WO2011108772A1 - 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법 - Google Patents

고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법 Download PDF

Info

Publication number
WO2011108772A1
WO2011108772A1 PCT/KR2010/001341 KR2010001341W WO2011108772A1 WO 2011108772 A1 WO2011108772 A1 WO 2011108772A1 KR 2010001341 W KR2010001341 W KR 2010001341W WO 2011108772 A1 WO2011108772 A1 WO 2011108772A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
meso
ethylphenyl
trans
phenyl
Prior art date
Application number
PCT/KR2010/001341
Other languages
English (en)
French (fr)
Inventor
한택규
강상욱
김성관
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to SG2011037439A priority Critical patent/SG174116A1/en
Priority to CA2770418A priority patent/CA2770418C/en
Priority to EP10835264.2A priority patent/EP2543682A4/en
Priority to US13/388,185 priority patent/US8829218B2/en
Priority to BR112012007895A priority patent/BR112012007895B8/pt
Priority to RU2011123637/04A priority patent/RU2541528C2/ru
Priority to PCT/KR2010/001341 priority patent/WO2011108772A1/ko
Priority to CN2010800035640A priority patent/CN102282179B/zh
Priority to JP2012514866A priority patent/JP5645279B2/ja
Publication of WO2011108772A1 publication Critical patent/WO2011108772A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • C07F11/005Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/36Catalytic processes with hydrides or organic compounds as phosphines, arsines, stilbines or bismuthines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a highly active and highly selective ethylene oligomerization catalyst for use in oligomerization reactions such as trimerization or tetramerization of ethylene and a process for preparing -hexene or 1-octene using the same.
  • selective oligomers of ethylene comprising a chromium complex comprising chromium compounds and chiral ligands having a specific stereoisomer structure
  • MAO methylaluminoxane
  • 1-hexene and 1-octene are important commercial raw materials widely used in the polymerization process as monomers or comonomers for making linear low density polyethylene and are obtained by purifying products produced by oligomerization of ethylene.
  • the existing ethylene oligomerization reaction has been an inefficient aspect of producing a considerable amount of butenes, higher oligomers and polyethylene together with 1-hexene and 1-octene.
  • This conventional oligomerization technique of ethylene generally produces a variety of ⁇ -olefins depending on the Schulze-Flory or Poisson product distribution, thus limiting the yield of the desired product.
  • WO 02/04119 discloses a chromium-based catalyst using a ligand of the general formula (R 1 ) (R 2 ) XYX (R 3 ) (R 4 ) as an ethylene trimerization catalyst, wherein X is phosphorus, arsenic, or antimony, Y is a linking group such as -N (R 5 )-, and at least one of R 1 , R 2 , R 3 and R 4 has a polar or electron-donating substituent.
  • Korean Patent Publication No. 2006-0002741 discloses (o-ethylphenyl) 2 PN (Me) P (o-ethylphenyl) 2 As It is known that excellent ethylene trimerization activity and selectivity are indeed possible using PNP ligands containing nonpolar substituents on the ortho position of the phenyl ring attached to phosphorus.
  • WO 04/056479 discloses that the selectivity is improved by tetramerization of ethylene by a chromium-based catalyst containing a PNP ligand in which a phenyl ring attached to phosphorus is omitted. It is known, and (phenyl) 2 PN (isopropyl) P (phenyl) 2 and the like are disclosed as examples of the hetero atom ligands used in the tetramerization catalyst for these ethylene tetramerization.
  • This prior art has a selectivity of greater than 70% by mass of chromium-based catalysts containing heteroatom ligands having nitrogen and phosphorus as heteroatoms, tetramers of ethylene without polar substituents to hydrocarbyl or heterohydrocarbyl groups bonded to the phosphorus atom. It was disclosed that 1-octene can be produced.
  • the prior art is specifically related to the structure of a ligand containing a hetero atom in which form can be highly selectively tetramerized ethylene to produce 1-octene or ethylene trimerized to produce 1-hexene.
  • the ligand having a 1-octene selectivity of about 70% by mass is (R 1 ) (R 2 ) P- (R 5 ) N- P (R 3 ) (R 4 ) and Only the structure of the same PNP-type backbone is shown, and the types of substitutable substituents in the heteroatom ligand are also limited.
  • the factor which has an important influence on the tetramerization selectivity is that although the bridge structure between P atom and another P atom in the ligand skeleton structure is decisive, the prior art is highly selected as long as P atom and P atom are connected to both sides of the bridge structure. It is described by the catalyst of FIG.
  • the ligand of the PNP-type skeleton containing a hetero atom of the prior art is a problem that the reaction activity is not consistently maintained and reaction rate is greatly reduced depending on the reaction time in 1-octene or 1-hexene production reaction. there was.
  • the reason for this is that the nitrogen atoms included in the skeletal structure are suitable as ligands because of the presence of non-covalent electron pairs, which can be easily coordinated with the transition metals, but this leads to the relatively weak coordination of phosphorus atoms to dissociate from the transition metals easily. Because you can.
  • the ligand of the PNP-type skeleton containing a hetero atom synthesizes a chromium precursor and a catalyst complex in advance and performs an ethylene oligomerization reaction to separately inject the ligand and the chromium precursor, and the activity and selectivity. It is known that there is no significant change ( J. Am. Chem. Soc. , 2004, 126, 14712).
  • the steric and electronic effects of the PCCP skeleton structure are substantially different from those of the PNP ligand when the transition metal precursor and the PCCP skeleton ligand are separately injected into the ethylene oligomerization reaction medium as a catalyst as in the case of the PNP ligand.
  • the number of molecules of the transition metal precursor to be converted becomes small, which leads to a decrease in activity and selectivity in trimer or tetramerization of ethylene.
  • the Applicant has previously reacted a chiral ligand of PCCP skeleton structure with a transition metal precursor to synthesize a substantially pure transition metal complex and injects it into an ethylene oligomerization medium. It was confirmed that the activity and selectivity increased dramatically, and came to complete the present invention based on this.
  • an object of the present invention is to prepare a selective oligomer of ethylene in which chromium is bonded to chiral ligand of PCCP skeleton structure as a highly active and highly selective ethylene oligomerization catalyst for use in oligomerization reactions such as trimerization or tetramerization of ethylene.
  • the present invention provides a chromium complex compound, and as another object, a chromium complex catalyst composition for selective oligomer production of ethylene comprising a promoter such as methylaluminoxane (MAO) in a chromium complex compound for selective oligomer production of ethylene and a catalyst system thereof It is to provide a method for producing 1-hexene or 1-octene with high activity and high selectivity.
  • a promoter such as methylaluminoxane (MAO)
  • This invention synthesize
  • R One , R 2 , R 3 , R 4 , R 7 , R 8 , R 9 And R 10 are independently from each other hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl, or substituted heterohydrocarbyl;
  • R 5 , R 6 , R 11 And R 12 Are independently hydrocarbyl or substituted hydrocarbyl, or R 5 And R 6 , R 11 And R 12 Can be combined with each other hydrocarbylene, substituted hydrocarbylene, heterohydrocarbylene or substituted heterohydrocarbylene;
  • X One To X 6 Are each independently halogen, -OR 21 And, -OCOR 22 Or -NR 23 R 24 And R is 21 , R 22 , R 23 Or R 24 Is hydrogen, hydrocarbyl or heterohydrocarbyl;
  • L is hydrocarbon or heterohydrocarbon; * And ** refer to the (S) or (R) configuration independently of one another in the chiral carbon position.
  • the hydrocarbyl or heterohydrocarbyl means a radical having one binding position derived from a hydrocarbon or a heterohydrocarbon
  • the hydrocarbylene means a radical having two binding positions derived from a hydrocarbon
  • hetero Means that carbon is substituted with O, S, N atoms.
  • Chiral carbons in the * and ** positions of the chiral ligands according to the present invention have chirality (R, R), (R, S), (S, R), (S, S).
  • Chromium complex compounds for the selective oligomer preparation of ethylene of formula 1 or formula 2 according to the present invention include chiral ligands of formulas 3-8.
  • the chromium complex compound for the selective oligomer preparation of ethylene of Formula 1 or Formula 2 is R 5 And R 6 , R 11 And R 12
  • R 5 And R 6 , R 11 And R 12 When a compound is bonded to each other hydrocarbylene, substituted hydrocarbylene, heterohydrocarbylene or substituted heterohydrocarbylene, the compound of Formula 8 to Formula 10 having the following structure is included.
  • A is selected from (C1-C5) alkylene and (C1-C5) alkenylene, and the alkylene and alkenylene are (C3-C5) alkylene and (C3-C5) alkenylene In this case, it also includes forming a fused ring with a structure in which the (C5-C7) cycloalkyl or (C6-C10) aryl group is in contact.
  • Substituent R of the chiral ligand contained in the chromium complex compound for the selective oligomer preparation of ethylene of Formula 1 to Formula 14 are each other Independently (C6-C20) aryl, (C6-C20) ar (C1-C10) alkyl, (C1-C10) alkyl, (C2-C10) alkenyl, (C2-C10) alkynyl, (C3-C7) Cycloalkyl, hetero (C5-C20) aryl, hetero (C3-C7) cycloalkyl or -NR 23 R 24 And R 23 Or R 24 Is (C1-C10) alkyl, (C6-C20) aryl, and R is One , R 2 , R 3 , R 4 , R 7 , R 8 , R 9 And R 10
  • One or more substituents of may be further substituted from (C1-C
  • R in the chiral ligand One , R 2 , R 3 , R 4 , R 7 , R 8 , R 9 And R 10 are each other Independently phenyl, naphthyl, anthracenyl, mesityl, xylyl, methyl, ethyl, ethylenyl, n-propyl, i-propyl, propenyl, propynyl, n-butyl, t-butyl, cyclopropyl, cyclobutyl , Cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-isopropylcyclohexyl, benzyl, tolyl, xylyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4- t-butylphenyl, 4-methoxyphenyl, 4-
  • R bound to chiral carbon of chiral ligands contained in chromium complex compounds for the selective oligomer preparation of ethylene according to the invention 5 , R 6 , R 11 And R 12 Independently of one another is (C6-C20) aryl, (C6-C20) ar (C1-C10) alkyl, (C1-C10) alkyl, (C2-C10) alkenyl, (C2-C10) alkynyl, (C3- C7) cycloalkyl, hetero (C5-C20) aryl, hetero (C3-C7) cycloalkyl, (C1-C10) alkoxy, (C6-C20) aryloxy, aminocarbonyl, carbonylamino, di (C1-C10 ) Alkylamino, (C1-C10) alkylsilyl or (C6-C20) arylsilyl, wherein R 5 , R 6 , R 11 And R 12 The substituents of may be substituted
  • X 1 , X 2 , X 3 , X 4 , X 5 or X 6 coordinated with chromium in the chromium complex compound for the selective oligomer preparation of ethylene may be selected from Cl, Br, acetoacetyl and 2-ethylhexanoyl groups, It is not limited to these.
  • L coordinated with chromium may be selected from tetrahydrofuran, diethyl ether, toluene, chlorobenzene, dichlorobenzene, acetylacetone, and 2-ethylhexanone, wherein L is a reaction of chiral ligand with chromium salt. From solvents that are the medium.
  • the chiral ligands included in the chromium complex compound for the selective oligomer preparation of ethylene according to the present invention illustrate the following compounds, but the compounds illustrated below do not limit the present invention.
  • Chiral ligands according to the invention can be prepared using a variety of methods known to those skilled in the art.
  • the PCCP type stereoisomeric framework of the ligand according to the present invention is a ligand having a structure independent of the known conventional (R) n PN (R ') P (R) m heteroligand and is a skeleton structure of the ligand.
  • the hetero atoms in the are only phosphorus (P) atoms. That is, the ligand used in the catalyst system according to the present invention is composed of two carbon-carbon skeletal structures without nitrogen atoms between two phosphorus atoms, and has excellent catalytic activity by appropriately adjusting the spatial structure in the arrangement direction of the substituents attached to the carbon atoms. In addition to exhibiting high 1-hexene selectivity or 1-octene selectivity of 70 wt% or more, it is possible to maintain the stability of the reaction activity.
  • transition metal complexes coordinated with ligands of the chiral P-C-C-P backbone structure can be modified to attach to the polymer chains to render them insoluble above room temperature. It can also be immobilized by binding to a backbone such as silica, silica gel, polysiloxane or alumina.
  • the present invention comprises a chromium complex catalyst composition for the selective oligomer production of ethylene comprising a chromium complex catalyst for the selective oligomer production of ethylene and a known promoter for more effective activity and higher selectivity.
  • the promoter employed in the catalyst composition according to the invention may in principle be any compound which activates a transition metal complex coordinated with a ligand of the chiral P-C-C-P framework structure. Active agents can also be used in mixtures. Suitable compounds as activators include organoaluminum compounds, organoboron compounds, organic salts.
  • Organoaluminum compounds suitable for use as activators in the catalyst system according to the invention include AlR 3 (R each independently represents a compound of (C 1 -C 12) alkyl, an oxygen containing (C 1 -C 12) alkyl or a halogen) or LiAlH 4 or the like. Include.
  • the cocatalyst is trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethyl Aluminum chloride, diethylaluminum chloride, aluminum isopropoxide, ethylaluminum sesquichloride, methylaluminum sesquichloride and aluminoxanes.
  • TMA trimethylaluminum
  • TEA triethylaluminum
  • TIBA triisobutylaluminum
  • Aluminoxanes are well known in the art as oligomeric compounds that can typically be prepared by controlled addition to water and alkylaluminum compounds, such as trimethylaluminum.
  • the resulting aluminoxane oligomeric compound may be linear, cyclic, cage, or mixtures thereof.
  • Suitable organoboron compounds are boroxine, NaBH 4 , triethyl borane, triphenylborane, triphenylborane ammonia complex, tributylborate, triisopropylborate, tris (pentafluorophenyl) borane, trityl (tetrapentafluoro) Phenyl) borate, dimethylphenylammonium (tetrapentafluorophenyl) borate, diethylphenylammonium (tetrapentafluorophenyl) borate, methyldiphenylammonium (tetrapentafluorophenyl) borate, or ethyldiphenylammonium (tetrapenta) Fluorophenyl) borate.
  • organoboron compounds can be used in a mixture with the organoaluminum compounds described above.
  • the aluminoxanes can be chosen from alkylaluminoxanes such as methylaluminoxane (MAO) and ethylaluminoxane (EAO) as well as modified alkyl aluminoxanes such as modified methylaluminoxane (MMAO).
  • alkylaluminoxanes such as methylaluminoxane (MAO) and ethylaluminoxane (EAO)
  • modified alkyl aluminoxanes such as modified methylaluminoxane (MMAO).
  • Modified methyl aluminoxanes (manufactured by Akzo Nobel) contain, in addition to methyl groups, mixed alkyl groups such as isobutyl or n-octyl groups.
  • the promoter is preferably methylaluminoxane (MAO) or ethylaluminoxane (EAO).
  • the ratio of the chromium complex for producing the selective oligomer of ethylene to the aluminoxane is 1: 1 to 10,000: 1 based on the aluminum: chromium molar ratio, and preferably about 1: 1 to 1,000: 1.
  • Another scope of the present invention is to prepare a chromium complex compound for the selective oligomer preparation of ethylene of formula 1 or formula 2 according to the present invention having a structure in which the chiral ligand of the PCCP skeleton structure according to the present invention is previously coordinated with a transition metal precursor,
  • the present invention relates to a method for preparing an ethylene oligomerization reaction with high activity and high selectivity by injecting an ethylene oligomerization medium into a high activity and a high selectivity of an oligomer, particularly 1-hexene or 1-octene, with high activity and high selectivity.
  • the PCCP framework structural ligand can be a linear ligand, trans- or cis- cyclic ligand of the (S, S)-, (R, R) -or meso- isomer. It is also a mixed form of several isomers (S, S)-, (R, R) -or meso- (R 1 ) (R 2 ) P- (R 5 ) CHCH (R 6 ) -P (R 3 ) A ligand composed of multiple bonds of (R 4 ) may be used.
  • Chromium complexes and cocatalysts for the production of selective oligomers of ethylene which are the individual components of the catalyst system disclosed herein, may be combined in sequence or in any order in the presence or absence of a solvent to provide an active catalyst.
  • Mixing of each catalyst component can be carried out at a temperature of -20 to 250 ° C., and the presence of the olefins during the mixing of the catalyst components generally exhibits a protective effect to provide improved catalyst performance.
  • the range of more preferable temperature is 20-100 degreeC.
  • reaction products disclosed herein in other words ethylene oligomers, in particular 1-hexene or 1-octene, are in the presence or absence of an inert solvent using chromium complex compounds for the selective oligomer preparation of ethylene according to the invention and conventional apparatus and contacting techniques.
  • a homogeneous liquid phase reaction or catalyst system can be prepared under a bulk reaction or a gas phase reaction in which the slurry reaction or the biphasic liquid / liquid reaction or product olefins serve as the main medium.
  • the selective oligomer preparation process according to the invention can also be carried out in an inert solvent. That is, any inert solvent that does not react with each catalyst compound and active agent may be used, and these inert solvents may include any saturated aliphatic and unsaturated aliphatic and aromatic hydrocarbons and halogenated hydrocarbons.
  • Typical solvents include, but are not limited to, benzene, toluene, xylene, chlorobenzene, cumene, heptane, cyclohexane, methylcyclohexane, methylcyclopentane, n-hexane, 1-hexene, 1-octene, and the like.
  • the oligomerization reaction according to the preparation method of the present invention may be carried out at a temperature of -20 to 250 °C, preferably at a temperature of 15 to 130 °C, more preferably at a temperature of 30 to 70 °C.
  • the process according to the invention is carried out at atmospheric pressure to a pressure of 500 bar, preferably at a pressure of 10 to 70 bar, more preferably at a pressure of 30 to 50 bar.
  • the stereoisomeric ligand coordination complex of the P-C-C-P framework structure and the reaction conditions are selected such that the 1-hexene yield from ethylene is at least 50 mass%, preferably at least 70 mass%. Yield in this case means the number of grams of 1-hexene formed per 100 g of total reaction product formed.
  • the stereoisomeric ligand coordination complex of the P-C-C-P framework structure and the reaction conditions are selected such that the 1-octene yield from ethylene is at least 30 mass%, preferably at least 50 mass%. Yield in this case means the number of grams of 1-octene formed per 100 g of the total reaction product formed.
  • the process according to the invention also allows different amounts of 1-butene, 1-hexene, methylcyclopentane, methylenecyclopentane, propylcyclopentane and a number of other than 1-hexene or 1-octene depending on the ligand of the PCCP backbone structure and the reaction conditions.
  • Higher oligomers and polyethylenes can be provided.
  • the process according to the method can be carried out in a plant comprising any type of reactor.
  • reactors include, but are not limited to, batch reactors, semi-batch reactors and continuous reactors.
  • the plant may comprise a reactor, an inlet of an olefin reactor and a catalyst system therein, a combination of the oligomerization reaction product from the reactor with a line for effluent and at least one separator for separating the oligomerization reaction product, wherein the catalyst
  • the system can include the transition metal compounds, active agents, and PCCP ligand coordination complexes disclosed herein.
  • the oligomerization of ethylene using the ethylene oligomerization catalyst system according to the present invention allows the production of 1-hexene or 1-octene in high activity and high selectivity.
  • the reaction activity is increased by 10 times or more due to the adoption of a catalyst in which chiral ligands are normally coordinated to chromium.
  • the amount of polymer by-products can be reduced to 1/10 times or less, and as a result, the polymer content can be lowered to about 0.1 wt% after the reaction.
  • the process for production such as simple There is an economic advantage that can be simplified.
  • the injection amount of MAO which is an expensive promoter required for catalyst activation, can be reduced to less than 1/10, which can be an economical production process.
  • the beige solid containing impurities was dried at 25 ° C., added to 125 mL of boiling anhydrous ethanol, and then filtered by fritz. The fritted filtration was kept at room temperature for 12 hours to obtain a colorless glossy solid, which was then crystallized again with 60 mL of anhydrous ethanol to completely colorless pure (S, S) -(phenyl) 2 PCH (methyl) CH (methyl) 5.5 g of P (phenyl) 2 was obtained.
  • a catalyst was prepared in the same manner as in Preparation Example 1, except that meso -butanediol was used instead of (2R, 3R) -butanediol as a starting reaction material. 5.7 g of completely colorless pure meso- (phenyl) 2 PCH (methyl) CH (methyl) P (phenyl) 2 was obtained.
  • the 4-methoxyphenyllithium formed was decomposed by dropwise addition of 18.5 g of distilled and purified t-butylchloride for 45 minutes. The clear red yellow solution was boiled for 5 minutes and then cooled to -4 ° C.
  • a catalyst was prepared in the same manner as in Preparation Example 1, except that (1R, 2R) -trans -cyclohexanediol was used instead of (2R, 3R) -butanediol as a starting reaction material. 3.6 g of completely colorless pure title compound was obtained.
  • Colorless pure water ( 3S) was prepared in the same manner as in Preparation Example 1, except that (3R, 4R) -trans -1-benzylpyrrolidinediol was used instead of (2R, 3R) -butanediol as the starting reaction material. , 4S) -2.7 g of trans -bis (diphenylphosphino) 1-benzylpyrrolidine was obtained.
  • the catalysts were prepared in the same manner as in Example 1, except that Catalyst Preparation Examples 2 to 12 were used as appropriate catalysts, and appropriate amounts were selected. The conditions taken and the results obtained are summarized in Table 1.
  • the method for preparing an oligomer using the catalyst according to the present invention was confirmed that the output is increased by about 15 times than the result of Comparative Example in which the ligand and the catalyst precursor were separately injected in the conventional method. It can be seen that the amount of polymer by-products decreased from 5.3% to less than 0.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 키랄성 리간드를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물, 이를 이용하여 에틸렌으로부터 1-헥센 또는 1-옥텐을 선택적으로 제조하는 방법에 관한 것이다.

Description

고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법
본 발명은 에틸렌의 삼량체화나 사량체화와 같은 올리고머화 반응에 사용하기 위한 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 -헥센 또는 1-옥텐의 제조방법에 관한 것으로서, 보다 구체적으로는 크롬 화합물과 특정의 입체이성질체 구조를 갖는 키랄성 리간드로 이루어진 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물과 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물에 메틸아루미녹산(MAO) 등의 조촉매를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매 조성물 및 이들 촉매계를 이용하여 고활성과 고선택적으로 1-헥센 또는 1-옥텐을 제조하는 방법에 관한 것이다.
1-헥센 및 1-옥텐은 선형저밀도 폴리에틸렌을 만들기 위한 모노머 또는 코모노머로서 중합공정에 광범위하게 사용되는 중요한 상업적 원료로서, 에틸렌의 올리고머화 반응에 의해 생성된 제품을 정제하여 얻어진다. 그러나 기존의 에틸렌 올리고머화 반응은 1-헥센 및 1-옥텐과 함께 상당한 양의 부텐, 고급 올리고머와 폴리에틸렌을 함께 생성하는 비효율적인 측면이 있었다. 이러한 종래 에틸렌의 올리고머화 기술은 일반적으로 슐쯔-플로리(Schulze-Flory) 또는 포이즌(Poisson) 생성물 분포에 따라 다양한 α-올레핀을 생성하게 되므로, 원하는 생성물의 수율을 제한한다.
최근에 에틸렌을 전이금속 촉매작용을 통해 선택적으로 삼량체화하여 1-헥센을 생산하거나 또는 선택적으로 사량체화시켜 1-옥텐을 생산하는 것에 대한 연구가 진행되고 있는데, 공지된 대부분의 전이금속 촉매는 크롬계 촉매이다. 국제공개특허 제WO 02/04119호는 에틸렌 삼량체화 촉매로서 일반식 (R1)(R2)X-Y-X(R3)(R4)의 리간드를 사용한 크롬계 촉매를 개시하고 있는바, 여기에서, X는 인, 비소, 또는 안티몬이고, Y는 -N(R5)-와 같은 연결 그룹이며, R1, R2, R3 및 R4중 적어도 하나가 극성 또는 전자 수여 치환체를 가진다.
또 다른 공지 문헌에서는 촉매 조건하에 1-헥센에 대해 촉매 활성을 나타내지 않는 리간드로서 R1, R2, R3 및 R4 중 적어도 하나에 극성 치환체를 가지지 않는 화합물인 (o-에틸페닐)2PN(Me)P(o-에틸페닐)2의 용도를 개시하였다. (Antea Carter et al., Chem. Commun., 2002, p. 858 - 859).
또한 한국공개특허 제2006-0002741호에는 (o-에틸페닐)2PN(Me)P(o-에틸페닐)2 과 같이 인에 부착된 페닐환의 오르토 위치상에 비극성 치환체를 함유하는 PNP 리간드를 사용하여 우수한 에틸렌 삼량체화 활성 및 선택성이 실제로 가능하다는 것이 공지되어있다.
한편, 국제공개특허 제WO 04/056479호에는 인에 부착된 페닐환에 치환체가 생략된 PNP 리간드를 함유하는 크롬계 촉매에 의해 에틸렌을 사량체화하여 1-옥텐을 생성함에 있어서 선택도를 향상시킨다는 것이 공지되었으며, 이들 에틸렌 사량체화를 위한 사량체화 촉매에 사용되는 헤테로 원자 리간드의 예로서 (페닐)2PN(아이소프로필)P(페닐)2 등을 개시하고 있다.
상기 선행 기술은 질소 및 인을 헤테로 원자로 가지는 헤테로 원자 리간드를 함유하는 크롬계 촉매가 인 원자에 결합된 하이드로카빌 또는 헤테로하이드로카빌 그룹에 대한 극성치환체 없이도 에틸렌을 사량체하여 70 질량%를 초과하는 선택성으로 1-옥텐을 생산할 수 있음을 개시하였다.
그러나 종래의 선행기술들은 헤테로 원자를 포함하는 리간드의 구조와 관련하여 구체적으로 어떠한 형태가 고선택적으로 에틸렌을 사량체화하여 1-옥텐을 생성하거나 에틸렌을 삼량체화하여 1-헥센을 생성할 수 있는지에 관한 명확한 예를 제시하지 못 하였을 뿐 아니라, 70 질량% 정도의 1-옥텐 선택성을 가지는 리간드로서 (R1)(R2)P-(R5)N-P(R3)(R4)와 같은 PNP형 골격의 구조 밖에 제시하지 못 하였으며, 헤테로 원자 리간드 중 치환 가능한 치환체의 형태도 제한적으로 개시하고 있을 뿐이다. 즉, 사량체화 선택도에 중요한 영향을 미치는 인자는 리간드 골격 구조 중의 P원자와 또 다른 P 원자 사이의 다리 구조가 결정적임에도 불구하고 선행 기술은 다리 구조 양 쪽에 P원자와 P원자가 연결되기만 하면 고선택도의 촉매로 기술하였다.
또한, 종래의 선행기술인 헤테로원자를 포함하는 PNP형 골격의 리간드는 1-옥텐 또는 1-헥센 제조반응에 있어 반응 시간에 따라 그 반응 활성이 일관적으로 유지되지 못하고 반응 속도가 크게 감소하는 문제가 있었다. 이러한 원인은 골격 구조에 포함된 질소 원자는 비공유전자쌍이 존재하여 이로 인해 쉽게 전이 금속과 배위할 수 있어 리간드로서 적합하다고 할 수 있으나 이는 상대적으로 배위력이 약한 인 원자로 하여금 쉽게 전이금속으로부터 해리하도록 유도할 수 있기 때문이다. 공지된 문헌에서는 PNP 골격 리간드는 용매와 치환체의 극성 등 합성 환경에 따라 P-N-P구조가 쉽게 N=P-P 구조로 전환될 수 있음을 개시하였다(Dalton Trans., 2003, 2772).
한편, 또 다른 공지된 문헌에서는 헤테로원자를 포함하는 PNP형 골격의 리간드는 크롬 전구체와 미리 촉매 착체를 합성하여 에틸렌 올리고머화 반응을 실시한 결과 리간드와 크롬 전구체를 따로따로 주입한 결과와 활성 및 선택도가 크게 변화가 없음을 공지된바 있다(J. Am. Chem. Soc., 2004, 126, 14712).
그러나 상기한 수많은 공지문헌에도 불구하고, 이들 공지문헌에는 실질적으로 1-헥센과 1-옥텐을 높은 활성과 높은 선택비로 제조하는 것은 극히 일부의 촉매에 대해서만 개시되어 있을 뿐이고, 활성도 역시 낮아 상업적 활용도에 제한이 있으며, 특히 공지 촉매들은 메틸알루미녹산으로 예시되는 고가의 조촉매를 채용해야 하는 문제점이 있어 더욱 더 상업화에는 제한이 있는 문제가 있다.
본 출원인은 한국 특허출원 제2007-0005688호에 상기한 종래의 선행 기술의 촉매 안정성을 극복하기 위해서 원자 P와 P 사이의 구조 뿐 아니라 P 원자의 치환체 R1, R2, R3, R4를 다양하게 변화하면서 에틸렌 올리고머화 반응실험 한 결과, 골격구조 내에 질소를 포함하지 않는 본 발명에 따른 P-C-C-P 골격 구조 리간드를 포함하는 크롬계 촉매계를 이용하여 높은 선택성으로 에틸렌을 삼량체화하거나 사량체화하여 1-헥센이나 1-옥텐을 생성할 수 있을 뿐 아니라, 반응시간에 따라 촉매의 활성이 상당히 안정되어 반응 속도가 지속적으로 유지될 수 있음을 발견하였고, 또한 본 발명에 따른 P-C-C-P 골격 구조의 리간드에서 두 인 원자 사이의 탄소원자에 이웃하는 구조가 입체적으로 달라짐에 따라 삼량체화 및 사량체화 반응의 활성 및 선택도가 크게 향상될 수 있음을 공개 하였다.
그러나 종래의 기술에서는 전이 금속과 P-C-C-P 골격구조의 리간드를 에틸렌 올리고머화 반응 매개체에 따로따로 주입하게 되면 활성과 선택도의향상이 한계가 있었다. 그 이유는 골격 구조가 탄소 원자로서 비공유 전자쌍이 존재하지 않고 전이금속에 전자 공여 역할을 하는 인 원자 주위가 골격구조내의 키랄 탄소로 말미암아 전이 금속 배위 방향이 한정되어 있어 반응 매질 내에서 전이금속에 접근하여 배위 결합하는데 어려움이 있는 것으로 인식된다. 결국 이러한 P-C-C-P 골격 구조의 입체적, 전자적 효과는 전이금속 전구체와 P-C-C-P 골격 구조 리간드를 PNP 리간드의 경우처럼 촉매로서 에틸렌 올리고머화 반응 매개체에 따로따로 주입하게 되면 PNP리간드의 경우와 달리 실질적으로 촉매 활성점으로 전환될 전이 금속 전구체의 분자 수가 작아지게 되며, 이는 에틸렌의 삼량체 또는 사량체화에 있어서 활성과 선택도 저하를 초래하게 된다.
본 출원인은 이러한 촉매 활성 향상의 한계를 극복하기 위해서 P-C-C-P 골격 구조의 키랄성 리간드를 전이금속 전구체와 미리 반응시켜 실질적으로 순수한 형태의 전이금속 착체를 합성하고 이를 에틸렌 올리고머화 매개체에 주입한 결과 놀랍게도 촉매의 활성과 선택도가 극적으로 증가하는 것을 확인하였으며, 이를 바탕으로 본 발명을 완성하기에 이르렀다.
따라서 본 발명의 목적은 에틸렌의 삼량체화나 사량체화와 같은 올리고머화 반응에 사용하기 위한 고활성과 고선택적인 에틸렌 올리머고화 촉매로서 P-C-C-P 골격 구조의 키랄성 리간드와 크롬이 결합된 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물을 제공하는 것이며, 또 다른 목적으로서, 상기 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물에 메틸아루미녹산(MAO) 등의 조촉매를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매 조성물 및 이들 촉매계를 이용하여 고활성과 고선택적으로 1-헥센 또는 1-옥텐을 제조하는 방법을 제공하는 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명은 키랄성 P-C-C-P 골격 구조 리간드를 전이금속 또는 전이금속 전구체에 배위함으로써 착화 화합물을 합성하고 본 전이금속 착체화합물을, 에틸렌 올리고머화 촉매로 사용하는 것이다. 좀 더 구체적으로는 하기 화학식 1 또는 화학식 2의 키랄성 리간드를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
[화학식 1]
Figure PCTKR2010001341-appb-I000001
[화학식 2]
Figure PCTKR2010001341-appb-I000002
[상기 화학식 1 또는 화학식 2에서, R1, R2, R3, R4, R7, R8, R9 및 R10은 서로 독립적으로 하이드로카빌, 치환된 하이드로카빌, 헤테로하이드로카빌, 또는 치환된 헤테로하이드로카빌이고; R5, R6, R11및 R12는 서로 독립적으로 하이드로카빌 또는 치환된 하이드로카빌이거나, R5과 R6, R11과 R12가 서로 하이드로카빌렌, 치환된 하이드로카빌렌, 헤테로하이드로카빌렌 또는 치환된 헤테로하이드로카빌렌으로 결합될 수 있으며; X1 내지 X6는 각각 독립적으로 할로겐, -OR21및, -OCOR22 또는 -NR23R24이고, 상기 R21, R22, R23 또는 R24는 수소, 하이드로카빌 또는 헤테로하이드로카빌이며; L은 하이드로카본 또는 헤테로하이드로카본이고; * 및 **는 키랄 탄소 위치로 서로 독립적으로 (S) 또는 (R) 배열을 의미한다.]
상기 하이드로카빌 또는 헤테로하이드로카빌은 하이드로카본 또는 헤테로하이드로카본으로부터 유도되는 1개의 결합위치를 갖는 라디칼을 의미하는 것으로서, 하이드로카빌렌은 하이드로카본으로부터 유도되는 2개의 결합위치를 갖는 라디칼을 의미하며, 헤테로의 의미는 탄소가 O, S, N 원자로 치환된 것을 의미한다.
본 발명에 따른 키랄성 리간드에 있어 * 및 **위치의 키랄 탄소는 키랄성은 (R, R), (R, S), (S, R), (S, S)의 배열 쌍을 가진다.
본 발명에 따른 화학식 1 또는 화학식 2의 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물은 하기 화학식 3 내지 화학식 8의 키랄성 리간드를 포함한다.
[화학식 3]
Figure PCTKR2010001341-appb-I000003
[화학식 4]
Figure PCTKR2010001341-appb-I000004
[화학식 5]
Figure PCTKR2010001341-appb-I000005
[화학식 6]
Figure PCTKR2010001341-appb-I000006
[화학식 7]
Figure PCTKR2010001341-appb-I000007
[화학식 8]
Figure PCTKR2010001341-appb-I000008
상기 화학식 2 내지 화학식 6의 치환체는 화학식 1과 화학식 2의 치환체의 정의와 동일하다.
상기 화학식 1 또는 화학식 2의 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물은 R5과 R6, R11과 R12가 서로 하이드로카빌렌, 치환된 하이드로카빌렌, 헤테로하이드로카빌렌 또는 치환된 헤테로하이드로카빌렌으로 결합되는 경우 하기 구조의 화학식 8 내지 화학식 10의 화합물을 포함한다.
[화학식 9]
Figure PCTKR2010001341-appb-I000009
[화학식 10]
Figure PCTKR2010001341-appb-I000010
[화학식 11]
Figure PCTKR2010001341-appb-I000011
[화학식 12]
Figure PCTKR2010001341-appb-I000012
[화학식 13]
Figure PCTKR2010001341-appb-I000013
[화학식 14]
Figure PCTKR2010001341-appb-I000014
상기 화학식 9 내지 화학식 14에서 A는 (C1-C5)알킬렌, (C1-C5)알케닐렌로부터 선택되며, 상기 알킬렌과 알케닐렌은 (C3-C5)알킬렌, (C3-C5)알케닐렌의 경우 (C5-C7)시클로알킬 또는 (C6-C10)아릴기가 접한 구조로 융합고리를 형성하는 것도 포함된다.
상기 화학식 1 내지 화학식 14의 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물에 포함된 키랄성 리간드의 치환체 R1, R2, R3, R4, R7, R8, R9 및 R10은 서로 독립적으로 (C6-C20)아릴, (C6-C20)아르(C1-C10)알킬, (C1-C10)알킬, (C2-C10)알케닐, (C2-C10)알키닐, (C3-C7)시클로알킬, 헤테로(C5-C20)아릴, 헤테로(C3-C7)시클로알킬 또는 -NR23R24이고, R23 또는 R24는 (C1-C10)알킬, (C6-C20)아릴이며, 상기 R1, R2, R3, R4, R7, R8, R9 및 R10의 치환체는 (C1-C10)알킬, (C1-C10)알콕시, (C6-C20)아릴옥시 및 할로겐으로부터 하나 이상이 더 치환될 수 있다.
구체적으로는 상기 키랄성 리간드 중 R1, R2, R3, R4, R7, R8, R9 및 R10은 서로 독립적으로 페닐, 나프틸, 안트라세닐, 메시틸, 크실닐, 메틸, 에틸, 에틸레닐, n-프로필, i-프로필, 프로페닐, 프로피닐, n-부틸, t-부틸, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 4-메틸시클로헥실, 4-에틸시클로헥실, 4-이소프로필시클로헥실, 벤질, 톨릴, 크실릴, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 큐밀, 메톡시, 에톡시, 페녹시, 톨릴옥시, 디메틸아미노, 티오메틸, 트리메틸실닐, 디메틸히드라질, 2-메틸시클로헥실, 2-에틸시클로헥실, 2-이소프로필시클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐, o-이소프로폭시페닐, 비페닐, 나프틸 및 안트라세닐로 이루어진 그룹으로부터 선택되며, 바람직하게는 각각 독립적으로 페닐, 벤질, 나프틸, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 2-메틸시클로헥실, 2-에틸시클로헥실, 2-이소프로필시클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐 및 o-이소프로폭시페닐로 이루어진 그룹으로부터 선택된다.
본 발명에 따른 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물에 포함되는 키랄성 리간드의 키랄 탄소와 결합되는 R5, R6, R11 및 R12는 서로 독립적으로 (C6-C20)아릴, (C6-C20)아르(C1-C10)알킬, (C1-C10)알킬, (C2-C10)알케닐, (C2-C10)알키닐, (C3-C7)시클로알킬, 헤테로(C5-C20)아릴, 헤테로(C3-C7)시클로알킬, (C1-C10)알콕시, (C6-C20)아릴옥시, 아미노카보닐, 카보닐아미노, 디(C1-C10)알킬아미노, (C1-C10)알킬실릴 또는 (C6-C20)아릴실릴이며, 상기 R5, R6, R11 및 R12의 치환체는 (C1-C10)알킬, (C1-C10)알콕시, (C6-C20)아릴옥시 및 할로겐으로 치환될 수 있으며, 바람직하게는 메틸, 에틸, 에틸레닐, n-프로필, i-프로필, 프로페닐, 프로피닐, n-부틸, t-부틸, i-부틸, 페닐, 벤질, 톨릴, 크실릴, 메톡시, 에톡시, 페녹시, 메틸아미노, 디메틸아미노로부터 선택된다.
상기 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물에서 크롬에 배위되는 X1, X2, X3, X4, X5 또는 X6는 Cl, Br, 아세토아세틸 및 2-에틸헥사노일기로부터 선택될 수 있으나, 이들에 제한되는 것은 아니다.
상기 화학식 1에서 크롬에 배위되는 L은 테트라하이드로퓨란, 디에틸에테르, 톨루엔, 클로로벤젠, 디클로로벤젠, 아세틸아세톤 및 2-에틸헥사논으로부터 선택될 수 있으며, 상기 L은 키랄성 리간드와 크롬염의 반응시 매질인 용매들로부터 기인된다.
본 발명에 따른 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물에 포함되는 키랄성 리간드는 다음의 화합물을 예시하지만, 하기에 예시되는 화합물이 본 발명을 제한하는 것은 아니다.
(S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(메틸)CH(메틸)-P(페닐)2
(S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(메틸)CH(메틸)-P(4-메톡시페닐)2
(S, S)-, (R, R)- 또는 meso-(4-메틸페닐)2P-CH(메틸)CH(메틸)-P(4-메틸페닐)2
(S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(메틸)CH(메틸)-P(페닐)2
(S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(에틸)CH(메틸)-P(4-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(에틸)CH(메틸)-P(페닐)2
(S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(에틸)CH(에틸)-P(4-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(에틸)CH(에틸)-P(페닐)2
(S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(이소프로필)CH(메틸)-P(페닐)2
(S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(이소프로필)CH(메틸)-P(4-메톡시페닐)2
(S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(이소프로필)CH(메틸)-P(4-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(n-프로필)CH(메틸)-P(페닐)2
(S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(n-프로필)CH(메틸)-P(4-메톡시페닐)2
(S, S)-, (R, R)- 또는 meso-4(4-에틸페닐)2P-CH(n-프로필)CH(메틸)-P(4-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(이소프로필)CH(에틸)-P(페닐)2
(S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(이소프로필)CH(에틸)-P(4-메톡시페닐)2
(S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(이소프로필)CH(에틸)-P(4-에틸페닐)2
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(페닐)2)시클로헥산
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-메톡시페닐)2)시클로헥산
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-에틸페닐)2)시클로헥산
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-트랜스-1,2-디-(P(페닐)2)시클로펜탄
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-메톡시페닐)2)시클로펜탄
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-에틸페닐)2)시클로펜탄
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(페닐)2)피롤
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(4-메톡시페닐)2)피롤
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(4-에틸페닐)2)피롤
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(4-에틸페닐)2)이미다졸
(S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(디메틸아민)CH(디메틸아민)-P(4-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(3-메톡시페닐)2P-CH(메틸)CH(메틸)-P(3-메톡시페닐)2
(S, S)-, (R, R)- 또는 meso-(4-에톡시페닐)2P-CH(메틸)CH(메틸)-P(o-에톡시페닐)2
(S, S)-, (R, R)- 또는 meso-4-(디메틸아민페닐)2P-CH(메틸)CH(메틸)P(4-디메틸아민페닐)2
(S, S)-, (R, R)- 또는 meso-(4-에틸시클로헥실)2PCH(메틸)CH(메틸)P(4-에틸시클로헥실)2
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(메틸)CH(메틸)P(2-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(2-이소프로필페닐)2PCH(메틸)CH(메틸)P(2-이소프로필페닐)2
(S, S)-, (R, R)- 또는 meso-(2-메틸페닐)2PCH(메틸)CH(메틸)P(2-메틸페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(메틸)CH(메틸)P(페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(에틸)CH(메틸)P(2-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(에틸)CH(에틸)P(2-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(이소프로필)CH(메틸)P(2-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(n-프로필)CH(메틸)P(2-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(이소프로필)CH(에틸)P(2-에틸페닐)2
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(2-에틸페닐)2)시클로헥산
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(2-에틸페닐)2)시클로펜탄
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(2-에틸페닐)2)피롤
(S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(2-에틸페닐)2)이미다졸
(S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(디메틸아민)CH(디메틸아민)P(2-에틸페닐)2
(S, S)-, (R, R)- 또는 meso-(2-메톡시페닐)2PCH(메틸)CH(메틸)P(2-메톡시페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에톡시페닐)2PCH(메틸)CH(메틸)P(2-에톡시페닐)2
(S, S)-, (R, R)- 또는 meso-(2-디메틸아민페닐)2PCH(메틸)CH(메틸)P(2-디메틸아민페닐)2
(S, S)-, (R, R)- 또는 meso-(2-에틸시클로헥실)2PCH(메틸)CH(메틸)P(2-에틸시클로헥실)2
본 발명에 따른 키랄성 리간드들은 당업자들에게 공지된 다양한 방법을 이용하여 제조될 수 있다.
본 발명에 따른 상기 리간드의 P-C-C-P형 입체 이성질체 골격구조는 공지된 종래의 (R)nPN(R')P(R)m 헤테로 리간드와는 별개의 독립적인 구조를 띠는 리간드로서 리간드의 골격 구조 내의 헤테로 원자는 단지 인(P) 원자뿐이다. 즉, 본 발명에 따른 촉매계에 사용되는 리간드는 두 개의 인 원자 사이에 질소 원자가 없이 2개의 탄소-탄소 골격 구조로 이루어진 것으로서, 탄소 원자에 붙는 치환체의 배열 방향으로 적당히 공간 구조를 조절함으로써 우수한 촉매활성을 나타낼 뿐만 아니라 70 wt% 이상의 높은 1-헥센 선택도 또는 1-옥텐 선택도를 달성할 수 있고, 반응 활성의 안정성을 유지 할 수 있다.
또한, 키랄성 P-C-C-P 골격 구조의 리간드가 배위된 전이 금속 착체는 상온이상에서 불용성이 되게 하기 위하여 폴리머 사슬에 부착되도록 변형될 수 있다. 또한, 실리카, 실리카겔, 폴리실록산 또는 알루미나 등의 백본에 결합시켜 고정화 할 수 있다.
본 발명은 보다 효과적인 활성 및 고선택도를 위하여 본 발명에 따른 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매와 공지의 조촉매를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매 조성물을 포함한다.
본 발명에 따른 촉매 조성물에서 채용되는 조촉매는 원칙적으로 키랄성 P-C-C-P골격 구조의 리간드가 배위된 전이 금속 착체를 활성화하는 임의의 화합물일 수 있다. 활성제는 또한 혼합물로도 사용될 수 있다. 활성제로 적합한 화합물에는 유기 알루미늄 화합물, 유기 붕소 화합물, 유기염이 포함된다.
본 발명에 따른 촉매계에 활성제로 사용되기에 적합한 유기 알루미늄 화합물은 AlR3 (R은 각각 독립적으로 (C1-C12)알킬, 산소 함유 (C1-C12)알킬 또는 할로겐이다)의 화합물 또는 LiAlH4 등을 포함한다.
본 발명에 따른 촉매 조성물에서 조촉매로는 트리메틸알루미늄(TMA), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리-n-옥틸알루미늄, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 알루미늄 이소프로폭사이드, 에틸알루미늄 세스퀴클로라이드, 메틸알루미늄 세스퀴클로라이드 및 알루미녹산이 포함된다.
알루미녹산은 당업계에서 전형적으로 물과 알킬알루미늄 화합물, 예를 들어 트리메틸알루미늄에 조절 첨가하여 제조 될 수 있는 올리고머 화합물로서 널리 알려져 있다. 생성된 알루미녹산 올리고머 화합물은 선형, 사이클릭, 케이지(cage) 또는 이들의 혼합물일 수 있다.
적합한 유기 붕소 화합물은 보록신, NaBH4, 트리에틸 보란, 트리페닐보란, 트리페닐보란 암모니아 착화합물, 트리부틸보레이트, 트리아이소프로필보레이트, 트리스(펜타플로로페닐)보란, 트리틸(테트라펜타플로로페닐)보레이트, 디메틸페닐암모늄(테트라펜타플로로페닐)보레이트, 디에틸페닐암모늄(테트라펜타플로로페닐)보레이트, 메틸디페닐암모늄(테트라펜타플로로페닐)보레이트, 또는 에틸디페닐암모늄(테트라펜타플로로페닐)보레이트이다. 이들의 유기 붕소 화합물은 상기의 유기 알루미늄 화합물과 혼합물로 사용할 수 있다.
또한 특히 조촉매 중에서 알루미녹산은 알킬알루미녹산, 예를 들어 메틸알루미녹산(MAO) 및 에틸알루미녹산(EAO)뿐 아니라 변형된 알킬 알루미녹산 예를 들어 변형 메틸알루미녹산(MMAO) 중에서 선택될 수 있다. 변형 메틸 알루미녹산(Akzo Nobel 제조)은 메틸그룹 이외에 이소부틸 또는 n-옥틸그룹과 같은 혼성 알킬 그룹을 함유한다.
상기 조촉매는 메틸알루미녹산(MAO) 또는 에틸알루미녹산(EAO)인 것이 바람직하다.
에틸렌의 선택적 올리고머 제조용 크롬 착체와 알루미녹산의 비율은 알루미늄:크롬 몰비로 기준으로 1:1 내지 10,000:1이며, 바람직하게는 약 1:1 내지 1,000:1이다.
본 발명의 또 다른 범위는 본 발명에 따른 P-C-C-P 골격 구조의 키랄성 리간드를 전이금속 전구체에 미리 배위된 구조의 본 발명에 따른 화학식 1 또는 화학식 2의 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물을 제조하고, 이를 에틸렌 올리고머화 매개체에 주입하여 에틸렌 올리고머화 반응을 고활성과 고선택도로 올리고머, 특히 1-헥센 또는 1-옥텐을 고활성과 고선택비로 재조하는 방법에 관한 것으로, 고활성 고선택도를 이루기 위한 P-C-C-P 골격 구조 리간드는 (S, S)-, (R, R)- 또는 meso-이성질체의 선형 리간드, 트랜스- 또는 시스-사이클릭 리간드일 수 있다. 또한 몇 가지 이성질체의 혼합된 형태로서 (S, S)-, (R, R)- 또는 meso-(R1)(R2)P-(R5)CHCH(R6)-P(R3)(R4)가 다중으로 결합되어 구성된 리간드가 사용될 수도 있다.
본 발명에 개시된 촉매계의 개별 성분들인 에틸렌의 선택적 올리고머 제조용 크롬 착체와 조촉매는 용매의 존재 또는 부재 하에 동시에 또는 임의의 순서로 순차적으로 배합되어 활성 촉매를 제공할 수 있다. 각 촉매 성분의 혼합은 -20 내지 250 ℃의 온도에서 수행될 수 있으며, 촉매 성분이 혼합되는 동안 올레핀의 존재는 일반적으로 보호 효과를 나타내어 향상된 촉매 성능을 제공할 수 있다. 보다 바람직한 온도의 범위는 20 내지 100 ℃이다.
본 발명에 개시된 반응 생성물, 달리 표현하면 에틸렌 올리고머, 특히 1-헥센 또는 1-옥텐은 본 발명에 따른 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물과 통상적인 장치 및 접촉 기술을 이용하여 불활성 용매의 존재 또는 부재 하에서 균질 액상 반응 또는 촉매 시스템이 일부 용해되지 않거나 전부 용해되지 않는 형태인 슬러리 반응 또는 2상 액체/액체 반응 또는 생성물 올레핀이 주 매질로 작용하는 벌크상 반응 또는 가스상 반응으로 제조될 수 있다.
본 발명에 따른 선택적 올리고머 제조 방법은 또한 불활성 용매 중에 수행될 수 있다. 즉, 각 촉매 화합물 및 활성제와 반응 하지 않는 임의의 불활성 용매가 사용될 수 있으며, 이들 불활성 용매는 임의의 포화 지방족 및 불포화 지방족 및 방향족 탄화수소 및 할로겐화 탄화수소를 포함할 수 있다. 전형적인 용매에는 벤젠, 톨루엔, 크실렌, 클로로벤젠, 큐멘, 헵탄, 사이클로헥산, 메틸사이클로헥산, 메틸사이클로펜탄, n-헥산, 1-헥센, 1-옥텐 등이 포함되나 이들에만 한정되는 것은 아니다. 특히 상기 화학식 1 화합물을 채용하는 경우 L 리간드와 동일한 화합물을 반응용매로 채용하는 것이 더욱 바람직하다.
본 발명의 제조방법에 따른 올리고머화 반응은 -20 내지 250 ℃의 온도, 바람직하게는 15 내지 130 ℃의 온도, 더 바람직하게는 30 내지 70 ℃의 온도에서 수행될 수 있다.
또한, 본 발명에 따른 방법은 대기압 내지 500 bar의 압력에서, 바람직하게는 10 내지 70 bar의 압력, 더 바람직하게는 30 내지 50 bar의 압력에서 수행된다.
본 발명의 구체예에서 P-C-C-P골격 구조의 입체 이성질체 리간드 배위 복합체 및 반응 조건은 에틸렌으로부터의 1-헥센 수율이 50 질량% 이상, 바람직하게는 70 질량% 이상이 되도록 선택된다. 이 경우 수율은 형성된 총 반응 생성물 100 g당 형성된 1-헥센의 그램수를 의미한다.
본 발명의 또 다른 구체예에서 P-C-C-P골격 구조의 입체 이성질체 리간드 배위 복합체 및 반응 조건은 에틸렌으로부터의 1-옥텐 수율이 30 질량% 이상, 바람직하게는 50질량%이상이 되도록 선택된다. 이 경우 수율은 형성된 총 반응 생성물 100 g당 형성된 1-옥텐의 그램수를 의미한다.
본 발명에 따른 방법은 또한 P-C-C-P골격 구조의 리간드 및 반응 조건에 따라 1-헥센 또는 1-옥텐 이외에 상이한 양의 1-부텐, 1-헥센, 메틸사이클로펜탄, 메틸렌사이클로펜탄, 프로필사이클로펜탄 및 다수의 고급 올리고머 및 폴리에틸렌을 제공할 수 있다.
본 방법에 따른 방법은 임의 유형의 반응기를 포함하는 플랜트로 수행될 수 있다. 이러한 반응기의 예는 배치식 반응기, 반배치식 반응기 및 연속식 반응기를 포함하나 이들에만 한정하지 않는다. 플랜트는 반응기, 이 반응기내에 올레핀 반응기 및 촉매 시스템의 주입구, 이 반응기로부터 올리고머화 반응 생성물을 유출을 위한 라인 및 올리고머화 반응 생성물을 분리하기 위한 적어도 하나의 분리기를 조합하여 포함할 수 있으며, 이때 촉매 시스템은 본원에 개시된 전이금속 화합물, 활성제 및 P-C-C-P 리간드 배위 복합체를 포함할 수 있다.
본 발명에 따른 에틸렌 올리고머화 촉매계를 사용하여 에틸렌을 올리고머화함으로써 1-헥센 또는 1-옥텐을 고활성, 고선택적으로 생산할 수 있다.
리간드와 크롬 금속 또는 크롬전구체를 따로따로 에틸렌 올리고머화 반응 매개체에 주입하는 경우상당량의 리간드가 크롬 원자에 접근 할 수 없거나 정상적으로 배위하지 못 하여 상업화에 접합할 정도의 활성과 선택도를 갖지 못하는 것에 비하여, 본 발명에 따른 키랄성 P-C-C-P 골격 구조를 갖는 에틸렌의 선택적 올리고머 제조용 크롬착체 화합물을 사용하여 에틸렌을 올리고머화 하는 경우, 키랄성 리간드가 크롬에 정상적으로 배위된 촉매를 채용함으로 인하여 반응 활성이 10배 이상 증가되고, 또한 높은 선택비로 인하여 중합체 부산물의 생성량을 1/10배 이하로 줄일 수 있어, 결과적으로 반응 후 중합체 함량을 0.1 wt%정도로 낮출 수 있는 효과가 있고, 이로 인해 부산물의 적은 생성비는 정제공정을 간단히 할 수 있는 등의 생산을 위한 공정이 매우 간단하게 할 수 있는 경제적 잇점이 있다. 또한 촉매 활성화에 필요한 고가의 조촉매인 MAO의 주입량도 1/10 이하로 줄일 수 있어 경제적인 생산 공정이 될 수 있는 장점이 있다.
도 1. 촉매 제조 예 2에서 제조한 화합물의 X-선 회절 구조
도 2. 촉매 제조 예 5에서 제조한 화합물의 X-선 회절 구조
이하 본 발명에 따른 제조예 및 실시예를 참조하여 본 발명을 좀 더 상세히 기술하지만, 이에 본 발명의 범주가 한정되는 것은 아니다.
[제조예]
[촉매 제조예 1] ( S,S) -(페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 (테트라하이드로퓨란)삼염화크롬
[CrCl 3 (THF){(P,P)- k 2 -( S,S )-((Ph) 2 P(Me)CH-CH(Me)P(Ph) 2 )}]의 제조
A. 리간드 (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2
[(S,S)-Ph2PCH(Me)CH(Me)PPh2]의 제조
키랄성 리간드인 (S,S)-Ph2PCH(Me)CH(Me)PPh2]는 B. Bosnich et al, J. Am. Chem. Soc. 99(19) (1977) 6262에 개시된 바와 같이 제조하였다. (2R,3R)-부탄디올로부터 (2R,3R)-부탄디올 디-p-톨루엔솔포네이트를 제조했다. 이 제조 방법은 R. B. Mitra et al, J. Am. Chem. Soc 84(1962)에 개시된 바와 같이 하였다. 얼음물 조에 냉각된 1 L 플라스크에 건조된 피리딘 100 mL(1.24 mol)을 넣고 염화-p-톨루엔솔폰닐 100 g(0.525 mol)과 혼합 후, (2R,3R)-부탄디올 22 mL(0.245 mol)을 서서히 적가하였다. 20 분 동안 상온으로 온도를 올린 후, 반 고체상의 혼합물을 상온에서 12 시간 유지하였다. 과량의 얼음 조각을 더하고 덩어리가 형성되지 않도록 격렬하게 흔들었다. 분말 결정이 서서히 분리된 것을 확인 후, 얼음조각과 함께 2 시간 동안 교반하고 이 혼합물에 부서진 얼음조각과 진한 염산 용액 70 ml를 격렬한 교반과 함께 주입하였다. 적출된 슬러리를 여과 후 물로 완전히 세척하고 건조하여 (2R,3R)-부탄디올 디-p-톨루엔솔포네이트 85 g(86.3 %)의 생성물을 얻었다(녹는점 62 내지 64 ℃).
250 mL의 적가용 펀넬과 환류 냉각용 콘덴서 및 질소 주입기를 장착한 3구 1 L 둥근 플라스크에 재결정화 된 트리페놀인 95 g과 건조된 테트라하이드로퓨란(THF) 300 mL를 주입했다. 이 용액에 얇은 리튬 조각 5.0 g을 25 ℃에서 교반하며 질소 하에서 가하여 용액 내에 LiPPh2를 형성시켰으며,이때 많은 열이 발생되면서 짙은 적황색으로 변하였다. 온도를 서서히 1시간 동안 55 ℃로 올리고, 2 시간 동안 다시 25 ℃로 냉각하며 교반하였다. 형성된 페닐리튬은 증류 정제된 t-부틸클로라이드 33 g으로 45 분 동안 적가하여 분해시켰다. 투명한 적황색 용액을 5분 동안 끓인 후 다시 -4 ℃로 냉각하였다.
여기에 냉각 교반 상태에서 제조한 상기 (2R,3R)-부탄디올 디-p-톨루엔솔포네이트 35 g을 건조된 THF 100 mL에 녹인 후, 1 시간 동안 적가하였다. 서서히 상온으로 올린 후 30분간 교반하였다. 질소를 흘린 물 300 mL를 더한 후 THF를 감압으로 증류하여 제거한 결과 무색 오일 형태의 생성물이 추출되었다. 생성물을 에테르 150 mL로 2번 추출 후 Na2SO4에 의해 건조하였다. 에테르 추출물을 질소 하에 에탄올 50 mL에 6수화니켈과염산 (nickel perchlorate hexahydrate) 15 g 용액 속에 여과하였다. 여과기에 남아있는 Na2SO4를 에테르로 철저히 세척 후 그 에테르 용액을 니켈용액에 더했다. 때때로 노란 결정을 띠면서 적갈색 오일 형태의 생성물은 [Ni((S,S)-chiraphos)2](ClO4)2이다. 이 오일 결정 혼합물을 뜨거운 에탄올(50 mL)에 녹아 있는 소디움 티오시안나이트(NaNCS) 15 g에 더하고 그 용액을 균일한 황갈색 고체인 [Ni((S,S)-chiraphos)2NCS]NCS가 형성될 때까지 몇 시간동안 격렬하게 교반하였다. 이 고체 생성물을 에탄올로 완전히 세척 후 마지막으로 에테르로 세척하였다.
상기 제조된 니켈 착체 15 g을 에탄올 150 mL로 질소 하에 부유시키고 교반하며 가열하였다. 물 20 g에 시안화나트륨(NaCN) 4 g을 재빠르게 더하였다. 니켈 착체는 서서히 용해되어 맑은 적색의 용액인 [Ni((S,S)-chiraphos)2CN3]-가 생성 된 다음 다시 베이지 색의 탁한 용액으로 변하였다. 뜨거운 용액을 노란색 슬러리가 될 때까지 교반하였다. 슬러리 용액을 냉각하고 고체를 물 25 mL로 두 번 연속해서 세척한 후 얼음으로 냉각한 에탄올로 재빠르게 냉각했다. 불순물이 포함된 베이지 색 고체를 25 ℃에서 건조 후, 끓는 무수 에탄올 125 mL에 더한 후 프리쯔에 의해 여과하였다. 상온으로 프리쯔 여과를 12 시간 유지시켜 무색의 광택성 고체를 수득한 후, 무수 에탄올 60 mL로 다시 결정화하여 완전 무색의 순수한 (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 5.5 g을 얻었다.
B. (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2(테트라하이드로퓨란)삼염화크롬
[CrCl3(THF){(P,P)-k 2-(S,S)-((Ph)2P(Me)CH-CH(Me)P(Ph)2)}]의 제조
삼테트라하이드로퓨란 삼염화 크롬 (CrCl3(THF)3) 1.1 g(3.0 mmol)을 테트라하이드로퓨란 100 mL에 녹인 후 상기에서 제조한 (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 리간드 화합물 1.28 g(3.0 mmol)을 역시 테트라하이드로퓨란 50 mL에 녹여서 서서히 가하고, 상온에서 교반하였다. 반응물을 1시간 더 교반 후 진공으로 휘발물을 제거한후, 반응 생성물에 페트롤륨 에테르 100 mL를 적가하여 침전된 푸른색 고체를 수득하였다. 페트롤륨 에테르 100 mL으로 2번 세척하여 생성물 1.77 g(수율 90 %)를 얻었다.
[촉매 제조예 2] 비스-[( S,S) -(페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 -( S,S )-((Ph) 2 P(Me)CH-CH(Me)P(Ph) 2 )}] 2 의 제조
삼테트라하이드로퓨란 삼염화 크롬 (CrCl3(THF)3) 1.1 g(3.0 mmol)을 이염화메탄 100 mL에 녹인 후 상기 촉매 제조 예 1에서 제조한 (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 리간드 화합물 1.28 g(3.0 mmol)을 역시 이염화메탄 50 mL에 녹여서 서서히 가하였다. 반응물을 1시간 더 교반 후 진공으로 휘발물을 제거하였다. 생성물에 페트롤륨 에테르 100 mL를 적가하여 푸른색 고체를 침전으로 수득하였다. 페트롤륨 에테르 100 mL으로 2번 세척하여 표제화합물 1.58 g(수율 90 %)를 얻었다. 제조된 착제 화합물의 단일 X선 회절 결정법으로 분석한 결과 도 1과 같은 구조를 보였다.
[촉매 제조예 3] [( S,S) -(페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 이아세틸아세토네이트크롬]
[Cr{(O,O)- k 2 -(CH 3 COCH 2 COCH 3 ) 2 }{(P,P)- k 2 -( S,S )-((Ph) 2 P(Me)CH-CH(Me)P(Ph) 2 )}]의 제조
상기 촉매 제조예 2에서 삼테트라하이드로퓨란 삼염화 크롬 (CrCl3(THF)3) 대신 삼아세토아세틸 크롬 (Cr(acac)3) 1.1 g(3.0 mmol)을 사용한 것 이외에는 동일하게 반응을 진행하여, 표제 화합물 1.62 g 를 얻었다.
[촉매 제조예 4] [( S,S) -(페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 이(2-에틸 헥사노일)크롬]
[Cr{(OOCCH(C 2 H 5 )C 4 H 9 ) 2 }{(P,P)- k 2 -( S,S )-((Ph) 2 P(Me)CH-CH(Me)P(Ph) 2 )}]의 제조
삼테트라하이드로퓨란 삼염화 크롬 (CrCl3(THF)3) 대신 삼(2-에틸)헥사노에이트 크롬 (Cr(OOCCH(C2H5)C4H9)3) 1.44 g(3.0 mmol)을 사용한 것 이외에는 촉매 제조예 2와 동일하게 반응을 진행하여, 표제 화합물 1.82 g를 얻었다.
[촉매 제조예 5] 비스-[( R,R) -(페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 -( R,R) -((Ph) 2 P(Me)CH-CH(Me)P(Ph) 2 )}] 2 의 제조
A. 리간드 (R,R)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2
[(R,R)-Ph2PCH(Me)CH(Me)PPh2]의 제조
출발 반응 물질로 (2R,3R)-부탄디올 대신에 (2S,3S)-부탄디올을 사용하는 것을 제외하고, 사용한 것 이외에는 촉매제조예 1과 동일하게 반응을 진행하여, 표제 화합물 5.1 g을 얻었다.
B. 비스-[(R,R)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2이염화(μ-염화)크롬]
[CrCl2(μ-Cl){(P,P)-k 2-(R,R)-((Ph)2P(Me)CH-CH(Me)P(Ph)2)}]2의 제조
(S,S)- 대신 (R,R)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 리간드 화합물 1.28 g(3.0 mmol)을 사용한 것 이외에는 촉매 제조예 2와 동일하게 반응을 진행하여표제화합물 생성물 1.58 g를 얻었다. 이 착제 화합물의 단일 X선 회절 결정법으로 분석한 결과 도 2와 같은 구조를 보였다.
[촉매 제조예 6] 비스-[ meso -(페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 - meso -((Ph) 2 P(Me)CH-CH(Me)P(Ph) 2 )}] 2 의 제조
A. 리간드 meso-(페닐)2PCH(메틸)CH(메틸)P(페닐)2
[meso-Ph2PCH(Me)CH(Me)PPh2]의 제조
출발 반응 물질로 (2R,3R)-부탄디올을 사용하는 대신에 meso-부탄디올을 사용하는 것을 제외하고 촉매 제조예 1과 동일한 방법으로 제조하였다. 완전 무색의 순수 meso-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 5.7 g을 얻었다.
B. 비스-[meso--(페닐)2PCH(메틸)CH(메틸)P(페닐)2이염화(μ-염화)크롬]
[CrCl2(μ-Cl){(P,P)-k 2-meso-((Ph)2P(Me)CH-CH(Me)P(Ph)2)}]2의 제조
(S,S)- 대신 meso-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 리간드 화합물 1.28 g(3.0 mmol)을 사용한 것 이외에는 촉매 제조예 2와 동일하게 반응을 진행하여, 표제 화합물 1.43 g를 얻었다.
[촉매 제조예 7] 비스-[( R,R) -(4-메톡시페닐) 2 PCH(메틸)CH(메틸)P(4-메톡시페닐) 2 이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 -( R,R) -((4-MeOPh) 2 P(Me)CH-CH(Me)P(4MeOPh) 2 )}] 2 의 제조
A. 리간드 (R,R)-(4-메톡시페닐)2PCH(메틸)CH(메틸)P(4-메톡시페닐)2
[(R,R)-(4-MeOPh)2PCH(Me)CH(Me)P(4-MeOPh)2]의 제조
B. Bosnich et al, J. Am. Chem. Soc 99(19)(1977)에 개시된 바와 같이 제조하였다.
(2S,3S)-부탄디올로부터의 (2S,3S)-부탄디올 디-p-톨루엔솔포네이트의 제조는 촉매 제조예 1의 방법대로 하였다.
트리(4-메톡시페닐)인의 제조는 다음과 같이 진행하였다. 마그네슘 조각(91.1 g, 3.75 mol)을 THF 2 L 중의 4-브로모-아니졸 95 mL(0.75 mol)으로 적가하였다. 격렬히 반응 후 반응 혼합물을 환류 하에 2시간 동안 가열하여 그리냐드 시약을 수득하였다. 이 그리냐드 시약을 -78 ℃에서 THF 2 L 중의 PCl3 용액 17.5 mL(0.2 mol)에 교반하면서 2 시간에 걸쳐 적가하였다. 적가 완료 후, 드라이아이스/아세톤 조를 제거하고 반응물을 상온으로 올렸다. 반응물을 밤새 교반하고 용매를 진공 중에서 제거하였다. 이 포스핀 생성물은 제거 없이 모두 다음 단계에서 사용되었다.
250 mL의 적가용 포넬과 환류 냉각용 콘덴서 및 질소 주입기를 장착한 3 구 1 L 둥근 플라스크에 재결정화 된 트리(4-메톡시페놀)인 70 g과 건조된 테트라하이드로퓨란(THF) 300 mL를 주입했다. 이 용액에 얇은 리튬 조각 2.8 g을 25 ℃에서 교반하며 질소 하에서 넣었다. 용액에 즉시 LiP(4-OMe-Ph)2가 형성되고, 많은 열이 발생되면서 짙은 적황색으로 변하였다. 온도를 서서히 1 시간 동안 55 ℃로 올리고 2 시간 동안 다시 25 ℃로 냉각하며 교반하였다. 형성된 4-메톡시페닐리튬은 증류 정제된 t-부틸클로라이드 18.5 g으로 45 분 동안 적가하여 분해시켰다. 투명한 적황색 용액을 5분 동안 끓인 후 다시 -4 ℃로 냉각하였다.
여기에 냉각 교반 상태에서 위에서 제조한 (2S,3S)-부탄디올 디-p-톨루엔솔포네이트 19.6 g을 건조된 THF 100 mL에 녹인 후, 1 시간 동안 적가하였다. 서서히 상온으로 올린 후 30분간 교반하였다. 질소를 흘린 물 300 mL를 더한 후 THF를 감압으로 증류하여 제거한 결과 무색 오일 형태의 생성물이 추출되었다. 생성물을 에테르 150 mL로 2번 추출 후 Na2SO4에 의해 건조하였다. 에테르 추출물을 질소 하에 에탄올 50 mL에 6수화니켈과염산 (nickel perchlorate hexahydrate) 8.4 g 용액 속에 여과하였다. 여과기에 남아있는 Na2SO4를 에테르로 철저히 세척 후 그 에테르 용액을 니켈용액에 더했다. 적갈색 오일 형태의 생성물은 [Ni((2R,3R)-비스(디-p-메톡시페닐)포스포러스부탄)2](ClO4)2이다. 이 오일 결정 혼합물을 뜨거운 에탄올(50 mL)에 녹아 있는 소디윰 씨오시안나이트(NaNCS) 8.4 g에 더하고 그 용액을 균일한 황갈색 고체인 [Ni((2R,3R)-비스(디-p-메톡시페닐)포스포러스부탄)2NCS]NCS가 형성될 때까지 몇 시간 동안 격렬하게 교반하였다. 이 고체 생성물을 에탄올로 완전히 세척한 후 마지막으로 에테르로 세척하였다.
이 니켈 착체 17 g을 에탄올 150 mL로 질소 하에 부유시키고 교반하며 가열하였다. 물 20 g에 시안화 나트륨(NaCN) 4 g을 재빠르게 더하였다. 니켈 착체는 서서히 용해되어 맑은 적색의 용액인 [Ni((2R,3R)-비스(디-p-메톡시페닐)포스포러스부탄)2CN3]-가 생성 된 다음, 다시 베이지 색의 탁한 용액으로 변하였다. 뜨거운 용액을 노란색 슬러리가 될 때까지 교반하였다. 슬러리 용액을 냉각하고 고체를 물로 25 mL 두 번 연속해서 세척한 후 얼음으로 냉각한 에탄올로 재빠르게 냉각했다. 불순물이 포함된 베이지 색 고체를 25 ℃에서 건조 후, 끓는 무수 에탄올 125 mL로 더한 후 프리쯔에 의해 여과하였다. 상온으로 프리쯔 여과를 12 시간 유지시킨 결과 여과액이 모두 빠지고 무색의 광택나는 고체만 남았다. 무수 에탄올 60 mL로 다시 결정화하여 완전 무색의 순수한 (R,R)-(4-메톡시페닐)2PCH(메틸)CH(메틸)P(4-메톡시페닐)2 6.2 g을 얻었다.
B. 비스-[(R,R)-(4-메톡시페닐)2PCH(메틸)CH(메틸)P(4-메톡시페닐)2이염화(μ-염화)크롬]
[CrCl2(μ-Cl){(P,P)-k 2-(R,R)-((4-MeOPh)2P(Me)CH-CH(Me)P(4MeOPh)2)}]2의 제조
(S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 대신 (R,R)-(4-메톡시페닐)2PCH(메틸)CH(메틸)P(4-메톡시페닐)2 리간드 화합물 1.64 g(3.0 mmol)을 사용한 것 이외에는 상기 촉매 제조예 2와 동일하게 진행하여, 표제 화합물 생성물 1.29 g를 얻었다.
[촉매 제조예 8] 비스-[( S,S) -(4-메틸페닐) 2 PCH(메틸)CH(메틸)P(4-메틸페닐) 2 이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 -( S,S) -((4-MePh) 2 P(Me)CH-CH(Me)P(4-MePh) 2 )}] 2 의 제조
A. 리간드 (S,S)-(4-메틸페닐)2PCH(메틸)CH(메틸)P(4-메틸페닐)2
[(S,S)-(4-MePh)2PCH(Me)CH(Me)P(4-MePh)2]의 제조
트리(4-메틸페닐)인을 제조하기 위해 4-톨릴-브로마이드를 사용하는 것을 제외하고는 모든 합성 과정을 촉매 제조예 7의 방법과 동일하게 진행하여, 완전 무색의 순수 (S,S)-(4-메틸페닐)2P-CH(메틸)CH(메틸)-P(4-메틸페닐)2 3.9 g을 얻었다.
B. 비스-[(S,S)-(4-메틸페닐)2PCH(메틸)CH(메틸)P(4-메틸페닐)2이염화(μ-염화)크롬]
[CrCl2(μ-Cl){(P,P)-k 2-(S,S)-((4-MePh)2P(Me)CH-CH(Me)P(4-MePh)2)}]2의 제조
(S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 대신 (R,R)-(4-메틸페닐)2PCH(메틸)CH(메틸)P(4-메틸페닐)2 리간드 화합물 1.45 g (3.0 mmol)을 사용한 것 이외에는 상기 촉매 제조예 2와 동일하게 반응을 진행하여, 표제화합물 1.31 g를 얻었다.
[촉매 제조예 9] 비스-[( S,S) -(페닐) 2 PCH(페틸)CH(페틸)P(페닐) 2 이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 -( S,S) -(Ph 2 P(Ph)CH-CH(Ph)PPh 2 )}] 2 의 제조
A. 리간드 (S,S)-(페닐)2P-CH(페닐)CH(페닐)-P(페닐)2
[(S,S)-(Ph2P(Ph)CH-CH(Ph)PPh2]의 제조
출발물질로 (1R,2R)-1,2-디페닐에탄디올을 사용하였으며 촉매 제조예 1과 동일한 방법으로 제조하여, 무색의 표제 화합물 3.3 g을 얻었다.
B. 비스-[(S,S)-(페닐)2PCH(페틸)CH(페틸)P(페닐)2이염화(μ-염화)크롬]
[CrCl2(μ-Cl){(P,P)-k 2-(S,S)-(Ph2P(Ph)CH-CH(Ph)PPh2)}]2의 제조
(S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 대신 (S,S)-(페닐)2P-CH(페닐)CH(페닐)-P(페닐)2 리간드 화합물 1.35 g(3.0 mmol)을 사용한 것 이외에는 상기 촉매 제조 예 2와 동일하게 진행하여, 표제 화합물 0.9 g를 얻었다.
[촉매 제조예 10] 비스-[{( 1S,2S) - 트랜스 -비스(디페닐포스피노)사이클로헥산}이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 -( 1S,2S) -(Ph 2 P) 2 cyclohexane}] 2 의 제조
A. 리간드 (1S,2S)-트랜스-비스(디페닐포스피노)사이클로헥산
[(1S,2S)-(Ph2P)2cyclohexane]의 제조
출발 반응 물질로 (2R,3R)-부탄디올 대신에 (1R,2R)-트랜스-사이클로헥산디올을 사용하는 것을 제외하고 촉매 제조예 1과 동일한 방법으로 제조하였다. 완전 무색의 순수 표제 화합물 3.6 g을 얻었다.
B. 비스-[{(1S,2S)-트랜스-비스(디페닐포스피노)사이클로헥산}이염화(μ-염화)크롬]
[CrCl2(μ-Cl){(P,P)-k 2-(1S,2S)-(Ph2P)2cyclohexane}]2의 제조
(S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 대신 (1S,2S)-트랜스-비스(디페닐포스피노)사이클로헥산 리간드 화합물 1.36 g(3.0 mmol)을 사용한 것 이외에는 상기 촉매 제조예 2와 동일하게 진행하여, 생성물 1.07 g를 얻었다.
[촉매 제조예 11] 비스-[{( 3S,4S) - 트랜스 -비스(디페닐포스피노)1-벤질피롤리딘}이염화(μ-염화)크롬]
[CrCl 2 (μ-Cl){(P,P)- k 2 -( 3S,4S) -(Ph 2 P) 2 1-benzylpyrrolidine}] 2 의 제조
A. 리간드 (3S,4S)-트랜스-비스(디페닐포스피노)1-벤질피롤리딘
[(3S,4S)-(Ph2P)21-benzylpyrrolidine]의 제조
출발 반응 물질로 (2R,3R)-부탄디올 대신에 (3R,4R)-트랜스-1-벤질피롤리딘디올을 사용하는 것을 제외하고 촉매 제조예 1과 동일한 방법으로 제조하여, 무색의 순수 (3S,4S)-트랜스-비스(디페닐포스피노)1-벤질피롤리딘 2.7 g을 얻었다.
B. 비스-[{(3S,4S)-트랜스-비스(디페닐포스피노)1-벤질피롤리딘}이염화(μ-염화)크롬]
[CrCl2(μ-Cl){(P,P)-k 2-(3S,4S)-(Ph2P)21-benzylpyrrolidine}]2의 제조
(S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 대신 (3S,4S)-트랜스-비스(디페닐포스피노)1-벤질피롤리딘 리간드 화합물 1.59 g(3.0 mmol)을 사용한 것 이외에 상기 촉매 제조예 2와 동일하게 진행하여, 생성물 1.15 g를 얻었다.
[촉매 제조예 12] 비스-[( S,S) -(페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 염화(μ-염화)크롬(II)]
[Cr(II)Cl(μ-Cl){(P,P)- k 2 -( S,S )-((Ph) 2 P(Me)CH-CH(Me)P(Ph) 2 )}] 2 의 제조
삼테트라하이드로퓨란 삼염화 크롬 (CrCl3(THF)3) 대신 Cr(II)Cl2 1.02 g(3.0 mmol)을 사용한 것 이외에는 촉매 제조예 2와 동일하게 반응을 진행하여, 표제 화합물 1.51 g를 얻었다.
[실시예 1] 상기 제조한 촉매 및 MAO를 사용한 에틸렌 올리고머화 반응
600 mL 스텐레스 스틸 반응기를 질소, 진공으로 세척 후 사이클로 헥산을 200 mL 가하고 MAO 1.5 m㏖-Al을 더한 후 45 ℃로 온도 상승시켰다. 글로브 상자에서 50 mL Schlenk 용기에 사이클로헥산 10 mL에 촉매 제조 예 1의 (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2(테트라하이드로퓨란)삼염화크롬 3.3 mg (0.005m㏖)을 혼합하여 반응기에 더했다. 압력 반응기에 에틸렌을 30 bar로 충진하고, 300 rpm의 교반속도로 교반하였다. 120 분 후 반응기에 에틸렌 공급을 중단하고, 교반을 멈추어 반응을 중단하고 반응기를 10 ℃ 아래로 냉각하였다.
반응기 내의 과량의 에틸렌을 방출한 후 반응기에 함유된 액체에 10 vol% 염산이 섞인 에탄올을 주입하였다. 액상을 GC-FID로 분석하기 위해 내부 표준물로 노난을 첨가하였다. 소량의 유기층 샘플을 무수황산마그네슘 상에 통과하여 건조시킨 후, GC-FID로 분석하였다. 나머지 유기층을 여과하여 고체 왁스/폴리머 생성물을 분리하였다. 이들 고체 생성물을 100 ℃ 오븐에서 밤새 건조한 후, 중량을 재어 폴리에틸렌 1.2 g을 수득하였다. GC 분석하여 반응 혼합물의 총질량이 116.2 g임을 확인하였다. 본 실시예의 생성물 분포를 표 1에 요약하였다.
[실시예 2 내지 실시예 12] 상기 제조한 촉매 및 MAO를 사용한 에틸렌 올리고머화 반응 추가 실시
촉매로서 촉매 제조예 2 내지 촉매 제조예 12을 각각 취하여 적정량 사용하고 MAO 양과 반응 시간도 적정하게 선택하는 것 이외에는 실시 예 1과 같은 방법으로 실시하였다. 취해진 조건과 얻어진 결과를 표 1에 요약하였다.
[비교예] CrCl 3 (테트라하이드로퓨란) 3 , (S, S)- (페닐) 2 PCH(메틸)CH(메틸)P(페닐) 2 및 MAO를 사용한 에틸렌 사량체화 반응
상기 촉매 제조 예 1의 리간드 (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 [(S,S)-Ph2PCH(Me)CH(Me)PPh2] 2.2 mg(0.005 mmol)와 CrCl3(테트라하이드로퓨란)3 1.88 mg(0.005 m㏖)을 취한 것 이외에는 실시 예 1과 같은 방법으로 실시 하였다. 취해진 조건과 얻어진 결과를 표 1에 요약하였다.
[표 1] 에틸렌 올리고머화 반응 실시 결과
Figure PCTKR2010001341-appb-I000015
위 실시예 및 비교예를 참고로 하면, 본 발명에 따른 촉매를 이용한 올리고머의 제조방법은 종래 방법인 리간드와 촉매 전구체를 각각 따로따로 주입한 비교예 결과보다 산출량이 약 15배 정도 까지 증대되었음을 확인할 수 있으며, 폴리머 중합체 부산물의 양이 5.3 %에서 0.5 %이하까지 감소하였음을 확인할 수 있다.
한편, 실시예의 결과들은 촉매 착체를 합성함에 있어서 합성 용매와 조건에 따라 얻어지는 착제의 구조가 다르고 이들 착제의 활성능도 상당히 차이가 있음을 알 수 있다.

Claims (17)

  1. 하기 화학식 1 또는 화학식 2의 키랄성 리간드를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
    [화학식 1]
    Figure PCTKR2010001341-appb-I000016
    [화학식 2]
    Figure PCTKR2010001341-appb-I000017
    [상기 화학식 1 또는 화학식 2에서, R1, R2, R3, R4, R7, R8, R9 및 R10은 서로 독립적으로 하이드로카빌, 치환된 하이드로카빌, 헤테로하이드로카빌, 또는 치환된 헤테로하이드로카빌이고;
    R5, R6, R11및 R12는 서로 독립적으로 하이드로카빌 또는 치환된 하이드로카빌이거나, R5과 R6, R11과 R12가 서로 하이드로카빌렌, 치환된 하이드로카빌렌, 헤테로하이드로카빌렌 또는 치환된 헤테로하이드로카빌렌으로 결합될 수 있으며; X1 내지 X6는 각각 독립적으로 할로겐, -OR21및, -OCOR22 또는 -NR23R24이고, 상기 R21, R22, R23 또는 R24는 수소, 하이드로카빌 또는 헤테로하이드로카빌이며;
    L은 하이드로카본 또는 헤테로하이드로카본이고;
    * 및 **는 키랄 탄소 위치로 서로 독립적으로 (S) 또는 (R) 배열을 의미한다.]
  2. 제 1항에 있어서,
    하기 화학식 3 내지 화학식 8의 키랄성 리간드를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
    [화학식 3]
    Figure PCTKR2010001341-appb-I000018
    [화학식 4]
    Figure PCTKR2010001341-appb-I000019
    [화학식 5]
    Figure PCTKR2010001341-appb-I000020
    [화학식 6]
    Figure PCTKR2010001341-appb-I000021
    [화학식 7]
    Figure PCTKR2010001341-appb-I000022
    [화학식 8]
    Figure PCTKR2010001341-appb-I000023
    상기 화학식 2 내지 화학식 6의 치환체는 제 1항의 정의와 같다.
  3. 제 1항에 있어서,
    키랄성 리간드의 치환체 R1, R2, R3, R4, R7, R8, R9 및 R10은 서로 독립적으로 (C6-C20)아릴, (C6-C20)아르(C1-C10)알킬, (C1-C10)알킬, (C2-C10)알케닐, (C2-C10)알키닐, (C3-C7)시클로알킬, 헤테로(C5-C20)아릴, 헤테로(C3-C7)시클로알킬 또는 -NR23R24이고, R23 또는 R24는 (C1-C10)알킬, (C6-C20)아릴이며, 상기 R1, R2, R3, R4, R7, R8, R9 및 R10의 치환체는 (C1-C10)알킬, (C1-C10)알콕시, (C6-C20)아릴옥시 및 할로겐으로부터 하나 이상이 더 치환될 수 있으며, R5, R6, R11 및 R12는 서로 독립적으로 (C6-C20)아릴, (C6-C20)아르(C1-C10)알킬, (C1-C10)알킬, (C2-C10)알케닐, (C2-C10)알키닐, (C3-C7)시클로알킬, 헤테로(C5-C20)아릴, 헤테로(C3-C7)시클로알킬, (C1-C10)알콕시, (C6-C20)아릴옥시, 아미노카보닐, 카보닐아미노, 디(C1-C10)알킬아미노, (C1-C10)알킬실릴 또는 (C6-C20)아릴실릴이며, 상기 R5, R6, R11 및 R12의 치환체는 (C1-C10)알킬, (C1-C10)알콕시, (C6-C20)아릴옥시 및 할로겐으로 치환될 수 있는 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
  4. 제 3항에 있어서,
    상기 키랄성 리간드 중 R1, R2, R3, R4, R7, R8, R9 및 R10은 서로 독립적으로 페닐, 나프틸, 안트라센닐, 메시틸, 크실닐, 메틸, 에틸, 에틸레닐, n-프로필, i-프로필, 프로페닐, 프로피닐, n-부틸, t-부틸, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 4-메틸시클로헥실, 4-에틸시클로헥실, 4-이소프로필시클로헥실, 벤질, 톨릴, 크실릴, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 큐밀, 메톡시, 에톡시, 페녹시, 톨릴옥시, 디메틸아미노, 티오메틸, 트리메틸실닐, 디메틸히드라질, 2-메틸시클로헥실, 2-에틸시클로헥실, 2-이소프로필시클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐, o-이소프로폭시페닐, 비페닐, 나프틸 및 안트라세닐로 이루어진 그룹으로부터 선택되며, R5, R6, R11 및 R12는 서로 독립적으로 메틸, 에틸, 에틸레닐, n-프로필, i-프로필, 프로페닐, 프로피닐, n-부틸, t-부틸, i-부틸, 페닐, 벤질, 톨릴, 크실릴, 메톡시, 에톡시, 페녹시, 메틸아미노, 디메틸아미노로부터 선택되는 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
  5. 제 4항에 있어서,
    상기 키랄성 리간드 중 R1, R2, R3, R4, R7, R8, R9 및 R10 각각 독립적으로 페닐, 벤질, 나프틸, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 2-메틸시클로헥실, 2-에틸시클로헥실, 2-이소프로필시클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐 및 o-이소프로폭시페닐로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
  6. 제 1항에 있어서,
    상기 키랄성 리간드 중 A는 (C1-C5)알킬렌, (C1-C5)알케닐렌로부터 선택되는 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
  7. 제 1항에 있어서,
    상기 화학식 1 또는 화학식 2의 키랄성 리간드는 (S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(메틸)CH(메틸)-P(페닐)2, (S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(메틸)CH(메틸)-P(4-메톡시페닐)2, (S, S)-, (R, R)- 또는 meso-(4-메틸페닐)2P-CH(메틸)CH(메틸)-P(4-메틸페닐)2, (S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(메틸)CH(메틸)-P(페닐)2, (S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(에틸)CH(메틸)-P(4-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(에틸)CH(메틸)-P(페닐)2, (S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(에틸)CH(에틸)-P(4-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(에틸)CH(에틸)-P(페닐)2, (S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(이소프로필)CH(메틸)-P(페닐)2, (S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(이소프로필)CH(메틸)-P(4-메톡시페닐)2, (S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(이소프로필)CH(메틸)-P(4-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(n-프로필)CH(메틸)-P(페닐)2, (S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(n-프로필)CH(메틸)-P(4-메톡시페닐)2, (S, S)-, (R, R)- 또는 meso-4(4-에틸페닐)2P-CH(n-프로필)CH(메틸)-P(4-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(페닐)2P-CH(이소프로필)CH(에틸)-P(페닐)2, (S, S)-, (R, R)- 또는 meso-(4-메톡시페닐)2P-CH(이소프로필)CH(에틸)-P(4-메톡시페닐)2, (S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(이소프로필)CH(에틸)-P(4-에틸페닐)2, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(페닐)2)시클로헥산, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-메톡시페닐)2)시클로헥산, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-에틸페닐)2)시클로헥산, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-트랜스-1,2-디-(P(페닐)2)시클로펜탄, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-메톡시페닐)2)시클로펜탄, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(4-에틸페닐)2)시클로펜탄, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(페닐)2)피롤, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(4-메톡시페닐)2)피롤, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(4-에틸페닐)2)피롤, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(4-에틸페닐)2)이미다졸, (S, S)-, (R, R)- 또는 meso-(4-에틸페닐)2P-CH(디메틸아민)CH(디메틸아민)-P(4-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(3-메톡시페닐)2P-CH(메틸)CH(메틸)-P(3-메톡시페닐)2, (S, S)-, (R, R)- 또는 meso-(4-에톡시페닐)2P-CH(메틸)CH(메틸)-P(o-에톡시페닐)2, (S, S)-, (R, R)- 또는 meso-4-(디메틸아민페닐)2P-CH(메틸)CH(메틸)P(4-디메틸아민페닐)2, (S, S)-, (R, R)- 또는 meso-(4-에틸시클로헥실)2PCH(메틸)CH(메틸)P(4-에틸시클로헥실)2, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(메틸)CH(메틸)P(2-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(2-이소프로필페닐)2PCH(메틸)CH(메틸)P(2-이소프로필페닐)2, (S, S)-, (R, R)- 또는 meso-(2-메틸페닐)2PCH(메틸)CH(메틸)P(2-메틸페닐)2, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(메틸)CH(메틸)P(페닐)2, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(에틸)CH(메틸)P(2-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(에틸)CH(에틸)P(2-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(이소프로필)CH(메틸)P(2-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(n-프로필)CH(메틸)P(2-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(이소프로필)CH(에틸)P(2-에틸페닐)2, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(2-에틸페닐)2)시클로헥산, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-1,2-디-(P(2-에틸페닐)2)시클로펜탄, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(2-에틸페닐)2)피롤, (S, S)-트렌스, (R, R)-트랜스- 또는, meso-시스-3,4-디-(P(2-에틸페닐)2)이미다졸, (S, S)-, (R, R)- 또는 meso-(2-에틸페닐)2PCH(디메틸아민)CH(디메틸아민)P(2-에틸페닐)2, (S, S)-, (R, R)- 또는 meso-(2-메톡시페닐)2PCH(메틸)CH(메틸)P(2-메톡시페닐)2, (S, S)-, (R, R)- 또는 meso-(2-에톡시페닐)2PCH(메틸)CH(메틸)P(2-에톡시페닐)2, (S, S)-, (R, R)- 또는 meso-(2-디메틸아민페닐)2PCH(메틸)CH(메틸)P(2-디메틸아민페닐)2, 및 (S, S)-, (R, R)- 또는 meso-(2-에틸시클로헥실)2PCH(메틸)CH(메틸)P(2-에틸시클로헥실)2로부터 선택되는 것을 특징으로 하는 하기 화합물로부터 선택되는 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
  8. 제 1항에 있어서,
    X1, X2, X3, X4, X5 또는 X6는 Cl, Br, 아세토아세틸 및 2-에틸헥사노일기로부터 선택되는 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
  9. 제 1항에 있어서,
    L은 테트라하이드로퓨란, 디에틸에테르, 톨루엔, 클로로벤젠, 디클로로벤젠, 아세틸아세톤 및 2-에틸헥사논으로부터 선택되는 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물.
  10. 제 1항 내지 제 9항 중 어느 한 항에 따른 올리고머 제조용 크롬 착체 화합물과 조촉매를 포함하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매 조성물.
  11. 제 10항에 있어서,
    상기 조촉매는 유기 알루미늄 화합물, 유기 붕소 화합물, 유기염 또는 인 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매 조성물.
  12. 제 11항에 있어서,
    상기 조촉매는 메틸알루미녹산(MAO), 개선된 메틸알루미녹산 (MMAO), 에틸알루미녹산(EAO), 트리메틸알루미늄(TMA), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리-n-옥틸알루미늄, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 알루미늄 이소프로폭사이드, 에틸알루미늄 세스퀴클로라이드 또는 메틸알루미늄 세스퀴클로라이드인 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매 조성물.
  13. 제 11항에 있어서,
    에틸렌의 선택적 올리고머 제조용 크롬 착체와 알루미녹산의 비율은 알루미늄:크롬 몰비로 기준으로 1:1 내지 10,000:1인 것을 특징으로 하는 에틸렌의 선택적 올리고머 제조용 크롬 착체 촉매 조성물.
  14. 제 1항 내지 제 10항 중 어느 한 항에 따른 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물을 이용하여 에틸렌으로부터 선택적으로 1-헥센을 제조하는 방법.
  15. 제 1항 내지 제 10항 중 어느 한 항에 따른 에틸렌의 선택적 올리고머 제조용 크롬 착체 화합물을 이용하여 에틸렌으로부터 선택적으로 1-옥텐을 제조하는 방법.
  16. 제 14항에 있어서,
    반응용매는 디에틸에테르, 톨루엔, 클로로벤젠, 디클로로벤젠 또는 아세틸아세톤, 또는 이들의 혼합물인 것을 특징으로 하는 1-헥센을 제조하는 방법.
  17. 제 15항에 있어서,
    반응용매는 디에틸에테르, 톨루엔, 클로로벤젠, 디클로로벤젠 또는 아세틸아세톤, 또는 이들의 혼합물인 것을 특징으로 하는 1-옥텐을 제조하는 방법.
PCT/KR2010/001341 2010-03-03 2010-03-03 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법 WO2011108772A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SG2011037439A SG174116A1 (en) 2010-03-03 2010-03-03 Highly active and selective ethylene oligomerization catalyst and method of preparing hexene or octene using the same
CA2770418A CA2770418C (en) 2010-03-03 2010-03-03 Highly active and selective ethylene oligomerization catalyst and method of preparing hexene or octene using the same
EP10835264.2A EP2543682A4 (en) 2010-03-03 2010-03-03 HIGHLY ACTIVE, HIGHLY SELECTIVE ETHYLENE OLIGOMERIZATION CATALYST, AND PROCESS FOR PREPARING HEXEN OR OCTENE USING THE CATALYST
US13/388,185 US8829218B2 (en) 2010-03-03 2010-03-03 Highly active and selective ethylene oligomerization catalyst and method of preparing hexene or octene using the same
BR112012007895A BR112012007895B8 (pt) 2010-03-03 2010-03-03 Composto de complexo de cromo para oligomerização seletiva de etileno, composição de catalisador de complexo de cromo para oligomerização seletiva de etileno e método de preparação de 1-hexeno ou 1-octeno a partir de etileno
RU2011123637/04A RU2541528C2 (ru) 2010-03-03 2010-03-03 Высокоактивный и высокоселективный катализатор олигомеризации этилена и способ получения гексена или октена с применением данного катализатора
PCT/KR2010/001341 WO2011108772A1 (ko) 2010-03-03 2010-03-03 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법
CN2010800035640A CN102282179B (zh) 2010-03-03 2010-03-03 高活性及选择性的乙烯低聚催化剂和使用该催化剂制备己烯和辛烯的方法
JP2012514866A JP5645279B2 (ja) 2010-03-03 2010-03-03 高活性及び高選択的なエチレンオリゴマー化触媒及びこれを用いたヘキセンまたはオクテンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/001341 WO2011108772A1 (ko) 2010-03-03 2010-03-03 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법

Publications (1)

Publication Number Publication Date
WO2011108772A1 true WO2011108772A1 (ko) 2011-09-09

Family

ID=44542398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001341 WO2011108772A1 (ko) 2010-03-03 2010-03-03 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법

Country Status (9)

Country Link
US (1) US8829218B2 (ko)
EP (1) EP2543682A4 (ko)
JP (1) JP5645279B2 (ko)
CN (1) CN102282179B (ko)
BR (1) BR112012007895B8 (ko)
CA (1) CA2770418C (ko)
RU (1) RU2541528C2 (ko)
SG (1) SG174116A1 (ko)
WO (1) WO2011108772A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150045603A1 (en) * 2012-03-16 2015-02-12 Sk Innovation Co., Ltd. Catalyst systems for preparing 1-hexene and/or 1-octene from ethylene
RU2581052C1 (ru) * 2015-04-20 2016-04-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ получения 1-гексена из этилена методом тримеризации
WO2021221283A1 (ko) * 2020-04-29 2021-11-04 아주대학교 산학협력단 크롬 화합물 및 이의 제조 방법
FR3116739A1 (fr) 2020-11-30 2022-06-03 IFP Energies Nouvelles Nouvelle composition catalytique a base de chrome comprenant un additif hydrocarbure aromatique et procede associe pour l’oligomerisation de l’ethylene en octene-1
FR3116738A1 (fr) 2020-11-30 2022-06-03 IFP Energies Nouvelles Nouvelle composition catalytique a base de chrome comprenant un additif ether aromatique et procede associe pour l’oligomerisation de l’ethylene en octene-1
FR3140775A1 (fr) 2022-10-17 2024-04-19 IFP Energies Nouvelles Nouvelle composition catalytique à base de chrome ou de titane supporté

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2525118C1 (ru) * 2013-03-28 2014-08-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Каталитическая система процесса тримеризации этилена в альфа-олефины
RU2549897C1 (ru) * 2014-02-18 2015-05-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Каталитическая система тримеризации этилена в 1-гексен
BR112017019446A2 (pt) * 2015-03-13 2018-04-24 Dow Global Technologies Llc complexo de cromo com um ligante contendo fosfaciclo e catalisador de oligomerizacão de olefina do mesmo
JP6477128B2 (ja) * 2015-03-26 2019-03-06 三菱ケミカル株式会社 触媒組成物
KR101757370B1 (ko) * 2015-06-01 2017-07-12 주식회사 엘지화학 1-옥텐 조성물
KR102428770B1 (ko) * 2016-07-14 2022-08-04 에스케이이노베이션 주식회사 에틸렌의 올리고머화 방법
KR102018279B1 (ko) * 2017-03-23 2019-09-04 에스케이이노베이션 주식회사 파울링 방지제 및 이를 이용한 올레핀의 올리고머화 방법
KR102334373B1 (ko) * 2017-11-30 2021-12-02 에스케이이노베이션 주식회사 올레핀의 올리고머화 방법
CN110041365B (zh) * 2018-12-05 2020-12-22 华东师范大学 吡咯啉类手性双膦配体及其制备方法和应用
CN111841646B (zh) * 2019-04-24 2022-09-20 万华化学集团股份有限公司 一种乙烯齐聚催化剂、其制备方法及应用
CN116425607A (zh) * 2023-01-18 2023-07-14 四川大学 一种铬催化中间炔烃选择性氢化制备顺式或反式烯烃的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628138A (en) * 1985-09-20 1986-12-09 Ashland Oil, Inc. Catalyst and process for oligomerization of ethylene
WO2002004119A1 (en) 2000-07-11 2002-01-17 Bp Chemicals Limited Olefin trimerisation using a catalyst comprising a source of chromium, molybdenum or tungsten and a ligand containing at least one phosphorous, arsenic or antimony atom bound to at least one (hetero)hydrocarbyl group
WO2004056477A1 (en) * 2002-12-20 2004-07-08 Sasol Technology (Pty) Limited Trimerisation of olefins
KR20070005688A (ko) 2004-04-23 2007-01-10 도판 인사츠 가부시키가이샤 레벤손형 위상 시프트 마스크 및 그 제조 방법
KR20080068227A (ko) * 2007-01-18 2008-07-23 에스케이에너지 주식회사 에틸렌 삼량체화 촉매계 및 이를 이용한 1-헥센의 제조방법
KR20100087913A (ko) * 2009-01-29 2010-08-06 에스케이에너지 주식회사 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074202B1 (ko) * 2007-01-18 2011-10-14 에스케이종합화학 주식회사 에틸렌 사량체화 촉매계 및 이를 이용한 1-옥텐의 제조방법
KR101057576B1 (ko) * 2007-08-16 2011-08-17 에스케이종합화학 주식회사 선택적 에틸렌 올리머고화 촉매계

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628138A (en) * 1985-09-20 1986-12-09 Ashland Oil, Inc. Catalyst and process for oligomerization of ethylene
WO2002004119A1 (en) 2000-07-11 2002-01-17 Bp Chemicals Limited Olefin trimerisation using a catalyst comprising a source of chromium, molybdenum or tungsten and a ligand containing at least one phosphorous, arsenic or antimony atom bound to at least one (hetero)hydrocarbyl group
WO2004056477A1 (en) * 2002-12-20 2004-07-08 Sasol Technology (Pty) Limited Trimerisation of olefins
WO2004056479A1 (en) 2002-12-20 2004-07-08 Sasol Technology (Pty) Ltd Tetramerization of olefins
KR20060002741A (ko) 2002-12-20 2006-01-09 사솔 테크날러지 (프로프라이어터리) 리미티드 올레핀의 삼량체화
KR20070005688A (ko) 2004-04-23 2007-01-10 도판 인사츠 가부시키가이샤 레벤손형 위상 시프트 마스크 및 그 제조 방법
KR20080068227A (ko) * 2007-01-18 2008-07-23 에스케이에너지 주식회사 에틸렌 삼량체화 촉매계 및 이를 이용한 1-헥센의 제조방법
KR20100087913A (ko) * 2009-01-29 2010-08-06 에스케이에너지 주식회사 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANTEA CARTER ET AL., CHEM. COMMUN., 2002, pages 858 - 859
B. BOSNICH ET AL., J. AM. CHEM. SOC, vol. 99, no. 19, 1977
B. BOSNICH ET AL., J. AM. CHEM. SOC., vol. 99, no. 19, 1977, pages 6262
DALTON TRANS., 2003, pages 2772
J. AM. CHEM. SOC., vol. 126, 2004, pages 14712
R. B. MITRA ET AL., J. AM. CHEM. SOC, vol. 84, 1962
See also references of EP2543682A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150045603A1 (en) * 2012-03-16 2015-02-12 Sk Innovation Co., Ltd. Catalyst systems for preparing 1-hexene and/or 1-octene from ethylene
US9375709B2 (en) * 2012-03-16 2016-06-28 Sk Innovation Co., Ltd. Catalyst systems for preparing 1-hexene and/or 1-octene from ethylene
RU2581052C1 (ru) * 2015-04-20 2016-04-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ получения 1-гексена из этилена методом тримеризации
WO2021221283A1 (ko) * 2020-04-29 2021-11-04 아주대학교 산학협력단 크롬 화합물 및 이의 제조 방법
FR3116739A1 (fr) 2020-11-30 2022-06-03 IFP Energies Nouvelles Nouvelle composition catalytique a base de chrome comprenant un additif hydrocarbure aromatique et procede associe pour l’oligomerisation de l’ethylene en octene-1
FR3116738A1 (fr) 2020-11-30 2022-06-03 IFP Energies Nouvelles Nouvelle composition catalytique a base de chrome comprenant un additif ether aromatique et procede associe pour l’oligomerisation de l’ethylene en octene-1
FR3140775A1 (fr) 2022-10-17 2024-04-19 IFP Energies Nouvelles Nouvelle composition catalytique à base de chrome ou de titane supporté
WO2024083616A1 (fr) 2022-10-17 2024-04-25 IFP Energies Nouvelles Nouvelle composition catalytique à base de chrome ou de titane supporté

Also Published As

Publication number Publication date
CN102282179A (zh) 2011-12-14
US20120130086A1 (en) 2012-05-24
RU2011123637A (ru) 2014-04-10
BR112012007895B8 (pt) 2022-11-08
CA2770418A1 (en) 2011-09-09
SG174116A1 (en) 2011-10-28
CN102282179B (zh) 2013-11-06
EP2543682A1 (en) 2013-01-09
BR112012007895B1 (pt) 2019-12-24
EP2543682A4 (en) 2014-06-25
CA2770418C (en) 2015-11-24
BR112012007895A2 (pt) 2017-10-31
JP5645279B2 (ja) 2014-12-24
RU2541528C2 (ru) 2015-02-20
US8829218B2 (en) 2014-09-09
JP2012529499A (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2011108772A1 (ko) 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법
WO2017204476A1 (ko) 올리고머화 촉매 및 이를 이용한 에틸렌 올리고머의 제조방법
KR101065596B1 (ko) 고활성과 고선택적인 에틸렌 올리머고화 촉매 및 이를 이용한 헥센 또는 옥텐의 제조방법
WO2013137676A1 (en) Catalyst systems for preparing 1-hexene and/or 1-octene from ethylene
KR101074202B1 (ko) 에틸렌 사량체화 촉매계 및 이를 이용한 1-옥텐의 제조방법
WO2019107713A1 (ko) 올레핀의 올리고머화 방법
WO2019168249A1 (ko) 리간드, 이를 포함하는 올리고머화 촉매 및 이를 이용한 에틸렌 올리고머의 제조방법
WO2018230846A1 (ko) 헤테로원자 리간드, 이를 포함하는 올리고머화 촉매 및 올리고머 제조방법
KR101074223B1 (ko) 에틸렌 삼량체화 촉매계 및 이를 이용한 1-헥센의 제조방법
WO2018056644A1 (ko) 올레핀 올리고머화용 촉매계 및 이를 이용한 올레핀 올리고머 제조방법
WO2018056643A1 (ko) 올레핀 올리고머화용 촉매계 및 이를 이용한 올레핀 올리고머 제조방법
EP3484929A1 (en) Oligomerization of ethylene
WO2018127772A1 (ko) 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR101880810B1 (ko) 올레핀 올리고머 제조방법
WO2018012793A1 (en) Oligomerization of ethylene
WO2016129848A1 (ko) 올레핀 올리고머화 방법
WO2019135484A1 (ko) 파라핀을 제조하는 방법
WO2016129901A1 (ko) 올레핀 올리고머화 방법
WO2018016712A1 (ko) 올레핀의 올리고머화 방법
WO2024010176A1 (ko) 리간드 화합물을 포함하는 에틸렌 올리고머화 촉매, 이를 채용한 촉매 조성물 및 이를 이용한 에틸렌 올리고머의 제조방법
WO2018122693A1 (ko) 신규한 시클로펜타[B]티오펜일 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2018012792A1 (en) Oligomerization of ethylene
KR101880809B1 (ko) 올레핀 올리고머 제조방법
WO2016129845A1 (ko) 비활성화제 및 이를 이용한 올레핀 올리고머화의 부산물 저감 방법
KR101796471B1 (ko) 올레핀 올리고머화용 촉매계

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003564.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11067382

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2012514866

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010835264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 001191-2011

Country of ref document: PE

Ref document number: 2010835264

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 56/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13388185

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2770418

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011123637

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007895

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012007895

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: ERR

Ref document number: 112012007895

Country of ref document: BR

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112012007895

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120405