WO2020105891A1 - 폴리부텐 올리고머의 제조 방법 - Google Patents

폴리부텐 올리고머의 제조 방법

Info

Publication number
WO2020105891A1
WO2020105891A1 PCT/KR2019/014453 KR2019014453W WO2020105891A1 WO 2020105891 A1 WO2020105891 A1 WO 2020105891A1 KR 2019014453 W KR2019014453 W KR 2019014453W WO 2020105891 A1 WO2020105891 A1 WO 2020105891A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polybutene
hydrocarbon solvent
producing
substituted
Prior art date
Application number
PCT/KR2019/014453
Other languages
English (en)
French (fr)
Inventor
조동현
이진
김원희
최경신
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980007988.5A priority Critical patent/CN111587258B/zh
Priority to US16/960,696 priority patent/US11746165B2/en
Priority to EP19888150.0A priority patent/EP3722333B1/en
Priority to JP2020565992A priority patent/JP7083045B2/ja
Publication of WO2020105891A1 publication Critical patent/WO2020105891A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues

Definitions

  • the present invention relates to a process for the production of polybutene oligomers.
  • a growing polymer chain includes an active site having a positive charge.
  • the active site can be a carbenium ion (carbon cation) or an oxonium ion.
  • the Lewis acid catalyst requires a large amount of catalyst, and since it uses a large amount of base (NaOH, KOH, NH 4 OH, etc.) to remove the catalyst after the reaction, and additionally washed with water, a large amount of wastewater causes
  • examples of the monomer capable of cationic polymerization include styrene, isobutene, cyclopentadiene, dicyclopentadiene and derivatives thereof, and polyisobutene polymerized with isobutene is the most representative example.
  • Polyisobutene is divided into low molecular weight, medium molecular weight and high molecular weight ranges according to the molecular weight range.
  • the low molecular weight polyisobutene has a number average molecular weight of about 10,000 or less, and there are a family of conventional polybutene and high reactive polybutene (HR-PB).
  • the highly reactive polybutene has a carbon-carbon double bond, which is mainly located at the end of polybutene, and is used as a fuel additive or an engine oil additive after introducing a functional group using a vinylidene functional group (> 80%) at the terminal. .
  • a boron-based catalyst such as BF 3 is used as a prior art, which is toxic and difficult to handle as a gas type.
  • boron-alcohol or boron-ether complexes are used to increase reactivity and selectivity, the activity of the catalyst decreases over time.
  • the present inventors use a carbon-carbon organometallic catalyst by using a novel organometallic catalyst prepared by introducing coordination solvent molecules and bulky anions to a transition metal precursor of a paddle wheel structure, It was found that a polybutene oligomer having a low molecular weight can be efficiently produced, and the present invention was completed.
  • the present invention uses an organometallic catalyst having a cation structure including a transition metal and a bulky borate-based anion structure to solve the problems of the conventional Lewis acid catalyst, but by using a mixed solvent, thereby lowering the molecular weight of the product to a low range. It can be controlled to efficiently produce polybutene oligomers.
  • the reaction temperature of the low-polymerization step is controlled, the catalyst content is controlled, or a method using a molecular weight modifier is used Can be applied.
  • polybutene oligomer comprising the step of polymerizing a polymerization solution comprising a halogenated hydrocarbon solvent, a non-polar hydrocarbon solvent and isobutene monomer It provides a manufacturing method.
  • M 1 and M 2 are each independently selected from a periodic table of 5 to 6 transition metals of group 6 to 10 and 6 to 6 transition metals of group 6 to 10, and the bond between M 1 and M 2 is 1 to 2 depending on the oxidation number of the metal. Any of the four bonds,
  • S 1 and S 2 are each independently an oxygen, nitrogen, carbon and halogen atom having one or more non-covalent electron pairs, and the non-covalent electron pair is a substituent that coordinates with the M 1 and M 2 ,
  • Y and Z are each independently selected from the group consisting of O, S, N (R m ) and P, where R m is hydrogen or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms,
  • L is C (R n ), where R n is hydrogen, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted amine group ,
  • the R m and R n may combine with each other to form a heteroaryl group having 4 to 20 carbon atoms,
  • R 1 to R 4 are each independently hydrogen, a halogen group, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
  • a is an integer from 0 to 3
  • b is an integer from 1 to 5
  • a + b is 4 or 5
  • o, p, q and r are each independently an integer from 1 to 5,
  • x and y are the same as each other and are integers from 1 to 4.
  • the polybutene oligomer production method of the present invention by using a mixed solvent containing a halogenated hydrocarbon solvent and a non-polar hydrocarbon solvent, can control the molecular weight of the product to a low range to efficiently produce polybutene oligomer, a halogenated hydrocarbon solvent Toxicity can be reduced.
  • the catalyst can be easily removed through simple filtering without performing the washing step of the oligomer, so that a large amount of waste water is generated in the conventional washing method, the catalyst remains in the product and the quality remains. Problems such as deterioration are solved.
  • composition includes reaction products and decomposition products formed from materials of the composition as well as mixtures of materials comprising the composition.
  • 'oligomerization means that the olefin is small polymerized. It is called trimerization and tetramerization depending on the number of olefins to be polymerized, and this is collectively called multimerization.
  • 'oligomer (Oligomer)' refers to a low polymer having a number average molecular weight in the range of less than 10,000 formed by small polymerization of monomers.
  • Polymer' as a concept relative to the oligomer means a polymer compound formed by polymerization of monomers and having a number average molecular weight of 10,000 or more.
  • alkyl group (alkyl group)' may mean a monovalent aliphatic saturated hydrocarbon, linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, secbutyl (sec-butyl), ter It may be meant to include both branched alkyl groups such as tert-butyl and neo-pentyl.
  • 'aryl group' in the present invention may mean a cyclic aromatic hydrocarbon, and also a monocyclic aromatic hydrocarbon in which one ring is formed, or a polycyclic aromatic hydrocarbon in which two or more rings are combined. hydrocarbon).
  • compositions claimed through the use of the term “comprising”, unless stated to the contrary, may contain any additional additives, adjuvants, or compounds, whether polymer or otherwise. It can contain.
  • the term “consisting essentially of” excludes any other component, step or procedure from the scope of any subsequent description, except that it is not essential to operability.
  • the term “consisting of” excludes any ingredient, step, or procedure not specifically described or listed.
  • a method for producing a polybutene oligomer comprising the step of polymerizing a polymerization solution comprising a halogenated hydrocarbon solvent, a non-polar hydrocarbon solvent and an isobutene monomer givess
  • the method for producing the polybutene oligomer of the present invention includes a halogenated hydrocarbon solvent; And it characterized in that to perform a low-polymerization reaction using a mixed solvent containing a non-polar hydrocarbon solvent. In this case, compared to the case where a halogenated hydrocarbon solvent is used alone, the halogenated hydrocarbon solvent toxicity is reduced.
  • the polarity of the solvent affects the reactivity in the polymerization of polybutene.
  • the dielectric constant of the mixed solvent is controlled to obtain a polybutene oligomer having a low molecular weight range.
  • the catalyst when only a halogenated hydrocarbon solvent is used alone, the catalyst may be dissolved in some halogenated hydrocarbon solvents, and it may be difficult to remove the catalyst from the product polybutene oligomer.
  • a halogenated hydrocarbon solvent when used alone, a problem arises in that the catalyst is dissolved in the solvent and contaminated the filter.
  • the mixed solvent of the present invention since the catalyst does not readily dissolve in the non-polar hydrocarbon solvent, there is an effect of reducing filter contamination due to the above-described pushing phenomenon, and thus there is an economical advantage of extending the life of the filtering column.
  • the weight ratio of the non-polar hydrocarbon solvent and the halogenated hydrocarbon solvent in the mixed solvent may be included as 95: 5 to 5:95, preferably 85:15 to 15:85, and 80:20 to 20:80, More preferably, it may be 80:20 to 30:70, or 75:25 to 30:70.
  • the molecular weight of the resulting polybutene oligomer can be easily adjusted and a polybutene oligomer having a high exo-content can be obtained, and catalyst removal after the low polymerization reaction is also easy.
  • the molecular weight control effect of the polybutene oligomer may not be obtained, and a problem may arise in which the exo-content of the obtained polybutene is lowered.
  • halogenated hydrocarbon solvent may be at least one selected from the group consisting of chloromethane, dichloromethane, trichloromethane, 1-chloro butane and chlorobenzene.
  • the non-polar hydrocarbon solvent may be an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent.
  • the aliphatic hydrocarbon solvent may be at least one selected from the group consisting of butane, pentane, neopentane, hexane, cyclohexane, methyl cyclohexane, heptane and octane
  • the aromatic hydrocarbon solvent is benzene, toluene, xylene , It may be one or more selected from the group consisting of ethyl benzene.
  • the low-polymerization step of the present invention can be carried out in a batch or continuous process.
  • the mixed solvent preferably includes a halogenated hydrocarbon solvent and an aromatic hydrocarbon solvent.
  • a coupling phenomenon of polybutene may occur due to a mixture of a reactive monomer and a polymer.
  • the aromatic hydrocarbon solvent is included as a non-polar solvent, polybutene having a high exo-content is controlled by controlling this coupling phenomenon. It is because it can be obtained.
  • the content of the isobutene monomer based on the total weight of the polymerization solution may be 1 to 50% by weight, preferably 5 to 25% by weight.
  • the content of the catalyst based on the total weight of the polymerization solution may be 0.005 to 1% by weight, preferably 0.01 to 0.025% by weight.
  • the organometallic catalyst used in the low-polymerization step of the isobutene monomer has an advantage of solving various problems of the conventional Lewis acid catalyst.
  • the conventional Lewis acid catalyst is corrosive, but the organometallic catalyst used in the present invention is not corrosive.
  • the organometallic catalyst of the present invention has a small amount of catalyst required to obtain an equivalent level of effect, thereby reducing catalyst cost.
  • organometallic catalyst used in the present invention is represented by the following formula (1).
  • the M 1 and M 2 are each independently selected from a periodic table 5 to 10 transition metals of group 6 to 10 and a transition metal of 6 periods to group 6 to 10, for example, Mo, W, Re, Ru, Os, Rh , Pd, Pt, and the bond between M 1 and M 2 is any one of 1 to 4 bonds depending on the oxidation number of the metal.
  • the S 1 and S 2 are each independently an oxygen, nitrogen, carbon and halogen atom having one or more non-covalent electron pairs, and the non-covalent electron pair is a substituent that coordinates with the M 1 and M 2 ,
  • Y and Z are each independently selected from the group consisting of O, S, N (R m ) and P, where R m is hydrogen or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms,
  • L is C (R n ), where R n is hydrogen, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted amine group ego,
  • the R m and R n may combine with each other to form a heteroaryl group having 4 to 20 carbon atoms,
  • R 1 to R 4 are each independently hydrogen, a halogen group, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
  • A is an integer from 0 to 3
  • b is an integer from 1 to 5
  • a + b is 4 or 5
  • the o, p, q and r are each independently an integer from 1 to 5,
  • X and y are the same as each other and are integers from 1 to 4.
  • S 1 and S 2 are each independently a halogen group; Or a coordination solvent molecule comprising a functional group selected from the group consisting of a cyanide group, an isocyanate group, an ether group, a pyridine group, an amide group, a sulfoxide group and a nitro group;
  • R 1 to R 4 are each independently hydrogen, a halogen group, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 12 carbon atoms substituted with a halogen group, and more preferably a carbon number substituted with a halogen group.
  • R n is hydrogen, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted amine group, preferably hydrogen, substituted or unsubstituted An alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted amine group,
  • the R m and R n may combine with each other to form a heteroaryl group having 4 to 12 carbon atoms.
  • S 1 and S 2 are halogen groups; Or acetonitrile, propionitrile, 2-methylpropanenitrile, trimethylacetonitrile, benzonitrile, dialkyl ethers such as diethyl ether, diallyl ether, pyridine, dimethylformamide, dimethyl sulfoxide, nitro
  • a non-covalent electron pair of oxygen, nitrogen, or carbon may be a coordination solvent molecule that coordinates with M 1 and M 2 .
  • the borate-based bulky anion is tetrakis (phenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis [3,5-bis (trifluoromethyl) phenyl] borate and derivatives thereof. It may be one or more selected from the group consisting of.
  • the organometallic catalyst of the present invention may be one or more selected from the group consisting of compounds represented by the following formula.
  • the method for preparing the polybutene oligomer of the present invention does not separately perform the step of removing the organometallic catalyst by washing the polymerized product after the polymerizing step. Instead, the polymerization product can be filtered to easily remove the catalyst.
  • the filtering may be performed using a filter including at least one selected from the group consisting of porous materials, for example, celite, silica and zeolite, and alumina.
  • a filter including at least one selected from the group consisting of porous materials, for example, celite, silica and zeolite, and alumina.
  • the method for preparing the polybutene oligomer of the present invention may further include drying the residual solvent after the filtering step.
  • the drying temperature may be 30 to 200 ° C, or 40 to 150 ° C, and the vacuum degree may be 300 torr or less, 200 torr or less, or 100 torr or less.
  • the drying method is not particularly limited and can be by a conventional method.
  • the method for preparing the polybutene oligomer of the present invention may or may not separately perform the step of drying the halogenated hydrocarbon solvent before the filtering after the low-polymerization step.
  • drying conditions may be performed as described above, and is not particularly limited.
  • a separate halogenated hydrocarbon solvent drying step may be omitted after the low-polymerization step and before the filtering, thereby simplifying the process. have.
  • Another embodiment of the present invention provides a polybutene oligomer prepared according to a method for preparing a polybutene oligomer.
  • the low-polymerization step may be carried out batchwise or continuously, but the number average molecular weight range and polydispersity index (PDI) of the polybutene oligomer obtained according to the process may be different.
  • PDI polydispersity index
  • the number average molecular weight of the polybutene oligomer is 5,500 or less, or 4,500 or less, or 4,200 or less, or 3,900 or less, or 3,500 or less, and may be 500 or more, or 750 or more, or 1,000 or more, or 1,200 or more.
  • the polydispersity index (PDI) of the polybutene oligomer may be 1.5 to 3.0, or 1.8 to 2.5.
  • the polybutene oligomer formed by the above production method may have an exo-content of 50 to 99%, preferably 74 to 99%, preferably 80 to 99%, preferably 89 to 98%, preferably 94 to 98%. have.
  • the exo-content indicates the case where the carbon-carbon double bond is located at the end of the polyolefin, and the higher the exo-content, the better the formation of a highly reactive polyolefin, such as highly reactive polybutene (HR-PB).
  • An Andrew Glass pressurized reactor in which moisture and oxygen were removed was prepared.
  • 20 g of isobutylene was added through a line connecting the isobutylene cylinder and the Andrew glass.
  • a mixed solvent 20 ml of hexane and 60 ml of dichloromethane (DCM) was used, but stored in a molecular sieve to remove moisture.
  • TSC total solution for compound
  • the catalyst was prepared by dissolving the catalyst of Preparation Example 1 stored in the glove box at a weight of 0.01% by weight based on the total weight of the monomers, dissolving it in a DCM solvent, transferring it to a pressure syringe, and transporting it out of the glove box, and argon was pressurized in the reactor to 2 or 3 bar. After that, the catalyst was added. The reaction proceeded from the moment the catalyst was added to the reaction start time until the pressure reached 0 bar, or a low polymerization reaction was performed for 2 hours. After the reaction was completed, the valve on the top of the Andrew glass was opened to remove the remaining unreacted isobutylene, and then the Andrew glass was opened to recover the polymer and solvent. The residual solvent of the solution recovered through a rotary evaporator or the like was removed to obtain a polymer.
  • the polybutene oligomers of Examples 2 to 6 and Comparative Examples 1 to 4 were prepared by changing the solvent content conditions as shown in Table 1 below using the catalyst of Preparation Example 1. Further, as Comparative Example 3, bord trifluoride diethyl etherate (BF 3 DEE) from Aldrich was purchased and used.
  • BF 3 DEE bord trifluoride diethyl etherate
  • the reactor was purged sufficiently with argon to remove moisture and oxygen. The remaining amount was checked to see if isobutylene and the solvent were sufficiently prepared, and the solvent was set to be continuously charged at a ratio of 33% by weight of hexane and 67% by weight of dichloromethane (DCM).
  • DCM dichloromethane
  • the catalyst of Preparation Example 1 kept at low temperature in the glove box was quantified by 0.01% by weight based on the total weight of monomers, and then placed in Andrew glass, dissolved in DCM, and transferred to a catalyst tank. Isobutylene and a solvent were introduced into the reactor, and at the same time, a catalyst was also introduced into the reactor. It was confirmed that the catalyst and the raw materials were inputted properly, and the reaction start time was recorded. The rear stage gear pump and back pressure regulator (BPR) were adjusted to maintain the reactor level according to the set residence time. After stabilization was achieved, sampling was performed to remove the solvent to obtain a polymer.
  • BPR back pressure regulator
  • the polybutene oligomers of Examples 8 and 9 and Comparative Examples 5 to 7 were prepared by changing the solvent content conditions as shown in Table 2 below using the catalyst of Preparation Example 1.
  • Exo content and the number average molecular weight value of the obtained polybutene oligomer are measured as shown in Table 1 below.
  • -exo-content (%) (the content of exo-olefins in which the carbon-carbon double bond is located at the end / the total content of exo-olefins and endo-olefins generated) X 100
  • Example 1 Preparation Example 1 Hexane 33.3 66.7 93 5,310
  • Example 2 Preparation Example 1 Hexane 50 50 92 3,920
  • Example 3 Preparation Example 1 Hexane 66.7 33.3 93 2,240
  • Example 4 Preparation Example 1 toluene 25 75 88 4,250
  • Example 5 Preparation Example 1 toluene 50 50 90 2,600
  • Example 6 Preparation Example 1 toluene 75 25 92 2.950 Comparative Example 1 Preparation Example 1 Hexane 0 100 56 7,040 Comparative Example 2 Preparation Example 1 Hexane 100 0 N.R * N.R Comparative Example 3 BF 3 DEE Hexane 50 50 32 210 Comparative Example 4 Preparation Example 1 toluene 100 0 95 1,500
  • Comparative Example 1 it is considered that a polybutene having a low exo-content is obtained because a part of the product reacts with the catalyst and structural isomerization occurs because the catalyst is continuously dissolved in the solvent.
  • a polybutene oligomer having a higher molecular weight than the example is obtained because the number average molecular weight exceeds 5,500.
  • Comparative Example 2 is a case in which only hexane is used as a solvent, and the low-polymerization reaction does not proceed smoothly to obtain a polybutene oligomer, and in the case of Comparative Example 4 using toluene alone, the reaction is completed, but the conversion rate This was so low that it was not possible to obtain a substantially effective polybutene oligomer.
  • Comparative Example 3 it can be confirmed that when the reaction was performed under the same temperature conditions (room temperature) as in Example 1, the reaction was not controlled and explosively occurred, and thus the exo content was considerably low and the molecular weight was low to obtain a normal polybutene oligomer. .
  • room temperature room temperature
  • Comparative Example 3 even if polymerization is performed using the catalyst of Comparative Example 3 at a low temperature in the range of -30 to 0 ° C, it is not easy to control the reaction, and the catalyst must be made into a complex to react, or polymerization must be performed at a more cryogenic state. Therefore, it is predicted that the energy consumption will be severe accordingly, and it is expected that an oligomer having an appropriate level of molecular weight and high exo-content cannot be produced as in the present invention.
  • Example 7 Preparation Example 1 Hexane 33 67 90 3,370 Example 8 toluene 33 67 92 3,310 Example 9 Hexane 60 40 92 2,490 Comparative Example 5 - 0 100 59 4,530 Comparative Example 6 Hexane 100 0 - - Comparative Example 7 toluene 100 0 90 1,500
  • the catalyst can be easily removed by performing filtering on the reaction solution after the low-polymerization step of the present invention. Specifically, when filtering was performed with respect to Examples 3, 5, and 9 with columns containing celite, silica, and zeolite, it can be confirmed that the catalyst was well removed from the traces of the elemental element F being detected in trace amounts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 유기금속 촉매의 존재 하에, 할로겐화 탄화수소 용매, 비극성 탄화수소 용매 및 이소부텐 단량체를 포함하는 중합 용액을 저중합체화하는 단계를 포함하는 폴리부텐 올리고머의 제조 방법을 제공한다.

Description

폴리부텐 올리고머의 제조 방법
관련 출원과의 상호 인용
본 출원은 2018년 11월 23일자 한국 특허 출원 2018-0145928에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 폴리부텐 올리고머의 제조 방법에 관련된다.
일반적으로 단량체를 양이온 중합하여 올리고머 또는 폴리머를 제조하는 공정에서, 성장하는 중합체 사슬은 양전하를 갖는 활성 부위를 포함한다. 예를 들어, 활성 부위는 카르베늄 이온(탄소 양이온) 또는 옥소늄 이온일 수 있다.
이러한 양이온 중합을 위해 촉매 또는 개시제로서 알루미늄 또는 보론계의 루이스 산이 일반적으로 사용된다. 루이스 산 촉매의 예로는 AlX3, BX3 (X=F, Br, Cl, I) 등이 있는데, 이는 부식성이며 퀜칭 과정에서 HCl, HF 등의 할로겐 성분이 발생하고 이것이 제품에 남아서 품질 저하를 일으키는 문제점이 있다. 또한, 루이스 산 촉매는 많은 양의 촉매를 필요로 하며, 반응 후 촉매를 제거하기 위해 많은 양의 염기물(NaOH, KOH, NH4OH 등)을 사용하고 추가로 물로 씻어주기 때문에 많은 양의 폐수를 발생시킨다.
한편, 이러한 양이온 중합이 가능한 단량체의 예로는 스티렌, 이소부텐, 사이클로펜타디엔, 디사이클로펜타디엔 및 이의 유도체 등이 있으며, 이소부텐이 중합된 폴리이소부텐이 가장 대표적인 예이다.
폴리이소부텐은 분자량 범위에 따라 저분자량, 중분자량 및 고분자량 범위로 구분된다. 저분자량의 폴리이소부텐은 수평균분자량 1만 이하 정도 범위로, 통상의 폴리부텐과 고반응성 폴리부텐(High Reactive Polybutene, HR-PB)의 제품군이 있다. 상기 고반응성 폴리부텐은 탄소-탄소 이중결합의 위치가 주로 폴리부텐의 말단에 위치한 것으로서, 말단의 비닐리덴 작용기(>80%)를 이용하여 기능기를 도입한 후 연료 첨가제나 엔진오일 첨가제로 사용된다. 이러한 고반응성 폴리부텐의 중합을 위해서 종래기술로서 BF3와 같은 보론계 촉매를 사용하는데, 이는 독성이 있고 기체 타입으로 취급하기 어려운 문제점이 있다. 또한, 반응성과 선택성을 높이기 위해 보론-알코올 또는 보론-에테르 복합체를 만들어 사용하기도 하나, 시간이 지남에 따라 촉매의 활성도가 떨어지는 문제가 있다.
한편, 뮌헨공대의 Kuhn 교수가 연구한 용매 결착(solvent-ligated) 유기금속 촉매의 경우(Macromol. Rapid Commun., vol.20, no.10, pp.555-559), 상기 종래기술의 보론계 루이스 산 촉매와 같은 독성 성분으로 인한 제품 품질 저하 및 부식성 등의 문제는 해소되지만, 높은 전환율을 위해서는 기본적으로 반응시간이 16시간으로 길며, 반응시간이 길어지면서 생성물의 일부가 촉매와 반응하여 구조 이성화(structural isomerization)가 일어남으로써 exo-함량이 낮아지기 때문에 상기 루이스 산 촉매에 비해 경쟁력이 낮다. 따라서, 올리고머, 특히 폴리이소부텐과 같은 폴리올레핀의 제조에 사용되는 신규한 촉매로서 상기와 같은 문제점들이 해소된 유기금속 촉매의 개발에 대한 필요성이 존재한다.
상기와 같은 배경 하에, 본 발명자들은 외륜(paddle wheel) 구조의 전이금속 전구체에 배위 용매 분자와 벌키 음이온을 도입하여 제조된 신규한 유기금속 촉매를 이용함으로써, 탄소-탄소 유기금속 촉매를 이용하여, 낮은 분자량을 가지는 폴리부텐 올리고머를 효율적으로 제조할 수 있음을 발견하고, 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
한국 등록특허공보 제10-0486044호 (2005.04.29.)
[비특허문헌]
Macromol. Rapid Commun., vol.20, no.10, pp.555-559 (1999.09.16)
본 발명은 종래의 루이스 산 촉매가 갖는 문제점을 해소하기 위해 전이금속을 포함하는 양이온 구조 및 벌키한 보레이트계 음이온 구조를 갖는 유기금속 촉매를 사용하되 혼합 용매를 사용함으로써, 생성물의 분자량을 낮은 범위로 제어할 수 있어 폴리부텐 올리고머를 효율적으로 생성할 수 있다.
특히 exo-함량이 높은 고반응성 폴리부텐 올리고머를 제조할 수 있는 방법을 제공하는 것을 목적으로 한다.
폴리부텐의 수평균분자량을 1만 미만, 특히 그 중에서도 원하는 저분자량 범위로 제어하기 위해 종래기술로서 저중합체화 단계의 반응 온도를 조절하거나, 촉매 함량을 조절하거나, 또는 분자량 조절제를 사용하는 방법 등을 적용할 수 있다.
다만, 본 발명에 사용되는 촉매의 특성상 상온에서 반응이 주로 이루어지기 때문에 온도를 조절하여 분자량 범위를 제어하는 데에는 한계가 있을 수 있다. 또한, 본 발명의 유기금속 촉매의 경우 대체적으로 비용이 고가이기 때문에 촉매의 함량을 조절함에 있어서 비용경제적인 부담이 발생할 수 있다. 또한, 분자량 조절제를 첨가하는 경우 최종 제품에 이러한 첨가제들이 남아 품질을 저하시킬 수 있고 추가적인 비용이 발생하는 문제가 있다.
이에, 본 발명의 일 구현 예는 하기 화학식 1로 표시되는 유기금속 촉매의 존재 하에, 할로겐화 탄화수소 용매, 비극성 탄화수소 용매 및 이소부텐 단량체를 포함하는 중합 용액을 저중합체화하는 단계를 포함하는 폴리부텐 올리고머의 제조 방법을 제공한다.
[화학식 1]
Figure PCTKR2019014453-appb-I000001
상기 화학식 1에서,
M1 및 M2는 각각 독립적으로 주기율표상 6 내지 10족의 5주기 전이금속 및 6 내지 10족의 6주기 전이금속 중에서 선택되고, M1 및 M2 사이의 결합은 금속의 산화수에 따라 1 내지 4중 결합 중 어느 하나이고,
S1 및 S2는 각각 독립적으로 1 이상의 비공유 전자쌍을 갖는 산소, 질소, 탄소 및 할로겐 원자 중 어느 하나를 포함하고 상기 비공유 전자쌍이 상기 M1 및 M2와 배위 결합하는 치환기이고,
Y 및 Z는 각각 독립적으로 O, S, N(Rm) 및 P로 이루어진 군으로부터 선택되고, 여기서, Rm은 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고,
L은 C(Rn)이고, 여기서, Rn은 수소, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 아민기이고,
상기 Rm 및 Rn은 서로 결합하여 탄소수 4 내지 20의 헤테로아릴기를 형성할 수 있고,
R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고,
a는 0 내지 3의 정수이고,
b는 1 내지 5의 정수이고,
a+b는 4 또는 5이고,
o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이고,
x 및 y는 서로 동일하고 1 내지 4의 정수이다.
본 발명의 폴리부텐 올리고머의 제조 방법은, 할로겐화 탄화수소 용매 및 비극성 탄화수소 용매를 포함하는 혼합용매를 사용함으로써, 생성물의 분자량을 낮은 범위로 제어하여 폴리부텐 올리고머를 효율적으로 생성할 수 있으며, 할로겐화 탄화수소 용매로 인한 독성을 저감시킬 수 있다.
또한, 본 발명의 제조 방법에 따르면, 촉매가 반응 생성물에 계속 녹아있어서 폴리부텐과 반응하여 구조 이성화 반응을 일으키는 문제가 해소되기 때문에, exo-함량이 높은 고반응성 폴리부텐을 안정적으로 수득할 수 있다.
뿐만 아니라, 본 발명의 제조 방법에 따르면, 올리고머의 수세 단계를 수행하지 않고 단순 필터링을 통해 용이하게 촉매를 제거할 수 있어서, 종래 수세 방식에서 다량의 폐수가 나오는 문제, 촉매가 제품에 남아 품질이 저하되는 문제 등이 해소된다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서 사용되는 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 사용하는 용어 '올리고머화(oligomerization)'란, 올레핀이 소중합 되는 것을 의미한다. 중합되는 올레핀의 개수에 따라 삼량화 (trimerization), 사량화 (tetramerization)라고 불리며, 이를 총칭하여 다량화 (multimerization)라고 한다.
본 명세서에서 사용하는 용어 '올리고머(Oligomer)'란, 단량체가 소중합 되어 형성되고 1만 미만 범위의 수평균분자량을 갖는 저중합체를 의미한다.
상기 올리고머와 상대적인 개념으로서 '중합체(Polymer)'란, 단량체가 중합되어 형성되고 1만 이상의 수평균분자량을 갖는 고분자 화합물을 의미한다.
본 발명에서 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소를 의미할 수 있고, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '아릴기(aryl group)'는 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '알릴기(allyl group)'는 H2C=CH-CH2R의 화학식을 갖는 치환기를 의미하며, 여기서 R은 치환기의 나머지 부분을 의미한다.
본 발명에서 "포함하는"(comprising), "포함하는"(including), "지니는"(having)이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇지 않든지 간에, 임의의 추가의 성분, 단계 또는 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, "포함하는"이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 또는 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 또는 화합물을 포함할 수 있다. 이와 대조적으로, "~로 본질적으로 구성되는"이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 또는 절차를 임의의 연속하는 설명의 범위로부터 배제한다. "~로 구성되는"이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 또는 절차를 배제한다.
1. 폴리부텐 올리고머의 제조 방법
본 발명의 일 구현 예는 화학식 1로 표시되는 유기금속 촉매의 존재 하에, 할로겐화 탄화수소 용매, 비극성 탄화수소 용매 및 이소부텐 단량체를 포함하는 중합 용액을 저중합체화하는 단계를 포함하는 폴리부텐 올리고머의 제조 방법을 제공한다.
본 발명의 폴리부텐 올리고머의 제조 방법은 할로겐화 탄화수소 용매; 및 비극성 탄화수소 용매를 포함하는 혼합용매를 사용하여 저중합체화 반응을 수행하는 것을 특징으로 한다. 이 경우, 할로겐화 탄화수소 용매를 단독으로 사용하는 경우에 비해, 할로겐화 탄화수소 용매 독성이 저감되는 효과가 있다.
또한, 폴리부텐 중합시 용매의 극성이 반응성에 영향을 미치는데, 할로겐화 탄화수소 용매에 비극성 탄화수소 용매를 혼합하여 혼합용매의 유전 상수(dielectric constant)를 제어함으로써 저분자량 범위의 폴리부텐 올리고머를 수득할 수 있다.
또한, 종래기술에서 비극성 탄화수소 용매만 사용하는 경우 촉매가 반응 생성물에 계속 녹아 있어서 폴리부텐과 반응하여 구조 이성화 반응을 일으키는 문제가 있었다. 본 발명에 따르면 상기 혼합용매 중 비극성 탄화수소 용매에는 촉매가 잘 용해되지 않기 때문에 위와 같은 문제점이 해소되어 exo-함량이 높은 고반응성 폴리부텐을 안정적으로 수득할 수 있다.
또한, 할로겐화 탄화수소 용매만 단독으로 사용하는 경우, 촉매가 일부 할로겐화 탄화수소 용매에 용해되어 생성물인 폴리부텐 올리고머로부터 촉매를 제거하는데 어려움이 있을 수 있다. 예를 들어, 수득된 폴리부텐 올리고머를 필터링하여 촉매를 제거함에 있어서, 할로겐화 탄화수소 용매를 단독으로 사용하는 경우에는 촉매가 용매에 녹아 밀려나오면서 필터를 오염시키는 문제가 발생한다. 그러나 본 발명의 혼합용매를 사용하는 경우 비극성 탄화수소 용매에는 촉매가 잘 녹지 않기 때문에 위와 같은 밀림 현상에 의한 필터 오염이 저감되는 효과가 있고, 따라서 필터링 컬럼의 수명이 연장되는 경제적인 이점이 있다.
상기 혼합용매 내 비극성 탄화수소 용매 및 할로겐화 탄화수소 용매의 중량비는 95:5 내지 5:95로 포함될 수 있고, 바람직하게 85:15 내지 15:85일 수 있으며, 80:20 내지 20:80일 수 있고, 더 바람직하게는 80:20 내지 30:70, 또는 75:25 내지 30:70일 수 있다.
상기 중량비를 충족하는 경우, 생성되는 폴리부텐 올리고머의 분자량 조절이 용이하고 높은 exo-함량을 갖는 폴리부텐 올리고머를 수득할 수 있으며, 저중합체화 반응 후 촉매 제거 또한 수월하다.
만일 할로겐화 탄화수소 용매 또는 비극성 탄화수소 용매를 혼합하지 않는 경우에는 폴리부텐 올리고머의 분자량 조절 효과를 얻지 못할 수 있고, 수득되는 폴리부텐의 exo-함량이 낮아지는 문제가 생길 수 있으므로, 적정 수준의 분자량을 가지면서도 높은 exo-함량을 갖는 폴리부텐을 제조하기 위해서는 상기의 중량비를 만족하는 것이 좋고, 바람직한 범위로 최적화 할수록 높은 exo-함량을 갖는 폴리부텐의 제조가 가능할 수 있다.
또한, 상기 할로겐화 탄화수소 용매는 클로로메탄, 디클로로메탄, 트리클로로메탄, 1-클로로 부탄 및 클로로 벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 상기 비극성 탄화수소 용매는 지방족 탄화수소 용매 또는 방향족 탄화수소 용매일 수 있다. 예로서, 상기 지방족 탄화수소 용매는 부탄, 펜탄, 네오 펜탄, 헥산, 사이클로헥산, 메틸 사이클로헥산, 헵탄 및 옥탄으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 상기 방향족 탄화수소 용매는 벤젠, 톨루엔, 자일렌, 에틸 벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
본 발명의 저중합체화 단계는 배치식 또는 연속식 공정으로 수행될 수 있는데, 연속식 공정인 경우 상기 혼합용매는 할로겐화 탄화수소 용매와 방향족 탄화수소 용매를 포함하는 것이 바람직하다. 연속식 공정의 경우 반응성 단량체와 중합체가 혼재하여 폴리부텐의 커플링 현상이 나타날 수 있는데 비극성 용매로서 상기 방향족 탄화수소 용매를 포함하는 경우, 이러한 커플링 현상을 제어하여 높은 exo-함량을 갖는 폴리부텐을 수득할 수 있기 때문이다.
상기 이소부텐 단량체의 저중합체화 단계에서, 중합 용액 총중량 기준 이소부텐 단량체의 함량은 1 내지 50 중량%, 바람직하게 5 내지 25 중량%일 수 있다. 또한, 중합 용액 총중량 기준 촉매의 함량은 0.005 내지 1 중량%, 바람직하게 0.01 내지 0.025 중량%일 수 있다. 상기 수치범위를 충족하는 경우 저중합체화 반응이 효율적으로 수행될 수 있으며, 상기 수치범위보다 과량으로 투입되는 경우 원료 비용 증가에 비해 중합 효율은 크게 향상되지 않을 수 있다.
상기 이소부텐 단량체의 저중합체화 단계에 사용되는 유기금속 촉매는 종래의 루이스 산 촉매가 갖는 여러 가지 문제점들을 해소할 수 있는 이점이 있다. 예를 들어, 종래의 루이스 산 촉매는 부식성이 있으나, 본 발명에 사용된 유기금속 촉매는 부식성이 없다. 또한, 본 발명의 유기금속 촉매는 동등한 수준의 효과를 얻기 위해 필요한 촉매 사용량이 적어서 촉매 비용이 절감된다.
구체적으로, 본 발명에서 사용되는 유기금속 촉매는 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2019014453-appb-I000002
상기 M1 및 M2는 각각 독립적으로 주기율표상 6 내지 10족의 5주기 전이금속 및 6 내지 10족의 6주기 전이금속 중에서 선택되고, 예를 들어, Mo, W, Re, Ru, Os, Rh, Pd, Pt로 이루어진 군으로부터 선택될 수 있으며, 상기 M1 및 M2 사이의 결합은 금속의 산화수에 따라 1 내지 4중 결합 중 어느 하나이다.
상기 S1 및 S2는 각각 독립적으로 1 이상의 비공유 전자쌍을 갖는 산소, 질소, 탄소 및 할로겐 원자 중 어느 하나를 포함하고 상기 비공유 전자쌍이 상기 M1 및 M2와 배위 결합하는 치환기이며,
상기 Y 및 Z는 각각 독립적으로 O, S, N(Rm) 및 P로 이루어진 군으로부터 선택되고, 여기서, Rm은 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고,
상기 L은 C(Rn)이고, 여기서, Rn은 수소, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 아민기이고,
상기 Rm 및 Rn은 서로 결합하여 탄소수 4 내지 20의 헤테로아릴기를 형성할 수 있고,
상기 R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고,
상기 a는 0 내지 3의 정수이고, 상기 b는 1 내지 5의 정수이고, 상기 a+b는 4 또는 5이고,
상기 o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이고,
상기 x 및 y는 서로 동일하고 1 내지 4의 정수이다.
일 예로서, 상기 S1 및 S2는 각각 독립적으로 할로겐기; 또는 시안화기, 이소시안화기, 에테르기, 피리딘기, 아마이드기, 설폭사이드기 및 나이트로기로 이루어진 군으로부터 선택되는 작용기를 포함하는 배위 용매 분자;이고,
상기 R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고, 바람직하게 할로겐기로 치환된 탄소수 1 내지 12의 알킬기, 보다 바람직하게 할로겐기로 치환된 탄소수 1 내지 4의 알킬기이고,
상기 Rn은 수소, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 아민기, 바람직하게는 수소, 치환 또는 비치환된 탄소수 1 내지 12의 알킬기, 탄소수 6 내지 12의 아릴기, 또는 치환 또는 비치환된 아민기이고,
상기 Rm 및 Rn은 서로 결합하여 탄소수 4 내지 12의 헤테로아릴기를 형성할 수 있다.
일 예로서, 상기 S1 및 S2는 할로겐기이거나; 또는 아세토나이트릴, 프로피오나이트릴, 2-메틸프로판나이트릴, 트리메틸아세토나이트릴, 벤조나이트릴, 디알킬 에테르, 예컨대 디에틸 에테르, 디알릴 에테르, 피리딘, 디메틸포름아마이드, 디메틸 설폭사이드, 나이트로메테인, 나이트로벤젠 및 이의 유도체로 이루어진 군으로부터 선택되는 1종 이상으로서 산소, 질소 또는 탄소의 비공유 전자쌍이 상기 M1 및 M2와 배위 결합하는 배위 용매 분자일 수 있다.
상기 유기금속 촉매에서, 상기 보레이트계 벌키 음이온은 테트라키스(페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트 및 그 유도체로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
일 예로서, 상기 금속이 몰리브덴이고 상기 벌키 음이온이 테트라키스(펜타플루오로페닐)보레이트인 경우, 본 발명의 유기금속 촉매는 하기 화학식으로 표시되는 화합물로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
Figure PCTKR2019014453-appb-I000003
본 발명의 폴리부텐 올리고머의 제조 방법은, 상기 저중합체화 단계 후 저중합체화 생성물을 수세하여 상기 유기금속 촉매를 제거하는 단계를 별도로 수행하지 않는다. 대신에 중합 생성물을 필터링하여 용이하게 촉매를 제거할 수 있다.
상기 필터링은 다공성 물질, 예를 들어 셀라이트, 실리카 및 제올라이트, 알루미나로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 필터를 이용하여 수행될 수 있다. 이때, 다공성 물질 등의 흡착 원리를 통해 촉매가 걸러지는 것으로 여겨진다. 따라서 유리섬유 또는 미세한 기공 크기를 갖는 필터를 이용하는 경우에는 촉매 여과 효율이 저하될 수 있다.
본 발명의 폴리부텐 올리고머의 제조 방법은 상기 필터링 단계 후에 잔류 용매를 건조시키는 단계를 더 포함할 수 있다.
예로서, 건조온도는 30 내지 200℃, 또는 40 내지 150℃일 수 있으며, 진공도는 300 torr 이하, 200 torr 이하, 또는 100 torr 이하일 수 있다. 이로써 원하는 폴리부텐 올리고머를 효율적으로 수득할 수 있다. 또한, 건조 방식은 특별히 제한되지 않으며 통상의 방식에 의할 수 있다.
또한, 본 발명의 폴리부텐 올리고머의 제조 방법은 상기 저중합체화 단계 후 상기 필터링 전에 할로겐화 탄화수소 용매를 건조시키는 단계를 별도로 수행하거나, 수행하지 않을 수 있다. 건조 단계를 수행하는 경우 건조 조건은 상기한 바와 마찬가지로 수행될 수 있으며 특별히 제한되지 않는다.
할로겐화 탄화수소 용매를 건조시키는 단계를 별도로 수행하는 경우, 보다 고순도로 폴리부텐 올리고머를 수득할 수 있는 이점이 있다. 다만, 본 발명에 따르면 상기한 바와 같은 단순 필터링을 통해 용이하게 촉매를 제거할 수 있으므로, 상기 저중합체화 단계 후 상기 필터링 전에 별도의 할로겐화 탄화수소 용매 건조 단계를 생략할 수 있어 공정이 단순화되는 이점이 있다.
2. 폴리부텐 올리고머
본 발명의 다른 구현 예는 폴리부텐 올리고머의 제조 방법에 따라 제조된 폴리부텐 올리고머를 제공한다.
본 발명에서 저중합체화 단계는 배치식 또는 연속식으로 수행될 수 있는데 공정에 따라 수득되는 폴리부텐 올리고머의 수평균분자량 범위 및 다분산지수(PDI)가 상이할 수 있다.
일 예로서, 폴리부텐 올리고머의 수평균분자량은 5,500 이하, 또는 4,500 이하, 또는 4,200 이하, 또는 3,900 이하, 또는 3,500 이하이고, 500 이상, 또는 750 이상, 또는 1,000 이상, 또는 1,200 이상일 수 있다.
또한, 폴리부텐 올리고머의 다분산지수(PDI)는 1.5 내지 3.0, 또는 1.8 내지 2.5일 수 있다.
또한, 상기 제조 방법에 의해 형성된 폴리부텐 올리고머는 exo-함량이 50 내지 99%, 바람직하게 74 내지 99%, 바람직하게 80 내지 99%, 바람직하게 89 내지 98%, 바람직하게 94 내지 98%일 수 있다. 상기 exo-함량은 탄소-탄소 이중결합이 폴리올레핀의 말단에 위치하는 경우를 나타내는 것으로, exo-함량이 높을수록 고반응성 폴리올레핀, 예컨대 고반응성 폴리부텐(HR-PB)이 잘 형성되는 것을 의미한다.
상기 촉매를 이용한 저중합체화 반응시간이 길어지면 폴리부텐의 구조 이성화 반응을 통해 exo-함량이 낮아지는 경향이 있다. 이는, 촉매가 반응 생성물에 계속 녹아 있어서 폴리부텐 올리고머와 반응하기 때문에 생기는 문제점이다. 그러나, 본 발명의 제조 방법에 따르면, 할로겐화 탄화수소 용매 및 비극성 탄화수소 용매의 혼합용매를 사용하기 때문에 촉매가 용매에 녹아 있는 현상이 줄어든다. 이에 따라, 상기와 같은 exo-함량이 낮아지는 문제점을 해소할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예
제조예 1
<유기금속 촉매의 제조>
Figure PCTKR2019014453-appb-I000004
아르곤 분위기하 글로브 박스에서 100mg의 몰리브데늄(II) 아세테이트(Mo2C8H16O8)를 2mL의 아세토니트릴에 넣어 분산액 형태로 교반해주었다. 상기 금속 전구체의 2 당량의 [Et3Si][B(C6F5)4](368mg)(Asahi Glass Co. 에서 구매)를 아세토니트릴 2mL에 녹인 다음, 교반되고 있는 몰리브데늄(II) 아세테이트에 첨가해 주었다. 상온에서 5시간 더 교반한 후, 진공에서 유기용매를 모두 제거하였다. 남아있는 고체를 헥세인으로 3번 세척한 후, 다시 진공에서 건조하여 [Mo2(OAc)2(MeCN)4][B(C6F5)4]2 촉매를 제조하였다(정량 수율).
Selected IR (KBr): νCN=2317, 2285 cm-1; elemental analysis calcd(%) for C64H26B2F40Mo2N6O4 : C 40.11, H 1.37, N 4.39. Found: C, 39.91; H, 1.29; N, 4.31.
실시예 1
<폴리부텐의 중합 - 배치식 반응>
수분과 산소가 제거된 앤드류 글래스 가압 반응기를 준비하였다. 이소부틸렌 봄베와 앤드류 글래스가 연결된 라인을 통하여 이소부틸렌을 20g 투입하였다. 용매로서 헥산 20ml, 디클로로메탄(DCM) 60ml의 혼합용매를 사용하되 분자체(Molecular sieve)에 보관하여 수분을 제거한 상태로 사용하였으며, 반응물 내 단량체 농도(Total solution for compound, TSC)를 계산한 후 실린지를 사용하여 앤드류 글래스 상단으로 투입하였다. 용매 및 단량체의 투입이 완료된 후 수조로 앤드류 글래스를 옮긴 후 중합 온도인 30℃로 설정하였다.
촉매는 글로브 박스에 저온보관된 제조예 1의 촉매를 단량체 총 중량 기준 0.01 중량% 정량하여 DCM 용매에 녹이고 압력 실린지에 옮겨 글로브 박스 밖으로 이송하고, 반응기에 아르곤을 가압하여 2 또는 3 bar 로 설정한 후 촉매를 투입하였다. 촉매를 투입하는 순간부터 반응 시작 시간으로 하여 반응이 모두 진행되어 압력이 0 bar가 될 때까지 또는 2시간 동안 저중합체화 반응을 수행하였다. 반응 종료 후 앤드류 글래스 상단의 밸브를 열어 잔존하는 미반응 이소부틸렌을 제거한 후 앤드류 글래스를 열어 고분자 및 용매를 회수하였다. 회전 증발기 등을 통해 회수된 용액의 잔류용매를 제거하고 고분자를 수득하였다.
실시예 2 내지 6 및 비교예 1 내지 4
제조예 1의 촉매를 이용하여 하기 표 1에 나타낸 바와 같이 용매 함량 조건을 달리하여 실시예 2 내지 6 및 비교예 1 내지 4의 폴리부텐 올리고머를 제조하였다. 또한, 비교예 3으로서 Aldrich사의 boron trifluoride diethyl etherate (BF3DEE)를 구입하여 사용하였다.
실시예 7
<폴리부텐의 중합 - 연속식 반응>
반응기를 아르곤으로 충분히 퍼지하여(purge) 수분과 산소를 제거하였다. 이소부틸렌 및 용매가 충분히 준비되어 있는지 잔량을 체크하고, 용매는 헥산 33 중량% 및 디클로로메탄(DCM) 67 중량%의 비율로 연속적으로 투입되도록 설정하였다.
글로브 박스에 저온보관된 제조예 1의 촉매를 단량체 총중량 기준 0.01 중량% 정량하여 앤드류 글래스에 담은 후 DCM에 녹여서 촉매탱크로 이동시켰다. 이소부틸렌 및 용매를 반응기로 투입하고, 동시에 촉매도 반응기로 투입하였다. 촉매와 원료가 제대로 잘 투입되고 있는지 확인하고 반응 시작 시각을 기록하기 시작하였다. 설정된 체류시간에 맞추어 반응기 레벨을 유지하도록 반응기 후단 기어 펌프 및 배압 조절기(BPR)를 조절하였다. 안정화가 이루어진 후 샘플링하여 용매를 제거하여 고분자를 수득하였다.
실시예 8, 9 및 비교예 5 내지 7
제조예 1의 촉매를 이용하여 하기 표 2에 나타낸 바와 같이 용매 함량 조건을 달리하여 실시예 8, 9 및 비교예 5 내지 7의 폴리부텐 올리고머를 제조하였다.
실험예 1
<exo-함량 및 수평균분자량>
수득된 폴리부텐 올리고머의 Exo 함량, 수평균분자량 값을 하기에 따라 측정하여 표 1에 나타낸다.
① exo-함량: 500MHz NMR (Varian사) 사용하여 1H NMR 측정하여 이중결합의 위치에 따라 exo-올레핀 및 endo-올레핀 형태를 확인하고, 하기 수식에 의해 exo-함량(%)을 계산하였다:
- exo-함량(%) = (탄소-탄소 이중결합이 말단에 위치하는 exo-올레핀 함량/생성된 exo-올레핀 및 endo-올레핀 총 함량) X 100
② 수평균분자량: 생성된 올리고머를 하기 겔 투과 크로마토그래피(GPC) 분석 조건 하에 측정하였다.
- 컬럼: PL MiniMixed B x 2
- 용매 : THF
- 유속 : 0.3 ml/min
- 시료농도 : 2.0 mg/ml
- 주입량 : 10 ㎕
- 컬럼온도 : 40℃
- Detector : RI detector (Agilent사)
- Standard : Polystyrene (3차 함수로 보정)
- Data processing : ChemStation
구분 촉매 탄화수소용매 DCM(중량%) Exo-함량(%) Mn
종류 함량(중량%)
실시예 1 제조예 1 헥산 33.3 66.7 93 5,310
실시예 2 제조예 1 헥산 50 50 92 3,920
실시예 3 제조예 1 헥산 66.7 33.3 93 2,240
실시예 4 제조예 1 톨루엔 25 75 88 4,250
실시예 5 제조예 1 톨루엔 50 50 90 2,600
실시예 6 제조예 1 톨루엔 75 25 92 2.950
비교예 1 제조예 1 헥산 0 100 56 7,040
비교예 2 제조예 1 헥산 100 0 N.R* N.R
비교예 3 BF3DEE 헥산 50 50 32 210
비교예 4 제조예 1 톨루엔 100 0 95 1,500
*상기 탄화수소 용매 및 DCM의 중량%는 두 용매의 합을 100으로 보았을 때의 %이다.
*N.R(No Reaction): 반응이 일어나지 않음
상기 표 1을 참조하면, 상기 실시예 1 내지 6의 결과로부터, 배치식 공정으로 수행시, 할로겐화 탄화수소 용매 및 비극성 탄화수소 용매의 혼합용매를 사용함으로써, 높은 exo-함량을 가지는 저분자량의 폴리부텐 올리고머를 수득할 수 있음을 확인할 수 있다. 구체적으로, exo-함량은 적어도 91%이고, 수평균분자량은 5,500 이하 범위이다.
반면, 비교예 1의 경우 DCM 단독 용매만을 사용한 경우로서, 촉매가 용매에 계속 녹아있기 때문에 생성물 일부가 촉매와 반응하여 구조 이성화 현상이 일어나기 때문에 낮은 exo-함량을 갖는 폴리부텐이 수득되는 것으로 여겨진다. 또한, 비교예 1에 따르면 수평균분자량이 5,500을 초과하여 실시예에 비해 높은 분자량을 갖는 폴리부텐 올리고머가 수득된다.
한편, 비교예 2는 용매로 헥산만 사용한 경우로서, 저중합체화 반응이 원활히 진행되지 않아 폴리부텐 올리고머를 수득하지 못하였으며, 톨루엔을 단독으로 사용한 비교예 4의 경우에는 반응이 완결되기는 하였으나, 전환율이 상당히 낮아 실질적으로 유효한 폴리부텐 올리고머를 수득하지는 못하였다.
또한, 비교예 3의 경우, 실시예 1과 동일한 온도 조건(상온)에서 반응시 반응이 제어되지 않고 폭발적으로 일어나 엑소 함량도 상당히 낮고 분자량도 낮아 정상적인 폴리부텐 올리고머를 수득하지 못하였음을 확인할 수 있다. 한편, -30 내지 0℃ 범위의 저온에서 상기 비교예 3의 촉매를 이용하여 중합을 수행하더라도 반응을 제어하는 것이 쉽지 않아, 촉매를 착체로 만들어 반응시키거나, 보다 더 극저온 상태에서 중합을 수행하여야 하기 때문에, 이에 따른 에너지 소모가 심할 것으로 예측되며, 본 발명과 같이 적정 수준의 분자량을 가지면서도 높은 exo-함량을 갖는 올리고머를 생성할 수는 없을 것으로 예상된다.
촉매 탄화수소 용매 DCM(중량%) exo-함량 (%) Mn
종류 함량(중량%)
실시예 7 제조예 1 헥산 33 67 90 3,370
실시예 8 톨루엔 33 67 92 3,310
실시예 9 헥산 60 40 92 2,490
비교예 5 - 0 100 59 4,530
비교예 6 헥산 100 0 - -
비교예 7 톨루엔 100 0 90 1,500
상기 표 2를 참조하면, 상기 실시예 7 내지 9의 결과로부터, 연속식 공정으로 수행시, 할로겐화 탄화수소 용매 및 비극성 탄화수소 용매의 혼합용매를 사용함으로써, 높은 exo-함량을 가지는 저분자량의 폴리부텐 올리고머를 수득할 수 있음을 확인할 수 있다. 구체적으로, exo-함량은 적어도 90%이고, 수평균분자량은 실시예 1 내지 6의 배치 공정에 비해 저분자량 범위의 올리고머를 수득하였다. 특히, 실시예 4 및 5의 경우 할로겐화 탄화수소 용매와 비극성 탄화수소 용매의 혼합비율이 대략 2:1인 경우로 수평균분자량이 최대 3,370이다.한편, DCM만 사용한 비교예 5의 경우 매우 낮은 exo-함량을 나타낸다. 또한, 헥산만 사용한 비교예 6의 경우, 저중합체화 반응이 원활히 진행되지 않아 폴리부텐 올리고머를 수득하지 못하였으며, 톨루엔만 사용한 비교예 7의 경우 전환율이 낮아 실질적으로 유효한 폴리부텐 올리고머를 수득하지는 못하였다.
실험예 2
<중합된 폴리부텐 중 촉매의 제거>
상기 실시예 3, 5, 9에 있어서 저중합체화 반응 이후 잔류 용매를 제거하지 않고 반응 용액 그대로, 각각 하기 표 3에 나타낸 바와 같이 셀라이트, 실리카 및 제올라이트 및 유리섬유를 포함하는 컬럼에 각각 통과시켰다.
실시예 3, 5, 9에 대해 상기 4개 컬럼을 통과시켜 필터링을 수행한 경우, 및 실시예 3, 5, 9 및 비교예 1에 대하여 필터링을 수행하지 않은 경우에 대하여, 하기 방법에 따라 분석을 각각 수행하고 그 결과를 하기 표 3에 나타내었다.
1) F 분석: 연소 IC (ICS-2100/AQF-5000, Thermo Scientific쪠 Dionex)을 사용하여 다음의 조건 하에서 측정하였다.
- Column: IonPac AS18 analytical (4 x 250 mm), IonPac AG18 guard (4 x 50 mm)
- Eluent 종류: KOH (30.5 mM)
- Eluent 유량: 1 mL/min
- Detector: Suppressed Conductivity Detector
- SRS Current: 76 mA
- Injection volumn: 20 μL
- Isocratic/Gradient 조건: Isocratic
중합 방법 필터링 방법 원소(F)분석결과 [mg/kg]
셀라이트 실리카 제올라이트 유리섬유
실시예 3 X X X <10
X X X <10
X X X <10
X X X 49
X X X X 48
실시예 5 X X X <10
X X X <10
X X X <10
X X X 35
X X X X 35
실시예 9 X X X <10
X X X <10
X X X <10
X X X 39
X X X X 40
비교예 1 X X X X 47
상기 결과로부터 본 발명의 저중합체화 단계 이후 반응 용액에 대해 필터링을 수행함으로써 용이하게 촉매를 제거할 수 있음을 확인할 수 있다. 구체적으로, 실시예 3, 5, 9에 대하여 셀라이트, 실리카 및 제올라이트를 포함하는 컬럼으로 필터링을 수행한 경우, F 원소 성분이 미량으로 검출되는 것으로부터 촉매가 잘 제거된 것을 확인할 수 있다.
한편, 실시예 3, 5, 9 및 비교예 1에 대하여 필터링을 수행하지 않은 경우, F 원소 성분이 일정 수준 이상 검출되는 것으로부터 촉매가 남아 있는 것을 확인할 수 있다. 또한, 유리섬유를 포함하는 컬럼을 사용한 경우에도 필터링을 수행하지 않은 경우와 유사한 정도로 F 원소 성분이 검출되므로, 필터링이 잘 이루어지지 않은 것을 확인할 수 있다.

Claims (12)

  1. 하기 화학식 1로 표시되는 유기금속 촉매의 존재 하에, 할로겐화 탄화수소 용매, 비극성 탄화수소 용매 및 이소부텐 단량체를 포함하는 중합 용액을 저중합체화하는 단계를 포함하는 폴리부텐 올리고머의 제조 방법:
    [화학식 1]
    Figure PCTKR2019014453-appb-I000005
    상기 화학식 1에서,
    M1 및 M2는 각각 독립적으로 주기율표상 6 내지 10족의 5주기 전이금속 및 6 내지 10족의 6주기 전이금속 중에서 선택되고, M1 및 M2 사이의 결합은 금속의 산화수에 따라 1 내지 4중 결합 중 어느 하나이고,
    S1 및 S2는 각각 독립적으로 1 이상의 비공유 전자쌍을 갖는 산소, 질소, 탄소 및 할로겐 원자 중 어느 하나를 포함하고 상기 비공유 전자쌍이 상기 M1 및 M2와 배위 결합하는 치환기이고,
    Y 및 Z는 각각 독립적으로 O, S, N(Rm) 및 P로 이루어진 군으로부터 선택되고, 여기서, Rm은 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고,
    L은 C(Rn)이고, 여기서, Rn은 수소, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 아민기이고,
    상기 Rm 및 Rn은 서로 결합하여 탄소수 4 내지 20의 헤테로아릴기를 형성할 수 있고,
    R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고,
    a는 0 내지 3의 정수이고,
    b는 1 내지 5의 정수이고,
    a+b는 4 또는 5이고,
    o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이고,
    x 및 y는 서로 동일하고 1 내지 4의 정수이다.
  2. 제1항에 있어서,
    상기 비극성 탄화수소 용매 및 할로겐화 탄화수소 용매의 중량비는 85:15 내지 15:85인, 폴리부텐 올리고머의 제조 방법.
  3. 제1항에 있어서,
    상기 할로겐화 탄화수소 용매는 클로로메탄, 디클로로메탄, 트리클로로메탄, 1-클로로 부탄 및 클로로 벤젠으로 이루어진 군으로부터 선택되는 1종 이상인, 폴리부텐 올리고머의 제조 방법.
  4. 제1항에 있어서,
    상기 비극성 탄화수소 용매는 부탄, 펜탄, 네오 펜탄, 헥산, 사이클로헥산, 메틸 사이클로헥산, 헵탄, 옥탄, 벤젠, 톨루엔, 자일렌 및 에틸 벤젠으로 이루어진 군으로부터 선택되는 1종 이상인, 폴리부텐 올리고머의 제조 방법.
  5. 제1항에 있어서,
    상기 저중합체화 단계는 배치식 또는 연속식 공정으로 수행되는, 폴리부텐 올리고머의 제조 방법.
  6. 제1항에 있어서,
    저중합체화 생성물을 필터링하여 유기금속 촉매를 제거하는 단계를 더 포함하는, 폴리부텐 올리고머의 제조 방법.
  7. 제6항에 있어서,
    상기 필터링은 셀라이트, 실리카, 제올라이트 및 알루미나로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 필터를 이용하여 수행되는, 폴리부텐 올리고머의 제조 방법.
  8. 제6항에 있어서,
    상기 방법은 상기 저중합체화 단계 후 상기 필터링 전에 할로겐화 탄화수소 용매를 건조시키는 단계를 수행하지 않는, 폴리부텐 올리고머의 제조 방법.
  9. 제1항에 있어서,
    상기 방법은 저중합체화 생성물을 수세하여 유기금속 촉매를 제거하는 단계를 수행하지 않는, 폴리부텐 올리고머의 제조 방법.
  10. 제1항에 있어서,
    상기 M1 및 M2는 각각 독립적으로 Mo, W, Re, Ru, Os, Rh, Pd 및 Pt로 이루어진 군으로부터 선택되고,
    상기 S1 및 S2는 각각 독립적으로 할로겐기; 또는 시안화기, 이소시안화기, 에테르기, 피리딘기, 아마이드기, 설폭사이드기 및 나이트로기로 이루어진 군으로부터 선택되는 작용기를 포함하는 배위 용매 분자;이고,
    상기 R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 할로겐기로 치환된 C1~C12의 알킬기이고,
    상기 Rn은 수소, 치환 또는 비치환된 탄소수 1 내지 12의 알킬기, 탄소수 6 내지 12의 아릴기, 또는 치환 또는 비치환된 아민기이고,
    상기 Rm 및 Rn은 서로 결합하여 탄소수 4 내지 12의 헤테로아릴기를 형성할 수 있는, 폴리부텐 올리고머의 제조 방법.
  11. 제1항에 있어서,
    상기 화학식 1로 표시되는 유기금속 촉매의 보레이트계 벌키 음이온은 테트라키스(페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트, 및 이의 유도체로 이루어진 군으로부터 선택되는 1종 이상인, 폴리부텐 올리고머의 제조 방법.
  12. 제1항에 있어서,
    상기 저중합체화에 의해 생성된 폴리부텐 올리고머의 수평균분자량은 500 내지 5,500인, 폴리부텐 올리고머의 제조 방법.
PCT/KR2019/014453 2018-11-23 2019-10-30 폴리부텐 올리고머의 제조 방법 WO2020105891A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980007988.5A CN111587258B (zh) 2018-11-23 2019-10-30 聚丁烯低聚物的制备方法
US16/960,696 US11746165B2 (en) 2018-11-23 2019-10-30 Method for preparing polybutene oligomer
EP19888150.0A EP3722333B1 (en) 2018-11-23 2019-10-30 Method for preparing polybutene oligomer
JP2020565992A JP7083045B2 (ja) 2018-11-23 2019-10-30 ポリブテンオリゴマーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0145928 2018-11-23
KR1020180145928A KR102395709B1 (ko) 2018-11-23 2018-11-23 폴리부텐 올리고머의 제조 방법

Publications (1)

Publication Number Publication Date
WO2020105891A1 true WO2020105891A1 (ko) 2020-05-28

Family

ID=70773285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014453 WO2020105891A1 (ko) 2018-11-23 2019-10-30 폴리부텐 올리고머의 제조 방법

Country Status (6)

Country Link
US (1) US11746165B2 (ko)
EP (1) EP3722333B1 (ko)
JP (1) JP7083045B2 (ko)
KR (1) KR102395709B1 (ko)
CN (1) CN111587258B (ko)
WO (1) WO2020105891A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056490B (zh) * 2019-01-18 2023-07-28 株式会社Lg化学 聚丁烯的分离方法
KR20220037612A (ko) * 2020-09-18 2022-03-25 주식회사 엘지화학 촉매 조성물 및 이를 이용한 이소부텐-이소프렌 공중합체의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486044B1 (ko) 2000-11-13 2005-04-29 대림산업 주식회사 폴리부텐의 제조방법
KR20080044870A (ko) * 2005-08-12 2008-05-21 바스프 에스이 중합 촉매로서 약한 배위 결합 상대 음이온을 갖는용매안정성 금속 착체
KR20190110957A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689928B2 (en) * 2000-04-04 2004-02-10 Exxonmobil Research And Engineering Company Transition metal complexes and oligomers therefrom
DE50303577D1 (de) 2002-03-04 2006-07-06 Basf Ag Verfahren zur herstellung von isobutenpolymeren
DE10211418A1 (de) * 2002-03-15 2003-09-25 Bayer Ag Verfahren zur Herstellung hochreaktiver Polyisobutene
DE102005038282A1 (de) * 2005-08-12 2007-02-22 Basf Ag Verfahren zur Herstellung von Copolymeren aus Isobuten und wenigstens einer vinylaromatischen Verbindung
DE102005055818A1 (de) * 2005-11-21 2007-05-24 Basf Ag Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mittels metallhaltiger Katalysatorkomplexe
DE102005055817A1 (de) * 2005-11-21 2007-05-24 Basf Ag Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mittels borhaltiger Katalysatorkomplexe
KR101233924B1 (ko) 2009-12-30 2013-02-15 롯데케미칼 주식회사 폴리(1-부텐) 제조용 촉매 및 이를 이용한 폴리(1-부텐) 제조방법
EP2718012B1 (en) 2011-06-08 2016-04-27 ExxonMobil Chemical Patents Inc. Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
ITMI20111650A1 (it) * 2011-09-14 2013-03-15 Polimeri Europa Spa Complesso bis-imminico di lantanidi, sistema catalitico comprendente detto complesso bis-imminico e procedimento per la (co)polimerizzazione di dieni coniugati
KR102611377B1 (ko) 2018-12-20 2023-12-08 주식회사 엘지화학 폴리부텐의 제조 장치 및 이를 이용한 폴리부텐의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486044B1 (ko) 2000-11-13 2005-04-29 대림산업 주식회사 폴리부텐의 제조방법
KR20080044870A (ko) * 2005-08-12 2008-05-21 바스프 에스이 중합 촉매로서 약한 배위 결합 상대 음이온을 갖는용매안정성 금속 착체
KR20190110957A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
COTTON, F. A. ET AL.: "Synthesis and characterization of octaacetonitriledimolybdenum (II) tetrafluoroborate", INORGANIC CHEMISTRY, vol. 30, 1991, pages 871 - 873, XP055639192, DOI: 10.1021/ic00004a055 *
DIEBL, B. E. ET AL.: "Synthesis and application of molybdenum (III) complexes bearing weakly coordinating anions as catalysts of isobutylene polymerization", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 48, 2010, pages 3775 - 3786, XP055639170, DOI: 10.1002/pola.24162 *
HIJAZI, A. K. ET AL.: "Molybdenum (III) Compounds as Catalysts for 2-Methylpropene Polymerization", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 46, no. 38, 2007, pages 7290 - 7292, XP002586646, DOI: 10.1002/ANIE.200700748 *
MACROMOL. RAPID COMMUN., vol. 20, no. 10, 16 September 1999 (1999-09-16), pages 555 - 559
MAJUMDAR, M. ET AL.: "Role of axial donors in the ligand isomerization processes of quadruply bonded dimolybdenum(II) compounds", INORGANIC CHEMISTRY, vol. 47, no. 6, 2008, pages 2212 - 2222, XP055639165, DOI: 10.1021/ic702298v *

Also Published As

Publication number Publication date
EP3722333B1 (en) 2023-08-30
CN111587258B (zh) 2023-03-10
KR102395709B1 (ko) 2022-05-09
US20200354489A1 (en) 2020-11-12
JP7083045B2 (ja) 2022-06-09
KR20200060849A (ko) 2020-06-02
JP2021526173A (ja) 2021-09-30
EP3722333A4 (en) 2021-05-12
EP3722333A1 (en) 2020-10-14
CN111587258A (zh) 2020-08-25
US11746165B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2017095174A1 (ko) 중합성 조성물
WO2019194614A1 (ko) 양이온성 금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머 또는 폴리머의 제조 방법
WO2020105891A1 (ko) 폴리부텐 올리고머의 제조 방법
WO2017086597A1 (ko) 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법
WO2019182386A1 (ko) 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법
WO2020130452A1 (ko) 올레핀 중합용 촉매 및 이를 이용하여 제조된 올레핀계 중합체
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2023090823A1 (ko) 초고분자량 폴리프로필렌의 제조방법
WO2021206345A1 (ko) 촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법
WO2019168249A1 (ko) 리간드, 이를 포함하는 올리고머화 촉매 및 이를 이용한 에틸렌 올리고머의 제조방법
WO2020022833A1 (ko) 부텐 올리고머의 제조방법
EP2247644A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2021112617A1 (ko) 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법
WO2021040384A1 (ko) 촉매 조성물 및 이를 이용한 탄화수소 수지의 제조방법
WO2018230846A1 (ko) 헤테로원자 리간드, 이를 포함하는 올리고머화 촉매 및 올리고머 제조방법
WO2020171624A1 (ko) 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2023090824A1 (ko) (초)고분자량 폴리에틸렌 기반의 블록공중합체, 이의 제조방법 및 이를 원료로 하여 제조되는 이차전지 분리막
WO2021206250A1 (ko) 촉매 조성물, 이를 포함하는 세척액 조성물 및 이를 이용한 중합장치의 세척방법
WO2021034041A1 (ko) 유기 보레이트계 촉매, 이를 이용한 이소부텐 올리고머의 제조방법 및 이로부터 제조된 이소부텐 올리고머
WO2019088431A1 (ko) 세척액 조성물 및 이를 이용한 중합 장치 세척 방법
WO2017115927A1 (ko) 혼성 메탈로센 담지 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 용융강도가 향상된 올레핀 중합체
WO2016129845A1 (ko) 비활성화제 및 이를 이용한 올레핀 올리고머화의 부산물 저감 방법
WO2022059990A1 (ko) 촉매 조성물 및 이를 이용한 이소부텐-이소프렌 공중합체의 제조방법
WO2021066550A1 (ko) 하이드록시기 함유 화합물을 이용한 폴리알킬알루미녹산 함유 용액의 정제방법 및 이를 이용한 촉매 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019888150

Country of ref document: EP

Effective date: 20200706

ENP Entry into the national phase

Ref document number: 2020565992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE