WO2021164605A1 - 注塑模具及注塑方法 - Google Patents

注塑模具及注塑方法 Download PDF

Info

Publication number
WO2021164605A1
WO2021164605A1 PCT/CN2021/075942 CN2021075942W WO2021164605A1 WO 2021164605 A1 WO2021164605 A1 WO 2021164605A1 CN 2021075942 W CN2021075942 W CN 2021075942W WO 2021164605 A1 WO2021164605 A1 WO 2021164605A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
chassis
air passage
substrate
injection
Prior art date
Application number
PCT/CN2021/075942
Other languages
English (en)
French (fr)
Inventor
何军
刘杰
全昌镐
应战
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to EP21757866.5A priority Critical patent/EP3950261B1/en
Priority to US17/373,930 priority patent/US11820058B2/en
Publication of WO2021164605A1 publication Critical patent/WO2021164605A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/10Moulds or cores; Details thereof or accessories therefor with incorporated venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2669Moulds with means for removing excess material, e.g. with overflow cavities
    • B29C2045/2671Resin exit gates or bleeder passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C2045/2683Plurality of independent mould cavities in a single mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • B29C45/14344Moulding in or through a hole in the article, e.g. outsert moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the invention relates to the field of chip packaging, in particular to an injection mold and an injection method.
  • the packaged chip needs to be wrapped by injection molding to protect the chip.
  • the chip and the substrate are connected to the circuit on the substrate through solder bumps.
  • the plastic packaging process it is necessary to wrap the entire chip with a plastic molding compound to fill the gap between the chip and the substrate. Since the chip and the substrate are directly connected by solder bumps, the gap is small and the distance between the solder balls is also small. Therefore, the air is not easily discharged when the plastic compound is filled, and the problem of unreliable packaging structure is prone to occur.
  • the technical problem to be solved by the present invention is to provide an injection mold and an injection method to improve the reliability of the packaged chip after injection.
  • the present invention provides an injection mold including: a chassis for placing a packaged chip to be injected, the packaged chip including a substrate and at least one chip fixed on the front surface of the substrate through a flip chip process, so
  • the base plate has air holes penetrating the base plate; two or more air passages extending in at least two directions and intersecting and communicating with each other are formed in the base plate, and both ends of each air passage are open ports, and at least one of them
  • the air passage is buried in the chassis; the air passage is provided with an air outlet for communicating with the air hole on the base plate.
  • At least one air passage is located on the front of the chassis; the air passage on the surface of the chassis is a groove on the front of the chassis, and the air passage in the chassis is buried It is a tunnel located inside the chassis.
  • At least two air passages in different extending directions are respectively located at different depths of the chassis.
  • the air passage extending in at least one of the directions is buried inside the chassis.
  • the air outlets are located at the intersections of different air passages, so that the intersecting air passages communicate with each other.
  • the maximum distance between two points on the edge of the cross section of the airway perpendicular to the length direction ranges from 500 ⁇ m to 5 mm.
  • the size of the air outlet of the air passage is greater than or equal to the size of the air hole on the substrate.
  • a first air passage extending in a first direction and a second air passage extending in a second direction are formed in the chassis, and the first air passage is a groove formed on the surface of the chassis,
  • the second air passage is a tunnel buried in the chassis, and the second air passage communicates with the first air passage at an intersection position.
  • step in the second airway communicating with the first airway there is a step in the second airway communicating with the first airway, and the step is connected to the bottom of the first airway in the extending direction of the first airway, and The surface of the step is flush with the bottom surface of the first air passage.
  • the air holes on the substrate of the packaged chip to be injection molded are arranged in a straight line, and when the packaged chip is placed on the surface of the chassis, the extending direction of the first air channel is consistent with the arrangement direction of the air holes on the substrate , And each first airway is used to connect to the air holes on the same straight line.
  • it further includes: a cover for covering on the chassis to form a cavity with the chassis, the cavity for accommodating the packaged chip to be injection molded; an air passage on the chassis The cavity is connected with the outside of the injection mold; the cover is provided with at least one injection hole for injecting plastic molding compound into the cavity.
  • the technical solution of the present invention also provides an injection molding method, including: providing an injection mold and a packaged chip to be injected.
  • the packaged chip includes a substrate and at least one chip fixed on the front surface of the substrate through a flip-chip process. Having an air hole penetrating the substrate; placing the packaged chip on the chassis of the injection mold and closing a cover on the chassis to form a cavity, the packaged chip is located in the cavity, the The back surface of the substrate is attached to the surface of the chassis, and the air hole on the substrate of the packaged chip communicates with the air passage in the chassis; the liquid plastic molding compound is injected into the cavity through the injection hole on the cover During the injection process, at least part of the gas in the cavity is discharged to the outside of the injection mold through the air holes and air passages.
  • plastic molding compound is injected into the cavity through two or more injection holes.
  • At least one air hole is formed in the area of the substrate where each chip of the packaged chip is located.
  • the method further includes: after the liquid molding compound fills the cavity, heat treatment is performed to solidify the liquid molding compound; and the packaged chip covered by the cured molding compound is taken out of the cavity .
  • the chassis of the injection mold of the present invention has air passages extending in multiple directions, and the air passages extending in each direction are connected to form a mesh air passage structure. During the injection molding process, some of the air passages can still pass through when both ends are blocked. The air passages in other directions discharge gas, thereby reducing the risk that the gas in the injection cavity cannot be discharged, and improving the reliability of the packaged chip after injection molding.
  • FIGS. 1A to 1C are structural schematic diagrams of an injection molding process in a specific embodiment of the present invention.
  • FIGS. 2A to 2C are structural schematic diagrams of a chassis of an injection mold according to a specific embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a chassis of an injection mold according to a specific embodiment of the present invention.
  • FIGS. 4A to 4D are structural schematic diagrams of a chassis of an injection mold according to a specific embodiment of the present invention.
  • 5A to 6B are structural schematic diagrams of an injection molding process of a packaged chip according to a specific embodiment of the present invention.
  • an injection mold is provided.
  • the chassis of the packaging mold has a groove, which can communicate with the air hole on the package chip substrate, and the gas is discharged from the air hole and then passes through the recess The groove exits the outside of the mold.
  • FIGS. 1A to 1C are schematic structural diagrams of injection molding using an injection mold with grooves in a specific embodiment of the present invention.
  • FIG. 1A is a schematic top view
  • FIG. Fig. 1C is a schematic cross-sectional view taken along the secant line BB' in Fig. 1A.
  • the packaged chip includes a substrate 110 and a chip 111 flip-chip mounted on the substrate 110.
  • the substrate 110 has opposite front and back surfaces, and the chip 111 is fixed on the front surface of the substrate 110.
  • the packaged chip is placed in a cavity of an injection mold, and the substrate 110 has an air hole 113.
  • the injection mold includes a chassis 101 and a cover 102.
  • the chassis 101 has a groove 120 in it, and both ends of the groove 120 are open ports, which communicate with the outside of the injection mold.
  • the packaged chip is placed on the chassis 101, and the air hole 113 communicates with the groove 120.
  • the molding compound 112 is injected, the gas is discharged from the air hole 113 on the base plate 110 through the groove 120 on the base plate 101 to the outside of the mold.
  • forming the groove 120 communicating with the air hole 113 on the bottom plate 101 of the injection mold can further improve the exhaust effect during injection molding.
  • the edge of the cavity in the mold is filled with molding compound first, and the chip 111 located at the edge is first wrapped by the molding compound.
  • the plastic molding compound overflows from the air hole 113 of the substrate 101 into the groove 120, and the molding compound may block the two ends of the groove 120 on the floor 101 when the molding compound has not filled the cavity, such as the area 130 in FIG. 1A.
  • the groove 120 will not have a good exhaust effect, and there will still be inability to exhaust air during the injection molding process, resulting in a hole between the chip 111 and the substrate 110, which affects the reliability of the device.
  • the inventor further proposes a new packaging mold to improve the above-mentioned problems.
  • the injection mold includes a chassis for placing a packaged chip to be injected, the packaged chip includes a substrate and at least one chip fixed on the front surface of the substrate through a flip-chip process, on the substrate There are air holes penetrating the base plate; two or more air passages extending in at least two directions and intersecting and communicating with each other are formed in the chassis, and both ends of each air passage are open ports, and at least one of the air passages is buried Into the chassis; the air passage has an air outlet for communicating with the air hole on the substrate.
  • FIGS. 2A to 2C are schematic diagrams of the structure of the chassis of the injection mold according to a specific embodiment of the present invention.
  • 2A is a schematic top view of the chassis 210
  • FIG. 2B is a schematic cross-sectional view along the cut line CC' in FIG. 2A
  • FIG. 2C is a schematic cross-sectional view along the cut line DD' in FIG. 2A.
  • the chassis 210 has a first air passage 211 extending in a first direction and a second air passage 212 extending in a second direction.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction
  • the first direction and the second direction are perpendicular to each other.
  • the first direction and the second direction may also intersect at other angles.
  • three air passages are formed in each of the first direction and the second direction as an example.
  • the number of air passages in each direction can be determined according to the structure of the packaged chip to be injection molded and actual requirements. The design is not limited here.
  • the chassis 210 has two opposite surfaces, a front surface and a back surface, respectively, and the packaged chip should be placed on the front surface of the chassis 210.
  • the first air passage 211 is a groove formed on the front surface of the chassis 210
  • the second air passage 212 is a tunnel buried in the chassis 211
  • the second air passage 212 It communicates with the first airway 211 at the intersection.
  • the first airway 211 and the second airway 212 are connected through a cross position, so that the first airway 211 and the second airway 212 form a mesh airway structure. When any one of them is blocked, The gas can also be discharged in other directions.
  • Both the first air passage 211 and the second air passage 212 have air outlets, one end of the air outlet opening is located on the front of the chassis 210 and is used to communicate with the air holes on the substrate with the injection molded packaged chip.
  • the first air passage 211 is a groove, and the entire groove opening can be used as an air outlet of the first air passage 211;
  • the second air passage 212 is buried in the chassis 210,
  • the airway area where the second airway 212 communicates with the first airway 211 serves as the air outlet of the second airway 212.
  • the air outlet of the second airway 212 Located at the intersection of the second air passage 212 and the first air passage 211.
  • the air holes on the substrate of the packaged chip to be injection molded are arranged in a straight line.
  • the extending direction of the first air channel 211 is consistent with the arrangement direction of the air holes on the substrate, and Each first air passage 211 is connected to an air hole located on the same straight line.
  • the plastic molding compound enters the first air passage from the pores of the chip substrate.
  • a long strip is formed in the first air passage on the back of the substrate. The plastic sealing material is elongated, and all the pores communicating with the first air passage are closed, thereby improving the sealing effect of the pores on the substrate.
  • the width of the first air passage 211 ranges from 100 ⁇ m to 1 mm. While meeting the exhaust requirements, it avoids the formation of long strips of oversized molding material on the back of the substrate, occupying too much area on the back of the substrate. Affect the circuit distribution on the back of the substrate.
  • air passages extending in three or more directions may also be formed to improve the efficiency of gas discharge.
  • at least two air passages in different extending directions are respectively located at different depths of the chassis.
  • the air passages extending in various directions are embedded in the chassis, and the air passages extending in different directions have different burying depths, and they penetrate vertically at the intersection position, and the through holes at the intersection position are used as each
  • the air outlet of the air channel is used to communicate with the air holes on the packaged chip substrate to be injection molded. Therefore, at this time, the number of air holes can be set according to the number of air holes on the packaged chip substrate to be injection molded, which can be the same as the number of air holes Or greater than the number of air holes to adapt to different types of packaged chips.
  • the air outlet is in the shape of a circular hole with a diameter ranging from 100 ⁇ m to 1 mm, preferably 200 ⁇ m, 300 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, or 800 ⁇ m.
  • the air outlet may also be a rectangular hole with a side length ranging from 100 ⁇ m to 1 mm.
  • the cross-section of the air passage can be round, rectangular, semi-circular, elliptical, and other shapes.
  • the extending direction and the number of extending directions of the airway are not limited, and those skilled in the art can design according to actual needs.
  • the air passage may have a larger cross-sectional size.
  • the range of the maximum distance between the two points of the edge of the cross section of the air passage perpendicular to the length direction is 500 ⁇ m to 5 mm.
  • the maximum distance is the diameter of the cross section; when the cross section of the air passage is rectangular, the maximum distance is the maximum side length of the cross section.
  • different cross-sectional dimensions can be set according to the depth of the air passage in the chassis.
  • the cross-sectional area of the air passage below can be larger than the cross-sectional area of the upper air passage.
  • the first air passage 211 is located in the groove on the surface of the chassis, the cross section is rectangular, and the side length can range from 500 ⁇ m to 2 mm, preferably 800 ⁇ m to 1.7 mm; the second air passage 212 is located at the Below the first air passage 211, the cross section is circular, and the diameter may range from 500 ⁇ m to 5 mm, preferably 800 ⁇ m to 4 ⁇ m.
  • first air passage 211 and the second air passage 212 are both linear air passages.
  • the airway may also be curvilinear, such as the airway 301 in FIG. 3.
  • the shape and extension direction of each air channel can be designed according to the arrangement of the air holes on the chip substrate to be packaged. Any shape and arrangement rule are within the scope of protection of the present application and will not be listed here.
  • FIGS. 4A to 4D are schematic diagrams of the structure of a chassis according to another specific embodiment of the present invention.
  • 4A is a schematic top view of the surface of the chassis 410
  • FIG. 4B is a schematic cross-sectional view along the secant line E-E' in FIG. 4A
  • FIG. 4C is a schematic cross-sectional view along the secant F-F' in FIG. 4A
  • FIG. 4D It is a schematic cross-sectional view along the secant line G-G' in FIG. 4A.
  • the surface of the chassis 410 has a first air passage 411 extending in a first direction (x-axis), and the chassis 410 has a second air passage 412 extending in a second direction (y-axis) inside.
  • the first air passage 411 is a groove located on the front of the chassis 410
  • the second air passage 412 is a tunnel buried in the chassis 410
  • the second air passage 412 there is a step 413 at the communication point with the first air passage 411, and the step 413 is connected to the first air passage 411 in the extending direction. Describe the bottom of the first airway 411 at other locations.
  • the surface of the step 413 is flush with the bottom surface at other positions of the first air passage 411; in other specific embodiments, the surface of the step 413 may also be slightly higher or lower than the bottom surface. The bottom surface of the first airway 411 is described.
  • the molding compound Due to the presence of the step 413 at the junction of the first air passage 411 and the second air passage 412, the molding compound enters the second air passage 411 from the first air passage 411 when the chip is injected.
  • the circulation path is small. After the molding compound is cured, when the packaged chip is taken out, the molding compound is easily broken at this position, which facilitates the removal of the packaged chip after injection from the injection mold.
  • the injection mold also includes a cover for covering on the chassis to form a cavity with the chassis, and the cavity is used for accommodating the packaged chip to be injected; the air passage on the chassis communicates with The cavity and the outside of the injection mold; the cover has at least one injection hole for injecting plastic molding compound into the cavity.
  • An air outlet hole may also be formed on the cover for communication between the cavity and the outside of the injection mold.
  • the chassis of the above injection mold has air passages extending in multiple directions, and the air passages extending in each direction are connected to form a mesh air passage structure. During the injection molding process, when both ends of some of the air passages are blocked, they can still pass through other directions. The air channel exhausts the gas, thereby reducing the risk that the gas in the injection cavity cannot be discharged, and improving the reliability of the packaged chip after injection.
  • the specific embodiment of the present invention also provides an injection molding method, which uses the injection mold provided in the above specific embodiment to inject the packaged chip.
  • FIGS. 5A to 6B are schematic structural diagrams of the injection molding process of the packaged chip in a specific embodiment of the present invention.
  • FIGS. 5A to 5B Please refer to FIGS. 5A to 5B to provide an injection mold.
  • the injection mold includes a chassis 400 and a cover 500.
  • FIGS. 4A to 4D For the specific structure of the chassis 400, please refer to FIGS. 4A to 4D, which will not be repeated here.
  • the packaged chip 510 includes a substrate 511 and at least one chip 512 fixed on the front surface of the substrate 511 through a flip chip process.
  • the substrate has an air hole 513;
  • the cover 500 is covered on the surface of the chassis 400 to form a cavity 520, the packaged chip is located in the cavity 520, the back surface of the substrate 511 is attached to the surface of the chassis 410, and the packaged chip 510
  • the air hole 513 on the base plate 511 is connected with the air passage in the chassis 410.
  • the front surface and the back surface of the substrate 511 are two opposite surfaces.
  • the substrate 511 of the packaged chip 510 is a circuit board, which is formed with electrical connection structures such as circuits and solder pads.
  • a number of chips 512 are packaged on the surface through a flip chip process. The chips 512 are placed upside down on the surface of the substrate 511 and are bumped The dots are electrically connected to the electrical connection structure on the surface of the substrate 511, and the solder bumps may be solder balls, copper pillars, or the like.
  • At least one air hole 513 is formed in the area of the substrate where each chip 512 of the packaged chip 510 is located, and at least some of the air holes are connected with the air passage in the chassis 410 to exhaust gas through the air passage.
  • all the air holes 513 in the base plate 511 are communicated with the air passages in the chassis 410, so as to improve the exhaust efficiency.
  • the air hole 513 is a round hole with a size slightly smaller than or equal to the size of the air passage outlet in the chassis 410.
  • the diameter of the air hole 513 is smaller than that of the first air passage 411 width.
  • the diameter of the air hole 513 ranges from 800 ⁇ m to 0.8 mm
  • the width of the first air passage 411 ranges from 100 ⁇ m to 1 mm.
  • the chassis 410 includes a groove-shaped first air passage 411 on the front and a second air passage 412 embedded in the chassis 410.
  • the air holes 513 in the base plate 511 are along the first air passage.
  • the extending directions of the 411 are arranged, and the air holes 513 on the same straight line are connected to the same first air passage 411.
  • the air passages on the chassis may all be buried in the interior of the chassis, the air outlet of the air passage is hole-shaped and penetrates to the front of the chassis, and the air holes 513 on the base plate 511 are connected with each other. At least part of the air outlets on the front of the chassis communicate with each other.
  • the liquid molding compound 600 is injected into the cavity 520 (please refer to FIGS. 5A to 5B) through the injection hole (not shown in the figure) on the cover 500, during the injection process At least part of the gas in the cavity 520 is discharged to the outside of the injection mold through the air holes 513 (please refer to FIGS. 5A to 5B) and air passages.
  • the flow rate is controlled so that the gas in the cavity 520 has enough time to be discharged through the air passage.
  • the injection pressure during the injection molding process is controlled to range from 7E6Pa to 1E7Pa.
  • two or more injection holes may be formed on the cover 500, and the molding compound may be injected into the cavity through the two or more injection holes to improve the injection efficiency.
  • the cover 500 may also have an air outlet (not shown in the figure), and the gas located on the upper part of the cavity 520 can be discharged outward through the air outlet on the cover 500, thereby reducing the need for air from the chassis 410 The amount of gas discharged from the channel can appropriately speed up the flow rate of the injection molding compound, thereby improving the injection efficiency.
  • the molding compound 600 enters the first air passage 411 from the air holes on the substrate 511.
  • the packaged chip 510 is taken out of the mold, it will be accompanied by the plastic packaging formed in the first air passage 411.
  • the materials are taken out together, so that the back of the substrate 511 has a long plastic sealing strip 610, and the plastic sealing strip 610 closes all the pores on the same straight line, thereby improving the sealing effect of the pores.
  • the front surface of the chassis may be formed with groove-like air passages extending in multiple directions, so that a plastic seal 610 extending in multiple directions is formed on the substrate 511 after injection molding is completed. It is necessary to reasonably set the air channel distribution position on the surface of the chassis according to the position of the electrical connection structure such as the solder pad formed on the back of the substrate 511 to prevent the formed plastic seal 610 from affecting the connection structure on the back of the substrate 511.
  • the communication channel between the first air passage 411 and the second air passage 412 is relatively narrow.
  • the connection strength of the molding compound at the junction of the first air passage 411 and the second air passage 412 is relatively low. Therefore, after the injection molding is completed, during the process of taking out the packaged chip 510, the first air passage 411 and the second air passage
  • the plastic molding compound at the junction of the channel 412 is easily broken, so that the packaged chip 510 is easy to take out.
  • the packaged chip 510 After the packaged chip 510 is taken out, it further includes forming a solder ball on the other side surface of the packaged chip 510.
  • the solder ball forms an electrical connection between the electrical connection structure in the substrate 510 and the chip 512 on the front surface of the substrate 511. Connection; then, the substrate 510 is cut to form a packaged chip including a single chip 512 after injection.

Abstract

本发明涉及一种注塑模具及一种注塑方法,所述注塑模具包括:底盘,用于放置待注塑的封装芯片,所述封装芯片包括基板及通过倒装工艺固定于所述基板正面的至少一个芯片,所述基板上具有气孔;所述底盘内形成有沿至少两个方向延伸且相互交叉连通的两个以上的气道,各个气道的两端均为开放端口,且其中至少一个气道埋入所述底盘内;所述气道上具有出气口,当封装芯片放置于底盘上时,所述出气口与所述基板上的气孔连通。所述注塑模具有利于在进行注塑时排出注塑模具腔体内的气体,提高注塑后封装芯片的可靠性。

Description

注塑模具及注塑方法
相关申请引用说明
本申请要求于2020年02月19日递交的中国专利申请号202010102763.2,申请名为“注塑模具及注塑方法”的优先权,其全部内容以引用的形式附录于此。
技术领域
本发明涉及芯片封装领域,尤其涉及一种注塑模具及注塑方法。
背景技术
芯片在封装完成后,需要通过注塑将封装完成后的芯片进行包裹,从而对芯片进行保护。
对于通过倒装工艺(Flip chip)封装的芯片,芯片与基板之间通过焊接凸点与基板上的电路连接。塑封过程,需要将塑封料包裹整个芯片,填充满芯片与基板之间的间隙。由于芯片与基板之间直接通过焊接凸点连接,间隙较小,焊球之间间隔距离也较小,因此,塑封料在填充时空气不易排出,容易出现封装结构不可靠的问题。
现有技术中,为了便于在注塑过程中有利于气体的排出,会在封装基板上设置气孔,从而在注塑过程中,随着塑封料的填充,气体自基板上的气孔排出。但是注塑过程中,所述基板与封装模具的底盘表面贴合,气孔容易被堵住,依旧会存在气体无法排除的问题。
因此,如何在注塑过程中,避免封装体内气体残留,是目前亟待解决的问题。
发明内容
本发明所要解决的技术问题是,提供一种注塑模具及注塑方法,提高注塑后封装芯片的可靠性。
为了解决上述问题,本发明提供了一种注塑模具,包括:底盘,用于放置待注塑的封装芯片,所述封装芯片包括基板及通过倒装工艺固定于所述基板正面的至少一个芯片,所述基板内具有贯穿所述基板的气孔;所述底盘内形成有沿至少两个方向延伸且相互交叉连通的两个以上的气道,各个气道的两端均为开放端口,且其中至少一个气道埋入所述底盘内;所述气道上具有出气口,用 于与所述基板上的气孔连通。
可选的,所述两个以上的气道内,至少一个气道位于所述底盘正面;位于所述底盘表面的气道为位于所述底盘正面的凹槽,埋入所述底盘内的气道为位于所述底盘内部的隧道。
可选的,在沿垂直于底盘表面的方向上,至少两个不同延伸方向上的气道分别位于所述底盘的不同深度处。
可选的,至少沿其中一个方向延伸的所述气道埋入所述底盘内部。
可选的,所述出气口位于不同气道的交叉位置处,使得各个交叉的气道之间相互连通。
可选的,所述气道垂直于长度方向上的横截面的边缘两点之间的最大距离的范围为500μm~5mm。
可选的,所述气道的出气口尺寸大于或等于所述基板上的气孔尺寸。
可选的,所述底盘内形成有沿第一方向延伸的第一气道,以及沿第二方向延伸的第二气道,所述第一气道为形成于所述底盘表面的凹槽,所述第二气道为埋入所述底盘内的隧道,所述第二气道与所述第一气道交叉位置处连通。
可选的,所述第二气道内,与所述第一气道连通处具有一台阶,所述台阶在沿第一气道延伸方向上连接至所述第一气道的底部,且所述台阶的表面与所述第一气道的底面齐平。
可选的,所述待注塑的封装芯片的基板上的气孔沿直线排列,当所述封装芯片置于所述底盘表面时,所述第一气道的延伸方向与基板上气孔的排列方向一致,且每个第一气道均用于连通至位于同一直线上的气孔。
可选的,还包括:封盖,用于盖合于所述底盘上,与所述底盘之间形成空腔,所述空腔用于容纳待注塑的封装芯片;所述底盘上的气道连通所述空腔与所述注塑模具外部;所述封盖上具有至少一个注入孔,用于向所述空腔内注入塑封料。
本发明的技术方案还提供一种注塑方法,包括:提供注塑模具以及待注塑的封装芯片,所述封装芯片包括基板及通过倒装工艺固定于所述基板正面的至少一个芯片,所述基板内具有贯穿所述基板的气孔;将所述封装芯片置于所述 注塑模具的底盘上并将封盖盖合于所述底盘上形成空腔,所述封装芯片位于所述空腔内,所述基板的背面与所述底盘表面贴合,且所述封装芯片的基板上的气孔与所述底盘内的气道连通;通过所述封盖上的注入孔向所述空腔内注入液态塑封料,注入过程中,至少部分所述空腔内气体通过所述气孔以及气道排出至所述注塑模具外部。
可选的,通过两个以上所述注入孔向所述空腔内注入塑封料。
可选的,所述封装芯片的每个芯片所在的基板区域内形成有至少一个气孔。
可选的,还包括:当所述液态塑封料填满所述空腔后,进行热处理,使所述液态塑封料固化;将被固化后的塑封料覆盖的封装芯片自所述空腔内取出。
本发明的注塑模具的底盘具有多个方向延伸的气道,各方向延伸的气道连通,构成网状气道结构,在注塑过程中,其中部分气道两端被堵住时,依旧能够通过其他方向的气道排出气体,从而降低注塑腔体内气体无法排出的风险,提高注塑后封装芯片的可靠性。
附图说明
图1A至图1C为本发明一具体实施方式的的注塑过程的结构示意图;
图2A至图2C为本发明一具体实施方式的注塑模具的底盘的结构示意图;
图3为本发明一具体实施方式的注塑模具的底盘的结构示意图;
图4A至图4D为本发明一具体实施方式的注塑模具的底盘的结构示意图;
图5A至图6B为本发明一具体实施方式对封装芯片的注塑过程的结构示意图。
具体实施方式
如背景技术中所述,现有技术中,在对倒装工艺的封装芯片进行注塑时,容易存在气体无法排出的问题。
为了解决上述问题,在本发明的一个具体实施方式中,提供一种注塑模具,所述封装模具的底盘上具有凹槽,能够与封装芯片基板上的气孔连通,气体自气孔排出,再通过凹槽排出模具外部。
请参考图1A~1C,为本发明一个具体实施方式中采用具有凹槽的注塑模具 进行注塑的结构示意图,其中图1A为俯视示意图,图1B为沿图1A中割线AA’的剖面示意图,图1C为沿图1A中割线BB’的剖面示意图。
封装芯片包括基板110以及倒装于所述基板110上的芯片111。具体的,所述基板110具有相对的正面和背面,所述芯片111固定于所述基板110的正面。所述封装芯片置于注塑模具的空腔内,所述基板110上具有气孔113。
所述注塑模具包括底盘101以及封盖102。所述底盘101内具有凹槽120,所述凹槽120的两端为开放端口,与注塑模具的外部连通。封装芯片置于所述底盘101上,气孔113与所述凹槽120连通,注入塑封料112时,气体自基板110上气孔113、通过位于底盘101上的凹槽120排出至模具外部。与仅在基板101上形成气孔相比,在注塑模具的底盘101上形成与气孔113连通的凹槽120能够进一步提高注塑时的排气效果。
但是,在注塑过程中,通常模具内腔体边缘处会被先填充塑封料,位于边缘位置的芯片111会先被塑封料包裹。塑封料从基板101的气孔113溢出至凹槽120内,可能会在塑封料还未填满腔体时,就将地板101上的凹槽120的两端堵住,例如图1A中区域130位置处,此时,该凹槽120将无法起到较好的排气效果,依旧会在注塑过程中,存在无法排出空气,导致芯片111与基板110之间出现孔洞,影响器件的可靠性。
发明人进一步提出一种新的封装模具,以改善上述问题。
下面结合附图对本发明提供的新的注塑模具及注塑方法的具体实施方式做详细说明。
在一个具体实施方式中,所述注塑模具包括:底盘,用于放置待注塑的封装芯片,所述封装芯片包括基板及通过倒装工艺固定于所述基板正面的至少一个芯片,所述基板上具有贯穿所述基板的气孔;所述底盘内形成有沿至少两个方向延伸且相互交叉连通的两个以上的气道,各个气道的两端均为开放端口,且其中至少一个气道埋入所述底盘内;所述气道上具有出气口,用于与所述基板上的气孔连通。
请参考图2A~2C,为本发明一具体实施方式的注塑模具的底盘的结构示意图。其中,图2A为所述底盘210的俯视示意图,图2B为沿图2A中割线CC’ 的剖面示意图,图2C为沿图2A中割线DD’的剖面示意图。
所述底盘210具有沿第一方向延伸的第一气道211以及沿第二方向延伸的第二气道212。该具体实施方式中,第一方向为X轴方向,第二方向为Y轴方向,所述第一方向和第二方向相互垂直。在其他具体实施方式中,所述第一方向和第二方向之间也可以是成其他角度相交。该具体实施方式中,以第一方向和第二方向上各形成有3个气道作为示例,在其他具体实施方式中,各方向的气道数量可以根据待注塑的封装芯片结构以及实际需求进行设计,在此不作限定。
所述底盘210具有相对的两个表面,分别为正面和背面,所述封装芯片应用放置于所述底盘210的正面上。该具体实施方式中,所述第一气道211为形成于所述底盘210正面的凹槽,所述第二气道212为埋入所述底盘211内的隧道,所述第二气道212与所述第一气道211交叉位置处连通。所述第一气道211和第二气道212通过交叉位置连通,使得所述第一气道211和第二气道212构成网状气道结构,当其中任意一个位置处被堵住时,气体可以还可以通过其他方向排出。
所述第一气道211和第二气道212上均具有出气口,所述出气口的一端开口位于所述底盘210的正面,用于与带注塑的封装芯片的基板上的气孔连通。该具体实施方式中,所述第一气道211为凹槽,整个凹槽开口均可以作为所述第一气道211的出气口;所述第二气道212埋入所述底盘210内,所述第二气道212与所述第一气道211连通处的气道区域,作为所述第二气道212的出气口,该具体实施方式中,所述第二气道212的出气口位于所述第二气道212与所述第一气道211的交叉位置处。
通常,进行注塑的封装芯片的基板上的气孔沿直线排列,当所述封装芯片置于所述底盘210表面时,所述第一气道211的延伸方向与基板上气孔的排列方向一致,且每个第一气道211均连通至位于同一直线上的气孔。在对封装芯片进行注塑时,塑封料从芯片基板的气孔进入所述第一气道内,最终,注塑完成,塑封料固化后,所述第一气道内会形成一长条状的位于基板背面的塑封料长条,将与所述第一气道连通的气孔均封闭,从而提高对所述基板上气孔的封 闭效果。该具体实施方式中,所述第一气道211的宽度范围为100μm~1mm,在满足排气要求的同时,避免在基板背面形成尺寸过大的塑封料长条,占据基板背面过多面积而影响基板背面电路分布。
在其他具体实施方式中,还可以形成沿三个或者三个以上方向延伸的气道,以提高气体排出的效率。在沿垂直于底盘表面的方向上,至少两个不同延伸方向上的气道分别位于所述底盘的不同深度处。
在一个具体实施方式中,沿各个方向延伸的气道均埋入底盘内,且沿不同方向延伸的气道埋入深度不同,并且在交叉位置处垂直贯通,该交叉位置处的通孔作为各气道的出气口,用于连通至待注塑的封装芯片基板上的气孔,因此,此时,进气孔的数目可以根据待注塑的封装芯片基板上的气孔数目进行设置,可以与气孔数目相同或大于气孔的数目,以适应不同种类的封装芯片。在一个具体实施方式中,所述出气口为圆孔状,直径范围为100μm~1mm,优选为200μm,300μm,400μm,500μm,600μm,700μm或者800μm。在一些具体实施方式中,所述出气口还可以为矩形孔,边长范围为100μm~1mm。
在该具体实施方式中,在对封装芯片进行塑封后,仅会在封装芯片的基板背面形成点状的封闭气孔的塑封料,从而减少塑封料占据的基板背面的面积,可以提高在基板背面形成焊垫、焊球等电连接结构的面积。
在其他具体实施方式中,也可以有沿至少一个方向延伸的气道位于底盘正面,为两端贯穿底盘的凹槽;沿其他方向延伸的气道则埋入所述底盘内部。
在垂直于延伸方向上,所述气道的横截面可以为圆形、矩形、半圆形、椭圆形等各种形状。
本发明的具体实施方式中,所述气道的延伸方向以及延伸方向的数量不作限定,本领域技术人员可以根据实际需求进行设计。
为了提高气体排出效率,所述气道可以具有较大的横截面尺寸。所述气道垂直于长度方向上的横截面的边缘两点之间的最大距离的范围为500μm~5mm。所述气道横截面为圆形时,则所述最大距离为横截面的直径;所述气道横截面为矩形时,所述最大距离为横截面的最大边长。并且,还可以根据气道的位于所述底盘内的深度,设置不同的横截面尺寸,较佳的,可以使得位 于下方的气道横截面面积大于上方的气道横截面面积。该具体实施方式中,所述第一气道211位于底盘表面的凹槽,横截面为矩形,边长范围可以为500μm~2mm,优选为800μm~1.7mm;所述第二气道212位于所述第一气道211的下方,横截面为圆形,直径范围可以为500μm~5mm,优选为800μm~4μm。气道的横截面面积越大,气体排出的效率越高。
该具体实施方式中,所述第一气道211和第二气道212均为直线形气道。在其他具体实施方式中,所述气道也可以为曲线形,例如图3中气道301。各气道的形状和延伸方向可以根据待封装芯片基板上的气孔排布进行设计,任何形状及排布规则均在本申请的保护范围内,在此不一一列举。
请参考图4A至图4D,为本发明另一具体实施方式的底盘的结构示意图。其中,图4A为所述底盘410表面的俯视示意图,图4B为沿图4A中割线E-E’的剖面示意图,图4C为沿图4A中割线F-F’的剖面示意图,图4D为沿图4A中割线G-G’的剖面示意图。
该具体实施方式中,所述底盘410表面具有沿第一方向(x轴)延伸的第一气道411,所述底盘410内部具有沿第二方向(y轴)延伸的第二气道412。所述第一气道411为位于所述底盘410正面的凹槽,所述第二气道412为埋入所述底盘410内的隧道,所述第一气道411和所述第二气道412交叉位置处连通。
特别的,该具体实施方式中,所述第二气道412内,与所述第一气道411连通处具有一台阶413,所述台阶413在沿第一气道411延伸方向上连接至所述第一气道411其他位置处的底部。该具体实施方式中,所述台阶413的表面与所述第一气道411其他位置处的底面齐平;在其他具体实施方式中,所述台阶413的表面也可以略高于或低于所述第一气道411的底面。
请参考图4B,所述第一气道411与所述地二气道412的连接处由于所述台阶413的存在,使得在对芯片进行注塑时,塑封料自第一气道411进入第二气道412内时,流通路径较小,待塑封料固化后,将封装芯片取出时,该位置处塑封料容易断开,方便注塑后的封装芯片自注塑模具中取出。
所述注塑模具还包括封盖,用于盖合于所述底盘上,与所述底盘之间形成 空腔,所述空腔用于容纳待注塑的封装芯片;所述底盘上的气道连通所述空腔与所述注塑模具外部;所述封盖上具有至少一个注入孔,用于向所述空腔内注入塑封料。所述封盖上还可以形成有出气孔,用于连通所述空腔和注塑模具外部。
上述注塑模具的底盘具有多个方向延伸的气道,各方向延伸的气道连通,构成网状气道结构,在注塑过程中,其中部分气道两端被堵住时,依旧能够通过其他方向的气道排出气体,从而降低注塑腔体内气体无法排出的风险,提高注塑后封装芯片的可靠性。
本发明的具体实施方式还提供一种注塑方法,采用上述具体实施方式中,提供的注塑模具,对封装后芯片进行注塑。
请参考图5A至图6B,为本发明一具体实施方式中,对封装芯片的注塑过程的结构示意图。
请参考图5A至图5B,提供一注塑模具,所述注塑模具包括底盘400和封盖500,所述底盘400的具体结构请参考图4A至图4D,在此不再赘述。
将待注塑的封装芯片510置于底盘400的正面上,所述封装芯片510包括基板511及通过倒装工艺固定于所述基板511正面的至少一个芯片512,所述基板上具有气孔513;将封盖500盖合于所述底盘400表面,形成空腔520,所述封装芯片位于所述空腔520内,所述基板511的背面与所述底盘410表面贴合,且所述封装芯片510的基板511上的气孔513与所述底盘410内的气道连通。所述基板511的正面与背面为相对的两个表面。
所述封装芯片510的基板511为电路板,形成有电路、焊垫等电连接结构,表面通过倒装工艺,封装有若干芯片512,所述芯片512倒置于所述基板511表面,通过焊接凸点与所述基板511表面的电连接结构形成电性连接,所述焊接凸点可以为焊球、铜柱等结构。
所述封装芯片510的每个芯片512所在的基板区域内形成有至少一个气孔513,至少其中部分的气孔与所述底盘410内的气道连通,以通过气道排出气体。较佳的,所述基板511内的所有气孔513均与所述底盘410内的气道连通,便于提高排气效率。该具体实施方式中,所述气孔513为圆孔,尺寸略小于或 等于所述底盘410内的气道出气口的尺寸,具体的,所述气孔513的直径小于所述第一气道411的宽度。在一个具体实施方式中,所述气孔513的直径范围为800μm~0.8mm,所述第一气道411的宽度范围为100μm~1mm。
该具体实施方式中,所述底盘410包括位于正面的凹槽状第一气道411以及埋入所述底盘410内的第二气道412,所述基板511内的气孔513沿第一气道411的延伸方向排列,位于同一直线上的气孔513连通至同一第一气道411。
在其他具体实施方式中,所述底盘上的气道可以均埋入所述底盘内部,所述气道的出气口为孔状,贯通至所述底盘正面,所述基板511上的气孔513与所述底盘正面的至少部分出气口连通。
请参考图6A至图6B,通过所述封盖500上的注入孔(图中未示出)向所述空腔520(请参考图5A至图5B)内注入液态塑封料600,注入过程中,至少部分所述空腔520内气体通过所述气孔513(请参考图5A至图5B)以及气道排出至所述注塑模具外部。
向所述腔体520内注入液态塑封料时,对流速进行控制,以使得所述空腔520内的气体有足够的时间通过气道排出。较佳的,在一些具体实施方式中,控制注塑过程中注塑压强范围为7E6Pa~1E7Pa。
在一些具体实施方式中,所述封盖500上可以形成有两个或两个以上的注入孔,可以通过两个以上所述注入孔向所述空腔内注入塑封料,以提高注入效率。所述封盖500上还可以具有出气孔(图中未示出),位于空腔520上部分的气体可以通过所述封盖500上的出气孔向外排出,从而减少需要从底盘410上气道排出的气体量,可以适当加快注塑塑封料的流速,从而提高注塑效率。
当塑封料填满所述空腔后,进行热处理,使所述塑封料600固化;将被所述塑封料覆盖的封装芯片510自所述空腔内取出。
该具体实施方式中,塑封过程中,塑封料600从基板511上气孔进入第一气道411内,将封装芯片510自模具中取出时,会连带形成于所述第一气道411内的塑封料一起取出,使得所述基板511背面具有长条状的塑封条610,所述塑封条610将位于同一直线上的气孔均封闭,提高对气孔的封闭效果。
在其他具体实施方式中,所述底盘正面可以形成有多个方向延伸的凹槽状 气道,从而在注塑完成后在基板511上形成多个方向延伸的塑封条610。需要根据所述基板511背面形成的焊垫等电连接结构位置,合理设置底盘表面的气道分布位置,避免形成的塑封条610影响基板511背面的连接结构。
请参考图6A,由于所述第一气道411和第二气道412的连通处具有一台阶413,使得所述第一气道411与所述第二气道412之间的连通通道比较窄,塑封料在所述第一气道411和第二气道412连接处的连接强度较低,因而在注塑完成后,取出封装芯片510的过程中,所述第一气道411和第二气道412连接处的塑封料容易断裂,使得所述封装芯片510易于取出。封装芯片510取出后,还包括在所述封装芯片510的另一侧表面形成焊球,所述焊球通过所述基板510内的电连接结构与所述基板511正面的芯片512之间形成电连接;然后,将所述基板510进行切割,形成包括单颗芯片512的注塑后封装芯片。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1. 一种注塑模具,其中,包括:
    底盘,用于放置待注塑的封装芯片,所述封装芯片包括基板及通过倒装工艺固定于所述基板正面的至少一个芯片,所述基板内具有贯穿所述基板的气孔;
    所述底盘内形成有沿至少两个方向延伸且相互交叉连通的两个以上的气道,各个气道的两端均为开放端口,且其中至少一个气道埋入所述底盘内;
    所述气道上具有出气口,用于与所述基板上的气孔连通。
  2. 根据权利要求1所述的注塑模具,其中,所述两个以上的气道内,至少一个气道位于所述底盘正面;位于所述底盘正面的气道为位于所述底盘正面内的凹槽,埋入所述底盘内的气道为位于所述底盘内部的隧道。
  3. 根据权利要求1所述的注塑模具,其中,在沿垂直于底盘表面的方向上,至少两个不同延伸方向上的气道分别位于所述底盘的不同深度处。
  4. 根据权利要求1所述的注塑模具,其中,至少沿其中一个方向延伸的所述气道埋入所述底盘内部。
  5. 根据权利要求1所述的注塑模具,其中,所述出气口位于不同气道的交叉位置处,使得各个交叉的气道之间相互连通。
  6. 根据权利要求1所述的注塑模具,其中,所述气道垂直于长度方向上的横截面的边缘两点之间的最大距离的范围为500μm~5mm。
  7. 根据权利要求1所述的注塑模具,其中,所述气道的出气口尺寸大于或等于所述基板上的气孔尺寸。
  8. 根据权利要求1所述的注塑模具,其中,所述底盘内形成有沿第一方向延伸的第一气道,以及沿第二方向延伸的第二气道,所述第一气道为形成于所述底盘表面的凹槽,所述第二气道为埋入所述底盘内的隧道,所述第二气道与所述第一气道交叉位置处连通。
  9. 根据权利要求8所述的注塑模具,其中,所述第二气道内,与所述第一气道连通处具有一台阶,所述台阶在沿第一气道延伸方向上连接至所述第一气道的底部。
  10. 根据权利要求1所述的注塑模具,其中,所述待注塑的封装芯片的基板上 的气孔沿直线排列,所述第一气道的延伸方向与气孔的排列方向一致,且每个第一气道均用于连通至位于同一直线上的气孔。
  11. 根据权利要求1所述的注塑模具,其中,还包括:封盖,用于盖合于所述底盘上,与所述底盘之间形成空腔,所述空腔用于容纳待注塑的封装芯片;
    所述底盘上的气道连通所述空腔与所述注塑模具外部;所述封盖上具有至少一个注入孔,用于向所述空腔内注入塑封料。
  12. 一种注塑方法,其中,包括:
    提供如权利要求11所述的注塑模具以及待注塑的封装芯片,所述封装芯片包括基板及通过倒装工艺固定于所述基板正面的至少一个芯片,所述基板内具有贯穿所述基板的气孔;
    将所述封装芯片置于所述注塑模具的底盘上并将封盖盖合于所述底盘上形成空腔,所述封装芯片位于所述空腔内,所述基板的背面与所述底盘表面贴合,且所述封装芯片的基板上的气孔与所述底盘内的气道连通;
    通过所述封盖上的注入孔向所述空腔内注入液态塑封料,注入过程中,至少部分所述空腔内气体通过所述气孔以及气道排出至所述注塑模具外部。
  13. 根据权利要求12所述的注塑方法,其中,通过两个以上所述注入孔向所述空腔内注入塑封料。
  14. 根据权利要求12所述的注塑方法,其中,所述封装芯片的每个芯片所在的基板区域内形成有至少一个气孔。
  15. 根据权利要求12所述的注塑方法,其中,还包括:当所述液态塑封料填满所述空腔后,进行热处理,使所述液态塑封料固化;将被固化后的塑封料覆盖的封装芯片自所述空腔内取出。
PCT/CN2021/075942 2020-02-19 2021-02-08 注塑模具及注塑方法 WO2021164605A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21757866.5A EP3950261B1 (en) 2020-02-19 2021-02-08 Injection mold and injection molding method
US17/373,930 US11820058B2 (en) 2020-02-19 2021-07-13 Injection mould and injection moulding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010102763.2A CN113276348B (zh) 2020-02-19 2020-02-19 注塑模具及注塑方法
CN202010102763.2 2020-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/373,930 Continuation US11820058B2 (en) 2020-02-19 2021-07-13 Injection mould and injection moulding method

Publications (1)

Publication Number Publication Date
WO2021164605A1 true WO2021164605A1 (zh) 2021-08-26

Family

ID=77274901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075942 WO2021164605A1 (zh) 2020-02-19 2021-02-08 注塑模具及注塑方法

Country Status (4)

Country Link
US (1) US11820058B2 (zh)
EP (1) EP3950261B1 (zh)
CN (1) CN113276348B (zh)
WO (1) WO2021164605A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276359B (zh) * 2020-02-19 2022-11-08 长鑫存储技术有限公司 注塑模具及注塑方法
CN113394118B (zh) * 2020-03-13 2022-03-18 长鑫存储技术有限公司 封装结构及其形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866442A (en) * 1997-01-28 1999-02-02 Micron Technology, Inc. Method and apparatus for filling a gap between spaced layers of a semiconductor
US6383846B1 (en) * 2000-03-20 2002-05-07 Chi-Chih Shen Method and apparatus for molding a flip chip semiconductor device
CN1698197A (zh) * 2001-11-07 2005-11-16 先进系统自动化有限公司 用于形成倒装芯片半导体封装的方法和设备及用于制造倒装芯片半导体封装用的基底的方法
JP4319759B2 (ja) * 2000-03-21 2009-08-26 アピックヤマダ株式会社 樹脂封止装置及び樹脂封止方法
CN109262992A (zh) * 2018-09-26 2019-01-25 陕西智拓固相增材制造技术有限公司 透气镶件加工方法及透气镶件

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923959A (en) 1997-07-23 1999-07-13 Micron Technology, Inc. Ball grid array (BGA) encapsulation mold
CN1291466C (zh) * 2001-12-27 2006-12-20 威宇科技测试封装有限公司 一种具有散热片的半导体封装方法
TW584922B (en) * 2002-07-03 2004-04-21 United Test Ct Inc Method of manufacturing semiconductor package
JP4474113B2 (ja) * 2003-04-07 2010-06-02 日立化成工業株式会社 封止用固形エポキシ樹脂成形材料及び半導体装置
CN101347968A (zh) * 2007-07-16 2009-01-21 汉达精密电子(昆山)有限公司 改良排气结构
JP5067664B2 (ja) * 2008-03-25 2012-11-07 コニカミノルタアドバンストレイヤー株式会社 光学素子用成形金型及び光学素子
KR20120062457A (ko) * 2010-12-06 2012-06-14 삼성전자주식회사 솔더 접합 신뢰도를 높이는 반도체 패키지용 인쇄회로기판 및 이를 포함하는 반도체 패키지
JP5723617B2 (ja) * 2011-02-04 2015-05-27 Hoya株式会社 射出成形装置、成形型、及び射出成形品の製造方法
KR101902996B1 (ko) 2012-07-09 2018-10-01 삼성전자주식회사 반도체 패키지 및 이의 제조 방법
KR102003279B1 (ko) * 2012-07-17 2019-07-25 삼성전자 주식회사 반도체 몰딩 하부 금형, 반도체 패키지 및 반도체 패키지 제조 방법
CN203254619U (zh) * 2013-03-19 2013-10-30 吴江凯明塑胶有限公司 一种模具的排气结构
CN204773390U (zh) * 2015-07-14 2015-11-18 东莞市贝洛橡胶制品有限公司 自动排气大直径缓冲橡胶件成型模具
CN107369655A (zh) * 2017-07-13 2017-11-21 睿力集成电路有限公司 一种窗口型球栅阵列封装组件
CN207711281U (zh) * 2017-12-08 2018-08-10 深圳市平进股份有限公司 一种超高频震动和电脉冲处理精密光滑的注塑模具
CN207841976U (zh) * 2017-12-29 2018-09-11 青岛鑫可佳精密模具有限责任公司 一种一模四腔式母模结构
CN208020631U (zh) * 2018-03-13 2018-10-30 苏州精锐精密机械有限公司 注塑模具
CN108773021A (zh) * 2018-05-08 2018-11-09 珠海格力精密模具有限公司 注塑模具及注塑方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866442A (en) * 1997-01-28 1999-02-02 Micron Technology, Inc. Method and apparatus for filling a gap between spaced layers of a semiconductor
US6383846B1 (en) * 2000-03-20 2002-05-07 Chi-Chih Shen Method and apparatus for molding a flip chip semiconductor device
JP4319759B2 (ja) * 2000-03-21 2009-08-26 アピックヤマダ株式会社 樹脂封止装置及び樹脂封止方法
CN1698197A (zh) * 2001-11-07 2005-11-16 先进系统自动化有限公司 用于形成倒装芯片半导体封装的方法和设备及用于制造倒装芯片半导体封装用的基底的方法
CN109262992A (zh) * 2018-09-26 2019-01-25 陕西智拓固相增材制造技术有限公司 透气镶件加工方法及透气镶件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950261A4 *

Also Published As

Publication number Publication date
US20210339443A1 (en) 2021-11-04
EP3950261A1 (en) 2022-02-09
EP3950261A4 (en) 2022-06-15
EP3950261B1 (en) 2023-11-29
CN113276348A (zh) 2021-08-20
CN113276348B (zh) 2023-01-24
US11820058B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2021164605A1 (zh) 注塑模具及注塑方法
WO2021164606A1 (zh) 注塑模具及注塑方法
US6210992B1 (en) Controlling packaging encapsulant leakage
JP4727850B2 (ja) 半導体電子部品
JP2005354068A (ja) 側面が封止材で取り囲まれた半導体パッケージ、それを製造するのに利用されるモールド、及びそれを利用した半導体パッケージの製造方法
JP2008004570A (ja) 樹脂封止型半導体装置の製造方法、樹脂封止型半導体装置の製造装置、および樹脂封止型半導体装置
JP2008252027A (ja) 半導体装置
JP2005150670A (ja) 半導体モジュールの製造方法及びそれに用いられる印刷回路基板
US6383846B1 (en) Method and apparatus for molding a flip chip semiconductor device
KR102003279B1 (ko) 반도체 몰딩 하부 금형, 반도체 패키지 및 반도체 패키지 제조 방법
KR100417182B1 (ko) 수지몰드방법, 몰드성형용금형 및 배선기재
JP2004528729A (ja) 複数の半導体チップ、および配線ボードを有する樹脂パッケージ、ならびにこの樹脂パッケージを射出成形用金型によって製作する方法
WO2021179672A1 (zh) 封装结构及其形成方法
CN211404481U (zh) 封装基板以及封装结构
JP2008177345A (ja) Bga型パッケージ
TW201417231A (zh) 封裝基板及晶片封裝構件
KR20140024644A (ko) 패키지 기판, 패키지 기판의 제조 방법 및 패키지 기판의 성형 금형
TWI667746B (zh) 半導體封裝結構及其製造方法
TWI713167B (zh) 覆晶半導體封裝結構及其封裝方法
JP2001168123A (ja) 半導体装置及びその製造方法、半導体装置の製造装置、回路基板並びに電子機器
JPH08335594A (ja) 半導体チップの封止構造及び封止方法
WO2021164337A1 (zh) 封装基板及其形成方法、封装结构及其形成方法
JP3648238B2 (ja) 半導体装置の製造方法
KR20070007913A (ko) 수지 토출 노즐, 수지 밀봉 방법 및 전자 부품 실장체
US20150118802A1 (en) Dual corner top gate molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021757866

Country of ref document: EP

Effective date: 20211105

NENP Non-entry into the national phase

Ref country code: DE