WO2015133805A1 - 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법 - Google Patents

크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법 Download PDF

Info

Publication number
WO2015133805A1
WO2015133805A1 PCT/KR2015/002067 KR2015002067W WO2015133805A1 WO 2015133805 A1 WO2015133805 A1 WO 2015133805A1 KR 2015002067 W KR2015002067 W KR 2015002067W WO 2015133805 A1 WO2015133805 A1 WO 2015133805A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
catalyst system
compound
chromium
carbon atoms
Prior art date
Application number
PCT/KR2015/002067
Other languages
English (en)
French (fr)
Inventor
이분열
전종엽
박동식
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140026270A external-priority patent/KR101482962B1/ko
Priority claimed from KR1020150003639A external-priority patent/KR101691404B1/ko
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to US15/123,878 priority Critical patent/US10442741B2/en
Publication of WO2015133805A1 publication Critical patent/WO2015133805A1/ko
Priority to US16/548,185 priority patent/US10875818B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/31Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Definitions

  • Embodiments of the present invention relate to chromium compounds, catalyst systems comprising them and ethylene trimerization methods using the same.
  • a catalyst system for the production of 1-hexene by trimerization of olefins such as ethylene and the like, chromium trivalent compounds, pyrrole compounds, non-hydrolyzed aluminum alkyls and unsaturated hydrocarbons A high activity, high selectivity ethylene trimerization catalyst system using s) was published in 1994 by Philips (US Pat. No. 5,376,612). Since then, 1-hexene has been commercially produced since 2003 based on the catalyst system.
  • the catalyst system using Cr (EH) 3 is, for example, a mixed solution of triethylaluminum and ethylaluminum dichloride in an aromatic hydrocarbon solvent (toluene, etc.) in which Cr (EH) 3 and 2,5-dimethylpyrrole are mixed.
  • an aromatic hydrocarbon solvent such as cyclohexane
  • the olefin trimerization reaction is carried out in an aliphatic hydrocarbon solvent such as cyclohexane, so that the aromatic hydrocarbon solvent of the prepared catalyst system is removed under reduced pressure under vacuum and then dissolved in an aliphatic hydrocarbon solvent such as cyclohexane, or prepared.
  • the aromatic hydrocarbon solution phase catalyst system is used for the trimerization reaction, and after completion of the reaction, the aromatic hydrocarbon solvent used for preparing the catalyst must be separated off.
  • the catalyst is prepared using Cr (EH) 3 , a black precipitate is formed as a by-product while the catalyst activated species is formed (see US Pat. No. 5,563,312).
  • Aromatic hydrocarbon solvent removal process such as toluene, filtration process, etc. may act as a burden during commercialization.
  • Another object of the present invention is to provide a catalyst system comprising the chromium compound, which is a simple catalyst preparation process and excellent in catalytic activity in the ethylene trimerization reaction.
  • Another object of the present invention is to provide an ethylene trimerization reaction using the catalyst system.
  • One embodiment of the present invention relates to a chromium compound represented by any one of the following Formula 1a or 1b.
  • the chromium compound may include a compound represented by the following Chemical Formula 1c.
  • Another embodiment of the invention is a chromium compound; Aluminum compounds; And pyrrole compounds or alumino-pyrrole compounds; It relates to a catalyst system comprising a reactant of.
  • Catalyst system of one embodiment is a chromium compound represented by the formula (1); An aluminum compound represented by Formula 3 below; And pyrrole compounds represented by the following formula (4); It may include a reactant of.
  • R 1 is an alkyl group having 3 to 30 carbon atoms or an aryl group having 6 to 40 carbon atoms;
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms, X 2 is a halogen atom, and the average value of n is 1 to 3;
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the chromium compound represented by Chemical Formula 1 may be a compound represented by any one of Chemical Formulas 1a or 1b.
  • the chromium compound represented by Chemical Formula 1 may be a compound represented by Chemical Formula 1c.
  • the aluminum compound is a mixture of triethylaluminum (Et 3 Al) and diethylaluminum chloride (Et 2 AlCl), and the pyrrole compound represented by Chemical Formula 4 may be 2,5-dimethylpyrrole.
  • the catalyst system may have a molar ratio (Cr: Al) of the chromium compound and the aluminum compound added in preparation (reaction) of about 1: 10 to about 1: 50.
  • the catalyst system may have a molar ratio (chromium compound: pyrrole compound) of about 1: 1 to 1: 5 of the chromium compound and the pyrrole compound added during preparation (reaction).
  • Another exemplary catalyst system is a chromium compound represented by Chemical Formula 1c; An aluminum compound represented by Formula 3 below; And alumino-pyrrole compound represented by the formula (5); It may include a reactant of.
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms, X 2 is a halogen atom, and the average value of n is 1 to 3;
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms
  • R 3 , R 4 , R 5, and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the aluminum compound is a mixture of triethylaluminum (Et 3 Al) and diethylaluminum chloride (Et 2 AlCl), wherein the alumino-pyrrole compound represented by the formula (5) is represented by the chemical formula 5 wherein R 2 is an ethyl group, R 3 and R The hexavalent methyl group, R 4 and R 5 may be a hydrogen atom.
  • the catalyst system may have a molar ratio (Cr: Al) of the chromium compound and the aluminum compound added in preparation (reaction) of about 1: 10 to about 1: 50.
  • a molar ratio (chromium compound: alumino-pyrrole compound) of the chromium compound and the alumino-pyrrole compound introduced during preparation (reaction) may be 1: 1 to 1: 5.
  • Another embodiment of the catalyst system is a catalyst precursor represented by the formula (2); And an aluminum compound represented by Formula 3 below; It may include a mixture of.
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms
  • X is R 2 or a halogen atom
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms to be.
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms
  • X 2 is a halogen atom
  • the average value of n is 1 to 3.
  • R 2 is methyl or ethyl
  • X is R 2 or a chlorine atom
  • R 3 and R 6 may be methyl
  • R 4 and R 5 may be a hydrogen atom.
  • the aluminum compound may be a mixture of triethylaluminum (Et 3 Al) and diethylaluminum chloride (Et 2 AlCl).
  • the mixture may have a molar ratio (Cr: Al) of the catalyst precursor and the aluminum compound of 1:10 to 1:50.
  • Another embodiment of the present invention relates to a catalyst precursor represented by the following formula (2).
  • the catalyst precursor represented by Formula 2 is the same as the catalyst precursor of Formula 2 described above.
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms
  • X is R 2 or a halogen atom
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms to be.
  • R 2 in Formula 2 may be methyl or ethyl
  • X is R 2 or chlorine atom
  • R 3 and R 6 may be methyl
  • R 4 and R 5 may be hydrogen atom.
  • the catalyst system of the aforementioned embodiments may further comprise a hydrocarbon solvent.
  • Yet another embodiment of the present invention relates to an olefin polymerization method comprising preparing an olefin polymer by contacting the catalyst systems of the aforementioned embodiments with an olefin monomer having 2 to 10 carbon atoms.
  • the olefin monomer may be ethylene, and the olefin polymer may be an olefin trimer.
  • Embodiments of the present invention have the effect of providing a chromium compound of novel structure.
  • it has the effect of providing the catalyst system containing the said chromium compound, and the 1-hexene manufacturing method using the said catalyst system which are simple in a catalyst manufacturing process and excellent in catalyst activity at the time of ethylene trimerization reaction.
  • Figure 2 shows the structure revealed by the single crystal X-ray diffraction analysis of the catalyst precursor (P1) prepared according to Preparation Example 6 of the present invention.
  • Figure 3 shows the structure revealed by the single crystal X-ray diffraction analysis of the catalyst precursor (P2) prepared according to Preparation Example 7 of the present invention.
  • chromium compounds represented by the following Chemical Formula 1a, the chromium compounds represented by the following Chemical Formula 1b, and specific examples thereof are collectively referred to as "chromium compounds".
  • One embodiment of the present invention relates to a chromium compound having a novel structure represented by the following general formula (1a) or (1b).
  • the chromium compound represented by Chemical Formula 1a includes two 2-ethylhexanoate ( ⁇ CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) CO 2 ⁇ ) groups and one hydroxy group (OH). Is a compound. When such a chromium compound is used in a catalyst system for olefin polymerization, the catalytic activity for ethylene trimerization reaction is excellent.
  • the chromium compound represented by Chemical Formula 1b is a chromium trivalent compound including two 2-ethylbutanoate ( ⁇ CH 3 CH 2 CH (CH 2 CH 3 ) CO 2 ⁇ ) groups and one hydroxy group (OH). .
  • a chromium compound is used in a catalyst system for olefin polymerization, the catalytic activity for ethylene trimerization reaction is excellent.
  • the chromium compound may include a compound represented by Formula 1c.
  • the chromium compound represented by Chemical Formula 1c is formed by combining four molecules of trivalent chromium having a structure of ⁇ CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH) and two molecules of water.
  • the structure is formed, and when used in a catalyst system for olefin polymerization, the catalyst activity for the ethylene trimerization reaction is more excellent.
  • the chromium compound represented by Formula 1c may be prepared from, for example, 2-ethylhexanoic acid through the above-described chromium compound preparation reaction.
  • 2-ethylhexanoic acid is a compound that is manufactured in a large amount in the industry as a compound having a low unit price
  • Formula 1c may be more economically prepared.
  • the chromium compound represented by Chemical Formula 1c is particularly easy to prepare a catalyst because of high solubility in aliphatic and aromatic hydrocarbon solvents, and high catalytic activity of the catalyst system prepared using the same.
  • the chromium compounds according to the embodiments of the present invention react, for example, with an aqueous solution of a chromium trivalent salt compound represented by the following formula (6) and an aqueous solution of a carboxylate alkali metal salt represented by the following formula (7). Production reaction).
  • X 1 is a halogen atom, NO 3 (nitrate ion) or ClO 4 (perchlorate ion).
  • halogen atom examples include chlorine atom (Cl), iodine atom (I), fluorine atom (F), bromine atom (Br) and the like.
  • the chromium trivalent salt compound represented by Chemical Formula 6 may be chromium chloride (CrCl 3 ), a hydrate thereof (CrCl 3 ⁇ H 2 O), chromium nitrate (Cr (NO 3 ) 3 ), a hydrate thereof (Cr (NO 3) ) 3 ⁇ H 2 O), chromium perchlorate (Cr (ClO 4 ) 3 ), its hydrate (Cr (ClO 4 ) 3 ⁇ H 2 O) and the like can be exemplified, but is not limited thereto.
  • a hydrate eg, CrCl 3 H 2 O, Cr (NO 3 ) 3 H 2 O, Cr (ClO 4 ) 3 H 2 O, etc.
  • the high solubility in water may improve the reactivity, it may be excellent in economic efficiency.
  • M may be an alkali metal, and the alkali metal may include sodium (Na), potassium (K), lithium (Li), and the like.
  • R 1 in Formula 7 is an alkyl group having 3 to 30 carbon atoms or an aryl group having 6 to 40 carbon atoms.
  • the alkali metal salt represented by the formula (7) is, for example, carboxylic acid (for example, 2-ethylhexanoic acid, 2-ethylbutyric acid, etc.) and alkali metal hydroxide (NaOH, KOH, LiOH, etc.) It can be easily obtained by reacting with an equivalent in.
  • carboxylic acid for example, 2-ethylhexanoic acid, 2-ethylbutyric acid, etc.
  • alkali metal hydroxide NaOH, KOH, LiOH, etc.
  • the carboxylate alkali metal salt represented by Formula 7 may be a compound represented by Formula 7a or Formula 7b.
  • M is an alkali metal
  • the alkali metal may include sodium (Na), potassium (K), lithium (Li), and the like.
  • the carboxylate alkali metal salt represented by Formula 7a or 7b may be, for example, sodium 2-ethylhexanoate or sodium 2-ethylbutanoate, but is not limited thereto.
  • the compound represented by the above-mentioned formula (1a), (1b) or (1c) it is advantageous to prepare the compound represented by the above-mentioned formula (1a), (1b) or (1c), and the raw material is easy to obtain, so that the unit price There may be a savings effect.
  • the production reaction of the chromium compound (the reaction of the aqueous solution of the chromium trivalent salt compound and the aqueous solution of the carboxylate alkali metal salt) has a reaction temperature of 20 ° C to 100 ° C, for example, 50 ° C to 100 ° C, specifically 80 ° C to 95 ° C.
  • the equivalent ratio of the alkali metal salt of carboxylic acid (for example, 2-ethylhexanoic acid or 2-ethylbutanoic acid, etc.) to 1 equivalent of chromium trivalent salt compound is 1: 3 to 1: 4, specifically 1: 3 to 1: 3.5 or 1: 3 to 1: 3.2. In the above range, the chromium compound can be obtained in high yield.
  • chromium compounds and by-product carboxylic acid for example, 2-ethylhexanoic acid or 2-ethylbutanoic acid, etc.
  • carboxylic acid for example, 2-ethylhexanoic acid or 2-ethylbutanoic acid, etc.
  • the production reaction of the chromium compound may be carried out further including a hydrocarbon solvent (eg, methylcyclohexane, mineral spirit, etc.).
  • a hydrocarbon solvent eg, methylcyclohexane, mineral spirit, etc.
  • the chromium compound and byproduct, equivalent to carboxylic acid (e.g., 2-ethylhexanoic acid or 2-ethylbutanoic acid, etc.) prepared by the reaction have low solubility in water while solubility in hydrocarbon solvents. high. Therefore, when additionally adding a hydrocarbon solvent in the production reaction of the chromium compound, the resulting chromium compound and the by-product carboxylic acid (for example, 2-ethylhexanoic acid or 2-ethylbutanoic acid, etc.) are hydrocarbon solvent layers. Dissolves in, and other by-products and unreacted materials remain in the aqueous solution layer to facilitate separation and purification.
  • a hydrocarbon solvent
  • the hydrocarbon solvent layer is taken and washed with a basic aqueous solution to produce a by-product carboxylic acid (for example, 2-ethylhexanoic acid or 2-ethyl). Butanoic acid, etc.) can be extracted and removed with a basic aqueous solution layer.
  • carboxylic acid for example, 2-ethylhexanoic acid or 2-ethyl.
  • Butanoic acid, etc. can be extracted and removed with a basic aqueous solution layer.
  • the solution thus obtained can be used as is for the preparation of the catalyst system, and in some cases, the solvent can be used after distilling off the powder.
  • the hydrocarbon solvent may be, for example, an aliphatic hydrocarbon solvent having 4 to 20 carbon atoms, an aromatic hydrocarbon solvent having 6 to 20 carbon atoms, or a mixture thereof.
  • the aliphatic hydrocarbon solvent may include isobutane, pentane, hexane, heptane, octane, nonane, decane, cyclohexane, methylcyclohexane, and the like
  • the aromatic hydrocarbon solvent may include benzene, toluene, xylene, Mesitylene, ethylbenzene, cumene, etc. can be illustrated.
  • the structure of the chromium compound prepared by the above method can be proved by an elemental analysis data analysis and OH stretching signal observation of 3630 cm -1 in the IR spectrum.
  • the mass of the obtained chromium compound relative to the mass of the chromium trivalent salt compound added and the mass of one equivalent of carboxylic acid (for example, 2-ethylhexanoic acid or 2-ethylbutanoic acid) It can further prove the production of a chromium compound having a composition of Formula 1a, 1b or 1c by measuring the.
  • chromium compound when a chromium compound is manufactured using chromium chloride (CrCl 3 ) as a chromium trivalent salt compound, the amount of chlorine ions (Cl ⁇ ) remaining in the aqueous solution layer is titrated with silver nitrate (AgNO 3 ) or the aqueous solution layer It is also possible to further verify the structure of the chromium compound by analyzing the acidity of.
  • the chromium compound prepared from the acidity of the aqueous solution layer is neutral when the acidity of the aqueous solution layer is analyzed.
  • the shape and structure of the prepared chromium compound can also be confirmed through molecular weight and elemental analysis data calculated by measuring the freezing point drop in benzene.
  • the chromium compound represented by Formula 1c may be more specifically in a form having a structure of Formula 1d:
  • R 1 is an ethylpentyl group (CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) —).
  • the chromium compound of Formula 1d has an Adamantane structure.
  • the chromium compound of this adamentane structure can be prepared by, for example, the same method as in Example 5 described later.
  • the chromium compound of the adamentane structure is a cluster compound consisting of four chromium atoms (FIG. 4), which was found by structural analysis of a single crystal of an intermediate compound partially precipitated from the catalyst solution prepared in Example 5 by X-ray diffraction. It can be inferred from its structure.
  • the chromium compound represented by Formula 1c ([ ⁇ CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH)] 4 .H 2 O) is an adamentane structure of Formula 1d.
  • a stable form can be maintained. In this case, it is more reliable and efficient and economical in the production of chromium compounds.
  • the solubility is high and the viscosity is low, the viscosity is low, so the handleability and the uniformity of the reaction are excellent.
  • the compound represented by Formula 1c ( ⁇ CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH) molecule and two water molecules combined) is a form of [ ⁇ CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH)] 4 •
  • the structure of H 2 O can be confirmed through molecular weight and elemental analysis data calculated by measuring the freezing point drop in benzene.
  • Structural stability of the chromium compound of Formula 1d comprising two water molecules is dissolved in xylene to remove water of two molecules coordinated in the chromium compound of Formula 1d and then at 160 ° C. using a Dean-Stark apparatus. It can be recognized that the water molecules are not removed at all when refluxed for 10 hours.
  • IR spectrum, elemental analysis data, and freezing point drop in benzene were measured before and after the dehydration attempt, and it was confirmed that there was no change in the calculated molecular weight.
  • the chromium compounds described above may be coordinated with neutral ligands such as tetrahydrofuran, dimethylsulfoxide, pyridine and the like, but are not limited thereto. These neutral ligands can be easily decoordinated by the aluminum compound having Lewis acidity in preparing the catalyst system described below.
  • the chromium compounds and the aluminum compound described later react, the chromium compounds may be released from chromium while being exchanged with the carboxylate group of the chromium compound and the hydrocarbon group (R 2 ⁇ ) of the aluminum compound.
  • Another embodiment of the invention relates to a catalyst system comprising the chromium compound described above.
  • the catalyst system comprises an aluminum compound and a pyrrole compound; Or aluminum compounds and alumino-pyrrole compounds; It may be included with the chromium compound.
  • Such catalyst systems have high activity when used in olefin polymerization reactions.
  • Catalyst system of one embodiment is a chromium compound represented by the formula (1); An aluminum compound represented by Formula 3 below; And pyrrole compounds represented by the following formula (4); It includes the reactant of.
  • a catalyst system is easy to manufacture the catalyst because no precipitate is produced during the preparation of the catalyst, so no filtration process is required. This catalyst system is also very useful in ethylene trimerization reactions.
  • R 1 is an alkyl group having 3 to 30 carbon atoms or an aryl group having 6 to 40 carbon atoms.
  • the alkyl group may be a linear, branched or cyclic alkyl group having 3 to 10 carbon atoms, and more specifically, the alkyl group may be a branched alkyl group having 5 to 7 carbon atoms.
  • the aryl group may be an aryl group of 6 to 12.
  • R 1 is n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, n-pentyl group, isopentyl group, neopentyl group, 1,2-dimethylpropyl group , n-hexyl group, cyclohexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1-ethylpropyl, 1,2-dimethylbutyl group, n-heptyl group, 1,4-dimethylpentyl group , 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, 1-ethylpentyl group, n-octyl group, 2-ethylhexyl group, 3-methyl-1-isopropylbutyl group, 2-methyl-1-isopropylbutyl group, phenyl group, naph
  • the chromium compound represented by Chemical Formula 1 may include one or more of the compounds represented by the following Chemical Formula 1a or 1b.
  • the chromium compound may include a compound represented by Formula 1c.
  • the aluminum compound is a compound represented by the following formula (3).
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms
  • X 2 is a halogen atom
  • the average value of n is 1 to 3.
  • the hydrocarbon group may be an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 15 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 5 carbon atoms.
  • the structure of the alkyl group can be, for example, in the form of a linear, branched or cyclic. More specifically, the hydrocarbon group may exemplify methyl group, ethyl group, propyl group, isobutyl group and the like.
  • the halogen atom is, for example, a chlorine atom (Cl), an iodine atom (I), a fluorine atom (F), a bromine atom (Br), and the value of n may be, for example, 2 to 3 have.
  • the aluminum compound may be a single compound or a mixture of aluminum compounds having different values of n, but is not limited thereto. Specifically, it may be an aluminum compound ((R 2 ) 3 Al) of n is 3 of Formula 3 and / or an aluminum compound ((R 2 ) 2 Al (X 2 )) of n is 2 of Formula 3.
  • triethylaluminum (Et 3 Al) and diethylaluminum chloride (Et 2 AlCl) in which R 2 in Formula 3 is an ethyl group, are used in a large amount as a promoter of a Ziegler-Natta catalyst in the industry. Inexpensive and can be used to increase economics, but is not limited thereto.
  • the (R 2 ) 2 Al (X 2 ) may be obtained by reacting the (R 2 ) 3 Al with organic and inorganic materials including various halogens.
  • the mixing ratio (molar ratio) of the (R 2 ) 3 Al and (R 2 ) 2 Al (X 2 ) may be 1: 0.5 to 1: 2, for example, 1: 1, but is not limited thereto.
  • the aluminum compound of Formula 3 may be a mixture of triethylaluminum (Et 3 Al) and diethylaluminum chloride (Et 2 AlCl).
  • the mixing ratio (molar ratio) of triethylaluminum (Et 3 Al): diethylaluminum chloride (Et 2 AlCl) may be 1: 0.5 to 1: 2, for example 1: 1.
  • the reaction efficiency of the catalyst system can be increased without excessively remaining of the unreacted aluminum compound.
  • the molar ratio (Cr: Al) of the chromium compound and the aluminum compound introduced during the preparation (reaction) of the catalyst system is 1: 3 to 1: 100, for example, 1:10 to 1:50, specifically 1:10 to 1: 40 may be. Within this range, it is possible to implement the catalyst system with high activity while increasing the economics. In this case, 1-hexene which is an ethylene trimer can be obtained with high yield and high purity.
  • aluminum compounds not only react with chromium compounds and pyrrole compounds to participate in activation catalyst species formation reactions, but some also contain water or oxygen contained in solvents and monomers during catalyst system preparation or olefin polymerization (trimerization) reactions. It may serve to remove catalyst poisons such as. Since the amount of water, oxygen, and the like contained in the solvent and the monomer may vary depending on the case, the input amount of the aluminum compound may be appropriately set differently according to each case.
  • an aluminum compound may be added to the olefin polymerization reaction solvent separately from the catalyst system in order to remove water, oxygen, and the like.
  • the amount of the aluminum compound which is separately added to the olefin polymerization reaction solvent is not included in the molar ratio.
  • the pyrrole compound reacted with the aluminum compound represented by Chemical Formula 3 may be a compound represented by the following Chemical Formula 4.
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group may have, for example, 1 to 8, 1 to 6, or 1 to 4 carbon atoms, and may have a linear, branched, or cyclic structure.
  • an alkyl group can illustrate a methyl group, an ethyl group, a propyl group, an isobutyl group, etc.
  • pyrrole compound of Formula 4 for example, pyrrole (R 3 , R 4 , R 5 and R 6 of the formula 4 is a hydrogen atom), R 3 of the formula (4) is a hydrogen atom, R One or more of 4 , R 5 , and R 6 may be a pyrrole compound having an alkyl group having 1 to 10 carbon atoms, and the like, but is not limited thereto.
  • the pyrrole compound of Formula 4 may use 2,5-dimethylpyrrole in which R 3 and R 6 are methyl groups. In this case, the unit cost of the raw material is low, and the catalyst system can realize high activity.
  • the molar ratio (chromium compound: pyrrole compound) of the chromium compound and the pyrrole compound to be introduced during preparation (reaction) is in the range of 1: 1 to 1: 10, for example, 1: 1: 5, specifically 1: 1 to 1: 3 may be. It is excellent in the activity of a catalyst system in the said range, 1-hexene which is an ethylene trimer can be obtained with high yield and high purity.
  • the catalyst system is an alumina of Formula 5 to be described later through a method of reacting the chromium compound represented by Formula 1, the aluminum compound represented by Formula 3 and the pyrrole compound represented by Formula 4 in a hydrocarbon solvent No-pyrrole compounds can be prepared in catalyst systems.
  • the catalyst system will be described later through a method of forming a mixed solution containing the aluminum compound represented by Formula 3 and the pyrrole compound represented by Formula 4, and reacting the mixed solution with the chromium compound in a hydrocarbon solvent.
  • Alumino-pyrrole compounds of formula 5 can be prepared in a catalyst system.
  • Another exemplary catalyst system is a chromium compound represented by Chemical Formula 1c; An aluminum compound represented by Formula 3; And alumino-pyrrole compound represented by the formula (5); It includes the reactant of.
  • Such catalyst systems are very useful in ethylene trimerization reactions. In addition, such catalyst systems are more useful as they allow the preparation of catalysts in aliphatic hydrocarbon solvents.
  • the chromium compound represented by Chemical Formula 1c and the aluminum compound represented by Chemical Formula 3 are the same as described in the aforementioned embodiments.
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms
  • R 3 , R 4 , R 5, and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 2 may be specifically a hydrocarbon group, for example, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 15 carbon atoms, an alkyl group having 1 to 10 carbon atoms or 1 to 5 carbon atoms.
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom; Or an alkyl group having, for example, 1 to 8, 1 to 6, or 1 to 4 carbon atoms.
  • the alkyl group may have a linear, branched or cyclic structure. More specifically, an alkyl group can illustrate a methyl group, an ethyl group, a propyl group, an isobutyl group, etc.
  • the alumino-pyrrole compound of Formula 5 may be R 3 and R 6 is a methyl group, R 4 and R 5 is hydrogen, R 2 may be an ethyl group.
  • R 3 and R 6 is a methyl group
  • R 4 and R 5 is hydrogen
  • R 2 may be an ethyl group.
  • the alumino-pyrrole compound may be, for example, a method of reacting the pyrrole compound of Formula 4 with (R 2 ) 3 Al; Or a method of forming an N-lithio pyrrole compound using n-BuLi or the like in the pyrrole compound of Formula 4 and reacting it with (R 2 ) 2 AlCl; It can be prepared by.
  • diethyl ether or the like may be used as the reaction solvent, and in this case, it may be obtained as a copolymer in which diethyl ether is coordinated with aluminum of the compound of Formula 5. Diethyl ether coordinated in aluminum is easily decoordinated during preparation of the catalyst system, so the presence or absence of diethyl ether coordination does not significantly affect the activity of the prepared catalyst system.
  • the alumino-pyrrole compound has a molar ratio (chromium compound: alumino-pyrrole compound) to the chromium compound in the range of 1: 1 to 1:10, for example, 1: 1 to 1: 5, specifically, 1: 1. To 1: 3. It is excellent in the activity of a catalyst system in the said range, 1-hexene which is an ethylene trimer can be obtained with high yield and high purity.
  • the preparation (reaction) of the catalyst system can be carried out at -30 to 50 ° C, for example 0 to 40 ° C, specifically 15 to 35 ° C. It is possible to obtain a catalyst system in a high yield in the above range.
  • the catalyst system according to the embodiments may further include a hydrocarbon solvent.
  • a hydrocarbon solvent When including a hydrocarbon solvent, the catalyst system may be present in a homogeneous solution in which the reactants are dissolved in a hydrocarbon solvent.
  • the catalyst system according to the embodiments of the present invention has excellent solubility in hydrocarbon solvents and can realize high activity in aliphatic hydrocarbon solvents. Because of this, the catalyst system can be prepared in an aliphatic hydrocarbon solvent in which the ethylene trimerization reaction is carried out, so that the aromatic hydrocarbon solvent removal step and the filtration step can be omitted.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 4 to 20 carbon atoms, aromatic hydrocarbon solvents having 6 to 20 carbon atoms, and mixtures thereof.
  • aliphatic hydrocarbon solvent examples include isobutane, pentane, hexane, heptane, octane, nonane, decane, cyclohexane, methylcyclohexane, and the like.
  • Specific examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, and mesh. Styrene, ethylbenzene, cumene, etc. can be illustrated.
  • the ethylene trimerization reaction is carried out in an aliphatic hydrocarbon solvent, it may be easier to prepare a catalyst system using the same aliphatic hydrocarbon solvent as the solvent used for the ethylene trimerization reaction in terms of separation and purification after the reaction.
  • the catalyst system of one embodiment described above is prepared by, for example, contacting and reacting a chromium compound represented by Formula 1, an aluminum compound represented by Formula 3, and a pyrrole compound represented by Formula 4 in a hydrocarbon solvent. Can be obtained.
  • the catalyst system of one embodiment may be prepared by a method of contacting and reacting the aluminum compound in a mixed solution of the chromium compound and the pyrrole compound dissolved in the hydrocarbon solvent.
  • the catalyst system according to another embodiment described above may, for example, contact and react a chromium compound represented by Formula 1c, an aluminum compound represented by Formula 3, and an alumino-pyrrole compound represented by Formula 5 below in a hydrocarbon solvent. You can get it by way.
  • Another embodiment of the catalyst system is a catalyst precursor represented by the formula (2); And an aluminum compound represented by Formula 3; It may include a mixture of.
  • the catalyst precursor may be a compound represented by the following formula (2).
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms
  • X is R 2 or a halogen atom
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms to be.
  • R 2 may be specifically a hydrocarbon group, for example, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 15 carbon atoms, an alkyl group having 1 to 10 carbon atoms or 1 to 5 carbon atoms.
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom; Or an alkyl group having, for example, 1 to 8, 1 to 6, or 1 to 4 carbon atoms.
  • the alkyl group may have a linear, branched or cyclic structure.
  • an alkyl group can illustrate a methyl group, an ethyl group, a propyl group, an isobutyl group, etc.
  • the catalyst precursor of Formula 2 is wherein R 2 is a methyl group or an ethyl group, X is the same as R 2 or a chlorine atom, R 3 and R 6 are a methyl group, R 4 and R 5 are hydrogen atoms Can be.
  • R 2 is a methyl group or an ethyl group
  • X is the same as R 2 or a chlorine atom
  • R 3 and R 6 are a methyl group
  • R 4 and R 5 are hydrogen atoms Can be.
  • the aluminum compound is the same as the aluminum compound represented by the formula (3) as described in the above embodiments.
  • the molar ratio (Cr: Al) of the catalyst precursor of Formula 2 and the aluminum compound of Formula 3 is in the range of 1: 3 to 1: 100, for example, 1: 10 to 1: 50, 1: 10 To 1: 40, 1: 10 to 1: 30, or 1: 10 to 1: 20.
  • 1: 3 to 1: 100 for example, 1: 10 to 1: 50, 1: 10 To 1: 40, 1: 10 to 1: 30, or 1: 10 to 1: 20.
  • 1-hexene which is an ethylene trimer can be obtained with high yield and high purity.
  • the amount of unreacted material can be reduced to further improve the efficiency of the catalyst system.
  • Catalyst system of one embodiment the catalyst precursor represented by the formula (2); And an aluminum compound represented by Formula 3; It contains a mixture of.
  • the mixture can be produced, for example, during the reaction of the catalyst system of one embodiment described above or of the catalyst system of another embodiment.
  • catalyst precursor represented by Chemical Formula 2.
  • Such catalyst precursor may be derived from the chromium compound of Formula 1. Specific contents of the catalyst precursor are as defined in the above-described catalyst system.
  • Catalyst precursors of one embodiment may be prepared by, for example, reacting in a catalyst system of the foregoing embodiments; Or a method of preparing the compound through the reaction of the compound of Formula 5 with the compound of Formula 1; Or the like, but is not limited thereto. For example, it may synthesize
  • Another embodiment of the present invention is directed to an olefin polymerization method using the above-described catalyst system.
  • the olefin polymerization (trimerization) reaction may be performed in a liquid phase, a slurry phase, a bulk phase, Or gas phase polymerization.
  • each polymerization reaction condition depends on the state of the catalyst composition used (homogeneous or heterogeneous phase (support type)), the polymerization method (solution polymerization, slurry polymerization, gas phase polymerization), the desired polymerization result or the form of the polymer. It can be variously modified. The degree of modification thereof can be easily carried out by those skilled in the art.
  • the hydrocarbon solvent may be an aliphatic hydrocarbon solvent having 4 to 20 carbon atoms, an aromatic hydrocarbon solvent having 6 to 20 carbon atoms, a mixture thereof, or the like.
  • examples of the aliphatic hydrocarbon solvent include isobutane, pentane, hexane, heptane, octane, nonane, decane, cyclohexane, methylcyclohexane, and the like.
  • Specific examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, and mesh.
  • the olefin polymerization (trimerization) reaction can be carried out in an aliphatic hydrocarbon solvent from an environmental point of view.
  • the boiling point of the hydrocarbon solvent used in consideration of the separation from the olefin polymer which is the product after the reaction differs from the boiling point of the product by 10 to 50 ° C.
  • the olefin monomer is ethylene and the product is 1-hexene (boiling point: 63 ° C.)
  • cyclohexane with low unit cost and boiling point of 80.74 ° C. or methylcyclohexane with a boiling point of 101 ° C. can be used. have.
  • examples of the olefin monomers may include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, mixtures thereof, and the like.
  • ethylene can be used alone.
  • the amount of the catalyst system used is not particularly limited. However, since the catalyst system of the present invention exhibits high activity, a small amount of the catalyst system can be added and reacted. .
  • the molar concentration (based on chromium) of the catalyst system with respect to the hydrocarbon solvent is 0.01 mmol / L to 0.1 mmol / L, for example 0.01 mmol / L to 0.03 mmol /
  • olefin monomers such as ethylene were continuously added and reacted for 30 minutes to 1 hour, thereby adding about 2 times as olefin polymers (trimers) such as 1-hexene, in which the volume of the solution was added, were added. It can be manufactured.
  • the temperature of the olefin polymerization (trimerization) of the present invention may vary depending on the reaction material, reaction conditions, etc., may be 0 °C to 150 °C, for example 60 °C to 130 °C °C.
  • the polymerization can be carried out batchwise, semicontinuously or continuously. The polymerization may also be carried out in two or more stages with different reaction conditions.
  • 2-ethylhexanoic acid (2.44 g, 16.9 mmol) was added to a 1-neck flask, followed by dissolving NaOH (0.68 g, 16.9 mmol) in distilled water (13 mL) to give 2-ethylhexanoate sodium salt (sodium 2 Ethylhexanoate).
  • a chromium compound represented by Chemical Formula 1b of a ultramarine solid form was prepared in the same manner as in Preparation Example 1, except that 2-ethylbutyric acid (16.9 mmol) was used instead of 2-ethylhexanoic acid (C, 48.52 H, 7.85; calculated for ⁇ CH 3 CH 2 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH) C, 48.15; H, 7.75).
  • the molecular weight was measured by 3330 ⁇ CH 3 CH 2 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH) molecules of about 11 benzene In aggregates (ie, [ ⁇ CH 3 CH 2 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH)] 11 ).
  • the compound prepared in Preparation Example 2 was consistent with the structure of ⁇ CH 3 CH 2 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH) containing no water molecules as a result of elemental analysis.
  • the compound prepared in Preparation Example 2 was denatured when dissolved in xylene and refluxed at 160 ° C. for 10 hours to change color from ultramarine to green, and also changed the elemental analysis data value (C, 50.85; H , 7.96).
  • 2-ethylhexanoic acid (2.44 g, 16.9 mmol) was added to a 1-neck flask, followed by dissolving NaOH (0.68 g, 16.9 mmol) in distilled water (13 mL) to give 2-ethylhexanoate sodium salt (sodium 2-ethylhexanoate) was formed.
  • Methyl hexane (7 mL) was added to form a two-phase and stirred at 95 °C, hydrated chromium (III) chloride (CrCl 3 ⁇ H 2 O, 1.50 g, 96%, 5.40 mmol) in distilled water (1 mL) and slowly administered. The reaction proceeded rapidly and the product melted into the organic layer. After the reaction for 2 hours, all the product was dissolved in the organic layer to give a viscous ultra-blue color and the water layer became transparent.
  • IR spectrum of the prepared chromium compound is shown in FIG.
  • IR spectrum analysis showed an OH stretching signal at 3630 cm -1 .
  • the molecular weight was measured using freezing point down method to obtain molecular weight close to tetramer with 1580.
  • Elemental analysis showed [ ⁇ CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH)] 4 .H 2 O. (C, 52.48; H, 8.88; [ ⁇ CH 3 (CH 2 ) 3 CH (CH 2 CH 3 ) CO 2 ⁇ 2 Cr (OH))] 4 Calcd for H 2 O C, 52.73; H, 8.85).
  • triethylaluminum (7.20 g, 63.1 mmol) was dissolved in toluene (60 mL) in a 1-neck flask, and then 2,5-dimethylpyrrole (1.50 g, 15.8 mmol) was further added. Put and stirred at room temperature for 5 hours. Next, toluene and unreacted triethylaluminum were removed by distillation under reduced pressure (0.3 mmHg, 70 ° C), whereby a pyrrole aluminum compound (1- (diethylalumino) -2,5-dimethylpyrrole with N-Al covalent bonds) was formed. ) 2.80 g.
  • the chromium compound (Formula 1c, 200 mg, 0.563 mmol) prepared in Preparation Example 3 was dissolved in pentane (9.0 mL) in a 25 mL one-neck flask, and then prepared in Preparation Example 5
  • the prepared alumino-pyrrole compound (B2, 380 mg, 1.69 mmol) was dissolved in toluene (1.0 mL) and slowly added to form a solution of both solutions.
  • a catalyst precursor (P1) having the structure of Chemical Formula 2 and wherein R 2 , X, R 3 and R 6 is a methyl group, R 4 and R 5 is hydrogen.
  • the crystals were deposited (143 mg, yield 65%) with a slow reaction for one week with the two solutions layered as above.
  • the obtained single crystal was shown in FIG. 2 by structural analysis by X-ray diffraction.
  • lithium diisopropylamide LiNiPr 2 , 1.50 g, 14.0 mmol
  • Et 2 AlCl diethylaluminum chloride
  • LiAlEt 2 (NiPr 2) 2 (1.00 g, 3.42 mmol) was dissolved in toluene (15 mL), cooled to ⁇ 30 ° C., and CrCl 3 (THF) 3 (1.28 g, 3.42 mmol) was added thereto.
  • the color of the solution changed from dark green to blue while stirring at room temperature for 8 hours.
  • the solvent was removed using a vacuum pump, and then hexane (20 mL) was added thereto.
  • the precipitated lithium chloride was removed by filtration and then cooled to -30 < 0 > C to give crystals (770 mg).
  • a catalyst precursor (P2) having the structure of Chemical Formula 2 and R 2 is ethyl, X is a chlorine atom, R 3 and R 6 is a methyl group, R 4 and R 5 is hydrogen.
  • Example and the comparative example were advanced in inert atmosphere (nitrogen).
  • the alumino-pyrrole compound (B1, 81 mg, 0.45 mmol) synthesized in Preparation Example 4 was dissolved in methylcyclohexane (1 mL), triethylaluminum (137 mg, 1.20 mmol), and Diethylaluminum chloride (145 mg, 1.20 mmol) was dissolved in methylcyclohexane (2 mL) to prepare a mixed solution.
  • the mixed solution was prepared by dissolving the chromium compound (Formula 1a, 53 mg, 0.15 mmol) prepared in Preparation Example 1 in methylcyclohexane (1 mL) and reacting to form a dark green transparent solution having almost no precipitates.
  • a system was prepared (concentration: 63 mmol chromium / g-solution).
  • Catalyst system which is a dark green transparent solution in the same manner as in Example 1 except for using the chromium compound (Formula 1b) prepared in Preparation Example 2 instead of the chromium compound (Formula 1a) prepared in Preparation Example 1.
  • the mixed solution prepared was prepared by dissolving the chromium compound (Formula 1c, 55 mg, 0.15 mmol) prepared in Preparation Example 3 in methylcyclohexane (1 mL) and reacting to form a dark green transparent solution having almost no precipitates.
  • a catalyst system was prepared (concentration: 50 mmol chromium / g-solution).
  • Example 7 Preparation of Catalyst System 7 Including Catalyst Precursor
  • Chromium (III) (Cr (EH) 3 ) was prepared in the same manner as in Comparative Example 1 except for using a product of a different product number of the same manufacturer.
  • a dark green catalyst system solution was prepared in the same manner as in Comparative Example 1, except that methylcyclohexane was used as a solvent instead of toluene, and then filtered through a black precipitate (concentration: 50 mmol chromium / g). -solution).
  • Example 8 Ethylene Terpolymerization Using the Catalyst System of Example 3
  • Methylcyclohexane (20 mL) and triethylaluminum (0.024 mmol) were charged into a high pressure polymerization reactor in a dry box in a scavenger, and then taken out of the dry box to raise the temperature to 90 ° C.
  • methylcyclohexane was added so that the total solution was 2 mL.
  • an additional triethylaluminum (8 equivalents to chromium) and diethylaluminum chloride (8 equivalents to chromium) are added to the scavenger, and the catalyst solution is injected into the reactor by taking a syringe.
  • Ethylene was injected at a pressure of 50 bar to polymerize for 30 minutes. After rapidly decreasing to 0 ° C., ethylene gas was vented and removed, and 5 mL of ethanol and 5 mL of 10% hydrochloric acid were added to terminate the reaction. Some samples were taken to determine the amount of 1-hexene produced via gas chromatography. In addition, the total solution was filtered to measure the amount of solid polymer formed. The results are shown in Table 1 below.
  • each catalyst system prepared in Examples 4 to 7 was used in the same manner as in Example 8 except that the amount quantitatively used in Table 1 (0.25 ⁇ mol to 1.00 ⁇ mol) was used. Ethylene was polymerized (trimerized) by the method. After completion of the reaction, some samples were taken to determine the amount of 1-hexene produced via gas chromatography. In addition, the total solution was filtered to measure the amount of solid polymer formed. The results are shown in Table 1 below.
  • Example 13 Ethylene Terpolymerization Using the Catalyst System of Example 1
  • Ethylene was polymerized (trimerized) in the same manner as in Example 8, except that 0.250 ⁇ mol of the catalyst system prepared in Example 1 was used. After completion of the reaction, some samples were taken to determine the amount of 1-hexene produced via gas chromatography. In addition, the total solution was filtered to measure the amount of solid polymer formed. The results are shown in Table 1 below.
  • Example 14 Ethylene Terpolymerization Using the Catalyst System of Example 2
  • Ethylene was polymerized (trimerized) in the same manner as in Example 8, except that 0.50 ⁇ mol of the catalyst system prepared in Example 2 was used instead of the catalyst system prepared in Example 1. After completion of the reaction, some samples were taken to determine the amount of 1-hexene produced via gas chromatography. In addition, the total solution was filtered to measure the amount of solid polymer formed. The results are shown in Table 1 below.
  • Methylcyclohexane (20 mL) and triethylaluminum (0.024 mmol) were charged into a high pressure polymerization reactor in a dry box in a scavenger, and then taken out of the dry box to raise the temperature to 90 ° C. After quantifying 1.00 ⁇ mol of the catalyst system solution prepared in Comparative Example 1, methylcyclohexane was added so that the total solution was 2 mL. The catalyst solution was injected into the reactor by syringe, and then polymerized for 30 minutes by injecting ethylene at a pressure of 50 bar.
  • Ethylene was polymerized (trimerized) in the same manner as in Comparative Example 4, except that the catalyst system solution prepared in Comparative Example 2 was used instead of the catalyst system prepared in Comparative Example 1. After completion of the reaction, some samples were taken to determine the amount of 1-hexene produced via gas chromatography. In addition, the total solution was filtered to measure the amount of solid polymer formed. The results are shown in Table 2 below.
  • Ethylene was polymerized (trimerized) in the same manner as in Comparative Example 4, except that 2.00 ⁇ mol of the catalyst system prepared in Comparative Example 1 was used. After completion of the reaction, some samples were taken to determine the amount of 1-hexene produced via gas chromatography. In addition, the total solution was filtered to measure the amount of solid polymer formed. The results are shown in Table 2 below.
  • Ethylene was polymerized (trimerized) in the same manner as in Comparative Example 4, except that 2.00 ⁇ mol of the catalyst system prepared in Comparative Example 3 was used. After completion of the reaction, some samples were taken to determine the amount of 1-hexene produced via gas chromatography. In addition, the total solution was filtered to measure the amount of solid polymer formed. The results are shown in Table 2 below.
  • Example 8 9 10 11 12 13 14 Catalyst system Example 3
  • Example 4 Example 5
  • Example 6 Example 7
  • Example 2 Catalyst amount ( ⁇ mol) 0.25 0.25 1.00 1.00 0.25 0.50 1-hexene yield (g) 6.9 7.1 5.6 12.4 6.4 7.1 9.6 Activity (Kg (1-hexene) / g (Cr) / h) 1,070 1,100 220 500 260 1,100 770 Dimer C 4 (wt%) 4.26 0.70 0.24 3.21 0.86 0.01 0.10 Terpolymer C 6 (wt%) 88.08 94.12 92.38 88.08 93.60 93.06 93.14 Tetramer C 8 (wt%) 0.29 0.48 0.39 0.39 0.32 0.48 0.35 Pentameric C 10 (wt%) 7.37 4.70 6.99 8.32 5.22 5.50 6.41 1-hexene content in the trimer (wt%) 99.21 98.42 98.77 98.2 98.
  • the catalyst activity was similar or significantly improved (up to 4 times), which shows that the catalyst cost can be significantly reduced.
  • Examples 8 to 9 and 13 to 14 containing the chromium compound of Formula 1 of the present application were significantly higher than Comparative Examples 4 to 7 using Cr (EH) 3 .
  • Examples 10 to 12 showed similar levels of activity, yields of trimers, and 1-hexene content in trimers, compared to Comparative Examples 4-7, but Examples 10 to 12 did not require removal of aromatic hydrocarbon solvents. In addition, the manufacturing process is simple, and the cost of raw materials is low, so it is more economical. In particular, when Examples 10-12 were compared with Comparative Examples 6-7, Examples 10-12 were able to achieve similar levels of results with much lower catalyst amounts.
  • the catalyst system of Examples 8 to 14 can be prepared in an aliphatic hydrocarbon solvent, thus eliminating the need for removing the aromatic hydrocarbon solvent to trimer ethylene in the aliphatic hydrocarbon solvent, and no precipitate is produced during the catalyst preparation. It was found that the catalyst system manufacturing process was simple and easy, such as no need for filtration.
  • Preparation Example 3 when the compound stability of Preparation Example 1 and Preparation Example 3 for preparing the chromium compound according to the present invention was evaluated, Preparation Example 3 was more stable than Preparation Example 1. Through this, the catalyst system including the chromium compound of Preparation Example 1 and Preparation Example 3 both have high catalytic activity, it can be seen that the chromium compound having the structure of Formula 1c prepared as in Preparation Example 3 is more excellent stability . In particular, it was found that the chromium compound of Preparation Example 3 was excellent in solubility in a hydrocarbon solvent and had a very suitable property for application to a catalyst system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

본 발명의 구현예들은 하기 화학식 1a 또는 화학식 1b 중 어느 하나로 표시되는 크롬 화합물 및 이를 포함하는 촉매 시스템에 관한 것이다. 이러한, 구현예들은 올레핀 3량화 반응에서의 촉매 활성이 우수하다. [화학식 1a] [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)] [화학식 1b] [{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]

Description

크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법
본 발명의 구현예들은 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법에 관한 것이다.
에틸렌 등의 올레핀을 3량화하여 1-헥센 등을 제조하기 위한 촉매 시스템으로서, 크롬 3가 화합물, 피롤(pyrrole) 화합물, 비가수분해된 알루미늄 알킬(non-hydrolyzed aluminum alkyl) 및 방향족 탄화수소(unsaturated hydrocarbon)를 사용하는 고활성, 고선택성 에틸렌 3량화 촉매 시스템을 필립스社에서 1994년 공개하였다(미국특허 5,376,612호). 이후, 상기 촉매 시스템을 근간으로 2003년부터 1-헥센을 상업 생산하고 있다. 다양한 크롬 3가 화합물 중 트리스(2-에틸헥사노에이트) 크롬(III)(Cr(EH)3, EH = O2C8H15)을 사용한 촉매 시스템이 특히 우수한 촉매 활성을 보였으며, Cr(EH)3를 사용하는 촉매 시스템을 집중 연구하여 상업화하였다.
상기 Cr(EH)3를 사용한 촉매 시스템은 예를 들면, Cr(EH)3와 2,5-디메틸피롤이 혼합되어 있는 방향족 탄화수소 용매(톨루엔 등)에 트리에틸알루미늄과 에틸알루미늄 디클로라이드의 혼합 용액을 투입함으로써, 방향족 탄화수소 용매에서 제조할 수 있다. 통상적으로, 올레핀의 3량화 반응은 시클로헥산 등의 지방족 탄화수소 용매에서 수행되기 때문에, 제조된 촉매 시스템의 방향족 탄화수소 용매를 진공 감압하여 제거한 후 시클로헥산 등의 지방족 탄화수소 용매에 다시 녹인 후 사용하거나, 제조된 방향족 탄화수소 용액상 촉매 시스템을 3량화 반응에 사용하고, 반응 종료 후, 촉매 제조에 사용된 방향족 탄화수소 용매를 분리 제거하여야 한다. 또한, 상기 Cr(EH)3를 사용하여 촉매 제조 시, 촉매 활성화 종이 형성되면서 검은색 침전물이 부산물로 형성되므로 이를 여과로 제거하는 공정이 요구된다(미국특허 5,563,312호 참조). 이러한 톨루엔 등의 방향족 탄화수소 용매 제거 공정 및 여과 공정 등은 상업화 시 부담으로 작용할 수 있다. 방향족 탄화수소 용매 제거 공정을 생략하기 위하여, 상기 촉매 시스템을 3량화 반응이 수행되는 시클로헥산 등의 지방족 탄화수소 용매 중에서 제조할 경우, 제조되는 촉매의 열적 안정성이 낮아지며, 이에 따라, 3량화 반응 중 촉매가 불활성화되거나 촉매 선택성이 낮아져 3량체 외의 부반응물이 다량 형성되므로(미국특허 5,563,312호 참조), 상기 필립스社 촉매 시스템 등에서는 방향족 탄화수소(unsaturated hydrocarbon)가 필수 성분으로 포함된다.
따라서, 촉매 제조 시 부산물이 생성되지 않아 여과 공정 등이 필요 없고, 지방족 탄화수소 용매에서 촉매 시스템의 제조가 가능한 촉매 시스템의 원료 화합물, 및 에틸렌 3량화 시 촉매 활성이 우수한 촉매 시스템의 개발이 필요한 실정이다.
본 발명의 목적은 신규한 구조의 크롬 화합물을 제공하기 위한 것이다.
본 발명의 다른 목적은 촉매 제조 공정이 단순하고, 에틸렌 3량화 반응 시 촉매 활성이 우수한, 상기 크롬 화합물을 포함하는 촉매 시스템을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 상기 촉매 시스템을 이용한 에틸렌 3량화 반응을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 일 구현예는 하기 화학식 1a 또는 화학식 1b 중 어느 하나로 표시되는 크롬 화합물에 관한 것이다.
[화학식 1a]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]
[화학식 1b]
[{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]
상기 크롬 화합물은 하기 화학식 1c로 표시되는 화합물을 포함할 수 있다.
[화학식 1c]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
본 발명의 다른 구현예는 크롬 화합물; 알루미늄 화합물; 및 피롤 화합물 또는 알루미노-피롤화합물; 의 반응물을 포함하는 촉매 시스템에 관한 것이다.
일 실시예의 촉매 시스템은 하기 화학식 1로 표시되는 크롬 화합물; 하기 화학식 3으로 표시되는 알루미늄 화합물; 및 하기 화학식 4로 표시되는 피롤 화합물; 의 반응물을 포함할 수 있다.
[화학식 1]
(R1CO2)2Cr(OH)
상기 화학식 1에서, R1은 탄소수 3 내지 30의 알킬기 또는 탄소수 6 내지 40의 아릴기이다;
[화학식 3]
(R2)nAl(X2)3-n
상기 화학식 3에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X2는 할로겐 원자이며, n의 평균값은 1 내지 3이다;
[화학식 4]
Figure PCTKR2015002067-appb-I000001
상기 화학식 4에서, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
일 실시예의 촉매 시스템에서, 상기 화학식 1로 표시되는 크롬 화합물은 하기 화학식 1a 또는 화학식 1b 중 어느 하나로 표시되는 화합물일 수 있다.
[화학식 1a]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]
[화학식 1b]
[{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]
일 실시예의 촉매 시스템에서, 상기 화학식 1로 표시되는 크롬 화합물은 하기 화학식 1c로 표시되는 화합물일 수 있다.
[화학식 1c]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
상기 알루미늄 화합물은 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)의 혼합물이고, 상기 화학식 4로 표시되는 피롤 화합물은 2,5-디메틸피롤일 수 있다.
일 실시예의 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물 및 상기 알루미늄 화합물의 몰비(Cr:Al)가 1 : 10 내지 1 : 50일 수 있다.
일 실시예의 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물과 상기 피롤 화합물의 몰비(크롬 화합물:피롤 화합물)가 1 : 1 내지 1 : 5 일 수 있다.
다른 실시예의 촉매 시스템은 하기 화학식 1c로 표시되는 크롬 화합물; 하기 화학식 3으로 표시되는 알루미늄 화합물; 및 하기 화학식 5로 표시되는 알루미노-피롤 화합물; 의 반응물을 포함할 수 있다.
[화학식 1c]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
[화학식 3]
(R2)nAl(X2)3-n
상기 화학식 3에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X2는 할로겐 원자이며, n의 평균값은 1 내지 3이다;
[화학식 5]
Figure PCTKR2015002067-appb-I000002
상기 화학식 5에서, R2는 탄소수 1 내지 20의 탄화수소기이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
상기 알루미늄 화합물은 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)의 혼합물이고, 상기 화학식 5로 표시되는 알루미노-피롤 화합물은 화학식 5의 R2가 에틸기, R3 및 R6가 메틸기, R4 및 R5가 수소 원자일 수 있다.
다른 실시예의 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물 및 상기 알루미늄 화합물의 몰비(Cr:Al)가 1 : 10 내지 1 : 50일 수 있다.
다른 실시예의 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물과 상기 알루미노-피롤 화합물의 몰비(크롬 화합물:알루미노-피롤 화합물)가 1:1 내지 1:5 일 수 있다.
또 다른 실시예의 촉매 시스템은 하기 화학식 2로 표시되는 촉매 전구체; 및 하기 화학식 3으로 표시되는 알루미늄 화합물; 의 혼합물을 포함할 수 있다.
[화학식 2]
Figure PCTKR2015002067-appb-I000003
상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X는 R2 또는 할로겐 원자이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
[화학식 3]
(R2)nAl(X2)3-n
상기 화학식 3에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X2는 할로겐 원자이며, n의 평균값은 1 내지 3이다.
상기 화학식 2에서, R2는 메틸 또는 에틸이고, X는 R2 또는 염소 원자이고, R3 및 R6는 메틸, R4 및 R5 는 수소 원자일 수 있다.
상기 알루미늄 화합물은 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)의 혼합물일 수 있다.
상기 혼합물은 촉매 전구체 및 알루미늄 화합물의 몰비(Cr:Al)가 1 : 10 내지 1 : 50일 수 있다.
본 발명의 또 다른 실시예는 하기 화학식 2로 표시되는 촉매 전구체에 관한 것이다. 하기 화학식 2로 표시되는 촉매 전구체는 상술한 화학식 2의 촉매 전구체와 동일하다.
[화학식 2]
Figure PCTKR2015002067-appb-I000004
상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X는 R2 또는 할로겐 원자이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
또 다른 실시예의 촉매 시스템에서, 상기 화학식 2의 R2는 메틸 또는 에틸이고, X는 R2 또는 염소 원자이고, R3 및 R6는 메틸, R4 및 R5는 수소 원자일 수 있다.
전술한 실시예들의 촉매 시스템은 탄화수소 용매를 더 포함할 수 있다.
본 발명의 또 다른 구현예는 전술한 실시예들의 촉매 시스템들과 탄소수 2 내지 10의 올레핀 단량체를 접촉시켜 올레핀 중합체를 제조하는 단계를 포함하는 올레핀 중합방법에 관한 것이다.
상기 올레핀 단량체는 에틸렌이고, 상기 올레핀 중합체는 올레핀 3량체일 수 있다.
본 발명의 구현예들은 신규한 구조의 크롬 화합물을 제공하는 발명의 효과를 가진다. 또한, 촉매 제조 공정이 단순하고, 에틸렌 3량화 반응 시 촉매 활성이 우수한, 상기 크롬 화합물을 포함하는 촉매 시스템, 및 상기 촉매 시스템을 이용한 1-헥센 제조 방법을 제공하는 발명의 효과를 가진다.
도 1은 본 발명의 제조예 3에 따라 제조된 크롬 화합물의 IR 스펙트럼이다.
도 2는 본 발명의 제조예 6에 따라 제조된 촉매 전구체(P1)의 단결정 X-ray 회절 분석에 의하여 밝혀진 구조를 나타내었다.
도 3은 본 발명의 제조예 7에 따라 제조된 촉매 전구체(P2)의 단결정 X-ray 회절 분석에 의하여 밝혀진 구조를 나타내었다.
도 4는 본 발명의 실시예 5에 따라 제조된 촉매 시스템에서 얻어진 중간체 화합물의 단결정 X-ray 회절 분석 결과를 나타내었다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
크롬 화합물
본 명세서에서는 특별히 따로 지칭하는 경우를 제외하고, 하기 화학식 1a의 크롬 화합물, 하기 화학식 1b의 크롬 화합물 및 이들의 구체적인 예시들을 모두 통칭하여 「크롬 화합물들」로 표기한다.
본 발명의 일 구현예는 하기 화학식 1a 또는 하기 화학식 1b로 표시되는 신규한 구조를 갖는 크롬 화합물에 관한 것이다.
[화학식 1a]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]
[화학식 1b]
[{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]
상기 화학식 1a로 표시되는 크롬 화합물은 두 개의 2-에틸헥사노에이트 ({CH3(CH2)3CH(CH2CH3)CO2})기 및 한 개의 히드록시기(OH)를 포함하는 크롬 3가 화합물이다. 이러한 크롬 화합물은 올레핀 중합용 촉매 시스템에 이용될 경우, 에틸렌 3량화 반응에 대한 촉매 활성이 우수하다.
상기 화학식 1b로 표시되는 크롬 화합물은 두 개의 2-에틸부타노에이트 ({CH3CH2CH(CH2CH3)CO2})기 및 한 개의 히드록시기(OH)를 포함하는 크롬 3가 화합물이다. 이러한 크롬 화합물은 올레핀 중합용 촉매 시스템에 이용될 경우, 에틸렌 3량화 반응에 대한 촉매 활성이 우수하다.
일 구체예에서, 상기 크롬 화합물은 하기 화학식 1c로 표시되는 화합물을 포함할 수 있다.
[화학식 1c]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
상기 화학식 1c로 표시되는 크롬 화합물은 {CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)의 구조를 갖는 3가 크롬 네 분자와 물 두 분자가 합체한 형태의 구조를 형성하고 있어, 올레핀 중합용 촉매 시스템에 이용될 경우, 에틸렌 3량화 반응에 대한 촉매 활성이 더욱 우수하다. 상기 화학식 1c로 표시되는 크롬 화합물은 예를 들면, 전술한 크롬 화합물 제조 반응을 통해 2-에틸헥사노익산 등으로부터 제조될 수 있다. 상기 2-에틸헥사노익산은 단가가 낮은 화합물로 산업계에서 대량으로 제조되는 화합물이므로, 화학식 1c는 보다 경제적으로 제조될 수 있다. 또한, 상기 화학식 1c로 표시되는 크롬 화합물 등은 지방족 및 방향족 탄화수소 용매에 용해도가 특히 높아 촉매 제조가 용이하고, 이를 사용하여 제조된 촉매 시스템의 촉매 활성도가 높다.
본 발명의 실시예들에 따른 크롬 화합물들은 예를 들면, 하기 화학식 6으로 표시되는 크롬 3가 염 화합물의 수용액 및 하기 화학식 7로 표시되는 카르복실레이트 알칼리 금속염의 수용액을 반응(이하, 「크롬 화합물의 제조 반응」이라 한다)시켜 제조할 수 있다.
[화학식 6]
Cr(X1)3
상기 화학식 6에서, X1은 할로겐 원자, NO3(질산 이온) 또는 ClO4(과염소산 이온)이다. 할로겐 원자는 염소 원자(Cl), 요오드 원자(I), 불소 원자(F), 브롬 원자(Br) 등을 예시할 수 있다.
구체적으로, 화학식 6으로 표시되는 크롬 3가 염 화합물은 염화크롬(CrCl3), 이의 수화물(CrCl3·H2O), 질산크롬(Cr(NO3)3), 이의 수화물(Cr(NO3)3·H2O), 과염소산크롬(Cr(ClO4)3), 이의 수화물 (Cr(ClO4)3·H2O) 등을 예시할 수 있으나, 이에 제한되지 않는다. 일 구체예에서, 크롬 3가 염 화합물로 수화물(예를 들면, CrCl3·H2O, Cr(NO3)3·H2O, Cr(ClO4)3·H2O 등)을 사용하는 경우, 물에 대한 용해도가 높아 반응성이 향상될 수 있으며, 경제성이 우수할 수 있다.
[화학식 7]
(R1CO2)M
상기 화학식 7에서, M은 알칼리 금속이고, 알칼리 금속은 나트륨(Na), 칼륨(K), 리튬(Li) 등을 예시할 수 있다. 상기 화학식 7에서 R1은 탄소수 3 내지 30의 알킬기 또는 탄소수 6 내지 40의 아릴기이다.
상기 화학식 7로 표시되는 알칼리 금속염은 예를 들면, 카르복실산(예를 들면, 2-에틸헥사노익산, 2-에틸부티릭산 등)과 알칼리 금속 수산화염(NaOH, KOH, LiOH 등)을 물에서 당량으로 반응시켜 쉽게 얻을 수 있다.
구체적으로, 하기 화학식 7로 표시되는 카르복실레이트 알칼리 금속염은 하기 화학식 7a 또는 하기 화학식 7b로 표시되는 화합물일 수 있다.
[화학식 7a]
{CH3(CH2)3CH(CH2CH3)CO2}M
[화학식 7b]
{CH3CH2CH(CH2CH3)CO2}M
상기 화학식 7a 내지 7b에서, M은 알칼리 금속이고, 알칼리 금속은 나트륨(Na), 칼륨(K), 리튬(Li) 등을 예시할 수 있다.
더욱 구체적으로, 상기 화학식 7a 또는 7b 로 표시되는 카르복실레이트 알칼리 금속염은 예들 들면, 소듐 2-에틸헥사노에이트 또는 소듐 2-에틸부타노에이트 등일 수 있으나, 이에 제한되지 않는다. 구체예에서, 소듐 2-에틸헥사노에이트 또는 소듐 2-에틸부타노에이트를 사용하는 경우, 전술한 화학식 1a, 1b 또는 1c로 표시되는 화합물을 제조하기 유리하고, 원료의 수득이 용이하여 단가가 절감되는 효과가 있을 수 있다.
상기 크롬 화합물의 제조 반응(크롬 3가 염 화합물의 수용액 및 상기 카르복실레이트 알칼리 금속염의 수용액의 반응)은 반응온도가 20℃ 내지 100℃, 예를 들면 50℃ 내지 100℃, 구체적으로 80℃ 내지 95℃일 수 있다. 상기 반응에서, 크롬 3가 염 화합물 1 당량에 대한, 카르복실산(예를 들면, 2-에틸헥사노익산 또는 2-에틸부타노익산 등)의 알칼리 금속염의 당량비는, 1:3 내지 1:4, 구체적으로는 1:3 내지 1:3.5 또는 1:3 내지 1:3.2일 수 있다. 상기 범위에서, 크롬 화합물이 고수율로 얻어질 수 있다.
상기 온도의 범위 및 상기 당량비의 범위 내에서 크롬 화합물 제조 반응이 수행되는 경우, 크롬 화합물과 부산물인 카르복실산(예를 들면, 2-에틸헥사노익산 또는 2-에틸부타노익산 등)이 생성될 수 있다.
상기 크롬 화합물의 제조 반응은 탄화수소 용매(예를 들면, 메틸시클로헥산, 미네랄 스피릿 등)를 더욱 포함하여 수행될 수 있다. 상기 반응으로 제조된, 크롬 화합물과 부산물인 1당량의 카르복실산(예를 들면, 2-에틸헥사노익산 또는 2-에틸부타노익산 등)은 물에 대한 용해도가 낮은 반면 탄화수소 용매에는 용해도가 높다. 따라서, 크롬 화합물의 제조 반응 시, 탄화수소 용매를 추가로 투입하면 생성된 크롬 화합물과 부산물인 카르복실산(예를 들면, 2-에틸헥사노익산 또는 2-에틸부타노익산 등)은 탄화수소 용매 층에 녹아 들어가고, 다른 부산물 및 미반응물은 수용액 층에 잔존하게 되어 분리정제가 용이할 수 있다.
예를 들면, 탄화수소 용매를 추가로 투입하는 경우, 크롬 화합물 제조 반응 후, 탄화수소 용매 층을 취하고 이를 염기성 수용액으로 세척하여 부산물인 카르복실산(예를 들면, 2-에틸헥사노익산 또는 2-에틸부타노익산 등)을 염기성 수용액 층으로 추출하여 제거할 수 있다. 이러한 방법으로, 크롬 화합물을 탄화수소 용매에 용해되어 있는 용액 상태로 쉽게 얻을 수 있다. 이렇게 얻어진 용액을 촉매 시스템 제조에 그대로 사용할 수 있고, 경우에 따라서는 용매를 증류하여 제거한 후 파우더 상으로 사용할 수도 있다.
탄화수소 용매는 예를 들면, 탄소수 4 내지 20의 지방족 탄화수소 용매, 탄소수 6 내지 20의 방향족 탄화수소 용매 또는 이들의 혼합물 등일 수 있다. 구체적으로, 상기 지방족 탄화수소 용매로는 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, 시클로헥산, 메틸시클로헥산 등을 예시할 수 있고, 상기 방향족 탄화수소 용매로는 벤젠, 톨루엔, 자일렌, 메시틸렌, 에틸벤젠, 큐멘 등을 예시할 수 있다.
상기 방법으로 제조된 크롬 화합물의 구조는 원소분석 데이터 분석 및 IR 스펙트럼에서 3,630 cm-1의 O-H 스트레칭 시그널 관찰 등의 방법으로 증명할 수 있다.
또한, 투입한 크롬 3가 염 화합물의 질량 대비 얻어진 크롬 화합물의 질량 및 부산물로 생성된 1 당량의 카르복실산(예를 들면, 2-에틸헥사노익산 또는 2-에틸부타노익산 등)의 질량을 측정하여 상기 화학식 1a, 1b 또는 1c의 조성을 갖는 크롬 화합물의 생성을 추가적으로 증명할 수 있다.
또한, 염화크롬(CrCl3)을 크롬 3가 염 화합물로 사용하여 크롬 화합물을 제조하였을 경우에는, 수용액 층에 잔존하는 염소 이온(Cl-)의 양을 질산은(AgNO3)으로 적정하거나, 수용액 층의 산도를 분석하여 크롬 화합물의 구조를 추가적으로 증명할 수도 있다.
일 구체예에서, 염화크롬(CrCl3)을 크롬 3가 염 화합물로 사용하여 크롬 화합물을 제조한 경우, 수용액 층의 산도를 분석하였을 때 수용액 층의 산도가 중성을 띄는 것으로부터 제조된 크롬 화합물이 {CH3CH2CH(CH2CH3)CO2}2Cr(OH), {CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH) 또는 [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O)를 포함하는 조성으로 구성되어 있음을 증명할 수 있다.
또한, 제조된 크롬 화합물의 형태와 구조는 벤젠에서 어는점 내림을 측정하여 계산된 분자량, 원소분석 데이터를 통해서도 확인할 수 있다.
일 구체예에서, 상기 화학식 1c로 표시되는 크롬 화합물은 더욱 구체적으로 하기 화학식 1d의 구조를 갖는 형태일 수 있다:
[화학식 1d]
Figure PCTKR2015002067-appb-I000005
상기 화학식 1d에서 R1은 에틸펜틸기(CH3(CH2)3CH(CH2CH3)-)이다. 상기 화학식 1d의 크롬 화합물은 아다멘테인 형태의 구조(Adamantane structure)를 갖는다.
이러한 아다멘테인 구조의 크롬 화합물은 예를 들면, 후술하는 실시예 5와 같은 방법에 의해 제조될 수 있다. 상기 아다멘테인 구조의 크롬 화합물은, 실시예 5에서 제조된 촉매 용액으로부터 일부 침전된 중간체 화합물의 단결정을 X-ray 회절법으로 구조 분석하여 밝혀진, 크롬 원자 4개로 구성된 클러스터 화합물(도 4)의 구조로부터 그 존재를 추론할 수 있다.
상기 화학식 1c로 표시되는 크롬 화합물 ([{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O)이 상기 화학식 1d 형태의 아다멘테인 구조를 갖는 경우, 안정한 형태를 유지할 수 있다. 이러한 경우, 크롬 화합물의 제조에 있어서 더욱 신뢰성이 높아 효율적이고 경제적이다. 또한, 상기 구조를 가짐에 의하여 용해도가 높고 또한 용해되었을 때 점도가 낮아 취급성 및 반응에 대한 균일성이 우수하다.
또한, 화학식 1c로 표시되는 화합물({CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH) 분자 네 개와 물 분자 두 개가 합체한 형태)인 [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O의 구조는 벤젠에서 어는점 내림을 측정하여 계산된 분자량, 원소분석 데이터를 통해 확인할 수 있다.
상기 물 분자 두 개를 포함하는 화학식 1d의 크롬 화합물의 구조적 안정성은, 화학식 1d의 크롬 화합물에서 배위된 두 분자의 물을 제거하기 위하여 자일렌에 용해시킨 후 Dean-Stark 장치를 활용하여 160℃에서 10시간 동안 환류하였을 때 물 분자가 전혀 제거 되지 않음을 통하여 인지할 수 있다. 또한, 탈수 반응 시도 전 후 IR 스펙트럼, 원소 분석 데이터 및 벤젠에서 어는점 내림을 측정하여 계산된 분자량에 변화가 없음을 확인하였다. 종래의 필립스 촉매 제조에 사용되는 Cr(EH)3의 경우 그 조성이 화합물 제조 배치에 따라 달라져 촉매 제조 시 신뢰성 및 재현성에 문제가 있으나 본 발명에서 제공하는 화학식 1d의 크롬 화합물은 안정된 구조로 인해 크롬 화합물 및 촉매 제조 시 재현성 및 신뢰성 확보가 용이하다.
일 구체예에서, 전술한 크롬 화합물들은 테트라하이드로퓨란, 디메틸설폭사이드, 피리딘 등의 중성 리간드와 배위될 수 있으나, 이에 제한되지 않는다. 이러한 중성 리간드들은 후술하는 촉매 시스템 제조 시, 루이스 산성이 있는 상기 알루미늄 화합물에 의하여 쉽게 탈배위될 수 있다. 또한, 크롬 화합물들과 후술하는 알루미늄 화합물이 반응할 때 크롬 화합물의 카르복실레이트기와 알루미늄 화합물의 탄화수소기(R2-)와 교환되면서 크롬으로부터 이탈할 수 있다.
크롬 화합물을 포함하는 촉매 시스템
본 발명의 다른 구현예는, 전술한 크롬 화합물을 포함하는 촉매 시스템에 관한 것이다. 상기 촉매 시스템은 알루미늄 화합물 및 피롤 화합물; 또는 알루미늄 화합물 및 알루미노-피롤 화합물; 을 상기 크롬 화합물과 함께 포함할 수 있다. 이러한 촉매 시스템은 올레핀 중합 반응에 사용 시, 활성도가 높다.
일 실시예의 촉매 시스템은 하기 화학식 1로 표시되는 크롬 화합물; 하기 화학식 3으로 표시되는 알루미늄 화합물; 및 하기 화학식 4로 표시되는 피롤 화합물; 의 반응물을 포함한다. 이러한 촉매 시스템은 촉매 제조 시 침전물이 생성되지 않아 여과의 공정이 필요 없으므로 촉매 제조가 용이하다. 또한, 이러한 촉매 시스템은 에틸렌 3량화 반응 시 매우 유용하다.
[화학식 1]
(R1CO2)2Cr(OH)
상기 화학식 1에서, R1은 탄소수 3 내지 30의 알킬기 또는 탄소수 6 내지 40의 아릴기이다.
구체적으로, 상기 알킬기는 탄소수 3 내지 10의 선형, 분지형 또는 환형 알킬기일 수 있고, 더욱 구체적으로 알킬기는 탄소수 5 내지 7의 분지형 알킬기일 수 있다. 구체적으로, 상기 아릴기는 6 내지 12의 아릴기일 수 있다.
예를 들면, R1은 n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, 1,2-디메틸프로필기, n-헥실기, 시클로헥실기, 1,3-디메틸부틸기, 1-이소프로필프로필기, 1-에틸프로필, 1,2-디메틸부틸기, n-헵틸기, 1,4-디메틸펜틸기, 2-메틸-1-이소프로필프로필기, 1-에틸-3-메틸부틸기, 1-에틸펜틸기, n-옥틸기, 2-에틸헥실기, 3-메틸-1-이소프로필부틸기, 2-메틸-1-이소프로필부틸기, 페닐기, 나프틸기 등일 수 있으나, 이에 제한되지 않는다.
일 실시예의 화학식 1로 표시되는 크롬 화합물은 구체적으로, 하기 화학식 1a 또는 1b로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 1a]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]
[화학식 1b]
[{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]
일 구체예에서, 상기 크롬 화합물은 하기 화학식 1c로 표시되는 화합물을 포함할 수 있다.
[화학식 1c]
[{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
일 실시예의 촉매 시스템에서, 상기 알루미늄 화합물은 하기 화학식 3으로 표시되는 화합물이다.
[화학식 3]
(R2)nAl(X2)3-n
상기 화학식 3에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X2는 할로겐 원자이며, n의 평균값은 1 내지 3이다.
상기 화학식 3에서, 탄화수소기는 구체적으로, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 15의 알킬기, 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 5의 알킬기일 수 있다. 알킬기의 구조는 예를 들면, 선형, 분지형 또는 환형의 형태일 수 있다. 더욱 구체적으로, 탄화수소기는 메틸기, 에틸기, 프로필기, 이소부틸기 등을 예시할 수 있다.
상기 화학식 3에서, 할로겐 원자는 예를 들면, 염소 원자(Cl), 요오드 원자(I), 불소 원자(F), 브롬 원자(Br)이고, n의 값은, 예를 들면 2 내지 3일 수 있다.
구체예에서, 상기 알루미늄 화합물은 단일 화합물이거나, n의 값이 다른 알루미늄 화합물의 혼합물일 수 있으나, 이에 제한되지 않는다. 구체적으로, 상기 화학식 3의 n이 3인 알루미늄 화합물((R2)3Al) 및/또는 상기 화학식 3의 n이 2인 알루미늄 화합물((R2)2Al(X2)) 등일 수 있다. 이 중, 상기 화학식 3의 R2가 에틸기인 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)는 산업계에서 지글러-나타 촉매의 조촉매로 대량으로 사용되는 물질로서, 단가가 저렴하여 경제성을 높이기 위해 사용될 수 있으나, 이에 제한되지 않는다. 상기 (R2)2Al(X2)은 상기 (R2)3Al을 다양한 할로겐을 포함하는 유기 및 무기 물질과 반응시켜 얻어질 수 있다.
또한, 상기 (R2)3Al과 (R2)2Al(X2)의 혼합비(몰비)는 1: 0.5 내지 1:2, 예를 들면 1 : 1일 수 있으나, 이에 제한되지 않는다.
일 구체예의 촉매 시스템에서, 상기 화학식 3의 알루미늄 화합물은 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)의 혼합물일 수 다. 이러한 경우, 트리에틸알루미늄(Et3Al) : 디에틸알루미늄클로라이드 (Et2AlCl)의 혼합비(몰비)는 1 : 0.5 내지 1 : 2, 예를 들면 1 : 1일 수 있다. 상기 범위에서, 미반응 알루미늄 화합물의 과도하게 남아 있지 않으면서도, 촉매 시스템의 반응 효율을 높일 수 있다.
촉매 시스템의 제조(반응) 시 투입되는 상기 크롬 화합물 및 상기 알루미늄 화합물의 몰비(Cr:Al)는 1 : 3 내지 1 : 100, 예를 들면 1 : 10 내지 1 : 50, 구체적으로 1 : 10 내지 1 : 40일 수 있다. 상기 범위에서, 경제성을 높이면서도 촉매 시스템을 고활성으로 구현할 수 있다. 이러한 경우, 에틸렌 3량체인 1-헥센을 고수율, 고순도로 얻을 수 있다.
촉매 시스템에서, 알루미늄 화합물은 크롬 화합물 및 피롤 화합물과 반응하여 활성화 촉매 종 형성 반응에 참여할 뿐 아니라, 일부는 촉매 시스템 제조 시 또는 올레핀 중합(3량화) 반응 시, 용매 및 단량체에 포함된 물이나 산소와 같은 촉매 독을 제거하는 역할을 할 수 있다. 용매 및 단량체에 포함된 물, 산소 등의 양은 경우에 따라 차이가 날 수 있으므로, 상기 알루미늄 화합물의 투입량은 각 경우에 따라 적절한 최적치를 다르게 설정할 수 있다.
또한, 전술한 촉매 시스템을 올레핀 중합에 사용할 경우, 물, 산소 등의 제거를 위해 촉매 시스템과는 별도로, 올레핀 중합 반응 용매에 따로 알루미늄 화합물을 투입할 수 있다. 이 경우, 올레핀 중합 반응 용매에 따로 투입하는 알루미늄 화합물의 양은 상기 몰비에 포함되지 않는다.
일 실시예의 촉매 시스템에서, 상기 화학식 1로 표시되는 크롬 화합물; 상기 화학식 3으로 표시되는 알루미늄 화합물과 함께 반응하는 피롤 화합물은 하기 화학식 4로 표시되는 화합물일 수 있다.
[화학식 4]
Figure PCTKR2015002067-appb-I000006
상기 화학식 4에서, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
상기 화학식 4에서, 알킬기는 탄소수가 예를 들면, 1 내지 8, 1 내지 6 또는 1 내지 4일 수 있고, 구조가 선형, 분지형 또는 환형의 형태일 수 있다. 구체적으로, 알킬기는 메틸기, 에틸기, 프로필기, 이소부틸기 등을 예시할 수 있다.
더욱 구체적으로, 상기 화학식 4의 피롤 화합물로는 예를 들면, 피롤(상기 화학식 4의 R3, R4, R5 및 R6가 수소 원자), 상기 화학식 4의 R3은 수소원자이고, R4, R5, 및 R6중 하나 이상이 탄소수 1 내지 10의 알킬기인 피롤 화합물 등을 사용할 수 있으나, 이에 제한되지 않는다.
일 구체예의 촉매 시스템에서, 상기 화학식 4의 피롤 화합물은 R3 및 R6가 메틸기인 2,5-디메틸피롤을 사용할 수 있다. 이러한 경우, 원료의 단가가 낮고, 촉매 시스템이 고활성을 구현할 수 있다.
촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물과 상기 피롤 화합물의 몰비(크롬 화합물:피롤 화합물)는 1 : 1 내지 1 : 10, 예를 들면 1 : 1 내지 1 : 5, 구체적으로 1 : 1 내지 1 : 3일 수 있다. 상기 범위에서 촉매 시스템의 활성이 우수하여, 에틸렌 3량체인 1-헥센을 고수율, 고순도로 얻을 수 있다.
일 구체예에서, 상기 촉매 시스템은 탄화수소 용매 중에서 상기 화학식 1로 표시되는 크롬 화합물, 상기 화학식 3으로 표시되는 알루미늄 화합물 및 상기 화학식 4로 표시되는 피롤 화합물을 반응시키는 방법을 통해 후술하는 화학식 5의 알루미노-피롤 화합물을 촉매 시스템 내에서 제조할 수 있다.
다른 구체예에서, 상기 촉매 시스템은 상기 화학식 3으로 표시되는 알루미늄 화합물 및 상기 화학식 4로 표시되는 피롤 화합물을 포함하는 혼합액을 형성하고, 탄화수소 용매 중에서 상기 혼합액과 상기 크롬 화합물을 반응시키는 방법을 통해 후술하는 화학식 5의 알루미노-피롤 화합물을 촉매 시스템 내에서 제조할 수 있다.
다른 실시예의 촉매 시스템은 상기 화학식 1c로 표시되는 크롬 화합물; 상기 화학식 3으로 표시되는 알루미늄 화합물; 및 하기 화학식 5로 표시되는 알루미노-피롤 화합물; 의 반응물을 포함한다. 이러한 촉매 시스템은 에틸렌 3량화 반응 시 매우 유용하다. 또한, 이러한 촉매 시스템은 지방족 탄화수소 용매에서 촉매 제조가 가능하여 더욱 유용하다.
상기 화학식 1c로 표시되는 크롬 화합물 및 화학식 3으로 표시되는 알루미늄 화합물은 전술한 실시예들에서 설명한 것과 동일하다.
[화학식 5]
Figure PCTKR2015002067-appb-I000007
상기 화학식 5에서, R2는 탄소수 1 내지 20의 탄화수소기이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
상기 화학식 5에서, R2는 구체적으로 탄화수소기, 예를 들면, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 15의 알킬기, 탄소수 1 내지 10 또는 탄소수 1 내지 5의 알킬기일 수 있다.
상기 화학식 5에서, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자; 또는 탄소수가 예를 들면, 1 내지 8, 1 내지 6 또는 1 내지 4인 알킬기;일 수 있다.
상기 화학식 5에서, 알킬기는 구조가 선형, 분지형 또는 환형의 형태일 수 있다. 더욱 구체적으로, 알킬기는 메틸기, 에틸기, 프로필기, 이소부틸기 등을 예시할 수 있다.
일 구체예의 촉매 시스템에서, 상기 화학식 5의 알루미노-피롤 화합물은 R3 및 R6가 메틸기이고, R4 및 R5는 수소, R2는 에틸기일 수 있다. 이러한 알루미노-피롤 화합물을 사용하는 경우 촉매 시스템의 활성이 높다.
일 구체예의 알루미노-피롤 화합물은 예를 들면, 상기 화학식 4의 피롤 화합물과 (R2)3Al를 반응시키는 방법; 또는 상기 화학식 4의 피롤 화합물에 n-BuLi 등을 사용하여 N-lithio 피롤 화합물을 형성하고 이를, (R2)2AlCl과 반응시키는 방법; 으로 제조할 수 있다. 이 때, 반응 용매로 디에틸에테르 등을 사용할 수 있고, 이러한 경우 상기 화학식 5의 화합물의 알루미늄에 디에틸에테르가 배위된 합체로 얻어질 수 있다. 알루미늄에 배위된 디에틸에테르는 촉매 시스템 제조 시 쉽게 탈배위 되기 때문에 디에틸에테르 배위 유무가 제조된 촉매 시스템의 활성에 큰 영향을 주지 않는다.
일 구체예의 알루미노-피롤 화합물은 상기 크롬 화합물과의 몰비(크롬 화합물:알루미노-피롤 화합물)가 1 : 1 내지 1 : 10, 예를 들면 1 : 1 내지 1 : 5, 구체적으로 1 : 1 내지 1 : 3일 수 있다. 상기 범위에서 촉매 시스템의 활성이 우수하여, 에틸렌 3량체인 1-헥센을 고수율, 고순도로 얻을 수 있다.
구체예에서, 촉매 시스템의 제조(반응)은 -30 내지 50℃, 예를 들면 0 내지 40℃, 구체적으로 15 내지 35℃에서 수행될 수 있다. 상기 범위에서 촉매 시스템을 고수율로 얻을 수 있다.
상기 실시예들에 따른 촉매 시스템은 탄화수소 용매를 더욱 포함할 수 있다. 탄화수소 용매 포함 시, 촉매 시스템은 상기 반응물이 탄화수소 용매에 용해된 균일 용액상으로 존재할 수 있다.
또한, 배경 기술에서 기술한 바와 같이 필립스 촉매 시스템은 방향족 탄화수소 용매가 필수적으로 요구된다. 그러나, 본 발명의 실시예들에 따른 촉매 시스템은 탄화수소 용매에 대한 용해도가 우수하고, 지방족 탄화 수소 용매 내에서 고활성을 구현할 수 있다. 때문에, 촉매 시스템이 에틸렌 3량화 반응이 수행되는 지방족 탄화수소 용매 중에서 제조될 수 있어, 방향족 탄화수소 용매 제거 공정 및 여과 공정을 생략할 수 있다.
탄화수소 용매로는 탄소수 4 내지 20의 지방족 탄화수소 용매, 탄소수 6 내지 20의 방향족 탄화수소 용매, 이들의 혼합물 등을 예시할 수 있다. 상기 지방족 탄화수소 용매로는 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, 시클로헥산, 메틸시클로헥산 등을 예시할 수 있고, 상기 방향족 탄화수소 용매의 구체적인 예로는 벤젠, 톨루엔, 자일렌, 메시틸렌, 에틸벤젠, 큐멘 등을 예시할 수 있다. 에틸렌 3량화 반응은 지방족 탄화수소 용매에서 수행되므로, 에틸렌 3량화 반응에 사용되는 용매와 동일한 지방족 탄화수소 용매를 사용하여 촉매 시스템을 제조하는 것이 반응 후 분리 정제 면에서 수월할 수 있다.
전술한 일 실시예의 촉매 시스템은 예를 들면, 탄화수소 용매 중에서 상기 화학식 1로 표시되는 크롬 화합물, 상기 화학식 3으로 표시되는 알루미늄 화합물, 및 하기 화학식 4로 표시되는 피롤 화합물을 접촉 및 반응시키는 방법으로 제조하여 얻을 수 있다. 구체적으로, 일 실시예의 촉매 시스템은 상기 크롬 화합물과 상기 피롤 화합물을 상기 탄화수소 용매에 녹인 혼합 용액에 상기 알루미늄 화합물을 투입하여 접촉 및 반응시키는 방법으로 제조할 수 있다.
전술한 다른 실시예의 촉매 시스템은 예를 들면, 탄화수소 용매 중에서 상기 화학식 1c로 표시되는 크롬 화합물, 상기 화학식 3으로 표시되는 알루미늄 화합물, 및 하기 화학식 5로 표시되는 알루미노-피롤 화합물을 접촉 및 반응시키는 방법으로 얻을 수 있다.
또 다른 실시예의 촉매 시스템은 하기 화학식 2로 표시되는 촉매 전구체; 및 상기 화학식 3으로 표시되는 알루미늄 화합물; 의 혼합물을 포함할 수 있다.
촉매 시스템에서, 촉매 전구체는 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 2]
Figure PCTKR2015002067-appb-I000008
상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X는 R2 또는 할로겐 원자이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
상기 화학식 2에서, R2는 구체적으로 탄화수소기, 예를 들면, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 15의 알킬기, 탄소수 1 내지 10 또는 탄소수 1 내지 5의 알킬기일 수 있다.
상기 화학식 2에서, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자; 또는 탄소수가 예를 들면, 1 내지 8, 1 내지 6 또는 1 내지 4인 알킬기일 수 있다.
상기 화학식 5에서, 알킬기는 구조가 선형, 분지형 또는 환형의 형태일 수 있다. 구체적으로, 알킬기는 메틸기, 에틸기, 프로필기, 이소부틸기 등을 예시할 수 있다.
일 구체예의 촉매 시스템에서, 상기 화학식 2의 촉매 전구체는 R2가 메틸기 또는 에틸기이고, X가 R2와 동일하거나 염소 원자이고, R3 및 R6가 메틸기, R4 및 R5 가 수소 원자일 수 있다. 이러한 촉매 전구체를 사용하는 경우 촉매 시스템의 활성이 높다.
상기 또 다른 실시예의 촉매 시스템에서, 알루미늄 화합물은 전술한 실시예들에서 설명한 바의 화학식 3으로 표시되는 알루미늄 화합물과 동일하다.
일 구체예의 촉매 시스템에서, 상기 화학식 2의 촉매 전구체 및 상기 화학식 3의 알루미늄 화합물의 몰비(Cr:Al)는 1 : 3 내지 1 : 100, 예를 들면 1 : 10 내지 1 : 50, 1 : 10 내지 1 : 40, 1 : 10 내지 1 : 30 또는 1 : 10 내지 1 : 20일 수 있다. 상기 범위에서, 경제성을 높이면서도 촉매 시스템을 고활성으로 구현할 수 있다. 이러한 경우, 에틸렌 3량체인 1-헥센을 고수율, 고순도로 얻을 수 있다. 또한, 미반응물의 양을 줄여 촉매 시스템의 효율성을 더욱 향상시킬 수 있다.
일 구체예의 촉매 시스템은, 하기 화학식 2로 표시되는 촉매 전구체; 및 상기 화학식 3으로 표시되는 알루미늄 화합물; 의 혼합물을 포함한다. 상기 혼합물은 예를 들면, 전술한 일 실시예의 촉매 시스템의 반응 또는 다른 실시예의 촉매 시스템의 반응 중에 생성될 수 있다.
촉매 전구체
본 발명의 또 다른 구현예는 상기 화학식 2로 표시되는 촉매 전구체에 관한 것이다. 이러한 촉매 전구체는 상기 화학식 1의 크롬 화합물로부터 유래될 수 있다. 상기 촉매 전구체의 구체적인 내용은 전술한 촉매 시스템에서 정의한 바와 같다.
일 실시예의 촉매 전구체는 예를 들면, 전술한 실시예들의 촉매 시스템 내에서 반응을 통해 제조하는 방법; 또는 상기 화학식 1의 크롬 화합물과 상기 화학식 5의 화합물의 반응을 통해 제조하는 방법; 등으로 얻어질 수 있으나 이에 국한되지는 않는다. 예를 들어, 하기 제조예 6 또는 제조예 7에서 기술한 바와 같이 합성할 수도 있다.
올레핀 중합방법
본 발명의 또 다른 구현예는 전술한 촉매 시스템을 이용한 올레핀 중합방법에 관한 것이다.
상기 촉매 시스템과 탄소수 2 내지 10의 올레핀 단량체를 접촉시켜 올레핀 중합체(3량체)를 제조하는 단계를 포함한다.
본 발명의 촉매 시스템은, 균일 용액 상태뿐만 아니라, 담체에 담지된 형태, 담체의 불용성 입자 형태 등으로 존재할 수 있으므로, 상기 올레핀 중합(3량화) 반응은 액상, 슬러리상, 괴상(bulk phase), 또는 기상 중합 반응일 수 있다. 또한, 각각의 중합 반응 조건은, 사용되는 촉매 조성물의 상태(균일상 또는 불균일상(담지형)), 중합 방법(용액중합, 슬러리 중합, 기상중합), 목적하는 중합결과 또는 중합체의 형태에 따라 다양하게 변형될 수 있다. 그의 변형 정도는 당업자에 의해 용이하게 수행될 수 있다. 상기 중합이 액상 또는 슬러리상에서 실시되는 경우, 탄화수소 용매 또는 올레핀 단량체 자체를 매질로 사용할 수 있다. 상기 탄화수소 용매로는 탄소수 4 내지 20의 지방족 탄화수소 용매, 탄소수 6 내지 20의 방향족 탄화수소 용매, 이들의 혼합물 등을 사용할 수 있다. 상기 지방족 탄화수소 용매로는 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, 시클로헥산, 메틸시클로헥산 등을 예시할 수 있고, 상기 방향족 탄화수소 용매의 구체적인 예로는 벤젠, 톨루엔, 자일렌, 메시틸렌, 에틸벤젠, 큐멘 등을 예시할 수 있다. 통상적으로, 상기 올레핀 중합(3량화) 반응은 환경적인 측면에서 지방족 탄화수소 용매에서 수행될 수 있다. 또한, 반응 후 생성물인 올레핀 중합체과의 분리를 생각했을 때 사용되는 탄화수소 용매의 끓는점은 생성물의 끓는점과 10 내지 50℃ 차이가 나는 것이 바람직하다. 예를 들면, 올레핀 단량체가 에틸렌이고, 생성물이 1-헥센(끓는점(boiling point): 63℃)일 경우, 단가가 낮고 끓는점이 80.74℃인 시클로헥산 또는 끓는점이 101℃인 메틸시클로헥산을 사용할 수 있다.
구체예에서, 상기 올레핀 단량체의 예로는, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐, 1-데센, 이들의 혼합물 등을 예시할 수 있다. 바람직하게는 에틸렌을 단독으로 사용할 수 있다.
본 발명의 올레핀 중합(3량화)방법에 있어서, 상기 촉매 시스템의 사용량은 특별히 한정되지 않으나, 본 발명의 촉매 시스템은 고활성을 나타내므로, 기존 촉매 시스템에 비해 적은 양을 투입하여 반응시킬 수 있다. 구체예에서, 상기 올레핀 중합방법이 용액 중합인 경우, 탄화수소 용매에 대하여, 촉매 시스템의 몰 농도(크롬 기준)가 0.01 mmol/L 내지 0.1 mmol/L, 예를 들면 0.01 mmol/L 내지 0.03 mmol/L가 되도록 투입한 후, 에틸렌 등의 올레핀 단량체를 연속적으로 투입하여 30분 내지 1시간 반응시킴으로써, 용액의 부피가 생성된 1-헥센 등의 올레핀 중합체(3량체)가 더해 짐에 의하여 약 2배가 되게 제조할 수 있다. 참고로, 공지된 필립스사 특허에서는 촉매 활성이 본 발명의 촉매 시스템에 비해 낮은 이유로 촉매 농도가 0.25 mmol/L인 수준에서 중합 반응을 수행하였다(미국특허 5,856,257호 참조).
또한, 상기 본 발명의 올레핀 중합(3량화) 시 온도는 반응 물질, 반응 조건 등에 따라 변할 수 있으나, 0℃ 내지 150℃, 예를 들면 60℃ 내지 130℃℃일 수 있다. 예를 들면, 상기 중합은 배치식, 반연속식 또는 연속식으로 수행될 수 있다. 상기 중합은 상이한 반응 조건을 갖는 둘 이상의 단계로도 수행될 수도 있다.
이하, 본 발명의 실시예들을 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해설될 수는 없다.
실시예
제조예 1: 화학식 1a로 표시되는 크롬 화합물의 제조
1구 플라스크에 2-에틸헥사노익산(2.44 g, 16.9 mmol)을 투입 후 NaOH(0.68 g, 16.9 mmol)를 증류수(13 mL)에 용해시켜 투입하여 2-에틸헥사노에이트 나트륨염(소듐 2-에틸헥사노에이트)을 형성하였다.
미네랄 스피릿(5 mL)을 추가로 넣어 2상을 만든 뒤 95℃에서 교반하며, 수화된 크롬(III) 클로라이드(CrCl3·H2O, 1.50 g, 96%, 5.40 mmol)를 증류수(1 mL)에 용해시켜 천천히 투여하였다. 반응이 빠르게 진행되며 생성물은 유기층으로 녹아 들어갔다. 2시간 동안 반응 후 물 층은 투명해졌고 모든 생성물은 유기층에 녹아 진한 군청색을 띄었다.
2상 반응 이후 취한 수용액 층은 거의 중성을 띄었다. 또한, 2상 반응 이후 수용액 층에 질산은(AgNO3)을 첨가하여 침전되는 염화은(AgCl)의 질량을 측정하였을 때 2.28g이 얻어졌고, 이로부터, 투입한 CrCl3에서 거의 모든 Cl 이온이 제거됨을 알 수 있었다(계산치, 2.32 g).
유기층만 취하여 증류수(10 mL)로 2번 세척하고 감압 증류(0.3 mmHg, 130℃)하여 미네랄 스피릿과 부산물로 생성된 2-에틸헥사노익산 및 잔류 수분을 제거하여 군청색 고체 형태의 화학식 1a로 표시되는 크롬 화합물 1.94 g을 얻었다(수율 101%). 감압 증류 과정에서 넘어온 2-에틸헥사노익산과 미네랄 스피릿 혼합 용액에 NaOH 수용액을 넣어주어 2-에틸헥사노에이트 나트륨 염을 형성시켜 수용액 층으로 추출한 뒤 다시 이 수용액 층에 염산을 가한 후, 재생성된 2-에틸헥사노익산을 디에틸에테르로 추출하여 질량을 측정하였을 때 0.80 g이었다. 이로부터 투입한 크롬 3가 염 화합물 대비 1.0 당량(계산치, 0.78 g)의 2-에틸헥사노익산이 부산물로 생성된 것임을 확인하였다{Anal. calc. (C16H31CrO5): C, 54.07; H, 8.79; Found: C, 54.67; H, 9.03}.
제조예 1에서 얻어진 크롬 화합물의 IR 스펙트럼 분석 결과 3630 cm-1에서 O-H 스트레칭 시그널을 확인 할 수 있었다.
제조예 2: 화학식 1b로 표시되는 크롬 화합물의 제조
상기 2-에틸헥사노익산 대신에 2-에틸부티릭산(16.9 mmol)을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 군청색 고체 형태의 화학식 1b로 표시되는 크롬 화합물을 제조하였다(C, 48.52; H, 7.85; {CH3CH2CH(CH2CH3)CO2}2Cr(OH)에 대한 계산치 C, 48.15; H, 7.75).
상기 제조예 2에서 제조된 화합물을 벤젠에 용해시킨 후 어는점 내림법을 이용하여 분자량 측정 결과 3330으로 {CH3CH2CH(CH2CH3)CO2}2Cr(OH) 분자 약 11개가 벤젠에서 집합체(즉, [{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]11)로 존재하였다.
상기 제조예 2에서 제조된 화합물은 원소분석 결과 물 분자가 포함되지 않은 {CH3CH2CH(CH2CH3)CO2}2Cr(OH)의 구조와 일치하였다.
상기 제조예 2에서 제조된 화합물은 자일렌에 용해시킨 후 160℃에서 10 시간 동안 환류시켰을 때 변성되어 색이 군청색에서 녹색으로 변하였고, 또한 원소분석 데이타 값에도 변화가 생겼다(C, 50.85; H, 7.96).
제조예 3: 화학식 1c로 표시되는 크롬 화합물의 제조
1구 플라스크에, 2-에틸헥사노익산(2.44 g, 16.9 mmol)을 투입 후 NaOH(0.68 g, 16.9 mmol)를 증류수(13 mL)에 용해시켜 투입하여 2-에틸헥사노에이트 나트륨염(소듐 2-에틸헥사노에이트)을 형성하였다. 메틸시클로헥산(7 mL)을 추가로 넣어 2상을 만든 뒤 95℃에서 교반하며, 수화된 크롬(III) 클로라이드(CrCl3·H2O, 1.50 g, 96%, 5.40 mmol)를 증류수(1 mL)에 용해시켜 천천히 투여하였다. 반응이 빠르게 진행되며 생성물은 유기 층으로 녹아 들어갔다. 2시간 동안 반응 후 모든 생성물은 유기 층에 녹아 점성의 군청색을 띄었고 물 층은 투명해졌다.
물 층의 pH는 중성을 나타내었고, 과량의 질산은(AgNO3, 3.03 g, 17.8 mmol)를 투입하였을 때 침전되는 염화은(AgCl)의 무게(2.28 g)로 미루어 볼 때 CrCl3에서 거의 모든 Cl 이온이 제거됨을 알 수 있었다(계산치, 2.32 g).
헥산(5 mL)을 추가로 넣어 유기 층을 희석시켜준 뒤 유기 층만 취하여 NaOH(0.22 g, 5.40 mmol)가 용해된 증류수(3 mL)에 투입 후 30분 동안 강하게 교반하였다. 부산물로 생성된 2-에틸헥사노익산(크롬 3가 염 화합물 대비 1 당량)이 소듐 염의 형태로 물 층으로 제거되었다. 유기 층만 취하여 황산마그네슘으로 남은 물을 제거한 후 상온에서 진공 건조(0.3 mmHg)로 유기용매를 제거하였다. 군청색 고체 형태의 크롬 화합물([{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O) 1.94 g을 얻었다. 수율을 [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4 2H2O 구조를 근간으로 계산하였을 때 98% 이었다.
제조된 크롬 화합물의 IR 스펙트럼을 도 1에 나타내었다. IR 스펙트럼 분석 결과 3630 cm-1에서 O-H 스트레칭 시그널을 확인 할 수 있었다. 벤젠에 용해시킨 후 어는점 내림법을 이용하여 분자량 측정 결과 1580으로 4량체에 가까운 분자량을 얻을 수 있었고 원소분석 결과가 [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O 의 구조와 일치하였다(C, 52.48; H, 8.88; [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O에 대한 계산치 C, 52.73; H, 8.85).
상기 제조예 3에서 제조된 크롬 화합물을 자일렌에 용해시킨 후 160℃에서 10 시간 동안 환류시켰을 때 색상의 변화가 거의 없이 군청색을 유지하였다. 또한, 원소분석 데이타 값에도 거의 변화가 없어 환류 후에도 안정한 형태를 유지하고 있음을 확인하였다.
제조예 4: 알루미노-피롤 화합물(B1)의 제조
불활성 분위기(질소) 하에서, 1구 플라스크에 트리에틸알루미늄(7.20 g, 63.1 mmol)을 톨루엔(60 mL)에 용해시켜 투입한 후, 2,5-디메틸피롤(1.50 g, 15.8 mmol)을 추가로 넣고 5시간 동안 상온에서 교반하였다. 다음으로, 톨루엔과 미반응 트리에틸알루미늄을 감압 증류(0.3 mmHg, 70℃)로 제거함으로써, N-Al 공유결합이 형성된 피롤 알루미늄 화합물(1-(디에틸알루미노)-2,5-디메틸피롤) 2.80 g을 얻었다. 상기와 같은 방법으로, 상기 화학식 5의 구조를 가지며 R2은 에틸기, R3 및 R6은 메틸기, R4 및 R5는 수소인 알루미노-피롤 화합물(B1)을 제조하였다. 1H NMR 분석 결과는 다음과 같았다. {수율: 99%, 1H NMR (C6D6): 5.51 (s, 2H, Ar-H), 2.01 (s, 6H, CH3), 1.35 (t, J = 8 Hz, 6H, CH3), 0.35 (q, J = 8 Hz, 4H, CH2) ppm}.
제조예 5: 알루미노-피롤 화합물(B2)의 제조
불활성 분위기(질소) 하에서, 1구 플라스크에 2,5-디메틸피롤(3.00 g, 31.5 mmol)를 디에틸에테르(30 mL)에 녹인 용액을 -78oC 로 냉각 후, n-부틸리튬(13.7 g, 31.5 mmol, 1.6 M 헥산 용액)을 천천히 주입하였다. 상온에서 밤샘 교반 후, 상기 혼합물을 다시 -78oC 로 냉각 후, 디메틸알루미늄클로라이드(Me2AlCl, 20.6 g, 31.5 mmol, 1.0 M 헥산 용액)을 천천히 주입하였다. 밤샘 교반 후, 여과하여 노란색 용액을 얻은 뒤 상기 용액을 진공 건조하여 (1-(디메틸알루미노)-2,5-디메틸피롤) 화합물 6.67 g을 얻었다. 상기와 같은 방법으로, 상기 화학식 5의 구조를 가지며 R2, R3 및 R6은 메틸기, R4 및 R5는 수소인 알루미노-피롤 화합물(B2)을 제조하였다. 1H NMR 분석 결과 1당량의 디에틸에테르가 붙어있는 것을 확인하였다 (수율 94%). 1H NMR (C6D6): 6.23 (s, 2H, CH), 3.15 (q, J = 7.2 Hz, 4H, CH2), 2.44 (s, 6H, CH3), 0.55 (t, J = 6.8 Hz, 6H, CH3), -0.33 (s, 6H, CH3) ppm}.
제조예 6: 촉매 전구체 (P1)의 제조
불활성 분위기(질소) 하에서, 25 mL 1구 플라스크에 상기 제조예 3에서 제조된 크롬 화합물(화학식 1c, 200 mg, 0.563 mmol)을 펜탄(9.0 mL)에 용해시켜 투입한 후, 상기 제조예 5에서 제조된 알루미노-피롤 화합물(B2, 380 mg, 1.69 mmol)을 톨루엔(1.0 mL)에 녹여 서서히 투입시켜 두 용액이 층을 이루도록 하였다. 상기와 같은 방법으로, 상기 화학식 2의 구조를 가지며 R2, X, R3 및 R6은 메틸기, R4 및 R5는 수소인 촉매 전구체(P1)을 제조하였다.
상기와 같이 두 용액이 층을 이룬 상태로 일주일 간 천천히 반응시키면서 결정을 침적시켰다 (143 mg, 수율 65%). 얻어진 단결정을 X-ray 회절법으로 구조 분석하여 도 2에 나타내었다.
제조예 7: 촉매 전구체 (P2)의 제조
불활성 분위기(질소) 하에서, 1구 플라스크에 리튬 디이소프로필아미드 (LiNiPr2, 1.50 g, 14.0 mmol)를 톨루엔(15 mL)에 녹여 투입 후, 디에틸알루미늄 클로라이드(Et2AlCl, 0.844 g, 7.00 mmol)을 상온에서 천천히 투입하여, 혼합 용액을 제조하였다. 상온에서 6 시간 교반 후, 생성된 염화리튬을 여과하여 제거한 뒤 얻어진 용액을 진공 건조하여 흰 고체 LiAlEt2(NiPr2)2를 1.64 g 얻었다{수율 80%, 1H NMR (C6D6): 3.14 (m, 4H, CH), 1.56 (t, J = 8.0 Hz, 6H, CH3), 1.01 (d, J = 6.4 Hz, 24H, CH3), 0.34 (q, J = 7.6 Hz, 4H, CH2) ppm. 13C NMR (C6D6): 46.06, 26.25, 11.11, -8.18 ppm}. LiAlEt2(NiPr2)2 (1.00 g, 3.42 mmol)을 톨루엔(15 mL)에 용해시켜 -30℃ 로 냉각한 후, CrCl3(THF)3 (1.28 g, 3.42 mmol)을 투입하였다. 상온에서 8 시간 교반하는 동안 용액의 색깔은 진한 녹색에서 푸른색으로 변하였다. 진공 펌프를 이용하여 용매를 제거한 뒤 헥산(20 mL)를 투입하였다. 여과를 통해 침전된 염화리튬을 제거한 후, -30℃ 로 냉각시켜 결정을 얻었다 (770 mg). 상기 방법으로 얻어진 결정(100 mg, 0.245 mmol)을 톨루엔(1 mL)에 녹인 용액 후, 상기 제조예 4에 따라서 제조된 화학식 5의 화합물(132 mg, 0.735 mmol)을 톨루엔(1 mL)에 녹여 상온에서 투입시켰다.
상기와 같은 방법으로, 상기 화학식 2의 구조를 가지며 R2는 에틸, X는 염소원자, R3 및 R6은 메틸기, R4 및 R5는 수소인 촉매 전구체(P2)을 제조하였다.
상기 반응액을 1 시간 교반 후, 펜탄을 밤새 확산시켜 용해도를 낮춰주어 결정을 침적시켰다 (90 mg). 얻어진 단결정 화합물을 X-ray 회절 분석하여 도 3에 구조를 나타내었다.
이하, 실시예 및 비교예는 불활성 분위기(질소) 하에서 진행하였다.
실시예 1: 촉매 시스템(1)의 제조
1구 플라스크에 상기 제조예 4에서 합성한 알루미노-피롤 화합물(B1, 81 mg, 0.45 mmol)을 메틸시클로헥산(1 mL)에 용해시켜 투입하고, 트리에틸알루미늄(137 mg, 1.20 mmol) 및 디에틸알루미늄 클로라이드(145 mg, 1.20 mmol)을 메틸시클로헥산(2 mL)에 녹여 투입하여, 혼합 용액을 제조하였다.
상기 혼합 용액에 상기 제조예 1에서 제조된 크롬 화합물(화학식 1a, 53 mg, 0.15 mmol)을 메틸시클로헥산(1 mL)에 용해시켜 투입하고 반응시킴으로써, 침전물이 거의 없는 짙은 녹색의 투명 용액인 촉매 시스템을 제조하였다(농도: 63 mmol 크롬/g-용액).
실시예 2: 촉매 시스템(2)의 제조
상기 제조예 1에서 제조된 크롬 화합물(화학식 1a) 대신에 상기 제조예 2에서 제조된 크롬 화합물(화학식 1b)을 사용한 것 제외하고는 상기 실시예 1과 동일한 방법으로 짙은 녹색의 투명 용액인 촉매 시스템을 제조하였다(농도: 63 mmol 크롬/g-용액).
실시예 3: 촉매 시스템 (3)의 제조
상기 제조예 3에서 제조된 크롬 화합물(화학식 1c, 110 mg, 0.30 mmol)을 톨루엔(3 mL)에 용해시킨 후, 2,5-디메틸피롤(86 mg, 0.90 mmol)을 첨가하고, 온도를 0℃로 낮추었다. 여기에 트리에틸알루미늄(377 mg, 3.30 mmol)과 디에틸알루미늄 클로라이드(289 mg, 2.40 mmol)이 혼합되어 용해되어 있는 톨루엔(2 mL) 용액을 천천히 투입하였다. 0℃에서 1시간 동안 반응 시켰을 때 침전물이 거의 없는 짙은 노란색 용액이 형성되었다. 온도가 상온으로 올라간 후 짙은 노란색 용액이 진한 주황색 용액으로 변화되는 것을 확인 할 수 있었다(농도: 50 μmol 크롬/ g-용액).
실시예 4: 촉매 시스템 (4)의 제조
1구 플라스크에 상기 제조예 4에서 합성한 화학식 5(R2 = 에틸, R3 = R6 = 메틸, R4 = R5 = 수소)의 알루미노-피롤 화합물(B1, 81 mg, 0.45 mmol)을 메틸시클로헥산(1 mL)에 용해시켜 투입하고, 트리에틸알루미늄(137 mg, 1.20 mmol) 및 디에틸알루미늄 클로라이드(145 mg, 1.20 mmol)을 메틸시클로헥산(2 mL)에 녹여 투입하여, 혼합 용액을 제조하였다. 제조된 혼합 용액에 상기 제조예 3에서 제조된 크롬 화합물(화학식 1c, 55 mg, 0.15 mmol)을 메틸시클로헥산(1 mL)에 용해시켜 투입하고 반응시킴으로써, 침전물이 거의 없는 짙은 녹색의 투명 용액인 촉매 시스템을 제조하였다(농도: 50 mmol 크롬/g-용액).
실시예 5: 촉매 시스템 (5)의 제조
상기 제조예 4에서 제조된 화학식 5(B1, R2 = 에틸, R3 = R6 = 메틸, R4 = R5 = 수소)로 표시되는 알루미노-피롤 화합물 대신에 제조예 5에서 제조된 화학식 5(B2, R2 = 메틸, R3 = R6 = 메틸, R4 = R5 = 수소)로 표시되는 알루미노-피롤 화합물을 사용하고, 트리에틸알루미늄 및 디에틸알루미늄 클로라이드 대신에 트리메틸알루미늄 및 디메틸알루미늄 클로라이드를 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 제조하였다(농도: 50 μmol 크롬/ g-용액). 제조된 촉매 시스템을 1개월 동안 상온에 보관했을 때 반응 중간체의 단결정이 일부 침전 되었고 그 구조를 X-ray 회절법으로 분석하였을 때 도 4에 나타낸 것과 같이 크롬 원자 4개로 구성된 클러스터 화합물을 확인할 수 있었다.
실시예 6: 촉매 전구체를 포함하는 촉매 시스템(6)의 제조
1구 플라스크에 상기 제조예 6에서 합성한 화학식 2 (P1, R2 = X = 메틸, R3 = R6 = 메틸, R4 = R5 = 수소)로 표시되는 화합물(10 mg,25.5 μmol)을 메틸시클로헥산(0.3 mL)에 투입하고, 트리에틸알루미늄(137 mg, 1.20 mmol) 및 디에틸알루미늄 클로라이드(145 mg, 1.20 mmol)을 메틸시클로헥산(0.7 mL)에 녹여 투입하여, 짙은 녹색의 투명 용액인 촉매 시스템을 제조하였다(농도: 50 μmol 크롬/ g-용액).
실시예 7: 촉매 전구체를 포함하는 촉매 시스템(7)의 제조
상기 제조예 6에서 제조된 화학식 2(P1, R2 = X = 메틸, R3 = R6 = 메틸, R4 = R5 = 수소)로 표시되는 화합물 대신에 상기 제조예 7에서 제조된 화학식 2(P2, R2 = 에틸, X = 염소, R3 = R6 = 메틸, R4 = R5 = 수소)로 표시되는 화합물을 사용한 것 제외하고는 상기 실시예 6과 동일한 방법으로 짙은 녹색의 투명 용액인 촉매 시스템을 제조하였다(농도: 50 μmol 크롬/ g-용액).
비교예 1: 필립스 사 촉매 시스템의 제조
미국특허 5,856,257호에 공지된 방법을 준용하여 제조하였다. 트리스(2-에틸헥사노에이트) 크롬(III)(Cr(EH)3)(145 mg, 0.30 mmol)을 톨루엔(3 mL)에 용해시킨 후, 2,5-디메틸피롤(86 mg, 0.90 mmol)을 첨가하고, 온도를 0℃로 낮추었다. 여기에 트리에틸알루미늄(377 mg, 3.30 mmol)과 디에틸알루미늄 클로라이드(289 mg, 2.40 mmol)이 혼합되어 용해되어 있는 톨루엔(2 mL) 용액을 천천히 투입하였다. 0℃에서 1시간 동안 반응 시켰을 때 검은색 침전물이 형성되었다. 여과를 통해 생성된 침전물을 제거하여 투명한 진한 주황색의 촉매 시스템 용액을 얻었다(농도: 50 mmol 크롬/ g-용액).
비교예 2: 필립스 사 촉매 시스템의 제조
크롬(III)(Cr(EH)3)을 같은 제조사의 다른 제품번호의 제품을 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 제조하였다.
비교예 3: 촉매 시스템의 제조
상기 톨루엔 대신에 메틸시클로헥산을 용매로 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법으로, 검은색 침전물을 여과하는 과정을 거쳐 짙은 녹색의 촉매 시스템 용액을 제조하였다(농도: 50 mmol 크롬/g-용액).
실시예 8: 실시예 3의 촉매 시스템을 이용한 에틸렌 3량화 반응
드라이 박스 안에서 고압 중합 반응기에 메틸시클로헥산(20 mL)과 트리에틸알루미늄(0.024 mmol)을 스캐빈저로 투입한 후, 드라이 박스 밖으로 꺼내 온도를 90℃로 올렸다. 상기 실시예 3에서 제조한 촉매 시스템(0.25 μmol)을 정량하여 취한 후, 메틸시클로헥산을 첨가하여 전체 용액이 2 mL가 되도록 하였다. 매우 적은 양의 촉매를 취한 이유로 추가로 트리에틸알루미늄(크롬대비 8 당량)과 디에틸알루미늄 클로라이드(크롬대비 8 당량)을 스캐빈저로 넣어준 후 이 촉매 용액을 주사기를 취하여 반응기에 주입한 뒤 50 bar의 압력으로 에틸렌을 주입하여 30분 동안 중합하였다. 0℃로 빠르게 감온 후 에틸렌 가스를 벤트하여 제거하고, 에탄올 5 mL과 10% 염산 5 mL을 넣어 반응을 종결하였다. 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
실시예 9 내지 12: 실시예 4 내지 7의 촉매 시스템을 이용한 에틸렌 3량화 반응
상기 실시예 3에서 제조한 촉매 시스템 대신에 실시예 4 내지 7 에서 제조한 각각의 촉매 시스템을 표 1에 기재된 양(0.25 μmol 내지 1.00 μmol)으로 정량하여 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 에틸렌을 중합(3량화)하였다. 반응 종결 후, 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
실시예 13: 실시예 1의 촉매 시스템을 이용한 에틸렌 3량화 반응
상기 실시예 1에서 제조된 촉매 시스템을 0.250 μmol 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 에틸렌을 중합(3량화)하였다. 반응 종결 후, 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
실시예 14: 실시예 2의 촉매 시스템을 이용한 에틸렌 3량화 반응
상기 실시예 1에서 제조한 촉매 시스템 대신에 상기 실시예 2에서 제조한 촉매 시스템을 0.50 μmol 을 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 에틸렌을 중합(3량화)하였다. 반응 종결 후, 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
비교예 4: 비교예 1의 촉매 시스템을 이용한 에틸렌 3량화 반응
드라이 박스 안에서 고압 중합 반응기에 메틸시클로헥산(20 mL)과 트리에틸알루미늄(0.024 mmol)을 스캐빈저로 투입한 후 드라이 박스 밖으로 꺼내 온도를 90℃로 올렸다. 상기 비교예 1에서 제조한 촉매 시스템 용액 1.00 μmol 을 정량하여 취한 후, 메틸시클로헥산을 첨가하여 전체 용액이 2 mL가 되도록 하였다. 이 촉매 용액을 주사기를 취하여 반응기에 주입한 뒤 50 bar의 압력으로 에틸렌을 주입하여 30분 동안 중합하였다. 0℃로 빠르게 감온 후 에틸렌 가스를 벤트하여 제거하고, 에탄올 5 mL과 10% 염산 5 mL을 넣어 반응을 종결하였다. 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 2에 나타내었다.
비교예 5: 비교예 2의 촉매 시스템을 이용한 에틸렌 3량화 반응
비교예 1에서 제조한 촉매 시스템 대신, 상기 비교예 2에서 제조한 촉매 시스템 용액을 사용한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 에틸렌을 중합(3량화)하였다. 반응 종결 후, 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 2에 나타내었다.
비교예 6: 비교예 1의 촉매 시스템을 이용한 에틸렌 3량화 반응(2)
비교예 1에서 제조한 촉매 시스템을 2.00 μmol 사용한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 에틸렌을 중합(3량화)하였다. 반응 종결 후, 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 2에 나타내었다.
비교예 7: 비교예 3의 촉매 시스템을 이용한 에틸렌 3량화 반응
비교예 3에서 제조한 촉매 시스템을 2.00 μmol 사용한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 에틸렌을 중합(3량화)하였다. 반응 종결 후, 일부 샘플을 취하여 기체크로마토그래피를 통해 생성된 1-헥센의 양을 측정하였다. 또한, 전체 용액을 여과하여 형성된 고형의 고분자의 양을 측정하였다. 그 결과를 하기 표 2에 나타내었다.
제조예 8: 화학식 1의 구조를 갖는 크롬화합물의 제조
상기 2-에틸헥사노익산 대신에 2,2-디메틸프로피오닉산을 사용한 것을 제외하고는 상기 제조예 3과 동일한 방법으로 실험하였다. 화합물 합성 후 120℃에서 진공감압하여 용매 및 부산물로 생성된 2,2-디메틸프로피오닉산을 제거하고 겔 상태의 결과물을 수득하였다.
제조예 9: 화학식 1의 구조를 갖는 크롬화합물의 제조
상기 2-에틸헥사노익산 대신에 헵타노익산을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 실험하였다. 화합물 합성 후 120℃에서 진공감압하여 용매 및 부산물로 생성된 헵타노익산을 제거하고 겔 상태의 결과물을 수득하였다.
제조예 10: 화학식 1의 구조를 갖는 크롬화합물의 제조
2-에틸헥사노익산 대신에 벤조익산을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 실험하였다. 반응 진행 중에 군청색 겔을 수득하였다.
제조예 11: 화학식 1의 구조를 갖는 크롬화합물의 제조
2-에틸헥사노익산 대신에 시클로헥산카복실산을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 실험하였다. 반응 진행 중에 군청색 겔을 수득하였다.
물성 평가 방법
(1) 활성(단위: Kg(1-헥센)/g(촉매(Cr))/hr): 얻어진 1-헥센의 질량을 측정하여 투입한 촉매 양으로 나눈 값.
(2) 화합물의 안정성 평가: 제조예 1 및 제조예 3에서 제조된 화합물을, 각각 자일렌에 용해시킨 후 160℃에서 10시간 동안 환류시켜 안정성을 평가하였다.
표 1
실시예
8 9 10 11 12 13 14
촉매 시스템 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 1 실시예 2
촉매량 (μmol) 0.25 0.25 1.00 1.00 1.00 0.25 0.50
1-헥센 수득 양 (g) 6.9 7.1 5.6 12.4 6.4 7.1 9.6
활성(Kg(1-헥센)/g(Cr)/h) 1,070 1,100 220 500 260 1,100 770
2량체 C4 (wt%) 4.26 0.70 0.24 3.21 0.86 0.01 0.10
3량체 C6 (wt%) 88.08 94.12 92.38 88.08 93.60 93.06 93.14
4량체 C8 (wt%) 0.29 0.48 0.39 0.39 0.32 0.48 0.35
5량체 C10 (wt%) 7.37 4.70 6.99 8.32 5.22 5.50 6.41
3량체 중 1-헥센 함량 (wt%) 99.21 98.42 98.77 98.2 98.56 98.98 99.07
PE 수득 양 (mg) 27 27 35 17 6 27 28
표 2
비교예
4 5 6 7
촉매 시스템 비교예 1 비교예 2 비교예 1 비교예 3
촉매량 (μmol) 1.00 1.00 2.00 2.00
1-헥센 수득 양 (g) 7.2 3.2 15.1 11.9
활성(Kg(1-헥센)/g(Cr)/h) 280 120 290 230
2량체 C4 (wt%) 0.52 1.00 0.01 0.03
3량체 C6 (wt%) 92.97 93.04 92.08 92.36
4량체 C8 (wt%) 0.38 0.64 0.34 0.41
5량체 C10 (wt%) 6.08 5.33 7.57 7.20
3량체 중 1-헥센 함량 (wt%) 98.85 97.78 98.51 99.01
PE 수득 양 (mg) 32 11 25 28
상기 결과로부터, 본원 화학식 1의 크롬화합물 또는 화학식 2의 크롬계 촉매 전구체를 포함한 실시예 8 내지 14의 촉매 시스템은, Cr(EH)3를 사용하는 비교예 4 내지 7의 촉매 시스템과 비교하였을 때, 촉매 활성이 유사한 수준이거나 대폭(최대 4배) 향상되어 촉매 비용을 현격히 줄일 수 있음을 알 수 있었다.
특히, 본원 화학식 1의 크롬화합물을 포함하는 실시예 8 내지 9 및 13 내지 14는 활성 수준이 Cr(EH)3를 사용하는 비교예 4 내지 7에 비하여 현저하게 높았다.
실시예 10 내지 12는 비교예 4 내지 7과 유사한 수준의 활성도, 3량체의 수득률, 3량체 중 1-헥센의 함량 등을 나타내었으나, 실시예 10 내지 12는 방향족 탄화수소 용매의 제거 과정이 필요 없었으며, 제조 공정이 단순하고, 원료의 단가가 낮아 경제성이 더욱 우수하였다. 특히, 실시예 10 내지 12와 비교예 6 내지 7을 비교하였을 때, 실시예 10 내지 12는 훨씬 적은 촉매량으로도 유사한 수준의 결과을 얻을 수 있었다.
이를 통해, 실시예 8 내지 14의 촉매 시스템은 지방족 탄화수소 용매에서 촉매 제조가 가능하여, 지방족 탄화수소 용매에서 에틸렌을 3량화하기 위한 방향족 탄화수소 용매의 제거 과정이 필요 없고, 촉매 제조 시 침전물이 생성되지 않아 여과의 공정이 필요 없는 등 촉매 시스템 제조 공정이 단순하고 용이함을 알 수 있었다.
또한, 본원 발명에 따른 크롬 화합물을 제조하는 제조예 1 및 제조예 3의 화합물 안정성을 평가하였을 때, 제조예 3이 제조예 1 보다 안정성이 더 우수하였다. 이를 통해, 제조예 1 및 제조예 3의 크롬 화합물을 포함하는 촉매 시스템은 양자 모두 촉매 활성도가 높으나, 제조예 3과 같이 제조된 화학식 1c의 구조를 갖는 크롬 화합물은 안정성이 더욱 우수함을 알 수 있었다. 특히, 제조예 3의 크롬화합물은 탄화수소 용매에 대한 용해성이 우수하여, 촉매 시스템에 적용하기에 매우 적합한 특성을 가짐을 알 수 있었다.
또한, 제조예 8 내지 11을 통해, 본 발명에 속하는 다양한 예시들의 화학식 1의 크롬 화합물의 제조를 확인하였다.
본 발명의 단순한 변형 내지 변경은 이 분야 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (22)

  1. 하기 화학식 1a 또는 화학식 1b 중 어느 하나로 표시되는 크롬 화합물:
    [화학식 1a]
    [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]
    [화학식 1b]
    [{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]
  2. 제1항에 있어서, 상기 크롬 화합물은 하기 화학식 1c로 표시되는 화합물을 포함하는 크롬 화합물:
    [화학식 1c]
    [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
  3. 하기 화학식 1로 표시되는 크롬 화합물;
    하기 화학식 3으로 표시되는 알루미늄 화합물; 및
    하기 화학식 4로 표시되는 피롤 화합물; 의 반응물을 포함하는 올레핀 중합용 촉매 시스템:
    [화학식 1]
    (R1CO2)2Cr(OH)
    상기 화학식 1에서, R1은 탄소수 3 내지 30의 알킬기 또는 탄소수 6 내지 40의 아릴기이다;
    [화학식 3]
    (R2)nAl(X2)3-n
    상기 화학식 3에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X2는 할로겐 원자이며, n의 평균값은 1 내지 3이다;
    [화학식 4]
    Figure PCTKR2015002067-appb-I000009
    상기 화학식 4에서, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
  4. 제3항에 있어서, 상기 화학식 1로 표시되는 크롬 화합물은 하기 화학식 1a 또는 화학식 1b 중 어느 하나로 표시되는 화합물인 올레핀 중합용 촉매 시스템:
    [화학식 1a]
    [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]
    [화학식 1b]
    [{CH3CH2CH(CH2CH3)CO2}2Cr(OH)]
  5. 제3항에 있어서, 상기 크롬 화합물은 하기 화학식 1c로 표시되는 화합물을 포함하는 올레핀 중합용 촉매 시스템:
    [화학식 1c]
    [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
  6. 제3항에 있어서, 상기 알루미늄 화합물은 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)의 혼합물이고, 상기 화학식 4로 표시되는 피롤 화합물은 2,5-디메틸피롤인 올레핀 중합용 촉매 시스템.
  7. 제3항에 있어서, 상기 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물 및 상기 알루미늄 화합물의 몰비(Cr:Al)가 1 : 10 내지 1 : 50인 올레핀 중합용 촉매 시스템.
  8. 제3항에 있어서, 상기 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물과 상기 피롤 화합물의 몰비(크롬 화합물:피롤 화합물)가 1 : 1 내지 1 : 5 인 올레핀 중합용 촉매 시스템.
  9. 제3항에 있어서, 상기 촉매 시스템은 탄화수소 용매를 더욱 포함하는 올레핀 중합용 촉매 시스템.
  10. 하기 화학식 1c로 표시되는 크롬 화합물;
    하기 화학식 3으로 표시되는 알루미늄 화합물; 및
    하기 화학식 5로 표시되는 알루미노-피롤 화합물; 의 반응물을 포함하는 올레핀 중합용 촉매 시스템:
    [화학식 1c]
    [{CH3(CH2)3CH(CH2CH3)CO2}2Cr(OH)]4·H2O
    [화학식 3]
    (R2)nAl(X2)3-n
    상기 화학식 3에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X2는 할로겐 원자이며, n의 평균값은 1 내지 3이다;
    [화학식 5]
    Figure PCTKR2015002067-appb-I000010
    상기 화학식 5에서, R2는 탄소수 1 내지 20의 탄화수소기이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
  11. 제10항에 있어서, 상기 알루미늄 화합물은 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)의 혼합물이고, 상기 알루미노-피롤 화합물은 화학식 5의 R2가 에틸기, R3 및 R6가 메틸기, R4 및 R5가 수소 원자인 올레핀 중합용 촉매 시스템.
  12. 제10항에 있어서, 상기 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물 및 상기 알루미늄 화합물의 몰비(Cr:Al)가 1 : 10 내지 1 : 50인 올레핀 중합용 촉매 시스템.
  13. 제10항에 있어서, 상기 촉매 시스템은 제조(반응) 시 투입되는 상기 크롬 화합물과 상기 알루미노-피롤 화합물의 몰비(크롬 화합물:알루미노-피롤 화합물)가 1:1 내지 1:5 인 올레핀 중합용 촉매 시스템.
  14. 제10항에 있어서, 상기 촉매 시스템은 지방족 탄화수소 용매를 더욱 포함하는 올레핀 중합용 촉매 시스템.
  15. 하기 화학식 2로 표시되는 촉매 전구체; 및
    하기 화학식 3으로 표시되는 알루미늄 화합물; 의 혼합물을 포함하는 올레핀 중합용 촉매 시스템:
    [화학식 2]
    Figure PCTKR2015002067-appb-I000011
    상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X는 R2 또는 할로겐 원자이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
    [화학식 3]
    (R2)nAl(X2)3-n
    상기 화학식 3에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X2는 할로겐 원자이며, n의 평균값은 1 내지 3이다.
  16. 제15항에 있어서, 상기 화학식 2의 R2는 메틸 또는 에틸이고, X는 R2 또는 염소 원자이고, R3 및 R6는 메틸, R4 및 R5 는 수소 원자인 올레핀 중합용 촉매 시스템.
  17. 제15항에 있어서, 상기 알루미늄 화합물은 트리에틸알루미늄(Et3Al) 및 디에틸알루미늄클로라이드(Et2AlCl)의 혼합물인 올레핀 중합용 촉매 시스템.
  18. 제15항에 있어서, 상기 혼합물은 촉매 전구체 및 알루미늄 화합물의 몰비(Cr:Al)가 1 : 10 내지 1 : 50인 올레핀 중합용 촉매 시스템.
  19. 하기 화학식 2로 표시되는 촉매 전구체:
    [화학식 2]
    Figure PCTKR2015002067-appb-I000012
    상기 화학식 2에서, R2는 탄소수 1 내지 20의 탄화수소기이고, X는 R2 또는 할로겐 원자이고, R3, R4, R5 및 R6는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 10의 알킬기이다.
  20. 제19항에 있어서, R2는 메틸 또는 에틸이고, X는 R2 또는 염소 원자이고, R3 및 R6는 메틸, R4 및 R5는 수소 원자인 촉매 전구체.
  21. 제3항 내지 제18항 중 어느 한 항에 따른 촉매 시스템과 탄소수 2 내지 10의 올레핀 단량체를 접촉시켜 올레핀 중합체를 제조하는 단계를 포함하는 올레핀 중합방법.
  22. 제21항에 있어서, 상기 올레핀 단량체는 에틸렌이고, 상기 올레핀 중합체는 올레핀 3량체인 올레핀 중합방법.
PCT/KR2015/002067 2014-03-05 2015-03-04 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법 WO2015133805A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/123,878 US10442741B2 (en) 2014-03-05 2015-03-04 Chromium compound, catalyst system including same, and method for trimerizing ethylene using the catalyst system
US16/548,185 US10875818B2 (en) 2014-03-05 2019-08-22 Chromium compound, catalyst system including the same, and method for trimerizing ethylene using the catalyst system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140026270A KR101482962B1 (ko) 2014-03-05 2014-03-05 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 올레핀 중합방법
KR10-2014-0026270 2014-03-05
KR1020150003639A KR101691404B1 (ko) 2015-01-09 2015-01-09 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법
KR10-2015-0003639 2015-01-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/123,878 A-371-Of-International US10442741B2 (en) 2014-03-05 2015-03-04 Chromium compound, catalyst system including same, and method for trimerizing ethylene using the catalyst system
US16/548,185 Division US10875818B2 (en) 2014-03-05 2019-08-22 Chromium compound, catalyst system including the same, and method for trimerizing ethylene using the catalyst system

Publications (1)

Publication Number Publication Date
WO2015133805A1 true WO2015133805A1 (ko) 2015-09-11

Family

ID=54055548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002067 WO2015133805A1 (ko) 2014-03-05 2015-03-04 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법

Country Status (2)

Country Link
US (2) US10442741B2 (ko)
WO (1) WO2015133805A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981154B2 (en) 2016-09-21 2021-04-20 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer using same
US10981155B2 (en) 2016-09-21 2021-04-20 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer using same
US11117846B2 (en) 2017-10-11 2021-09-14 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer by using same
US11148126B2 (en) 2017-10-11 2021-10-19 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer by using same
US11291982B2 (en) 2016-11-14 2022-04-05 Public Joint Stock Company Sibur Holding Catalyst system used in olefin oligomerization and method for olefin oligomerization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036435A (ja) * 1996-07-29 1998-02-10 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
WO1999019335A1 (en) * 1997-10-11 1999-04-22 Bp Chemicals Limited Novel polymerisation catalysts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968135A (en) * 1970-01-19 1976-07-06 Aerojet-General Corporation Chromium salt catalysts
US5376612A (en) 1989-08-10 1994-12-27 Phillips Petroleum Company Chromium catalysts and process for making chromium catalysts
US5543375A (en) 1994-02-18 1996-08-06 Phillips Petroleum Company Olefin production
US5856257A (en) 1997-05-16 1999-01-05 Phillips Petroleum Company Olefin production
WO2008081644A1 (ja) * 2006-12-28 2008-07-10 Mitsubishi Chemical Corporation α-オレフィン低重合体の製造方法及びピロール化合物の保管方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036435A (ja) * 1996-07-29 1998-02-10 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
WO1999019335A1 (en) * 1997-10-11 1999-04-22 Bp Chemicals Limited Novel polymerisation catalysts

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIXON, J. T. ET AL.: "Advances in selective ethylene trimerisation - a critic-al overview", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 689, 2004, pages 3641 - 3668 *
MAKHAEV, V. D. ET AL.: "Mechanochemical synthesis of chromium tris(2-ethylhexa- noate) and evaluation of its catalytic activity in the reaction of ethylene trimerizationRussian", JOURNAL OF APPLIED CHEMSITRY, vol. 86, 2013, pages 1819 - 1824 *
VIDYARATNE, 1. ET AL.: "Isolation of a self-activating ethylene trimerization catalyst", ANGEW. CHEM., vol. 48, 2009, pages 6552 - 6556 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981154B2 (en) 2016-09-21 2021-04-20 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer using same
US10981155B2 (en) 2016-09-21 2021-04-20 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer using same
US11291982B2 (en) 2016-11-14 2022-04-05 Public Joint Stock Company Sibur Holding Catalyst system used in olefin oligomerization and method for olefin oligomerization
US11117846B2 (en) 2017-10-11 2021-09-14 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer by using same
US11148126B2 (en) 2017-10-11 2021-10-19 Lotte Chemical Corporation Catalyst system for olefin oligomerization and method for preparing olefin oligomer by using same

Also Published As

Publication number Publication date
US20170217854A1 (en) 2017-08-03
US20200039897A1 (en) 2020-02-06
US10875818B2 (en) 2020-12-29
US10442741B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
WO2015133805A1 (ko) 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법
WO2019235799A1 (ko) 비스포스핀 리간드 화합물, 크롬 화합물, 에틸렌 올리고머화 촉매 시스템, 및 에틸렌 올리고머 제조 방법
WO2016072783A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2010013948A2 (en) Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst
WO2018084365A1 (ko) 크롬 화합물, 이를 이용한 촉매 시스템 및 에틸렌 올리고머 제조 방법
WO2015046931A1 (ko) 올레핀계 중합체의 제조방법 및 이에 의해 제조된 올레핀계 중합체
WO2018182174A1 (ko) 폴리올레핀-폴리스티렌계 다중블록 공중합체, 이를 제조하기 위한 유기 아연 화합물 및 폴리올레핀-폴리스티렌계 다중블록 공중합체 제조 방법
WO2018088820A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2018106028A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2022173280A1 (ko) 환형올레핀계 단량체 중합용 이민계 리간드 함유 착체 촉매 및 이를 이용한 환형올레핀계 중합체의 제조방법
WO2021210948A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020218874A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2022060108A1 (ko) 리간드 화합물, 유기 크롬 화합물 및 이를 포함하는 촉매 시스템
WO2022071735A1 (ko) 폴리에틸렌 조성물 및 그의 제조 방법
WO2021112617A1 (ko) 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법
WO2019088431A1 (ko) 세척액 조성물 및 이를 이용한 중합 장치 세척 방법
WO2017135638A1 (ko) 설폰아미드기 또는 아미드기를 포함하는 올레핀 복분해 반응용 전이금속 착물 및 이의 응용
WO2021162304A1 (ko) 음이온 중합 개시제, 음이온 중합 개시제 조성물 및 이의 제조방법
WO2021034041A1 (ko) 유기 보레이트계 촉매, 이를 이용한 이소부텐 올리고머의 제조방법 및 이로부터 제조된 이소부텐 올리고머
WO2020149693A1 (ko) 루테늄 착화합물, 이의 제조를 위한 리간드 및 이의 용도
WO2020022833A1 (ko) 부텐 올리고머의 제조방법
WO2022035132A1 (ko) 메탈로센 담지 촉매의 제조 방법, 메탈로센 담지 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2021086027A1 (ko) 메탈로센 담지 촉매의 제조방법 및 메탈로센 담지 촉매
WO2016129848A1 (ko) 올레핀 올리고머화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15123878

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15759312

Country of ref document: EP

Kind code of ref document: A1