸런스가 우수한 효과가 있을 수 있다.
보다 구체적으로, 상기 공액디엔계 중합체는 전술한 분자량 분포와 함께 중량평균 분자량(Mw) 및 수평균 분자량(Mn) 조건을 동시에 충족하는 경우, 고무 조성물에 적용 시 고무 조성물에 대한 인장 특성, 점탄성 및 가공성이 우수하고, 이들 간의 물성 밸런스가 우수한 효과가 있다.
또한, 상기 변성 공액디엔계 중합체는 100 ℃에서의 무니 점도(mooney viscosity, MV)가 20 내지 100일 수 있고, 구체적으로는 20 이상, 30 이상, 35 이상, 40 이상, 50 이상, 100 이하, 80 이하, 75 이하, 70 이하일 수 있다. 본 발명에 따른 변성 공액디엔계 중합체는 전술한 범위의 무니 점도를 가짐으로써 가공성이 우수할 수 있다.
상기 무니 점도는 무니 점도계, 예를 들어, Monsanto社 MV2000E로 Large Rotor를 사용하여 100 ℃에서 Rotor Speed 2±0.02 rpm 조건에서 측정할 수 있다. 이 때 사용된 시료는 실온(23±3 ℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(platen)을 작동시켜 측정할 수 있다.
상기 변성 공액디엔계 중합체는 베타 값(β-value)이 0.190 이상, 구체적으로 0.195 이상, 0.200 이상, 0.210 이상일 수 있다. 상기와 같이 높은 베타 값을 가짐으로써, 고무 조성물에 적용 시 저항 특성 및 연비 특성이 우수할 수 있다.
여기에서, 상기 베타 값은 동일 양의 변형(strain)에 대한 frequency 변화에 따른 점탄성 계수 변화를 나타내는 것으로, 중합체의 선형성을 나타내는 지표이다. 통상 베타 값이 낮을수록 중합체의 선형성이 낮음을 의미하며, 선형성이 낮을수록 고무 조성물에 적용시 구름 저항 또는 회전 저항이 증가하게 된다.
상기 베타 값은 Rubber Process Analyzer(RPA2000, AlphaTechnologies社)를 이용하여, 100 ℃ 조건에서 Strain 7%로 Frequency sweep을 실시하여 Log(1/tan delta) vs Log(Freq.)의 slope을 얻고, 이를 통해 계산하여 얻을 수 있다. 이 때, Frequency는 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000 cpm으로 설정한다.
나아가, 본 발명은 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 성형품을 제공한다.
상기 고무 조성물은 변성 공액디엔계 중합체를 0.1 내지 100 중량%, 구체적으로는 10 내지 100 중량%, 또는 20 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 공액디엔계 중합체의 함량이 0.1 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이 때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 중합체 100 중량부에 대하여 1 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드고무, 아크릴고무, 우레탄고무, 실리콘고무, 에피클로로히드린고무, 부틸고무, 할로겐화부틸고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 150 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계, 카본블랙 또는 이들 조합인 것일 수 있다. 구체적으로는, 상기 충진제는 카본블랙인 것일 수 있다.
상기 카본블랙계 충진제는 특별히 제한하는 것은 아니나, 예컨대 질소 흡착 비표면적(N2SA, JIS K 6217-2:2001에 준거해서 측정함)이 20 ㎡/g 내지 250 ㎡/g인 것일 수 있다. 또, 상기 카본블랙은 디부틸프탈레이트 흡유량(DBP)이 80 cc/100 g 내지 200 cc/100 g인 것일 수 있다. 상기 카본블랙의 질소흡착 비표면적이 250 m2/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 20 m2/g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. 또한, 상기 카본블랙의 DBP 흡유량이 200 cc/100 g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 80 cc/100 g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다.
또한, 상기 실리카는 특별히 제한하는 것은 아니나, 예컨대 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 구체적으로는, 상기 실리카는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습식 실리카일 수 있다. 또한, 상기 실리카는 질소흡착 비표면적(nitrogen surface area per gram, N2SA)이 120 ㎡/g 내지 180 ㎡/g이고, CTAB(cetyl trimethyl ammonium bromide) 흡착 비표면적이 100 ㎡/g 내지 200 ㎡/g일 수 있다. 상기 실리카의 질소흡착 비표면적이 120 ㎡/g 미만이면 실리카에 의한 보강 성능이 저하될 우려가 있고, 180 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다. 또한, 상기 실리카의 CTAB 흡착 비표면적이 100 ㎡/g 미만이면 충진제인 실리카에 의한 보강 성능이 저하될 우려가 있고, 200 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다.
한편, 상기 충진제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명의 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-사이클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디하이드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 내지 6 중량부로 사용될 수 있다.
본 발명의 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
상기 고무 조성물을 이용하여 제조된 성형품은 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
실시예
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
[변성제의 제조]
디클로로메탄(CH2Cl2) 중 에틸 피페리딘-4-카르복실레이트(ethyl piperidine-3-carboxylate) 2g이 용해된 용액에, 0 ℃에서 트리에틸아민(Et3N) 1.77 mL 및 염화트리메틸실릴(TMSCl) 1.62 mL를 첨가하고, 이 혼합물을 0 ℃에서 5시간 동안 교반하였다. 이어서, 생성된 용액 중 용매를 감압 하에 증발시키고, 헥산에 재용해 시킨 후, 잔류물을 헥산으로 2회 반복하여 여과하였다. 여과된 원재료는 감압 증류를 통해 정제하여, 하기 구조의 화합물 에틸 1-(트리메틸실릴)피페리딘-4-카복실레이트(ethyl 1-(trimethylsilyl)piperidine-4-carboxylate)을 수득하고, 1H 핵자기 공명 분광학적 스펙트럼을 관찰하였다.
Figure PCTKR2020012661-appb-I000005
1H NMR(500 MHz, CDCl3): δ 4.11-4.08(m, 2H), δ 3.13-3.11(m, 2H), δ 2.61-2.54(m, 2H), δ 2.34-2.32(m, 1H), δ 1.74(m, 2H), δ 1.42(m, 2H), δ 1.23-1.22(m, 3H), δ 0.05-0.00(m, 9H).
[촉매 조성물의 제조]
실시 제조예 1
질소 조건 하에서 헥산 용매 중에, 네오디뮴 베르사테이트(NdV, neodymium versatate, 0.80 mmol)를 첨가하고, 메틸알루미녹산(MAO, 80.0 mmol), 디이소부틸알루미늄 하이드라이드(DIBAH, 16.0 mmol), 디에틸알루미늄 클로라이드(DEAC, 1.92 mmol) 및 1,3-부타디엔(16.0 mmol)을 순차 투입한 후 -20 ℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다(NdV : DIBAH = 1 : 20). 제조된 촉매 조성물은 -30 내지 -20 ℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
실시 제조예 2
질소 조건 하에서 헥산 용매 중에, 네오디뮴 베르사테이트(NdV, neodymium versatate, 0.60 mmol)를 첨가하고, 메틸알루미녹산(MAO, 60.0 mmol), 디이소부틸알루미늄 하이드라이드(DIBAH, 18.0 mmol), 디에틸알루미늄 클로라이드(DEAC, 1.44 mmol) 및 1,3-부타디엔(12.0 mmol)을 순차 투입한 후 -20 ℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다(NdV : DIBAH = 1 : 30). 제조된 촉매 조성물은 -30 내지 -20 ℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
실시 제조예 3
질소 조건 하에서 헥산 용매 중에, 네오디뮴 베르사테이트(NdV, neodymium versatate, 0.40 mmol)를 첨가하고, 메틸알루미녹산(MAO, 40.0 mmol), 디이소부틸알루미늄 하이드라이드(DIBAH, 14.0 mmol), 디에틸알루미늄 클로라이드(DEAC, 0.96 mmol) 및 1,3-부타디엔(8.0 mmol)을 순차 투입한 후 -20 ℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다(NdV : DIBAH = 1 : 35). 제조된 촉매 조성물은 -30 내지 -20 ℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
비교 제조예 1
질소 조건 하에서 헥산 용매 중에, 네오디뮴 베르사테이트(NdV, neodymium versatate, 1.00 mmol)를 첨가하고, 메틸알루미녹산(MAO, 40.0 mmol), 디이소부틸알루미늄 하이드라이드(DIBAH, 10.0 mmol), 디에틸알루미늄 클로라이드(DEAC, 2.40 mmol) 및 1,3-부타디엔(30.0 mmol)을 순차 투입한 후 -20 ℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다(NdV : DIBAH = 1 : 10). 제조된 촉매 조성물은 -30 내지 -20 ℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
비교 제조예 2
질소 조건 하에서 헥산 용매 중에, 네오디뮴 베르사테이트(NdV, neodymium versatate, 0.20 mmol)를 첨가하고, 메틸알루미녹산(MAO, 20.0 mmol), 디이소부틸알루미늄 하이드라이드(DIBAH, 10.0 mmol), 디에틸알루미늄 클로라이드(DEAC, 0.48 mmol) 및 1,3-부타디엔(4.0 mmol)을 순차 투입한 후 -20 ℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다(NdV : DIBAH = 1 : 50). 제조된 촉매 조성물은 -30 내지 -20 ℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
[변성 또는 미변성 공액디엔계 중합체의 제조]
실시예 1
완전히 건조시킨 반응기에 진공과 질소를 교대로 가한 뒤, 진공상태의 15 L 반응기에 4.2 kg 헥산과 500 g의 1,3-부타디엔을 투입하고, 40 ℃로 승온하였다. 여기에 상기 실시 제조예 1의 촉매 조성물을 첨가한 후, 60분 동안 중합을 진행하여, 활성 중합체를 제조하였다.
활성 중합체에 상기 제조한 변성제 화합물 2.5 g이 포함된 헥산 용액을 첨가한 후, 중합 조건과 같은 온도 조건에서 60분 동안 변성 반응을 진행하였다.
이후, 중합 정지제 1.0 g이 포함된 헥산 용액과 산화방지제 2.0 g이 포함된 헥산 용액을 첨가하여 반응을 종료시켜 변성 공액디엔계 중합체를 제조하였다.
실시예 2
반응기를 50 ℃로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
실시예 3
반응기를 60 ℃로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
실시예 4
실시 제조예 1 대신 실시 제조예 2의 촉매 조성물을 사용하고, 반응기를 50 ℃로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
실시예 5
실시 제조예 1 대신 실시 제조예 3의 촉매 조성물을 사용하고, 반응기를 50 ℃로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
비교예 1
미변성 Nd-BR로서 BR1208(제조사 LG화학 社)을 사용하였다.
비교예 2
미변성 Nd-BR로서 CB24(제조사 Lanxess 社)를 사용하였다.
비교예 3
실시 제조예 1 대신 비교 제조예 1의 촉매 조성물을 사용하고, 반응기를 50 ℃로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
비교예 4
실시 제조예 1 대신 비교 제조예 1의 촉매 조성물을 사용하고, 반응기를 70 ℃로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
비교예 5
실시 제조예 1 대신 비교 제조예 2의 촉매 조성물을 사용하고, 반응기를 50 ℃로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
비교예 6
반응기를 70 ℃ 로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
비교예 7
실시 제조예 1 대신 실시 제조예 2의 촉매 조성물을 사용하고, 반응기를 70 ℃ 로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
비교예 8
실시 제조예 1 대신 실시 제조예 3의 촉매 조성물을 사용하고, 반응기를 70 ℃ 로 승온한 것을 제외하고는, 실시예 1과 동일하게 변성 공액디엔계 중합체를 제조하였다.
촉매 조성물 NdV:DIBAH 몰비 중합 온도(℃)
실시예 1 실시 제조예 1 1:20 40
실시예 2 실시 제조예 1 1:20 50
실시예 3 실시 제조예 1 1:20 60
실시예 4 실시 제조예 2 1:30 50
실시예 5 실시 제조예 3 1:35 50
비교예 1 미변성 Nd-BR
비교예 2 미변성 Nd-BR
비교예 3 비교 제조예 1 1:10 50
비교예 4 비교 제조예 1 1:10 70
비교예 5 비교 제조예 2 1:50 50
비교예 6 실시 제조예 1 1:20 70
비교예 7 실시 제조예 2 1:30 70
비교예 8 실시 제조예 3 1:35 70
[변성 공액디엔계 중합체의 물성 분석]
실험예 1
상기 실시예 및 비교예에서 제조된 각 중합체에 대해 하기와 같은 방법으로 물성을 분석하여 그 결과를 표 1에 나타내었다.
(1) 미세구조 분석
푸리에 변환 적외 분광법(FT-IR)으로 공액디엔부의 시스-1,4 결합 함량, 트랜스-1,4 결합 함량, 및 비닐 함량을 측정하였다.
구체적으로, 동일 셀의 이황화탄소를 블랭크로 하여 5 mg/mL의 농도로 조제한 공액디엔계 중합체의 이황화탄소 용액의 FT-IR 투과율 스펙트럼을 측정한 후, 측정 스펙트럼의 1130 cm-1부근의 최대 피크값(a, 베이스라인), 트랜스-1,4 결합을 나타내는 967 cm-1 부근의 최소 피크값(b), 비닐결합을 나타내는 911 cm-1 부근의 최소 피크값(c), 그리고 시스-1,4 결합을 나타내는 736 cm-1 부근의 최소 피크값(d)을 이용하여 각각의 함량을 구하였다.
(2) 중량평균 분자량(Mw), 수평균 분자량(Mn) 및 분자량 분포(MWD)
각 중합체를 40 ℃ 조건 하에서 테트라하이드로퓨란(THF)에 30분간 녹인 후 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 적재하여 흘려주었다. 이 때, 칼럼은 폴리머 라보레토리즈사(Polymer Laboratories)의 상품명 PLgel Olexis 칼럼 두 자루와 PLgel mixed-C 칼럼 한 자루를 조합 사용하였다. 또 새로 교체한 칼럼은 모두 혼합상(mixed bed) 타입의 칼럼을 사용하였으며, 겔 투과 크로마토그래피 표준 물질(GPC Standard material)로서 폴리스티렌(Polystyrene)을 사용하였다.
(3) 무니 점도(MV, ML1+4, @100 ℃)
각 중합체에 대해 Monsanto사 MV2000E로 Large Rotor를 사용하여 100 ℃에서 Rotor Speed 2±0.02 rpm의 조건에서 무니 점도(ML1+4, @100 ℃)(MU)를 측정하였다. 이 때 사용된 시료는 실온(23±3 ℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니 점도를 측정하였다.
(4) 베타 값(β-value)
Rubber Process Analyzer(RPA2000, AlphaTechnologies 社)를 이용하여 각 중합체의 베타 값을 측정하였다.
구체적으로, 각 중합체를 100 ℃ 조건에서 Strain 7%로 Frequency sweep을 실시하였다. 이 때, Frequency는 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000 cpm으로 설정하고 Log(1/tan delta) vs Log(Freq.)의 slope을 계산하여 베타 값을 얻었다.
(5) 변성률(%)
변성률은 크로마토그래피 측정으로부터 얻어진 크로마토그램을 이용하여 계산하였다. 구체적으로, 각 중합체를 40 ℃ 조건 하에서 테트라하이드로퓨란(THF)에 녹여 시료를 준비하고, 각 시료를 겔 투과 크로마토그래피(GPC: gel permeation chromatography)에 주입하고, 용리제(Eluent)로 테트라하이드로퓨란을 흘려주어 크로마토그램을 얻고, 얻어진 크로마토그램으로부터 하기 수학식에 의하여 변성률을 계산하였다.
변성률(%) = [(변성 중합체의 피크 면적)/(미변성 중합체의 피크 면적 + 변성 중합체의 피크 면적)] × 100
구분 실시예 비교예
1 2 3 4 5 1 2 3 4 5 6 7 8
미세구조 분석 시스-1,4 결합 97.3 97.2 97.0 96.7 96.6 96.2 96.3 96.4 96.2 96.7 96.9 96.5 96.3
트랜스-1,4 결합 2.3 2.4 2.4 2.7 2.8 1.8 2.9 3.0 3.0 2.7 2.5 2.7 2.9
비닐 결합 0.4 0.4 0.6 0.6 0.6 2.0 0.8 0.6 0.8 0.6 0.6 0.8 0.8
GPC 결과 Mn(×105 g/mol) 3.35 2.96 2.92 2.94 2.91 1.57 2.41 2.40 2.33 2.54 2.88 2.85 2.47
Mw(×105 g/mol) 8.80 7.92 7.91 7.93 7.92 7.78 5.92 6.93 6.95 6.96 7.95 7.95 6.92
MWD(Mw/Mn) 2.63 2.67 2.71 2.70 2.72 4.96 2.45 2.86 2.98 2.73 2.75 2.78 2.79
무니 점도(MV) 67 56 52 53 51 45 45 46 44 49 60 58 49
베타 값 0.264 0.232 0.219 0.220 0.217 - 0.181 0.183 0.168 0.193 0.190 0.185 0.182
변성률(%) 47 35 27 28 25 - - 13 <5 10 14 10 8
본 발명의 제조방법에 따라, NdV(네오디뮴 화합물)과 제2 알킬화제(DIBAH)의 몰비가 1 : 20~1 : 35인 촉매 조성물을 사용하고 30 ~ 65 ℃에 속하는 온도로 중합하여 제조한 실시예 1~5에서는, 활성 중합체의 리빙 특성이 우수하여 변성률이 높게 나타나고 선형성이 우수한 변성 공액디엔계 중합체가 제조되었다.
한편, 제2 알킬화제(DIBAH)가 너무 소량인 비교 제조예 1의 촉매 조성물을 사용한 비교예 3 및 4, 제2 알킬화제(DIBAH)가 과량인 비교 제조예 2의 촉매 조성물을 사용한 비교예 5, 또한, 실시 제조예 1~3의 촉매 조성물을 사용하였지만, 중합 온도가 70 ℃로 너무 높은 비교예 6~8의 경우, 모두 실시예 대비 변성률이 낮은 것을 확인하였다.
[고무 조성물의 제조 및 물성 분석]
실험예 2
상기 실시예에서 제조한 부타디엔 중합체와 비교예에서 제조한 부타디엔 중합체를 이용하여 고무 조성물 및 고무 시편을 제조한 후, 하기와 같은 방법으로 인장강도, 300% 모듈러스, 신율 그리고 점탄성 특성을 각각 측정하였다. 그 결과를 하기 표 2에 나타내었다.
구체적으로, 상기 고무 조성물은 상기 각 중합체 100 중량부에 카본블랙 70 중량부, 공정오일(process oil) 22.5 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부를 배합하여 각각의 고무 조성물을 제조하였다. 이후, 상기 각 고무 조성물에 황 2 중량부, 가류 촉진제(CZ) 2 중량부 및 가류 촉진제(DPG) 0.5 중량부를 첨가하고 50 ℃에서 1.5분 동안 50 rpm으로 약하게 혼합한 후 50 ℃의 롤을 이용하여 시트 형태의 가황 배합물을 얻었다. 얻은 가황 배합물을 160 ℃에서 25분 동안 가류하여 고무시편을 제조하였다.
(1) 인장 특성
상기 각 고무 조성물을 150 ℃에서 t90분 가류 후 ASTM D412에 준하여 인장 강도(tensile strength, kg·f/cm2), 300% 신장시의 모듈러스(300% modulus, M-300%, kg·f/cm2) 및 파단시 가류물의 신율(elongation)을 측정하였다.
(2) 점탄성 특성(Tanδ @ 60 ℃)
저연비 특성에 가장 중요한 Tanδ 물성은 독일 Gabo사 DMTS 500N을 사용하여 주파수 10㎐, Prestrain 3%, Dynamic Strain 3%에서 60 ℃에서의 점탄성 계수(Tanδ)를 측정하였다. 이 때, 60 ℃에서의 Tanδ 값이 우수할수록 히스테리시스 손실이 적고, 회전저항성 특성이 우수함을 나타내는 것으로, 즉 연비성이 우수함을 나타내는 것이다.
구분 실시예 비교예
1 2 3 4 5 1 2 3 4 5 6 7 8
인장 특성(Index) 인장강도 117 114 113 114 113 100 106 106 109 106 106 106 105
M-300% 132 128 125 126 124 100 115 119 118 119 120 119 118
신율 90 94 96 95 96 100 96 91 96 90 90 90 92
점탄성 특성(Index) Tanδ at 60 ℃ 151 143 137 138 135 100 116 126 123 125 127 126 124
인장 특성의 Index 값은 비교예 1의 값을 100으로 하여 하기 수학식 1을 통해 계산하였고, 점탄성 특성의 Index 값은 비교예 1의 값을 100으로 하여 하기 수학식 2를 통해 계산하였다.
[수학식 1]
Index = (측정값/기준값) × 100
[수학식 2]
Index = (기준값/측정값) × 100
상기 표 3에 나타낸 바와 같이, 본 발명의 제조방법으로 제조한 변성 공액디엔계 중합체는 고무 시편으로 가공하였을 때 우수한 인장 특성 및 점탄성 특성을 나타내는 것을 확인하였다.
구체적으로, 중합 온도는 50 ℃로 동일하게 하면서, 실시예 2, 4 및 5는 각각 실시 제조예 1 내지 3의 촉매 조성물을 사용하고, 비교예 3은 비교 제조예 1의 촉매 조성물을 사용하고, 비교예 5는 비교 제조예 2의 촉매 조성물을 사용하였다. 그 결과, 실시예 2, 4 및 5 모두 비교예 3 또는 5 대비 인장 특성 및 점탄성 특성이 모두 개선되었다. 이를 통해, 중합 온도가 본 발명 범위에 속하더라도, 촉매 조성물의 네오디뮴 화합물 및 제2 알킬화제의 몰비가 본 발명 범위를 벗어날 경우 변성 공액디엔계 중합체의 배합 물성이 저하되는 것을 알 수 있다.
또한, 실시예 1~3과 비교예 6은 실시 제조예 1의 촉매 조성물을 사용하고, 실시예 4와 비교예 7은 실시 제조예 2의 촉매 조성물을 사용하고, 실시예 5와 비교예 8은 실시 제조예 3의 촉매 조성물을 사용하였다. 다만, 중합 온도에 있어서, 실시예 1~5는 본 발명 범위(30 내지 65 ℃)에 포함되는 40 ℃, 50 ℃ 또는 60 ℃ 온도에서 중합하였고, 비교예 6~8은 이보다 높은 70 ℃에서 중합하였다. 이 경우에도, 실시예 1~5 모두 비교예 6~8 대비하여 인장 특성 및 점탄성 특성이 크게 향상되었다. 특히 동일한 촉매 조성물을 사용한 실시예 및 비교예를 대응시켜 비교해보면, 본 발명에서 정의한 네오디뮴 화합물 및 제2 알킬화제의 몰비를 충족하는 촉매 조성물을 사용하더라도, 중합 온도가 30~65 ℃를 벗어남으로써 물성 저하가 초래됨을 명확히 확인하였다.
이와 같이, 본 발명의 제조방법에 따라 네오디뮴 화합물 및 제2 알킬화제의 몰비가 1 : 20 내지 1 : 35인 촉매 조성물을 사용하고, 동시에 30 내지 65 ℃의 온도에서 중합을 수행할 때, 변성률이 높고 우수한 배합 물성을 가지는 변성 공액디엔계 중합체를 제조할 수 있다.

Claims (16)

  1. 탄화수소 용매 중에서, 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물을 포함하는 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계; 및
    상기 활성 중합체를 변성제와 반응 또는 커플링시키는 단계;를 포함하고,
    상기 네오디뮴 화합물 및 제2 알킬화제의 몰비는 1 : 20 내지 1 : 35이고,
    상기 중합은 30 내지 65 ℃의 온도에서 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
  2. 청구항 1에 있어서,
    상기 중합은 40 내지 60 ℃의 온도에서 15분 내지 3시간 동안 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
  3. 청구항 1에 있어서,
    상기 활성 중합체를 제조하는 단계 이전에,
    네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물을 -30 내지 -20 ℃에서 혼합하고, -30 내지 -20 ℃에서 24 내지 36시간 동안 정치시켜 촉매 조성물을 제조하는 단계;를 더 포함하는 것인 변성 공액디엔계 중합체의 제조방법.
  4. 청구항 1에 있어서,
    상기 촉매 조성물에 포함된 네오디뮴 화합물, 제1 알킬화제, 제2 알킬화제 및 할로겐화물의 몰비는 1 : (50 내지 200) : (20 내지 35) : (2 내지 5)인 변성 공액디엔계 중합체의 제조방법.
  5. 청구항 1에 있어서,
    상기 네오디뮴 화합물은 공액디엔계 단량체 100 g 기준 0.01 내지 0.50 mmol인 변성 공액디엔계 중합체의 제조방법.
  6. 청구항 1에 있어서,
    상기 네오디뮴 화합물은 하기 화학식 1로 표시되는 화합물인 변성 공액디엔계 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2020012661-appb-I000006
    상기 화학식 1에서,
    Ra 내지 Rc는 각각 독립적으로 수소 또는 탄소수 1 내지 12의 알킬기이고,
    단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
  7. 청구항 6에 있어서,
    상기 Ra는 탄소수 4 내지 12의 알킬기이고,
    상기 Rb 및 Rc는 각각 독립적으로 수소 또는 탄소수 1 내지 8의 알킬기인 변성 공액디엔계 중합체의 제조방법.
  8. 청구항 1에 있어서,
    상기 네오디뮴 화합물은 Nd(네오데카노에이트)3, Nd(2-에틸헥사노에이트)3, Nd(2,2-디메틸 데카노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군에서 선택된 1종 이상인 변성 공액디엔계 중합체의 제조방법.
  9. 청구항 1에 있어서,
    상기 제1 알킬화제는 네오디뮴 화합물 1 몰 기준 60 내지 150 몰인 변성 공액디엔계 중합체의 제조방법.
  10. 청구항 1에 있어서,
    상기 제1 알킬화제는 메틸알루미녹산, 변성 메틸알루미녹산, 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 및 2,6-디메틸페닐알루미녹산으로 이루어진 군에서 선택된 1종 이상인 변성 공액디엔계 중합체의 제조방법.
  11. 청구항 1에 있어서,
    상기 제1 알킬화제는 메틸알루미녹산, 변성 메틸알루미녹산 또는 이들의 혼합물인 변성 공액디엔계 중합체의 제조방법.
  12. 청구항 1에 있어서,
    상기 제2 알킬화제는 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드, 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드리아드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드, 벤질-n-옥틸알루미늄 하이드라이드, 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드 및 n-옥틸알루미늄 디하이드라이드로 이루어진 군에서 선택된 1종 이상인 변성 공액디엔계 중합체의 제조방법.
  13. 청구항 1에 있어서,
    상기 제2 알킬화제는 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드 및 디이소부틸알루미늄 하이드라이드로 이루어진 군에서 선택된 1종 이상인 변성 공액디엔계 중합체의 제조방법.
  14. 청구항 1에 있어서,
    상기 할로겐화물은 네오디뮴 화합물 1 몰 기준 2.1 내지 3.0 몰인 변성 공액디엔계 중합체의 제조방법.
  15. 청구항 1에 있어서,
    상기 할로겐화물은 할로겐 단체, 할로겐간 화합물, 할로겐화 수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군에서 선택된 1종 이상인 변성 공액디엔계 중합체의 제조방법.
  16. 청구항 1에 있어서,
    상기 할로겐화물은 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드 및 이소부틸알루미늄 세스퀴클로라이드로 이루어진 군에서 선택된 1종 이상인 변성 공액디엔계 중합체의 제조방법.
PCT/KR2020/012661 2019-09-19 2020-09-18 변성 공액디엔계 중합체의 제조방법 WO2021054785A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022508540A JP7462735B2 (ja) 2019-09-19 2020-09-18 変性共役ジエン系重合体の製造方法
CN202080053696.8A CN114174354A (zh) 2019-09-19 2020-09-18 改性共轭二烯类聚合物的制备方法
US17/629,877 US20220289871A1 (en) 2019-09-19 2020-09-18 Method for Preparing Modified Conjugated Diene-Based Polymer
EP20865199.2A EP4032921A4 (en) 2019-09-19 2020-09-18 PROCESS FOR MAKING A MODIFIED CONJUGATED DIENE POLYMER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190115575 2019-09-19
KR10-2019-0115575 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021054785A1 true WO2021054785A1 (ko) 2021-03-25

Family

ID=74883638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012661 WO2021054785A1 (ko) 2019-09-19 2020-09-18 변성 공액디엔계 중합체의 제조방법

Country Status (6)

Country Link
US (1) US20220289871A1 (ko)
EP (1) EP4032921A4 (ko)
JP (1) JP7462735B2 (ko)
KR (1) KR20210033933A (ko)
CN (1) CN114174354A (ko)
WO (1) WO2021054785A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437205B1 (en) * 1999-05-19 2002-08-20 Bridgestone Corporation Low molecular weight high-cis polybutadienes and their use in high molecular weight-low molecular weight high-cis polybutadiene blends
KR20070119092A (ko) * 2005-04-15 2007-12-18 가부시키가이샤 브리지스톤 변성공역디엔계 공중합체, 고무 조성물 및 타이어
KR20080063191A (ko) * 2006-12-28 2008-07-03 가부시키가이샤 브리지스톤 높은 시스-1,4-결합 함량 및 높은 관능성을 갖는 관능화된시스-1,4-폴리디엔의 제조 방법
KR20120052237A (ko) * 2009-06-24 2012-05-23 가부시키가이샤 브리지스톤 폴리디엔의 제조 방법
KR20170077614A (ko) 2015-12-28 2017-07-06 주식회사 엘지화학 변성제, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
WO2019083173A1 (ko) * 2017-10-25 2019-05-02 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099711B1 (en) * 1999-11-12 2006-03-29 JSR Corporation Modified conjugated diene polymer, method of producing it and rubber composition comprising the same
US7781533B2 (en) 2001-11-27 2010-08-24 Bridgestone Corporation Conjugated diene polymer, process for its production and rubber compositions containing the same
JP2004238619A (ja) 2003-01-17 2004-08-26 Bridgestone Corp ゴム組成物及びこれを用いたスタッドレスタイヤ
JP2005336303A (ja) 2004-05-26 2005-12-08 Bridgestone Corp 空気入りタイヤ
US7879952B2 (en) * 2005-12-28 2011-02-01 Bridgestone Corporation Functionalized polymers
WO2008041631A1 (fr) 2006-10-03 2008-04-10 Zeon Corporation Polymère diène conjugué modifié, procédé de fabrication du polymère, composition de caoutchouc et utilisation de la composition
US8314189B2 (en) 2007-10-12 2012-11-20 Bridgestone Corporation Polymers functionalized with heterocyclic nitrile compounds
CN101889050A (zh) * 2007-12-07 2010-11-17 株式会社普利司通 轮胎
JP5756248B2 (ja) 2008-04-28 2015-07-29 株式会社ブリヂストン タイヤ
EP2382241B1 (en) * 2009-01-23 2016-11-23 Bridgestone Corporation Polymers functionalized with polycyano compounds
JP2010270175A (ja) 2009-05-19 2010-12-02 Bridgestone Corp ゴム組成物及び空気入りタイヤ
JP6231997B2 (ja) * 2012-02-27 2017-11-15 株式会社ブリヂストン 高シスポリジエンを調製する方法
US10316121B2 (en) * 2015-01-28 2019-06-11 Bridgestone Corporation Cis-1,4-polydienes with improved cold flow resistance
KR101899637B1 (ko) * 2015-06-24 2018-09-17 주식회사 엘지화학 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
JP6661827B2 (ja) * 2016-11-01 2020-03-11 エルジー・ケム・リミテッド 変性共役ジエン系重合体及びその製造方法
KR102123081B1 (ko) * 2016-11-04 2020-06-15 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법
KR102122470B1 (ko) * 2016-12-08 2020-06-12 주식회사 엘지화학 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체
KR20190038344A (ko) * 2017-09-29 2019-04-08 주식회사 엘지화학 고무 조성물
KR102173756B1 (ko) * 2017-10-18 2020-11-04 주식회사 엘지화학 변성 공액디엔계 중합체의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437205B1 (en) * 1999-05-19 2002-08-20 Bridgestone Corporation Low molecular weight high-cis polybutadienes and their use in high molecular weight-low molecular weight high-cis polybutadiene blends
KR20070119092A (ko) * 2005-04-15 2007-12-18 가부시키가이샤 브리지스톤 변성공역디엔계 공중합체, 고무 조성물 및 타이어
KR20080063191A (ko) * 2006-12-28 2008-07-03 가부시키가이샤 브리지스톤 높은 시스-1,4-결합 함량 및 높은 관능성을 갖는 관능화된시스-1,4-폴리디엔의 제조 방법
KR20120052237A (ko) * 2009-06-24 2012-05-23 가부시키가이샤 브리지스톤 폴리디엔의 제조 방법
KR20170077614A (ko) 2015-12-28 2017-07-06 주식회사 엘지화학 변성제, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
WO2019083173A1 (ko) * 2017-10-25 2019-05-02 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4032921A4

Also Published As

Publication number Publication date
EP4032921A4 (en) 2022-11-30
JP2022544242A (ja) 2022-10-17
JP7462735B2 (ja) 2024-04-05
EP4032921A1 (en) 2022-07-27
CN114174354A (zh) 2022-03-11
KR20210033933A (ko) 2021-03-29
US20220289871A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019078459A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2020130740A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018084546A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019088634A1 (ko) 공액디엔 중합용 촉매의 제조방법, 촉매 및 이를 이용한 공액디엔계 중합체의 제조방법
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019103383A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019083173A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2021010718A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2019083092A1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
WO2016209046A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2016209042A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2019078653A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018008911A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021086039A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이의 제조방법
WO2018008912A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020130741A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2021054785A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2022065902A1 (ko) 네오디뮴 촉매화 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018105920A1 (ko) 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체
WO2019221391A1 (ko) 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865199

Country of ref document: EP

Effective date: 20220419