WO2021112617A1 - 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법 - Google Patents

촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법 Download PDF

Info

Publication number
WO2021112617A1
WO2021112617A1 PCT/KR2020/017634 KR2020017634W WO2021112617A1 WO 2021112617 A1 WO2021112617 A1 WO 2021112617A1 KR 2020017634 W KR2020017634 W KR 2020017634W WO 2021112617 A1 WO2021112617 A1 WO 2021112617A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polyisobutene
catalyst
polymerization
group
Prior art date
Application number
PCT/KR2020/017634
Other languages
English (en)
French (fr)
Inventor
조동현
허성범
김원희
이진
최경신
김희정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190162054A external-priority patent/KR20210071658A/ko
Priority claimed from KR1020190162055A external-priority patent/KR102506502B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080031267.0A priority Critical patent/CN113728018B/zh
Priority to EP20896680.4A priority patent/EP3943516B1/en
Priority to JP2021565124A priority patent/JP7311629B2/ja
Priority to US17/605,373 priority patent/US20220195079A1/en
Publication of WO2021112617A1 publication Critical patent/WO2021112617A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • C08F10/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B

Definitions

  • the present invention relates to a catalyst composition comprising an oxonium ion-based catalyst and a nitrile-based additive, and a method for preparing polyisobutene using the same.
  • the growing polymer chain contains active sites having a positive charge.
  • the active site may be a carbenium ion (a carbon cation) or an oxonium ion.
  • the Lewis acid catalyst requires a large amount of catalyst, and since it uses a large amount of basic water (NaOH, KOH, NH 4 OH, etc.) to remove the catalyst after the reaction and additionally washed with water, a large amount of wastewater causes
  • examples of the monomer capable of cationic polymerization include styrene, isobutene, cyclopentadiene, dicyclopentadiene and derivatives thereof, and polyisobutene (PIB) obtained by polymerization of isobutene is the most representative example.
  • Polyisobutene is divided into low molecular weight, medium molecular weight and high molecular weight ranges according to molecular weight ranges.
  • the low molecular weight polyisobutene has a number average molecular weight of 10,000 or less, and can be classified according to the content of carbon-carbon double bonds located at the ends, and common polybutenes having the terminal carbon-carbon double bond content of 20% or less.
  • the highly reactive polybutene may be used as a fuel additive or engine oil additive after introducing a functional group using a terminal vinylidene functional group (>80%).
  • a boron-based catalyst such as BF 3 is used as a prior art, which is toxic and has a problem in that it is difficult to handle as a gas type.
  • boron-alcohol or boron-ether complexes are used to increase reactivity and selectivity, there is a problem in that the activity of the catalyst decreases over time.
  • Another object of the present invention is to provide a method for producing polyisobutene using the catalyst composition.
  • the present invention provides a catalyst represented by the following formula (1); and a nitrile-based additive.
  • R is a linear C3 alkyl group, or a linear or branched C4-C12 alkyl group,
  • R 1 to R 4 are each independently hydrogen, a halogen group, or a substituted or unsubstituted C 1 to C 20 alkyl group,
  • o, p, q and r are each independently an integer from 1 to 5;
  • polyisobutene having a high number average molecular weight and an exo-content of 80 mol% or more and excellent reactivity can be prepared.
  • the catalyst can be easily removed through a simple filtration step without directly washing the polyisobutene produced after the completion of the polymerization reaction, so that a large amount of wastewater is generated during washing with water or the catalyst remains in the product, resulting in deterioration of quality, etc. was resolved.
  • the catalyst composition of the present invention includes a catalyst represented by the following formula (1); and a nitrile-based additive.
  • R 1 to R 4 are each independently hydrogen, a halogen group, or a substituted or unsubstituted C 1 to C 20 alkyl group,
  • o, p, q and r are each independently an integer from 1 to 5;
  • the dissociated ether compound may bind to and stabilize the carbon cation of the chain in which polymerization is in progress.
  • the unshared electron pair of oxygen contained in the ether compound can be temporarily bound for the purpose of stabilizing the carbocation of the chain during cationic polymerization, and when the bond with the carbocation is dissociated by a reverse reaction again, it is continuously polymerized with isobutene. Polyisobutene having a desired degree of high molecular weight can be produced.
  • the reactivity with the very unstable carbocation is too high, intermolecular chain transfer or reaction termination occurs, making it difficult to control the reactivity, and polyisobutene having a low molecular weight is produced.
  • R contained in the catalyst represented by Formula 1 not only contributes to the initiation step of the cationic polymerization reaction, but also prevents the polymerization reaction from being terminated or chain transfer occurs and only low molecular weight polyisobutene is synthesized. It was found that it plays an important role in the aspect, and a linear C3 alkyl group and a C4-C12 alkyl group were used as R.
  • the catalyst represented by Formula 1 cannot be used for polymerization depending on the type of R, it can be supplemented by using a nitrile-based compound as an additive, and can be used for polymerization of polyisobutene by itself depending on the type of R
  • a nitrile-based compound as an additive
  • high molecular weight and exo-content can be secured.
  • R is a linear C3 alkyl group, or a linear or branched C4-C12 alkyl group. Specifically, R is a linear C3 alkyl group or a linear or branched C4-C8 alkyl group, and may preferably be an n-propyl group or a linear or branched butyl group.
  • R 1 to R 4 are each independently hydrogen, a halogen group, or an alkyl group having 1 to 20 carbon atoms substituted with a halogen group, specifically a halogen group, and may be F or Cl, for example, R 1 to R 4 may be all F.
  • o, p, q and r may each independently be an integer of 1 to 5, an integer of 3 to 5, specifically 4 or 5. Most preferably, R 1 to R 4 may be F and o, p, q and r may be 5.
  • the organic borate contained in the compound represented by Formula 1 may be at least one selected from the group consisting of tetrakis(phenyl)borate, tetrakis(pentafluorophenyl)borate, tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, and derivatives thereof, and , preferably tetrakis (pentafluorophenyl) borate.
  • the catalyst represented by Formula 1 may be a compound represented by Formula 1-1 or Formula 1-2, but is not limited thereto.
  • the catalyst composition of the present invention includes a nitrile-based additive together with the catalyst represented by Formula 1 above.
  • the unshared electron pair of nitrogen included in the nitrile-based additive has an unstable property that is prone to chemical change. Therefore, after binding for a while for the purpose of stabilizing the carbocation of the chain undergoing cationic polymerization, the bond with the carbocation is again dissociated through a reverse reaction, and the carbocation promotes the continuous polymerization reaction with isobutene, so that even under mild reaction conditions, high It makes it possible to prepare polyisobutene having a molecular weight.
  • an amine-based compound, an ether-based compound, a phosphine-based compound, etc. may not be suitable as an additive, and a nitrile-based compound may be preferably used as an additive as in the present invention.
  • the nitrile-based additive may be a compound represented by the following Chemical Formula 2, but is not limited thereto.
  • R 5 is an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 30 carbon atoms, and specifically, may be an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 1 carbon atoms.
  • the additive may include at least one selected from the group consisting of acetonitrile, propionitrile, 2-methylpropanenitrile, trimethylacetonitrile and benzonitrile, specifically acetonitrile, benzonitrile reel or a combination thereof, but is not limited thereto.
  • the equivalent ratio of the catalyst represented by Formula 1 and the nitrile-based additive may be 1:1 to 1:200.
  • the amount of the nitrile-based additive based on 1 equivalent of the catalyst represented by Formula 1 may be 1 equivalent or more, 3 equivalents or more, 200 equivalents or less, 100 equivalents or less, 20 equivalents or less, 10 equivalents or less, or 5 equivalents or less.
  • the amount of the nitrile-based additive based on 1 equivalent of the catalyst represented by Formula 1 is 1 equivalent or more, the effect of the carbocation using the nitrile-based additive is sufficiently exhibited to efficiently produce polyisobutene having a high number average molecular weight and exo-content. and by appropriately controlling the catalytic activity, reproducibility can be improved.
  • the amount of the nitrile-based additive based on 1 equivalent of the catalyst represented by Chemical Formula 1 is 200 equivalents or less, the excessive nitrile-based additive is combined with the carbocation to prevent premature termination of the polymerization reaction.
  • the catalyst composition may further include a co-catalyst to control the physical properties of polyisobutene, and in this case, the co-catalyst may be any co-catalyst in the art applicable to polyisobutene production without limitation. have.
  • the method for producing polyisobutene of the present invention is characterized in that it comprises the step of polymerizing isobutene under the preparation of the catalyst composition.
  • the polymerization of isobutene may be carried out at a temperature of 10 to 50 °C, specifically 10 °C or higher, 15 °C or higher, 25 °C or higher, 50 °C or lower, 40 °C or lower, 35 °C or lower, such as 30 °C or higher It can be carried out at °C.
  • the polymerization temperature is 0°C or higher, catalyst activity is properly implemented, so that the polymerization conversion rate is excellent, and a small amount of catalyst can be used.
  • the polymerization temperature is 50°C or lower, the chain transfer reaction is controlled to control the molecular weight and exo of polyisobutene. - High-quality polyisobutene can be produced due to its high content.
  • the polymerization may be performed for 10 minutes to 3 hours, specifically 30 minutes or more, 1 hour or more, 1.5 hours or more, 3 hours or less, 2.5 hours or less, such as 2 hours can be performed while
  • the polymerization may be performed in the presence of a halogenated hydrocarbon solvent.
  • a halogenated hydrocarbon solvent it is also possible to use a mixture of a halogenated hydrocarbon solvent and a non-polar hydrocarbon solvent.
  • a hydrogen atom present between oxygen atoms of the catalyst represented by Formula 1 reacts with isobutene to dissociate the ether compound (ROR) and to generate a carbocation of isobutene.
  • a halogenated hydrocarbon solvent having a polarity may be used to increase polymerization reactivity by maintaining the produced carbon cations in an ionic state for a long time.
  • the catalyst represented by Formula 1 used in the present invention has excellent stability even in a halogenated hydrocarbon solvent such as dichloromethane. Polyisobutene of high quality can be produced with a polymerization conversion rate.
  • the halogenated hydrocarbon solvent may be at least one selected from the group consisting of chloromethane, dichloromethane, trichloromethane, 1-chlorobutane and chlorobenzene, but is not limited thereto.
  • the non-polar hydrocarbon solvent may be an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent.
  • the aliphatic hydrocarbon solvent may be at least one selected from the group consisting of butane, pentane, neopentane, hexane, cyclohexane, methyl cyclohexane, heptane and octane
  • the aromatic hydrocarbon solvent is benzene, toluene, xylene, It may be at least one selected from the group consisting of ethylbenzene, but is not limited thereto.
  • the catalyst represented by Formula 1 is 5 weight ppm or more based on isobutene, the amount of catalyst compared to isobutene is sufficient, so that cationic polymerization proceeds smoothly, so that polymerization conversion and production of polyisobutene may be excellent, and the above formula 1
  • the catalyst represented by is 250 ppm by weight or less based on isobutene, polyisobutene having a high molecular weight can be prepared by suppressing the polymerization reaction of isobutene due to an excess of the catalyst.
  • filtering the polymerization product to remove the catalyst represented by Chemical Formula 1 may be further performed.
  • the catalyst represented by Chemical Formula 1 used in the present invention can be efficiently removed through a simple physical step of filtration, it is much easier to use and remove than the conventionally used Lewis acid catalyst.
  • removing the catalyst through the filtration to remove halogen that may be derived from the catalyst in advance polyisobutene having a low halogen content can be obtained from the polymerization product.
  • the filtering may be performed using a filter including at least one selected from the group consisting of a porous material, such as silica, celite, and zeolite.
  • a porous material such as silica, celite, and zeolite.
  • the resulting polyisobutene is dissolved in an organic solvent such as pentane, cyclopentane, cyclohexane, heptane, octane, and diethyl ether, and then washed with water to remove the residual catalyst.
  • an organic solvent such as pentane, cyclopentane, cyclohexane, heptane, octane, and diethyl ether
  • the step of drying the residual solvent may be further included.
  • the drying temperature may be 30 to 200 °C, or 40 to 150 °C, and the degree of vacuum may be 300 torr or less, 200 torr or less, or 100 torr or less.
  • the drying method is not particularly limited and may be performed by a conventional method.
  • the step of drying the halogenated hydrocarbon solvent before the filtering after the polymerization step may or may not be performed separately.
  • the drying conditions may be performed as described above and are not particularly limited.
  • the polyisobutenes prepared according to the invention exhibit high molecular weight and exo-content.
  • the number average molecular weight of the polyisobutene may be 1,000 to 10,000 g/mol, and specifically, 1000 g/mol or more, 1,300 g/mol or more, 1,400 g/mol or more, 10,000 g/mol or less, 7,000 g/mol or less, or 5,000 g/mol or less.
  • the molecular weight distribution (PDI) of the polyisobutene may be 1.5 to 3.0, specifically 1.5 to 2.5, 1.5 to 2.0.
  • the exo-content (%) determined by the following formula in the polyisobutene may be 80% or more.
  • HR-PB highly reactive polybutene
  • - exo-content (%) (number of moles of exo-olefin at which a carbon-carbon double bond is located at the terminal)/(number of moles of exo-olefin and endo-olefin produced) ⁇ 100
  • NaBAr'4 in diethyl ether was reacted with chlorine, and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate was purchased from Sigma-Aldrich.
  • the catalyst composition was injected using a syringe. After cationic polymerization of isobutene was carried out for 2 hours, the product was dried to obtain polyisobutene.
  • Polyisobutene was prepared in the same manner as in Example 1, except that polymerization conditions were changed as shown in Table 1 below.
  • the catalyst composition was injected using a syringe. After cationic polymerization of isobutene was carried out for 2 hours, the product was dried to obtain polyisobutene.
  • Polyisobutene was prepared in the same manner as in Example 1, except that polymerization conditions were changed as shown in Table 1 below.
  • the polymerization conversion rate was calculated by measuring the weight of the dried polyisobutene.
  • - exo-content (%) (number of moles of exo-olefin at which a carbon-carbon double bond is located at the terminal)/(number of moles of exo-olefin and endo-olefin produced) ⁇ 100
  • Polyisobutene was analyzed by gel permeation chromatography under the following conditions to measure a number average molecular weight (Mn) and a weight average molecular weight (Mw), and a molecular weight distribution (Mn) was calculated as Mw/Mn.
  • All of the polyisobutenes of Examples were prepared by using a catalyst composition including a catalyst represented by Formula 1 and a nitrile-based additive according to the present invention. Specifically, in all examples, highly reactive polyisobutene having a number average molecular weight of 1,000 g/mol or more and an exo-content of 90% or more was prepared, and all of the polymerization conversion rates were excellent.
  • Comparative Examples 1 to 3 using a catalyst that does not correspond to Formula 1, and Comparative Example 8 without using an additive in the catalyst composition polyisobutene having a low number average molecular weight and a wide molecular weight distribution was prepared, and nitrile was In the case of Comparative Examples 4 to 7 in which a non-compound was used as an additive, polyisobutene could not be obtained because polymerization was not performed properly.
  • the catalyst composition according to the present invention can maintain a stable state for a long time, even in Examples 7 to 9 used after the catalyst composition was prepared and stored at room temperature for a certain period of time, a high number similar to that of Example 1 Polyisobutene having an average molecular weight and exo-content can be prepared.
  • Comparative Examples 3 and 9 to 11 using Comparative Preparation Example 3 as a catalyst are compared, the polymerization conversion rate is sharply increased as the storage time at room temperature increases. decreased, and through this, it was confirmed that the catalyst composition used in Comparative Example had low stability at room temperature and thus the catalytic activity gradually decreased.
  • the catalyst composition according to the present invention when used, the catalyst remaining in the polyisobutene can be easily removed through a simple method of filtering the polymerization product.

Abstract

본 발명은 옥소늄 이온계 촉매 및 첨가제를 포함하는 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법에 관한 것이다.

Description

촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법
관련 출원과의 상호 인용
본 출원은 2019년 12월 6일자 한국 특허 출원 2019-0162054, 2019년 12월 6일자 한국 특허 출원 2019-0162055에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 옥소늄 이온계 촉매 및 나이트릴계 첨가제를 포함하는 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법에 관한 것이다.
일반적으로 단량체를 양이온 중합하여 올리고머 또는 폴리머를 제조하는 공정에서, 성장하는 중합체 사슬은 양전하를 갖는 활성 부위를 포함한다. 예를 들어, 활성 부위는 카르베늄 이온(탄소 양이온) 또는 옥소늄 이온일 수 있다.
이러한 양이온 중합을 위해 촉매 또는 개시제로서 알루미늄 또는 보론계의 루이스 산이 일반적으로 사용된다. 루이스 산 촉매의 예로는 AlX3, BX3 (X=F, Br, Cl, I) 등이 있는데, 이는 부식성이며 퀜칭 과정에서 HCl, HF 등의 할로겐 성분이 발생하고 이것이 제품에 남아서 품질 저하를 일으키는 문제점이 있다. 또한, 루이스 산 촉매는 많은 양의 촉매를 필요로 하며, 반응 후 촉매를 제거하기 위해 많은 양의 염기물(NaOH, KOH, NH4OH 등)을 사용하고 추가로 물로 씻어주기 때문에 많은 양의 폐수를 발생시킨다.
한편, 이러한 양이온 중합이 가능한 단량체의 예로는 스티렌, 이소부텐, 사이클로펜타디엔, 디사이클로펜타디엔 및 이의 유도체 등이 있으며, 이소부텐이 중합된 폴리이소부텐(polyisobutene, PIB)이 가장 대표적인 예이다.
폴리이소부텐은 분자량 범위에 따라 저분자량, 중분자량 및 고분자량 범위로 구분된다. 저분자량의 폴리이소부텐은 수평균 분자량 1만 이하 정도 범위로, 말단에 위치하는 탄소-탄소 이중결합의 함량에 따라 구분할 수 있는데, 상기 말단 탄소-탄소 이중결합 함량이 20% 이하인 통상의 폴리부텐(conventional PIB)과 고반응성 폴리부텐(high reactive polybutene, HR-PB)의 제품군이 있다. 상기 고반응성 폴리부텐은 말단의 비닐리덴 작용기(>80%)를 이용하여 기능기를 도입한 후 연료 첨가제나 엔진오일 첨가제로 사용될 수 있다.
상기 고반응성 폴리부텐의 중합을 위해서 종래기술로서 BF3와 같은 보론계 촉매를 사용하는데, 이는 독성이 있고 기체 타입으로 취급하기 어려운 문제점이 있다. 또한, 반응성과 선택성을 높이기 위해 보론-알코올 또는 보론-에테르 복합체를 만들어 사용하기도 하나, 시간이 지남에 따라 촉매의 활성도가 떨어지는 문제가 있다.
한편, 뮌헨공대의 Kuhn 교수가 연구한 용매 결착(solvent-ligated) 유기금속 촉매의 경우(Macromol. Rapid Commun., vol.20, no.10, pp.555-559), 상기 종래기술의 보론계 루이스 산 촉매와 같은 독성 성분으로 인한 제품 품질 저하 및 부식성 등의 문제는 해소되지만, 높은 전환율을 위해서는 기본적으로 반응시간이 16시간으로 길며, 반응시간이 길어지면서 생성물의 일부가 촉매와 반응하여 구조 이성화(structural isomerization)가 일어남으로써 exo-함량이 낮아지기 때문에 상기 루이스 산 촉매에 비해 경쟁력이 낮다.
[선행기술문헌]
[특허문헌]
한국 등록특허공보 제10-0486044호
본 발명의 목적은 원하는 수평균 분자량을 가지면서 높은 exo-함량으로 고반응성을 나타내는 폴리이소부텐을 제조하기 위한 촉매 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 촉매 조성물을 이용한 폴리이소부텐의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명은 하기 화학식 1로 표시되는 촉매; 및 나이트릴계 첨가제를 포함하는 촉매 조성물을 제공한다:
[화학식 1]
Figure PCTKR2020017634-appb-I000001
상기 화학식 1에서,
R은 선형의 C3 알킬기, 또는 선형 또는 분지형 C4-C12 알킬기이고,
R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고,
o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이다.
본 발명의 촉매 조성물을 이용할 경우 수평균 분자량이 높으면서 80몰% 이상의 exo-함량을 가져 반응성이 우수한 폴리이소부텐을 제조할 수 있다.
구체적으로, 본 발명의 제조방법은 촉매 활성이 우수한 화학식 1로 표시되는 촉매와 나이트릴계 화합물을 첨가제로 사용함으로써, 상온 등 온화한 반응 조건에서도 우수한 중합 전환율로 폴리이소부텐을 제조할 수 있는 이점이 있다.
또한, 중합 반응의 완료 후 생성된 폴리이소부텐을 직접 수세하지 않고도 단순히 여과하는 단계를 통해 촉매를 쉽게 제거할 수 있어서, 수세 시 폐수가 다량 발생하거나 촉매가 제품에 잔류하여 품질이 저하되는 문제 등을 해소하였다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
촉매 조성물
본 발명의 촉매 조성물은 하기 화학식 1로 표시되는 촉매; 및 나이트릴계 첨가제를 포함하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2020017634-appb-I000002
상기 화학식 1에서,
R은 선형의 C3 알킬기, 또는 선형 또는 분지형 C4-C12 알킬기이고,
R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고,
o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이다.
본 발명에서, 상기 화학식 1로 표시되는 촉매를 사용할 경우, 산소 원자 사이 수소 원자가 이소부텐과 반응하여 에테르 화합물(R-O-R)이 해리되고 이소부텐의 탄소 양이온(carbocation)이 생성되어야 양이온 중합이 개시된다. 이 때, 상기 수소 원자는 촉매 중심 부근에 샌드위치 형태로 위치하고 주위 알킬기(R)가 존재하여 이소부텐의 접근이 쉽지 않으므로 중합이 개시되기가 어려울 수 있다. 따라서, 이소부텐과 수소 원자가 쉽게 반응하여 양이온 중합이 용이하게 개시되도록, 화학식 1로 표시되는 촉매에 포함된 R의 탄소수와 입체적 크기를 적절히 조절하는 것은 매우 중요하다.
한편, 해리된 에테르 화합물(R-O-R)은 중합 진행 중인 사슬의 탄소 양이온에 결합하여 이를 안정화시킬 수 있다. 구체적으로, 에테르 화합물에 포함된 산소의 비공유 전자쌍은 양이온 중합 중인 사슬의 탄소 양이온을 안정화시킬 목적으로 잠시 결합될 수 있고, 다시 역반응으로 탄소 양이온과의 결합이 해리되었을 때 계속적으로 이소부텐과 중합함으로써 원하는 정도의 높은 분자량을 갖는 폴리이소부텐을 제조할 수 있다. 다만, 매우 불안정한 탄소 양이온과의 반응성이 너무 높을 경우 분자간 사슬 이동 또는 반응 종결(termination)이 일어나 반응성 조절이 어려우며 저분자량의 폴리이소부텐이 제조된다.
이와 같이, 화학식 1로 표시되는 촉매에서 알킬기 R은 에테르 화합물로 해리되었을 때 탄소 양이온과의 결합을 통한 안정화 기여도 또한 고려하여 결정되어야 한다.
본 발명에서는 화학식 1로 표시되는 촉매에 포함된 R은 양이온 중합반응의 개시 단계에 기여할 뿐만 아니라 중합 반응이 종결되거나 체인 트랜스퍼(chain transfer)가 일어나 저분자량의 폴리이소부텐만이 합성되는 것을 방지한다는 측면에서 중요한 역할을 하는 것을 알아내어, R로 선형의 C3 알킬기, C4-C12 알킬기를 사용하였다. 또한, R의 종류에 따라 화학식 1로 표시되는 촉매가 중합에 사용되지 못하더라도 나이트릴계 화합물을 첨가제로 사용함으로써 이를 보완할 수 있고, R의 종류에 따라 그 자체로 폴리이소부텐의 중합에 사용 가능하더라도 첨가제와 함께 사용할 경우 높은 분자량 및 exo-함량을 확보할 수 있다.
또한, 상기 화학식 1로 표시되는 촉매는 후술하는 바와 같이 여과 방법으로 쉽게 제거되기 때문에, 촉매로부터 할로겐이 해리되는 위험성을 효율적이고 원천적으로 방지할 수 있다.
상기 화학식 1에서, R은 선형 C3 알킬기, 또는 선형 또는 분지형 C4-C12 알킬기이다. 구체적으로, R은 선형 C3 알킬기 또는 선형 또는 분지형 C4-C8 알킬기이고, 바람직하게는 n-프로필기 또는 선형 또는 분지형의 부틸기일 수 있다.
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 수소, 할로겐기 또는 할로겐기로 치환된 탄소수 1 내지 20의 알킬기이고, 구체적으로 할로겐기이고, F 또는 Cl일 수 있으며, 예컨대 R1 내지 R4는 모두 F일 수 있다. 또한, 상기 o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수, 3 내지 5의 정수, 구체적으로 4 또는 5일 수 있다. 가장 바람직하게는 상기 R1 내지 R4는 F이고 o, p, q 및 r은 5일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물에 포함된 유기 보레이트인
Figure PCTKR2020017634-appb-I000003
는 구체적으로 테트라키스(페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트 및 그 유도체로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 테트라키스(펜타플루오로페닐)보레이트일 수 있다.
구체적으로, 상기 화학식 1로 표시되는 촉매는 하기 화학식 1-1 또는 화학식 1-2로 표시되는 화합물일 수 있으나, 이에 제한되지 않는다.
[화학식 1-1]
Figure PCTKR2020017634-appb-I000004
[화학식 1-2]
Figure PCTKR2020017634-appb-I000005
본 발명의 촉매 조성물은 상기 화학식 1로 표시되는 촉매와 함께 나이트릴계 첨가제를 포함한다.
본 발명에서, 상기 나이트릴계 첨가제에 포함된 질소의 비공유 전자쌍은 화학 변화를 일으키기 쉬운 불안정한 성질을 가진다. 따라서, 양이온 중합 중인 사슬의 탄소 양이온을 안정화시킬 목적으로 잠시 결합된 후, 다시 역반응으로 탄소 양이온과의 결합이 해리되고 탄소 양이온이 이소부텐과 계속 중합 반응을 일으키는 것을 촉진하여, 온화한 반응 조건에서도 높은 분자량을 갖는 폴리이소부텐을 제조할 수 있도록 한다.
만약 나이트릴계 첨가제를 사용하지 않을 경우, 높은 분자량을 갖는 폴리이소부텐을 제조할 수 없고, 제품의 중요 물성 중 하나인 exo-함량의 수치가 미달하게 되는 문제점이 발생한다.
다만, 첨가제가 탄소 양이온과 너무 강하게 결합할 경우 역반응이 진행되기가 어려워지므로 탄소 양이온의 반응성 자체가 사라져 반응이 종결될 수 있으며, 이 경우 원하는 높은 분자량의 중합체를 수득할 수 없다. 이러한 측면에서, 예컨대 아민계 화합물, 에테르계 화합물, 포스핀계 화합물 등은 첨가제로서 적절하지 않을 수 있고, 본 발명에서와 같이 나이트릴계 화합물을 첨가제로 바람직하게 사용할 수 있다.
본 발명에서, 상기 나이트릴계 첨가제는 하기 화학식 2로 표시되는 화합물일 수 있으나, 이에 제한되지 않는다.
[화학식 2]
Figure PCTKR2020017634-appb-I000006
상기 화학식 2에서,
R5는 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 30의 아릴기이고, 구체적으로, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 1의 아릴기일 수 있다.
구체적으로, 상기 첨가제는 아세토나이트릴, 프로피오나이트릴, 2-메틸프로판나이트릴, 트리메틸아세토나이트릴 및 벤조나이트릴로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 구체적으로 아세토나이트릴, 벤조나이트릴 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 화학식 1로 표시되는 촉매 및 나이트릴계 첨가제의 당량비는 1 : 1 내지 1 : 200일 수 있다. 구체적으로, 상기 화학식 1로 표시되는 촉매 1 당량 기준 나이트릴계 첨가제는 1 당량 이상, 3 당량 이상, 200 당량 이하, 100 당량 이하, 20 당량 이하, 10 당량 이하, 5 당량 이하일 수 있다.
상기 화학식 1로 표시되는 촉매 1 당량 기준 나이트릴계 첨가제가 1 당량 이상일 경우, 나이트릴계 첨가제를 이용한 탄소 양이온의 효과가 충분히 나타나 높은 수평균 분자량 및 exo-함량을 나타내는 폴리이소부텐을 효율적으로 제조할 수 있고, 촉매 활성을 적절히 제어하여 재현성이 향상될 수 있다. 또한, 상기 화학식 1로 표시되는 촉매 1 당량 기준 나이트릴계 첨가제가 200 당량 이하일 경우, 과량의 나이트릴계 첨가제가 탄소 양이온과 결합하여 중합 반응이 조기 종결되는 현상을 방지할 수 있다.
본 발명에서, 상기 촉매 조성물은 폴리이소부텐의 물성 조절을 위해 조촉매를 더 포함할 수 있고, 이 때 조촉매는 폴리이소부텐 제조 시 적용 가능한 당해 기술분야의 모든 조촉매를 제한되지 않고 사용할 수 있다.
폴리이소부텐의 제조방법
본 발명의 폴리이소부텐의 제조방법은 상기 촉매 조성물의 조재 하에 이소부텐을 중합하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에서, 상기 이소부텐의 중합은 10 내지 50℃의 온도에서 수행될 수 있고, 구체적으로 10℃ 이상, 15℃ 이상, 25℃ 이상, 50℃ 이하, 40℃ 이하, 35℃ 이하, 예컨대 30℃에서 수행될 수 있다.
중합 온도가 0℃ 이상일 경우, 촉매 활성이 적절히 구현되어 중합 전환율이 우수하게 나타나고 적은 양의 촉매를 사용할 수 있고, 중합 온도가 50℃ 이하일 경우, 사슬 이동 반응이 제어되어 폴리이소부텐의 분자량 및 exo-함량이 높게 나타나 고품질의 폴리이소부텐을 제조할 수 있다.
또한, 상기 온도 조건을 충족함과 동시에, 상기 중합은 10분 내지 3시간 동안 수행될 수 있고, 구체적으로 30분 이상, 1시간 이상, 1.5시간 이상, 3시간 이하, 2.5시간 이하, 예컨대 2시간 동안 수행될 수 있다.
본 발명에서, 상기 중합은 할로겐화 탄화수소 용매 존재 하에 수행되는 것일 수 있다. 또한, 할로겐화 탄화수소 용매에 비극성 탄화수소 용매를 혼합하여 함께 사용하는 것도 가능하다.
전술한 바와 같이, 본 발명에서 양이온 중합의 개시를 위해서는 화학식 1로 표시되는 촉매의 산소 원자 사이 존재하는 수소 원자가 이소부텐과 반응하여 에테르 화합물(R-O-R)이 해리되고 이소부텐의 탄소 양이온을 생성해야 하며, 생성된 탄소 양이온을 이온 상태로 오래 유지시켜 중합 반응성을 높이기 위해 극성을 갖는 할로겐화 탄화수소 용매를 사용할 수 있다.
다만, 중합 반응의 개시 시점에는 상기와 같이 할로겐화 탄화수소 용매의 사용이 유리하나, 할로겐화 탄화수소 용매에 용해된 상태에서는 할로겐 독성 등으로 인해 촉매 안정성이 낮아지므로, 혼합 직후 중합에 사용하지 않을 경우 시간 변화에 따라 화학식 1로 표시되는 촉매의 활성이 점점 떨어지게 된다.
반면, 본 발명에서 사용한 화학식 1로 표시되는 촉매의 경우 디클로로메탄(dichloromethane)과 같은 할로겐화 탄화수소 용매 하에서도 안정성이 뛰어나므로, 촉매 조성물 제조 후 일정 시간 경과하여 중합에 사용하더라도 촉매 활성이 우수하게 나타나고 높은 중합 전환율로 고품질의 폴리이소부텐을 제조할 수 있다.
상기 할로겐화 탄화수소 용매는 클로로메탄, 디클로로메탄, 트리클로로메탄, 1-클로로부탄 및 클로로벤젠으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다.
상기 비극성 탄화수소 용매는 지방족 탄화수소 용매 또는 방향족 탄화수소 용매일 수 있다. 예로서, 상기 지방족 탄화수소 용매는 부탄, 펜탄, 네오펜탄, 헥산, 사이클로헥산, 메틸 사이클로헥산, 헵탄 및 옥탄으로 이루어진 군에서 선택된 1종 이상일 수 있고, 상기 방향족 탄화수소 용매는 벤젠, 톨루엔, 자일렌, 에틸벤젠으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 화학식 1로 표시되는 촉매는 이소부텐 기준 5 내지 250 중량ppm일 수 있고, 구체적으로 상기 이소부텐 기준 5 중량ppm 이상, 7 중량ppm 이상, 9 중량ppm 이상, 10 중량ppm 이상, 250 중량ppm 이하, 100 중량ppm 이하, 50 중량ppm 이하, 45 중량ppm 이하일 수 있다.
상기 화학식 1로 표시되는 촉매가 이소부텐 기준 5 중량ppm 이상일 경우, 이소부텐 대비한 촉매량이 충분하여 양이온 중합이 원활하게 진행되어 중합 전환율 및 폴리이소부텐의 생산량이 우수하게 나타날 수 있고, 상기 화학식 1로 표시되는 촉매가 이소부텐 기준 250 중량ppm 이하일 경우, 촉매 과량으로 인한 이소부텐의 소중합 반응을 억제하여 높은 분자량의 폴리이소부텐을 제조할 수 있다.
본 발명에서, 이소부텐을 중합하는 단계 이후, 중합 생성물을 필터링하여 화학식 1로 표시되는 촉매를 제거하는 단계;를 더 수행할 수 있다.
본 발명에서 사용하는 화학식 1로 표시되는 촉매는 단순 여과하는 물리적인 단계를 통해 효율적으로 제거 가능하므로, 종래 사용되어 온 루이스 산 촉매에 비해 사용 및 제거가 훨씬 용이하다. 또한, 상기 여과를 통해 촉매를 제거하여 촉매에서 유래될 수 있는 할로겐을 미연에 제거함으로써, 중합 생성물로부터 할로겐 함량이 낮게 함유된 폴리이소부텐을 수득할 수 있다.
상기 필터링은 다공성 물질, 예컨대 실리카, 셀라이트 및 제올라이트로 이루어진 군에서 선택된 1종 이상을 포함하는 필터를 이용하여 수행될 수 있다.
통상적으로, 생성된 폴리이소부텐을 펜탄, 사이클로펜탄, 사이클로헥산, 헵탄, 옥탄, 디에틸에테르 등의 유기 용매에 용해시킨 후 수세하여 잔류 촉매를 제거한다. 그러나, 본 발명에서는 필터링을 통해 화학식 1로 표시되는 촉매를 쉽게 제거할 수 있으므로, 별도의 수세 단계를 수행하지 않아도 무방하다.
본 발명에서, 상기 중합 생성물을 필터링하는 단계 후에, 잔류 용매를 건조시키는 단계를 더 포함할 수 있다.
상기 건조 온도는 30 내지 200℃, 또는 40 내지 150℃일 수 있고, 진공도는 300 torr 이하, 200 torr 이하, 또는 100 torr 이하일 수 있다. 또한, 건조 방식은 특별히 제한되지 않으며 통상의 방식에 의할 수 있다.
또한, 본 발명의 폴리이소부텐의 제조방법은 상기 중합하는 단계 후 상기 필터링 전에 할로겐화 탄화수소 용매를 건조시키는 단계를 별도로 수행하거나, 수행하지 않을 수 있다. 건조 단계를 수행하는 경우 건조 조건은 상기한 바와 마찬가지로 수행될 수 있으며 특별히 제한되지 않는다.
할로겐화 탄화수소 용매를 건조시키는 단계를 별도로 수행하는 경우, 보다 고순도로 폴리이소부텐을 수득할 수 있는 이점이 있다. 다만, 본 발명에 따르면 상기한 바와 같은 단순 필터링을 통해 용이하게 촉매를 제거할 수 있으므로, 상기 중합하는 단계 이후 상기 필터링 전에 할로겐화 탄화수소 용매를 건조시키는 별도의 단계를 생략할 수 있어 공정이 단순화되는 이점이 있다.
본 발명에 따라 제조된 폴리이소부텐은 높은 분자량과 exo-함량을 나타낸다.
구체적으로, 상기 폴리이소부텐의 수평균 분자량은 1,000 내지 10,000 g/mol일 수 있고, 구체적으로, 1000 g/mol 이상, 1,300 g/mol 이상, 1,400 g/mol 이상, 10,000 g/mol 이하, 7,000 g/mol 이하, 5,000 g/mol 이하일 수 있다.
또한, 상기 폴리이소부텐의 분자량 분포(PDI)는 1.5 내지 3.0, 구체적으로 1.5 내지 2.5, 1.5 내지 2.0일 수 있다.
또한, 상기 폴리이소부텐에서 하기 식에 의하여 결정되는 exo-함량(%)은 80% 이상일 수 있다. 상기 exo-함량이 높을수록 고반응성의 폴리올레핀, 예컨대 고반응성 폴리부텐(HR-PB)이 형성되는 것을 의미한다.
- exo-함량(%) = (탄소-탄소 이중결합이 말단에 위치하는 exo-올레핀 몰수)/(생성된 exo-올레핀 및 endo-올레핀 몰수) × 100
실시예
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
촉매의 제조
제조예 1
[화학식 1-1]
Figure PCTKR2020017634-appb-I000007
글로브 박스에서 1 g의 [H(Et2O)2][B(C6F5)4]를 라운드 플라스크에 넣고, 10 mL의 디클로로메탄을 넣어주었다. 상온에서 5 당량의 무수 디부틸 에테르(Sigma-Aldrich社)를 넣어주고 30분 동안 교반시켰다. 교반 후, 진공 조건에서 모든 용매를 제거하였다. 얻어진 흰색 파우더를 무수 헥산으로 5mL × 3회 세척한 후, 다시 진공 조건에서 건조시켜 [H(nBu2O)2][B(C6F5)4]을 수득하였다.
제조예 2
[화학식 1-2]
Figure PCTKR2020017634-appb-I000008
무수 디부틸 에테르를 무수 디프로필 에테르로 변경한 것을 제외하고는, 상기 제조예 1과 동일한 방법으로 제조하였다.
비교 제조예 1
Figure PCTKR2020017634-appb-I000009
아르곤 조건의 글로브 박스에서 [Li(Et2O)n][B(C6F5)4](TCI社) 1 g을 라운드 플라스크에 넣고 무수 디에틸 에테르(anhydrous diehtyl ether) 10 mL를 넣어 주었다. 준비된 용액을 글로브 박스 박으로 가지고 나온 후 슈렝크 라인(Schlenk line)에 연결하여 아르곤 조건으로 설정하였다. 아세토나이트릴과 드라이아이스를 이용하여 쿨링 배스를 만들고 -40℃에서 준비된 용액을 교반시켜 주었다. 교반되고 있는 용액에 디에틸 에테르 중 1M HCl(TCI社) 5 당량을 실린지를 통해 주입하였다. -40℃에서 30분 동안 더 교반을 시켜준 다음, 상온으로 온도를 천천히 올려 주었다. 상온으로 올라온 용액을 글로브 박스로 다시 가지고 들어와서 생성된 염을 필터를 통해 제거해 주고, 투명한 용액만 모아 진공조건에서 건조 시켜 주었다. 용매를 모두 진공 건조 후, 무수 헥산으로 5mL × 3회 세척한 후 진공 건조하여 [H(Et2O)2][B(C6F5)4]를 수득하였다.
비교 제조예 2
무수 디부틸 에테르 대신에 무수 디이소프로필 에테르를 사용한 것을 제외하고는, 상기 제조예 1과 동일하게 제조하였다.
Figure PCTKR2020017634-appb-I000010
비교 제조예 3
디에틸 에테르 중 NaBAr'4와 염소를 반응시키고, 소듐 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트는 Sigma-Aldrich社에서 구매하여 사용하였다.
Figure PCTKR2020017634-appb-I000011
폴리이소부텐의 제조
실시예 1
10℃ 이하에서 냉각된 진공 상태의 앤드류 유리 플라스트에 이소부텐 라인을 연결하여 이소부텐 20 g을 투입하였다. 동일한 온도에서 실린지를 이용하여 톨루엔 용매 80 mL를 주입하였다.
글로브 박스에서 제조예 1의 촉매(이소부텐 기준 40 중량ppm) 및 벤조나이트릴(제조예 1의 촉매 및 벤조나이트릴 첨가제의 당량비 = 1 : 5)을 정량하여 0.5 mL DCM에 용해시킨 촉매 조성물을 준비하였다.
이후 앤드류 유리 플라스크를 중합 온도인 30℃ 상태가 유지되도록 하면서, 상기 촉매 조성물을 실린지를 이용하여 주입하였다. 2시간 동안 이소부텐의 양이온 중합을 진행시킨 후 생성물을 건조하여 폴리이소부텐을 수득하였다.
실시예 2 내지 6
하기 표 1과 같이 중합 조건을 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 폴리이소부텐을 제조하였다.
실시예 7 내지 9
10℃ 이하에서 냉각된 진공 상태의 앤드류 유리 플라스트에 이소부텐 라인을 연결하여 이소부텐 20 g을 투입하였다. 동일한 온도에서 실린지를 이용하여 톨루엔 용매 80 mL를 주입하였다.
글로브 박스에서 제조예 1의 촉매(이소부텐 기준 40 중량ppm) 및 벤조나이트릴(제조예 1의 촉매 및 벤조나이트릴 첨가제의 당량비 = 1 : 5)을 정량하여 0.5 mL DCM에 용해시킨 촉매 조성물을 준비한 후, 하기 표 1에 따른 각 에이징 타임동안 상온에서 보관하였다.
이후 앤드류 유리 플라스크를 중합 온도인 30℃ 상태가 유지되도록 하면서, 상기 촉매 조성물을 실린지를 이용하여 주입하였다. 2시간 동안 이소부텐의 양이온 중합을 진행시킨 후 생성물을 건조하여 폴리이소부텐을 수득하였다.
비교예 1 내지 11
하기 표 1과 같이 중합 조건을 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 폴리이소부텐을 제조하였다.
촉매 첨가제 중합 온도 에이징
시간
종류 중량ppm 종류 당량
실시예 1 제조예 1 40 벤조나이트릴 5 30 0
실시예 2 제조예 1 30 벤조나이트릴 5 30 0
실시예 3 제조예 1 20 벤조나이트릴 5 30 0
실시예 4 제조예 1 10 벤조나이트릴 5 30 0
실시예 5 제조예 1 20 아세토나이트릴 5 30 0
실시예 6 제조예 2 40 아세토나이트릴 5 30 0
실시예 7 제조예 1 40 벤조나이트릴 5 30 5
실시예 8 제조예 1 40 벤조나이트릴 5 30 12
실시예 9 제조예 1 40 벤조나이트릴 5 30 24
비교예 1 비교 제조예 1 40 벤조나이트릴 5 30 0
비교예 2 비교 제조예 2 20 벤조나이트릴 5 30 0
비교예 3 비교 제조예 3 10 벤조나이트릴 5 30 0
비교예 4 제조예 1 20 트리에틸아민 5 30 0
비교예 5 제조예 1 20 에테르계 화합물 5 30 0
비교예 6 제조예 1 20 설파이드계 화합물 5 30 0
비교예 7 제조예 1 20 포스핀계 화합물 5 30 0
비교예 8 제조예 2 20 - - 30 0
비교예 9 비교 제조예 3 10 벤조나이트릴 5 30 5
비교예 10 비교 제조예 3 10 벤조나이트릴 5 30 12
비교예 11 비교 제조예 3 10 벤조나이트릴 5 30 24
실험예 1
상기 실시예 및 비교예에서 수득한 폴리이소부텐을 대상으로, 하기 방법에 따라 물성을 측정하였다.
(1) 중합 전환율(%)
건조된 폴리이소부텐의 무게를 측정하여 중합 전환율을 계산하였다.
(2) exo-함량(%)
Varian 500MHz NMR 사용하여 1H NMR 측정하여 이중결합의 위치에 따라 exo-올레핀 및 endo-올레핀 형태를 확인하고, 하기 수식에 의해 exo-함량(%)을 계산하였다.
- exo-함량(%) = (탄소-탄소 이중결합이 말단에 위치하는 exo-올레핀 몰수)/(생성된 exo-올레핀 및 endo-올레핀 몰수) × 100
(3) 수평균 분자량(Mn) 및 분자량 분포(MWD)
폴리이소부텐을 하기 조건 하에 겔 투과 크로마토그래피로 분석하여 수평균 분자량(Mn), 중량평균 분자량(Mw)을 측정하고, Mw/Mn으로 분자량 분포(Mn)를 계산하였다.
- 컬럼: PL MiniMixed B × 2
- 용매: THF
- 유속: 0.3 mL/min
- 시료농도: 2.0 mg/mL
- 주입량: 10 μL
- 컬럼온도: 40℃
- Detector: Agilent RI detector
- Standard: Polystyrene(3차 함수로 보정)
- Data processing: ChemStation
중합 전환율(%) exo-함량(%) Mn(g/mol) MWD
실시예 1 94 90 1,530 1.9
실시예 2 93 89 1,920 1.8
실시예 3 92 91 2,070 1.8
실시예 4 91 92 2,610 1.9
실시예 5 95 91 2,800 1.5
실시예 6 98 81 1,420 2.0
비교예 1 96 53 780 2.7
비교예 2 90 65 920 2.3
비교예 3 97 73 1,220 2.0
비교예 4 반응성 없음 - - -
비교예 5 78 81 1,300 2.2
비교예 6 반응성 없음 - - -
비교예 7 반응성 없음 - - -
비교예 8 90 65 920 2.5
실시예의 폴리이소부텐은 모두 본 발명에 따라 화학식 1로 표시되는 촉매 및 나이트릴계 첨가제를 포함하는 촉매 조성물을 이용하여 폴리이소부텐을 제조하였다. 구체적으로, 실시예에서는 모두 수평균 분자량이 1,000 g/mol 이상이고 exo-함량이 90% 이상으로 높은 고반응성의 폴리이소부텐이 제조되었고, 중합 전환율도 모두 우수하게 나타났다.
한편, 화학식 1에 해당하지 않는 촉매를 사용한 비교예 1 내지 3, 촉매 조성물에 첨가제를 사용하지 않은 비교예 8의 경우, 수평균 분자량이 낮고 분자량 분포가 넓은 폴리이소부텐이 제조되었고, 나이트릴이 아닌 화합물을 첨가제로 사용한 비교예 4 내지 7의 경우, 중합 반응이 제대로 수행되지 못하여 폴리이소부텐을 수득할 수 없었다.
실험예 2
다른 반응조건은 동일하고 에이징 시간만을 다르게 한 실시예 및 비교예를 대응시켜 비교하였다. 폴리이소부텐의 물성 측정 방법 및 조건은 상기 실험예 1과 동일하다.
중합 전환율(%) exo-함량(%) Mn MWD
실시예 1 94 90 1,530 1.9
실시예 7 93 91 1,510 1.9
실시예 8 92 91 1,566 1.8
실시예 9 94 90 1,500 1.9
비교예 3 97 73 1,220 2.0
비교예 9 82 86 3,060 2.3
비교예 10 45 90 4,953 2.4
비교예 11 20 92 5,730 2.3
상기 표 3에 나타낸 바와 같이, 본 발명에 따른 촉매 조성물은 안정한 상태를 오래 유지할 수 있기 때문에, 촉매 조성물 제조 후 일정 시간 상온 보관 후 사용한 실시예 7 내지 9에서도, 실시예 1과 유사한 수준으로 높은 수평균 분자량 및 exo-함량을 나타내는 폴리이소부텐을 제조할 수 있다.반면, 촉매로 비교 제조예 3을 사용한 비교예 3, 비교예 9 내지 11을 비교해보면, 상온 보관 시간이 증가할수록 중합 전환율이 급격히 감소하였고, 이를 통해 비교예에 사용된 촉매 조성물은 상온 안정성이 낮아 촉매 활성이 점차 감소하는 것을 확인하였다.
실험예 3
상기 실시예 1, 2, 4 및 비교예 4에 따라 폴리이소부텐을 중합한 후, 중합된 용액 그대로 각각 하기 표 4에 나타낸 바와 같이 셀라이트, 실리카, 제올라이트 또는 유리섬유가 충전된 컬럼에 통과시켰다.
상기와 같이 컬럼에 통과시켜 실시예 1, 2, 4 및 비교예 4에 대하여 필터링을 수행한 결과물과 각각 필터링하지 않은 중합 용액에 대하여, 하기 방법에 따라 분석을 수행하고 그 결과를 표 4에 나타내었다.
(1) F 함량(중량ppm)
연소 IC(ICS-2100/AQF-5000, Thermo Scientific Dionex)을 사용하여 다음의 조건 하에서 측정하였다.
- Column: IonPac AS18 analytical (4 × 250 mm), IonPac AG18 guard(4 × 50 mm)
- Eluent 종류: KOH(30.5 mM)
- Eluent 유량: 1 mL/min
- Detector: Suppressed Conductivity Detector
- SRS Current: 76 mA
- Injection volumn: 20 μL
- Isocratic/Gradient 조건: Isocratic
필터링 방법 F 원소분석결과(mg/kg)
실시예 1 - 48
셀라이트 < 10
실리카 < 10
제올라이트 < 10
유리섬유 49
실시예 2 - 35
셀라이트 < 10
실리카 < 10
제올라이트 < 10
유리섬유 38
실시예 4 - 25
셀라이트 < 10
실리카 < 10
제올라이트 < 10
유리섬유 24
비교예 4 - 47
셀라이트 47
실리카 47
제올라이트 47
유리섬유 47
실시예 1, 2, 4에 대하여 셀라이트, 실리카, 제올라이트를 포함하는 컬럼으로 필터링을 수행한 경우, 필터링 수행 전에 비하여 F 원소 성분이 미량으로 검출되는 것으로부터 촉매가 잘 제거되는 반면, 비교예 4의 경우 필터링을 수행하여도 촉매가 거의 제거되지 않음을 확인하였다.한편, 유리섬유를 포함하는 컬럼을 사용한 경우, 필터링을 수행하지 않은 경우와 거의 동일한 정도로 F 원소 성분이 검출되므로, 유리섬유는 필터링에 부적합한 것을 확인하였다.
이와 같이, 본 발명에 따른 촉매 조성물을 이용할 경우, 중합 생성물을 필터링하는 간편한 방법을 통해 폴리이소부텐 내 잔류하는 촉매를 용이하게 제거할 수 있음을 알 수 있다.

Claims (14)

  1. 하기 화학식 1로 표시되는 촉매; 및 나이트릴계 첨가제를 포함하는 촉매 조성물:
    [화학식 1]
    Figure PCTKR2020017634-appb-I000012
    상기 화학식 1에서,
    R은 선형 C3 알킬기, 또는 선형 또는 분지형 C4-C12 알킬기이고,
    R1 내지 R4는 각각 독립적으로 수소, 할로겐기 또는 할로겐기로 치환된 탄소수 1 내지 20의 알킬기이고,
    o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 촉매 및 나이트릴계 첨가제의 당량비는 1 : 1 내지 1 : 200인 촉매 조성물.
  3. 청구항 1에 있어서,
    상기 화학식 1에서,
    R은 선형 C3 알킬기, 또는 선형 또는 분지형 C4-C8 알킬기이고,
    R1 내지 R4는 각각 독립적으로 할로겐기이고,
    o, p, q 및 r은 각각 독립적으로 3 내지 5의 정수인 촉매 조성물.
  4. 청구항 1에 있어서,
    상기 화학식 1에서,
    R은 n-프로필기 또는 부틸기이고,
    R1 내지 R4는 각각 독립적으로 F 또는 Cl이고,
    o, p, q 및 r은 각각 독립적으로 4 또는 5의 정수인 촉매 조성물.
  5. 청구항 1에 있어서,
    상기 나이트릴계 첨가제는 하기 화학식 2로 표시되는 화합물인 촉매 조성물:
    [화학식 2]
    Figure PCTKR2020017634-appb-I000013
    상기 화학식 2에서,
    R5는 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 30의 아릴기이다.
  6. 청구항 1에 있어서,
    상기 나이트릴계 첨가제는 아세토나이트릴, 프로피오나이트릴, 2-메틸프로판나이트릴, 트리메틸아세토나이트릴 및 벤조나이트릴로 이루어진 군에서 선택된 1종 이상인 촉매 조성물.
  7. 청구항 1 내지 6 중 어느 한 항에 기재된 촉매 조성물 존재 하에 이소부텐을 중합하는 단계;를 포함하는 폴리이소부텐의 제조방법.
  8. 청구항 7에 있어서,
    상기 중합은 10 내지 50℃의 온도에서 수행되는 폴리이소부텐의 제조방법.
  9. 청구항 7에 있어서,
    상기 중합은 할로겐화 탄화수소 용매 존재 하에 수행되는 폴리이소부텐의 제조방법.
  10. 청구항 7에 있어서,
    상기 화학식 1로 표시되는 촉매는 이소부텐 기준 5 내지 250 중량ppm인 폴리이소부텐의 제조방법.
  11. 청구항 7에 있어서,
    상기 폴리이소부텐의 수평균 분자량은 1,000 내지 10,000 g/mol인 폴리이소부텐의 제조방법.
  12. 청구항 7에 있어서,
    상기 폴리이소부텐의 분자량 분포는 1.5 내지 3.0인 폴리이소부텐의 제조방법.
  13. 청구항 7에 있어서,
    이소부텐을 중합하는 단계 이후, 중합 생성물을 필터링하여 화학식 1로 표시되는 촉매를 제거하는 단계;를 더 포함하는 폴리이소부텐의 제조방법.
  14. 청구항 13에 있어서,
    상기 필터링은 실리카, 셀라이트 및 제올라이트로 이루어진 군에서 선택된 1종 이상을 포함하는 필터를 이용하여 수행되는 폴리이소부텐의 제조방법.
PCT/KR2020/017634 2019-12-06 2020-12-04 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법 WO2021112617A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080031267.0A CN113728018B (zh) 2019-12-06 2020-12-04 催化剂组合物和使用该催化剂组合物制备聚异丁烯的方法
EP20896680.4A EP3943516B1 (en) 2019-12-06 2020-12-04 Catalyst composition and method for preparing polyisobutene by using same
JP2021565124A JP7311629B2 (ja) 2019-12-06 2020-12-04 触媒組成物およびそれを用いたポリイソブテンの製造方法
US17/605,373 US20220195079A1 (en) 2019-12-06 2020-12-04 Catalyst Composition and Method for Preparing Polyisobutene Using the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190162054A KR20210071658A (ko) 2019-12-06 2019-12-06 폴리이소부텐의 제조방법
KR10-2019-0162054 2019-12-06
KR1020190162055A KR102506502B1 (ko) 2019-12-06 2019-12-06 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법
KR10-2019-0162055 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112617A1 true WO2021112617A1 (ko) 2021-06-10

Family

ID=76221052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017634 WO2021112617A1 (ko) 2019-12-06 2020-12-04 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법

Country Status (5)

Country Link
US (1) US20220195079A1 (ko)
EP (1) EP3943516B1 (ko)
JP (1) JP7311629B2 (ko)
CN (1) CN113728018B (ko)
WO (1) WO2021112617A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220289875A1 (en) * 2020-05-22 2022-09-15 Lg Chem, Ltd. Method for Preparing Liquid Rubber and Liquid Rubber Prepared Therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486044B1 (ko) 2000-11-13 2005-04-29 대림산업 주식회사 폴리부텐의 제조방법
US20080249268A1 (en) * 2005-10-14 2008-10-09 Basf Se Method For Producing a Polyisobutene
KR20190110957A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법
KR20190110759A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 전이금속 복합체의 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211418A1 (de) * 2002-03-15 2003-09-25 Bayer Ag Verfahren zur Herstellung hochreaktiver Polyisobutene
JP2005008719A (ja) * 2003-06-18 2005-01-13 Mitsui Chemicals Inc 保存安定性に優れたオレフィン重合用の触媒成分
DE102005055817A1 (de) * 2005-11-21 2007-05-24 Basf Ag Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mittels borhaltiger Katalysatorkomplexe
US10047174B1 (en) * 2017-06-28 2018-08-14 Infineum International Limited Polymerization initiating system and method to produce highly reactive olefin functional polymers
WO2019194614A1 (ko) * 2018-04-05 2019-10-10 주식회사 엘지화학 양이온성 금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머 또는 폴리머의 제조 방법
JP7261890B2 (ja) * 2019-08-26 2023-04-20 エルジー・ケム・リミテッド 触媒組成物およびこれを用いた炭化水素樹脂の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486044B1 (ko) 2000-11-13 2005-04-29 대림산업 주식회사 폴리부텐의 제조방법
US20080249268A1 (en) * 2005-10-14 2008-10-09 Basf Se Method For Producing a Polyisobutene
KR20190110957A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법
KR20190110759A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 전이금속 복합체의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FINZE MAIK, BERNHARDT EDUARD, BERKEI MICHAEL, WILLNER HELGE, HUNG JOYCE, WAYMOUTH ROBERT M.: "[H(OEt2)2]+ and [Ph3C]+ Salts of the Borate Anions [B(CF3)4]-, [(CF3)3BCN]-, and [B(CN)4]", ORGANOMETALLICS, vol. 24, no. 21, 13 September 2005 (2005-09-13), pages 5103 - 5109, XP055820110, ISSN: 0276-7333, DOI: 10.1021/om050463j *
MACROMOL. RAPID COMMUN., vol. 20, no. 10, pages 555 - 559
PETER JUTZI , CHRISTIAN MULLER , ANJA STAMMLER , HANS-GEORG STAMMLER: "Synthesis, Crystal Structure, and Application of the Oxonium Acid [H(OEt2)2]+[B(C6F5)4]", ORGANOMETALLICS, vol. 19, no. 7, 3 March 2000 (2000-03-03), pages 1442 - 1444, XP001037590, ISSN: 0276-7333, DOI: 10.1021/om990612w *

Also Published As

Publication number Publication date
JP2022531425A (ja) 2022-07-06
JP7311629B2 (ja) 2023-07-19
CN113728018A (zh) 2021-11-30
US20220195079A1 (en) 2022-06-23
EP3943516B1 (en) 2023-11-01
CN113728018B (zh) 2023-07-18
EP3943516A1 (en) 2022-01-26
EP3943516A4 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
WO2017095174A1 (ko) 중합성 조성물
WO2019194614A1 (ko) 양이온성 금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머 또는 폴리머의 제조 방법
WO2017010648A1 (ko) 메탈로센 화합물 및 이의 제조방법
WO2018030552A1 (ko) 중합성 조성물
WO2019182386A1 (ko) 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법
WO2021112617A1 (ko) 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법
WO2015133805A1 (ko) 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법
WO2016163741A1 (ko) 아지리딘을 내포하는 고분자 및 이의 제조방법
WO2020171625A1 (ko) 우수한 물성의 가교 폴리에틸렌 파이프
WO2020105891A1 (ko) 폴리부텐 올리고머의 제조 방법
EP2247644A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2021206345A1 (ko) 촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법
WO2020022833A1 (ko) 부텐 올리고머의 제조방법
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2020171624A1 (ko) 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
WO2020130718A1 (ko) 폴리올레핀
WO2020130719A1 (ko) 폴리올레핀
WO2019172512A1 (ko) 대칭형 폴리올레핀 블록 공중합체 및 이의 제조 방법
WO2019177436A1 (ko) 변성 중합 개시제 및 이의 제조방법
WO2019088431A1 (ko) 세척액 조성물 및 이를 이용한 중합 장치 세척 방법
WO2017115927A1 (ko) 혼성 메탈로센 담지 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 용융강도가 향상된 올레핀 중합체
WO2021206250A1 (ko) 촉매 조성물, 이를 포함하는 세척액 조성물 및 이를 이용한 중합장치의 세척방법
WO2021060907A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2022059990A1 (ko) 촉매 조성물 및 이를 이용한 이소부텐-이소프렌 공중합체의 제조방법
WO2024043542A1 (ko) 환형올레핀 중합용 촉매 조성물 및 이를 이용한 환형올레핀계 올리고머 또는 올레핀계 중합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020896680

Country of ref document: EP

Effective date: 20211018

ENP Entry into the national phase

Ref document number: 2021565124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE