WO2020130720A1 - 폴리올레핀 - Google Patents

폴리올레핀 Download PDF

Info

Publication number
WO2020130720A1
WO2020130720A1 PCT/KR2019/018226 KR2019018226W WO2020130720A1 WO 2020130720 A1 WO2020130720 A1 WO 2020130720A1 KR 2019018226 W KR2019018226 W KR 2019018226W WO 2020130720 A1 WO2020130720 A1 WO 2020130720A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyolefin
formula
metallocene
temperature
Prior art date
Application number
PCT/KR2019/018226
Other languages
English (en)
French (fr)
Inventor
이진영
이승민
이정규
이효준
김세영
박성호
임슬기
김석환
홍대식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180167766A external-priority patent/KR102394383B1/ko
Priority claimed from KR1020190010606A external-priority patent/KR102434451B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980061952.5A priority Critical patent/CN112739733B/zh
Priority to JP2021503818A priority patent/JP7276967B2/ja
Priority to EP19897995.7A priority patent/EP3854823A4/en
Priority to US17/282,524 priority patent/US20210395411A1/en
Publication of WO2020130720A1 publication Critical patent/WO2020130720A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to polyolefins. More specifically, the present invention relates to a polyolefin having improved mechanical properties such as excellent drop impact strength and capable of exhibiting improved transparency in film production.
  • Linear low density polyethylene is manufactured by copolymerizing ethylene and alpha olefin at a low pressure using a polymerization catalyst, and is a resin having a narrow molecular weight distribution, a short chain branch of a certain length, and no long chain branch.
  • Linear low-density polyethylene film along with the characteristics of general polyethylene, has high breaking strength and elongation, excellent tear strength, drop impact strength, etc., which makes it difficult to apply conventional low-density polyethylene or high-density polyethylene to stretch films and overlap films. Doing.
  • linear low-density polyethylene has the disadvantage of poor blown film processability and poor transparency compared to excellent mechanical properties.
  • the blown film is a film produced by blowing air into a molten plastic and inflating it, also called an inflation film.
  • linear low-density polyethylene generally has a characteristic that the lower the density, the higher the transparency and drop impact strength.
  • alpha olefin comonomer when a large amount of alpha olefin comonomer is used to produce low-density polyethylene, there are problems such as a high frequency of fouling in the slurry polymerization process.
  • Patent Document 1 Korean Patent Publication No. 2010-0102854
  • the present invention is to provide a polyolefin capable of exhibiting improved mechanical properties, such as low density, excellent drop impact strength, and improved transparency in film production.
  • L w is the weighted average of the Ethylene sequence length (ESL)
  • L n is the arithmetic mean of the Ethylene sequence length (ESL) (unit: nm).
  • Figure 1 is a graph showing the relationship between the drop impact strength and inhomogeneity (inhomogeneity) of the polyolefin according to Examples and Comparative Examples of the present invention.
  • FIG. 2 is a graph showing the temperature profile of the SSA assay according to an embodiment of the present invention.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • Polyolefin according to an embodiment of the present invention the density of 0.915 g / cm 3 to 0.930 g / cm 3 ; And SSA (Successive Self-nucleation and Annealing) analysis, it characterized in that the heterogeneity (inhomogeneity, I) of the ethylene sequence (ethylene sequence) calculated by the following equation 1 is 1.25 to 1.40.
  • I heterogeneity
  • L w is the weighted average of the Ethylene sequence length (ESL)
  • L n is the arithmetic mean of the Ethylene sequence length (ESL) (unit: nm).
  • Linear low density polyethylene is a resin produced by copolymerizing ethylene and alpha olefin at a low pressure using a polymerization catalyst, and having a narrow molecular weight distribution and a short chain branch of a constant length.
  • Linear low-density polyethylene film along with the characteristics of general polyethylene, has high breaking strength and elongation, excellent tear strength, drop impact strength, etc., which makes it difficult to apply conventional low-density polyethylene or high-density polyethylene to stretch films and overlap films. Doing.
  • linear low density polyethylene is generally known to increase in transparency and drop impact strength as the density decreases.
  • the frequency of fouling in the slurry polymerization process increases and the amount of anti-blocking agent needs to be increased due to stickiness when manufacturing a film containing the same.
  • the process is unstable during production or the morphology characteristics of the resulting polyethylene are lowered to decrease the bulk density.
  • the optimum ratio of ASL (Average Ethylene Sequence Length) that can increase transparency and drop impact strength by appropriately adjusting the length and distribution of the ethylene sequence forming a lamellar while having low density characteristics It is intended to provide a polyolefin having.
  • the polyolefin according to an embodiment of the present invention has a density of 0.915 g/cm 3 or more and 0.930 g/cm 3 or less. That is, the present invention may be a low density polyolefin having a density of 0.930 g/cm 3 or less.
  • the polyolefin may be, for example, a copolymer of ethylene and alpha olefin.
  • the alpha olefin is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-eicocene, norbornene, norbornadiene, ethylidene novoden, phenyl novoden, vinyl novoden, dicyclopentadiene, 1,4-butadiene, 1,5- It may include pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, and 3-chloromethylstyrene.
  • the polyolefin may include pentadiene, 1,6-hex
  • the density of the polyolefin of the present invention is 0.915 g/cm 3 or more, or 0.916 g/cm 3 or more, or 0.917 g/cm 3 or more, or 0.918 g/cm 3 or more, or, 0.919 g/cm 3 or less, 0.930 g/cm 3 or less, or 0.928 g/cm 3 or less, or 0.925 g/cm 3 or less, or 0.922 g/cm 3 or less, or 0.921 g/cm 3 or less, or 0.920 g /cm 3 or less.
  • the density is a value measured according to ASTM D1505.
  • the polyolefin of the present invention is characterized in that the heterogeneity (inhomogeneity, I) of the ethylene sequence (ethylene sequence) calculated by Equation 1 below when analyzing SSA (Successive Self-nucleation and Annealing) is 1.25 to 1.40.
  • L w is the weighted average of the Ethylene sequence length (ESL)
  • L n is the arithmetic mean of the Ethylene sequence length (ESL) (unit: nm).
  • the polyolefin of the present invention is a semi-crystalline polymer, and may include a crystalline portion and an amorphous portion. Specifically, the crystalline portion is formed in a bundle while the polymer chain including ethylene repeating units is folded, thereby forming a crystalline block (or segment) in the form of a lamellar.
  • the ethylene repeating unit forming the lamellar crystal is an ethylene sequence.
  • the inventors of the present invention compared to conventional polyolefins of the same density when the heterogeneity (I) of 1.25 to 1.40 of the ethylene sequence calculated by the above formula 1 by SSA (Successive Self-nucleation and Annealing) analysis It came to the present invention by focusing on having improved transparency and drop impact strength.
  • SSA Successessive Self-nucleation and Annealing
  • DSC differential scanning calorimeter
  • the polyolefin when the polyolefin is completely melted by heating, and then cooled to a specific temperature (T) and slowly annealed, the lamellas that are not stable at the temperature (T) are still melted and only the stable lamellas are melted. Crystallizes.
  • T a specific temperature
  • the stability to the temperature (T) depends on the thickness of the lamella, and the thickness of the lamella depends on the chain structure. Therefore, by performing the heat treatment step by step, it is possible to quantitatively measure the lamellar thickness and its distribution according to the polymer chain structure, thereby measuring the distribution of each melting peak area.
  • the SSA using a differential scanning calorimeter, heats the polyolefin to 120 to 124°C at the first heating temperature, maintains it for 15 to 30 minutes, and then cools to 28 to 32°C.
  • n+1th heating temperature is 3 to 7°C lower than the nth heating temperature, and the heating temperature is gradually lowered while heating-annealing-quenching until the final heating temperature reaches 50-54°C. It can be done by repeating.
  • the SSA may be performed by the following steps i) to v):
  • the n+1th heating temperature is 5°C lower than the nth heating temperature, and the heating rate, the holding time and the cooling temperature are the same, gradually decreasing the heating temperature, and performing until the heating temperature reaches 52°C. To do;
  • the temperature profile of the SSA assay according to an embodiment of the present invention is shown in FIG. 2.
  • the temperature is maintained for 20 minutes, the temperature is reduced to 30°C for 1 minute, and then the temperature is increased.
  • the n+1th heating temperature is 5°C lower than the nth heating temperature, and the holding time and cooling temperature are the same, and the heating temperature is gradually lowered to 52°C.
  • the temperature rise rate and the fall rate are respectively adjusted to 20°C/min.
  • the temperature is increased by increasing the temperature at a heating rate of 10°C/min from 30°C to 160°C and observing the heat change. Measure.
  • S i is the area of each melting peak measured in the SSA thermogram
  • L i is ASL (Average Ethylene Sequence Length) corresponding to each melting peak in the SSA thermogram.
  • L w and calculated in the same way as above
  • the ratio of L n (L w / L n ) is the heterogeneity of the ethylene sequence (inhomogeneity, I), which means that the larger the value of I, the lamella is distributed non-uniformly in the polymer chain.
  • the polyolefin according to an embodiment of the present invention may have a non-uniformity (I) of 1.25 or more, or 1.26 or more, or 1.27 or more, and 1.40 or less, or 1.38 or less, or 1.35 or less, or 1.32 or less.
  • I non-uniformity
  • the polyolefin of the present invention can exhibit improved transparency and drop impact strength than conventional polyolefins having the same range of density by having the above non-uniformity.
  • Low-density polyolefins can improve drop impact strength, but the melt strength is lowered, making it difficult to produce stable blown films.
  • the polyolefin of the present invention compared to a conventional polyolefin product having the same density, it is possible to realize improved drop impact strength.
  • the polyolefin according to an embodiment of the invention meets the characteristics as described above, and has a melt index (MI 2.16 ) measured at a temperature of 190° C. and a load of 2.16 kg according to ASTM D1238 standard, 0.5 to 1.5 g It can be /10min. More specifically, the melt index (MI 2.16 ) is 0.5 g/10min or more, or 0.7 g/10min or more, or 0.8 g/10min or more, or 0.9 g/10min or more, and 1.5 g/10min or less, or 1.4 g/ 10min or less, or 1.3 g/10min or less.
  • MI 2.16 melt index measured at a temperature of 190° C. and a load of 2.16 kg according to ASTM D1238 standard, 0.5 to 1.5 g It can be /10min. More specifically, the melt index (MI 2.16 ) is 0.5 g/10min or more, or 0.7 g/10min or more, or 0.8 g/10min or more, or 0.9 g/10min or more
  • the polyolefin according to the embodiment of the present invention had a haze of the film measured according to ISO 13468. 11% or less. More specifically, the haze of the polyolefin according to an embodiment of the present invention may be 11% or less, or 10.5% or less, or 10% or less. The lower the haze value, the better, so the lower limit is not particularly limited, but may be, for example, 4% or more, or 5% or more, or 6% or more, or 7% or more.
  • the polyolefin according to an embodiment of the present invention after preparing a polyolefin film (BUR 2.3, film thickness 55 to 65 ⁇ m) using a film forming machine, the drop impact strength measured according to ASTM D 1709 [Method A] It may be 850 g or more, or 900 g or more, or 950 g or more. The higher the drop impact strength, the better, so the upper limit is not particularly limited, but may be, for example, 1,500 g or less, or 1,400 g or less, or 1,300 g or less, or 1,200 g or less.
  • the polyolefin according to an embodiment of the present invention may have a weight average molecular weight (Mw) of 70,000 to 140,000 g/mol. More preferably, the weight average molecular weight may be 80,000 g/mol or more, or 90,000 g/mol or more, and 130,000 g/mol or less, or 120,000 g/mol or less.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is measured using gel permeation chromatography (GPC), and means a universal calibration value using a polystyrene standard, and may be appropriately adjusted in consideration of the use or application field of the polyolefin.
  • the polyolefin according to an embodiment of the invention having the physical properties as described above can be prepared by a production method comprising the step of polymerizing an olefin monomer in the presence of a hybrid supported metallocene compound as a catalytically active component. .
  • the polyolefin of the present invention is not limited thereto, but at least one first metallocene compound selected from compounds represented by Formula 1 below; At least one second metallocene compound selected from compounds represented by Formula 2 below; And a carrier supporting the first and second metallocene compounds, in the presence of a hybrid supported metallocene catalyst, and may be prepared by polymerizing an olefin monomer.
  • Q 1 and Q 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 to C20 alkoxyalkyl group, C6 to C20 aryl group, C7 to C20 alkylaryl Group or a C7 to C20 arylalkyl group;
  • T 1 is carbon, silicon, or germanium
  • M 1 is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , C1 to C20 alkoxy group, or C1 to C20 sulfonate group;
  • R 1 to R 14 are the same or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C1 to C20 haloalkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 A silylalkyl group of C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, or R 1 to R 14 Two or more adjacent to each other are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring;
  • Q 3 and Q 4 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 to C20 alkoxyalkyl group, C6 to C20 aryl group, C7 to C20 alkylaryl Group or a C7 to C20 arylalkyl group;
  • T 2 is carbon, silicon, or germanium
  • M 2 is a Group 4 transition metal
  • X 3 and X 4 are the same or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , C1 to C20 alkoxy group, or C1 to C20 sulfonate group;
  • R 15 to R 28 are the same or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C1 to C20 haloalkyl group, C2 to C20 alkenyl group, C2 to C20 alkoxyalkyl group, C1 to C20 An alkylsilyl group, a C1 to C20 silylalkyl group, a C1 to C20 alkoxysilyl group, a C1 to C20 alkoxy group, a C6 to C20 aryl group, a C7 to C20 alkylaryl group, or a C7 to C20 arylalkyl group, However, R 20 and R 24 are the same as or different from each other, or each independently a C1 to C20 alkyl group, or two or more adjacent to each other among R 15 to R 28 are connected to each other to be substituted or unsubstituted aliphatic or aromatic rings. Is to form.
  • the C1 to C20 alkyl group includes a straight or branched alkyl group, specifically, a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, Octyl group and the like, but is not limited to this.
  • the C2 to C20 alkenyl group includes a straight or branched alkenyl group, and specifically, an allyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and the like, but is not limited thereto.
  • the C6 to C20 aryl group includes a monocyclic or condensed ring aryl group, and specifically, a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like are not limited thereto.
  • alkoxy group of C1 to C20 examples include a methoxy group, an ethoxy group, a phenyloxy group, and a cyclohexyloxy group, but are not limited thereto.
  • the C2 to C20 alkoxyalkyl group is a functional group in which one or more hydrogens of the alkyl group as described above are substituted with an alkoxy group, specifically, methoxymethyl group, methoxyethyl group, ethoxymethyl group, iso-propoxymethyl group, iso-propoxy Alkoxyalkyl groups such as ethyl group, iso-propoxyhexyl group, tert-butoxymethyl group, tert-butoxyethyl group, and tert-butoxyhexyl group; Or an aryloxyalkyl group such as a phenoxyhexyl group, but is not limited thereto.
  • the alkylsilyl group of C1 to C20 or the alkoxysilyl group of C1 to C20 is a functional group in which 1-3 hydrogens of -SiH 3 are substituted with 1 to 3 alkyl groups or alkoxy groups as described above, specifically methylsilyl group, die Alkyl silyl groups such as methyl silyl group, trimethyl silyl group, dimethyl ethyl silyl group, diethyl methyl silyl group or dimethylpropyl silyl group; Alkoxysilyl groups such as methoxysilyl group, dimethoxysilyl group, trimethoxysilyl group or dimethoxyethoxysilyl group; Alkoxyalkylsilyl groups such as methoxydimethylsilyl group, diethoxymethylsilyl group, or dimethoxypropylsilyl group, but are not limited thereto.
  • the silylalkyl group of C1 to C20 is a functional group in which at least one hydrogen of the alkyl group is substituted with a silyl group, specifically, -CH 2 -SiH 3 , methylsilylmethyl group or dimethylethoxysilylpropyl group, and the like. , It is not limited to this.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the sulfonate groups 'R by the structure of the' -O-SO 2 -R may be an alkyl group of C1 to C20.
  • a C1 to C20 sulfonate group may include a methanesulfonate group or a phenylsulfonate group, but is not limited thereto.
  • two substituents adjacent to each other are connected to each other to form an aliphatic or aromatic ring.
  • the atom(s) of the two substituents and the valence (atoms) of the two substituents are connected to each other to form a ring.
  • -NR a R b or -NR a 'R b' of the R a and R b or R a 'and R b' are connected to each other for example by forming the aliphatic ring is piperidinyl (piperidinyl) group
  • piperidinyl piperidinyl
  • -NR a R b or -NR a 'R b' of the R a and R b or R a 'and R b' which are connected to each other to form an aromatic ring such as pyrrolyl (pyrrolyl) group
  • pyrrolyl pyrrolyl
  • substituents are optionally hydroxyl groups within the range of exerting the same or similar effect as the desired effect; halogen; Alkyl group or alkenyl group, aryl group, alkoxy group; An alkyl group or an alkenyl group, an aryl group, or an alkoxy group containing at least one hetero atom among hetero atoms of groups 14 to 16; Silyl group; Alkyl silyl groups or alkoxy silyl groups; Phosphine group; Phosphide group; Sulfonate groups; And it may be substituted with one or more substituents selected from the group consisting of sulfone groups.
  • Group 4 transition metal examples include titanium (Ti), zirconium (Zr), and hafnium (Hf), but are not limited thereto.
  • the first metallocene compound includes a long chain branch and is easy to produce a low molecular weight polyolefin
  • the second metallocene compound is the first metal
  • the first metal Compared to the rosene compound, it contains a small amount of long-chain branches and is easy to produce a polyolefin having a relatively high molecular weight.
  • the melt strength increases when the molecular weight is large.
  • the first metallocene compound there are limitations in improving bubble stability due to low molecular weight compared to many long-chain branches.
  • the hybrid supported catalyst of the present invention is characterized in that the long chain branch produced by the first metallocene compound of Formula 1 and the long chain branch produced by the second metallocene compound of Formula 2 are entangled at the molecular level.
  • Have The melt strength is enhanced because a large force is required to dissolve in the molten state by entanglement between long chain branches.
  • the first metallocene compound represented by Chemical Formula 1 is a different ligand, and the metallocene compound is a cyclopentadienyl ligand and tetrahydroindenyl It includes a ligand, and the ligands are crosslinked by -Si(Q 1 )(Q 2 )-, and have a structure in which M 1 (X 1 )(X 2 ) exists between the ligands. Polymerization of the catalyst of this structure provides a polymer with a small amount of long chain branching and a relatively narrow molecular weight distribution (PDI, MWD, Mw/Mn) and a melt flow index (MFRR).
  • PDI, MWD, Mw/Mn relatively narrow molecular weight distribution
  • MFRR melt flow index
  • the cyclopentadienyl ligand in the structure of the metallocene compound represented by Chemical Formula 1 may affect, for example, olefin polymerization activity.
  • R 11 to R 14 of the cyclopentadienyl ligand are each independently one of a C1 to C20 alkyl group, a C1 to C20 alkoxy group, and a C2 to C20 alkenyl group
  • the metallocene of Formula 1 The catalyst obtained from the compound may exhibit higher activity in the olefin polymerization process, and when R 11 to R 14 are each independently methyl, ethyl, propyl, or butyl groups, the hybrid supported catalyst polymerizes the olefin monomer It can exhibit very high activity in the process.
  • the tetrahydroindenyl ligand structure has a non-covalent electron pair capable of acting as a Lewis base, thereby exhibiting stable, high polymerization activity, and also the tetrahydro.
  • the nil ligand for example, can easily control the molecular weight of the polyolefin produced by controlling the degree of steric hindrance according to the type of the substituted functional group.
  • R 1 may be any one of hydrogen, a C1 to C20 alkyl group, a C1 to C20 alkoxy group, and a C2 to C20 alkenyl group. More specifically, in Formula 1, R 1 is hydrogen or an alkyl group of C1 to C20, and R 2 to R 10 may each be hydrogen. In this case, the hybrid supported catalyst may provide polyolefin having excellent processability.
  • the cyclopentadienyl ligand and the tetrahydroindenyl ligand are crosslinked by -Si(Q 1 )(Q 2 )- to exhibit excellent stability.
  • Q 1 and Q 2 may each independently be a C1 to C20 alkyl group or a C6 to C20 aryl group to effectively secure this effect.
  • M 1 (X 1 )(X 2 ) present between the cyclopentadienyl ligand and the tetrahydroindenyl ligand in the structure of the metallocene compound represented by Chemical Formula 1 affects storage stability of the metal complex. Can go crazy.
  • X 1 and X 2 may be each independently halogen, a C1 to C20 alkyl group, or a C1 to C20 alkoxy group, in order to effectively secure this effect. More specifically, X 1 and X 2 may each independently be F, Cl, Br or I, and M 1 is Ti, Zr or Hf; Zr or Hf; Or Zr.
  • the metallocene compound of Formula 1 has the following structural formulas It may be a compound represented by, but is not limited thereto.
  • the first metallocene compound represented by Chemical Formula 1 may be synthesized by applying known reactions. Specifically, a tetrahydroindenyl derivative and a cyclopentadiene derivative may be prepared by connecting a bridge compound to prepare a ligand compound, and then adding a metal precursor compound to perform metallation, but is not limited thereto. , For detailed synthesis methods, refer to Examples.
  • the metallocene compound represented by Chemical Formula 2 has a cyclopentadienyl ligand and a substituent (R 20 and R 24 ) at a specific position as different ligands.
  • the different ligands are cross-linked by -Si(Q 3 )(Q 4 )-, and a structure in which M 2 (X 3 )(X 4 ) exists between the different ligands.
  • the polymerization activity is higher than that of unsubstituted indene compounds or metallocene compounds containing indene compounds substituted at other positions. It can have high properties.
  • the molecular weight of the polymerization is about 150,000 to 550,000 when it is polymerized alone, and SCB has a characteristic of having a narrow molecular weight distribution when applied to a hybrid catalyst. There are characteristics that can be improved.
  • the cyclopentadienyl ligand in the structure of the metallocene compound represented by Chemical Formula 2 may affect, for example, olefin polymerization activity.
  • R 25 to R 28 of the cyclopentadienyl ligand are each independently hydrogen, a C1 to C20 alkyl group, a C2 to C20 alkoxyalkyl group, or a C6 to C20 aryl group, respectively.
  • the catalyst obtained from the metallocene compound may exhibit higher activity in the olefin polymerization process
  • R 25 and R 28 are each hydrogen
  • R 26 and R 27 are each independently hydrogen, an alkyl group of C1 to C20, or C2 to In the case of a C20 alkoxyalkyl group
  • the hybrid supported catalyst may exhibit very high activity in the polymerization process of the olefin monomer.
  • the indenyl ligand in the structure of the metallocene compound represented by Chemical Formula 2 can easily control the molecular weight of the polyolefin produced by controlling the degree of steric hindrance effect according to the type of the substituted functional group. have.
  • a phenyl group is substituted at position 4 of the indenyl group, and R 20 serving as a para position of the phenyl group may be a C1 to C20 alkyl group, and also a substituent R 24 at position 6 of the indenyl group is also C1 It is preferable from the viewpoint of raising the molecular weight to have an alkyl group of C20 to C20.
  • R 20 and R 24 may each independently be a C1 to C4 alkyl group, R 20 may preferably be a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, etc., and R 24 is preferably Can be a t-butyl group.
  • the hybrid supported catalyst may provide polyolefin having excellent copolymerizability.
  • the remaining substituents R 15 to R 19 and R 21 to R 23 of the indenyl group are each independently hydrogen, halogen, C1 to C20 alkyl group, C1 to C20 haloalkyl group, C2 to C20 alkenyl group, C2 to C20 alkoxy Alkyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 may be an arylalkyl group.
  • the cyclopentadienyl ligand and the indenyl ligand may be crosslinked by -Si(Q 3 )(Q 4 )- to exhibit excellent stability.
  • Q 3 and Q 4 may each independently be a C1 to C20 alkyl group or a C2 to C20 alkoxyalkyl group.
  • Q 3 and Q 4 are each independently a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, t-butyl group, methoxymethyl group, methoxyethyl group, ethoxymethyl group, iso
  • a metallocene compound of any of -propoxymethyl group, iso-propoxyethyl group, iso-propoxyhexyl group, tert-butoxymethyl group, tert-butoxyethyl group, and tert-butoxyhexyl group can be used.
  • the metallocene compound represented by Chemical Formula 2 may be a C2 to C20 alkoxyalkyl group in which at least one of a cyclopentadiene (Cp) substituent or a -Si(Q 3 )(Q 4 )-silyl group is used.
  • a cyclopentadiene (Cp) substituent or a -Si(Q 3 )(Q 4 )-silyl group is used.
  • iso-propoxyethyl group iso-propoxyhexyl group, tert-butoxyethyl group, tert-butoxyhexyl group and the like are more preferable.
  • an alpha olefin comonomer such as 1-butene or 1-hexene
  • M 2 (X 3 )(X 4 ) present between the cyclopentadienyl ligand and the tetrahydroindenyl ligand is dependent on storage stability of the metal complex. It can affect.
  • X 3 and X 4 may be each independently halogen, an alkyl group of C1 to C20, and an alkoxy group of C1 to C20, in order to effectively secure this effect. More specifically, X 3 and X 4 may each independently be F, Cl, Br or I, and M 2 is Ti, Zr or Hf; Zr or Hf; Or Zr.
  • the hybrid supported metallocene catalyst of the above embodiment may include the first and second metallocene compounds to produce polyolefin having excellent processability as well as excellent physical properties, particularly drop impact strength.
  • the mixed molar ratio of the first metallocene compound and the second metallocene compound is about 1:1 to 10:1, preferably about 1.2:1 to 7.5:1, more preferably 1.5: 1 to 7.0:1 or 1.8:1 to 6.5:1.
  • the mixed molar ratio of the first metallocene compound and the second metallocene compound may be 1:1 or higher in terms of physical property control in order to satisfy both physical properties and processability by controlling the molecular weight and the amount of SCB and LCB, In terms of securing processability, it may be 10:1 or less.
  • the first and second metallocene compounds have the above-described structural characteristics and can be stably supported on a carrier.
  • a carrier containing a hydroxy group or a siloxane group on the surface may be used.
  • a carrier containing a hydroxy group or a siloxane group having high reactivity may be used by drying at a high temperature to remove moisture on the surface.
  • silica, alumina, magnesia, or a mixture thereof may be used, and among these, silica may be more preferable.
  • the carrier may be dried at a high temperature, for example, silica, silica-alumina, and silica-magnesia dried at a high temperature may be used, and these are typically Na 2 O, K 2 CO 3 , BaSO 4 and Mg( NO 3 ) 2 and the like, and may include oxide, carbonate, sulfate, and nitrate components.
  • the drying temperature of the carrier is preferably about 200 to 800°C, more preferably about 300 to 600°C, and most preferably about 300 to 400°C.
  • the drying temperature of the carrier is less than about 200 °C, there is too much moisture so that the surface moisture and the co-catalyst react, and if it exceeds about 800 °C, the surface area decreases as the pores of the carrier surface are combined and the surface is hydroxy. It is not preferable because many groups disappear and only siloxane groups remain, thereby reducing the reaction site with the cocatalyst.
  • the amount of hydroxy groups on the surface of the carrier is preferably about 0.1 to 10 mmol/g, and more preferably about 0.5 to 5 mmol/g.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions of the carrier or drying conditions, such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxy group is less than about 0.1 mmol/g, there are fewer reaction sites with the co-catalyst, and if it exceeds about 10 mmol/g, it may be due to moisture other than the hydroxy group present on the surface of the carrier particle. It is not desirable.
  • an organometallic compound containing a Group 13 metal under a general metallocene catalyst It is not particularly limited as long as it can be used when polymerizing the olefin.
  • the co-catalyst compound may include at least one of the aluminum-containing first co-catalyst of Formula 3 and the borate-based second co-catalyst of Formula 4 below.
  • R a , R b , and R c are the same as or different from each other, and each independently hydrogen, halogen, a C1 to C20 hydrocarbyl group, or a C1 to C20 hydrocarbyl group substituted with halogen;
  • n is an integer of 2 or more
  • T + is a + monovalent polyatomic ion
  • B is a +3 oxidized boron
  • G is each independently a hydride group, dialkylamido group, halide group, alkoxide group, aryl oxide group, hydro It is selected from the group consisting of carbyl groups, halocarbyl groups and halo-substituted hydrocarbyl groups, wherein G has 20 or fewer carbons, but at only one or less positions, G is a halide group.
  • the first co-catalyst of Chemical Formula 3 may be a linear, circular or reticulated alkyl aluminoxane-based compound in which repeating units are combined, and specific examples of the first co-catalyst are methyl aluminoxane (MAO) and ethyl aluminate. And oxalic acid, isobutyl aluminoxane or butyl aluminoxane.
  • MAO methyl aluminoxane
  • ethyl aluminate ethyl aluminate
  • oxalic acid isobutyl aluminoxane or butyl aluminoxane.
  • the second cocatalyst of Chemical Formula 4 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • the second co-catalyst trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri(n-butyl)ammonium tetraphenylborate , Methyltetradecyclooctadecylammonium tetraphenylborate, N,N-dimethylaninium tetraphenylborate, N,N-diethylaninium tetraphenylborate, N,N-dimethyl(2,4,6-trimethylaninium )Tetraphenylborate, trimethylammonium tetrakis(pentafloorophenyl)borate, methylditetradecylammonium tetrakis(pentafloorophenyl
  • the mass ratio of the total transition metal to the carrier included in the first metallocene compound and the second metallocene compound may be 1:10 to 1:1000.
  • the carrier and the metallocene compound are included in the mass ratio, an optimal shape may be exhibited.
  • the mass ratio of the co-catalyst compound to the carrier may be 1:1 to 1:100.
  • the co-catalyst and carrier are included in the mass ratio, the active and polymer microstructures can be optimized.
  • the hybrid supported metallocene catalyst of the above embodiment can be used for polymerization of an olefinic monomer as such.
  • the hybrid supported metallocene catalyst may be prepared by using a prepolymerized catalyst in contact with an olefinic monomer, for example, an olefin such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, or the like. It can also be prepared and used as a prepolymerized catalyst by contacting with a system monomer.
  • the hybrid supported metallocene catalyst of the one embodiment the step of supporting a co-catalyst on a carrier; Supporting the first and second metallocene compounds on a carrier on which the cocatalyst is supported; It can be produced by a manufacturing method comprising a.
  • the first and second metallocene compounds may be sequentially supported one by one, or two may be supported together.
  • the shape of the hybrid supported metallocene catalyst can be improved by first supporting the second metallocene catalyst having a relatively poor morphology, and accordingly, the second metal After supporting the sen catalyst, the first metallocene catalyst may be sequentially supported.
  • the loading conditions are not particularly limited and can be carried out in a range well known to those skilled in the art.
  • high-temperature loading and low-temperature loading can be appropriately performed, and for example, the loading temperature is possible in a range of about -30°C to 150°C, preferably room temperature (about 25°C) to about 100°C. , More preferably from room temperature to about 80°C.
  • the loading time can be appropriately adjusted according to the amount of the metallocene compound to be loaded.
  • the reacted supported catalyst can be used as it is by filtering or distilling off the reaction solvent, and if necessary, can be used by soxhlet filter with an aromatic hydrocarbon such as toluene.
  • the production of the supported catalyst can be carried out in a solvent or solvent-free.
  • the usable solvent includes an aliphatic hydrocarbon solvent such as hexane or pentane, an aromatic hydrocarbon solvent such as toluene or benzene, a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane, and an ether system such as diethyl ether or THF.
  • organic solvents such as a solvent, acetone, and ethyl acetate, are mentioned, and hexane, heptane, toluene, or dichloromethane is preferable.
  • a method for producing a polyolefin including the step of polymerizing an olefin monomer may be provided.
  • the olefin monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1-tetradecene, 1-hexadecene, 1-eicocene, norbornene, norbornadiene, ethylidene novoden, phenyl novoden, vinyl novoden, dicyclopentadiene, 1,4-butadiene, 1, It may be at least one member selected from the group consisting of 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene and 3-chloromethylstyrene.
  • polymerization reactions of olefin monomers such as a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process, or an emulsion polymerization process, may be employed.
  • This polymerization reaction can be carried out under a temperature of about 25 to 500 °C, or about 25 to 200 °C, or about 50 to 150 °C, and a pressure of about 1 to 100 bar or about 10 to 80 bar.
  • the hybrid supported metallocene catalyst may be used in a dissolved or diluted state in a solvent such as pentane, hexane, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene, and the like.
  • a solvent such as pentane, hexane, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene, and the like.
  • the polyolefin produced by the above method may exhibit high drop impact strength with low density and excellent transparency.
  • the polyolefin has a density of 0.915 g/cm 3 to 0.930 g/cm 3 , and the heterogeneity (inhomogeneity, I) of the ethylene sequence in the SSA (Successive Self-nucleation and Annealing) analysis is 1.25 to 1.40 days.
  • I homogeneity
  • the polyolefin may have a melt index (MI 2.16 ) measured at a temperature of 190° C. and a load of 2.16 kg according to ASTM D1238 standard, from 0.5 to 1.5 g/10min.
  • MI 2.16 melt index measured at a temperature of 190° C. and a load of 2.16 kg according to ASTM D1238 standard, from 0.5 to 1.5 g/10min.
  • the polyolefin may be a polyolefin film (BUR 2.3, film thickness of 55 to 65 ⁇ m) prepared by using a film forming machine, and the haze of the film measured according to ISO 13468 may be 11% or less.
  • the polyolefin may be a polyolefin film (BUR 2.3, film thickness 55 to 65 ⁇ m) prepared by using a film forming machine, and the drop impact strength measured according to ASTM D 1709 [Method A] may be 850 g or more.
  • polyolefin is, for example, an ethylene-alpha olefin copolymer, preferably a copolymer of ethylene and 1-butene or an ethylene-1-hexene copolymer
  • the above physical properties can be more appropriately satisfied.
  • Tetramethylcyclopentadiene was used as a tetramethylcyclopentyl-Li salt (TMCP-Li salts) after filtering after THthi (0.4 M) Lithiation with n-BuLi (1 equivalent).
  • Indene (Indene) was Lithiation with Hexane (0.5 M) n-BuLi (1 eq) and filtered to be used as Inden-Li salts.
  • TMCP-Li salts tetramethylcyclopentyl-Li salts under Ar and about 100 mL of tetrahydrofuran (THF) were added.
  • dichloromethyl-(iso-propyl) silane was added at -20 °C. After about 6 hours, 3 mol% of CuCN and Ind-Li salts (50 mmol, MTBE 1M solution) were added at -20°C and reacted for about 12 hours. The organic layer was separated with water and Hexane to obtain a ligand.
  • the metallocene catalyst precursor (20 mmol) obtained above, DCM 60 mL, and Pd/C catalyst 5 mol% were added to a high pressure stainless steel (sus) reactor under an argon atmosphere.
  • the argon inside the high pressure reactor was replaced with hydrogen three times, and hydrogen was charged so that the pressure was about 20 bar.
  • the reaction was completed by stirring at 35° C. for 24 hours.
  • DCM solution was transferred to a schlenk flask under an argon atmosphere. This solution was passed through celite under argon to remove the Pd/C catalyst and the solvent was dried to obtain a solid catalyst precursor.
  • Tetramethylcyclopentadiene was used as a tetramethylcyclopentyl-Li salt (TMCP-Li salts) by filtering after THthi (0.4 M) Lithiation with n-BuLi (1 equivalent).
  • Indene (Indene) was Lithiation with Hexane (0.5 M) n-BuLi (1 eq) and filtered to be used as Inden-Li salts.
  • TMCP-Li salts tetramethylcyclopentyl-Li salts under Ar and 100 mL of tetrahydrofuran (THF) were added.
  • the metallocene catalyst precursor (20 mmol) obtained above, DCM 60 mL, and Pd/C catalyst 5 mol% were added to a high pressure stainless steel (sus) reactor under an argon atmosphere.
  • the argon inside the high pressure reactor was replaced with hydrogen three times, and hydrogen was charged so that the pressure was about 20 bar.
  • the reaction was completed by stirring at about 35° C. for about 24 hours.
  • DCM solution was transferred to a schlenk flask under an argon atmosphere. This solution was passed through celite under argon to remove the Pd/C catalyst and the solvent was dried to secure metallocene compounds (A, B form) having different stereoisomers in a ratio of 1.3:1.
  • Form B 0.99 (3H, s), 1.42 (3H, s), 1.60-1.67 (2H, m), 1.90-1.98 (1H, m), 1.95 (3H, s), 2.06 (3H, s), 2.06 -2.10 (1H, m), 2.11 (3H, s), 2.44-2.49 (1H, m), 2.66-2.70 (1H, m), 2.74-2.79 (1H, m), 3.02-3.11 (1H, m) , 5.53 (1H, d), 6.74 (1H, d), 7.48 (3H, m), 7.88 (2H, m).
  • TMCP tetramethylcyclopentadiene
  • THF 60 mL
  • n-BuLi 2.5M, 17mL, 42mmol
  • Dimethyl (indenyl) (tetramethylcyclopentadienyl) silane (1.7 g, 5.7 mmol) previously synthesized in a 250 mL schlenk flask was dissolved in toluene (30 mL) and MTBE (3.0 mL). Then, after cooling this solution to -78°C, n-BuLi (2.5M, 4.8mL, 12mmol) was slowly added dropwise to the solution, and the resulting solution was stirred overnight at room temperature. However, a yellow solid was formed in the solution and was not uniformly stirred, so MTBE (50 mL) and THF (38 mL) were additionally added.
  • reaction product was filtered to obtain a yellow solid (1.3 g, containing LiCl (0.48 g), 1.8 mmol), and after removing the solvent from the filtrate, washing with n-hexane to further add a yellow solid (320 mg, 0.70 mmol). Obtained (total 44% yield).
  • the previously synthesized dimethylsilylene (tetramethylcyclopentadienyl) (indenyl) zirconium dichloride (1.049 g, 2.3 mmol) was placed in a mini bombe in a glove box. Then, the platinum bomb (52.4mg, 0.231mmol) was additionally contained in the mini bombe, and after assembling the mini bombe, anhydrous THF (30mL) was added to the mini bombe using canuula, and hydrogen was added to a pressure of about 30 bar. I filled it. Subsequently, after the mixture contained in the mini bombe was stirred at about 60°C for about 1 day, the temperature of the mini bombe was cooled to room temperature, and hydrogen was replaced with argon while gradually reducing the pressure of the mini bombe.
  • celite which was dried for about 2 hours in an oven at about 120° C., was placed on a schlenk filter, and the reaction product of the mini bombe was filtered under argon using this. The celite removed the PtO 2 catalyst from the reaction product. Subsequently, the reaction product from which the catalyst was removed was decompressed to remove the solvent to obtain a product that was a pale yellow solid (0.601 g, 1.31 mmol, Mw: 458.65 g/mol).
  • the ligand was added to a dry 250 mL schlenk flask in Oven, dissolved in 80 mL of Toluene and 19 mL (160 mmol, 4 equiv.) of MTBE, and then added 2.1 equivalents of nBuLi solution (84 mmol, 33.6 mL) to lithiation until the next day.
  • nBuLi solution 84 mmol, 33.6 mL
  • One equivalent of ZrCl 4 (THF) 2 was taken in a glove box and placed in a 250 mL schlenk flask to prepare a suspension with Ether. After cooling both flasks to -20 °C, ligand anion was slowly added to the Zr suspension. After the injection was completed, the reaction mixture was slowly raised to room temperature.
  • the MTBE in the mixture was filtered directly under argon with a Schlenk Filter to remove the resulting LiCl. After removal, the remaining filtrate was removed through vacuum decompression, and a small amount of pentane was added to a small amount of dichloromethane.
  • the reason for adding pentane is that the synthesized catalyst precursor promotes crystallization because its solubility in pentane is low.
  • Form B 0.60 (3H,s), 0.57 (3H,s), 0.93-0.97 (3H,m), 1.11 (9H,s), 1.28 (9H,s), 1.32 (3H,d), 1.35-1.42 (1H,m), 1.45-1.62(4H,m), 2.58-2.65 (1H,m), 2.67-2.85(2H,m), 3.23 (2H,t), 5.24 (1H,m), 5.67 (1H , m), 6.49 (1H, m), 6.97 (1H, dd), 7.32 (1H, d), 7.39-7.45 (4H, m), 8.01 (2H, dd)
  • 6-Chlorohexanol was used to prepare t-Butyl-O-(CH 2 ) 6 -Cl by the method presented in Tetrahedron Lett. 2951 (1988), and NaCp was reacted therewith.
  • t-Butyl-O-(CH 2 ) 6 -C 5 H 5 was obtained (yield 60%, bp 80°C /0.1 mmHg)
  • a hybrid supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Synthesis Example 2 (60 mmol) and Synthesis Example 4 (10 mmol) were used.
  • a hybrid supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Synthesis Example 3 (60 mmol) and Synthesis Example 5 (10 mmol) were used.
  • a supported metallocene catalyst was prepared in the same manner as in Production Example 1, except that only the metallocene compound of Synthesis Example 1 (70 mmol) was used.
  • a hybrid supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Synthesis Example 1 (60 mmol) and Comparative Synthesis Example 1 (10 mmol) were used.
  • a supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Synthesis Example 2 (60 mmol) and Comparative Synthesis Example 2 (10 mmol) were used.
  • the supported catalyst used in each olefin polymerization reaction those prepared in the preparation examples shown in Table 1 were used, and the supported catalyst was mixed with isobutene slurry and added.
  • the olefin polymerization reaction was carried out under a pressure of about 40 bar and a temperature of about 84 °C.
  • Table 2 shows the main conditions of the polymerization reaction.
  • Density was measured according to ASTM D1505 standard.
  • MI 2.16 Melt Index
  • the polyolefin was initially heated to 160° C. and maintained for 30 minutes to remove all heat history before measurement of the sample.
  • the temperature was lowered from 160°C to 122°C, the temperature was maintained for 20 minutes, the temperature was decreased to 30°C, and then maintained for 1 minute, and then the temperature was increased again.
  • the temperature was maintained for 20 minutes, the temperature was reduced to 30°C, and then maintained for 1 minute, and then the temperature was increased again.
  • the n+1th heating temperature was 5°C lower than the nth heating temperature, and the holding time and cooling temperature were the same, and the heating temperature was gradually lowered to 52°C. At this time, the temperature rising rate and the falling rate were respectively adjusted to 20°C/min.
  • SSA thermogram was measured by increasing the temperature at a heating rate of 10° C./min from 30° C. to 160° C. and observing the heat change.
  • L w is the weighted average of the Ethylene sequence length (ESL)
  • L n is the arithmetic mean of the Ethylene sequence length (ESL) (unit: nm).
  • Equation 2 The weighted average (L w ) and the arithmetic mean (L n ) of the ethylene sequence of Equation 1 were calculated by Equations 2 and 3 below:
  • S i is the area of each melting peak measured in the SSA thermogram
  • L i is ASL (Average Ethylene Sequence Length) corresponding to each melting peak in the SSA thermogram.
  • the ASL is from the SSA thermogram measured as above Journal of Polymer Science Part B: Polymer Physics. 2002, vol. 40, 813-821 and Journal of the Korean Chemical Society 2011, Vol. 55, No. It was calculated with reference to 4.
  • Figure 1 shows a graph showing the relationship between drop impact strength and inhomogeneity (inhomogeneity) of the polyolefin according to Examples and Comparative Examples of the present invention.
  • the polyolefins of Examples 1 to 3 of the present invention had superior drop impact strength compared to Comparative Examples 1 to 3 having a haze of 11% or less and the same density.

Abstract

본 발명은 폴리올레핀에 관한 것이다. 보다 구체적으로, 본 발명은 우수한 낙하 충격 강도를 가지며, 향상된 투명도를 나타낼 수 있는 폴리올레핀에 관한 것이다.

Description

폴리올레핀
관련 출원(들)과의 상호 인용
본 출원은 2018년 12월 21일자 한국 특허 출원 제 10-2018-0167766호 및 2019년 1월 28일자 한국 특허 출원 제 10-2019-0010606호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 폴리올레핀에 관한 것이다. 보다 구체적으로, 본 발명은 우수한 낙하 충격 강도 등의 개선된 기계적 특성을 가지며, 필름 제조시 향상된 투명도를 나타낼 수 있는 폴리올레핀에 관한 것이다.
선형 저밀도 폴리에틸렌(linear low density polyethylene; LLDPE)은 중합 촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되는 것으로, 분자량 분포가 좁고, 일정한 길이의 단쇄 분지를 가지며, 장쇄 분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙하 충격 강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
그러나, 선형 저밀도 폴리에틸렌은 우수한 기계적 물성에 비하여 블로운 필름(blown film) 가공성이 좋지 않고 투명도가 떨어지는 단점이 있다. 블로운 필름이란, 용융 플라스틱에 공기를 불어넣어 부풀리는 방식으로 제조한 필름으로서, 인플레이션 필름이라고도 불린다.
한편 선형 저밀도 폴리에틸렌은 일반적으로 밀도가 낮을수록 투명성과 낙하 충격 강도가 증가하는 특성이 있다. 하지만 저밀도의 폴리에틸렌을 제조하기 위하여 알파 올레핀 공단량체를 많이 사용할 경우 슬러리 중합 공정에서 파울링(fouling) 발생 빈도가 높이지는 등의 문제가 있다.
한편, 가공성을 개선하기 위해서는 선형 저밀도 폴리에틸렌에 LCB(Long chain branch) 도입을 통하여 가공 특성을 개선할 수 있으나 LCB가 많을 경우 투명성과 낙하 충격강도가 떨어지는 특성이 있다.
따라서 저밀도이면서도 투명성과 함께 낙하 충격 강도 등의 우수한 기계적 물성을 구현할 수 있는 폴리에틸렌의 개발의 필요성이 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국공개특허 제 2010-0102854 호
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 저밀도이면서도 우수한 낙하 충격 강도 등의 개선된 기계적 특성을 가지며, 필름 제조시 향상된 투명도를 나타낼 수 있는 폴리올레핀을 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 발명은,
0.915 g/cm3 내지 0.930 g/cm3의 밀도; 및
SSA (Successive Self-nucleation and Annealing) 분석 시 하기 식 1로 계산되는 에틸렌 시퀀스(ethylene sequence)의 불균일성(inhomogeneity, I)이 1.25 내지 1.40인,
폴리올레핀을 제공한다:
[식 1]
Figure PCTKR2019018226-appb-I000001
상기 식 1에서,
Lw는 ESL(Ethylene sequence length)의 가중 평균(weighted average, 단위: nm)이고, Ln은 ESL(Ethylene sequence length)의 산술 평균(arithmetic mean, 단위: nm)이다.
본 발명에 따르면, 메탈로센 촉매를 이용한 폴리올레핀 중합시 라멜라(lamellar)를 형성하는 에틸렌 시퀀스(ethylene sequence)의 길이와 분포를 적절히 조절하여 최적의 에틸렌 시퀀스 불균일성(inhomogeneity)을 갖는 폴리올레핀을 제공할 수 있다.
이에 따라, 투명성이 우수하면서 높은 낙하 충격 강도를 가지는 폴리올레핀을 제공할 수 있다.
도 1은 본 발명의 실시예 및 비교예에 따른 폴리올레핀의 불균일성(inhomogeneity)과 낙하 충격 강도와의 관계를 보여주는 그래프이다.
도 2는 본 발명의 일 구현예에 따른 SSA 분석법의 온도 프로파일을 나타내는 그래프이다.
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명의 폴리올레핀에 대해 상세히 설명한다.
본 발명의 일 구현예에 따른 폴리올레핀은, 0.915 g/cm3 내지 0.930 g/cm3의 밀도; 및 SSA (Successive Self-nucleation and Annealing) 분석 시 하기 식 1로 계산되는 에틸렌 시퀀스(ethylene sequence)의 불균일성(inhomogeneity, I)이 1.25 내지 1.40인 것을 특징으로 한다.
[식 1]
Figure PCTKR2019018226-appb-I000002
상기 식 1에서,
Lw는 ESL(Ethylene sequence length)의 가중 평균(weighted average, 단위: nm)이고, Ln은 ESL(Ethylene sequence length)의 산술 평균(arithmetic mean, 단위: nm)이다.
선형 저밀도 폴리에틸렌(linear low density polyethylene; LLDPE)은 중합 촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되는 것으로, 분자량 분포가 좁고, 일정한 길이의 단쇄 분지를 가지는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙하 충격 강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
한편 선형 저밀도 폴리에틸렌은 일반적으로 밀도가 낮을수록 투명성과 낙하 충격 강도가 증가하는 것으로 알려져 있다. 하지만 저밀도의 폴리에틸렌을 제조하기 위하여 공단량체를 많이 사용할 경우 슬러리 중합 공정에서 파울링(fouling) 발생 빈도가 높아지고 이를 포함하는 필름을 제조할 때 끈적임 현상 때문에 블로킹 방지제(antiblocking)의 사용량을 증가시켜야하는 등의 문제가 있다. 또한 생산 시 공정이 불안정하거나 생성되는 폴리에틸렌의 모폴로지(morphology) 특성이 저하되어 부피 밀도(bulk density)가 감소하는 등의 문제가 있다.
이에 본 발명에서는 저밀도 특성을 가지면서도 라멜라(lamellar)를 형성하는 에틸렌 시퀀스(ethylene sequence)의 길이와 분포를 적절히 조절하여 투명성과 낙하 충격 강도를 높일 수 있는 최적의 ASL(Average Ethylene Sequence Length) 비율을 갖는 폴리올레핀을 제공하고자 한다.
구체적으로, 본 발명의 일 구현예에 따른 폴리올레핀은, 밀도가 0.915 g/cm3 이상 0.930 g/cm3 이하다. 즉, 본 발명은 0.930 g/cm3 이하의 밀도를 갖는 저밀도 폴리올레핀일 수 있다.
본 발명의 일 실시예에 따르면, 상기 폴리올레핀은, 예를 들면, 에틸렌과 알파 올레핀의 공중합체일 수 있다. 이때, 상기 알파 올레핀은 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-에이코센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌을 포함하는 것일 수 있다. 이 중에서도 상기 폴리올레핀은 에틸렌과 1-부텐의 공중합체, 에틸렌과 1-헥센의 공중합체, 또는 에틸렌과 1-옥텐의 공중합체일 수 있다.
보다 구체적으로, 일 구현예에 따르면 본 발명의 폴리올레핀의 밀도는 0.915 g/cm3 이상, 또는 0.916 g/cm3 이상, 또는 0.917 g/cm3 이상, 또는 0.918 g/cm3 이상, 또는, 또는 0.919 g/cm3 이상이면서, 0.930 g/cm3 이하, 또는 0.928 g/cm3 이하, 또는 0.925 g/cm3 이하, 또는 0.922 g/cm3 이하, 또는 0.921 g/cm3 이하, 또는 0.920 g/cm3 이하일 수 있다. 이때 상기 밀도는 ASTM D1505에 따라 측정한 값이다.
일 구현예에 따르면 본 발명의 폴리올레핀은 SSA (Successive Self-nucleation and Annealing) 분석 시 하기 식 1로 계산되는 에틸렌 시퀀스(ethylene sequence)의 불균일성(inhomogeneity, I)이 1.25 내지 1.40인 것을 특징으로 한다.
[식 1]
Figure PCTKR2019018226-appb-I000003
상기 식 1에서,
Lw는 ESL(Ethylene sequence length)의 가중 평균(weighted average, 단위: nm)이고, Ln은 ESL(Ethylene sequence length)의 산술 평균(arithmetic mean, 단위: nm)이다.
본 발명의 폴리올레핀은 반결정(semi-crystalline) 고분자로서, 결정성 부분과 무정형 부분을 포함할 수 있다. 구체적으로 상기 결정성 부분은 에틸렌 반복단위를 포함한 고분자 사슬이 접히면서 다발을 이루게 되며, 이를 통해 라멜라(lamellar) 형태의 결정성 블록(또는 세그먼트)을 형성할 수 있다. 상기 라멜라(lamellar) 결정을 형성하는 에틸렌 반복단위가 에틸렌 시퀀스(ethylene sequence)이다.
본 발명의 발명자들은, SSA (Successive Self-nucleation and Annealing) 분석에 의할 때 상기 식 1로 계산되는 에틸렌 시퀀스)의 불균일성(I)이 1.25 내지 1.40일 때, 동일한 밀도의 종래 폴리올레핀과 비교하여 보다 향상된 투명성과 낙하 충격 강도를 가질 수 있음에 착안하여 본 발명에 이르게 되었다.
SSA (Successive Self-nucleation and Annealing)는 시차주사열량계(Differential Scanning Calorimeter, DSC)를 이용하여 단계적으로 온도를 내리면서 각 단계가 끝날 때마다 급랭하여 각 단계마다 해당 온도에서 결정화된 결정들을 보존하는 방법이다.
즉, 폴리올레핀을 가열하여 완전히 용융(melting)시킨 후, 특정 온도(T)로 냉각하고 서서히 어닐링(annealing)을 하게 되면, 해당 온도(T)에서 안정하지 않는 라멜라들은 여전히 용융되어 있고 안정한 라멜라들만이 결정화된다. 이때 해당 온도(T)에 대한 안정성은 라멜라의 두께에 의존하며, 라멜라의 두께는 사슬구조에 의존한다. 따라서 이러한 열처리를 단계적으로 진행함으로써, 고분자 사슬구조에 따른 라멜라 두께 및 그 분포도를 정량적으로 측정할 수 있고, 이에 따라 각 용융 피크 면적의 분포를 측정할 수 있다.
본 발명의 일 구현예에 따르면, 상기 SSA는, 시차주사열량계를 이용하여 상기 폴리올레핀을 첫 번째 가열 온도로 120 내지 124℃까지 가열하고, 15 내지 30분간 유지한 후, 28 내지 32℃로 냉각하며, n+1번째의 가열 온도는 n번째 가열 온도보다 3 내지 7℃ 낮은 온도로 하여 단계적으로 가열 온도를 내리면서 최종 가열 온도가 50 내지 54℃가 될 때까지 가열-어닐링(annealing)-급랭을 반복함으로써 수행될 수 있다.
보다 구체적으로 상기 SSA는 하기 i) 내지 v)의 단계로 수행될 수 있다:
i) 시차주사열량계를 이용하여 폴리올레핀을 160℃까지 가열한 후 30분 동안 유지하여 측정 전 열 이력을 모두 제거하는 단계;
ii) 160℃부터 122℃까지 온도를 내린 후, 20분간 유지하고 30℃까지 온도를 내려 1분간 유지하는 단계;
iii) 122℃ 보다 5℃ 낮은 온도 117℃까지 가열한 후 20분 동안 유지하고, 30℃까지 온도를 내려 1분 유지하는 단계;
iv) n+1번째의 가열 온도는 n번째 가열 온도보다 5℃ 낮은 온도로 하고, 승온 속도, 유지 시간 및 냉각 온도는 동일하게 하여 점차 가열 온도를 내리면서 가열 온도가 52℃가 될 떄까지 수행하는 단계; 및
v) 마지막으로 30℃에서부터 160℃까지 온도를 올리는 단계
본 발명의 일 구현예에 따른 SSA 분석법의 온도 프로파일을 도 2에 나타내었다.
도 2를 참조하면, 시차주사열량계(장치명: DSC8000, 제조사: PerkinElmer)를 이용하여 폴리올레핀을 초기에 160℃까지 가열한 후 30분 동안 유지하여 시료의 측정 전 열 이력을 모두 제거한다. 160℃부터 122℃까지 온도를 내린 후, 20분간 유지하고, 30℃까지 온도를 내려 1분간 유지 후 다시 온도를 증가시킨다.
다음에, 최초의 가열 온도 122℃ 보다 5℃ 낮은 온도(117℃)까지 가열한 후 20분 동안 유지하고, 30℃까지 온도를 내려 1분간 유지 후, 다시 온도를 증가시킨다. 이러한 방식으로 n+1번째의 가열 온도는 n번째 가열 온도보다 5℃ 낮은 온도로 하고, 유지 시간 및 냉각 온도는 동일하게 하여 점차 가열 온도를 내리면서 52℃까지 진행한다. 이때 온도의 상승 속도와 하강 속도는 각각 20℃/min으로 조절한다. 마지막으로 가열-어닐링(annealing)-급랭을 반복하며 형성된 결정의 분포를 정량적으로 분석하기 위해 30℃에서부터 160℃까지 10℃/min의 승온 속도로 온도를 올리며 열량 변화를 관찰하여 온도기록(thermogram)을 측정한다.
이렇게 본 발명의 폴리올레핀에 대해 SSA 방식으로 가열-어닐링-급랭을 반복 후 승온하면 온도별 피크가 나타내며 이에 따라 각각 다른 두께의 에틸렌 시퀀스를 구하고, 이로부터 하기 식 2 및 3에 의해 에틸렌 시퀀스의 가중 평균(weighted average, Lw)와, 산술 평균(arithmetic mean, Ln)을 구할 수 있다:
[식 2]
Figure PCTKR2019018226-appb-I000004
상기 식 2에서,
[식 3]
Figure PCTKR2019018226-appb-I000005
상기 식 2 및 3에서,
Si는 SSA thermogram에서 측정된 각각의 용융 피크(melting peak)의 면적이고,
Li는 SSA thermogram에서 각각의 용융 피크에 해당하는 ASL (Average Ethylene Sequence Length)이다.
또한, 상기 ASL은 측정된 SSA thermogram으로부터 Journal of Polymer Science Part B: Polymer Physics. 2002, vol. 40, 813-821, 및 Journal of the Korean Chemical Society 2011, Vol. 55, No. 4를 참고하여 계산할 수 있다.
상기와 같은 방식으로 계산한 Lw Ln의 비율(Lw / Ln)이 에틸렌 시퀀스의 불균일성(inhomogeneity, I)으로, 상기 I값이 클수록 라멜라가 고분자 사슬 내에서 불균일하게 분포하고 있음을 의미한다.
본 발명의 일 구현예에 따른 폴리올레핀은 상기 불균일성(I)이 1.25 이상, 또는 1.26 이상, 또는 1.27 이상이면서, 1.40 이하, 또는 1.38 이하, 또는 1.35 이하, 또는 1.32 이하일 수 있다.
불균일성이 높을수록 낙하 충격 강도가 우수해지기 때문에 본 발명의 폴리올레핀은 상기와 같은 불균일성을 가짐으로써 동일한 범위의 밀도를 갖는 종래의 폴리올레핀보다 향상된 투명도 및 낙하 충격 강도를 나타낼 수 있다.
저밀도의 폴리올레핀은 낙하 충격 강도를 향상시킬 수 있으나 Melt strength가 저하되어 안정적인 블로운 필름 제조가 어렵다. 그러나 본 발명의 폴리올레핀에 의하면 동일한 밀도를 갖는 종래의 폴리올레핀 제품과 비교하여 향상된 낙하 충격 강도를 구현할 수 있다.
또, 발명의 일 구현예에 따른 폴리올레핀은 상술한 바와 같이 특성을 총족하면서 이와 함께, ASTM D1238 규격에 따라 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수(MI2.16)가 0.5 내지 1.5 g/10min일 수 있다. 보다 구체적으로, 상기 용융 지수(MI2.16)가 0.5 g/10min 이상, 또는 0.7 g/10min 이상, 또는 0.8 g/10min 이상, 또는 0.9 g/10min 이상이면서, 1.5 g/10min 이하, 또는 1.4 g/10min 이하, 또는 1.3 g/10min 이하일 수 있다.
또한, 본 발명의 일 구현예에 따른 폴리올레핀은 필름 제막기를 이용하여 폴리올레핀 필름(BUR 2.3, 필름 두께 55 내지 65㎛)을 제조한 후, ISO 13468에 의거하여 측정한 필름의 헤이즈(haze)가 11% 이하일 수 있다. 보다 구체적으로, 본 발명의 일 구현예에 따른 폴리올레핀의 헤이즈는 11% 이하, 또는 10.5% 이하, 또는 10% 이하일 수 있다. 헤이즈값은 낮을수록 우수하므로 그 하한값은 특별히 한정되지 않으나, 예를 들어 4% 이상, 또는 5% 이상, 또는 6% 이상, 또는 7% 이상일 수 있다.
또한, 본 발명의 일 구현예에 따른 폴리올레핀은 필름 제막기를 이용하여 폴리올레핀 필름(BUR 2.3, 필름 두께 55 내지 65㎛)을 제조한 후, ASTM D 1709 [Method A]에 따라 측정한 낙하 충격 강도가 850 g 이상, 또는 900 g 이상, 또는 950 g 이상일 수 있다. 낙하 충격 강도는 높을수록 우수하므로 그 상한값은 특별히 한정되지 않으나, 예를 들어, 1,500 g 이하, 또는 1,400 g 이하, 또는 1,300 g 이하, 또는 1,200 g 이하일 수 있다.
또한, 본 발명의 일 구현예에 따른 폴리올레핀은 중량 평균 분자량(Mw)이 70,000 내지 140,000 g/mol 일 수 있다. 보다 바람직하게는, 상기 중량 평균 분자량은, 80,000 g/mol 이상, 또는 90,000 g/mol 이상이면서, 130,000 g/mol 이하, 또는 120,000 g/mol 이하일 수 있다.
상기 중량 평균 분자량(Mw)은 겔 투과 크로마토그래피(GPC)를 이용하여 측정한 것으로, polystyrene standard를 사용한 universal calibration한 값을 의미하며, 상기 폴리올레핀의 용도 또는 적용 분야를 고려하여 적절히 조절될 수 있다.
한편, 상기와 같은 물성적 특징을 갖는 발명의 일 구현예에 따른 폴리올레핀은 촉매 활성 성분으로 혼성 담지 메탈로센 화합물의 존재 하에, 올레핀 단량체를 중합하는 단계를 포함하는 제조방법에 의해 제조될 수 있다.
보다 구체적으로 본 발명의 폴리올레핀은 이에 한정되는 것은 아니나, 하기 화학식 1로 표시되는 화합물 중에서 선택되는 제 1 메탈로센 화합물 1종 이상; 하기 화학식 2로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상; 및 상기 제 1 및 제 2 메탈로센 화합물을 담지하는 담체를 포함하는, 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합하여 제조될 수 있다.
[화학식 1]
Figure PCTKR2019018226-appb-I000006
상기 화학식 1에서,
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C2 내지 C20의 알콕시알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
T1은 탄소, 실리콘, 또는 게르마늄이고;
M1는 4족 전이금속이고;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이며;
R1 내지 R14는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C1 내지 C20의 할로알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이거나, 혹은 R1 내지 R14 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이고;
[화학식 2]
Figure PCTKR2019018226-appb-I000007
상기 화학식 2에서,
Q3 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C2 내지 C20의 알콕시알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
T2는 탄소, 실리콘, 또는 게르마늄이고;
M2는 4족 전이금속이고;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이며;
R15 내지 R28은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C1 내지 C20의 할로알킬기, C2 내지 C20의 알케닐기, C2 내지 C20의 알콕시알킬기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 단, R20 및 R24는 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C20의 알킬기이거나, 혹은 R15 내지 R28 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
상기 혼성 담지 메탈로센 촉매에 있어서, 상기 화학식 1 및 2의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알콕시기로는 메톡시기, 에톡시기, 페닐옥시기, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알콕시알킬기는 상술한 바와 같은 알킬기의 1개 이상의 수소가 알콕시기로 치환된 작용기이며, 구체적으로 메톡시메틸기, 메톡시에틸기, 에톡시메틸기, iso-프로폭시메틸기, iso-프로폭시에틸기, iso-프로폭시헥실기, tert-부톡시메틸기, tert-부톡시에틸기, tert-부톡시헥실기 등의 알콕시알킬기; 또는 페녹시헥실기 등의 아릴옥시알킬기를 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알킬실릴기 또는 C1 내지 C20의 알콕시실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 상술한 바와 같은 알킬기 또는 알콕시기로 치환된 작용기이며, 구체적으로 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기 또는 다이메틸프로필실릴기 등의 알킬실릴기; 메톡시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기 또는 다이메톡시에톡시실릴기 등의 알콕시실릴기; 메톡시다이메틸실릴기, 다이에톡시메틸실릴기 또는 다이메톡시프로필실릴기 등의 알콕시알킬실릴기를 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 실릴알킬기는 상술한 바와 같은 알킬기의 1 이상의 수소가 실릴기로 치환된 작용기이며, 구체적으로 -CH2-SiH3, 메틸실릴메틸기 또는 다이메틸에톡시실릴프로필기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
상기 술포네이트기는 -O-SO2-R'의 구조로 R'는 C1 내지 C20의 알킬기일 수 있다. 구체적으로, C1 내지 C20 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또한, 본 명세서에서 서로 인접하는 2 개의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성한다는 것은 2개의 치환기의 원자(들) 및 상기 2개의 치환기가 결합된 원자가(원자들이) 서로 연결되어 고리를 이루는 것을 의미한다. 구체적으로, -NRaRb 또는 -NRa'Rb'의 Ra 및 Rb 또는 Ra' 및 Rb'가 서로 연결되어 지방족 고리를 형성한 예로는 피페리디닐(piperidinyl)기 등을 들 수 있고, -NRaRb 또는 -NRa'Rb'의 Ra 및 Rb 또는 Ra' 및 Rb'가 서로 연결되어 방향족 고리를 형성한 예로는 피롤릴(pyrrolyl)기 등을 예시할 수 있다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬기 또는 알케닐기, 아릴기, 알콕시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬기 또는 알케닐기, 아릴기, 알콕시기; 실릴기; 알킬실릴기 또는 알콕시실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
상기 4족 전이금속으로는 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 혼성 담지 촉매를 이용하면 폴리올레핀의 투명성을 유지하며 라멜라 분포의 불균일성에 의한 우수한 낙하 충격 강도를 확보할 수 있어, 고가공성, 특히 멜트 블로운 가공성이 우수한 폴리올레핀을 제조할 수 있다.
구체적으로, 발명의 일 구현예에 따른 상기 혼성 담지 촉매에 있어서, 제 1 메탈로센 화합물은 장쇄 분지를 포함하고 낮은 분자량의 폴리올레핀의 제조에 용이하고, 제 2 메탈로센 화합물은 상기 제 1 메탈로센 화합물에 비해 적은 양의 장쇄 분지를 포함하고 상대적으로 높은 분자량의 폴리올레핀 제조에 용이하다. 특히, 중합체 내에 장쇄 분지가 많고, 분자량이 클 때 용융 강도가 커지는데, 제 1 메탈로센 화합물의 경우 장쇄 분지가 많은데 비해 분자량이 낮아 버블 안정성을 개선하는 데 한계가 있다.
본 발명에서는 장쇄 분지를 상대적으로 많이 포함하고 분자량이 낮은 중합체를 생성하는 제 1 메탈로센 화합물과 상대적으로 많은 단쇄 분지와 높은 분자량의 중합체를 생성하는 제 2 메탈로센 화합물을 혼성 담지하여 우수한 투명도를 유지하면서 용융 강도를 향상시켰다. 상기 2종의 메탈로센 화합물을 혼성 담지함으로써 중합체 내에 존재하는 장쇄 분지가 상대적으로 저분자량 쪽에 위치하게 되기 때문에 투명도를 악화시키지 않는 것이다.
특히, 본 발명의 혼성 담지 촉매는 상기 화학식 1의 제 1 메탈로센 화합물에 의해 생성된 장쇄 분지와 상기 화학식 2의 제 2 메탈로센 화합물에 의해 생성된 장쇄 분지가 분자 레벨에서 서로 엉키는 특징을 갖는다. 장쇄 분지 사이의 엉킴에 의해 용융 상태에서 풀어지는데 큰 힘이 필요하므로 용융 강도가 강화된다. 각각의 촉매에 의한 단독 중합체를 용융하여 혼합(melt blending)을 했을 때는 용융강도의 개선이 나타나지 않는 것으로 보아 혼성 담지 촉매에 의해 중합 단계에서부터 엉킴이 일어날 때 용융강도 개선이 효과적이라는 것을 알 수 있다.
보다 구체적으로, 발명의 일 구현예에 따른 혼성 담지 촉매에 있어서, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물은 서로 다른 리간드로 메탈로센 화합물은 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드를 포함하며, 상기 리간드들은 -Si(Q1)(Q2)-에 의하여 가교되어 있고, 상기 리간드들 사이에 M1(X1)(X2)가 존재하는 구조를 가진다. 이러한 구조의 촉매를 중합하면 적은 양의 장쇄 분지가 있고, 분자량 분포(PDI, MWD, Mw/Mn)와 용융 흐름 지수(Melt Flow Rate Ratio, MFRR)이 상대적으로 좁은 중합체를 얻을 수 있다.
구체적으로, 상기 화학식 1로 표시되는 메탈로센 화합물의 구조 내에서 사이클로펜타다이에닐 리간드는, 예를 들면, 올레핀 중합 활성에 영향을 미칠 수 있다.
특히, 상기 사이클로펜타다이에닐 리간드의 R11 내지 R14는 각각 독립적으로 C1 내지 C20의 알킬기, C1 내지 C20의 알콕시기 및 C2 내지 C20의 알케닐기 중 어느 하나일 경우 상기 화학식 1의 메탈로센 화합물로부터 얻어진 촉매는 올레핀 중합 공정에서 보다 높은 활성을 나타낼 수 있으며, R11 내지 R14이 각각 독립적으로 메틸기, 에틸기, 프로필기 및 부틸기 중 어느 하나일 경우, 상기 혼성 담지 촉매는 올레핀 단량체의 중합 공정에서 매우 높은 활성을 나타낼 수 있다.
또한, 상기 화학식 1로 표시되는 메탈로센 화합물의 구조 내에서 테트라하이드로인데닐 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 안정적이고, 높은 중합 활성을 나타낼 수 있으며, 또 상기 테트라하이드로인데닐 리간드는, 예를 들면, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 폴리올레핀의 분자량을 용이하게 조절할 수 있다.
구체적으로, 상기 화학식 1에서 R1은 수소, C1 내지 C20의 알킬기, C1 내지 C20의 알콕시기 및 C2 내지 C20의 알케닐기 중 어느 하나일 수 있다. 보다 구체적으로, 상기 화학식 1에서 R1 은 수소 또는 C1 내지 C20의 알킬기이고, R2 내지 R10는 각각 수소일 수 있다. 이러한 경우 상기 혼성 담지 촉매는 우수한 가공성을 가지는 폴리올레핀을 제공할 수 있다.
또한, 상기 화학식 1로 표시되는 메탈로센 화합물의 구조 내에서 상기 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드는 -Si(Q1)(Q2)-에 의하여 가교되어 우수한 안정성을 나타낼 수 있다. 이러한 효과를 더욱 효과적으로 담보하기 위하여 Q1 및 Q2가 각각 독립적으로 C1 내지 C20의 알킬기 또는 C6 내지 C20의 아릴기 중 어느 하나일 수 있다. 보다 구체적으로, Q1 및 Q2가 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, t-부틸기, 페닐기, 및 벤질기 중 어느 하나인 메탈로센 화합물을 사용할 수 있다.
상기 화학식 1로 표시되는 메탈로센 화합물의 구조 내에서 상기 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드 사이에 존재하는 M1(X1)(X2)는 금속 착물의 보관 안정성에 영향을 미칠 수 있다. 이러한 효과를 더욱 효과적으로 담보하기 위하여 X1 및 X2가 각각 독립적으로 할로겐, C1 내지 C20의 알킬기 및 C1 내지 C20의 알콕시기 중 어느 하나일 수 있다. 보다 구체적으로 X1 및 X2가 각각 독립적으로 F, Cl, Br 또는 I일 수 있으며, M1은 Ti, Zr 또는 Hf이거나; Zr 또는 Hf이거나; 혹은 Zr일 수 있다.
하나의 예시로 보다 증가된 낙하 충격 강도와 많은 단쇄 분지 함량을 나타내며 우수한 블로운 필름 가공성을 가지는 폴리올레핀을 제공할 수 있는 제 1 메탈로센 화합물로서, 상기 화학식 1의 메탈로센 화합물은 하기 구조식들로 표시되는 화합물일 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019018226-appb-I000008
상기 화학식 1로 표시되는 제 1 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있다. 구체적으로는, 테트라하이드로인데닐 유도체와 사이클로펜타디엔 유도체를 브릿지 화합물로 연결하여 리간드 화합물을 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 제조될 수 있으나 이에 한정되는 것은 아니며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.
한편, 발명의 일 구현예에 따른 혼성 담지 촉매에 있어서, 상기 화학식 2로 표시되는 메탈로센 화합물은 서로 다른 리간드로 사이클로펜타다이에닐 리간드와 특정 위치에 치환기(R20 및 R24)를 갖는 인데닐 리간드를 포함하며, 상기 서로 다른 리간드는 -Si(Q3)(Q4)-에 의하여 가교되어 있고, 상기 서로 다른 리간드 사이에 M2(X3)(X4)가 존재하는 구조를 가진다. 이러한 특정 구조를 가지는 메탈로센 화합물을 적절한 방법으로 활성화시켜 올레핀의 중합 반응에 촉매로 이용하면, 장쇄 분지의 생성이 가능하다. 이와 같이, 화학식 2의 인덴 유도체의 특정한 위치에 치환기(R20 및 R24)를 도입함으로써, 비치환된 인덴 화합물이나, 다른 위치에 치환된 인덴 화합물을 포함하는 메탈로센 화합물에 비하여, 중합 활성이 높은 특성을 가질 수 있다.
특히, 상기 화학식 2로 표시되는 제 2 메탈로센 화합물의 경우, 단독 중합 시 분자량이 15~55만 정도의 분자량을 가지며 SCB를 갖는 특성이 있어 혼성 촉매에 적용 시 좁은 분자량 분포를 가지면서도 가공성을 향상시킬 수 있는 특성이 있다.
구체적으로, 상기 화학식 2로 표시되는 메탈로센 화합물의 구조 내에서 사이클로펜타다이에닐 리간드는, 예를 들면, 올레핀 중합 활성에 영향을 미칠 수 있다.
특히, 상기 사이클로펜타다이에닐 리간드의 R25 내지 R28은 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알콕시알킬기, 또는 C6 내지 C20의 아릴기 중 어느 하나일 경우 상기 화학식 1의 메탈로센 화합물로부터 얻어진 촉매는 올레핀 중합 공정에서 보다 높은 활성을 나타낼 수 있으며, R25 및 R28은 각각 수소이고, R26 및 R27는 각각 독립적으로 수소, C1 내지 C20의 알킬기, 또는 C2 내지 C20의 알콕시알킬기일 경우, 상기 혼성 담지 촉매는 올레핀 단량체의 중합 공정에서 매우 높은 활성을 나타낼 수 있다.
또한, 상기 화학식 2로 표시되는 메탈로센 화합물의 구조 내에서 인데닐 리간드는, 예를 들면, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 폴리올레핀의 분자량을 용이하게 조절할 수 있다.
구체적으로, 상기 인데닐기의 4번 위치에는 페닐기가 치환되어 있으며, 상기 페닐기의 파라 위치가 되는 R20은 C1 내지 C20의 알킬기일 수 있으며, 또한 상기 인데닐기의 6번 위치의 치환기 R24 또한 C1 내지 C20의 알킬기일를 갖는 것이 분자량을 상승시키는 측면에서 바람직하다. 특히, R20 및 R24는 각각 독립적으로 C1 내지 C4의 알킬기일 수 있고, R20은 바람직하게는 메틸기, 에틸기, n-프로필기, iso-프로필기 등이 될 수 있고, R24는 바람직하게는 t-부틸기가 될 수 있다. 이러한 경우 상기 혼성 담지 촉매는 우수한 공중합성을 가지는 폴리올레핀을 제공할 수 있다.
상기 인데닐기의 나머지 치환기 R15 내지 R19 및 R21 내지 R23은 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C1 내지 C20의 할로알킬기, C2 내지 C20의 알케닐기, C2 내지 C20의 알콕시알킬기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기일 수 있다.
또한, 상기 화학식 2로 표시되는 메탈로센 화합물의 구조 내에서 상기 사이클로펜타다이에닐 리간드와 인데닐 리간드는 -Si(Q3)(Q4)-에 의하여 가교되어 우수한 안정성을 나타낼 수 있다. 이러한 효과를 더욱 효과적으로 담보하기 위하여 Q3 및 Q4 각각 독립적으로 C1 내지 C20의 알킬기 또는 C2 내지 C20의 알콕시알킬기 중 어느 하나일 수 있다. 보다 구체적으로, Q3 및 Q4가 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, t-부틸기, 메톡시메틸기, 메톡시에틸기, 에톡시메틸기, iso-프로폭시메틸기, iso-프로폭시에틸기, iso-프로폭시헥실기, tert-부톡시메틸기, tert-부톡시에틸기, tert-부톡시헥실기 중 어느 하나인 메탈로센 화합물을 사용할 수 있다.
특히, 상기 화학식 2로 표시되는 메탈로센 화합물은 사이클로펜타디엔(Cp)의 치환기 또는 -Si(Q3)(Q4)-실릴기 중 어느 하나 이상은 C2 내지 C20의 알콕시알킬기가 될 수 있고, iso-프로폭시에틸기, iso-프로폭시헥실기, tert-부톡시에틸기, tert-부톡시헥실기 등이 더욱 바람직하다.
이는 상기 C2 내지 C20의 알콕시알킬기가 1-부텐(1-butene), 또는 1-헥센(1-hexene)과 같은 알파 올레핀 공단량체의 공중합성에 영향을 미칠 수 있는데, 상기 알콕시알킬기가 C4 이하의 짧은 알킬기 체인을 갖는 경우, 전체 중합 활성은 유지하면서 알파 올레핀 공단량체에 대한 공중합성(comonomer incorporation)이 낮아져 다른 물성의 저하 없이 공중합도가 조절된 폴리올레핀을 제조할 수 있기 때문이다.
또한, 상기 화학식 2로 표시되는 메탈로센 화합물의 구조 내에서 상기 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드 사이에 존재하는 M2(X3)(X4)는 금속 착물의 보관 안정성에 영향을 미칠 수 있다. 이러한 효과를 더욱 효과적으로 담보하기 위하여 X3 및 X4가 각각 독립적으로 할로겐, C1 내지 C20의 알킬기 및 C1 내지 C20의 알콕시기 중 어느 하나일 수 있다. 보다 구체적으로 X3 및 X4가 각각 독립적으로 F, Cl, Br 또는 I일 수 있으며, M2는 Ti, Zr 또는 Hf이거나; Zr 또는 Hf이거나; 혹은 Zr일 수 있다.
한편, 상기 화학식 2로 표시되는 제 2 메탈로센 화합물의 구체적인 예로, 하기 구조식들로 표시되는 화합물을 들 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
Figure PCTKR2019018226-appb-I000009
이와 같이, 상기 일 구현예의 혼성 담지 메탈로센 촉매는 상기 제 1 및 제 2 메탈로센 화합물을 포함하여, 가공성이 우수할 뿐만 아니라 물성, 특히 낙하 충격 강도 등이 우수한 폴리올레핀을 제조할 수 있다.
특히, 상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물의 혼합 몰 비는 약 1:1 내지 10:1이고, 바람직하게는 약 1.2:1 내지 7.5:1이고, 보다 바람직하게는 1.5:1 내지 7.0:1 혹은 1.8:1 내지 6.5:1일 수 있다. 상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물의 혼합 몰 비는 분자량과 SCB, LCB의 양을 조절하여 물성과 가공성을 모두 만족하기 위하여 물성 조절 측면에서 1:1 이상이 될 수 있고, 가공성 확보 측면에서 10:1 이하가 될 수 있다.
한편, 상기 제 1 및 제 2 메탈로센 화합물은 상술한 구조적 특징을 가져 담체에 안정적으로 담지될 수 있다.
상기 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물 등을 사용할 수 있으며, 이 중에서도 실리카가 보다 바람직할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 질산염 성분을 포함할 수 있다.
상기 담체의 건조 온도는 약 200 내지 800 ℃가 바람직하고, 약 300 내지 600 ℃가 더욱 바람직하며, 약 300 내지 400 ℃가 가장 바람직하다. 상기 담체의 건조 온도가 약 200 ℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 약 800 ℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 약 0.1 내지 10 mmol/g이 바람직하며, 약 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 약 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 약 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
또한, 상기 일 구현예의 혼성 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 3의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 4의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 3]
Ra-[Al(Rb)-O]n-Rc
상기 화학식 3에서,
Ra, Rb, 및 Rc는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 하이드로카빌기, 또는 할로겐으로 치환된 C1 내지 C20의 하이드로카빌기이고;
n은 2 이상의 정수이며;
[화학식 4]
T+[BG4]-
화학식 4에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
상기 화학식 3의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 4의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트 또는 N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6-, 디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
상기 일 구현예의 혼성 담지 메탈로센 촉매에 있어서, 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1:10 내지 1:1000일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.
또한, 조촉매 화합물 대 담체의 질량비는 1:1 내지 1:100일 수 있다. 상기 질량비로 조촉매 및 담체를 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.
상기 일 구현예의 혼성 담지 메탈로센 촉매는 그 자체로서 올레핀계 단량체의 중합에 사용될 수 있다. 또한, 상기 혼성 담지 메탈로센 촉매는 올레핀계 단량체와 접촉 반응되어 예비 중합된 촉매로 제조하여 사용할 수도 있으며, 예컨대 촉매를 별도로 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐 등과 같은 올레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다.
한편, 상기 일 구현예의 혼성 담지 메탈로센 촉매는, 담체에 조촉매를 담지시키는 단계; 상기 조촉매가 담지된 담체에 제 1 및 제 2 메탈로센 화합물을 담지시키는 단계; 를 포함하는 제조 방법에 의해 제조될 수 있다.
이 때, 상기 제 1 및 제 2 메탈로센 화합물은 1종씩 순차적으로 담지시킬 수도 있고, 2종을 함께 담지시킬 수도 있다. 이 때, 담지 순서에는 제한이 없으나, 형상(morphology)이 상대적으로 좋지 못한 제 2 메탈로센 촉매를 우선 담지함으로써 상기 혼성 담지 메탈로센 촉매의 형상을 개선할 수 있으며, 이에 따라 제 2 메탈로센 촉매을 담지한 이후에 제 1 메탈로센 촉매를 순서대로 담지할 수 있다.
상기 방법에서, 담지 조건은 특별히 한정되지 않고 이 분야의 당업자들에게 잘 알려진 범위에서 수행할 수 있다. 예를 들면, 고온 담지 및 저온 담지를 적절히 이용하여 진행할 수 있고, 예를 들어, 담지 온도는 약 -30 ℃ 내지 150 ℃의 범위에서 가능하고, 바람직하게는 상온(약 25 ℃) 내지 약 100 ℃, 더욱 바람직하게는 상온 내지 약 80 ℃이다. 담지 시간은 담지하고자 하는 메탈로센 화합물의 양에 따라 적절하게 조절될 수 있다. 반응시킨 담지 촉매는 반응 용매를 여과하거나 감압 증류시켜 제거하여 그대로 사용할 수 있고, 필요하면 톨루엔과 같은 방향족 탄화수소로 속실렛 필터하여 사용할 수 있다.
그리고, 상기 담지 촉매의 제조는 용매 또는 무용매 하에 수행될 수 있다. 용매가 사용될 경우, 사용 가능한 용매로는 헥산 또는 펜탄과 같은 지방족 탄화 수소 용매, 톨루엔 또는 벤젠과 같은 방향족 탄화 수소 용매, 디클로로메탄과 같은 염소 원자로 치환된 탄화수소 용매, 디에틸에테르 또는 THF와 같은 에테르계 용매, 아세톤, 에틸아세테이트 등의 대부분 유기 용매를 들 수 있고, 헥산, 헵탄, 톨루엔, 또는 디클로로메탄이 바람직하다.
한편, 발명의 다른 구현예에 따르면, 상기 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 폴리올레핀의 제조 방법이 제공될 수 있다.
그리고, 상기 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-에이코센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 올레핀 단량체의 중합 반응을 위하여, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀 단량체의 중합 반응으로 알려진 다양한 중합 공정이 채용될 수 있다. 이러한 중합 반응은 약 25 내지 500 ℃, 또는 약 25 내지 200 ℃, 또는 약 50 내지 150 ℃의 온도와, 약 1 내지 100 bar 또는 약 10 내지 80 bar의 압력 하에서 수행될 수 있다.
또한, 상기 중합 반응에서, 상기 혼성 담지 메탈로센 촉매는 펜탄, 헥산, 헵탄, 노난, 데칸, 톨루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다.
그리고, 상기와 같은 방법으로 제조되는 폴리올레핀은 저밀도, 우수한 투명도와 함께 높은 낙하 충격 강도를 나타낼 수 있다.
구체적으로, 상기 폴리올레핀은 밀도가 0.915 g/cm3 내지 0.930 g/cm3 이고, SSA (Successive Self-nucleation and Annealing) 분석 시 에틸렌 시퀀스(ethylene sequence)의 불균일성(inhomogeneity, I)이 1.25 내지 1.40일 수 있다.
또한, 상기 폴리올레핀은 ASTM D1238 규격에 따라 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수(MI2.16)가 0.5 내지 1.5 g/10min일 수 있다.
또한, 상기 폴리올레핀은 필름 제막기를 이용하여 폴리올레핀 필름(BUR 2.3, 필름 두께 55 내지 65㎛)을 제조한 후, ISO 13468에 의거하여 측정한 필름의 헤이즈(haze)가 11% 이하일 수 있다.
또한, 상기 폴리올레핀은 필름 제막기를 이용하여 폴리올레핀 필름(BUR 2.3, 필름 두께 55 내지 65㎛)을 제조한 후, ASTM D 1709 [Method A]에 따라 측정한 낙하 충격 강도가 850 g 이상일 수 있다.
또한, 상기한 폴리올레핀이, 예를 들어 에틸렌-알파 올레핀 공중합체, 바람직하게는 에틸렌과 1-부텐의 공중합체 또는 에틸렌-1-헥센 공중합체인 경우, 상기한 물성적 특징을 보다 적절히 충족할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실시예>
<메탈로센 화합물의 합성예>
합성예 1: 제 1 메탈로센 화합물
Figure PCTKR2019018226-appb-I000010
1-1 리간드 화합물의 제조
테트라메틸사이클로펜타다이엔(TMCP)는 THF(0.4 M)에서 n-BuLi(1 당량)으로 Lithiation 후 필터하여 테트라메틸사이클로펜틸-Li 염(TMCP-Li salts)로 사용하였다. 인덴(Indene)은 Hexane(0.5 M) n-BuLi(1 당량)으로 Lithiation하고 필터하여 인덴-Li염(Ind-Li salts)로 사용하였다. 250 mL 쉬링크 플라스크(Schlenk flask)에 Ar 하에서 테트라메틸사이클로펜틸-Li 염(TMCP-Li salts) 50 mmol, 테트라하이로퓨란(THF) 약 100 mL을 넣었다. -20 ℃에서 1 당량의 디클로로메틸이소프로필 실레인(dichloromethyl-(iso-propyl) silane)를 첨가하였다. 약 6 시간 후 CuCN 3 mol%와 Ind-Li salts (50 mmol, MTBE 1M solution)을 -20 ℃에서 첨가하고 약 12 시간 반응시켰다. 물과 Hexane으로 유기층을 분리하여 리간드를 얻었다.
1-2 메탈로센 화합물의 제조
건조된 250 mL Schlenk flask에 1-1에서 합성한 리간드 화합물 50 mmol를 넣어 Ar 하에서 MTBE 100 mL에 녹이고 -20 ℃에서 2 당량의 n-BuLi을 적가하였다. 약 16 시간 반응 후 ZrCl4(THF)2 (50 mmol, MTBE 1 M solution)에 리간드-Li 용액(solution)을 첨가하였다. 약 16 시간 반응 후 용매를 제거하고, 메틸렌클로라이드(MC)로 녹여 필터하여 LiCl를 제거하였다. Filtrate의 용매를 제거하고 MTBE 약 50 mL와 Hexane 약 100 mL을 넣어 약 2 시간 교반 후 filter하여 고체의 메탈로센 촉매 전구체를 얻었다.
고압 스테인레스스틸(sus) 반응기에 위에서 얻은 메탈로센 촉매 전구체(20 mmol)과 DCM 60 mL, Pd/C 촉매 5 mol%를 아르곤 분위기 하에서 투입하였다. 고압 반응기 내부의 아르곤을 수소로 3회 치환하고, 압력이 약 20 bar가 되도록 수소를 채웠다. 35 ℃에서 24 시간 동안 교반하면 반응이 완결되었다. 내부를 아르곤으로 치환한 후 아르곤 분위기하에서 schlenk flask로 DCM 용액을 이송하였다. 이 용액을 아르곤 하에서 celite를 통과시켜 Pd/C 촉매를 제거하고 용매를 건조시켜 고체의 촉매 전구체를 얻었다.
1H NMR (500 MHz, C6D6): 0.62 (3H, s), 0.98 (3H, d), 1.02 (3H, d), 1.16 (2H, dd), 1.32-1.39 (3H, m), 1.78 (3H, s), 1.81 (3H, s), 1.84-1.94 (3H, m), 2.01 (3H, s), 2.03 (1H, m), 2.04 (3H, s), 2.35 (2H, m), 2.49-2.55 (1H, m), 3.13-3.19 (1H, m), 5.27 (1H, d), 6.75 (1H, d).
합성예 2: 제 1 메탈로센 화합물
Figure PCTKR2019018226-appb-I000011
2-1 리간드 화합물의 제조
테트라메틸사이클로펜타다이엔(TMCP)는 THF(0.4 M)에서 n-BuLi(1 당량)으로 Lithiation 후 필터하여 테트라메틸사이클로펜틸-Li 염(TMCP-Li salts) 로 사용하였다. 인덴(Indene)은 Hexane(0.5 M) n-BuLi(1 당량)으로 Lithiation하고 필터하여 인덴-Li염(Ind-Li salts)로 사용하였다. 250 mL 쉬링크 플라스크(Schlenk flask)에 Ar 하에서 테트라메틸사이클로펜틸-Li 염(TMCP-Li salts) 50 mmol, 테트라하이로퓨란(THF) 100 mL을 넣었다. -20 ℃에서 1 당량의 디클로로메틸페닐 실레인(dichloromethylphenyl) silane)를 첨가하였다. 약 6 시간 후 CuCN 3 mol%와 Ind-Li salts (50 mmol, MTBE 1M solution)을 -20 ℃에서 첨가하고 약 12 시간 반응시켰다. 물과 Hexane으로 유기층을 분리하여 리간드를 얻었다.
2-2 메탈로센 화합물의 제조
건조된 250 mL Schlenk flask에 2-1에서 합성한 리간드 화합물 50 mmol를 넣어 Ar 하에서 MTBE 약 100 mL에 녹이고 -20 ℃에서 2 당량의 n-BuLi을 적가하였다. 약 16 시간 반응 후 ZrCl4(THF)2 (50 mmol, MTBE 1 M solution)에 리간드-Li 용액(solution)을 첨가하였다. 약 16 시간 반응 후 용매를 제거하고, 메틸렌클로라이드(MC)로 녹여 필터하여 LiCl를 제거하였다. Filtrate의 용매를 제거하고 MTBE 약 50 mL와 Hexane 약 100 mL을 넣어 약 2 시간 교반 후 filter하여 고체의 메탈로센 촉매 전구체를 얻었다.
고압 스테인레스스틸(sus) 반응기에 위에서 얻은 메탈로센 촉매 전구체(20 mmol)과 DCM 60 mL, Pd/C 촉매 5 mol%를 아르곤 분위기 하에서 투입하였다. 고압 반응기 내부의 아르곤을 수소로 3회 치환하고, 압력이 약 20 bar가 되도록 수소를 채웠다. 약 35 ℃에서 약 24 시간 동안 교반하면 반응이 완결되었다. 내부를 아르곤으로 치환한 후 아르곤 분위기하에서 schlenk flask로 DCM 용액을 이송하였다. 이 용액을 아르곤 하에서 celite를 통과시켜 Pd/C 촉매를 제거하고 용매를 건조시켜 입체이성질체가 다른 메탈로센 화합물(A, B form)을 1.3:1의 비율로 확보하였다.
1H NMR (500 MHz, CDCl3):
Form A: 0.88 (3H, s), 1.43-1.50 (1H, m), 1.52-1.57 (1H, m), 1.60 (3H, s), 1.62-1.68 (1H, m), 1.87-1.95 (1H, m), 1.95-2.00 (1H, m), 2.00 (3H, s), 2.06 (3H, s), 2.08 (3H, s), 2.41-2.47 (1H, m), 2.72-2.78 (1H, m), 3.04-3.10 (1H, m), 5.62 (1H, d), 6.73 (1H, d), 7.49 (3H, m), 7.87 (2H, m)
Form B: 0.99 (3H, s), 1.42 (3H, s), 1.60-1.67 (2H, m), 1.90-1.98 (1H, m), 1.95 (3H, s), 2.06 (3H, s), 2.06-2.10 (1H, m), 2.11 (3H, s), 2.44-2.49 (1H, m), 2.66-2.70 (1H, m), 2.74-2.79 (1H, m), 3.02-3.11 (1H, m), 5.53 (1H, d), 6.74 (1H, d), 7.48 (3H, m), 7.88 (2H, m).
합성예 3: 제 1 메탈로센 화합물
Figure PCTKR2019018226-appb-I000012
3-1 리간드 화합물의 제조
건조된 250mL schlenk flask에서 테트라메틸사이클로펜타다이엔 (TMCP, 6.0mL, 40mmol)을 THF (60 mL)에 녹인 후, 이 용액을 -78℃로 냉각하였다. 이어서, 상기 용액에 n-BuLi (2.5M, 17mL, 42mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다.
한편, 별도의 250mL schlenk flask에서 dichlorodimethylsilane (4.8mL, 40mmol)을 n-hexane에 녹인 후, 이 용액을 -78℃로 냉각하였다. 이어서, 이 용액에 앞서 제조한 TMCP-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다.
이후, 얻어지는 용액을 감압하여 상기 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 톨루엔에 용해시키고, 여과하여 남아있는 LiCl를 제거하여 중간체를 얻었다(yellow liquid, 7.0g, 33 mmol, 83% yield).
1H NMR (500 MHz, CDCl3): 0.24 (6H, s), 1.82 (6H, s), 1.98 (6H, s), 3.08 (1H, s).
건조된 250mL schlenk flask에서 indene (0.93mL, 8.0mmol)을 THF (30mL)에 녹인 후, 이 용액을 -78℃로 냉각하였다. 이어서, 상기 용액에 n-BuLi (2.5M, 3.4mL, 8.4mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 약 5 시간 동안 교반하였다.
한편, 별도의 250mL schlenk flask에서 앞서 합성한 중간체 (1.7g, 8.0mmol)를 THF에 녹이고, 이 용액을 -78℃로 냉각하였다. 이어서, 이 용액에 앞서 제조한 indene-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하룻밤 동안 교반하여 자주색 용액을 얻었다.
이후, 반응기에 물을 부어 반응을 종료하고(quenching), 상기 혼합물로부터 ether로 유기층을 추출하였다. 상기 유기층에는 다이메틸(인데닐)(테트라메틸사이클로펜타다이에닐)실란과 다른 종의 유기 화합물이 포함되어 있음을 1H NMR을 통하여 확인하였다. 상기 유기층은 정제 없이 농축되어 metallation에 그대로 이용되었다.
3-2 메탈로센 화합물의 제조
250mL schlenk flask에서 앞서 합성한 다이메틸(인데닐)(테트라메틸사이클로펜타다이에닐)실란 (1.7g, 5.7mmol)을 톨루엔 (30mL) 및 MTBE (3.0mL)에 녹였다. 그리고, 이 용액을 -78℃로 냉각한 다음, 상기 용액에 n-BuLi (2.5M, 4.8mL, 12mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다. 그러나, 상기 용액 내에 노란색 고체가 생성되어 균일하게 교반되지 않아 MTBE (50mL) 및 THF (38mL)를 추가로 투입하였다.
한편, 별도로 준비된 250mL schlenk flask에서 ZrCl4(THF)2를 톨루엔에 분산시킨 후, 얻어지는 혼합물을 -78℃로 냉각하였다. 이어서, 상기 혼합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 혼합물을 하룻밤 동안 교반하였다.
이후, 반응 생성물을 여과하여 노란색 고체(1.3g, LiCl (0.48g) 포함, 1.8mmol)를 얻었고, 여액에서 용매를 제거한 후, n-hexane으로 세척하여 노란색 고체(320mg, 0.70mmol)를 추가로 얻었다(total 44% yield).
1H NMR (500 MHz, CDCl3): 0.96 (3H, s), 1.16 (3H, s), 1.91 (3H, s), 1.93 (3H, s), 1.96 (3H, s), 1.97 (3H, s), 5.98 (1H, d), 7.07 (1H, t), 7.23 (1H, d), 7.35 (1H, t), 7.49 (1H, d), 7.70 (1H, d).
앞서 합성한 다이메틸실릴렌(테트라메틸사이클로펜타다이에닐)(인데닐)지르코늄 다이클로라이드 (1.049g, 2.3mmol)를 글러브 박스에서 mini bombe에 담았다. 그리고, 상기 mini bombe에 platinum oxide (52.4mg, 0.231mmol)을 추가로 담고, mini bombe를 조립한 후, mini bombe에 anhydrous THF (30mL)를 canuula를 이용하여 넣고, 약 30 bar의 압력까지 수소를 채웠다. 이어서, mini bombe에 담긴 혼합물을 약 60℃에서 약 1 일간 교반한 후, mini bombe의 온도를 상온으로 냉각시키고, mini bombe의 압력을 서서히 낮추면서 수소를 아르곤으로 치환하였다.
한편, 약 120℃의 오븐에서 약 2 시간 정도 건조한 celite를 schlenk filter에 깔고, 이를 이용하여 상기 mini bombe의 반응 생성물을 아르곤 하에서 여과하였다. 상기 celite에 의하여 반응 생성물로부터 PtO2 촉매가 제거되었다. 이어서, 촉매를 제거한 반응 생성물을 감압하여 용매를 제거하고, 연노란색 고체인 생성물을 얻었다(0.601g, 1.31mmol, Mw: 458.65g/mol).
1H NMR (500 MHz, CDCl3): 0.82 (3H, s), 0.88 (3H, s), 1.92 (6H, s), 1.99 (3H, s), 2.05 (3H, s), 2.34 (2H, m), 2.54 (2H, m), 2.68 (2H, m), 3.03 (2H, m), 5.45 (1H, s), 6.67 (1H, s).
합성예 4: 제 2 메탈로센 화합물
Figure PCTKR2019018226-appb-I000013
4-1 리간드 화합물의 제조
건조된 250 mL schlenk flask에 11.618 g (40 mmol)의 4-(4-(tert-butyl)phenyl)-2-isopropyl-1H-indene을 넣고 아르곤 하에서 100 mL의 THF를 주입하였다. diethylether solution을 0 ℃까지 냉각한 후 18.4 mL (46 mmol)의 2.5 M nBuLi hexane solution을 천천히 적가하였다. 반응 혼합물은 천천히 상온으로 올린 후 다음날까지 교반하였다. 다른 250 mL schlenk flask에 dichloromethyltethersilane 12.0586 g(40 mmol, 순도 90% 계산)과 Hexane 100 mL의 solution을 준비하여 이 Schlenk flask를 -30 ℃까지 냉각한 뒤, 여기에 Lithiated 된 solution을 적가하였다. 주입이 끝난 혼합물은 상온으로 천천히 올린 후 하루동안 교반시켰다. 다음날 NaCp in 2M THF 33.6 mL을 적가하여 하루 동안 교반한 후, Flask 내에 50 mL의 물을 넣어 quenching 하고 유기층을 분리하여 MgSO4로 drying하였다. 그 결과, 23.511 g (52.9 mmol)의 오일을 얻었다 (NMR 기준 purity / wt% = 92.97%. Mw =412.69).
4-2 메탈로센 화합물의 제조
Oven에 건조한 250 mL schlenk flask에 리간드를 넣고 Toluene 80 mL와 MTBE 19 mL (160 mmol, 4 equiv.)에 녹인 다음, 2.1 당량의 nBuLi solution(84 mmol, 33.6 mL)을 가해 다음날까지 lithiation을 시켰다. Glove box 내에서 1 당량의 ZrCl4(THF)2를 취해 250 mL schlenk flask에 담고 Ether을 넣은 suspension을 준비하였다. 위 두 개의 flask 모두 -20 ℃까지 냉각시킨 후 ligand anion을 천천히 Zr suspension에 가하였다. 주입이 끝난 후, 반응 혼합물은 천천히 상온까지 상승시켰다. 이를 하루 동안 교반한 후, 혼합물 내의 MTBE를 바로 Schlenk Filter로 아르곤 하에서 여과하여 반응 후 생성된 LiCl를 제거하였다. 제거한 후 남은 여액을 진공 감압을 통해 제거하고 소량의 Dichloromethane에 반응 용매 정도 volume의 pentane을 가하였다. 이 때 pentane을 가하는 이유는 합성된 촉매 전구체가 pentane에 대한 용해도가 떨어지기 때문에 결정화를 촉진시키기 때문이다. 이 slurry를 아르곤하에서 filter하여 위에 남은 filter cake 와 Filtrate 를 각각 NMR을 통하여 촉매합성 여부를 확인하고 glove box 내에서 계량하고 sampling하여 수율, 순도를 확인하였다 (Mw =715.04).
1H NMR (500 MHz, CDCl3): 0.60 (3H, s), 1.01 (2H, m), 1.16 (6H, s), 1.22 (9H, s), 1.35 (4H, m), 1.58 (4H, m), 2.11 (1H, s), 3.29 (2H, m), 5.56 (1H, s), 5.56 (2H, m), 5.66 (2H, m), 7.01 (2H, m), 7.40 (3H, m), 7.98 (2H, m)
합성예 5: 제 2 메탈로센 화합물
Figure PCTKR2019018226-appb-I000014
5-1 리간드 화합물의 제조
THF 하에서 6-tert-butoxyhexyl chloride과 sodium Cyclopentadiene(2당량)를 넣고 교반하였다. 반응 완결 후 물로 Workup 하고 과량의 Cyclopentadiene은 증류하여 제거하였다. 위의 과정으로 확보한 6-tert-butoxyhexylcyclopentadiene 4.45 g (20 mmol) 에 톨루엔 27 mL 를 투입하였다. 온도를 -20 ℃로 낮추고 2.5 M n-BuLi Hexane solution 8.8 mL (22 mmol)을 적가하여 상온에서 밤새 교반하였다.
건조된 250 mL Schlenk flask에 5.8 g (20 mmol)의 4-(4-(tert-butyl)phenyl)-2-isopropyl-1H-indene을 넣고 33mL 의 MTBE를 투입하였다. 온도를 -20 ℃로 낮추고 2.5M의 n-BuLi Hexane solution 8.8 mL(22 mmol)을 적가하여 상온에서 밤새 교반하였다. 온도를 -20 ℃로 낮추고 dichlorodimethyl silane 을 1.5당량 투입하였다. 상온에서 밤새 교반하고, 증류하여 과량의 dichlorodimethyl silane을 제거하였다.
6-tert-butoxyhexylcyclopentadiene 을 lithiation 한 용액을 위의 플라스크에 투입하고, 밤새 교반하였다. 이러한 과정에 의해 합성된 리간드를 workup 하여 리간드 화합물을 확보하였다.
5-2 메탈로센 화합물의 제조
5-1에서 합성한 리간드 화합물 11.4g (20 mmol)을 톨루엔 50 mL에 녹여 2.5M nBuLi hexane solution 약 16.8 mL(42 mmol)을 적가하여 상온에서 밤새 교반하였다. 20 mmol의 ZrCl4(THF)2을 투입하여 밤새 교반하고 반응이 완결되면 Filtration 하여 LiCl 를 제거하였다. 용매를 모두 제거하고 Hexane 으로 결정화한 후 정제하여 입체이성질체가 다른 메탈로센 화합물(A, B form)을 1.3:1의 비율로 확보하였다.
1H NMR (500 MHz, C6D6):
Form A: 0.58 (3H,s), 0.55 (3H,s), 0.93-0.97(3H,m), 1.12 (9H,s), 1.28 (9H,s), 1.27 (3H,d), 1.35-1.42 (1H,m), 1.45-1.62(4H,m), 2.58-2.65 (1H,m), 2.67-2.85(2H,m), 3.20 (2H,t), 5.42 (1H,m), 5.57 (1H, m), 6.60 (1H, m), 6.97 (1H, dd), 7.27 (1H, d), 7.39-7.45 (4H, m), 8.01 (2H, dd)
Form B: 0.60 (3H,s), 0.57 (3H,s), 0.93-0.97(3H,m), 1.11 (9H,s), 1.28 (9H,s), 1.32 (3H,d), 1.35-1.42 (1H,m), 1.45-1.62(4H,m), 2.58-2.65 (1H,m), 2.67-2.85(2H,m), 3.23 (2H,t), 5.24 (1H,m), 5.67 (1H, m), 6.49 (1H, m), 6.97 (1H, dd), 7.32 (1H, d), 7.39-7.45 (4H, m), 8.01 (2H, dd)
비교 합성예 1: 제 2 메탈로센 화합물
1-1 리간드 화합물의 제조
6-클로로헥사놀(6-chlorohexanol)을 사용하여 문헌(Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t-Butyl-O-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반응시켜 t-Butyl-O-(CH2)6-C5H5를 얻었다(수율 60%, b.p. 80℃ /0.1 mmHg)
1-2 메탈로센 화합물의 제조
-78℃에서 t-Butyl-O-(CH2)6-C5H5를 THF에 녹이고, 노르말 부틸리튬(n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78℃에서 ZrCl4(THF)2 (1.70g, 4.50mmol)/THF(30㎖)의 서스펜젼(suspension) 용액에 기 합성된 리튬염(lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반응시켰다.
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 헥산(hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 헥산을 가해 저온(-20℃)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-O-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다(수율 92%).
1H NMR (300 MHz, CDCl3): 6.28 (t, J = 2.6 Hz, 2H), 6.19 (t, J = 2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8H), 1.17 (s, 9H)
비교 합성예 2: 제 2 메탈로센 화합물
Figure PCTKR2019018226-appb-I000015
2-1 리간드 화합물의 제조
건조된 250 mL Schlenk flask에 3.7 g (40 mmol)의 1-chlorobutane을 넣고 40 mL의 THF에 녹였다. 여기에 20 mL의 sodium cyclopentadienylide THF 용액을 천천히 가한 후 하룻동안 교반시켰다. 이 반응 혼합물에 50 mL의 물을 가해 퀀칭(quenching)시키고, ether로 추출(50 mL x 3)한 다음 모인 유기층을 brine으로 충분히 씻어주었다. MgSO4로 남은 수분을 건조하고 여과한 다음, 진공 감압 하에 용매를 제거함으로써 어두운 갈색의 점성이 있는 형태의 생성물인 2-butyl-cyclopenta-1,3-diene을 정량 수율로 수득하였다.
2-2 메탈로센 화합물의 제조
건조된 250 mL Schlenk flask에 5-1에서 합성한 리간드 화합물 약 4.3 g(23 mmol)을 넣고 약 60 mL의 THF에 녹였다. 여기에 약 11 mL의 n-BuLi 2.0M hexane solution (28 mmol)을 가하고 하룻동안 교반시킨 다음, 이 용액을 ZrCl4(THF)2 3.83 g(10.3 mmol)을 약 50 mL의 ether에 분산시킨 플라스크에 -78 ℃에서 천천히 가하였다.
이 반응 혼합물은 상온까지 올리면 옅은 갈색의 서스펜션에서 탁한 노란색이 서스펜션 형태로 변하였다. 하룻동안 교반시킨 후 반응 혼합물의 용매를 모두 건조시키고 약 200 mL의 헥산을 넣어 sonication을 하여 가라앉힌 다음, 위층에 뜬 헥산 용액을 cannula로 decantation하여 모았다. 이 과정을 2회 반복하여 얻은 헥산 용액을 진공 감압하에서 건조하여 옅은 노란색 고체 형태의 화합물인 bis(3-butyl-2,4-dien-yl) zirconium(IV) chloride가 생성되었음을 확인하였다.
1 H NMR (500MHz, CDCl3): 0.91 (6H, m), 1.33 (4H, m), 1.53 (4H, m), 2.63 (4H, t), 6.01 (1H, s), 6.02 (1H, s), 6.10 (2H, s), 6.28 (2H, s)
<혼성 담지 메탈로센 촉매의 제조예>
제조예 1
20L SUS 고압 반응기에 톨루엔 2.0 kg 및 실리카 (Grace Davison, SP2410) 1000 g을 투입하고, 반응기의 온도를 40 ℃로 올리면서 교반하였다. 상기 반응기에 메틸알루미녹산(10wt% in toluene, Albemarle 사 제조) 5.4 kg을 투입하고, 온도를 70 ℃로 올린 후 약 200rpm으로 약 12시간 교반하였다. 이후 반응기의 온도를 40 ℃로 낮추고, 교반을 중지시켰다. 그리고, 반응 생성물을 약 10분동안 정치시킨 후, decantation 하였다. 다시 상기 반응 생성물에 톨루엔 2.0 kg 투입하여 약 10분간 교반하고, 교반을 중지하여 약 30분 동안 정치시킨 후, decantation 하였다.
상기 반응기에 톨루엔 2.0 kg 투입하고, 이어서 상기 합성예 1에서 준비한 화합물(60 mmol)과 합성예 4에서 준비한 화합물 (10 mmol) 및 톨루엔 1000 mL 를 투입하였다. 반응기의 온도를 85 ℃로 올리고, 약 90분간 교반하였다.
이후, 반응기의 온도를 상온으로 낮추고, 교반을 중지하여 반응 생성물을 약 30분간 정치시킨 후, 반응 생성물을 decantation 하였다. 이어서, 반응기에 헥산 3kg을 투입하고, 헥산 슬러리 용액을 20L filter dryer 로 이송하여 용액을 여과하고, 50 ℃에서 약 4시간 동안 감압 건조하여 1.5 kg의 담지 촉매를 얻었다.
제조예 2
상기 합성예 2(60 mmol) 및 합성예 4(10 mmol)의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 혼성 담지 메탈로센 촉매를 제조하였다.
제조예 3
상기 합성예 3(60 mmol) 및 합성예 5(10 mmol)의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 혼성 담지 메탈로센 촉매를 제조하였다.
비교 제조예 1
상기 합성예 1(70 mmol)의 메탈로센 화합물만을 사용한 것을 제외하고는, 제조예 1와 동일한 방법으로 담지 메탈로센 촉매를 제조하였다.
비교 제조예 2
상기 합성예 1(60 mmol) 및 비교 합성예 1(10 mmol)의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1와 동일한 방법으로 혼성 담지 메탈로센 촉매를 제조하였다.
비교 제조예 3
상기 합성예 2(60 mmol) 및 비교 합성예 2(10 mmol)의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 담지 메탈로센 촉매를 제조하였다.
상기 제조예들 및 비교 제조예들의 주요 구성을 하기 표 1에 나타내었다.
Figure PCTKR2019018226-appb-T000001
<폴리올레핀 제조 실시예>
에틸렌-1-헥센 공중합
중합 반응기로 isobutene slurry loop process가 가능하며, 약 7m/s의 반응 유속으로 운전되는 140L 연속 중합기를 준비하였다. 그리고, 반응기에 표 2에 기재된 바와 같이 올레핀 중합에 필요한 반응물들을 연속적으로 투입하였다.
각 올레핀 중합 반응에서 사용된 담지촉매는 표 1에 기재된 제조예에서 제조한 것을 사용하였고, 담지촉매는 isobutene slurry에 혼합되어 투입되었다.
상기 올레핀 중합 반응은 약 40 bar의 압력 및 약 84 °C의 온도하에서 수행되었다
상기 중합 반응의 주요 조건을 표 2에 나타내었다.
Figure PCTKR2019018226-appb-T000002
<실험예>
실시예 및 비교예에서 제조된 폴리올레핀에 대해 하기와 같이 물성을 측정하여 그 결과를 하기 표 3에 나타내었다.
헤이즈 및 낙하 충격 강도를 측정하기 위한 압출 시, 얻어진 폴리올레핀에 산화방지제(Irganox 1010 + Igafos 168, CIBA사) 처방 후 이축압출기(W&P Twin Screw Extruder, 75 파이, L/D=36)를 사용하여 180 ~ 210 ℃의 압출온도에서 제립하였다.
(1) 밀도(density) : ASTM D1505 규격에 따라 측정하였다.
(2) Melt Index (MI2.16) : ASTM D1238 (조건 E, 190 ℃, 2.16kg 하중) 규격에 따라 측정하였다.
(4) 헤이즈(Haze) : 단축압출기(유진엔지니어링 Single Screw Extruder, Blown Film M/C, 50 파이)를 이용하고 압출온도 130 ~ 170℃에서 60㎛의 두께가 되도록 인플레이션 성형하였다. 이때 다이갭(Die Gap)은 2.0mm, 팽창비(Blown-Up Ratio)는 2.3으로 하였다. 이렇게 제조한 필름에 대해 ISO 13468기준에 따라 측정하였다. 이때 한 시편당 10회 측정하여 그 평균값을 취하였다.
(4) 낙하 충격 강도: (3)과 같은 조건에서 중합체 필름을 제조한 후, ASTM D1709 [Method A] 규격에 따라 필름 시료당 20회 이상 측정하여 그 평균값을 취하였다.
(5) SSA thermogram
시차주사열량계(장치명: DSC8000, 제조사: PerkinElmer)를 이용하여 폴리올레핀을 초기에 160℃까지 가열한 후 30분 동안 유지하여 시료의 측정 전 열 이력을 모두 제거하였다.
160℃부터 122℃까지 온도를 내린 후, 20분간 유지하고 30℃까지 온도를 내린 후 1분 유지 후, 다시 온도를 증가시켰다. 다음에, 최초의 가열 온도 122℃ 보다 5℃ 낮은 온도(117 ℃)까지 가열한 후 20분 동안 유지하고, 30℃까지 온도를 내린 후 1분 유지 후, 다시 온도를 증가시켰다. 이러한 방식으로 n+1번째의 가열 온도는 n번째 가열 온도보다 5℃ 낮은 온도로 하고, 유지 시간 및 냉각 온도는 동일하게 하여 점차 가열 온도를 내리면서 52℃까지 진행하였다. 이때 온도의 상승 속도와 하강 속도는 각각 20℃/min으로 조절하였다. 마지막으로 30℃에서부터 160℃까지 10℃/min의 승온 속도로 온도를 올리며 열량 변화를 관찰하여 SSA thermogram을 측정하였다.
(6) 에틸렌 시퀀스(ethylene sequence)의 불균일성(inhomogeneity, I)
하기 식 1에 따라 계산되는 에틸렌 시퀀스(ethylene sequence)의 불균일성을 계산하였다:
[식 1]
Figure PCTKR2019018226-appb-I000016
상기 식 1에서,
Lw는 ESL(Ethylene sequence length)의 가중 평균(weighted average, 단위: nm)이고, Ln은 ESL(Ethylene sequence length)의 산술 평균(arithmetic mean, 단위: nm)이다.
상기 식 1의 에틸렌 시퀀스의 가중 평균(weighted average, Lw)와, 산술 평균(arithmetic mean, Ln)은 하기 식 2 및 3에 의해 계산하였다:
[식 2]
Figure PCTKR2019018226-appb-I000017
상기 식 2에서,
[식 3]
Figure PCTKR2019018226-appb-I000018
상기 식 2 및 3에서,
Si는 SSA thermogram에서 측정된 각각의 용융 피크(melting peak)의 면적이고,
Li는 SSA thermogram에서 각각의 용융 피크에 해당하는 ASL (Average Ethylene Sequence Length)이다.
또한, 상기 ASL은 상기와 같이 측정된 SSA thermogram으로부터 Journal of Polymer Science Part B: Polymer Physics. 2002, vol. 40, 813-821 및 Journal of the Korean Chemical Society 2011, Vol. 55, No. 4를 참고하여 계산하였다.
또한, 도 1에 본 발명의 실시예 및 비교예에 따른 폴리올레핀의 불균일성(inhomogeneity)과 낙하 충격 강도와의 관계를 보여주는 그래프를 나타내었다.
Figure PCTKR2019018226-appb-T000003
상기 표 3 및 도 1을 참조하면, 본 발명의 실시예 1 내지 3의 폴리올레핀은 헤이즈가 11% 이하이면서 동일 밀도를 갖는 비교예 1 내지 3과 비교하여, 낙하 충격 강도가 월등히 우수하였다.

Claims (12)

  1. 0.915 g/cm3 내지 0.930 g/cm3의 밀도; 및
    SSA (Successive Self-nucleation and Annealing) 분석 시 하기 식 1로 계산되는 에틸렌 시퀀스(ethylene sequence)의 불균일성(inhomogeneity, I)이 1.25 내지 1.40인,
    폴리올레핀:
    [식 1]
    Figure PCTKR2019018226-appb-I000019
    상기 식 1에서,
    Lw는 ESL(Ethylene sequence length)의 가중 평균(weighted average, 단위: nm)이고, Ln은 ESL(Ethylene sequence length)의 산술 평균(arithmetic mean, 단위: nm)이다.
  2. 제 1항에 있어서,
    상기 Ln은 하기 식 2에 의해, 상기 Lw는 하기 식 3에 의해 계산되는, 폴리올레핀:
    [식 2]
    Figure PCTKR2019018226-appb-I000020
    [식 3]
    Figure PCTKR2019018226-appb-I000021
    상기 2 및 3에서,
    Si는 SSA thermogram에서 측정된 각각의 용융 피크(melting peak)의 면적이고,
    Li는 SSA thermogram에서 각각의 용융 피크에 해당하는 ASL (Average Ethylene Sequence Length)이다.
  3. 제 1항에 있어서,
    상기 SSA는, 시차주사열량계를 이용하여 상기 폴리올레핀을 첫 번째 가열 온도로 120 내지 124℃까지 가열하고, 15 내지 30분간 유지한 후, 28 내지 32℃로 냉각하며, n+1번째의 가열 온도는 n번째 가열 온도보다 3 내지 7℃ 낮은 온도로 하여 단계적으로 가열 온도를 내리면서 최종 가열 온도가 50 내지 54℃가 될 때까지 가열-어닐링(annealing)-급랭을 반복함으로써 수행되는, 폴리올레핀.
  4. 제 1항에 있어서,
    ASTM D1238 규격에 따라 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수(MI2.16)가 0.5 내지 1.5 g/10min인, 폴리올레핀.
  5. 제 1항에 있어서,
    필름 제막기를 이용하여 폴리올레핀 필름(BUR 2.3, 필름 두께 55 내지 65㎛)을 제조한 후, ISO 13468에 의거하여 측정한 필름의 헤이즈(haze)가 11% 이하인, 폴리올레핀.
  6. 제 1항에 있어서,
    필름 제막기를 이용하여 폴리올레핀 필름(BUR 2.3, 필름 두께 55 내지 65㎛)을 제조한 후, ASTM D 1709 [Method A]에 따라 측정한 낙하 충격 강도가 850 g 이상인, 폴리올레핀.
  7. 제 1항에 있어서,
    상기 폴리올레핀은, 에틸렌과 알파 올레핀의 공중합체인, 폴리올레핀.
  8. 제7항에 있어서,
    상기 알파 올레핀은, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-에이코센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 폴리올레핀.
  9. 제 1항에 있어서,
    상기 폴리올레핀은 하기 화학식 1로 표시되는 화합물 중에서 선택되는 제 1 메탈로센 화합물 1종 이상; 하기 화학식 2로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상; 및 상기 제 1 및 제 2 메탈로센 화합물을 담지하는 담체를 포함하는 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합시킴으로써 제조되는, 폴리올레핀:
    [화학식 1]
    Figure PCTKR2019018226-appb-I000022
    상기 화학식 1에서,
    Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C2 내지 C20의 알콕시알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
    T1은 탄소, 실리콘, 또는 게르마늄이고;
    M1는 4족 전이금속이고;
    X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이며;
    R1 내지 R14는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C1 내지 C20의 할로알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이거나, 혹은 R1 내지 R14 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이고;
    [화학식 2]
    Figure PCTKR2019018226-appb-I000023
    상기 화학식 2에서,
    Q3 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C2 내지 C20의 알콕시알킬기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
    T2는 탄소, 실리콘, 또는 게르마늄이고;
    M2는 4족 전이금속이고;
    X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이며;
    R15 내지 R28은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C1 내지 C20의 할로알킬기, C2 내지 C20의 알케닐기, C2 내지 C20의 알콕시알킬기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 단, R20 및 R24는 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C20의 알킬기이거나, 혹은 R15 내지 R28 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
  10. 제9항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 구조식으로 표시되는 화합물들 중 어느 하나인, 폴리올레핀:
    Figure PCTKR2019018226-appb-I000024
    Figure PCTKR2019018226-appb-I000025
  11. 제9항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 구조식으로 표시되는 화합물들 중 어느 하나인, 폴리올레핀:
    Figure PCTKR2019018226-appb-I000026
  12. 제9항에 있어서,
    상기 제 1 및 제 2 메탈로센 화합물의 몰 비는 1:1 내지 10:1인, 폴리올레핀.
PCT/KR2019/018226 2018-12-21 2019-12-20 폴리올레핀 WO2020130720A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980061952.5A CN112739733B (zh) 2018-12-21 2019-12-20 聚烯烃
JP2021503818A JP7276967B2 (ja) 2018-12-21 2019-12-20 ポリオレフィン
EP19897995.7A EP3854823A4 (en) 2018-12-21 2019-12-20 POLYOLEFIN
US17/282,524 US20210395411A1 (en) 2018-12-21 2019-12-20 Polyolefin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0167766 2018-12-21
KR1020180167766A KR102394383B1 (ko) 2018-12-21 2018-12-21 폴리올레핀
KR10-2019-0010606 2019-01-28
KR1020190010606A KR102434451B1 (ko) 2019-01-28 2019-01-28 폴리올레핀

Publications (1)

Publication Number Publication Date
WO2020130720A1 true WO2020130720A1 (ko) 2020-06-25

Family

ID=71102618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018226 WO2020130720A1 (ko) 2018-12-21 2019-12-20 폴리올레핀

Country Status (5)

Country Link
US (1) US20210395411A1 (ko)
EP (1) EP3854823A4 (ko)
JP (1) JP7276967B2 (ko)
CN (1) CN112739733B (ko)
WO (1) WO2020130720A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394383B1 (ko) 2018-12-21 2022-05-04 주식회사 엘지화학 폴리올레핀
WO2020130718A1 (ko) * 2018-12-21 2020-06-25 주식회사 엘지화학 폴리올레핀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100102854A (ko) 2009-03-12 2010-09-27 주식회사 엘지화학 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법
KR20120087101A (ko) * 2011-01-27 2012-08-06 주식회사 엘지화학 올레핀 블록 공중합체
KR101725004B1 (ko) * 2016-04-27 2017-04-18 한화케미칼 주식회사 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
KR20180073419A (ko) * 2016-12-22 2018-07-02 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR20180075317A (ko) * 2016-12-26 2018-07-04 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀계 중합체의 제조 방법
KR20180087868A (ko) * 2017-01-25 2018-08-02 주식회사 엘지화학 혼성 담지 촉매

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378764A (en) * 1992-10-08 1995-01-03 Phillips Petroleum Company Polyethylene blends
ES2182946T3 (es) * 1995-03-29 2003-03-16 Univation Tech Llc Polimeros de etileno que tiene una polidispersividad estrecha y procedimiento de preparacion.
UA47394C2 (uk) * 1995-05-16 2002-07-15 Юнівейшн Текнолоджіз, Ллс Етиленовий полімер, який має підвищену придатність до обробки та вирiб, що містить етиленовий полімер
ATE223929T1 (de) * 1995-05-16 2002-09-15 Univation Tech Llc Herstellung von polyethylen unter verwendung eines stereoisomeren metallocens
US6403717B1 (en) * 2000-07-12 2002-06-11 Univation Technologies, Llc Ethylene inter-polymer blends
CN101857692B (zh) * 2010-06-22 2012-05-02 南京大学 Pe/氢氧化镁复合阻燃材料
CN107312229B (zh) * 2016-04-26 2019-11-12 中国石油化工股份有限公司 一种聚乙烯薄膜及其制备方法
CN108299709B (zh) * 2017-01-11 2021-05-11 国家能源投资集团有限责任公司 一种可发泡聚乙烯组合物以及发泡聚乙烯制品及其制备方法
KR20190071187A (ko) * 2017-12-14 2019-06-24 한화케미칼 주식회사 장기 내압 특성이 우수한 에틸렌계 중합체 및 이를 이용한 파이프
KR101961439B1 (ko) * 2018-06-14 2019-07-17 강용훈 센서 유닛 및 이를 포함하는 자외선 검출 장치
WO2020130718A1 (ko) * 2018-12-21 2020-06-25 주식회사 엘지화학 폴리올레핀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100102854A (ko) 2009-03-12 2010-09-27 주식회사 엘지화학 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법
KR20120087101A (ko) * 2011-01-27 2012-08-06 주식회사 엘지화학 올레핀 블록 공중합체
KR101725004B1 (ko) * 2016-04-27 2017-04-18 한화케미칼 주식회사 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
KR20180073419A (ko) * 2016-12-22 2018-07-02 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR20180075317A (ko) * 2016-12-26 2018-07-04 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀계 중합체의 제조 방법
KR20180087868A (ko) * 2017-01-25 2018-08-02 주식회사 엘지화학 혼성 담지 촉매

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS, vol. 40, 2002, pages 813 - 821
JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS., vol. 40, 2002, pages 813 - 821
JOURNAL OF THE KOREAN CHEMICAL SOCIETY, vol. 55, no. 4, 2011
TETRAHEDRON LETT., vol. 2951, 1988

Also Published As

Publication number Publication date
US20210395411A1 (en) 2021-12-23
JP7276967B2 (ja) 2023-05-18
CN112739733B (zh) 2023-09-08
JP2021531390A (ja) 2021-11-18
EP3854823A4 (en) 2021-12-15
EP3854823A1 (en) 2021-07-28
CN112739733A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2015046932A1 (ko) 올레핀계 중합체
WO2019125050A1 (ko) 올레핀계 중합체
WO2017209372A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2017099491A1 (ko) 올레핀계 중합체
WO2020171631A1 (ko) 올레핀계 중합체
WO2018110915A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2015046930A1 (ko) 촉매 조성물 및 이를 포함하는 중합체의 제조방법
WO2019212309A1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 접착제 조성물
WO2020130720A1 (ko) 폴리올레핀
WO2020130719A1 (ko) 폴리올레핀
WO2019212310A1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 접착제 조성물
WO2020130718A1 (ko) 폴리올레핀
WO2020101373A1 (ko) 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법
WO2020171625A1 (ko) 우수한 물성의 가교 폴리에틸렌 파이프
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2019212304A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2020171624A1 (ko) 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
WO2018097468A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
EP3802688A1 (en) Ethylene polymer mixture, method of preparing the same, and molded article using the same
WO2021118103A1 (ko) 폴리올레핀
WO2017115927A1 (ko) 혼성 메탈로센 담지 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 용융강도가 향상된 올레핀 중합체
WO2020122561A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020122563A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2022108167A1 (ko) 폴리올레핀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503818

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019897995

Country of ref document: EP

Effective date: 20210421

NENP Non-entry into the national phase

Ref country code: DE