WO2016129848A1 - 올레핀 올리고머화 방법 - Google Patents

올레핀 올리고머화 방법 Download PDF

Info

Publication number
WO2016129848A1
WO2016129848A1 PCT/KR2016/001150 KR2016001150W WO2016129848A1 WO 2016129848 A1 WO2016129848 A1 WO 2016129848A1 KR 2016001150 W KR2016001150 W KR 2016001150W WO 2016129848 A1 WO2016129848 A1 WO 2016129848A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
groups
hexene
Prior art date
Application number
PCT/KR2016/001150
Other languages
English (en)
French (fr)
Inventor
임슬기
이용호
신은지
박진영
사석필
이기수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150125097A external-priority patent/KR20160099450A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017528556A priority Critical patent/JP6571190B2/ja
Priority to US15/529,385 priority patent/US10471416B2/en
Priority to EP16749388.1A priority patent/EP3257875A4/en
Priority to CN201680004071.6A priority patent/CN107001502B/zh
Publication of WO2016129848A1 publication Critical patent/WO2016129848A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/69Chromium, molybdenum, tungsten or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates

Definitions

  • the present specification relates to an olefin oligomerization method capable of controlling the production rate of 1-hexene and 1-octene by controlling the multimerization reaction temperature of olefins.
  • Linear alpha-olefins are widely used commercially as important materials for comonomers, detergents, lubricants, plasticizers, etc.
  • 1-hexene and 1-octene are used in the production of linear low density polyethylene (LLDPE). It is often used as a comonomer to control the density.
  • LLDPE Linear Low-Density Polyethylene
  • a chromium-based catalyst using a ligand of the general formula (R1) (R2) X-Y-X (R3) (R4) as a trimerization catalyst of ethylene has been proposed.
  • R1 phosphorus, arsenic or antimony
  • Y is a linking group such as -N (R5)-and at least one of R1, R2, R3 and R4 has a polar or electron-donating substituent.
  • a (o- ethylphenyl) 2 PN (Me) P ( o- ethyl does not have a polar substituent on at least one of R1, R2, R3 and R4 compound as a ligand which does not exhibit catalytic activity for 1-hexene under catalytic conditions Phenyl) 2 ( Chem. Commun. , 2002, 858 ).
  • the ligands including the heteroatoms of the prior art described above are still in need for high multi-selective activity and consistent multimerization activity during the reaction of 1-octene or 1-hexene preparation.
  • an oligomerization catalyst system comprising a ligand compound, a transition metal compound and a promoter
  • a product comprising 1-hexene and 1-octene Controlling the reaction temperature in the range of 30 to 150 ° C. such that the weight ratio of hexene to 1-octene has a predetermined value, thereby multimerizing the olefin; and wherein the weight ratio of 1-hexene to 1-octene in the product
  • a predetermined value of olefin oligomerization method is provided, wherein the predetermined value of is selected from the range of 1: 0.5 to 1: 7.
  • the predetermined value of the weight ratio may be 1: 0.9 to 1: 6.6.
  • the ratio of 1-hexene in the product may be increased.
  • the reaction temperature may be controlled in the range of 60 to 130 °C.
  • the selectivity of 1-hexene and 1-octene with respect to the total amount of the product may be 80% by weight or more.
  • the catalyst system in the entire reaction temperature range, may have an activity lowering rate of less than 6% due to a temperature increase.
  • the activity of the catalyst system in the entire reaction temperature range may be 100,000 kg / molCr / hr or more in a batch process, and 100,000 kg / molCr or more in a continuous process.
  • the ligand compound may contain a diphosphine moiety represented by the following Formula 1.
  • A is N, As or Sb, and R1 to R4 are each independently a hydrocarbyl group, heterohydrocarbyl group or hydrocarbyl heterotyl group having 1 to 20 carbon atoms.
  • the ligand compound may include two or more diphosphine moieties represented by the following Chemical Formula 2, and the linking group connecting the two or more diphosphine moieties is a hydrocarbyl group As the number of carbon atoms of the shortest distance between the diphosphine moieties may be 2 to 10.
  • R1 to R4 are the same as in Formula 1, and * is a linking group connecting two or more diphosphine moieties.
  • the linking group may include an aliphatic group having 1 to 20 carbon atoms, a heteroaliphatic group having 2 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, a heteroalicyclic group having 3 to 20 carbon atoms, and carbon atoms
  • One or more groups selected from the group consisting of 6 to 20 aromatic groups and 6 to 20 carbon atoms are combined, an aliphatic group having 1 to 20 carbon atoms, a heteroaliphatic group having 2 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • It may have a substituent having at least one group selected from the group consisting of an alicyclic group of, a heterocyclic alicyclic group of 3 to 20 carbon atoms, an aromatic group of 6 to 20 carbon atoms and a heteroaromatic group of 6 to 20 carbon atoms.
  • the ligand compound may include a compound represented by Formula 3 below.
  • R1 to R4 are the same as those of Formula 1, and R5 may be an alkyl group having 1 to 20 carbon atoms.
  • R 6 is a straight chain group which is an alkyl group having 2 or 3 carbon atoms, an alkenyl group, a heteroalkyl group, a heteroalkenyl group, or a heteryl group thereof; Alkyl groups, alkenyl groups, arylalkyl groups, arylalkenyl groups, heteroalkyl groups, heteroalkenyl groups, heteroarylalkyl groups, heteroarylalkenyl groups, or heteryl groups thereof having 4 to 20 carbon atoms; A cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group, an arylcycloalkyl group, an arylcycloalkenyl group heterocycloalkyl group, heterocycloalkenyl group, heteroarylcycloalkyl group, heteroarylcycloalkenyl group, or a heteryl group thereof; C6-C20 aryl group, heteroaryl group, heteroaryl group, hetero
  • R6 is an alkyl group having 2 to 20 carbon atoms, alkenyl group, arylalkyl group, arylalkenyl group, heteroalkyl group, heteroalkenyl group, heteroarylalkyl group, heteroarylalkenyl group or these Heteryl group;
  • R7 to R9 are each independently hydrogen; An alkyl group, alkenyl group, arylalkyl group, or arylalkenyl group having 1 to 20 carbon atoms; A cycloalkyl group, a cycloalkenyl group, an arylcycloalkyl group, or an arylcycloalkenyl group having 3 to 20 carbon atoms; Aryl groups having 6 to 20 carbon atoms; Or an alkylaryl group having 7 to 20 carbon atoms.
  • the transition metal compound may include an organochrome compound, and the organochrome compound may be chromium (III) acetyl acetonate, chromium tris tetrahydrofuran, chromium (III) -2- Ethylhexanoate, chromium (III) tris (2,2,6,6-tetramethyl-3,5-heptanedionate), chromium (III) benzoyl acetonate, chromium (III) hexafluoro-2,4 At least one member selected from the group consisting of pentanedionate and chromium (III) acetate hydroxide.
  • organochrome compound may be chromium (III) acetyl acetonate, chromium tris tetrahydrofuran, chromium (III) -2- Ethylhexanoate, chromium (III) tris (2,2,6,6-tetramethyl-3,5
  • the promoter may be at least one selected from the group consisting of compounds represented by the following Chemical Formulas 4 to 6.
  • R 5 is the same as or different from each other, and each independently a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen, c is an integer of 2 or more,
  • D is aluminum or boron
  • R 6 is the same as or different from each other, and each independently hydrogen or halogen, hydrocarbyl having 1 to 20 carbon atoms or hydrocarbyl having 1 to 20 carbon atoms substituted with halogen,
  • L is a neutral Lewis base
  • [LH] + is a Bronsted acid
  • Q is boron or aluminum in a +3 type oxidation state
  • each E is independently at least one hydrogen atom is halogen, a hydrocarbyl having 1 to 20 carbon atoms, An aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms which is unsubstituted or substituted with an alkoxy functional group or a phenoxy functional group.
  • the multimerization pressure may be 1 to 300 bar.
  • the olefin oligomerization method according to the present specification is different from controlling the production rate of 1-hexene and 1-octene by using a conventional hybrid catalyst, and controlling the temperature of the multimerization reaction to produce 1-hexene and 1-octene. Can be adjusted. Accordingly, the side reactions accompanying the hybrid catalysts can be reduced, and by controlling only the reaction temperature, the ratio of 1-hexene and 1-octene can be adjusted even during process operation according to market demand or intention.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • catalyst system means a three component comprising a transition metal source, a ligand compound and a promoter, or alternatively, two components of the transition metal compound and a promoter It means a state which can be added simultaneously or in any order to obtain an active catalyst composition.
  • Three or two components of the catalyst system may be added in the presence or absence of a solvent and a monomer, and the three terms may be used interchangeably.
  • the term 'oligomerization' means that the olefin is small polymerized. Depending on the number of olefins to be polymerized, it is called trimerization and tetramerization, which is collectively called multimerization. In particular, it is meant herein to selectively prepare 1-hexene and 1-octene which are the main comonomers of LLDPE from ethylene.
  • the hydrocarbyl group refers to all compounds consisting of only carbon and hydrogen, and examples thereof include an alkyl group, an aryl group, an alkenyl group, a cycloalkyl group, and the like. As long as there is no, it can mean both straight and branched chain, it can mean both unsubstituted and substituted.
  • a group which is an alkyl group having 1 to 20 carbon atoms may mean methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group, neopentyl group, etc.
  • the aryl group having 6 to 20 carbon atoms includes, for example, a phenyl group, a naphthyl group, an anthracenyl group, and the like, but is not limited thereto.
  • an alkylaryl group means an aryl group having at least one alkyl group as a substituent
  • an arylalkyl group means an alkyl group having at least one aryl group as a substituent.
  • the hetero element refers to N, O, S, and P
  • the heterohydrocarbyl group may mean a hydrocarbyl group including one or more hetero atoms. That is, a heteroalkyl group may mean that any one carbon of the constituent carbons of the alkyl group is substituted with a hetero atom, or a hetero atom is included as a substituent, and the heteroaryl group, like a pyridyl group, any one of the carbons in the aromatic ring is a hetero atom. It may mean substituted. The same may also apply to other heteroarylalkyl groups, heteroalkylaryl groups, heteroalkenylaryl groups, and the like.
  • connection point to be functionalized is carbon, but the 'heterolyl group' such as 'hydrocarboheteryl group', 'organoheteryl group', and 'heteryl group' refers to the point of functionalization. It may mean the case of a hetero atom.
  • the predetermined value of the weight ratio of 1-hexene to 1-octene in the product is 1: 0.5.
  • an olefin oligomerization method selected from the range of from 1: 7.
  • the olefin oligomerization method is a method of controlling the ratio of alpha olefin as the main product, by selecting a means of controlling the reaction temperature to control the reaction temperature, thereby controlling 1-hexene and 1 in a desired ratio.
  • Can produce octene Therefore, the possibility of side reactions and problems of lowering of catalyst activity by using a hybrid catalyst can be prevented, and by controlling only the reaction temperature, 1-hexene and 1-octene can be easily obtained in a desired ratio, and process convenience and / or Economics can be greatly increased.
  • the range of the reaction temperature to be controlled may be 50 to 150 °C, or may be in the range of 60 to 130 °C, or may be in the range of 70 to 110 °C.
  • the desired weight ratio of 1-hexene and 1-octene can be determined prior to the oligomerization reaction to obtain 1-hexene and 1-octene of the predetermined values.
  • the weight ratio of 1-hexene and 1-octene, which may be predetermined may range from 1: 0.5 to 1: 7, or may range from 1: 0.9 to 1: 6.6.
  • the weight ratio of 1-hexene and 1-octene may be in the range of about 1: 2 to 1: 7, preferably 1: 3 to 1: 7.
  • 1-octene may be produced in excess of 1-hexene.
  • the ratio of 1-hexene may be increased, and the activity of the catalyst system is maintained even when the reaction temperature exceeds 80 ° C., thus producing ratios of 1-hexene and 1-octene up to about 150 ° C. Can be adjusted by temperature control only.
  • the activity of the catalyst system can be maintained even in a wide range of temperatures, especially at high temperatures, and thus the ratio of 1-hexene and 1-octene in a wide temperature range, such as 50 to 150 ° C. Can be adjusted.
  • linear alpha olefin mixed products having more varied weight ratios can be prepared, and the total amount of 1-hexene and 1-octene (ie, linear alpha olefin selectivity) will be maintained as the catalyst system remains active in this temperature range. It can be.
  • the selectivity to the total amount of the product of 1-hexene and 1-octene produced can be maintained at 80% by weight or more over the entire reaction temperature range.
  • the application of the method of controlling the production rate of 1-hexene and 1-octene by controlling the reaction temperature to the olefin oligomerization method may be performed in various forms, and specifically, the practical application may be as follows. have.
  • the results of the weight ratio of 1-hexene and 1-octene produced according to the reaction temperature are obtained by repeating the experiment several times, and the data on the average ratio of 1-hexene and 1-octene produced at a specific reaction temperature After classifying, build a library with the classified data.
  • the temperature of the multimerization reaction is controlled using a library built in advance through the repeated experiments, and the predetermined value of 1-hexene and 1-octene is determined as an intended value according to various conditions such as demand. You can get the production rate.
  • a method of viewing the ratio of 1-hexene and 1-octene produced during the process and changing the reaction temperature at that time for changing the ratio in the desired direction can be applied. have.
  • the change of the production rate of 1-hexene and 1-octene according to the control of the reaction temperature tends to increase the production rate of 1-hexene as the temperature of the multimerization reaction increases in oligomerization. This can be applied in practice.
  • the method for preparing an olefin oligomer comprising the step of multimerizing olefins in the presence of the oligomerization catalyst system may provide a method for oligomerization of olefins having improved activity and selectivity using the catalyst system for olefin oligomerization.
  • the olefin may include ethylene.
  • the olefin oligomerization method according to the present specification is a homogeneous liquid phase reaction in the presence or absence of an inert solvent, a slurry reaction in which the catalyst system is partially or completely insoluble using the oligomerization catalyst system and conventional apparatus and contacting techniques.
  • Biphasic liquid / liquid reactions, or bulk or gas phase reactions in which the product olefins serve as the main medium, and homogeneous liquid phase reactions may be preferred.
  • the olefin oligomerization process can be carried out in any inert solvent that does not react with the catalyst compound and the active agent.
  • suitable inert solvents include, but are not limited to, benzene, toluene, xylene, cumene, heptane, cyclohexane, methylcyclohexane, methylcyclopentane, hexane, pentane, butane, isobutane and the like.
  • the solvent may be used by removing a small amount of water or air acting as a catalyst poison by treating with a small amount of alkylaluminum.
  • the olefin oligomerization reaction may be carried out at a pressure of about 1 bar to about 300 bar, preferably at a pressure of about 2 bar to about 150 bar.
  • the range of the pressure conditions may be a condition of the family register for multimerizing the olefin, and when the olefin is multimerized within the pressure range, the selectivity may be excellent for the desired alpha-olefin, and the amount of by-products is reduced. It can increase efficiency and reduce costs in process operation.
  • the ligand compound may contain a diphosphine moiety represented by the following Formula 1.
  • A is N, As or Sb, and R1 to R4 are each independently a hydrocarbyl group, heterohydrocarbyl group or hydrocarbyl heterotyl group having 1 to 20 carbon atoms.
  • the ligand compound containing the diphosphine moiety represented by Chemical Formula 1 may include two or more diphosphine moieties represented by the following Chemical Formula 2.
  • R1 to R4 are the same as in Formula 1, and * is a linking group connecting two or more diphosphine moieties.
  • the ligand compound may include a compound represented by Formula 2a.
  • R1 to R4 and R1 ⁇ to R4 ⁇ may be selected from the same group as R1 to R4 of Formula 1 or 2, respectively, and L may be a linking group connecting two diphosphine moieties. have.
  • R1 to R4 in the general formulas (1), (2) and (2a) and R1 ⁇ to R4 ⁇ in the general formula (2a) are not particularly limited, but for example, an aryl group, heteroaryl group, or arylheteryl group having 6 to 20 carbon atoms; Or an alkylaryl group, a heteroalkylaryl group, an alkylheteroaryl group, or an alkylarylheteryl group having 7 to 20 carbon atoms; and when such a substituent is selected, the activity of the catalyst or the selectivity of the linear alphaolefin is positive. May affect
  • the linking group (L) is a linking group connecting between two or more diphosphine moieties may be a hydrocarbyl group of a variety of structures, the shortest distance between the diphosphine moieties may be 2 to 30 carbon atoms. That is, a hydrocarbyl group exists between two or three or more of the diphosphine moieties, and the number of carbon atoms connected at a shortest distance between the diphosphine moieties in the hydrocarbyl group is 2 To 10.
  • the linking group is an aliphatic group having 2 to 20 carbon atoms, a heteroaliphatic group having 2 to 20 carbon atoms, a cycloaliphatic group having 3 to 20 carbon atoms, a heteroalicyclic group having 3 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, and One or more groups selected from the group consisting of hetero aromatic groups having 6 to 20 carbon atoms may be combined, and the structure thereof is not particularly limited as long as they satisfy this.
  • the main chain of the linking group may have substituents of various structures.
  • the substituent of the linking group may be an aliphatic group having 1 to 20 carbon atoms, a heteroaliphatic group having 2 to 20 carbon atoms, a cycloaliphatic group having 3 to 20 carbon atoms, a heteroalicyclic group having 3 to 20 carbon atoms, or 6 carbon atoms. It may be at least one group selected from the group consisting of an aromatic group of 20 to 20 and a heteroaromatic group of 6 to 20 carbon atoms, these substituents may be bonded one or two or more to the main chain, the linking group for the position In terms of flexibility, the far side from the diphosphine moiety may be advantageous, but the binding position of the substituent is not particularly limited.
  • the linking group (L) may be an aliphatic group having 2 to 20 carbon atoms (eg, an alkylene group, an alkenylene group) connecting 2 to 30 carbon atoms, respectively, between two or more groups represented by Formula 1 above.
  • Non-limiting examples of the above-described linking group include a hydrocarbyl group having the following structure.
  • the diphosphine moiety represented by Formula 1 is represented by [A], [A '] or [A "] for convenience, and according to a group selected from R1 to R4, [A], [A '] And [A "] may be the same or different from each other.
  • the group connecting by four carbon atoms may not interact with the chromium complexes of the two or more diphosphine moieties. It may be desirable to include flexible aliphatic groups to facilitate smoothing.
  • diphosphine moiety represented by two or more Formula 1 is connected by four carbon atoms, it does not include an aliphatic group as in the case where the diphosphine moiety is connected to positions 1 and 4 of the cyclohexane
  • the interactions are extremely limited, resulting in significantly lower activity per unit PNP-Cr, and selection for low carbon number alpha-olefins such as 1-hexene and 1-octene Degrees may be degraded.
  • the ligand compound represented by Formula 2 or 2a may be synthesized by the same method as in Scheme 1, but is not limited thereto.
  • each A is the same as or different from each other, and is the same as the definition of R 1 to R 4 of Formula 1, 2, or 2a, and R is a linking group connected to 2 to 8 carbon atoms, wherein Formula 2 or As defined in 2a, X is halogen.
  • the ligand compound may include a compound represented by Formula 3 below.
  • R1 to R4 are each independently an aryl group having 6 to 20 carbon atoms or an alkylaryl group having 7 to 20 carbon atoms, and R5 may be an alkyl group having 1 to 20 carbon atoms.
  • R 6 is a straight chain group which is an alkyl group having 2 or 3 carbon atoms, an alkenyl group, a heteroalkyl group, a heteroalkenyl group, or a heteryl group thereof; Alkyl groups, alkenyl groups, arylalkyl groups, arylalkenyl groups, heteroalkyl groups, heteroalkenyl groups, heteroarylalkyl groups, heteroarylalkenyl groups, or heteryl groups thereof having 4 to 20 carbon atoms; A cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group, an arylcycloalkyl group, an arylcycloalkenyl group heterocycloalkyl group, heterocycloalkenyl group, heteroarylcycloalkyl group, heteroarylcycloalkenyl group, or a heteryl group thereof; C6-C20 aryl group, heteroaryl group, heteroaryl group, hetero
  • R 6 is a heteroalkyl group having 2 to 20 carbon atoms, a heteroalkenyl group, a heteroarylalkyl group, a heteroarylalkenyl group or a heteryl group thereof; A heterocycloalkyl group, a heterocycloalkenyl group, a heteroarylcycloalkyl group, a heteroarylcycloalkenyl group, or a heteryl group thereof having 3 to 20 carbon atoms; C6-C20 aryl group, heteroaryl group, or these heteroaryl group; Or an alkylaryl group, heteroalkylaryl group, or a heteroaryl group thereof having 7 to 20 carbon atoms.
  • R6 is an alkyl group having 2 to 20 carbon atoms, alkenyl group, arylalkyl group, arylalkenyl group, heteroalkyl group, heteroalkenyl group, heteroarylalkyl group, heteroarylalkenyl group or these Heteryl group;
  • R7 to R9 are each independently hydrogen; An alkyl group, alkenyl group, arylalkyl group or arylalkenyl group having 1 to 20 carbon atoms; A cycloalkyl group, a cycloalkenyl group, an arylcycloalkyl group or an arylcycloalkenyl group having 3 to 20 carbon atoms; Aryl groups having 6 to 20 carbon atoms; Or an alkylaryl group having 7 to 20 carbon atoms.
  • the ligand compound represented by Chemical Formula 3 may be, for example, a compound in which carbons 2 and 6 of the aniline compound are substituted with R5 and R6, and a group substituted with carbons 2 and 6 Accordingly, the properties of the ligand compound and the oligomerization catalyst system including the same may be changed.
  • a group different from the group substituted at the carbon position 2 may be substituted at the carbon position 6 to form an asymmetric structure.
  • a straight chain group which is an alkyl group having 2 or 3 carbon atoms, an alkenyl group, a heteroalkyl group, a heteroalkenyl group or a heteryl group thereof may be substituted; Alkyl, alkenyl, arylalkyl, arylalkenyl, heteroalkyl, heteroalkenyl, heteroarylalkyl, heteroarylalkenyl or heteryl groups of 4 to 20 carbon atoms may be substituted.
  • a cycloalkyl group, a cycloalkenyl group, an arylcycloalkyl group, an arylcycloalkenyl group heterocycloalkyl group, a heterocycloalkenyl group, a heteroarylcycloalkyl group, a heteroarylcycloalkenyl group or a heteroaryl group thereof having 3 to 20 carbon atoms may be substituted.
  • An aryl group, heteroaryl group or heteryl group having 6 to 20 carbon atoms may be substituted;
  • An alkylaryl group, a heteroalkylaryl group, or a heteroaryl group thereof having 7 to 20 carbon atoms; may be substituted.
  • an alkyl group, alkenyl group, arylalkyl group, arylalkenyl group, heteroalkyl group, heteroalkenyl group, heteroarylalkyl group, heteroarylalkenyl group or a heteroaryl group thereof may be substituted;
  • a C3-C20 cycloalkyl group, cycloalkenyl group, arylcycloalkyl group, arylcycloalkenyl group heterocycloalkyl group, heterocycloalkenyl group, heteroarylcycloalkyl group, heteroarylcycloalkenyl group or a heteroaryl group thereof may be substituted;
  • An aryl group or heteroaryl group having 6 to 20 carbon atoms or a heteroaryl group thereof may be substituted;
  • an alkylaryl group, heteroalkylaryl group, or a heteroaryl group thereof having 7 to 20 carbon atoms may be substituted.
  • the catalyst system including the ligand compound can easily interact with PNP-Cr according to various conditions such as the electronic and three-dimensional environment around the transition metal, resulting in a high oligomer
  • it can exhibit high selectivity for 1-hexene, 1-octene, etc., and concomitantly, separation may be unnecessary due to an increase in 1-hexene and a decrease in 1-hexene isomers. It can also bring about energy savings.
  • the ligand compound may be synthesized in the same manner as in Scheme 2, but is not limited thereto.
  • G1 may be a phenyl group having R5 to R9 of Formula 3
  • G2 and G3 may each be R1 to R4 of Formula 3
  • X may be a halogen group.
  • Scheme 2 is a general scheme for synthesizing the ligand compound represented by Formula 3, may be a reaction in which the amine and the phosphine reacts to produce diphosphinoamine. That is, the amine may be a reaction in which the leaving group represented by X of the phosphine as a nucleophile is substituted and substituted, and the X is not particularly limited as long as it is stable and easy to leave. Br, or I may be present.
  • the catalyst system used in the olefin oligomerization reaction includes a transition metal compound serving as a main catalyst and a cocatalyst, wherein the structure of the active catalyst can be changed according to the chemical structure of the ligand, and thus the olefin selectivity, The amount of activity or by-products may be different.
  • the transition metal compound of the oligomerization catalyst system serves as a main catalyst, and may be in a coordination state with a ligand compound as described above.
  • the ligand compound including two or more diphosphine moieties represented by the transition metal compound and the formula (2) can be coordinated as shown by the formula (2-1).
  • R1 to R4 are the same as in Formula 1, * is the same as in Formula 2,
  • M may be a transition metal, preferably Cr,
  • Xn is H, F, Cl, Br, I, or may be an alkyl group, alkenyl group, arylalkyl group, heteroalkyl group, heteroalkenyl group or heteroarylalkyl group, or halogen group having 1 to 6 carbon atoms, or may be an acetate group or an acetyl acetonate group
  • m is an oxidation number of M and may be a natural number.
  • transition metal compound and the ligand compound represented by Formula 2a may be coordinated as represented by the following Formula 2a-1.
  • R1 to R4, Xn, m, and M are as defined in Formula 2-1, and R1 ⁇ to R4 ⁇ and Xn ⁇ are also the same as R1 to R4.
  • transition metal compound and the ligand compound represented by Chemical Formula 3 may be coordinated as represented by the following Chemical Formula 3-1.
  • the transition metal compound may include an organochromium compound
  • the organochromium compound may be, for example, chromium (III) acetylacetonate, chromium trichloride trihydrotrafuran, or chromium (III) -2- Ethylhexanoate, chromium (III) tris (2,2,6,6-tetramethyl-3,5-heptanedionate), chromium (III) benzoylacetonate, chromium (III) hexafluoro-2,4 At least one member selected from the group consisting of pentanedionate and chromium (III) acetate hydroxide.
  • the cocatalyst is an organometallic compound including a Group 13 metal, and is not particularly limited as long as it can be used in the multimerization of olefins under a transition metal compound catalyst. Specifically, the cocatalyst may be used at least one selected from the group consisting of compounds represented by the following formulas (4) to (6).
  • R 5 is the same as or different from each other, and each independently represent a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen, and c is an integer of 2 or more.
  • D is aluminum or boron
  • R 6 is the same as or different from each other, and each independently hydrogen or halogen, hydrocarbyl having 1 to 20 carbon atoms or hydrocarbyl having 1 to 20 carbon atoms substituted with halogen,
  • L is a neutral Lewis base
  • [LH] + is a Bronsted acid
  • Q is boron or aluminum in a +3 type oxidation state
  • each E is independently at least one hydrogen atom is halogen, a hydrocarbyl having 1 to 20 carbon atoms, An aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms which is unsubstituted or substituted with an alkoxy functional group or a phenoxy functional group.
  • MMAO modified methyl aluminoxane
  • MAO methyl aluminoxane
  • ethyl aluminoxane isobutyl aluminoxane
  • butyl aluminoxane and the like.
  • alkyl metal compound represented by Formula 5 examples include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, dimethylisobutylaluminum, dimethylethylaluminum and diethyl.
  • Chloro aluminum triisopropyl aluminum, tri-s-butyl aluminum, tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p- Tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron and the like.
  • triethyl ammonium tetraphenyl boron for example, triethyl ammonium tetraphenyl boron, tributyl ammonium tetraphenyl boron, trimethyl ammonium tetraphenyl boron, tripropyl ammonium tetraphenyl boron, trimethyl ammonium tetra (p -Tolyl) boron, tripropylammonium tetra (p-tolyl) boron, triethylammonium tetra (o, p-dimethylphenyl) boron, trimethylammonium tetra (o, p-dimethylphenyl) boron, tributylammonium Tetra (p-trifluoromethylphenyl) boron, trimethylammonium tetra (p-trifluoromethylphenyl) boron, tributylammonium tetrap
  • aluminoxane may be preferably used, and more preferably methylaluminoxane (MAO) or modified methylaluminoxane (MMAO) may be used.
  • MAO methylaluminoxane
  • MMAO modified methylaluminoxane
  • the method for preparing the oligomerization catalyst system is not particularly limited thereto, but includes, but is not limited to, preparing a catalyst composition by mixing the aforementioned ligand compound and transition metal compound; And a promoter and the catalyst composition are mixed and activated at a temperature of -40 to 80 ° C.
  • the catalyst composition includes a ligand compound and a transition metal compound, and the method for preparing an oligomerization catalyst system according to the present disclosure may first induce a metallization reaction between two compounds by first mixing a ligand compound and a transition metal compound.
  • the metallization reaction may be a reaction in which a transition metal compound is coordinated to a ligand compound, and the configuration of the ligand compound and the transition metal compound, an active point of the ligand compound, and the like will be described later.
  • the step of activating by mixing the catalyst composition and the promoter may be performed.
  • the activation may mean activation as an oligomerization catalyst system through contacting and aging of the catalyst composition with the promoter.
  • Activation of the catalyst composition and the promoter may be one that is mixed with the organic solvent and the catalyst and the catalyst composition present in solution contact and aged for a predetermined time, and the activation is particularly limited in its form such as stirring and simple mixing. If the catalyst composition and the promoter is in contact with the oligomerization catalyst system can be applied to any form that can generate activity.
  • the organic solvent includes, for example, heptane, toluene, cyclohexane, methylcyclohexane, 1-hexene, diethyl ether, tetrahydrofuran, acetonitrile, dichloromethane, chloroform, chlorobenzene, methanol, acetone, and the like. It is not limited.
  • Activation of the catalyst composition and the promoter may be performed at a temperature of -40 to 80 °C. Preferably it may be carried out at a temperature of 20 to 80 °C, or 25 to 60 °C.
  • contact and aging of the catalyst composition and the promoter for the activation are performed at a high temperature of more than 80 ° C., the ligand and the transition metal of the catalyst composition are excessively activated by the metal alkyl which can be used as a promoter, resulting in oligomerization. Excessive activity can cause side reactions or premature deactivation.
  • the catalyst composition for the activation and the contact and aging of the catalyst is made at a cryogenic temperature of less than -40 °C can not supply the energy required to activate the catalyst can not activate the catalyst.
  • Activation of the catalyst composition and the promoter may be one that is mixed with the organic solvent and the catalyst and the catalyst composition present in solution contact and aged for a predetermined time, and the activation is particularly limited in its form such as stirring and simple mixing. If the catalyst composition and the promoter is in contact with the oligomerization catalyst system can be applied to any form that can generate activity.
  • the organic solvent includes, for example, heptane, toluene, cyclohexane, methylcyclohexane, 1-hexene, diethyl ether, tetrahydrofuran, acetonitrile, dichloromethane, chloroform, chlorobenzene, methanol, acetone, and the like. It is not limited.
  • the time taken from the time when the promoter and the catalyst composition first contact each other (the temperature at this time is called a temperature) and before the contact with the reactant (eg, ethylene) is called A time
  • the catalyst When the time taken to raise the oligomerization reaction temperature (reaction temperature referred to as b temperature) in the state where the composition, the promoter and the reactant are all mixed is B time, the activation time of the promoter and the catalyst composition is A If the start time of A time and the start time of B time are different, and if the time started first ends first, the time from the start time of the first time started to the end time of the next time started. May mean, or if another time is included within the longer time spent (e.g., A time is completely included in B time, or B If the liver is fully included in the time A) it may mean a longer period of time.
  • the activation of such catalyst composition and promoter can be carried out for less than 5 minutes, preferably for up to 3 minutes.
  • the contact and aging of the catalyst composition and the promoter for the activation are performed for a time of 5 minutes or more, the oligomerization catalyst system may be over-activated in the same manner as the activation at high temperature. It may be advantageous.
  • the ligand compound and the transition metal compound of the oligomerization catalyst system when the activation is performed for a short time at low temperature, the ligand compound and the transition metal compound of the oligomerization catalyst system The coordination bond is stabilized, and thus the thermal stability of the catalyst system may be increased, and even though the reaction proceeds at a high temperature (about 60 ° C. to 120 ° C.) during the oligomerization reaction, the catalyst system is structurally durable and has no change in physical properties. This can be maintained continuously.
  • the activity of the catalyst system prepared under the activation conditions may be about 100,000 kg / molCr / hr or more in a batch process, preferably 120,000 kg / molCr / hr or more, more preferably 150,000 kg / molCr / hr or more And at least about 100,000 kg / molCr in a continuous process, preferably at least 120,000 kg / molCr, and more preferably at least 150,000 kg / molCr.
  • the activity of the catalyst system may be maintained without deterioration even at a high temperature, and the activity deterioration rate may be less than 6% due to the increase in the oligomerization reaction temperature.
  • the oligomerization reaction temperature is 30 to 150 ° C. and 60 ° C. To 130 ° C, or 70 to 110 ° C.
  • the promoter is mixed in the organic solvent and introduced into the reactor, the catalyst composition is introduced with the reactant olefin, directly into the reactor, or the promoter In the middle of the incoming line is introduced into the reactor.
  • the promoter and catalyst composition are introduced into the reactor in a separate line separately, and the reactants are also introduced directly into the reactor in a separate line. Accordingly, it may be possible to maintain activity even at high temperatures as the time for contacting the reactants is shortened.
  • the oligomerization catalyst system has a molar ratio of the ligand compound: transition metal compound: promoter about 0.5: 1: 1 to about 10: 1: 10,000 days. And preferably from about 0.5: 1: 100 to about 5: 1: 3,000.
  • the oligomerization catalyst system according to the present specification is not limited thereto.
  • the ethylene line valve was shut off, the reactor was cooled to zero using a dry ice / acetone bath, slowly unvented ethylene was vented and 1 ml of nonane (GC internal standard) was added. Thereafter, a small portion of the liquid portion of the reactor was quenched with water, and the organic layer was filtered with a PTFE syringe filter to perform GC analysis.
  • GC internal standard nonane
  • Example 1 the reaction was carried out with the temperature of the oligomerization reaction at 70 ° C, the ratio of 1-hexene to 1-octene was about 1: 3, and the reaction temperature was 70 ° C.
  • the reaction was carried out gradually increasing from to 110 ° C., the production ratio of 1-hexene and 1-octene was changed with tendency, and the weight ratio of 1-hexene and 1-octene was about 1: 3 to about 1: It was confirmed that gradually changes to about 0.9.
  • the production rate of 1-hexene and 1-octene was controlled by the mixing ratio of 1-hexene production catalyst and 1-octene production catalyst, so that the production rate could not be easily changed when the plant was in operation.
  • There are many problems such as by-products generated by the action, lowering the activity or overactivation, but in the oligomerization method provided herein, the production of 1-hexene and 1-octene by controlling only the temperature of the oligomerization reaction
  • the ratio can be controlled simply, which can be controlled from the intermediate or initial setting at which the process is running, and it has been found to have significant advantages.
  • a 600 ml Parr reactor was prepared and vacuumed at 180 for 2 hours, after which the inside was replaced with argon and the temperature was lowered to 60, which was to react the temperature. Thereafter, 140 g of methylcyclohexane was injected into the reactor, and 6.6 ml (2.5 umol) of the premixed solution (oligomerization catalyst system) were injected into the reactor. Immediately after injection, the valve of the ethylene line set to 60 bar was opened to fill the reactor with ethylene, and then stirred for 15 minutes at a reaction temperature of 60 ° C. at 500 rpm.
  • the ethylene line valve was shut off, the reactor was cooled to zero using a dry ice / acetone bath, slowly unvented ethylene was vented and 1 ml of nonane (GC internal standard) was added. Thereafter, a small portion of the liquid portion of the reactor was quenched with water, and the organic layer was filtered with a PTFE syringe filter to perform GC analysis.
  • GC internal standard nonane
  • the preparation, oligomerization, GC analysis and weight measurement of the polymer were carried out in the same manner as in Example 1 except that the activation temperature was 60 ° C.
  • the preparation, oligomerization, GC analysis and weighing of the obtained polymer were carried out in the same manner as in Example 1 except that the oligomerization reaction temperature was 80 ° C.
  • the catalyst system was prepared, oligomerized, GC analyzed and obtained in the same manner as in Example 1 except that the activation temperature was 80 ° C and the oligomerization reaction temperature was 80 ° C. Weighing of the polymer was performed.
  • cyclohexane and ethylene were continuously added to the 2 L CSTR reactor at a flow rate of 1.2 kg / hr and 1.75 kg / hr, respectively, so that the pressure was maintained at 60 bar.
  • the ligand and Cr (acac) 3 prepared in Preparation Example were added at a molar ratio of 0.55: 1, and then a catalyst solution diluted to 0.05 m in cyclohexane was introduced into the reactor at a rate of 5.8 ml / min.
  • a solution in which the promoter MMAO was diluted in cyclohexane was continuously added to the amount of the catalyst solution so that the Al: Cr ratio was 1200: 1.
  • the reaction temperature was adjusted to 60 ° C. by continuously adding water at room temperature to the reactor jacket. Under the condition that the reaction proceeds stably for 2 hours, the discharged reactant was collected for 1 hour, 5 mL of water was quenched with water, the organic layer was filtered with a PTFE syringe filter, and GC analysis was performed.
  • Example 10 The results of Example 10 are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 명세서는 올레핀 올리고머화 방법에 관한 것으로, 구체적으로 리간드 화합물, 전이금속 화합물 및 조촉매를 포함하는 올리고머화 촉매계의 존재 하에, 1-헥센 및 1-옥텐을 포함하는 생성물 내에서 1-헥센 대 1-옥텐의 중량비가 기결정된 값을 갖도록 반응온도를 제어하여 올레핀을 다량화 반응시키는 단계;를 포함하고, 상기 생성물 내 1-헥센 대 1-옥텐의 중량비의 기결정된 값은 1:0.5 내지 1:7의 범위에서 선택되는 것인 올레핀 올리고머화 방법이며, 상기 방법을 통해 원하는 비율의 1-헥센 및 1-옥텐을 생산할 수 있다.

Description

올레핀 올리고머화 방법
관련출원과의 상호인용
본 출원은 2015년 02월 12일자 한국 특허 출원 제10-2015-0021784호 및 2015년 09월 03일자 한국 특허 출원 제10-2015-0125097호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 명세서는 올레핀의 다량화 반응온도를 제어하여 1-헥센 및 1-옥텐의 생성비율을 조절할 수 있는 올레핀 올리고머화 방법에 관한 것이다.
선형 알파-올레핀(Linear alpha-olefin)은 공단량체, 세정제, 윤활제, 가소제 등에 쓰이는 중요한 물질로 상업적으로 널리 사용되며, 특히 1-헥센과 1-옥텐은 선형 저밀도 폴리에틸렌(LLDPE)의 제조 시 폴리에틸렌의 밀도를 조절하기 위한 공단량체로서 많이 사용된다.
종래의 LLDPE(Linear Low-Density Polyethylene, 선형 저밀도 폴리에틸렌)의 제조 과정에는 에틸렌과 함께 폴리머 골격(polymer backbone)에 분지(branch)를 형성하여 밀도(density)를 조절하기 위하여 알파-올레핀, 예를 들어 1-헥센, 1-옥텐과 같은 공단량체와 공중합이 이루어지도록 하였다.
따라서, 공단량체의 함량이 높은 LLDPE의 제조를 위해서는 공단량체의 가격이 제조 비용의 큰 부분을 차지한다는 문제점이 있었다. 이러한 문제점을 해결하기 위하여 다양한 방법에의 시도가 있어 왔다.
또한, 알파-올레핀은 종류에 따라 응용 분야나 시장 규모가 다르기 때문에 특정 올레핀을 선택적으로 생산할 수 있는 기술은 상업적으로 크게 중요하며, 최근 선택적인 에틸렌 올리고머화(ethylene oligomerization)를 통해 1-헥센 또는 1-옥텐을 높은 선택도로 제조하는 크롬촉매 기술에 대한 연구가 많이 이루어지고 있다.
1-헥센 또는 1-옥텐을 제조하는 기존의 상업적 제조 방법으로는 쉘 케미칼(Shell Chemical)의 SHOP 프로세스(SHOP process), 쉐브론 필립스(Chevron Philips)의 Ziegler 프로세스(Ziegler Process) 등이 있으며, 이를 이용하면 탄소수 C4 ~ C20의 넓은 분포의 알파-올레핀을 생성할 수 있다.
에틸렌의 삼량체화 촉매로서 일반식 (R1)(R2)X-Y-X(R3)(R4)의 리간드를 사용한 크롬계 촉매가 제시되었다. 상기 식에서 X는 인, 비소 또는 안티몬이고, Y는 -N(R5)-와 같은 연결 그룹이며, R1, R2, R3 및 R4 중 적어도 하나가 극성 또는 전자 수여 치환체를 가진다.
또한 촉매 조건하에 1-헥센에 대해 촉매 활성을 나타내지 않는 리간드로서 R1, R2, R3 및 R4 중 적어도 하나에 극성 치환체를 가지지 않는 화합물인 (o-에틸페닐)2PN(Me)P(o-에틸페닐)2에 대한 연구가 있어 왔다(Chem. Commun., 2002, 858).
하지만 상술한 종래기술의 헤테로원자를 포함하는 리간드는 1-옥텐 또는 1-헥센 제조 반응시 반응 중 일관되게 지속되는 다량화 반응 활성과 높은 선택성에 대한 요구가 여전히 지속되고 있는 실정이다.
[선행기술문헌]
[비특허문헌]
1. Chem . Commun ., 2002, 858
본 명세서는 올레핀의 다량화 반응의 온도를 제어함으로써, 1-헥센 및 1-옥텐의 생성비율을 미리 결정된 원하는 값으로 생산할 수 있는 올레핀 올리고머화 방법을 제공하고자 하는 것이다.
상기한 목적을 달성하기 위하여, 본 명세서의 일 실시예에 따르면, 리간드 화합물, 전이금속 화합물 및 조촉매를 포함하는 올리고머화 촉매계의 존재 하에, 1-헥센 및 1-옥텐을 포함하는 생성물 내에서 1-헥센 대 1-옥텐의 중량비가 기결정된 값을 갖도록 반응온도를 30 내지 150℃의 범위에서 제어하여 올레핀을 다량화 반응시키는 단계;를 포함하고, 상기 생성물 내 1-헥센 대 1-옥텐의 중량비의 기결정된 값은 1:0.5 내지 1:7의 범위에서 선택되는 것인 올레핀 올리고머화 방법이 제공된다.
본 명세서의 다른 실시예에 따르면, 상기 중량비의 기결정된 값은 1:0.9 내지 1:6.6 인 것일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 반응온도가 증가할수록 생성물 내 1-헥센의 비율이 증가되는 것일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 반응온도는 60 내지 130℃의 범위에서 제어될 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 반응온도 전 범위에서, 생성물 총량에 대한 1-헥센 및 1-옥텐의 선택도는 80 중량% 이상일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 반응온도 전 범위에서, 상기 촉매계는 온도 상승에 따른 활성 저하율이 6% 미만일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 반응온도 전 범위에서의 촉매계의 활성은 배치식 공정인 경우 100,000 kg/molCr/hr 이상일 수 있고, 연속식 공정인 경우 100,000 kg/molCr 이상일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 리간드 화합물은 하기 화학식 1로 표시되는 다이포스핀 모이어티를 함유할 수 있다.
[화학식 1]
Figure PCTKR2016001150-appb-I000001
상기 화학식 1에서, 상기 A는 N, As 또는 Sb이며, 상기 R1 내지 R4는 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기, 헤테로하이드로카빌기 또는 하이드로카빌헤테릴기이다.
본 명세서의 다른 실시예에 따르면, 상기 리간드 화합물은 하기 화학식 2로 표시되는 다이포스핀 모이어티를 2 이상 포함할 수 있고, 상기 2 이상의 다이포스핀 모이어티 사이를 연결하는 연결기는, 하이드로카빌기로서 다이포스핀 모이어티간 최단거리의 탄소수가 2 내지 10개일 수 있다.
[화학식 2]
Figure PCTKR2016001150-appb-I000002
상기 화학식 2에서, 상기 A, R1 내지 R4는 상기 화학식 1과 동일하고, 상기 *는 2 이상의 다이포스핀 모이어티를 연결하는 연결기이다.
본 명세서의 다른 실시예에 따르면, 상기 연결기는, 탄소수 1 내지 20의 지방족 그룹, 탄소수 2 내지 20의 헤테로 지방족 그룹, 탄소수 3 내지 20의 지환족 그룹, 탄소수 3 내지 20의 헤테로 지환족 그룹, 탄소수 6 내지 20의 방향족 그룹 및 탄소수 6 내지 20의 헤테로 방향족 그룹으로 이루어진 군에서 선택된 1 종 이상의 그룹이 결합된 것이고, 탄소수 1 내지 20의 지방족 그룹, 탄소수 2 내지 20의 헤테로 지방족 그룹, 탄소수 3 내지 20의 지환족 그룹, 탄소수 3 내지 20의 헤테로 지환족 그룹, 탄소수 6 내지 20의 방향족 그룹 및 탄소수 6 내지 20의 헤테로 방향족 그룹으로 이루어진 군에서 선택된 1 종 이상의 그룹을 치환기로 가지는 것일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 리간드 화합물은 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2016001150-appb-I000003
상기 화학식 3에서, 상기 R1 내지 R4는 상기 화학식 1과 동일하며, 상기 R5는 탄소수 1 내지 20의 알킬기일 수 있다.
상기 R5가 메틸기인 경우, 상기 R6는 탄소수 2 또는 3의 알킬기, 알케닐기, 헤테로알킬기, 헤테로알케닐기 또는 이들의 헤테릴기인 직쇄 그룹; 탄소수 4 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기; 탄소수 6 내지 20의 아릴기, 헤테로아릴기 또는 이들의 헤테릴기; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;일 수 있다.
상기 R5가 탄소수 2 내지 20의 알킬기인 경우, 상기 R6는 탄소수 2 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기; 탄소수 6 내지 20의 아릴기 또는 헤테로아릴기 또는 이들의 헤테릴기; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;일 수 있다.
상기 R7 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬기, 알케닐기, 아릴알킬기, 또는 아릴알케닐기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 또는 아릴시클로알케닐기; 탄소수 6 내지 20의 아릴기; 또는, 탄소수 7 내지 20의 알킬아릴기;일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 전이금속 화합물은 유기크롬 화합물을 포함할 수 있고, 상기 유기크롬 화합물은 크롬(III) 아세틸 아세토네이트, 삼염화 크롬 트리스 테트라하이드로퓨란, 크롬(III)-2-에틸헥사노에이트, 크롬(III) 트리스 (2,2,6,6-테트라메틸-3,5-헵테인디오네이트), 크롬(III) 벤조일 아세토네이트, 크롬(III) 헥사플루오로-2,4-펜테인디오네이트 및 크롬(III) 아세테이트 하이드록사이드로 이루어진 군에서 선택된 1종 이상일 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 조촉매는 하기 화학식 4 내지 6으로 표시되는 화합물들로 이루어진 군에서 선택된 1종 이상일 수 있다.
[화학식 4]
-[Al(R5)-O]c-
상기 화학식 4에서,
R5은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고, c는 2 이상의 정수이며,
[화학식 5]
D(R6)3
상기 화학식 5에서,
D는 알루미늄 또는 보론이고, R6는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 할로겐, 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
[화학식 6]
[L-H]+[Q(E)4]-
상기 화학식 6에서,
L은 중성 루이스 염기이고, [L-H]+는 브론스테드 산이며, Q는 +3 형식 산화 상태의 붕소 또는 알루미늄이고, E는 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌, 알콕시 작용기 또는 페녹시 작용기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
본 명세서의 다른 실시예에 따르면, 상기 다량화 반응 압력은 1 내지 300 bar일 수 있다.
본 명세서에 따른 올레핀 올리고머화 방법은 기존의 혼성 촉매를 이용함으로써1-헥센 및 1-옥텐의 생성비율을 조절하는 것과는 달리, 다량화 반응의 온도를 제어함으로써 1-헥센 및 1-옥텐의 생성비율을 조절할 수 있다. 이에 따라 혼성 촉매를 사용함에 따라 동반되는 부반응이 저감될 수 있고, 반응온도만을 제어함으로써 시장의 수요 또는 의도하는 바에 따라 공정 구동 중에도 1-헥센 및 1-옥텐의 비율을 조절할 수 있다는 장점이 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서 전체에서 '촉매계', '촉매 조성물' 또는 '촉매 시스템' 이라 함은 전이금속 소스, 리간드 화합물 및 조촉매를 포함하는 3 성분, 또는 대안적으로, 전이금속 화합물 및 조촉매의 2 성분이 동시에 또는 임의의 순서로 첨가되어 활성이 있는 촉매 조성물로 수득될 수 있는 상태의 것을 의미한다. 상기 촉매 시스템의 3 성분 또는 2 성분은 용매 및 단량체의 존재 또는 부존재 하에 첨가될 수 있으며, 상기 세 용어는 혼용될 수 있다.
본 명세서에서 사용하는 용어 '올리고머화'란, 올레핀이 소중합 되는 것을 의미한다. 중합되는 올레핀의 개수에 따라 삼량화 (trimerization), 사량화 (tetramerization)라고 불리며, 이를 총칭하여 다량화 (multimerization)라고 한다. 특히 본 명세서에서는 에틸렌으로부터 LLDPE의 주요 공단량체인 1-헥센 및 1-옥텐을 선택적으로 제조하는 것을 의미한다.
본 명세서에서 하이드로카빌기는 탄소와 수소로만 이루어진 모든 화합물을 의미하며, 예를 들면, 알킬기, 아릴기, 알케닐기, 시클로알킬기 등이 있고, 이러한 하이드로카빌기를 의미하는 용어의 사용에 있어서 특별한 언급이 없는 한, 직쇄와 분지쇄 모두를 의미할 수 있으며, 비치환형 및 치환형 모두를 의미할 수 있다. 예를 들면, 탄소수 1 내지 20의 알킬기인 그룹이라 함은 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, 펜틸기, 이소펜틸기, 네오펜틸기 등을 의미할 수 있고, 탄소수 6 내지 20의 아릴기라 함은, 예컨대, 페닐기, 나프틸기, 안트라세닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 알킬아릴기는 1이상의 알킬기를 치환기로 갖는 아릴기를 의미하고, 아릴알킬기는 1이상의 아릴기를 치환기로 갖는 알킬기를 의미한다.
본 명세서에서 헤테로 원소는 N, O, S, P를 의미하고, 헤테로하이드로카빌기는 헤테로 원자가 1이상 포함된 하이드로카빌기를 의미할 수 있다. 즉, 헤테로알킬기는 알킬기의 구성 탄소 중 어느 하나의 탄소가 헤테로 원자로 치환되거나, 치환기로 헤테로 원자를 포함하는 것을 의미할 수 있고, 헤테로아릴기는 피리딜기와 같이 방향족 고리의 탄소 중 어느 하나가 헤테로 원자로 치환된 것을 의미할 수 있다. 이 외 헤테로아릴알킬기, 헤테로알킬아릴기, 헤테로알케닐아릴기 등의 경우도 마찬가지일 수 있다.
상기 헤테로하이드로카빌기의 경우에는 작용기화 되는 연결점이 탄소이지만, '하이드로카보헤테릴기', '오가노헤테릴기', '이들의 헤테릴기' 등 '헤테릴기'라고 함은 작용기화 되는 연결점이 헤테로 원자인 경우를 의미할 수 있다.
올레핀 올리고머화 방법
본 명세서의 일 실시예에 따르면, 리간드 화합물, 전이금속 화합물 및 조촉매를 포함하는 올리고머화 촉매계의 존재 하에, 1-헥센 및 1-옥텐을 포함하는 생성물 내에서 1-헥센 대 1-옥텐의 중량비가 기결정된 값을 갖도록 반응온도를 50 내지 150℃의 범위에서 제어하여 올레핀을 다량화 반응시키는 단계;를 포함하고, 상기 생성물 내 1-헥센 대 1-옥텐의 중량비의 기결정된 값은 1:0.5 내지 1:7의 범위에서 선택되는 것인 올레핀 올리고머화 방법이 제공된다.
기존에는 올리고머화에 있어서, 주생성물인 1-헥센과 1-옥텐을 동시에 원하는 비율로 얻기 위하여, 각각의 화합물을 생산하는 데에 적합한 촉매를 두 종류 선택하여 상기 두 촉매를 혼성화함으로써 두 종의 알파 올레핀의 생성 비율을 조절하는 방법을 이용하였다.
그러나, 본 명세서의 일 실시예에 따른 올레핀 올리고머화 방법은 주생성물인 알파 올레핀의 비율을 조절하는 방법으로서 반응온도의 제어라는 수단을 선택하여 반응온도를 제어함에 따라 원하는 비율의 1-헥센 및 1-옥텐을 생산할 수 있다. 따라서, 혼성 촉매를 사용함에 따른 부반응의 가능성 및 촉매 활성 저하의 문제 등이 방지될 수 있고, 반응온도만을 제어함으로써 손쉽게 원하는 비율의 1-헥센 및 1-옥텐을 얻을 수 있어 공정상의 편의성 및/또는 경제성이 크게 증대될 수 있다.
구체적으로, 상기 제어하는 반응온도의 범위는 50 내지 150℃일 수 있고, 또는 60 내지 130℃의 범위일 수 있으며, 또는 70 내지 110℃의 범위일 수 있다. 상기 온도 범위에서 반응온도를 제어함으로써, 올리고머화 반응 전에 1-헥센 및 1-옥텐의 원하는 중량비를 결정하여, 그 기결정된 값의 1-헥센 및 1-옥텐을 얻을 수 있다. 이 때, 상기 미리 결정될 수 있는 1-헥센 및 1-옥텐의 중량비는 1:0.5 내지 1:7의 범위일 수 있으며, 또는 1:0.9 내지 1:6.6의 범위일 수 있다.
또한, 반응온도가 50 내지 60℃일 경우 1-헥센 및 1-옥텐의 중량비는 약 1:2 내지 1:7의 범위일 수 있고, 바람직하게는 1:3 내지 1:7일 수 있다. 다시 말해서, 반응온도를 약 50 내지 60℃로 제어할 경우, 1-헥센 보다는 1-옥텐이 더 과량으로 생성될 수 있다. 그리고, 반응온도를 더욱 상승시킬 경우에는 1-헥센의 비율이 더 커질 수 있고, 반응온도가 80℃를 초과하더라도 촉매계의 활성이 유지되어, 약 150℃까지 1-헥센 및 1-옥텐의 생성비율을 온도 제어만으로 조절할 수 있다.
즉, 본 명세서에 따른 촉매계를 이용함으로써, 광범위한 온도 범위, 특히 고온에서도 촉매계의 활성이 유지될 수 있으며, 그에 따라 50 내지 150℃와 같이, 넓은 온도 범위에서, 1-헥센 및 1-옥텐의 비율을 조절할 수 있다. 따라서, 더욱 다양한 중량비를 갖는 선형 알파 올레핀 혼합 생성물을 제조할 수 있으며, 촉매계가 이러한 온도 범위에서 활성을 유지함에 따라 1-헥센 및 1-옥텐의 총량(즉, 선형 알파 올레핀 선택도)이 유지될 수 있는 것이다.
또한, 이처럼 촉매계의 활성이 넓은 온도범위에서 유지됨으로써, 생성되는 1-헥센 및 1-옥텐의 생성물 총량에 대한 선택도가 반응온도 전 범위에서 80 중량% 이상으로 유지될 수 있다.
이러한 1-헥센 및 1-옥텐의 생성비율을 반응온도를 제어하여 조절하는 방법을 올레핀 올리고머화 방법으로의 적용하는 것은 다양한 형태로 이루어질 수 있고, 구체적으로 실제 적용 가능예를 들어보면 다음과 같을 수 있다.
우선, 반응온도에 따라 생산되는 1-헥센 및 1-옥텐의 중량비에 대한 결과 값을 실험을 여러 차례 반복하여 얻어, 특정 반응온도에서 생성되는 1-헥센 및 1-옥텐의 평균적인 비율에 대한 데이터를 분류한 후, 이와 같이 분류된 데이터로 라이브러리를 구축한다. 그리고, 알파 올레펜 양산시, 상기 반복된 실험을 통해 미리 구축된 라이브러리를 이용하여 다량화 반응의 온도를 제어하고, 수요 등 여러 가지 조건에 따라 의도된 값으로서 미리 결정된 1-헥센 및 1-옥텐의 생성 비율을 얻을 수 있다.
또한, 상기 라이브러리를 구축해 놓은 후 공정을 수행하는 것과는 달리, 공정 수행 중에 생산되는 1-헥센 및 1-옥텐의 비율을 보고 원하는 방향으로 비율 변화를 위해 반응온도를 그때 그때 변화시키는 방법을 적용할 수 있다. 반응온도의 제어에 따른 1-헥센 및 1-옥텐의 생산비율의 변화는 올리고머화에 있어서 다량화 반응의 온도가 증가할수록 1-헥센의 생산비율이 증가하는 경향성을 보이고 있기 때문에, 상기와 같은 방법이 실제로 적용될 수 있다.
1-헥센 및 1-옥텐의 비율을 조절하는 수단으로써 반응온도를 제어하는 방법이라면 본 명세서에 따른 올레핀 올리고머화 방법에 적용될 수 있으며, 실제로 이러한 방법이 적용되는 것에 있어서는 전술한 두 가지 방법으로 제한되는 것은 아니다.
상기 올리고머화 촉매계 존재 하에 올레핀을 다량화 반응시키는 단계를 포함하는 올레핀 올리고머의 제조 방법은 올레핀 올리고머화용 촉매계를 사용하여 반응의 활성도 및 선택도가 향상된 올레핀의 올리고머화 방법을 제공할 수 있다. 이 때, 상기 올레핀은 에틸렌을 포함할 수 있다.
본 명세서에 따른 올레핀 올리고머화 방법은, 상기 올리고머화 촉매계와 통상적인 장치 및 접촉기술을 이용하여 불활성 용매의 존재 또는 부재 하에서 균질 액상 반응, 촉매 시스템이 일부 용해되지 않거나 전부 용해되지 않는 형태인 슬러리 반응, 2상 액체/액체반응, 또는 생성물 올레핀이 주매질로 작용하는 벌크상 반응 또는 가스상 반응으로 가능하며, 균질 액상 반응이 바람직할 수 있다.
상기 올레핀 올리고머화 방법은, 촉매 화합물 및 활성제와 반응하지 않는 임의의 불활성 용매 중에서 수행될 수 있다. 적합한 불활성 용매에는 벤젠, 톨루엔, 크실렌, 큐멘, 헵탄, 사이클로헥산, 메틸사이클로헥산, 메틸사이클로펜탄, 헥산, 펜탄, 부탄, 이소부탄 등이 있으며, 이에 한정되지 않는다. 이 때 상기 용매는 소량의 알킬알루미늄으로 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용할 수 있다.
상기 올레핀 올리고머화 반응은 약 1 bar 내지 약 300 bar의 압력에서, 바람직하게는 약 2 bar 내지 약 150 bar의 압력에서 수행될 수 있다.
상기 압력 조건의 범위는 올레핀을 다량화 반응 시키는 호적의 조건일 수 있으며, 상기 압력 범위 내에서 올레핀을 다량화 시킬 때, 원하는 알파-올레핀에 대해 선택도가 우수할 수 있고, 부산물의 양이 저감될 수 있으며, 공정 운용 상 효율을 상승시키고 비용을 절감할 수 있다.
올리고머화 촉매계
리간드 화합물
본 명세서의 다른 일 실시예에 따르면, 상기 리간드 화합물은 하기 화학식 1로 표시되는 다이포스핀 모이어티를 함유할 수 있다.
[화학식 1]
Figure PCTKR2016001150-appb-I000004
상기 화학식 1에서, 상기 A는 N, As 또는 Sb이며, 상기 R1 내지 R4는 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기, 헤테로하이드로카빌기 또는 하이드로카빌헤테릴기이다.
또한, 상기 화학식 1로 표시되는 다이포스핀 모이어티를 함유하는 리간드 화합물은 하기 화학식 2로 표시되는 다이포스핀 모이어티를 2 이상 포함하는 것일 수 있다.
[화학식 2]
Figure PCTKR2016001150-appb-I000005
상기 화학식 2에서, 상기 A, R1 내지 R4는 상기 화학식 1과 동일하고, 상기 *는 2 이상의 다이포스핀 모이어티를 연결하는 연결기이다.
나아가, 상기 화학식 2로 표시되는 다이포스핀 모이어티가 2 개 이고, 상기 A가 질소(N)일 경우라면 상기 리간드 화합물은 하기 화학식 2a로 표시되는 화합물을 포함할 수 있다.
[화학식 2a]
Figure PCTKR2016001150-appb-I000006
상기 화학식 2a에서, R1 내지 R4와 R1` 내지 R4`은, 각각 상기 화학식 1 또는 2의 R1 내지 R4와 동일한 그룹에서 선택될 수 있고, 상기 L은 두 다이포스핀 모이어티를 연결하는 연결기일 수 있다.
상기 화학식 1, 2 및 2a에서의 R1 내지 R4와 상기 화학식 2a에서의 R1` 내지 R4`를 특별히 제한하는 것은 아니지만, 예를 들면, 탄소수 6 내지 20의 아릴기, 헤테로아릴기 또는 아릴헤테릴기; 또는 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기, 알킬헤테로아릴기, 또는 알킬아릴헤테릴기;일 수 있으며, 이러한 치환기가 선택되는 경우에는 촉매의 활성이나 선형 알파올레핀의 선택도에 긍정적인 영향을 줄 수 있다.
상기 연결기(L)는 2 이상의 다이포스핀 모이어티 사이를 연결하는 연결기는 다양한 구조의 하이드로카빌기일 수 있고, 다이포스핀 모이어티간 최단거리의 탄소 원자 수는 2 내지 30개일 수 있다. 즉, 상기 다이포스핀 모이어티 2 개 또는 3개 이상의 사이에 이들을 연결하는 하이드로카빌기가 존재하는 것이며, 상기 하이드로카빌기 내에서 다이포스핀 모이어티 간에 최단거리로 연결되는 탄소 원자의 수는 2 내지 10개의 범위일 수 있다.
구체적으로 상기 연결기는, 탄소수 2 내지 20의 지방족 그룹, 탄소수 2 내지 20의 헤테로 지방족 그룹, 탄소수 3 내지 20의 지환족 그룹, 탄소수 3 내지 20의 헤테로 지환족 그룹, 탄소수 6 내지 20의 방향족 그룹 및 탄소수 6 내지 20의 헤테로 방향족 그룹으로 이루어진 군에서 선택된 1 종 이상의 그룹이 결합된 것일 수 있고, 이를 만족하는 것이라면 그 구조는 특별히 제한되지 않는다.
또한, 상기 그룹들 중에서 선택된 어느 하나의 그룹 혹은 그룹들 중에서 선택된 2 이상이 결합된 그룹이 주쇄로 결정되면, 상기 연결기의 주쇄는 다양한 구조의 치환기를 가질 수 있다.
구체적으로 예를 들면, 상기 연결기의 치환기는, 탄소수 1 내지 20의 지방족 그룹, 탄소수 2 내지 20의 헤테로 지방족 그룹, 탄소수 3 내지 20의 지환족 그룹, 탄소수 3 내지 20의 헤테로 지환족 그룹, 탄소수 6 내지 20의 방향족 그룹 및 탄소수 6 내지 20의 헤테로 방향족 그룹으로 이루어진 군에서 선택된 1 종 이상의 그룹일 수 있고, 이들 치환기는 상기 주쇄에 1개 또는 2개 이상이 결합될 수 있으며, 그 위치에 대해서는 연결기의 유연성 측면에서 다이포스핀 모이어티에서 먼 쪽이 유리할 수 있으나, 치환기의 결합 위치에 대해서는 특별히 제한되는 바는 없다.
비제한적인 예로, 상기 연결기(L)는 상기 화학식 1로 표시되는 둘 이상의 그룹 사이를 각각 2 내지 30개의 탄소 원자로 연결하는 탄소수 2 내지 20의 지방족 그룹(예를 들어, 알킬렌 그룹, 알케닐렌 그룹, 알키닐렌 그룹, 또는 상기 지방족 그룹에 헤테로 원자가 포함된 헤테로 지방족 그룹), 탄소수 2 내지 20의 지환족 그룹(예를 들어, 사이클로알킬렌 그룹, 사이클로알케닐렌 그룹, 사이클로알키닐렌 그룹, 또는 상기 지환족 그룹에 헤테로 원자가 포함된 헤테로 지환족 그룹), 또는 상기 지방족(또는 헤테로 지방족) 그룹과 지환족(또는 헤테로 지환족) 그룹이 결합된 그룹을 갖는 화합물일 수 있다.
상술한 연결기의 비제한적인 예로, 다음과 같은 구조를 갖는 하이드로카빌기를 들 수 있다. 아래의 예시에서 상기 화학식 1로 표시되는 다이포스핀 모이어티는 편의상 [A], [A'] 또는 [A"]로 표시되었으며, R1 내지 R4로 선택되는 그룹에 따라서, [A], [A'] 및 [A"] 는 서로 같거나 다를 수 있다.
(i) 복수의 A 사이를 2 또는 3 개의 탄소 원자로 연결하는 그룹을 갖는 화합물:
Figure PCTKR2016001150-appb-I000007
(ii) 복수의 A 사이를 4 개의 탄소 원자로 연결하는 그룹을 갖는 화합물:
Figure PCTKR2016001150-appb-I000008
(iii) 복수의 A 사이를 5 개 이상의 탄소 원자로 연결하는 그룹을 갖는 화합물:
Figure PCTKR2016001150-appb-I000009
이와 같이, 2 이상의 화학식 1로 표시되는 다이포스핀 모이어티가 4개의 탄소 원자로 연결되는 경우, 4개의 탄소 원자로 연결하는 그룹은 상기 2 이상의 다이포스핀 모이어티의 크롬 복합체(complex) 간의 상호작용이 원활하도록 유연한 지방족 그룹을 포함하는 것이 바람직할 수 있다.
즉, 2 이상의 화학식 1로 표시되는 다이포스핀 모이어티가 4개의 탄소 원자로 연결된다 하더라도, 시클로헥산의 1번과 4번 위치에 다이포스핀 모이어티가 연결된 경우와 같이, 지방족 그룹을 포함하지 않고, 지환족 그룹 또는 방향족 그룹만을 포함하여 연결되는 경우, 상호작용이 극히 제한되어 단위 PNP-Cr 당 활성이 크게 낮아지고, 1-헥센 및 1-옥텐과 같은 낮은 탄소 수의 알파-올레핀에 대한 선택도가 저하될 수 있다.
한편, 상기 화학식 2 또는 2a로 표시되는 리간드 화합물은 하기 반응식 1과 같은 방법으로 합성할 수 있으나, 이에 한정되는 것은 아니다.
[반응식 1]
Figure PCTKR2016001150-appb-I000010
상기 반응식 1에서, A는 각각 독립적으로 같거나 다르며 상기 화학식 1, 2, 또는 2a의 R1내지 R4 의 정의와 동일하고, R은 2 내지 8개의 탄소 원자로 연결되는 연결기로서, 상기 화학식 2 또는 2a에서 정의한 바와 같으며, X는 할로겐이다.
본 명세서의 다른 일 실시예에 따르면, 상기 리간드 화합물은 하기 화학식 3으로 표시되는 화합물을 포함할 수도 있다.
[화학식 3]
상기 화학식 3에서, 상기 R1 내지 R4는 각각 독립적으로 탄소수 6 내지 20의 아릴기 또는 탄소수 7 내지 20의 알킬아릴기이며, 상기 R5는 탄소수 1 내지 20의 알킬기일 수 있다.
상기 R5가 메틸기인 경우, 상기 R6는 탄소수 2 또는 3의 알킬기, 알케닐기, 헤테로알킬기, 헤테로알케닐기 또는 이들의 헤테릴기인 직쇄 그룹; 탄소수 4 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기; 탄소수 6 내지 20의 아릴기, 헤테로아릴기 또는 이들의 헤테릴기; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;일 수 있다.
또한, 상기 R5가 메틸기인 경우, 바람직하게 상기 R6는 탄소수 2 내지 20의 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기; 탄소수 3 내지 20의 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기; 탄소수 6 내지 20의 아릴기, 헤테로아릴기 또는 이들의 헤테릴기; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;일 수 있다.
상기 R5가 탄소수 2 내지 20의 알킬기인 경우, 상기 R6는 탄소수 2 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기; 탄소수 6 내지 20의 아릴기 또는 헤테로아릴기 또는 이들의 헤테릴기; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;일 수 있다.
상기 R7 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬기, 알케닐기, 아릴알킬기 또는 아릴알케닐기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기 또는 아릴시클로알케닐기; 탄소수 6 내지 20의 아릴기; 또는, 탄소수 7 내지 20의 알킬아릴기;일 수 있다.
상술한 바와 같이, 상기 화학식 3으로 표시되는 리간드 화합물은 일 예로, 아닐린 화합물의 2번 및 6번 탄소가 상기 R5 및 R6으로 치환된 화합물일 수 있고, 2번과 6번 탄소에 치환되는 그룹에 따라 리간드 화합물 및 이를 포함하는 올리고머화 촉매계의 특성이 변화될 수 있다.
상기 2번 탄소 위치에 메틸기가 치환될 경우, 비대칭 구조를 이룰 수 있도록 6번 탄소 위치에는 2번 탄소 위치에 치환된 그룹과는 다른 그룹이 치환될 수 있다.
비제한적인 예로, 탄소수 2 또는 3의 알킬기, 알케닐기, 헤테로알킬기, 헤테로알케닐기 또는 이들의 헤테릴기인 직쇄 그룹이 치환될 수 있고; 탄소수 4 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기가 치환될 수 있다.
또한, 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기가 치환될 수 있고; 탄소수 6 내지 20의 아릴기, 헤테로아릴기 또는 이들의 헤테릴기가 치환될 수 있으며; 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;가 치환될 수 있다.
또한, 2번 탄소 위치에 탄소수가 2 내지 20의 알킬기가 치환될 경우, 6번 탄소 위치에는 2번 탄소 위치에 치환된 치환기와 동일하거나 다른 그룹이 치환될 수 있다.
비제한적인 예로, 탄소수 2 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기가 치환될 수 있고; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기가 치환될 수 있으며; 탄소수 6 내지 20의 아릴기 또는 헤테로아릴기 또는 이들의 헤테릴기가 치환될 수 있고; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;가 치환될 수 있다.
상기와 같은 아닐린기의 치환 그룹들의 구조적인 특징으로 인하여, 상기 리간드 화합물을 포함하는 촉매계는 전이 금속 주위의 전자적, 입체적 환경 등의 여러 가지 조건에 따라 PNP-Cr이 용이하게 상호 작용하여, 높은 올리고머화 반응 활성을 나타낼 수 있으면서도, 특히 1-헥센, 1-옥텐 등에 대한 높은 선택도를 나타낼 수 있고, 부수적으로는 1-헥센의 증가 및 1-헥센 이성질체의 감소에 따라 분리가 불필요할 수 있음에 따른 에너지 절감의 효과도 가져올 수 있다.
상기 리간드 화합물은 하기 반응식 2와 같은 방법으로 합성할 수 있으나, 이에 한정되는 것은 아니다.
[반응식 2]
Figure PCTKR2016001150-appb-I000012
상기 반응식 2에서, G1은 상기 화학식 3의 R5 내지 R9를 갖는 페닐기일 수 있고, G2 및 G3는 각각 상기 화학식 3의 R1 내지 R4일 수 있으며, X는 할로겐기일 수 있다.
상기 반응식 2는 상기 화학식 3으로 표시되는 리간드 화합물을 합성하는 일반적인 반응식으로서, 아민과 포스핀이 반응하여 다이포스피노아민을 생성하는 반응일 수 있다. 즉, 아민이 친핵체로서 포스핀의 X로 표시되는 이탈기를 이탈시키고 치환되는 반응일 수 있으며, 상기 X는 이탈된 후 안정하여 이탈되기 쉬운 작용기라면 특별히 제한은 없고, 대표적으로는 할로겐기로서 Cl, Br, 또는 I가 있을 수 있다.
리간드 화합물 및 전이금속 화합물
이러한 선택적인 올레핀 올리고머화 반응은 사용하는 촉매 시스템과 밀접한 관련이 있다. 올레핀 올리고머화 반응시 사용되는 촉매계는, 주촉매 역할을 하는 전이금속 화합물과, 조촉매를 포함하는데, 이 때 리간드의 화학구조에 따라 활성 촉매의 구조를 변화시킬 수 있고, 이에 따른 올레핀 선택도나, 활성 또는 부산물 생성량 등이 다르게 나타날 수 있다.
상기 본 명세서의 다른 일 실시예에 따른 올리고머화 촉매계의 전이금속 화합물은 주촉매 역할을 하는 것으로, 전술한 바와 같은 리간드 화합물과 배위결합 된 상태일 수 있다.
구체적으로, 전이금속 화합물과 상기 화학식 2로 표시되는 다이포스핀 모이어티를 2 이상 포함하는 리간드 화합물은 하기 화학식 2-1로 표시되는 것과 같이 배위결합 할 수 있다.
[화학식 2-1]
Figure PCTKR2016001150-appb-I000013
상기 화학식 2-1에서, R1 내지 R4는 상기 화학식 1과 동일하며, *는 상기 화학식 2와 동일하고, 상기 M은 전이금속일 수 있으며, 바람직하게 Cr일 수 있고, 상기 Xn은 H, F, Cl, Br, I, 또는, 탄소수 1 내지 6의 알킬기, 알케닐기, 아릴알킬기, 헤테로알킬기, 헤테로알케닐기 또는 헤테로아릴알킬기, 또는 할로겐기일 수 있고, 또는 아세테이트기 또는 아세틸 아세토네이트기일 수 있으며, 상기 m은 M의 산화수로서, 자연수일 수 있다.
또한, 전이금속 화합물과 상기 화학식 2a로 표시되는 리간드 화합물은 하기 화학식 2a-1로 표시되는 것과 같이 배위결합 할 수 있다.
[화학식 2a-1]
Figure PCTKR2016001150-appb-I000014
상기 화학식 2a-1에서, R1 내지 R4, Xn, m 및 M은 상기 화학식 2-1에서 정의한 바와 같으며, R1` 내지 R4` 및 Xn`도 R1 내지 R4과 동일하다.
그리고, 전이금속 화합물과 상기 화학식 3으로 표시되는 리간드 화합물은 하기 화학식 3-1로 표시되는 것과 같이 배위결합 할 수 있다.
[화학식 3-1]
Figure PCTKR2016001150-appb-I000015
상기 화학식 3-1에서, Xn, m 및 M은 상기 화학식 2-1에서 정의한 바와 같으며, R1 내지 R9는 상기 화학식 3에서 정의한 바와 동일하다.
구체적으로, 상기 전이금속 화합물은, 유기크롬 화합물을 포함할 수 있고, 상기 유기크롬 화합물은, 예를 들면, 크롬(III)아세틸아세토네이트, 삼염화크롬트리스테트라하이드로퓨란, 크롬(III)-2-에틸헥사노에이트, 크롬(III)트리스(2,2,6,6-테트라메틸-3,5-헵테인디오네이트), 크롬(III)벤조일아세토네이트, 크롬(III)헥사플루오로-2,4-펜테인디오네이트 및 크롬(III)아세테이트하이드록사이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
조촉매
상기 조촉매는 13족 금속을 포함하는 유기금속 화합물로서, 일반적으로 전이금속 화합물 촉매 하에 올레핀을 다량화 할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 구체적으로, 상기 조촉매는 하기 화학식 4 내지 6으로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상인 것을 사용할 수 있다.
[화학식 4]
-[Al(R5)-O]c-
상기 화학식 4에서, R5은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고, c는 2 이상의 정수이며,
[화학식 5]
D(R6)3
상기 화학식 5에서,
D는 알루미늄 또는 보론이고, R6는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 할로겐, 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
[화학식 6]
[L-H]+[Q(E)4]-
상기 화학식 6에서,
L은 중성 루이스 염기이고, [L-H]+는 브론스테드 산이며, Q는 +3 형식 산화 상태의 붕소 또는 알루미늄이고, E는 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌, 알콕시 작용기 또는 페녹시 작용기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 4로 표시되는 화합물로는, 예를 들어 개질메틸알루미녹산(MMAO), 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 될 수 있다.
상기 화학식 5로 표시되는 알킬 금속 화합물로는, 예를 들어 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 디메틸이소부틸알루미늄, 디메틸에틸알루미늄, 디에틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리씨클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등일 수 있다.
상기 화학식 6으로 표시되는 화합물로는, 예를 들어 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐 보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄,트리부틸암모니움테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타플루오로페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리페닐카보니움테트라페닐보론, 트리페닐카보니움테트라페닐알루미늄, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플루오로페닐보론등일 수 있다.
상기 일 실시예의 올리고머화 촉매계의 조촉매로 바람직하게는 알루미녹산을 사용할 수 있으며, 더욱 바람직하게는 메틸알루미녹산(MAO) 또는 개질메틸알루미녹산(MMAO)을 사용할 수 있다.
올리고머화 촉매계의 제조방법
상기 올리고머화 촉매계의 제조방법을 이로써 특별히 제한하는 것은 아니지만, 비제한적인 예로, 상기 올리고머화 촉매계의 제조방법은 전술한 리간드 화합물 및 전이금속 화합물을 혼합하여 촉매조성물을 제조하는 단계; 및 조촉매와 상기 촉매조성물이 온도 -40 내지 80℃에서 혼합되어 활성화 되는 단계;를 포함할 수 있다.
상기 촉매조성물은 리간드 화합물 및 전이금속 화합물을 포함하며, 본 명세서에 따른 올리고머화 촉매계의 제조방법은 리간드 화합물과 전이금속 화합물을 먼저 혼합하여 두 화합물 간의 금속화 반응(metalation)을 유도할 수 있다.
상기 금속화 반응은 리간드 화합물에 전이금속 화합물이 배위결합 되는 반응일 수 있으며, 리간드 화합물과 전이금속 화합물의 배위 형태, 리간드 화합물의 활성점 등에 관한 설명은 후술한다.
상기 리간드 화합물과 전이금속 화합물의 금속화 반응이 충분히 진행되어 촉매조성물이 제조되면, 상기 촉매조성물과 조촉매를 혼합하여 활성화 되는 단계가 진행될 수 있다. 상기 활성화라는 것은 촉매조성물과 조촉매의 접촉 및 에이징을 통해 올리고머화 촉매계로서 활성화 되는 것을 의미할 수 있다.
상기 촉매조성물과 조촉매의 활성화는 유기용매와 혼합되어 용액상으로 존재하는 조촉매와 촉매조성물이 접촉하여 일정 시간 동안 에이징 되는 것일 수 있고, 상기 활성화는 교반, 단순혼합 등 그 형태에 있어서 특별한 제한 없으며, 촉매조성물과 조촉매가 접촉하여 올리고머화 촉매계로서 활성이 발생할 수 있는 형태라면 모두 적용할 수 있다.
상기 유기용매로는 예컨대, 헵탄, 톨루엔, 사이클로헥산, 메틸사이클로헥산, 1-헥센, 디에틸에테르, 테트라히드로푸란, 아세토니트릴, 디클로로메탄, 클로로포름, 클로로벤젠, 메탄올, 아세톤 등이 포함되며, 이에 제한되지 않는다.
상기 촉매조성물과 조촉매의 활성화는 -40 내지 80℃의 온도에서 이루어질 수 있다. 바람직하게는 20 내지 80℃, 또는 25 내지 60℃의 온도에서 수행될 수 있다. 상기 활성화를 위한 촉매조성물과 조촉매의 접촉 및 에이징이 80℃를 초과하는 고온에서 이루어질 경우, 조촉매로 사용될 수 있는 금속 알킬에 의해, 촉매조성물의 리간드와 전이금속이 과도하게 활성화되어, 올리고머화 반응시 과한 활성으로 인해 부반응이 발생하거나 조기에 활성이 저하될 수 있다.
또한, 상기 활성화를 위한 촉매조성물과 조촉매의 접촉 및 에이징이 -40℃ 미만의 극저온에서 이루어진다면 촉매가 활성화 되기 위해 필요한 에너지가 공급될 수 없어 촉매를 활성화시킬 수 없다.
상기 촉매조성물과 조촉매의 활성화는 유기용매와 혼합되어 용액상으로 존재하는 조촉매와 촉매조성물이 접촉하여 일정 시간 동안 에이징 되는 것일 수 있고, 상기 활성화는 교반, 단순혼합 등 그 형태에 있어서 특별한 제한 없으며, 촉매조성물과 조촉매가 접촉하여 올리고머화 촉매계로서 활성이 발생할 수 있는 형태라면 모두 적용할 수 있다.
상기 유기용매로는 예컨대, 헵탄, 톨루엔, 사이클로헥산, 메틸사이클로헥산, 1-헥센, 디에틸에테르, 테트라히드로푸란, 아세토니트릴, 디클로로메탄, 클로로포름, 클로로벤젠, 메탄올, 아세톤 등이 포함되며, 이에 제한되지 않는다.
예를 들어, 조촉매와 촉매조성물이 서로 최초 접촉한 시점(이 때의 온도를 a 온도라고 함)으로부터 반응물(예컨대, 에틸렌)과 접촉하기 전까지의 시점까지 소요된 시간을 A 시간이라고 하고, 촉매조성물, 조촉매 및 반응물이 모두 혼합된 상태에서 올리고머화 반응 온도(반응온도를 b온도라고 함)까지 승온하는 데에 소요되는 시간을 B 시간이라고 하였을 때, 조촉매와 촉매조성물의 활성화 시간은 A 시간과 B 시간을 합한 시간을 의미이거나, A 시간의 시작점과 B 시간의 시작점이 서로 다르고, 먼저 시작된 시간이 먼저 종결될 경우에는 먼저 시작된 시간의 시작점으로부터 추후 시작된 시간의 종결점까지의 소요 시간을 의미할 수 있으며, 또는 더 오래 소요된 시간 안에 다른 시간이 포함되는 경우(예컨대, A 시간이 B 시간에 완전히 포함되는 경우, 또는 B 시간이 A 시간에 완전히 포함되는 경우)에는 더 긴 시간을 의미할 수 있다.
이러한 촉매조성물과 조촉매의 활성화는 5분 미만의 시간 동안 수행될 수 있고, 바람직하게는 3분 이하의 시간 동안 수행될 수 있다. 상기 활성화를 위한 촉매조성물과 조촉매의 접촉 및 에이징이 5분 이상의 시간 동안 수행되면 고온에서 활성화를 수행하는 것과 동일하게 올리고머화 촉매계 과활성화(over-activation)가 일어날 우려가 있어 5분을 넘기지 않는 것이 유리할 수 있다.
본 명세서의 일 실시예에 따른 올리고머화 촉매계의 제조방법에 있어서, 상기 촉매조성물과 조촉매의 활성화 조건과 같이, 저온에서 단 시간 동안 활성화가 이루어질 경우에는 올리고머화 촉매계의 리간드 화합물과 전이금속 화합물의 배위결합이 안정하게 되어 촉매계의 열안정성이 상승할 수 있고, 이에 올리고머화 반응시 고온(약 60℃ 내지 120℃)으로 반응을 진행하더라도 촉매계의 구조적으로 내구성이 강하고 물성의 변화가 없어 촉매계의 활성이 지속적으로 유지될 수 있다.
상기 활성화 조건에서 제조된 촉매계의 활성은 배치식 공정에서 약 100,000 kg/molCr/hr 이상일 수 있고, 바람직하게는 120,000 kg/molCr/hr 이상일 수 있으며, 더 바람직하게는 150,000 kg/molCr/hr 이상일 수 있고, 연속식 공정에서 약 100,000 kg/molCr 이상일 수 있고, 바람직하게는 120,000 kg/molCr 이상일 수 있으며, 더 바람직하게는 150,000 kg/molCr 이상일 수 있다. 이러한 촉매계의 활성은 전술한 바와 같이 고온에서도 저하되지 않고 유지될 수 있으며, 올리고머화 반응온도의 상승에 따른 활성 저하율이 6% 미만일 수 있는데, 이 때의 올리고머화 반응온도는 30 내지 150℃, 60 내지 130℃, 또는 70 내지 110℃의 범위일 수 있다.
한편, 기존에는 올리고머화 공정의 형태가 배치식 공정인 경우, 상기 조촉매는 유기용매상에 혼합되어 반응기로 유입되고, 촉매조성물은 반응물인 올레핀과 함께 유입되거나, 반응기로 직접 유입되거나, 조촉매가 유입되는 라인 중간에 투입되어 반응기로 유입된다. 또한, 올리고머화 공정의 형태가 연속식 공정인 경우, 상기 조촉매와 촉매조성물은 별도로 독립적인 라인으로 반응기로 유입되며, 반응물도 별도의 라인으로 반응기로 직접 유입된다. 이에 따라, 반응물과 접촉하는 시간이 짧아짐에 따라 고온에서도 활성을 유지하는 것이 가능할 수 있다.
상기 올리고머화 촉매계는 선형 알파 올레핀에 대한 선택도를 높이고, 다량화 반응 활성을 높이기 위해, 상기 리간드 화합물:전이금속 화합물:조촉매의 몰비는 약0.5:1:1 내지 약 10:1:10,000일 수 있고, 바람직하게는 약 0.5:1:100 내지 약 5:1:3,000일 수 있다. 다만 본 명세서에 따른 올리고머화 촉매계가 이에 한정되는 것은 아니다.
실시예
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<리간드 화합물 합성>
모든 반응은 Schlenk technique이나 glove box를 이용하여 아르곤 하에서 진행되었다. 합성된 리간드는 Varian 500 MHz spectrometer를 이용하여 1H (500 MHz)와 31P (202 MHz) NMR spectra를 찍어 분석하였다. Shift는 residual solvent peak를 reference로 하여 TMS로부터 downfield에서 ppm으로 나타내었다. Phosphorous probe는 aqueous H3PO4로 calibration 하였다.
제조예
아르곤 하에서 3-(아미노메틸)-3,5,5-트리메틸시클로헥사아민 (3-(aminomethyl)-3,5,5-trimethylcyclohexanamine) (5 mmol) 과 트리에틸아민 (3 ~ 10 equiv. to amine)을 다이클로로메테인 (80 mL)에 녹였다. 플라스크를 water bath에 담근 상태에서, 클로로다이톨릴포스핀 (chloroditolylphosphine) (20 mmol, 2 equiv. to amine)을 천천히 넣고, 밤새 교반하였다. 진공을 잡아 용매를 날린 후, THF를 넣어 충분히 교반하여 air-free glass filter로 염화 트리에틸암모늄염 (triethylammonium chloride salt)를 제거하였다. 여과액에서 용매를 제거하여 product를 얻었다.
<알파-올레핀 올리고머의 제조>
실시예 1 내지 5
(단계 1)
아르곤 가스 하에서 Cr(acac)3 (17.5 mg, 0.014 mmol)와, 상기 제조예에 따라 제조된 리간드 화합물 (1.1 eq. to Cr)을 플라스크에 넣고 100 ml의 메틸사이클로헥산을 첨가하고 교반하여 0.5 mM (Cr기준)용액을 제조하였다.
(단계 2)
600 ml 용량의 Parr 반응기를 준비하여 180로 2시간 동안 진공을 잡은 후, 내부를 아르곤으로 치환하고 온도를 60로 내렸다. 그 후, 140 g의 메틸사이클로헥산 및 MMAO (8.6 wt%, 아이소헵테인 용액) 1.6 ml (Al/Cr=1200)를 주입하고, 상기 0.5 mM 용액 5 ml (2.5umol)를 반응기에 주입하였다. 60 bar로 맞춰진 에틸렌 라인의 벨브를 열어 반응기 안을 에틸렌으로 채운 다음, 500 rpm으로 70 내지 110℃의 범위에서 10℃ 단위로 변화(각각 실시예 1 내지 5)시키면서 각각의 반응온도에서 15분간 교반하였다.
에틸렌 라인 벨브를 잠그고, 반응기를 드라이 아이스/아세톤 bath를 이용하여 0로 식힌 후, 미반응 에틸렌을 천천히 vent 하고 노네인(GC internal standard)을 1 ml 넣어주었다. 이 후, 반응기의 액체 부분을 조금 취하여 물로 quench 하고, 유기층을 PTFE 실린지 필터로 필터하여 GC 분석을 수행하였다.
(단계 3)
남은 반응액에 에탄올/HCl (10 vol%) 400 ml를 넣어 교반하고 필터링하여 폴리머를 얻었다. 수득한 폴리머는 60 vacuum 오븐에 밤새 건조하고, 무게를 측정하였다.
실험예 1: 반응온도 제어에 따른 올리고머화 반응
상기 실시예 1 내지 5의 결과를 하기 표 1에 각각 나타내었다.
반응온도 활성 1-C6 1-C8 1-C6+1-C8
kg/molCr/hr wt% wt% wt%
실시예 1 70 141,155 26 62 88
실시예 2 80 133,684 28 57 85
실시예 3 90 145,191 31 54 85
실시예 4 100 195,526 39 45 84
실시예 5 110 177,405 45 39 84
상기 표 1을 참조하면, 실시예 1에서는 올리고머화 반응의 온도를 70℃로 하여 반응을 진행하였고, 1-헥센 대 1-옥텐의 비율이 약 1:3으로 나타났으며, 반응 온도를 70℃에서부터 110℃까지 서서히 증가시키면서 반응을 수행한 결과 1-헥센과 1-옥텐의 생성비율이 경향성을 갖고 변화됨을 확인할 수 있었고, 1-헥센과 1-옥텐의 중량비가 약 1:3에서부터 약 1:0.9 정도까지 점차적으로 변화하는 것을 확인할 수 있었다.
기존에는 1-헥센 제조용 촉매 및 1-옥텐 제조용 촉매의 혼성 비율을 통해 1-헥센과 1-옥텐의 생성비율을 조절하여, 공장 가동 중인 경우라면 쉽게 그 생성비율을 변경할 수 없었고, 촉매끼리의 상호작용 등에 의해 부산물이 발생하거나, 활성을 저하 또는 과활성시키는 등 문제점이 많이 발생하였었으나, 본 명세서에서 제공하는 올리고머화 방법에서는, 올리고머화 반응의 온도만을 조절함으로써 1-헥센과 1-옥텐의 생성비율을 간단하게 제어할 수 있으며, 이는 공정이 가동되고 있는 중간 또는 초기 설정으로부터 제어가 가능한 것으로서, 상당한 이점을 가진다는 것을 확인할 수 있었다.
실시예 6
올리고머화 촉매계의 제조
아르곤 가스 하에서 Cr(acac)3 (17.5 mg, 0.014 mmol)와, 상기 제조예에 따라 제조된 리간드 화합물 (1.1 eq. to Cr)을 플라스크에 넣고 100 ml의 메틸사이클로헥산을 첨가하고 교반하여 0.5 mM (Cr기준) 촉매 조성물을 제조하였다.
이 후, MMAO (8.6 wt%, 아이소헵테인 용액) 32 ml (Al/Cr=1200)와, 상기 0.5 mM 촉매조성물 100 ml 를 25℃의 둥근 플라스크에서 2 분 동안 프리믹싱(premixing)하여 올리고머화 촉매계를 제조하였다.
올레핀 올리고머화
600 ml 용량의 Parr 반응기를 준비하여 180로 2시간 동안 진공을 잡은 후, 내부를 아르곤으로 치환하고 온도를 반응시킬 온도인 60로 내렸다. 그 후, 140 g의 메틸사이클로헥산을 반응기에 주입하고, 상기 프리믹싱된 용액(올리고머화 촉매계) 6.6 ml(2.5 umol)를 반응기에 주입하였다. 주입 즉시 60 bar로 맞춰진 에틸렌 라인의 벨브를 열어 반응기 안을 에틸렌으로 채운 다음, 500 rpm으로 60℃의 반응온도에서 15분간 교반하였다.
에틸렌 라인 벨브를 잠그고, 반응기를 드라이 아이스/아세톤 bath를 이용하여 0로 식힌 후, 미반응 에틸렌을 천천히 vent 하고 노네인(GC internal standard)을 1 ml 넣어주었다. 이 후, 반응기의 액체 부분을 조금 취하여 물로 quench 하고, 유기층을 PTFE 실린지 필터로 필터하여 GC 분석을 수행하였다.
남은 반응액에 에탄올/HCl (10 vol%) 400 ml를 넣어 교반하고 필터링하여 폴리머를 얻었다. 수득한 폴리머는 60 vacuum 오븐에 밤새 건조하고, 무게를 측정하였다.
실시예 7
상기 올리고머화 촉매계 제조시 프리믹싱할 때, 활성화 온도를 60℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매계의 제조, 올리고머화, GC 분석 및 수득된 폴리머의 무게 측정을 수행하였다.
실시예 8
상기 올리고머화 반응 온도를 80℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매계의 제조, 올리고머화, GC 분석 및 수득된 폴리머의 무게 측정을 수행하였다.
실시예 9
상기 올리고머화 촉매계 제조시 프리믹싱할 때, 활성화 온도를 80℃로 올리고머화 반응 온도를 80℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매계의 제조, 올리고머화, GC 분석 및 수득된 폴리머의 무게 측정을 수행하였다.
비교예 1 내지 4
상기 올리고머화 촉매계 제조시 프리믹싱할 때의 믹싱 시간과 활성화 온도, 그리고 올리고머화 반응의 온도를 하기 표 1에 기재된 바와 같이 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 촉매계의 제조, 올리고머화, GC 분석 및 수득된 폴리머의 무게 측정을 수행하였다.
실험예 2: 촉매 활성화 조건에 따른 올리고머화 반응(배치식 공정)
상기 실시예 6 내지 9와 비교예 1 내지 4의 결과를 하기 표 2에 나타내었다.
Premixing 반응온도 T 활성 1-C6 1-C8 1-C6+1-C8
온도(℃) 시간(min) ton/molCr/hr % % %
실시예 6 25 2 60 40 182 41.8 43.6 90.6
실시예 7 60 2 60 13 175 47.3 42.0 89.3
실시예 8 25 2 80 15 174 47.1 43.6 90.6
실시예 9 80 2 80 13 157 47.0 43.3 90.3
비교예 1 25 100 60 4 50 24.1 65.4 89.5
비교예 2 25 5 80 0 42 30.3 54.6 85.0
비교예 3 80 5 80 4 44 40.3 50.0 90.3
비교예 4 80 100 80 0 0 0 0 0
상기 표 2를 참조하면, 조촉매와 촉매조성물을 에이징 온도 -40 내지 80℃로 하고, 에이징 시간 5분 미만으로 하여 활성화 시킨 실시예 1 내지 4의 경우, 에이징을 5분 이상 수행한 비교예 1 내지 4에 비하여 촉매계의 활성이 월등히 우수하다는 것을 확인할 수 있었다. 즉, 촉매조성물 및 조촉매의 활성화 조건은 에이징 온도가 -40 내지 80℃이며, 에이징 시간이 5분 미만으로 단시간이어야 한다는 점을 알 수 있다.
실시예 10
질소 분위기 하에서, 2 L CSTR 반응기에 사이클로헥산과 에틸렌을 각각 1.2 kg/hr 및 1.75 kg/hr의 유량으로 연속적으로 투입하여 압력이 60 bar 가 유지되도록 하였다. 10 L 압력 용기에 상기 제조예에서 제조한 리간드 및 Cr(acac)3를 0.55:1의 몰비가 되도록 투입한 후 사이클로헥산에 0.05 m로 묽힌 촉매 용액을 5.8 ml/min의 속도로 반응기에 투입하는 동시에 조촉매 MMAO를 사이클로헥산에 묽힌 용액을 Al:Cr이 1200:1의 몰비가 되도록 촉매 용액의 투입량에 맞추어 연속적으로 투입하였다. 반응 온도는 반응기 자켓(jacket)에 상온의 물을 연속적으로 투입하여 60℃가 되도록 조절하였다. 2 시간 동안 반응이 안정적으로 진행되는 상황하에서 배출되는 반응물을 1 시간 동안 포집하여 5 mL를 취하여 물로 퀜치(quench)하고, 유기층을 PTFE 실린지 필터로 필터링하여 GC 분석을 수행하였고,
실험예 3: 촉매 활성화 조건에 따른 올리고머화 반응(연속식 공정)
상기 실시예 10의 결과를 하기 표 3에 나타내었다.
활성 1-C6 1-C8 1-C6+1-C8 1-C10 내지 1-C40 C6 isomer
kg/molCr wt% wt% wt% wt% wt%
실시예 10 128,900 32.5 53.4 85.8 11.6 1.8
상기 표 3을 참조하면, 상기 실시예 6 내지 9의 배치식 공정과 마찬가지로, 실시예 10과 같이 연속식 공정에 본 명세서에 따른 촉매계의 활성화 단계를 적용하더라도 배치식 공정 못지 않게 촉매계의 활성이 우수하게 나타나고 있음을 알 수 있고 그에 따라 선형 알파 올레핀의 선택도 역시 우수하게 나타날 수 있다는 것을 확인하였다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (20)

  1. 리간드 화합물, 전이금속 화합물 및 조촉매를 포함하는 올리고머화 촉매계의 존재 하에,
    1-헥센 및 1-옥텐을 포함하는 생성물 내에서 1-헥센 대 1-옥텐의 중량비가 기결정된 값을 갖도록 반응온도를 30 내지 150℃의 범위에서 제어하여 올레핀을 다량화 반응시키는 단계;를 포함하고,
    상기 생성물 내 1-헥센 대 1-옥텐의 중량비의 기결정된 값은 1:0.5 내지 1:7의 범위에서 선택되는 것인 올레핀 올리고머화 방법.
  2. 제1항에 있어서,
    상기 중량비의 기결정된 값은 1:0.9 내지 1:6.6 인 것인 올레핀 올리고머화 방법.
  3. 제1항에 있어서,
    상기 반응온도는 60 내지 130℃의 범위에서 제어되는 것인 올레핀 올리고머화 방법.
  4. 제1항에 있어서,
    상기 반응온도가 증가할수록 생성물 내 1-헥센의 비율이 증가되는 것인 올레핀 올리고머화 방법.
  5. 제1항에 있어서,
    상기 반응온도 전 범위에서, 생성물 총량에 대한 1-헥센 및 1-옥텐의 선택도는 80 중량% 이상인 것인 올레핀 올리고머화 방법.
  6. 제1항에 있어서,
    상기 반응온도 전 범위에서, 상기 촉매계는 온도 상승에 따른 활성 저하율이 6% 미만인 것인 올레핀 올리고머화 방법.
  7. 제1항에 있어서,
    상기 반응온도 전 범위에서의 촉매계의 활성은, 배치식 공정인 경우 100,000 kg/molCr/hr 이상이고, 연속식 공정인 경우 100,000 kg/molCr 이상인 것인 올레핀 올리고머화 방법.
  8. 제1항에 있어서,
    상기 올리고머화 촉매계는, 리간드 화합물 및 전이금속 화합물을 혼합하여 촉매조성물을 제조하는 단계; 및 조촉매와 상기 촉매조성물이 온도 -40 내지 80℃에서 혼합되어 활성화 되는 단계;를 포함하여 제조되는 것인 올레핀 올리고머화 방법.
  9. 제8항에 있어서,
    상기 조촉매와 촉매조성물의 활성화 시간은 5분 미만인 것인 올레핀 올리고머화 방법.
  10. 제8항에 있어서,
    상기 조촉매와 촉매조성물의 활성화 시간은 3분 이하인 것인 올레핀 올리고머화 방법.
  11. 제8항에 있어서,
    상기 활성화 온도는 20 내지 80℃인 것인 올레핀 올리고머화 방법.
  12. 제1항에 있어서,
    상기 리간드 화합물은 하기 화학식 1로 표시되는 다이포스핀 모이어티를 함유하는 것인 올레핀 올리고머화 방법:
    [화학식 1]
    Figure PCTKR2016001150-appb-I000016
    상기 화학식 1에서, 상기 A는 N, As 또는 Sb이며, 상기 R1 내지 R4는 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기, 헤테로하이드로카빌기 또는 하이드로카빌헤테릴기이다.
  13. 제12항에 있어서,
    상기 리간드 화합물은 하기 화학식 2로 표시되는 다이포스핀 모이어티를 2 이상 포함하고,
    상기 2 이상의 다이포스핀 모이어티 사이를 연결하는 연결기는, 하이드로카빌기로서 다이포스핀 모이어티간 최단거리의 탄소수가 2 내지 30개인 것인 올레핀 올리고머화 방법:
    [화학식 2]
    Figure PCTKR2016001150-appb-I000017
    상기 화학식 2에서, 상기 A, R1 내지 R4는 상기 화학식 1과 동일하고, 상기 *는 2 이상의 다이포스핀 모이어티를 연결하는 연결기이다.
  14. 제13항에 있어서,
    상기 연결기는, 탄소수 1 내지 20의 지방족 그룹, 탄소수 2 내지 20의 헤테로 지방족 그룹, 탄소수 3 내지 20의 지환족 그룹, 탄소수 3 내지 20의 헤테로 지환족 그룹, 탄소수 6 내지 20의 방향족 그룹 및 탄소수 6 내지 20의 헤테로 방향족 그룹으로 이루어진 군에서 선택된 1 종 이상의 그룹이 결합된 것이고,
    탄소수 1 내지 20의 지방족 그룹, 탄소수 2 내지 20의 헤테로 지방족 그룹, 탄소수 3 내지 20의 지환족 그룹, 탄소수 3 내지 20의 헤테로 지환족 그룹, 탄소수 6 내지 20의 방향족 그룹 및 탄소수 6 내지 20의 헤테로 방향족 그룹으로 이루어진 군에서 선택된 1 종 이상의 그룹을 치환기로 가지는 것인 올레핀 올리고머화 방법.
  15. 제12항에 있어서,
    상기 리간드 화합물은 하기 화학식 3으로 표시되는 화합물을 포함하는 것인 올레핀 올리고머화 방법:
    [화학식 3]
    Figure PCTKR2016001150-appb-I000018
    상기 화학식 3에서,
    상기 R1 내지 R4는 상기 화학식 1과 동일하며,
    상기 R5는 탄소수 1 내지 20의 알킬기이고,
    상기 R5가 메틸기인 경우, 상기 R6는 탄소수 2 또는 3의 알킬기, 알케닐기, 헤테로알킬기, 헤테로알케닐기 또는 이들의 헤테릴기인 직쇄 그룹; 탄소수 4 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기; 탄소수 6 내지 20의 아릴기, 헤테로아릴기 또는 이들의 헤테릴기; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;이며,
    상기 R5가 탄소수 2 내지 20의 알킬기인 경우, 상기 R6는 탄소수 2 내지 20의 알킬기, 알케닐기, 아릴알킬기, 아릴알케닐기, 헤테로알킬기, 헤테로알케닐기, 헤테로아릴알킬기, 헤테로아릴알케닐기 또는 이들의 헤테릴기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 아릴시클로알케닐기 헤테로시클로알킬기, 헤테로시클로알케닐기, 헤테로아릴시클로알킬기, 헤테로아릴시클로알케닐기 또는 이들의 헤테릴기; 탄소수 6 내지 20의 아릴기 또는 헤테로아릴기 또는 이들의 헤테릴기; 또는, 탄소수 7 내지 20의 알킬아릴기, 헤테로알킬아릴기 또는 이들의 헤테릴기;이고,
    상기 R7 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬기, 알케닐기, 아릴알킬기, 또는 아릴알케닐기; 탄소수 3 내지 20의 시클로알킬기, 시클로알케닐기, 아릴시클로알킬기, 또는 아릴시클로알케닐기; 탄소수 6 내지 20의 아릴기; 또는, 탄소수 7 내지 20의 알킬아릴기;이다.
  16. 제15항에 있어서,
    상기 화학식 3의 R7 내지 R9는 수소인 것인 올레핀 올리고머화 방법.
  17. 제1항에 있어서,
    상기 전이금속 화합물은 유기크롬 화합물을 포함하고, 상기 유기크롬 화합물은 크롬(III) 아세틸 아세토네이트, 삼염화 크롬 트리스 테트라하이드로퓨란, 크롬(III)-2-에틸헥사노에이트, 크롬(III) 트리스 (2,2,6,6-테트라메틸-3,5-헵테인디오네이트), 크롬(III) 벤조일 아세토네이트, 크롬(III) 헥사플루오로-2,4-펜테인디오네이트 및 크롬(III) 아세테이트 하이드록사이드로 이루어진 군에서 선택된 1종 이상인 것인 올레핀 올리고머화 방법.
  18. 제1항에 있어서,
    상기 조촉매는 하기 화학식 4 내지 6으로 표시되는 화합물들로 이루어진 군에서 선택된 1종 이상인 것인 올레핀 올리고머화 방법:
    [화학식 4]
    -[Al(R5)-O]c-
    상기 화학식 4에서,
    R5은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고, c는 2 이상의 정수이며,
    [화학식 5]
    D(R6)3
    상기 화학식 5에서,
    D는 알루미늄 또는 보론이고, R6는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 할로겐, 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
    [화학식 6]
    [L-H]+[Q(E)4]-
    상기 화학식 6에서,
    L은 중성 루이스 염기이고, [L-H]+는 브론스테드 산이며, Q는 +3 형식 산화 상태의 붕소 또는 알루미늄이고, E는 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌, 알콕시 작용기 또는 페녹시 작용기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
  19. 제1항에 있어서,
    상기 올레핀은 에틸렌을 포함하는 것인 올레핀 올리고머화 방법.
  20. 제1항에 있어서,
    상기 다량화 반응 압력은 1 내지 300 bar인 것인 올레핀 올리고머화 방법.
PCT/KR2016/001150 2015-02-12 2016-02-02 올레핀 올리고머화 방법 WO2016129848A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017528556A JP6571190B2 (ja) 2015-02-12 2016-02-02 オレフィンオリゴマー化方法
US15/529,385 US10471416B2 (en) 2015-02-12 2016-02-02 Method for oligomerizing an olefin
EP16749388.1A EP3257875A4 (en) 2015-02-12 2016-02-02 Olefin oligomerization method
CN201680004071.6A CN107001502B (zh) 2015-02-12 2016-02-02 低聚烯烃的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150021784 2015-02-12
KR10-2015-0021784 2015-02-12
KR10-2015-0125097 2015-09-03
KR1020150125097A KR20160099450A (ko) 2015-02-12 2015-09-03 올레핀 올리고머화 방법

Publications (1)

Publication Number Publication Date
WO2016129848A1 true WO2016129848A1 (ko) 2016-08-18

Family

ID=56614629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001150 WO2016129848A1 (ko) 2015-02-12 2016-02-02 올레핀 올리고머화 방법

Country Status (1)

Country Link
WO (1) WO2016129848A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190118A4 (en) * 2015-05-26 2018-02-21 LG Chem, Ltd. Ligand compound, organic chrome compound, catalyst system for olefin oligomerization, and method for oligomerizing olefin using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161503A1 (en) * 2004-03-16 2007-07-12 Briggs John R Aluminum phosphate-supported group 6 metal amide catalysts for oligomerization of ethylene
US20080207857A1 (en) * 2006-07-25 2008-08-28 Chevron Phillips Chemical Company Lp Olefin Oligomerization Catalysts and Methods of Using Same
KR20130126517A (ko) * 2012-05-10 2013-11-20 주식회사 엘지화학 리간드 화합물, 크롬 화합물 및 이를 포함하는 촉매계
KR20130142151A (ko) * 2010-12-29 2013-12-27 셰브론 필립스 케미컬 컴퍼니 엘피 올레핀 올리고머화 촉매 및 제조 및 사용방법
KR20140063346A (ko) * 2012-11-15 2014-05-27 주식회사 엘지화학 리간드 화합물, 유기크롬 화합물, 에틸렌 올리고머화용 촉매계, 이의 제조 방법 및 이를 이용한 에틸렌 올리고머화 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161503A1 (en) * 2004-03-16 2007-07-12 Briggs John R Aluminum phosphate-supported group 6 metal amide catalysts for oligomerization of ethylene
US20080207857A1 (en) * 2006-07-25 2008-08-28 Chevron Phillips Chemical Company Lp Olefin Oligomerization Catalysts and Methods of Using Same
KR20130142151A (ko) * 2010-12-29 2013-12-27 셰브론 필립스 케미컬 컴퍼니 엘피 올레핀 올리고머화 촉매 및 제조 및 사용방법
KR20130126517A (ko) * 2012-05-10 2013-11-20 주식회사 엘지화학 리간드 화합물, 크롬 화합물 및 이를 포함하는 촉매계
KR20140063346A (ko) * 2012-11-15 2014-05-27 주식회사 엘지화학 리간드 화합물, 유기크롬 화합물, 에틸렌 올리고머화용 촉매계, 이의 제조 방법 및 이를 이용한 에틸렌 올리고머화 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3257875A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10688473B2 (en) 2014-12-11 2020-06-23 Lg Chem, Ltd. Ligand compound, organic chromium compound, catalyst system for oligomerization of olefins, and method for oligomerizing olefins using the same
EP3190118A4 (en) * 2015-05-26 2018-02-21 LG Chem, Ltd. Ligand compound, organic chrome compound, catalyst system for olefin oligomerization, and method for oligomerizing olefin using same

Similar Documents

Publication Publication Date Title
WO2011108772A1 (ko) 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2017204476A1 (ko) 올리고머화 촉매 및 이를 이용한 에틸렌 올리고머의 제조방법
WO2017099491A1 (ko) 올레핀계 중합체
WO2018084365A1 (ko) 크롬 화합물, 이를 이용한 촉매 시스템 및 에틸렌 올리고머 제조 방법
WO2017176074A1 (ko) 용융 장력이 우수한 프로필렌-디엔 공중합체 수지
WO2017010648A1 (ko) 메탈로센 화합물 및 이의 제조방법
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2020105922A1 (ko) 올레핀 중합 촉매용 전이금속 화합물 및 이를 포함하는 올레핀 중합 촉매
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2018097468A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
WO2019168249A1 (ko) 리간드, 이를 포함하는 올리고머화 촉매 및 이를 이용한 에틸렌 올리고머의 제조방법
WO2015133805A1 (ko) 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법
WO2018230846A1 (ko) 헤테로원자 리간드, 이를 포함하는 올리고머화 촉매 및 올리고머 제조방법
EP3484929A1 (en) Oligomerization of ethylene
WO2021111282A1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조방법
WO2016129848A1 (ko) 올레핀 올리고머화 방법
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2016153275A1 (ko) 올레핀계 중합체
WO2023191519A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2022071735A1 (ko) 폴리에틸렌 조성물 및 그의 제조 방법
WO2016129847A1 (ko) 올리고머화 촉매계의 제조방법 및 이에 의해 제조된 올리고머화 촉매계
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2018127772A1 (ko) 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2017111553A1 (ko) 신규한 전이금속 화합물을 포함하는 촉매 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749388

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016749388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15529385

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017528556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE