WO2017086597A1 - 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법 - Google Patents

메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법 Download PDF

Info

Publication number
WO2017086597A1
WO2017086597A1 PCT/KR2016/011166 KR2016011166W WO2017086597A1 WO 2017086597 A1 WO2017086597 A1 WO 2017086597A1 KR 2016011166 W KR2016011166 W KR 2016011166W WO 2017086597 A1 WO2017086597 A1 WO 2017086597A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
metallocene
compound
alkyl group
supported
Prior art date
Application number
PCT/KR2016/011166
Other languages
English (en)
French (fr)
Inventor
허은정
양혜림
박란화
양송희
정동욱
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Publication of WO2017086597A1 publication Critical patent/WO2017086597A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a metallocene supported catalyst and a method for producing an olefin polymer using the same.
  • a polymer polymerized with a metallocene catalyst exhibits a narrow molecular weight distribution and excellent mechanical properties because the polymer grows at a single active point. Based on these excellent properties, metallocene catalysts are gradually expanding their scope in the polyethylene (PE) and polypropylene (PP) industries.
  • the resin polymerized with the metallocene catalyst has a disadvantage in that workability is inferior to that of the resin polymerized with the Ziegler-Natta catalyst.
  • the present invention provides a metallocene supported catalyst capable of providing an olefin polymer with improved processability and mechanical properties and a method for producing an olefin polymer using the same.
  • the metallocene supported catalyst according to the present invention includes a carrier, at least one first metallocene compound among compounds represented by the following Chemical Formula 1 supported on the carrier, and compounds represented by the following Chemical Formula 2 supported on the carrier: At least one second metallocene compound, and a cocatalyst compound supported on the carrier:
  • M is any one of titanium (Ti), zirconium (Zr) or hafnium (Hf), and Q is carbon (C), silicon (Si), germanium (Ge), or tin ( Sn), and each X is independently a halogen, a C 1-10 alkyl group, or a C 2-10 alkenyl group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently hydrogen, One of a C 1-20 alkyl group, a C 3-6 cycloalkyl group, a C 6-14 aryl group, or R m (m is 1 to 12), two adjacent R n and R n +1 (n is from 1 to 11), the C 1-4 alkyl group is substituted or unsubstituted C 1-15 when forming a ring compound, wherein C 1-4 alkyl group is substituted or unsubstituted C 1-15 membered ring R m excluding R n and R n +1 , which form R 3, are independently hydrogen, a C 1-20 alkyl group, a C 3-6 cycloalkyl group, or a C 6-14 aryl group.
  • R 13 and R 14 are each independently a C 1-10 alkyl group or a C 6-14 aryl group.
  • the method for producing an olefin polymer according to the invention is characterized by polymerizing olefin monomers in the presence of a metallocene supported catalyst.
  • the method for producing a metallocene supported catalyst and an olefin polymer according to the present invention can provide an olefin polymer having improved processability and mechanical properties.
  • 1 is a graph showing the weight average molecular weight of an olefin polymer measured by gel permeation chromatography-infrared spectroscopy (GPC-IR).
  • FIG. 2 is a graph of melt strength versus pull-off speed of an olefin polymer.
  • MFR 3 is a graph of melt strength versus melt flow rate (MFR) of an olefin polymer.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • C AB means that the carbon number is A or more and B or less.
  • a to B means A or more and B or less.
  • the metallocene supported catalyst according to the present invention includes a carrier, a first metallocene compound supported on the carrier, a second metallocene compound supported on the carrier, and a cocatalyst compound supported on the carrier.
  • the carrier is not particularly limited as long as it can support the first metallocene compound, the second metallocene compound, and the cocatalyst compound.
  • the carrier may be carbon, silica, alumina, zeolite, magnesium chloride, or the like. Can be.
  • the first metallocene compound and the second metallocene compound may be used together with the cocatalyst compound to be used as a polymerization catalyst for polyolefins.
  • the first metallocene compound is one of the compounds represented by the following Chemical Formula 1
  • the second metallocene compound is one of the compounds represented by the following Chemical Formula 2.
  • the cocatalyst compound is not particularly limited as long as it is widely used in the metallocene catalyst field.
  • at least one first cocatalyst compound of the compounds represented by Formula A-1, and Formula A-2 At least one of the second cocatalyst compound of the compounds represented by, and at least one of a mixture of the first promoter compound and the second promoter compound.
  • Ra is a halogen, a C 1-20 alkyl group unsubstituted or substituted with halogen, a C 3-6 cycloalkyl group, a C 6-14 aryl group; n is an integer of 2 or more; D is aluminum or boron; Rb to Rd are the same as or different from each other, and are each independently hydrogen, halogen, or a C 1-20 alkyl group, C 3-6 cycloalkyl group, or C 6-14 aryl group unsubstituted or substituted with halogen.
  • a known physical adsorption method or a known chemical adsorption method may be used as a method of supporting the first metallocene compound, the second metallocene compound, and the cocatalyst compound on the carrier.
  • the physical adsorption method is, for example, a method in which a solution in which the first metallocene compound and the second metallocene compound are dissolved is contacted with the carrier and then dried, or the first metallocene compound and the A method in which a solution in which a second metallocene compound and the cocatalyst compound are dissolved is contacted with the carrier and then dried, or a solution in which the first metallocene compound and the second metallocene compound are dissolved is contacted with the carrier After drying to prepare a carrier on which the first metallocene compound and the second metallocene compound are supported, and separately the solution in which the cocatalyst compound is dissolved is brought into contact with the carrier, followed by drying to promote the cocatalyst compound. After preparing this supported carrier, it may be a method of mixing them.
  • the chemical adsorption method may include, for example, a method of first supporting the promoter compound on the surface of the carrier and then supporting the first metallocene compound and the second metallocene compound in the promoter compound, Or a method of covalently bonding the functional group on the surface of the carrier (for example, in the case of silica, hydroxyl group (-OH) on the surface of silica) and the metallocene compound.
  • the sum of the supporting amount of the first metallocene compound and the supporting amount of the second metallocene compound may be 0.001 mmol to 1 mmol based on 1 g of the carrier, and the supporting amount of the cocatalyst compound is based on 1 g of the carrier. For example, it may be 2 mmol to 15 mmol.
  • the first metallocene compound and the second metallocene compound will be described in more detail below.
  • the first metallocene compound is one of the compounds represented by Formula 1 below.
  • the second metallocene compound is one of the compounds represented by the following Chemical Formula 2.
  • M, Q, X, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are as follows.
  • M may be any one of titanium (Ti), zirconium (Zr) or hafnium (Hf).
  • Q may be any one of carbon (C), silicon (Si), germanium (Ge), or tin (Sn).
  • Each X may be independently a halogen, a C 1-10 alkyl group, or a C 2-10 alkenyl group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently hydrogen, a C 1-20 alkyl group, C 3- It may be one of a 6 cycloalkyl group, a C 6-14 aryl group, or in R m (m is 1 to 12), two adjacent R n and R n +1 (n is 1 to 11) when a is C 1-4 alkyl group to form a substituted or unsubstituted C 1-15 membered ring, two adjacent R to the C 1-4 alkyl group form a substituted or unsubstituted C 1-15 membered ring R m except n and R n + 1 may be independently hydrogen, C 1-20 alkyl group, C 3-6 cycloalkyl group, or C 6-14 aryl group.
  • R 13 and R 14 may each independently be a C 1-10 alkyl group or a C 6-14 aryl group.
  • the C 1-15 monocyclic compound may be a monocyclic compound of an aliphatic ring compound or a monocyclic compound of an aromatic ring compound
  • the C 1-15 polycyclic compound may be a polycyclic compound of an aliphatic ring compound, or an aromatic ring compound It may be a multiple ring compound of or may include both the aliphatic ring compound and the multiple ring compound of the aromatic ring compound.
  • the first metallocene compound and the second metallocene compound may be prepared at a predetermined composition ratio through a partial hydrogenation reaction of at least one base compound among the compounds represented by the following Formula B.
  • the partial hydrogenation reaction can be achieved by adjusting the content of the hydrogenation catalyst.
  • M, Q, X, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 is the same as described in Formula 1 and Formula 2, respectively.
  • the first metallocene compound and the second metallocene compound include, for example, the base compound and the hydrogenation catalyst having a predetermined content in a reactor, and hydrogen is injected into the reactor, and then under a hydrogen atmosphere. After stirring, the base compound and the hydrogenation catalyst, it may be prepared through the process of removing the solvent in the reactor after the completion of the reaction.
  • the hydrogenation catalyst examples include at least one metal of nickel (Ni), platinum (Pt), ruthenium (Ru), rhodium (Rh) or palladium (Pd).
  • the content of the hydrogenation catalyst may be in the range of 0.10 parts by weight to 0.55 parts by weight with respect to 100 parts by weight of the base compound, within the above content range, the first metallocene compound through the partial hydrogenation of the base compound And the composition of the second metallocene compound can be prepared.
  • Hydrogenation is the addition of hydrogen to multiple bonds (double bonds, triple bonds), nitro groups, or carbonyl groups between carbons, and because of the high flammability and explosiveness of hydrogen, the catalyst is used to activate the hydrogen at the lowest possible temperature and provide it to the reactants.
  • Transition metals (Ti, Zr, Cr, Mo, Co, Fe, etc.) whose hydrogen adsorption strength is too strong are not suitable for the hydrogenation catalyst because the activated hydrogen at the catalyst surface is difficult to transfer to the reactants.
  • transition metals Mg, Zn, Ag, Si, Pb, etc.
  • nickel (Ni) may be used as the hydrogenation reaction catalyst.
  • nickel (Ni) has a low catalytic activity and requires a relatively high temperature and high pressure process in comparison with the noble metal catalyst for high yield.
  • one or more of the above-described precious metals of platinum (Pt), ruthenium (Ru), rhodium (Rh) or palladium (Pd) may be supported on a carrier.
  • the carrier may be, for example, carbon, silica, alumina, zeolite, or the like, but is not limited thereto.
  • a hydrogenation catalyst (Pd / C) in which palladium (Pd) is supported on a carbon carrier may be used.
  • Pd / C can obtain a composition of the first metallocene compound and the second metallocene compound in a higher yield than PtO 2 .
  • Pd / C is benzene, toluene, xylene, o-xylene, m-xylene, p-xylene, mesitylene, tetralin, anisole, cumene, 1,2-diethylbenzene, 1,3-diethylbenzene, It may be dispersed in an aromatic solvent such as 1,4-diethylbenzene, 1-ethyl-2-methylbenzene, 1-ethyl-3-methylbenzene, 1-ethyl-4-methylbenzene and the like to be added to the base compound.
  • an aromatic solvent such as 1,4-diethylbenzene, 1-ethyl-2-methylbenzene, 1-ethyl-3-methylbenzene, 1-ethyl-4-methylbenzene and the like to be added to the base compound.
  • X may be halogen
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be each independently hydrogen, a C 1-20 alkyl group, a C 6-14 aryl group
  • R 13 and R 14 may be each independently a C 1-10 alkyl group or a C 6-14 aryl group.
  • the C 1-20 alkyl group, the C 1-15 single or multiple ring compounds the at least one carbon element is nitrogen element (N), oxygen element It may be substituted with either (O) or sulfur element (S).
  • the base compound may be one of compounds represented by Formula B-1 to Formula B-20, and the first metallocene compound is represented by Formula 1-1 to Formula 1-20.
  • the second metallocene compound may be one of compounds represented by the following Chemical Formulas 2-1 to 2-20.
  • the method for preparing an olefin polymer according to the invention includes polymerizing olefin monomers in the presence of the metallocene supported catalyst.
  • the olefin monomers are, for example, ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, and the like, and the olefin polymer may be a homopolymer or a copolymer.
  • the olefin polymer may be produced, for example, by gas phase polymerization, solution polymerization or slurry polymerization.
  • the solvent used include C 5-12 aliphatic hydrocarbon solvents such as pentane, hexane, heptane, nonane, decane, and isomers thereof; Aromatic hydrocarbon solvents such as toluene, benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; Although mixtures of these, etc. are mentioned, It is not limited only to these.
  • Grace silica (SP2410) was used as a carrier. 5 ml of toluene solution was added to the glass reactor, and 1 g of silica was added thereto. After sufficiently dispersing the silica, a mixed solution of a metallocene compound and methyl aluminum oxane (MAO) was added thereto. It stirred at 90 degreeC for 3 hours. After the temperature was lowered to room temperature, a mixed metallocene supported catalyst was prepared by washing with a sufficient amount of toluene to remove unreacted aluminum compounds.
  • SP2410 As a carrier, Grace silica (SP2410) was used as . 5 ml of toluene solution was added to the glass reactor, and 1 g of silica was added thereto. After sufficiently dispersing the silica, a mixed solution of a metallocene compound and methyl aluminum oxane (MAO) was added thereto. It stirred at 90 degreeC for 3 hours. After the temperature was lowered to room temperature,
  • MFR Activity and melt flow ratio
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • MFR Activity and melt flow ratio
  • MFR number average molecular weight
  • Mw weight average molecular weight
  • MFR number of long chain branches per 10,000 total carbon atoms of the polyolefin obtained in Examples 1 to 3 and Comparative Example 1
  • SCB Short chain branches per 1000 carbon atoms
  • melt strength were measured.
  • the weight average molecular weight, the molecular weight distribution, and the SCB were measured using GPC-IR.
  • the MFR is the melt flow index (MFI) divided by the melt index (MI), the melt flow index is the extrusion amount for 10 minutes at a load of 21.6 kg, the melt index is 10 minutes extrusion at a load of 2.16 kg The amount was measured using a Melt Indexer manufactured by Toyoseki.
  • the molecular weight distribution is the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight.
  • the melt strength was measured under the conditions of an extrusion rate of 0.32 mm / s at 190 ° C temperature using a RG-25 from GOTTFERT.
  • the total number of long chain branches per 10000 carbon atoms (LCB / 10 4 C) is 10% strain, temperature 190 ° C., frequency 0.1 to 500 rad using TA INSTRUMENT's Advanced Rheometric Expansion System (ARES). It was calculated from the complex viscosity ( ⁇ *) measured under the condition of / sec. For calculations, see literature (1) WoodAdams, Paula M., Dealy, John M. Journal of Rheology. 40, (1996); 761-778, [2] WoodAdams, Paula M., Dealy, John M. Macromolecules. 33, (2000); 7481-7488).
  • ⁇ * ( ⁇ ) is the complex viscosity at frequency ⁇ , ⁇ 0 Is The zero shear viscosity, c is the viscosity relaxation time, a is the width variable, b is 1-n, and n is an index indicating the power law slope.
  • ⁇ * is a complex viscosity
  • N is the number of terms
  • A is the empirical constants obtained through data fitting
  • i is the tolerance
  • is the logarithmic viscosity curve in the power law region. It is a slope of a logarithmic viscosity curve
  • N and A are obtained by fitting data obtained through ARES as an empirical constant whose value varies for each polymer.
  • ⁇ * value according to frequency was converted into molecular weight distribution using Equation 3 below, and this was defined as molecular weight distribution (hereinafter referred to as viscosity MWD) by viscosity value.
  • ⁇ * is a complex viscosity
  • ⁇ 0 Is Young's shear viscosity
  • m is reduced molecular weight
  • is exponent associated with dependence of zero shear viscosity on weight average molecular weight
  • is In the power law region The slope of the logarithmic viscosity curve, and ⁇ is the frequency.
  • the ratio of the M value corresponding to the maximum value of the molecular weight distribution (referred to as GPC MWD) obtained from GPC-IR divided by the M value corresponding to the maximum value of the viscosity MWD has a relation as shown in Equation 4 below, through which LCB / 10 4 C was calculated.
  • Equation 4 is the LCB / 10 4 C when the ratio of the M value corresponding to the maximum value of the molecular weight distribution (referred to as GPC MWD) obtained from GPC-IR divided by the M value corresponding to the maximum value of the viscosity MWD is less than 1 0, and the ratio of the M value corresponding to the maximum value of the molecular weight distribution obtained from GPC-IR (called GPC MWD) divided by the M value corresponding to the maximum value of the viscosity MWD is GPC- 10 when LCB / 10 4 C is 1 or more.
  • GPC MWD ratio of the M value corresponding to the maximum value of the molecular weight distribution obtained from GPC-IR
  • Example 1 76 29,279 191,547 6.542 10.6 0.42 15.833
  • Example 2 77 27,785 180,480 6.496 11.3 0.51 13.011
  • Example 3 63 26,826 170,316 6.349 9.5 0.58 10.817 Comparative Example 1 47 27,220 141,684 5.205 9.9 0.58 8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 화학식 1로 표현되는 화합물들 중 적어도 하나의 제1 메탈로센 화합물, 화학식 2로 표현되는 화합물들 중 적어도 하나의 제2 메탈로센 화합물 및 조촉매 화합물이 담체에 담지된 메탈로센 담지 촉매와 상기 메탈로센 담지 촉매의 존재 하에서 올레핀 단량체들을 중합하는 것을 특징으로 하는 올레핀 중합체의 제조방법에 관한 것이다.

Description

메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법
본 발명은 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법에 관한 것이다.
메탈로센 촉매로 중합한 수지는 기존의 지글러-나타(Ziegler-Natta) 촉매와 달리 단일 활성점에서 고분자가 성장하기 때문에 좁은 분자량 분포를 보이며 기계적 물성이 우수하다는 장점을 가진다. 이러한 우수한 특성을 바탕으로 메탈로센 촉매는 폴리에틸렌(PE) 및 폴리프로필렌(PP) 산업에서 그 영역을 점차 확대해 나가고 있다. 그러나, 상기 메탈로센 촉매로 중합한 수지는 상기 지글러-나타 촉매로 중합한 수지에 비해 가공성이 떨어진다는 단점이 있다.
본 발명은, 가공성과 기계적 물성이 개선된 올레핀 중합체를 제공할 수 있는 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법을 제공하는 것이다.
본 발명에 따른 메탈로센 담지 촉매는, 담체, 상기 담체에 담지된 하기 화학식 1로 표현되는 화합물들 중 적어도 하나의 제1 메탈로센 화합물, 상기 담체에 담지된 하기 화학식 2로 표현되는 화합물들 중 적어도 하나의 제2 메탈로센 화합물, 및 상기 담체에 담지된 조촉매 화합물을 포함한다:
Figure PCTKR2016011166-appb-I000001
(화학식 1)
Figure PCTKR2016011166-appb-I000002
(화학식 2)
상기 화학식 1 및 상기 화학식 2에서, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf) 중 어느 하나이며, Q는 탄소(C), 실리콘(Si), 게르마늄(Ge), 또는 주석(Sn) 중 어느 하나이고, X는 각각 독립적으로 할로겐, C1-10 알킬기, C2-10 알케닐기 중 어느 하나이다.
상기 화학식 1 및 상기 화학식 2에서, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 및 R12 는 각각 독립적으로 수소, C1-20 알킬기, C3-6 사이클로알킬기(cycloalkyl group), C6-14 아릴기(aryl group) 중 하나이거나, Rm(m은 1 내지 12) 중에서, 인접한 두 개의 Rn 과 Rn +1 (n은 1 내지 11)이 C1-4 알킬기가 치환 또는 비치환된 C1-15 고리 화합물을 형성한 때, 상기 C1-4 알킬기가 치환 또는 비치환된 C1-15 고리 화합물을 형성하는 Rn 과 Rn +1 를 제외한 나머지 Rm은 독립적으로 수소, C1-20 알킬기, C3-6 사이클로알킬기, C6-14 아릴기 중 하나이다.
상기 화학식 1 및 상기 화학식 2에서, R13 및 R14는 각각 독립적으로 C1-10 알킬기 또는 C6-14 아릴기이다.
발명에 따른 올레핀 중합체의 제조방법은, 메탈로센 담지 촉매의 존재 하에서 올레핀 단량체들을 중합하는 것을 특징으로 한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 따른 메탈로센 담지 촉매와 올레핀 중합체의 제조방법은, 가공성과 기계적 물성이 개선된 올레핀 중합체를 제공할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 올레핀 중합체의 중량평균 분자량을 겔투과 크로마토그래피-적외선 분광법(GPC-IR)로 측정하여 나타낸 그래프이다.
도 2는 올레핀 중합체의 연신 속도(pull-off speed)에 대한 용융강도(Force)에 관한 그래프이다.
도 3은 올레핀 중합체의 용융 흐름비(MFR)에 대한 용융강도(Melt Strength)에 관한 그래프이다.
도 4는 총 10000 개의 탄소원자들 당 장쇄분지들의 개수(LCB/104C)에 대한 용융강도(Melt Strength)에 관한 그래프이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
본 명세서에서, 용어 "CA-B"는 탄소수가 A 이상이고 B 이하인 것을 의미한다.
본 명세서에서, "A 내지 B"는 A 이상이고 B 이하인 것을 의미한다.
이하, 발명에 따른 메탈로센 담지 촉매에 대해 상세하게 설명하기로 한다.
발명에 따른 메탈로센 담지 촉매는, 담체, 상기 담체에 담지된 제1 메탈로센 화합물, 상기 담체에 담지된 제2 메탈로센 화합물 및 상기 담체에 담지된 조촉매 화합물을 포함한다.
상기 담체는, 상기 제1 메탈로센 화합물, 상기 제2 메탈로센 화합물 및 상기 조촉매 화합물을 담지할 수 있는 것이면 특별히 제한되지 않으나, 예를 들어, 탄소, 실리카, 알루미나, 제올라이트, 염화 마그네슘 등일 수 있다.
상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물은 상기 조촉매 화합물과 함께 사용되어 폴리올레핀의 중합 촉매로서 사용될 수 있다.
상기 제1 메탈로센 화합물은 하기 화학식 1로 표현되는 화합물들 중 하나이고, 상기 제2 메탈로센 화합물은 하기 화학식 2로 표현되는 화합물들 중 하나이다.
상기 조촉매 화합물은, 메탈로센 촉매 분야에서 널리 사용되는 것이면 특별히 제한되지 않고, 예를 들어, 하기 화학식 A-1로 표현되는 화합물들 중 적어도 하나의 제1 조촉매 화합물, 하기 화학식 A-2로 표현되는 화합물들 중 적어도 하나의 제2 조촉매 화합물, 및 상기 제1 조촉매 화합물과 상기 제2 조촉매 화합물의 혼합물 중 적어도 하나일 수 있다.
Figure PCTKR2016011166-appb-I000003
(화학식 A-1)
Figure PCTKR2016011166-appb-I000004
(화학식 A-2)
상기 화학식 A-1 및 상기 화학식 A-2에서, Ra는 할로겐, 할로겐으로 치환 또는 비치환된 C1-20 알킬기, C3-6 사이클로알킬기, C6-14 아릴기이고; n은 2 이상의 정수이며; D는 알루미늄 또는 보론이며; Rb 내지 Rd는 서로 같거나 상이하며, 각각 독립적으로 수소, 할로겐, 또는 할로겐으로 치환 또는 비치환된 C1-20 알킬기, C3-6 사이클로알킬기, C6-14 아릴기이다.
상기 담체에 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물 및 상기 조촉매 화합물을 담지하는 방법으로는, 공지된 물리적 흡착 방법 또는 공지된 화학적 흡착 방법이 사용될 수 있다.
상기 물리적 흡착 방법은, 예를 들어, 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물이 용해된 용액을 상기 담체에 접촉시킨 후 건조하는 방법 또는, 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물과 상기 조촉매 화합물이 용해된 용액을 상기 담체에 접촉시킨 후 건조하는 방법 또는 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물이 용해된 용액을 상기 담체에 접촉시킨 후 건조하고 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물이 담지된 담체를 제조하고, 이와 별개로 상기 조촉매 화합물이 용해된 용액을 상기 담체에 접촉시킨 후 건조하여 조촉매 화합물이 담지된 담체를 제조한 후, 이들을 혼합하는 방법 등일 수 있다.
상기 화학적 흡착 방법은, 예를 들어, 상기 담체의 표면에 상기 조촉매 화합물을 먼저 담지시킨 후, 상기 조촉매 화합물에 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물을 담지시키는 방법, 또는 상기 담체의 표면의 작용기(예를 들어, 실리카의 경우, 실리카 표면의 수산기(-OH))와 상기 메탈로센 화합물을 공유 결합시키는 방법 등일 수 있다.
상기 제1 메탈로센 화합물의 담지량과 상기 제2 메탈로센 화합물의 담지량의 총합은 상기 담체 1g을 기준으로, 0.001 mmol 내지 1 mmol 일 수 있으며, 상기 조촉매 화합물의 담지량은 상기 담체 1g을 기준으로, 2 mmol 내지 15 mmol 일 수 있다.
상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물에 대해서는 이하에서 보다 상세하게 설명하기로 한다.
상기 제1 메탈로센 화합물은, 하기 화학식 1로 표현되는 화합물들 중 하나이다.
Figure PCTKR2016011166-appb-I000005
(화학식 1)
상기 제2 메탈로센 화합물은, 하기 화학식 2로 표현되는 화합물들 중 하나이다.
Figure PCTKR2016011166-appb-I000006
(화학식 2)
상기 화학식 1 및 상기 화학식 2에서, M, Q, X, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14 는 각각 하기와 같다.
M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf) 중 어느 하나일 수 있다.
Q는 탄소(C), 실리콘(Si), 게르마늄(Ge), 또는 주석(Sn) 중 어느 하나일 수 있다.
X는 각각 독립적으로 할로겐, C1-10 알킬기, C2-10 알케닐기 중 어느 하나일 수 있다.
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 및 R12 는 각각 독립적으로 수소, C1-20 알킬기, C3-6 사이클로알킬기(cycloalkyl group), C6-14 아릴기(aryl group) 중 하나일 수 있거나, Rm(m은 1 내지 12) 중에서, 인접한 두 개의 Rn 과 Rn +1(n은 1 내지 11)이 C1-4 알킬기가 치환 또는 비치환된 C1-15 고리 화합물을 형성한 때, 상기 C1-4 알킬기가 치환 또는 비치환된 C1-15 고리 화합물을 형성하는 인접한 두 개의 Rn 과 Rn+1 를 제외한 나머지 Rm은 독립적으로 수소, C1-20 알킬기, C3-6 사이클로알킬기, C6-14 아릴기 중 하나일 수 있다.
R13 및 R14는 각각 독립적으로 C1-10 알킬기 또는 C6-14 아릴기일 수 있다.
상기 C1-15 단일 고리 화합물은 지방족 고리 화합물의 단일 고리 화합물이거나 또는 방향족 고리 화합물의 단일 고리 화합물일 수 있고, 상기 C1-15 다중 고리 화합물은 지방족 고리 화합물의 다중 고리 화합물이거나, 방향족 고리 화합물의 다중 고리 화합물이거나 또는 상기 지방족 고리 화합물과 상기 방향족 고리 화합물의 다중 고리 화합물을 모두 포함할 수 있다.
상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물은 하기 화학식 B 로 표현되는 화합물들 중 적어도 하나의 베이스 화합물의 부분 수소화 반응을 통해 소정의 조성비로 제조될 수 있다. 예를 들어, 상기 부분 수소화 반응은 수소화 반응 촉매의 함량을 조절하여 달성할 수 있다.
Figure PCTKR2016011166-appb-I000007
(화학식 B)
상기 화학식 B에서, M, Q, X, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14는 각각 상기 화학식 1 및 상기 화학식 2에서 설명한 바와 같다.
상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물은, 예를 들어, 반응기에 상기 베이스 화합물과 소정의 함량의 상기 수소화 반응 촉매를 넣고, 상기 반응기 내에 수소를 주입한 후, 수소 분위기하에서, 상기 베이스 화합물과 상기 수소화 반응 촉매를 교반한 후, 반응 종결 후, 반응기 내의 용매를 제거하는 과정을 통해 제조될 수 있다.
상기 수소화 반응 촉매로는, 예를 들어, 니켈(Ni), 백금(Pt), 루테늄(Ru), 로듐(Rh) 또는 팔라듐(Pd) 중 하나 이상의 금속을 들 수 있다. 상기 수소화 반응 촉매의 함량은 상기 베이스 화합물 100 중량부에 대해 0.10 중량부 내지 0.55 중량부의 범위 내일 수 있고, 상기한 함량 범위 내에서, 상기 베이스 화합물의 부분 수소화 반응을 통해 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물의 조성물을 제조할 수 있다.
수소화 반응은 탄소 사이 다중결합(이중결합, 삼중결합), 니트로기, 또는 카르보닐기에 수소를 첨가하는 반응으로, 수소의 높은 가연성과 폭발성 때문에 가능한 한 낮은 온도에서 수소를 활성화하여 반응물에 제공하기 위해서 촉매를 사용한다.
수소의 흡착 세기가 너무 강한 전이금속(Ti, Zr, Cr, Mo, Co, Fe등)은 촉매표면에서 활성화된 수소가 반응물에 전달되기 어려워 수소화 반응 촉매에 적절하지 않다. 반대로 수소의 흡착세기가 너무 약한 전이금속(Mg, Zn, Ag, Si, Pb 등)은 수소가 충분히 활성화 되지 못해 수소화 반응 활성이 낮다. 따라서 수소의 흡착 세기가 적당하여 활성화된 수소의 이동이 용이한 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 백금(Pt) 이 수소화 반응 촉매로 바람직하다.
루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 백금(Pt)과 같은 귀금속 촉매 외에 니켈(Ni)이 수소화 반응 촉매로 사용될 수 있다. 다만, 니켈(Ni)은 촉매 활성이 낮아 높은 수율을 위해서는 귀금속 촉매에 비해 상대적으로 고온 고압 공정이 필요하다.
값비싼 귀금속 촉매를 최대한으로 촉매반응에 활용하기 위해서, 상기한 백금(Pt), 루테늄(Ru), 로듐(Rh) 또는 팔라듐(Pd) 중 하나 이상의 귀금속을 담체에 담지하여 사용할 수 있다. 상기 담체는, 예를 들어, 탄소, 실리카, 알루미나, 제올라이트 등일 수 있으나, 이들만으로 제한되는 것은 아니다. 바람직하게는, 팔라듐(Pd)이 탄소 담체에 담지된 수소화 반응 촉매(Pd/C)가 사용될 수 있다. Pd/C는 PtO2에 비해 높은 수율로 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물의 조성물을 얻을 수 있다.
Pd/C는 벤젠, 톨루엔, 크실렌, o-크실렌, m-크실렌, p-크실렌, 메시틸렌, 테트랄린, 아니솔, 쿠멘, 1,2-디에틸벤젠, 1,3-디에틸벤젠, 1,4-디에틸벤젠, 1-에틸-2-메틸벤젠, 1-에틸-3-메틸벤젠, 1-에틸-4-메틸벤젠 등과 같은 방향족 용매에 분산되어 상기 베이스 화합물에 투입될 수 있다.
예를 들어, 상기 화학식 1, 상기 화학식 2, 상기 화학식 B에서, 상기 X가 할로겐일 수 있고, 상기 R1, 상기 R2, 상기 R3, 상기 R4, 상기 R5, 상기 R6, 상기 R7, 상기 R8, 상기 R9, 상기 R10, 상기 R11 및 상기 R12 는 각각 독립적으로 수소, C1-20 알킬기, C6-14 아릴기 중 하나일 수 있으며, 상기 R13 및 상기 R14 는 각각 독립적으로 C1-10 알킬기 또는 C6-14 아릴기일 수 있다. 또한, 예를 들어, 상기 화학식 1, 상기 화학식 2, 상기 화학식 B에서, 상기 C1-20 알킬기, 상기 C1-15 단일 또는 다중 고리 화합물은 하나 이상의 탄소원소가 질소원소(N), 산소원소(O) 또는 황원소(S) 중 하나로 치환될 수 있다.
이 경우, 상기 베이스 화합물은 하기 화학식 B-1 내지 하기 화학식 B-20 으로 표현되는 화합물들 중 하나일 수 있고, 상기 제1 메탈로센 화합물은 하기 화학식 1-1 내지 하기 화학식 1-20 으로 표현되는 화합물들 중 하나일 수 있으며, 상기 제2 메탈로센 화합물은 하기 화학식 2-1 내지 하기 화학식 2-20 으로 표현되는 화합물들 중 하나일 수 있다.
Figure PCTKR2016011166-appb-I000008
(화학식 B-1)
Figure PCTKR2016011166-appb-I000009
(화학식 B-2)
Figure PCTKR2016011166-appb-I000010
(화학식 B-3)
Figure PCTKR2016011166-appb-I000011
(화학식 B-4)
Figure PCTKR2016011166-appb-I000012
(화학식 B-5)
Figure PCTKR2016011166-appb-I000013
(화학식 B-6)
Figure PCTKR2016011166-appb-I000014
(화학식 B-7)
Figure PCTKR2016011166-appb-I000015
(화학식 B-8)
Figure PCTKR2016011166-appb-I000016
(화학식 B-9)
Figure PCTKR2016011166-appb-I000017
(화학식 B-10)
Figure PCTKR2016011166-appb-I000018
(화학식 B-11)
Figure PCTKR2016011166-appb-I000019
(화학식 B-12)
Figure PCTKR2016011166-appb-I000020
(화학식 B-13)
Figure PCTKR2016011166-appb-I000021
(화학식 B-14)
Figure PCTKR2016011166-appb-I000022
(화학식 B-15)
Figure PCTKR2016011166-appb-I000023
(화학식 B-16)
Figure PCTKR2016011166-appb-I000024
(화학식 B-17)
Figure PCTKR2016011166-appb-I000025
(화학식 B-18)
Figure PCTKR2016011166-appb-I000026
(화학식 B-19)
Figure PCTKR2016011166-appb-I000027
(화학식 B-20)
Figure PCTKR2016011166-appb-I000028
(화학식 1-1)
Figure PCTKR2016011166-appb-I000029
(화학식 1-2)
Figure PCTKR2016011166-appb-I000030
(화학식 1-3)
Figure PCTKR2016011166-appb-I000031
(화학식 1-4)
Figure PCTKR2016011166-appb-I000032
(화학식 1-5)
Figure PCTKR2016011166-appb-I000033
(화학식 1-6)
Figure PCTKR2016011166-appb-I000034
(화학식 1-7)
Figure PCTKR2016011166-appb-I000035
(화학식 1-8)
Figure PCTKR2016011166-appb-I000036
(화학식 1-9)
Figure PCTKR2016011166-appb-I000037
(화학식 1-10)
Figure PCTKR2016011166-appb-I000038
(화학식 1-11)
Figure PCTKR2016011166-appb-I000039
(화학식 1-12)
Figure PCTKR2016011166-appb-I000040
(화학식 1-13)
(화학식 1-14)
Figure PCTKR2016011166-appb-I000042
(화학식 1-15)
Figure PCTKR2016011166-appb-I000043
(화학식 1-16)
Figure PCTKR2016011166-appb-I000044
(화학식 1-17)
Figure PCTKR2016011166-appb-I000045
(화학식 1-18)
Figure PCTKR2016011166-appb-I000046
(화학식 1-19)
Figure PCTKR2016011166-appb-I000047
(화학식 1-20)
Figure PCTKR2016011166-appb-I000048
(화학식 2-1)
Figure PCTKR2016011166-appb-I000049
(화학식 2-2)
Figure PCTKR2016011166-appb-I000050
(화학식 2-3)
Figure PCTKR2016011166-appb-I000051
(화학식 2-4)
Figure PCTKR2016011166-appb-I000052
(화학식 2-5)
Figure PCTKR2016011166-appb-I000053
(화학식 2-6)
Figure PCTKR2016011166-appb-I000054
(화학식 2-7)
Figure PCTKR2016011166-appb-I000055
(화학식 2-8)
Figure PCTKR2016011166-appb-I000056
(화학식 2-9)
Figure PCTKR2016011166-appb-I000057
(화학식 2-10)
Figure PCTKR2016011166-appb-I000058
(화학식 2-11)
Figure PCTKR2016011166-appb-I000059
(화학식 2-12)
Figure PCTKR2016011166-appb-I000060
(화학식 2-13)
Figure PCTKR2016011166-appb-I000061
(화학식 2-14)
Figure PCTKR2016011166-appb-I000062
(화학식 2-15)
Figure PCTKR2016011166-appb-I000063
(화학식 2-16)
Figure PCTKR2016011166-appb-I000064
(화학식 2-17)
Figure PCTKR2016011166-appb-I000065
(화학식 2-18)
Figure PCTKR2016011166-appb-I000066
(화학식 2-19)
Figure PCTKR2016011166-appb-I000067
(화학식 2-20)
이하, 상기 메탈로센 담지 촉매를 중합 촉매로 이용하여 올레핀 중합체를 중합하는 방법과 이로부터 제조된 올레핀 중합체에 대해 구체적으로 설명하기로 한다.
발명에 따른 올레핀 중합체 제조방법은, 상기 메탈로센 담지 촉매의 존재 하에서 올레핀 단량체들을 중합하는 단계를 포함한다. 상기 올레핀 단량체들은, 예를 들어, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 및 1-헥사데센 등일 수 있고, 상기 올레핀 중합체는, 단일 중합체 또는 공중합체일 수 있다.
상기 올레핀 중합체는, 예를 들어, 기상 중합법, 용액 중합법 또는 슬러리 중합법 등으로 제조될 수 있다. 상기 올레핀 중합체가 상기 용액 중합법 또는 상기 슬러리 중합법으로 제조되는 경우, 사용되는 용매의 예들로는, 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 같은 C5-12 지방족 탄화수소 용매; 톨루엔, 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매; 이들의 혼합물 등을 들 수 있으나, 이들만으로 한정되는 것은 아니다.
[실시예 1]
Rac - dimethylsilyl(indenyl) ( tetrahydroindenyl )zirconium dichloride 와 Rac-dimethylsilyl bis(tetrahydroindenyl) zirconium dichloride 의 1:1 비로 합성
< 반응식 1 >
Figure PCTKR2016011166-appb-I000068
글로브 박스(Glove box) 내에서 100mL 오토클레이브(auotoclave) 안에 Rac-dimethylsilylene bis(indenyl)zirconium dichloride 502mg(1eq.)과 Pd/C 용액을 넣었다. Pd/C 용액은 5 wt% Pd/C 11mg(0.5 mol%)을 톨루엔 25mL에 분산시켜 제조하였다. 오토클레이브 내에 수소 30 bar를 주입한 후, 70℃에서 14 시간 동안 교반하였다. 반응 종결 후, 오토클레이브 내의 용액을 여과하였고, 톨루엔 25 mL를 사용하여 생성된 전이금속 화합물 결정을 녹인 후 여과하였다. 여과된 용액을 모아 진공 하에 용매를 제거한 후 Rac-dimethylsilyl(indenyl)(tetrahydroindenyl)zirconium dichloride와 Rac-dimethylsilyl bis(tetrahydroindenyl)zirconium dichloride의 혼합물을 90%의 수율로 얻었다.
Rac - dimethylsilyl ( indenyl )( tetrahydroindenyl )zirconium dichloride
1H-NMR (CDCl3, 300 MHz) 7.71 (d, 1H), 7.46 (d, 1H), 7.40 (t, 1H), 7.21 (dd, 1H), 7.07 (m, 1H), 6.37 (d, 1H), 6.04 (d, 1H), 5.66 (d, 1H), 3.01-1.45 (8H), 1.01 (s, 3H), 0.89 (s, 3H).
Rac - dimethylsilyl bis(tetrahydroindenyl) zirconium dichloride
1H-NMR (CDCl3, 300 MHz) 6.65 (d, 2H), 5.50 (d, 2H), 3.02-2.88 (m, 2H), 2.76-2.50 (m, 4H), 2.38-2.22 (m, 2H), 2.04-1.88 (m, 2H), 1.86-1.70 (m, 2H), 1.64-1.42 (m, 4H), 0.76 (s, 6H).
담체는 그레이스(Grace)社 실리카 (SP2410)을 사용하였다. 유리 반응기에 톨루엔 용액 5ml를 넣고 실리카 1g을 투입한다. 실리카를 충분히 분산시킨 후 메탈로센 화합물과 메틸알루미늄옥산(MAO) 혼합용액을 투입하였다. 90℃에서 3시간 교반하였다. 온도를 실온으로 낮춘 후 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하여 혼성 메탈로센 담지 촉매를 제조하였다.
중합 반응기에 0.5mmol 트리아이소부틸알루미늄(TIBAL)이 들어 있는 헥산 1L와 1-헥센(50ml)를 주입하고 실시예 1에서 제조한 메탈로센 담지 촉매 30mg을 투입하였다. 80℃에서 기체 에틸렌을 14atm이 유지되도록 계속적으로 에틸렌을 가하고 수소를 분당 3cc씩 1시간 동안 중합하였다. 중합 종결은 먼저 교반을 멈춘 후 에틸렌을 배기시켜 제거하였다. 중합 용매를 여과시켜 대부분 용매를 제거한 후 60℃ 진공오븐에서 2시간 건조시켜 폴리올레핀을 얻었다.
[실시예 2]
Rac - dimethylsilyl ( indenyl )( tetrahydroindenyl )zirconium dichloride 와 Rac-dimethylsilyl bis(tetrahydroindenyl) zirconium dichloride 의 1:2 비로 합성
< 반응식 2 >
Figure PCTKR2016011166-appb-I000069
글로브 박스 내에서 100mL 오토클레이브 안에 Rac-dimethylsilylene bis(indenyl)zirconium dichloride 502mg(1eq.)과 Pd/C 용액을 넣었다. Pd/C 용액은 5 wt% Pd/C 11mg(0.5 mol%)을 톨루엔 25mL에 분산시켜 제조하였다. 오토클레이브 내에 수소 30 bar를 주입한 후, 70℃에서 15 시간 동안 교반하였다. 반응 종결 후, 오토클레이브 내의 용액을 여과하였고, 톨루엔 25 mL를 사용하여 생성된 전이금속 화합물 결정을 녹인 후 여과하였다. 여과된 용액을 모아 진공 하에 용매를 제거한 후 Rac-dimethylsilyl(indenyl)(tetrahydroindenyl)zirconium dichloride와 Rac-dimethylsilyl bis(tetrahydroindenyl)zirconium dichloride의 혼합물을 90%의 수율로 얻었다.
이후, 실시예 1의 방법에 따라 메탈로센 담지 촉매와 폴리올레핀을 제조하였다.
[실시예 3]
Rac - dimethylsilyl ( indenyl )( tetrahydroindenyl )zirconium dichloride 와 Rac-dimethylsilyl bis(tetrahydroindenyl) zirconium dichloride 의 1:3 비로 합성
< 반응식 3 >
Figure PCTKR2016011166-appb-I000070
글로브 박스 내에서 100mL 오토클레이브 안에 Rac-dimethylsilylene bis(indenyl)zirconium dichloride 502mg(1eq.)과 Pd/C 용액을 넣었다. Pd/C 용액은 5 wt% Pd/C 11mg(0.5 mol%)을 톨루엔 25mL에 분산시켜 제조하였다. 오토클레이브 내에 수소 30 bar를 주입한 후, 70℃에서 16 시간 동안 교반하였다. 반응 종결 후, 오토클레이브 내의 용액을 여과하였고, 톨루엔 25 mL를 사용하여 생성된 전이금속 화합물 결정을 녹인 후 여과하였다. 여과된 용액을 모아 진공 하에 용매를 제거한 후 Rac-dimethylsilyl(indenyl)(tetrahydroindenyl)zirconium dichloride와 Rac-dimethylsilyl bis(tetrahydroindenyl)zirconium dichloride의 혼합물을 90%의 수율로 얻었다.
이후, 실시예 1의 방법에 따라 메탈로센 담지 촉매와 폴리올레핀을 제조하였다.
[비교예 1]
Rac - dimethylsilyl bis(tetrahydroindenyl) zirconium dichloride의 합성
<반응식 4>
Figure PCTKR2016011166-appb-I000071
글로브 박스 내에서 100mL 오토클레이브 안에 Rac-dimethylsilylene bis(indenyl)zirconium dichloride 502mg(1eq.)과 Pd/C 용액을 넣었다. Pd/C 용액은 5 wt% Pd/C 59.5 mg(2.5 mol%)을 톨루엔 25mL에 분산시켜 제조하였다. 오토클레이브 내에 수소 30 bar를 주입한 후, 70℃에서 5 시간 동안 교반하였다. 반응 종결 후, 오토클레이브 내의 용액을 여과하였고, 톨루엔 25 mL를 사용하여 생성된 전이금속 화합물 결정을 녹인 후 여과하였다. 여과된 용액을 모아 진공 하에 용매를 제거한 후 옅은 초록색 고체 화합물 Rac-dimethylsilyl bis(tetrahydroindenyl)zirconium dichloride 0.91g (90%)을 얻었다. 메탈로센 화합물을 제외하고는 상기 실시예들과 동일한 방법으로 담지 메탈로센 촉매를 제조하였다.
이후, 실시예 1의 방법에 따라 메탈로센 담지 촉매와 폴리올레핀을 제조하였다.
[실험예]
실시예 1 내지 3, 비교예 1에서 얻어진 폴리올레핀의 활성 및 용융흐름비(MFR), 수평균 분자량(Mn), 중량평균분자량(Mw), 분자량 분포, 총 10000 개의 탄소원자들 당 장쇄분지들의 개수(LCB/104 C), 총 1000 개의 탄소원자들 당 단쇄분지들의 개수(SCB: Short Chain Branches / 1000 total carbon atoms), 용융 강도를 측정하였다.
상기 중량평균분자량, 상기 분자량 분포, 상기 SCB는 GPC-IR을 사용하여 측정하였다. 상기 MFR은 용융흐름지수(MFI)를 용융지수(MI)로 나눈 값이고, 상기 용융흐름지수는 21.6 kg의 하중에서 10 분간의 압출량이고, 상기 용융지수는 2.16 kg의 하중에서 10 분간의 압출량이며, 토요세키(Toyoseki)사의 용융지수 측정기(Melt Indexer)를 사용하여 측정하였다. 상기 분자량 분포는, 수평균 분자량에 대한 중량평균 분자량의 비(Mw/Mn)이다. 상기 용융강도는 고트페르트(GOTTFERT)사 RG-25를 사용하여 190℃ 온도에서 0.32 mm/s 의 압출 속도의 조건에서 측정하였다.
상기 총 10000 개의 탄소원자들 당 장쇄분지들의 개수(LCB/104 C)는 티에이 인스트루먼트(TA INSTRUMENT)사의 ARES(Advanced Rheometric Expansion System)을 이용하여 변형률 10%, 온도 190℃, 주파수 0.1 내지 500 rad/sec 의 조건에서 측정된 복소점도(complex viscosity)(η*)를 통해 계산했다. 계산방법은 문헌을 참고하였다([1]WoodAdams, Paula M., Dealy, John M. Journal of Rheology. 40, (1996); 761-778, [2]WoodAdams, Paula M., Dealy, John M. Macromolecules. 33, (2000); 7481-7488).
먼저, 0.1 내지 500 rad/sec 에서 구해진 복소점도(η*) 데이터를 하기 식 1의 Carreau-Yasuda 점도모델에 피팅(fitting)하여 영전단 점도(zero shear viscosity)(η0)를 구했다.
Figure PCTKR2016011166-appb-I000072
(식 1)
상기 식 1에서,
η*(ω)는 주파수 ω 에서의 복소점도이고, η0 영전단 점도이며, c는 점성 완화시간이고, a는 너비 변수이며, b 는 1-n 이고, n은 지수법칙 기울기(power law slope)를 나타내는 지표이다.
η0와 ARES(atmospheric relaxation and electric field sensor)의 주파수 변화(frequency sweep)를 통해 얻은 데이터를 하기 식 2의 비노그라도프 유동성 모델(Vinogradov fluidity model)에 피팅하여 주파수 500 rad/sec 이상에서의 η*를 계산하였다.
Figure PCTKR2016011166-appb-I000073
(식 2)
η*는 복소점도이고, η0 영전단 점도이며, N은 항의 개수이고, A는 데이터 맞춤(data fitting)을 통해 얻은 경험 상수(empirical constants)이며, i는 공차이고, ν는 지수법칙 영역(power law region)에서의 대수 점성도 곡선(logarithmic viscosity curve)의 기울기이며, 상기 N과 상기 A는 고분자마다 값이 달라지는 경험상수로서 ARES를 통해 얻은 데이터를 피팅(fitting)하여 얻을 수 있다.
하기 식 3을 이용하여 주파수에 따른 η*값을 분자량 분포로 변환하였고, 이를 점도값에 의한 분자량 분포(이하, viscosity MWD라 함)라고 정의하였다.
Figure PCTKR2016011166-appb-I000074
(식 3)
η*는 복소점도이고, η0 영전단 점도이며, m은 감소 분자량(reduced molecular weight)이고, α는 중량평균분자량에 대한 영전단점도의 의존도와 관련된 지수이며(exponent associated with dependence of zero shear viscosity on weight average molecular weight), ν는 지수법칙 영역(power law region) 에서의 대수 점성도 곡선(logarithmic viscosity curve)의 기울기이고, ω 는 주파수이다.
GPC-IR로부터 얻어진 분자량 분포(GPC MWD 라 함)의 최대값에 해당되는 M값을 viscosity MWD의 최대값에 해당되는 M값으로 나눈 비는 하기 식 4와 같은 관계식을 갖고, 이를 통해 LCB / 104 C를 계산하였다.
Figure PCTKR2016011166-appb-I000075
(식 4)
상기 식 4는 GPC-IR로부터 얻어진 분자량 분포(GPC MWD 라 함)의 최대값에 해당되는 M값을 viscosity MWD의 최대값에 해당되는 M값으로 나눈 비가 1 보다 작은 경우에는 LCB / 104C 가 0 이고, GPC-IR로부터 얻어진 분자량 분포(GPC MWD 라 함)의 최대값에 해당되는 M값을 viscosity MWD의 최대값에 해당되는 M값으로 나눈 비가 LCB / 104 C 가 1 이상인 경우에는 GPC-IR로부터 얻어진 분자량 분포(GPC MWD 라 함)의 최대값에 해당되는 M값을 viscosity MWD의 최대값에 해당되는 M값으로 나눈 비의 로그값에 1.125를 곱한다는 것을 의미한다.
MFR Mn Mw 분자량 분포(Polydispersity index; PDI) SCB LCB/104C 용융강도(cN)
실시예 1 76 29,279 191,547 6.542 10.6 0.42 15.833
실시예 2 77 27,785 180,480 6.496 11.3 0.51 13.011
실시예 3 63 26,826 170,316 6.349 9.5 0.58 10.817
비교예 1 47 27,220 141,684 5.205 9.9 0.58 8
표 1 및 도 1의 결과로부터, 실시예 1 내지 3은 비교예 1에 비해 분자량 분포가 넓은 폴리올레핀이 제조되었음을 알 수 있다. 또한, 표 1, 도 2 및 도 3의 결과로부터, 실시예들은 비교예에 비해 고분자 영역의 수지양이 증가하여 용융강도가 향상되고 용융흐름지수, 즉 가공성이 개선되었음을 알 수 있다. 한편, 도 2를 참고하면, Rac-dimethylsilyl(4,5,6,7-tetrahydroindenyl)(indenyl) zirconium dichloride가 존재하면 용융 강도가 크며 Rac-dimethylsilyl(4,5,6,7-tetrahydroindenyl)(indenyl) zirconium dichloride의 비율이 높을수록 용융 강도가 커지는 것을 확인할 수 있었다.
도 4의 결과를 보면, 실시예 1 내지 3의 LCB/104C와 용융 강도는 하기 식 5를 만족하는 것을 알 수 있다.
(식 5)
-31.3×(LCB/104C)+28 < 용융강도(190℃) < -31.3×(LCB/104C)+30
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (7)

  1. 담체;
    상기 담체에 담지된 하기 화학식 1로 표현되는 화합물들 중 적어도 하나의 제1 메탈로센 화합물;
    상기 담체에 담지된 하기 화학식 2로 표현되는 화합물들 중 적어도 하나의 제2 메탈로센 화합물; 및
    상기 담체에 담지된 조촉매 화합물;
    을 포함하는 것을 특징으로 하는 메탈로센 담지 촉매:
    Figure PCTKR2016011166-appb-I000076
    (화학식 1)
    Figure PCTKR2016011166-appb-I000077
    (화학식 2)
    상기 화학식 1 및 상기 화학식 2에서,
    M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf) 중 어느 하나이며;
    Q는 탄소(C), 실리콘(Si), 게르마늄(Ge), 또는 주석(Sn) 중 어느 하나이고;
    X는 각각 독립적으로 할로겐, C1-10 알킬기, C2-10 알케닐기 중 어느 하나이며;
    R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 및 R12 는 각각 독립적으로 수소, C1-20 알킬기, C3-6 사이클로알킬기(cycloalkyl group), C6-14 아릴기(aryl group) 중 하나이거나, Rm(m은 1 내지 12) 중에서, 인접한 두 개의 Rn 과 Rn +1(n은 1 내지 11)이 C1-4 알킬기가 치환 또는 비치환된 C1-15 고리 화합물을 형성하는 경우, 상기 C1-4 알킬기가 치환 또는 비치환된 C1-15 고리 화합물을 형성하는 인접한 두 개의 Rn 과 Rn+1 를 제외한 나머지 Rm들은 각각 독립적으로 수소, C1-20 알킬기, C3-6 사이클로알킬기, C6-14 아릴기 중 하나이고;
    R13 및 R14는 각각 독립적으로 C1-10 알킬기 또는 C6-14 아릴기이다.
  2. 제1 항에 있어서,
    상기 X는 할로겐이고;
    상기 R1, 상기 R2, 상기 R3, 상기 R4, 상기 R5, 상기 R6, 상기 R7, 상기 R8, 상기 R9, 상기 R10, 상기 R11 및 상기 R12 는 각각 독립적으로 수소, C1-20 알킬기, C6-14 아릴기이며;
    상기 R13 및 상기 R14 는 각각 독립적으로 C1-10 알킬기, C6-14 아릴기인 것을 특징으로 하는 메탈로센 담지 촉매.
  3. 제9 항에 있어서,
    상기 C1-20 알킬기, 상기 C1-15 단일 또는 다중 고리 화합물은 하나 이상의 탄소원소가 질소원소(N), 산소원소(O) 또는 황원소(S) 중 하나로 치환된 메탈로센 담지 촉매.
  4. 제1 항에 있어서,
    상기 조촉매 화합물은, 하기 화학식 3으로 표현되는 화합물들 중 적어도 하나의 제1 조촉매 화합물, 하기 화학식 4로 표현되는 화합물들 중 적어도 하나의 제2 조촉매 화합물, 및 상기 제1 조촉매 화합물과 상기 제2 조촉매 화합물의 혼합물 중 적어도 하나인 것을 특징으로 하는 메탈로센 담지 촉매:
    Figure PCTKR2016011166-appb-I000078
    (화학식 3)
    Figure PCTKR2016011166-appb-I000079
    (화학식 4)
    상기 화학식 3 및 상기 화학식 4에서,
    Ra는 할로겐, 할로겐으로 치환 또는 비치환된 C1-20 알킬기, C3-6 사이클로알킬기, C6-14 아릴기이고;
    n은 2 이상의 정수이며;
    D는 알루미늄 또는 보론이며;
    Rb 내지 Rd는 서로 같거나 상이하며, 각각 독립적으로 수소, 할로겐, 또는 할로겐으로 치환 또는 비치환된 C1-20 알킬기, C3-6 사이클로알킬기, C6-14 아릴기이다.
  5. 제1 항에 있어서,
    상기 담체 1g을 기준으로, 상기 제1 메탈로센 화합물의 담지량과 상기 제2 메탈로센 화합물의 담지량의 총합은 0.01 mmol 내지 1 mmol 이며, 상기 조촉매 화합물의 담지량은 2 mmol 내지 15 mmol 인 것을 특징으로 하는 메탈로센 담지 촉매.
  6. 제1 항 내지 제5 항 어느 한 항에 따른 메탈로센 담지 촉매의 존재 하에서 올레핀 단량체들을 중합하는 것을 특징으로 하는 올레핀 중합체의 제조방법.
  7. 제6 항에 있어서,
    상기 올레핀 중합체의 단량체는 에틸렌, 프로필렌, 1-부텐, 1-헥센 및 1-옥텐 중에서 선택되는 1종 이상인 것을 특징으로 하는 올레핀 중합체의 제조방법.
PCT/KR2016/011166 2015-11-18 2016-10-06 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법 WO2017086597A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150161531A KR101784689B1 (ko) 2015-11-18 2015-11-18 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법
KR10-2015-0161531 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086597A1 true WO2017086597A1 (ko) 2017-05-26

Family

ID=58718075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011166 WO2017086597A1 (ko) 2015-11-18 2016-10-06 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법

Country Status (2)

Country Link
KR (1) KR101784689B1 (ko)
WO (1) WO2017086597A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920401B1 (ko) * 2016-12-06 2019-02-08 한화케미칼 주식회사 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
KR102455607B1 (ko) * 2017-11-10 2022-10-14 한화솔루션 주식회사 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
KR102391297B1 (ko) * 2017-11-10 2022-04-26 한화솔루션 주식회사 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
KR102455610B1 (ko) * 2017-11-15 2022-10-14 한화솔루션 주식회사 올레핀 중합 촉매용 전이금속 화합물 및 그 제조 방법
KR102018535B1 (ko) * 2017-11-22 2019-09-06 한화케미칼 주식회사 올레핀 중합 촉매 및 이를 이용하여 중합된 올레핀계 중합체
KR20190081611A (ko) * 2017-12-29 2019-07-09 한화케미칼 주식회사 올레핀 중합 촉매 및 이를 이용하여 중합된 올레핀계 중합체
KR102193693B1 (ko) * 2018-03-21 2020-12-21 한화솔루션 주식회사 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272004A (ja) * 1989-04-14 1990-11-06 Japan Synthetic Rubber Co Ltd オレフィン性不飽和重合体の水素化方法
US5239022A (en) * 1990-11-12 1993-08-24 Hoechst Aktiengesellschaft Process for the preparation of a syndiotactic polyolefin
US5276208A (en) * 1990-11-12 1994-01-04 Hoechst Aktiengesellschaft Metallocenes containing ligands of 2-substituted idenyl derivatives, process for their preparation, and their use as catalysts
US6538082B2 (en) * 2000-12-05 2003-03-25 Solvay Polyolefins Europe-Belgium Asymmetric silicon-bridged metallocenes useful as catalysts in the polymerization of α-olefins, process for their preparation and use of said metallocenes for the polymerization of α-olefins

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104928A1 (en) 2000-12-22 2003-06-05 Holtcamp Matthew W. Bridged metallocene catalyst compounds for olefin polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272004A (ja) * 1989-04-14 1990-11-06 Japan Synthetic Rubber Co Ltd オレフィン性不飽和重合体の水素化方法
US5239022A (en) * 1990-11-12 1993-08-24 Hoechst Aktiengesellschaft Process for the preparation of a syndiotactic polyolefin
US5276208A (en) * 1990-11-12 1994-01-04 Hoechst Aktiengesellschaft Metallocenes containing ligands of 2-substituted idenyl derivatives, process for their preparation, and their use as catalysts
US6538082B2 (en) * 2000-12-05 2003-03-25 Solvay Polyolefins Europe-Belgium Asymmetric silicon-bridged metallocenes useful as catalysts in the polymerization of α-olefins, process for their preparation and use of said metallocenes for the polymerization of α-olefins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOURKMANI, K. ET AL.: "Synthesis and Characterization of Low Molecular Weight Ethylene-Propylene Copolymers Prepared Using Metallocene Catalysts", MACROMOLECULAR REACTION ENGINEERING, vol. 8, no. 12, 4 August 2014 (2014-08-04), pages 796 - 804, XP055596239, ISSN: 1862-832X, DOI: 10.1002/mren.201400021 *

Also Published As

Publication number Publication date
KR101784689B1 (ko) 2017-10-12
KR20170057965A (ko) 2017-05-26

Similar Documents

Publication Publication Date Title
WO2017086597A1 (ko) 메탈로센 담지 촉매 및 이를 이용한 올레핀 중합체의 제조방법
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2018021656A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2010128826A2 (ko) 올레핀계 중합체 및 이를 포함하는 섬유
WO2017188569A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2017209372A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2020080745A1 (ko) 올레핀 중합용 촉매
WO2014088287A1 (ko) 성형성 및 기계적 물성이 우수한 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 중합 방법
WO2017010648A1 (ko) 메탈로센 화합물 및 이의 제조방법
WO2019117443A1 (ko) 장기 내압 특성이 우수한 에틸렌계 중합체 및 이를 이용한 파이프
WO2018110915A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2017176074A1 (ko) 용융 장력이 우수한 프로필렌-디엔 공중합체 수지
WO2020080744A1 (ko) 올레핀계 중합체
WO2013133595A1 (en) Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same
WO2020130452A1 (ko) 올레핀 중합용 촉매 및 이를 이용하여 제조된 올레핀계 중합체
WO2022131693A1 (ko) 올레핀계 중합체 및 그 제조방법
WO2020101373A1 (ko) 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법
WO2020171625A1 (ko) 우수한 물성의 가교 폴리에틸렌 파이프
WO2020130720A1 (ko) 폴리올레핀
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2020130719A1 (ko) 폴리올레핀
WO2020171624A1 (ko) 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
WO2022108233A1 (ko) 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
WO2017115927A1 (ko) 혼성 메탈로센 담지 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 용융강도가 향상된 올레핀 중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866550

Country of ref document: EP

Kind code of ref document: A1