WO2021153678A1 - 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法 - Google Patents

導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法 Download PDF

Info

Publication number
WO2021153678A1
WO2021153678A1 PCT/JP2021/003062 JP2021003062W WO2021153678A1 WO 2021153678 A1 WO2021153678 A1 WO 2021153678A1 JP 2021003062 W JP2021003062 W JP 2021003062W WO 2021153678 A1 WO2021153678 A1 WO 2021153678A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
conductive
group
surfactant
conductive polymer
Prior art date
Application number
PCT/JP2021/003062
Other languages
English (en)
French (fr)
Inventor
早希 仲野
隆浩 森
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021574111A priority Critical patent/JP7517352B2/ja
Priority to KR1020227023615A priority patent/KR20220114591A/ko
Priority to EP21747640.7A priority patent/EP4098702A4/en
Priority to CN202180009244.4A priority patent/CN114945635B/zh
Priority to CN202410664211.9A priority patent/CN118620412A/zh
Publication of WO2021153678A1 publication Critical patent/WO2021153678A1/ja
Priority to US17/814,718 priority patent/US20220382155A1/en
Priority to JP2024106874A priority patent/JP2024127925A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/65Electrical insulator
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants

Definitions

  • the present invention relates to a conductive composition, a resist coating material, a resist, and a method for forming a resist pattern.
  • the present application claims priority based on Japanese Patent Application No. 2020-0126223 filed in Japan on January 29, 2020, the contents of which are incorporated herein by reference.
  • Pattern formation technology using charged particle beams such as electron beams and ion beams is expected as a next-generation technology for optical lithography.
  • a charged particle beam When a charged particle beam is used, it is important to improve the sensitivity of the resist layer in order to improve productivity. Therefore, a highly sensitive chemically amplified resist that generates an acid in the exposed part or the part irradiated with the charged particle beam and then promotes the cross-linking reaction or decomposition reaction by a heat treatment called post-exposure baking (PEB) treatment.
  • PEB post-exposure baking
  • a conductive polymer having an acidic group As a conductive polymer, a conductive polymer having an acidic group is known. A conductive polymer having an acidic group can exhibit conductivity without adding a doping agent. A conductive polymer having an acidic group can be obtained, for example, by polymerizing aniline having an acidic group with an oxidizing agent in the presence of a basic compound such as trimethylamine or pyridine (see, for example, Patent Document 1).
  • polyaniline obtained by polymerizing acidic group-substituted aniline with an oxidizing agent in the presence of a basic compound is desalted by an ion exchange method, an electrodialysis method, etc. to remove the basic compound and the like, and then newly added.
  • a method of adding a strongly basic basic compound has been proposed (see, for example, Patent Document 2).
  • a surfactant is added to the conductive composition for the purpose of improving the coatability when the conductive composition containing the above-mentioned conductive polymer is applied to the surface of the resist layer (for example). See Patent Document 3).
  • the newly added basic compound forms a salt when it is stabilized with a part of the acidic group of polyaniline, the acidic group portion of polyaniline can be stabilized, and the polyaniline can be stabilized. Desorption of acidic groups from can be suppressed.
  • the newly added basic compound easily forms a salt with the decomposition product of the oxidizing agent. Therefore, the decomposition products of the acidic group and the oxidizing agent are less likely to migrate to the resist layer, and the film loss of the resist layer can be suppressed.
  • An object of the present invention is to provide a conductive composition, a resist coating material, a resist, and a method for forming a resist pattern, which can form a conductive film having excellent conductivity and less film loss of the resist layer.
  • a conductive composition containing a conductive polymer and a surfactant A conductive composition in which the critical micelle concentration of the surfactant is less than 0.1% by mass, and the content of the surfactant is 5 parts by mass or more with respect to 100 parts by mass of the conductive polymer.
  • a conductive composition a resist coating material, a resist, and a method for forming a resist pattern, which can form a conductive film having excellent conductivity and less film loss of the resist layer.
  • conductive means having a surface resistivity of 1 ⁇ 10 11 ⁇ / ⁇ or less. The surface resistivity is obtained from the potential difference between the electrodes when a constant current is passed.
  • soluble means water, water containing at least one of a base and a basic salt, water containing an acid, and 10 g (liquid) of one or more of a mixture of water and a water-soluble organic solvent. It means that it is uniformly dissolved in 0.1 g or more at a temperature of 25 ° C.).
  • water-soluble means the above-mentioned solubility in water.
  • the "terminal” of a “terminal hydrophobic group” means a site other than the repeating unit constituting the polymer.
  • the "mass average molecular weight” is a mass average molecular weight (in terms of sodium polystyrene sulfonate or polyethylene glycol) measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the conductive composition of the present invention contains a conductive polymer (hereinafter, also referred to as “conductive polymer (A)”) and a surfactant (hereinafter, also referred to as “surfactant (B)”). ..
  • the conductive composition of the present invention is one of optional components including, for example, a solvent (hereinafter, also referred to as “solvent (C)”) and a basic compound (hereinafter, also referred to as “basic compound (D)”). The above may be included as necessary.
  • a known conductive polymer (A) can be used.
  • polypyrrole, polythiophene, polythiophene vinylene, polyterlophene, polyphenylene, polyphenylene vinylene, polyaniline, polyacene, polyacetylene can be mentioned.
  • polypyrrole, polythiophene, and polyaniline are preferable from the viewpoint of excellent conductivity.
  • the conductive polymer (A) is preferably water-soluble or water-dispersible.
  • the conductive polymer (A) has water solubility or water dispersibility, the coating property of the conductive composition is enhanced, and a conductor having a uniform thickness can be easily obtained.
  • the conductive polymer (A) preferably has an acidic group. Having an acidic group increases water solubility.
  • the acidic group is preferably a sulfonic acid group or a carboxy group.
  • One molecule may have only one kind of acidic group, or may have two or more kinds of acidic groups. Part or all of the acidic groups may form salts.
  • Examples of the conductive polymer (A) having an acidic group include Japanese Patent Application Laid-Open No. 61-197633, Japanese Patent Application Laid-Open No. 63-39916, Japanese Patent Application Laid-Open No. 1-301714, and Japanese Patent Application Laid-Open No. Japanese Patent Application Laid-Open No. 5-504153, Japanese Patent Application Laid-Open No.
  • Examples of the conductive polymer (A) include phenylene vinylene, vinylene, thienylene, pyrrolylene, and phenylene in which the ⁇ -position or ⁇ -position is substituted with at least one group selected from the group consisting of a sulfonic acid group and a carboxy group.
  • Examples thereof include ⁇ -conjugated conductive polymers containing at least one selected from the group consisting of iminophenylene, isothianaften, furylene, and carbazolylen as a repeating unit.
  • the repeating unit of is contained, for example, from a ⁇ -conjugated conductive polymer having at least one group selected from the group consisting of a sulfonic acid group and a carboxy group on the nitrogen atom of the repeating unit, a sulfonic acid group and a carboxy group.
  • a ⁇ -conjugated conductive polymer having an alkyl group containing a substituted ether bond on the nitrogen atom of the repeating unit include a ⁇ -conjugated conductive polymer having an alkyl group containing a substituted ether bond on the nitrogen atom of the repeating unit.
  • phenylene vinylene, thienylene, pyrrolylene, iminophenylene, and isotianaften in which the ⁇ -position is substituted with at least one group selected from the group consisting of a sulfonic acid group and a carboxy group.
  • a ⁇ -conjugated conductive polymer containing at least one selected from the group consisting of carbazolylen as a repeating unit is preferable.
  • the conductive polymer (A) contains 20 to 100 mol% of all the units (100 mol%) constituting the conductive polymer in the following general formulas (1) to (4). ) Is preferably any repeating unit.
  • X represents a sulfur atom or a nitrogen atom and represents R 1 to R 15 are independently hydrogen atoms, linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkoxy groups having 1 to 24 carbon atoms, acidic groups, hydroxy groups, and nitros.
  • R 1 to R 15 are independently hydrogen atoms, linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkoxy groups having 1 to 24 carbon atoms, acidic groups, hydroxy groups, and nitros.
  • R 16 represents an alkyl group having 1 to 24 carbon atoms, an aryl group having 6 to 24 carbon atoms, or an aralkyl group having 7 to 24 carbon atoms.
  • At least one of them, at least one of R 11 to R 15 of the general formula (4), is an acidic group or a salt thereof, respectively.
  • the "acidic group” means a sulfonic acid group (sulfo group) or a carboxylic acid group (carboxy group).
  • the sulfonic acid group may be contained in the free acid type state (-SO 3 H) or in the ionic state (-SO 3- ). Further, the sulfonic acid group also includes a substituent having a sulfonic acid group (-R 17 SO 3 H).
  • the carboxylic acid group may be contained in the free acid type state (-COOH) or in the ionic state (-COO-). Further, the carboxylic acid group also includes a substituent having a carboxylic acid group (-R 17 COOH).
  • R 17 represents a linear or branched alkylene group having 1 to 24 carbon atoms, an arylene group having a linear or branched chain having 6 to 24 carbon atoms, or an aralkylene group having a linear or branched chain having 7 to 24 carbon atoms. ..
  • Examples of the salt of the acidic group include an alkali metal salt of a sulfonic acid group or a carboxylic acid group, an alkaline earth metal salt, an ammonium salt, or a substituted ammonium salt.
  • Examples of the alkali metal salt include lithium sulfate, lithium carbonate, lithium hydroxide, sodium sulfate, sodium carbonate, sodium hydroxide, potassium sulfate, potassium carbonate, potassium hydroxide and derivatives having a skeleton thereof.
  • Examples of the alkaline earth metal salt include magnesium salt and calcium salt.
  • Examples of the substituted ammonium salt include an aliphatic ammonium salt, a saturated alicyclic ammonium salt, and an unsaturated alicyclic ammonium salt.
  • Examples of the aliphatic ammonium salt include methylammonium, dimethylammonium, trimethylammonium, ethylammonium, diethylammonium, triethylammonium, methylethylammonium, diethylmethylammonium, dimethylethylammonium, propylammonium, dipropylammonium, isopropylammonium, and diisopropyl.
  • saturated alicyclic ammonium salt examples include piperidinium, pyrrolidinium, morpholinium, piperadinium and derivatives having a skeleton thereof.
  • unsaturated alicyclic ammonium salts include pyridinium, ⁇ -picolinium, ⁇ -picolinium, ⁇ -picolinium, quinolinium, isoquinolinium, pyrrolinium, and derivatives having a skeleton thereof.
  • the conductive polymer (A) preferably has a repeating unit represented by the above general formula (4) from the viewpoint of exhibiting high conductivity. Among them, from the viewpoint of excellent solubility, it is more preferable to have a repeating unit represented by the following general formula (5).
  • R 18 to R 21 are independently hydrogen atoms, linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkoxy groups having 1 to 24 carbon atoms, acidic groups, hydroxy groups, and the like. Represents a nitro group or a halogen atom (-F, -Cl, -Br or -I). However, at least one of R 18 to R 21 is an acidic group or a salt thereof.
  • any one of R 18 to R 21 is a linear or branched alkoxy group having 1 to 4 carbon atoms because it is easy to manufacture. It is preferable that any one of the other is a sulfonic acid group and the rest are hydrogen atoms.
  • the conductive polymer (A) is represented by the general formula (5) among all the units (100 mol%) constituting the conductive polymer (A) from the viewpoint of excellent solubility in water and organic solvents regardless of pH.
  • the content of the repeating unit to be subjected is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, further preferably 90 to 100 mol%, and particularly preferably 100 mol%.
  • the conductive polymer (A) preferably contains 10 or more units represented by the general formula (5) in one molecule.
  • the number of aromatic rings to which acidic groups are bonded is preferably 50% or more, more preferably 70% or more, based on the total number of aromatic rings in the polymer. 80% or more is more preferable, 90% or more is particularly preferable, and 100% is most preferable.
  • the number of aromatic rings to which acidic groups are bonded with respect to the total number of aromatic rings in the polymer is calculated from the charging ratio of the monomers at the time of producing the conductive polymer (A).
  • the substituent other than the acidic group on the aromatic ring of the repeating unit is preferably an electron-donating group from the viewpoint of imparting reactivity to the monomer.
  • an alkyl group having 1 to 24 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, and a halogen group (-F, -Cl, -Br or -I) are preferable.
  • an alkoxy group having 1 to 24 carbon atoms is most preferable from the viewpoint of electron donating property.
  • the conductive polymer (A) is a repeating unit other than the repeating unit represented by the general formula (5), and is a substituted or unsubstituted aniline, thiophene, pyrrole, as long as it does not affect the solubility, conductivity and properties. It may contain one or more repeating units selected from the group consisting of phenylene, vinylene, divalent unsaturated groups, and divalent saturated groups.
  • the conductive polymer (A) is preferably a compound having a structure represented by the following general formula (6) from the viewpoint of exhibiting high conductivity and solubility, and is represented by the following general formula (6).
  • poly (2-sulfo-5-methoxy-1,4-iminophenylene) is particularly preferable.
  • R 22 to R 37 are independently hydrogen atoms, linear or branched alkyl groups having 1 to 4 carbon atoms, linear or branched alkoxy groups having 1 to 4 carbon atoms, acidic groups, hydroxy groups, and the like. Represents a nitro group or a halogen atom (-F, -Cl, -Br or -I). However, at least one of R 22 to R 37 is an acidic group or a salt thereof. n is an integer of 5 to 2500.
  • At least a part of the acidic group contained in the conductive polymer (A) is a free acid type from the viewpoint of improving conductivity.
  • the mass average molecular weight of the conductive polymer (A) is preferably 10 to 1,000,000, more preferably 15 to 800,000, and more preferably 2000, in terms of sodium polystyrene sulfonate of GPC, from the viewpoint of conductivity, solubility and film forming property. It is more preferably from 200,000 to 500,000, and particularly preferably from 2000 to 100,000.
  • the mass average molecular weight of the conductive polymer (A) is less than 1000, the solubility is excellent, but the conductivity and the film-forming property may be insufficient.
  • the mass average molecular weight exceeds 1 million, the conductivity may be excellent, but the solubility may be insufficient.
  • the "film-forming property” refers to, for example, the property of forming a uniform film without repellency, and can be evaluated by, for example, spin coating on glass.
  • the conductive polymer (A) can be obtained, for example, by polymerizing the raw material monomer of the conductive polymer (A) in the presence of a polymerization solvent and an oxidizing agent.
  • a method for producing the conductive polymer (A) will be described below.
  • the method for producing the conductive polymer (A) includes a step (polymerization step) of polymerizing the raw material monomer of the conductive polymer (A) in the presence of a polymerization solvent and an oxidizing agent.
  • the method for producing the conductive polymer (A) may include a step (purification step) of purifying the reaction product obtained in the polymerization step.
  • the polymerization step is a step of polymerizing the raw material monomer of the conductive polymer (A) in the presence of a polymerization solvent and an oxidizing agent.
  • the raw material monomer include the polymerizable monomer from which the above-mentioned repeating unit is derived.
  • At least one selected from the group consisting of ammonium salts can be mentioned.
  • Examples of the acidic group-substituted aniline include a sulfonic acid group-substituted aniline having a sulfonic acid group as an acidic group.
  • Examples of the sulfonic acid group-substituted aniline include aminobenzene sulfonic acids.
  • Examples of aminobenzene sulfonic acids include o-aminobenzene sulfonic acid, m-aminobenzene sulfonic acid, p-aminobenzene sulfonic acid, aniline-2,6-disulfonic acid, aniline-2,5-disulfonic acid, and aniline-. Examples thereof include 3,5-disulfonic acid, aniline-2,4-disulfonic acid, and aniline-3,4-disulfonic acid.
  • sulfonic acid group-substituted aniline other than aminobenzene sulfonic acids examples include methylaminobenzenesulfonic acid, ethylaminobenzenesulfonic acid, n-propylaminobenzenesulfonic acid, iso-propylaminobenzenesulfonic acid, and n-butylaminobenzenesulfon.
  • Alkyl group-substituted aminobenzene sulfonic acids such as acids, sec-butylaminobenzene sulfonic acid and t-butyl aminobenzene sulfonic acid; alkoxy group-substituted amino such as methoxyaminobenzene sulfonic acid, ethoxyaminobenzene sulfonic acid and propoxyaminobenzene sulfonic acid
  • Benzene sulfonic acids hydroxy group substituted aminobenzene sulfonic acids; nitro group substituted aminobenzene sulfonic acids; halogen substituted aminobenzene sulfonic acids such as fluoroaminobenzene sulfonic acid, chloroaminobenzene sulfonic acid, bromaminobenzene sulfonic acid and the like can be mentioned.
  • alkyl group-substituted aminobenzenesulfonic acids alkoxy group-substituted aminobenzenesulfonic acids, hydroxy-substituted aminobenzenesulfonic acids, and halogens are obtained in that a conductive polymer (A) having particularly excellent conductivity and solubility can be obtained.
  • Substituted aminobenzenesulfonic acids are preferred.
  • Alkoxy group-substituted aminobenzenesulfonic acids, alkoxy group-substituted aminobenzenesulfonic acids alkali metal salts, ammonium salts and substituted ammonium salts are particularly preferable because of their ease of production. Any one of these sulfonic acid group-substituted anilines may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • Examples of the polymerization solvent include water, an organic solvent, and a mixed solvent of water and an organic solvent.
  • water include tap water, ion-exchanged water, pure water, and distilled water.
  • Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, propyl alcohol and butanol; ketones such as acetone and ethyl isobutyl ketone; ethylene glycols such as ethylene glycol and ethylene glycol methyl ether; propylene glycol and propylene.
  • Propylene glycols such as glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether and propylene glycol propyl ether; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methylpyrrolidone and N-ethylpyrrolidone. And the like, pyrrolidones and the like.
  • the polymerization solvent water or a mixed solvent of water and an organic solvent is preferable. When a mixed solvent of water and an organic solvent is used as the polymerization solvent, the mass ratio (water / organic solvent) of these is preferably 1/100 to 100/1, and preferably 2/100 to 100/2. More preferred.
  • the oxidizing agent is not limited as long as it has a standard electrode potential of 0.6 V or more.
  • peroxodisulfates such as peroxodisulfate, ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate; hydrogen peroxide can be mentioned. Any one of these oxidizing agents may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • the raw material monomer may be polymerized in the presence of a basic reaction aid in addition to the polymerization solvent and the oxidizing agent.
  • a basic reaction aid include inorganic bases such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; ammonia; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylmethylamine, ethyldimethylamine, etc.
  • Fatty amines such as diethylmethylamine; cyclic saturated amines; cyclic unsaturated amines such as pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline and quinoline can be mentioned.
  • inorganic bases aliphatic amines and cyclic unsaturated amines are preferable, and cyclic unsaturated amines are more preferable. Any one of these basic reaction aids may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • Examples of the polymerization method include a method of dropping the raw material monomer solution into the oxidizing agent solution, a method of dropping the oxidizing agent solution into the raw material monomer solution, and a method of dropping the raw material monomer solution and the oxidizing agent solution into the reaction vessel at the same time.
  • the raw material monomer solution may contain a basic reaction aid, if necessary.
  • the solvent of the oxidizing agent solution and the raw material monomer solution the above-mentioned polymerization solvent can be used.
  • the reaction temperature of the polymerization reaction is preferably 50 ° C. or lower, more preferably -15 to 30 ° C., and even more preferably -10 to 20 ° C.
  • the reaction temperature of the polymerization reaction is 50 ° C. or lower, particularly 30 ° C. or lower, it is possible to suppress a decrease in conductivity due to the progress of side reactions and changes in the redox structure of the main chain of the produced conductive polymer (A).
  • the reaction temperature of the polymerization reaction is ⁇ 15 ° C. or higher, a sufficient reaction rate can be maintained and the reaction time can be shortened.
  • the conductive polymer (A) which is a reaction product is obtained in a state of being dissolved or precipitated in a polymerization solvent.
  • the polymerization solvent is distilled off to obtain a reaction product.
  • the polymerization solvent is filtered off by a filter such as a centrifuge to obtain a reaction product.
  • Reaction products include unreacted raw material monomers, oligomers associated with the occurrence of side reactions, and acidic substances (free acidic groups desorbed from the conductive polymer (A), sulfate ions, which are decomposition products of oxidizing agents, etc.).
  • Basic substances basic reaction aids, ammonium ions, which are decomposition products of oxidizing agents, etc.
  • other low molecular weight components may be contained. These low molecular weight components are impurities and cause a factor of inhibiting conductivity. Therefore, it is preferable to purify the reaction product to remove low molecular weight components.
  • the purification step is a step of purifying the reaction product obtained in the polymerization step.
  • a method for purifying the reaction product for example, a washing method using a washing solvent, a membrane filtration method, an ion exchange method, removal of impurities by heat treatment, and neutralization precipitation can be used.
  • the cleaning method and the ion exchange method are preferable from the viewpoint that the conductive polymer (A) having high purity can be easily obtained.
  • the cleaning method is preferable from the viewpoint of efficiently removing raw material monomers, oligomers, acidic substances and the like.
  • the ion exchange method is preferable from the viewpoint of efficiently removing a basic substance or the like existing in a state where an acidic group and a salt of the conductive polymer (A) are formed.
  • a cleaning method and an ion exchange method may be used in combination.
  • washing solvent examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-butanol, 3-butanol, t-butanol, 1-pentanol, 3-methyl-1-butanol, 2 -Alcohols such as pentanol, n-hexanol, 4-methyl-2-pentanol, 2-ethylbutinol, benzyl alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Polyhydric alcohol derivatives such as methoxymethoxyethanol, propylene glycol monoethyl ether and glyceryl monoacetate; acetone; acetonitrile; N, N-dimethylformamide; N-methylpyrrolidone; dimethylsulfoxide.
  • Examples of the ion exchange method include a column type and a batch type treatment using an ion exchange resin such as a cation exchange resin and an anion exchange resin; and an electrodialysis method.
  • an ion exchange resin such as a cation exchange resin and an anion exchange resin
  • electrodialysis method an electrodialysis method.
  • the reaction product When the reaction product is dissolved in the polymerization solvent, it may be brought into contact with the ion exchange resin in the dissolved state. If the concentration of the reaction product is high, it may be diluted with an aqueous medium.
  • the reaction product is precipitated in the polymerization solvent, the polymerization solvent is filtered off, the reaction product is dissolved in an aqueous medium so as to have a desired solid content concentration, and the reaction product is made into a polymer solution and then contacted with an ion exchange resin. It is preferable to let it.
  • the reaction product after washing is subjected to an ion exchange treatment
  • the aqueous medium include a solvent (C) described later.
  • the concentration of the conductive polymer (A) in the polymer solution is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass, from the viewpoint of industriality and purification efficiency.
  • the amount of the sample solution with respect to the ion exchange resin is preferably up to 10 times the volume of the ion exchange resin in the case of a polymer solution having a solid content concentration of 5% by mass. Up to twice the volume is more preferred.
  • the cation exchange resin include "Amberlite IR-120B” manufactured by Organo Corporation.
  • the anion exchange resin include "Amberlite IRA410" manufactured by Organo Corporation.
  • the conductive polymer (A) after the ion exchange treatment is in a state of being dissolved in a polymerization solvent or an aqueous medium. Therefore, if the polymerization solvent or the aqueous medium is completely removed with an evaporator or the like, the solid conductive polymer (A) can be obtained, but the conductive polymer (A) has a conductive composition while being dissolved in the polymerization solvent or the aqueous medium. It may be used in the manufacture of goods.
  • surfactant (B) examples include anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants and the like. Any one of these surfactants may be used alone, or two or more of these surfactants may be used in combination at an arbitrary ratio.
  • anionic surfactants include sodium dialkyl sulfosuccinate, sodium octanate, sodium decanoate, sodium laurate, sodium myristate, sodium palmitate, sodium stearate, perfluorononanoic acid, sodium N-lauroyl sarcosin, and the like.
  • Examples thereof include sodium cocoyl glutamate, alpha sulfo fatty acid methyl ester salt, sodium lauryl sulfate, sodium myristyl sulfate, sodium lauryl sulfate, sodium polyoxyethylene alkylphenol sulfonate, ammonium lauryl sulfate, lauryl phosphate, sodium lauryl phosphate, and potassium lauryl phosphate. ..
  • cationic surfactants include tetramethylammonium chloride, tetramethylammonium hydroxide, tetrabutylammonium chloride, dodecyldimethylbenzylammonium chloride, alkyltrimethylammonium chloride, octyltrimethylammonium chloride, decyltrimethylammonium chloride, and dodecyl chloride.
  • amphoteric surfactant examples include lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, dodecylaminomethyldimethylsulfopropyl betaine, octadecylaminomethyldimethylsulfopropyl betaine, cocamidopropyl betaine, cocamidopropyl hydroxysultaine, and 2 Examples thereof include -alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine, sodium lauroyl glutamate, potassium lauroyl glutamate, lauroylmethyl- ⁇ -alanine, lauryldimethylamine-N-oxide, and oleyldimethylamine N-oxide.
  • nonionic surfactant examples include glycerin laurate, glycerin monostearate, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkyl ether, pentaethylene glycol monododecyl ether, octaethylene glycol monododecyl ether, and poly.
  • a water-soluble polymer having a terminal hydrophobic group may be used as the nonionic surfactant.
  • the water-soluble polymer having a terminal hydrophobic group include a water-soluble polymer having a nitrogen-containing functional group and a terminal hydrophobic group.
  • water-soluble polymers having a nitrogen-containing functional group and a terminal hydrophobic group are surface-active depending on a main chain portion (hydrophilic portion) having a nitrogen-containing functional group and a terminal hydrophobic group portion. It has the ability and has a high effect of improving coatability. Therefore, excellent coatability can be imparted to the conductive composition without using other surfactants in combination.
  • this water-soluble polymer does not contain acids or bases and is unlikely to generate by-products due to hydrolysis, it has particularly little adverse effect on the resist layer, for example.
  • an amide group is preferable from the viewpoint of solubility.
  • the terminal hydrophobic group include an alkyl group, an aralkyl group, an aryl group, an alkoxy group, an aralkyloxy group, an aryloxy group, an alkylthio group, an aralkylthio group, an arylthio group, a primary or secondary alkylamino group, and an aralkylamino.
  • Examples include a group and an arylamino group. Among these, an alkylthio group, an aralkylthio group and an arylthio group are preferable.
  • the number of carbon atoms of the terminal hydrophobic group is preferably 7 to 100, more preferably 7 to 50, and particularly preferably 10 to 30.
  • the number of terminal hydrophobic groups in the water-soluble polymer is not particularly limited. Further, when two or more terminal hydrophobic groups are contained in the same molecule, the terminal hydrophobic groups may be of the same type or different types.
  • the water-soluble polymer is mainly a homopolymer of a vinyl monomer having a nitrogen-containing functional group, or a copolymer of a vinyl monomer having a nitrogen-containing functional group and a vinyl monomer having no nitrogen-containing functional group (other vinyl monomers).
  • a compound having a chain structure and having a hydrophobic group at a site other than the repeating unit constituting the polymer is preferable.
  • the vinyl monomer having a nitrogen-containing functional group include acrylamide and its derivatives, and a heterocyclic monomer having a nitrogen-containing functional group, and among them, those having an amide bond are preferable.
  • N-vinyl-N-methylacrylamide, N-vinylpyrrolidone, and N-vinylcaprolactam examples thereof include N-vinyl-N-methylacrylamide, N-vinylpyrrolidone, and N-vinylcaprolactam.
  • acrylamide, N-vinylpyrrolidone, and N-vinylcaprolactam are particularly preferable from the viewpoint of solubility.
  • the other vinyl monomer is not particularly limited as long as it can be copolymerized with a vinyl monomer having a nitrogen-containing functional group, and examples thereof include styrene, acrylic acid, vinyl acetate, and long-chain ⁇ -olefins.
  • the method for introducing the terminal hydrophobic group into the water-soluble polymer is not particularly limited, but it is usually convenient and preferable to introduce it by selecting a chain transfer agent at the time of vinyl polymerization.
  • a chain transfer agent if a group containing a hydrophobic group such as an alkyl group, an aralkyl group, an aryl group, an alkylthio group, an aralkylthio group or an arylthio group is introduced at the end of the obtained polymer.
  • a group containing a hydrophobic group such as an alkyl group, an aralkyl group, an aryl group, an alkylthio group, an aralkylthio group or an arylthio group.
  • a chain transfer agent having a hydrophobic group corresponding to these terminal hydrophobic groups for example, thiol, disulfide
  • thiol thiol
  • disulfide thiol
  • chain transfer agent examples include n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, 2-ethylhexyl mercaptan, and n-octadecyl mercaptan.
  • n-dodecyl mercaptan n-dodecyl mercaptan
  • t-dodecyl mercaptan n-octyl mercaptan
  • 2-ethylhexyl mercaptan 2-ethylhexyl mercaptan
  • n-octadecyl mercaptan One of these may be used alone, or two
  • polymerization initiator used at the time of vinyl polymerization for example, azobismethylbutyronitrile or a polymerization initiator having a terminal hydrophobic group can be used.
  • the polymerization initiator having a terminal hydrophobic group include those having a linear or branched alkyl group having 6 to 20 carbon atoms and no cyano group or hydroxy group.
  • Methylbutyl peroxyneodecanoate, di (3,5,5-trimethylhexanoyl) peroxide can be mentioned.
  • One of these may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • the main chain portion of the water-soluble polymer is water-soluble and has a nitrogen-containing functional group.
  • the number of units (degree of polymerization) of the main chain portion is preferably 2 to 1000, more preferably 2 to 100, and particularly preferably 2 to 50 in one molecule.
  • the molecular weight ratio of the main chain portion to the terminal hydrophobic group portion in the water-soluble polymer is preferably 0.3 to 170. ..
  • the mass average molecular weight of the water-soluble polymer is preferably 1 to 1,000,000, more preferably 1 to 100,000, further preferably 600 to 2000, and particularly preferably 600 to 1800 in terms of polyethylene glycol of GPC.
  • the mass average molecular weight of the water-soluble polymer is at least the above lower limit value, the coatability of the conductive composition is enhanced.
  • the mass average molecular weight of the water-soluble polymer is not more than the above upper limit value, the water solubility of the conductive composition is enhanced.
  • the mass average molecular weight of the water-soluble polymer is 600 to 1800, the balance between practical solubility in water and coatability is excellent.
  • a nonionic surfactant is preferable because it has little effect on the resist layer among the above-mentioned ones, and among them, a water-soluble polymer having a terminal hydrophobic group is particularly preferable.
  • a compound represented by the following general formula (7) hereinafter, also referred to as “compound (7)”
  • a compound represented by the following general formula (8) is preferable. Any one of these compounds may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • R 38 represents a hydrogen atom, a linear or branched alkyl group, an aralkyl group or an aryl group.
  • R 39 represents a hydrogen atom, an alkylthio group, an aralkylthio group, an arylthio group or a hydrocarbon group.
  • R 40 represents a hydrophilic group
  • p is a number from 1 to 50.
  • R 38 and R 39 are not hydrogen atoms at the same time.
  • R 42 and R 43 independently represent a methyl group or an ethyl group, respectively.
  • R 44 represents a hydrogen atom, an alkylthio group, an aralkylthio group, an arylthio group or a hydrocarbon group.
  • R 45 represents a hydrophilic group
  • R 46 represents a hydrogen atom or a methyl group and represents Z 2 represents a cyano group or a hydroxy group and represents q is a number from 1 to 50.
  • the alkyl group in R 38 preferably has 6 to 20 carbon atoms.
  • the carbon number of the aralkyl group in R 38 is preferably 7 to 20.
  • the aryl group in R 38 preferably has 6 to 20 carbon atoms.
  • Examples of the alkylthio group in R 39 and R 44 include a group in which a sulfur atom is bonded to a linear or branched alkyl group having 1 to 20 carbon atoms.
  • Examples of the aralkylthio group in R 39 and R 44 include a group in which a sulfur atom is bonded to a linear or branched aralkyl group having 7 to 20 carbon atoms.
  • Examples of the aryl group in R 39 and R 44 include a group in which a sulfur atom is bonded to a linear or branched aryl group having 6 to 20 carbon atoms.
  • Hydrocarbon groups in R 39 and R 44 include linear or branched alkyl groups having 1 to 20 carbon atoms, linear or branched alkenyl groups having 1 to 20 carbon atoms, and linear chains having 1 to 20 carbon atoms. Alternatively, an alkynyl group of a branched chain can be mentioned.
  • the hydrophilic groups in R 40 and R 45 are derived from a water-soluble vinyl monomer which is a raw material monomer of a water-soluble polymer.
  • the water-soluble vinyl monomer refers to a vinyl monomer that can be mixed with water in an arbitrary ratio.
  • examples of such a water-soluble vinyl monomer include N-vinylpyrrolidone, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylacrylamide, acryloyl morpholine, and N-vinylformamide.
  • Examples of the compound (7) include a compound represented by the following general formula (71) (hereinafter, also referred to as “compound (71)”).
  • R 38 represents a hydrogen atom, a linear or branched alkyl group, an aralkyl group or an aryl group.
  • R 39 represents a hydrogen atom, an alkylthio group, an aralkylthio group, an arylthio group or a hydrocarbon group.
  • p is a number from 1 to 50
  • r is a number from 1 to 5.
  • R 38 and R 39 are not hydrogen atoms at the same time.
  • Examples of the compound (8) include a compound represented by the following general formula (81) (hereinafter, also referred to as “compound (81)”).
  • R 42 and R 43 independently represent a methyl group or an ethyl group, respectively.
  • R 44 represents a hydrogen atom, an alkylthio group, an aralkylthio group, an arylthio group or a hydrocarbon group.
  • Z 2 represents a cyano group or a hydroxy group and represents q is a number from 1 to 50 s is a number from 1 to 5.
  • the solvent (C) is not particularly limited as long as it is a solvent capable of dissolving the conductive polymer (A) and the surfactant (B).
  • a solvent capable of dissolving the conductive polymer (A) and the surfactant (B) for example, water, an organic solvent, and a mixed solvent of water and an organic solvent can be mentioned. Examples of water include tap water, ion-exchanged water, pure water, and distilled water. Examples of the organic solvent include solvents exemplified as the organic solvent as the polymerization solvent in the method for producing the conductive polymer (A).
  • the mass ratio (water / organic solvent) of these is preferably 1/100 to 100/1, and 2/100 to 100/2. More preferably.
  • the conductive composition may contain components (optional components) other than the conductive polymer (A), the surfactant (B) and the solvent (C), if necessary.
  • the optional component include a basic compound (D), a polymer compound (excluding the conductive polymer (A), the surfactant (B) and the basic compound (D)), and an additive. ..
  • the basic compound (D) is not particularly limited as long as it is a compound having basicity, and for example, the following quaternary ammonium compound (d-1), basic compound (d-2), and basic compound ( Examples thereof include d-3) and a basic compound (d-4).
  • Quaternary ammonium compound (d-1) A quaternary ammonium compound in which at least one of the four substituents bonded to the nitrogen atom is a hydrocarbon group having 1 or more carbon atoms.
  • Basic compound (d-2) A basic compound having one or more nitrogen atoms (excluding the quaternary ammonium compound (d-1) and the basic compound (d-3)).
  • Basic compound (d-3) A basic compound having a basic group and two or more hydroxy groups in the same molecule and having a melting point of 30 ° C. or higher.
  • Basic compound (d-4) Inorganic base.
  • the nitrogen atom to which the four substituents are bonded is the nitrogen atom of the quaternary ammonium ion.
  • examples of the hydrocarbon group bonded to the nitrogen atom of the quaternary ammonium ion include an alkyl group, an aralkyl group, and an aryl group.
  • Examples of the quaternary ammonium compound (d-1) include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide.
  • Benzyltrimethylammonium hydroxide can be mentioned.
  • Examples of the basic compound (d-2) include ammonia, pyridine, 4-dimethylaminopyridine, 4-dimethylaminomethylpyridine, 3,4-bis (dimethylamino) pyridine, picoline, triethylamine, and 4-dimethylaminopyridine.
  • examples of the basic group include basic groups defined by Arrhenius base, Bronsted base, Lewis base and the like. Specifically, for example, ammonia can be mentioned.
  • the hydroxy group may be in the -OH state or may be protected by a protecting group.
  • examples of the protecting group include an acetyl group; a silyl group such as a trimethylsilyl group and a t-butyldimethylsilyl group; an acetal-type protecting group such as a methoxymethyl group, an ethoxymethyl group and a methoxyethoxymethyl group; a benzoyl group; an alkoxide group. Be done.
  • Examples of the basic compound (d-3) include 2-amino-1,3-propanediol, tris (hydroxymethyl) aminomethane, 2-amino-2-methyl-1,3-propanediol, and 2-amino.
  • Examples include -2-ethyl-1,3-propanediol, 3- [N-tris (hydroxymethyl) methylamino] -2-hydroxypropanesulfonic acid, and N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid. Be done.
  • Examples of the basic compound (d-4) include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, vanadium hydroxide, calcium hydroxide, and strontium hydroxide.
  • any one of them may be used alone, or two or more of them may be used in combination at an arbitrary ratio.
  • the basic compound (D) a compound having an acid dissociation constant (pKa) at 25 ° C. of 13 or more and a molecular weight of 200 or less is preferable.
  • the acid dissociation constant of the basic compound (D) at 25 ° C. is 13 or more, a stable salt can be formed by the decomposition product of the acidic group or oxidizing agent of the conductive polymer (A) and the basic compound. Therefore, there is a tendency that the film loss of the resist layer can be suppressed.
  • the upper limit of the acid dissociation constant of the basic compound (D) is not particularly limited.
  • the acid dissociation constant is a numerical value described in "Chemical Handbook Basic Edition II" (edited by The Chemical Society of Japan, Maruzen, published by 41.9.25, Showa).
  • the molecular weight of the basic compound (D) is 200 or less, the influence of steric hindrance derived from the basic compound (D) itself is reduced, so that the acidic group of the conductive polymer (A) and the decomposition product of the oxidizing agent are reduced. And the basic compound can form a stable salt and tend to suppress the film loss of the resist layer.
  • the lower limit of the molecular weight of the basic compound (B) is not particularly limited.
  • the pKa of the above-mentioned quaternary ammonium and inorganic base at 25 ° C. is 13 or more. Any one of these basic compounds may be used alone, or two or more thereof may be used in combination at an arbitrary ratio. Among these, from the viewpoint of achieving both improvement of conductivity and suppression of film loss, 1,5,7-triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7- Triazabicyclo [4.4.0] deca-5-ene and potassium hydroxide are more preferable, and potassium hydroxide is particularly preferable.
  • polymer compound examples include polyvinyl alcohol derivatives such as polyvinyl formal and polyvinyl butyral and modified products thereof, starches and modified products thereof (oxidized starch, phosphoric acid esterified starch, cationized starch, etc.), and cellulose derivatives (carboxymethyl cellulose).
  • polyvinyl alcohol derivatives such as polyvinyl formal and polyvinyl butyral and modified products thereof, starches and modified products thereof (oxidized starch, phosphoric acid esterified starch, cationized starch, etc.), and cellulose derivatives (carboxymethyl cellulose).
  • polyacrylamides such as polyacrylamide, poly (Nt-but
  • additives examples include pigments, antifoaming agents, ultraviolet absorbers, antioxidants, heat resistance improvers, leveling agents, anti-dripping agents, matting agents, and preservatives.
  • the composition of the conductive composition depends on the critical micelle concentration of the surfactant (B).
  • the critical micelle concentration is the minimum concentration required to function as a surfactant, and the lower the critical micelle concentration, the higher the surface activity ability.
  • the critical micelle concentration can be determined by measuring the surface tension. Specifically, the surface tension at 25 ° C. is measured by gradually adding the surfactant (B) to the aqueous medium, and the surface tension does not decrease even if the amount of the surfactant (B) added is increased. The concentration of the surfactant at this time is defined as the critical micelle concentration.
  • the critical micelle concentration is determined in the state of the mixture.
  • surfactant (B) having a critical micelle concentration of less than 0.1% by mass is also referred to as “surfactant (B1)", and the surfactant (B) having a critical micelle concentration of 0.1% by mass or more. Is also referred to as “surfactant (B2)”.
  • the critical micelle concentration of the surfactant (B) in the conductive composition is less than 0.1% by mass
  • the content of the conductive polymer (A) is 0.01% by mass or more with respect to the total mass of the conductive composition, the conductivity of the formed conductive film tends to be excellent. It is more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more.
  • the content of the conductive polymer (A) is 5% by mass or less with respect to the total mass of the conductive composition, the coating property of the conductive composition tends to be excellent. It is more preferably 3% by mass or less, and further preferably 2% by mass or less.
  • the above upper and lower limits can be combined arbitrarily.
  • the content of the conductive polymer (A) is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and 0.1 to 2 to the total mass of the conductive composition. Mass% is more preferred.
  • the content of the conductive polymer (A) tends to reduce the film loss of the resist layer when the conductive composition is used as the resist coating material, so that the content of the conductive polymer (A) is relative to the total mass of the solid content of the conductive composition. Therefore, it is preferably 99% by mass or less.
  • the solid content of the conductive composition is the residue obtained by removing the solvent (C) from the conductive composition. It is more preferably 95% by mass or less, and further preferably 90% by mass or less. When the content of the conductive polymer (A) is within the above range, the balance between the coatability of the conductive composition and the conductivity of the conductive film formed from the conductive composition is excellent.
  • the content of the surfactant (B1) is 5 parts by mass or more with respect to 100 parts by mass of the conductive polymer (A).
  • the surfactant (B1) is likely to be localized on the object side when the conductive film is formed.
  • the surface of the resist layer is hydrophobic, whereas the conductive polymer (A) is hydrophilic, so that the surfactant (B1) is localized on the resist layer side. Easy to transform.
  • this localized surfactant (B1) acts as a barrier layer, even if an acidic group is desorbed from the conductive polymer (A), the desorbed acidic group is transferred to an object such as a resist layer. Can be suppressed, and the film loss of the resist layer can be suppressed. Further, the transfer of the decomposed product of the oxidizing agent to the resist layer can be suppressed, and the film loss of the resist layer can be suppressed. In addition, the wettability of the conductive composition on the object is improved, which facilitates film formation. It is preferably 8 parts by mass or more, and more preferably 10 parts by mass or more.
  • the upper limit of the content of the surfactant (B1) is not particularly limited, and the effect of preventing film loss tends to increase as the content of the surfactant (B1) increases.
  • the content of the surfactant (B1) is preferably 1000 parts by mass or less with respect to 100 parts by mass of the conductive polymer (A). It is more preferably 500 parts by mass or less, and further preferably 300 parts by mass or less.
  • the content of the surfactant (B1) is preferably 5 to 1000 parts by mass, more preferably 8 to 500 parts by mass, and further preferably 10 to 300 parts by mass with respect to 100 parts by mass of the conductive polymer (A). preferable.
  • the content of the solvent (C) is preferably 1 to 99% by mass, preferably 10 to 98% by mass, based on the total mass of the conductive composition. Is more preferable, and 50 to 98% by mass is further preferable.
  • the conductive polymer (A) is purified by an ion exchange method and dissolved in a polymerization solvent or an aqueous medium (hereinafter, the conductive polymer (A) in this state is also referred to as a "conductive polymer solution").
  • a polymerization solvent derived from a conductive polymer solution or an aqueous medium is also included in the content of the solvent (C) in the conductive composition.
  • the critical micelle concentration of the surfactant (B) in the conductive composition is 0.1% by mass or more
  • the content of the conductive polymer (A) is 0.01% by mass or more with respect to the total mass of the conductive composition, the conductivity of the formed conductive film tends to be excellent. It is more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more.
  • the content of the conductive polymer (A) is 5% by mass or less with respect to the total mass of the conductive composition, the coating property of the conductive composition tends to be excellent. It is more preferably 3% by mass or less, and further preferably 2% by mass or less.
  • the above upper and lower limits can be combined arbitrarily.
  • the content of the conductive polymer (A) is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and 0.1 to 2 to the total mass of the conductive composition. Mass% is more preferred.
  • the content of the conductive polymer (A) tends to reduce the film loss of the resist layer when the conductive composition is used as the resist coating material, so that the content of the conductive polymer (A) is relative to the total mass of the solid content of the conductive composition. Therefore, 90% by mass or less is preferable. It is more preferably 60% by mass or less, and further preferably 40% by mass or less. When the content of the conductive polymer (A) is within the above range, the balance between the coatability of the conductive composition and the conductivity of the conductive film formed from the conductive composition is excellent.
  • the content of the surfactant (B2) is more than 100 parts by mass with respect to 100 parts by mass of the conductive polymer (A). In other words, the content of the surfactant (B2) exceeds the content of the conductive polymer (A). If the content of the surfactant (B2) is equal to or higher than the above lower limit value, that is, if it is excessive with respect to the conductive polymer (A), the surfactant (B2) is localized on the object side when the conductive film is formed. It becomes easy to become. Since this localized surfactant (B2) acts as a barrier layer, even if an acidic group is desorbed from the conductive polymer (A), the desorbed acidic group is transferred to an object such as a resist layer.
  • the film loss of the resist layer can be suppressed. Further, the transfer of the decomposed product of the oxidizing agent to the resist layer can be suppressed, and the film loss of the resist layer can be suppressed. In addition, the wettability of the conductive composition on the object is improved, which facilitates film formation. It is preferably 110 parts by mass or more, more preferably 200 parts by mass or more, further preferably 250 parts by mass or more, and particularly preferably 300 parts by mass or more.
  • the upper limit of the content of the surfactant (B2) is not particularly limited, and the effect of preventing film loss tends to increase as the content of the surfactant (B2) increases.
  • the content of the surfactant (B2) is preferably 2000 parts by mass or less with respect to 100 parts by mass of the conductive polymer (A). It is more preferably 1500 parts by mass or less, further preferably 1000 parts by mass or less, and particularly preferably 800 parts by mass or less.
  • the above upper and lower limits can be combined arbitrarily.
  • the content of the surfactant (B2) is preferably more than 100 parts by mass and 2000 parts by mass or less, more preferably 110 to 2000 parts by mass, and 200 to 1500 parts by mass with respect to 100 parts by mass of the conductive polymer (A). Parts are more preferable, 250 to 1000 parts by mass are particularly preferable, and 300 to 800 parts by mass are most preferable.
  • the content of the solvent (C) is preferably 1 to 99% by mass, preferably 10 to 98% by mass, based on the total mass of the conductive composition. Is more preferable, and 50 to 98% by mass is further preferable.
  • the content of the solvent (C) is within the above range, the balance between the coatability of the conductive composition and the conductivity of the conductive film formed from the conductive composition is excellent.
  • the conductive composition of the present invention contains the basic compound (D)
  • the conductive polymer (A) may contain an acidic group.
  • a sufficient salt can be formed with the acidic group and the oxidizing agent of the conductive polymer (A), and the acidic group is less likely to be desorbed.
  • the basic compound sufficiently forms a salt with the decomposition product of the oxidizing agent. Therefore, the transfer of acidic groups and decomposition products of the oxidizing agent to the resist layer is suppressed, and the film loss of the resist layer can be suppressed. It is more preferably 3 parts by mass or more, further preferably 5 parts by mass or more, and particularly preferably 7 parts by mass or more.
  • the content of the basic compound (D) is 50 parts by mass or less, the content of the conductive polymer (A) in the conductive composition can be sufficiently secured, so that a conductive film having good conductivity is formed. can.
  • the conductive polymer (A) contains an acidic group, the acidic group appropriately exists in a free state without forming a salt with the basic compound (D) in the conductive film, so that the conductivity is good. Can be maintained. It is more preferably 40 parts by mass or less, further preferably 35 parts by mass or less, and particularly preferably 27 parts by mass or less. The above upper and lower limits can be combined arbitrarily.
  • the content of the basic compound (D) is preferably 1 to 50 parts by mass, more preferably 3 to 40 parts by mass, and further preferably 5 to 35 parts by mass with respect to 100 parts by mass of the conductive polymer (A). It is preferable, and 7 to 27 parts by mass is particularly preferable.
  • the conductive composition is obtained by mixing the conductive polymer (A) and the surfactant (B) with one or more of optional components including the solvent (C) and the basic compound (D), if necessary. can get. Since the conductive polymer (A) after cleaning produced by the method for producing the conductive polymer (A) is in a solid state, a solid conductive polymer (A) and a surfactant (B) are required.
  • the conductive composition may be obtained by mixing one or more of arbitrary components including the solvent (C) and the basic compound (D) according to the above.
  • the conductive polymer (A) after the ion exchange treatment is obtained in the state of the conductive polymer solution as described above. Therefore, a surfactant (B) and, if necessary, one or more of arbitrary components containing a basic compound (D) may be added to the conductive polymer solution to form a conductive composition, or a solvent ( It may be further diluted with C).
  • the conductive composition of the present invention is excellent in conductivity, can achieve a surface resistivity of 1 ⁇ 10 10 [ ⁇ / ⁇ ] or less, and can also achieve a surface resistivity of 1 ⁇ 10 9 [ ⁇ / ⁇ ] or less. ..
  • the conductive composition of the present invention can be suitably used as a resist coating material. That is, since the conductive polymer (A) and the specific amount of the surfactant (B) are contained, the surfactant (B) is localized on the object side such as the base material or the resist layer when the conductive film is formed. This localized surfactant (B) acts as a barrier layer.
  • the acidic groups desorbed from the conductive polymer (A) and the decomposition products of the oxidizing agent are less likely to migrate to the resist layer, and the film loss of the resist layer is suppressed. can.
  • the conductive composition of the present invention is also suitable for forming a conductive film on the surface of a resist layer having a thin film thickness, specifically, a film thickness of 500 nm or less, preferably 200 nm or less.
  • the conductive composition of the present invention is suitable for antistatic use when drawing a charged particle beam, and can also be suitably used as a resist coating material.
  • the conductive composition of the present invention can be applied to the surface of a resist layer of a pattern forming method using a charged particle beam using a chemically amplified resist to form a conductive film. That is, in a resist in which a conductive film containing a conductive composition is formed on the surface, this conductive film serves as an antistatic film for the resist layer.
  • the conductive composition of the present invention can also be used as a material for, for example, a capacitor, a transparent electrode, a semiconductor, or the like.
  • an example of a method for forming a resist pattern using the conductive composition of the present invention will be described.
  • the method for forming a resist pattern of the present invention includes a laminating step of forming a conductive film of the conductive composition of the present invention on the surface of a resist layer of a substrate having a resist layer made of a chemically amplified resist on one side, and the present invention. It has an exposure step of irradiating a substrate on which a conductive film of the conductive composition of No. 1 is formed on the surface of a resist layer with charged particle beams in a pattern from the conductive film side.
  • the resist layer made of a chemically amplified resist may be a positive type or a negative type as long as it has sensitivity to charged particle beams.
  • PEB post-exposure baking
  • the substrate is not particularly limited as long as it has the effect of the present invention, and is, for example, a polyester resin such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); a polyolefin resin such as polyethylene and polypropylene; vinyl chloride; nylon; polystyrene; Polycarbonate; Epoxy resin; Fluorine resin; Polysulfone; Polyethylene; Polyurethane; Phenolic resin; Silicone resin; Molded products and films of various polymer compounds such as synthetic paper; Paper; Iron; Glass; Quartz glass; Various wafers; Aluminum; Copper; Examples thereof include zinc; nickel; stainless steel, and those in which the surface of these substrates is coated with various paints, photosensitive resins, and the like.
  • the shape of the substrate is not particularly limited, and
  • a resist layer made of a positive type or negative type resist is provided on one side of the substrate.
  • the positive type resist is not particularly limited as long as it has sensitivity to charged particle beams, and known ones can be used.
  • a chemically amplified resist containing an acid generator that generates an acid by irradiation with a charged particle beam and a polymer containing a structural unit having an acid-degradable group is preferable.
  • the positive resist layer can be formed by a known method. For example, a positive resist layer can be formed by applying an organic solvent solution of a resist on one side of a substrate and heating (prebaking) as necessary.
  • the negative type resist is not particularly limited as long as it has sensitivity to charged particle beams, and known ones can be used.
  • a chemically amplified resist containing an acid generator that generates an acid by irradiation with a charged particle beam, a polymer soluble in a developing solution, and a cross-linking agent is preferable.
  • the negative type resist layer can be formed by a known method like the positive type resist layer.
  • the conductive composition of the present invention is applied to the surface of the resist layer and dried to form a conductive film. If necessary, heat treatment may be performed after drying.
  • the method for applying the conductive composition of the present invention to the resist layer is not particularly limited as long as it has the effect of the present invention, but for example, a spin coating method, a spray coating method, a dip coating method, a roll coating method, and a gravure coating method. Examples include a method, a reverse coating method, a roll brushing method, an air knife coating method, and a curtain coating method.
  • the drying temperature is preferably less than 40 ° C.
  • the drying time is preferably 1 hour or less.
  • the heat treatment temperature is preferably in the temperature range of 40 ° C. to 250 ° C., more preferably in the temperature range of 60 ° C. to 200 ° C. from the viewpoint of conductivity. From the viewpoint of stability, the treatment time is preferably 1 hour or less, more preferably 30 minutes or less.
  • the film thickness of the resist layer is not particularly limited.
  • the film thickness of the conductive film is preferably 1 to 100 nm, more preferably 5 to 50 nm, and even more preferably 5 to 30 nm.
  • the exposure step is a step in which the conductive film of the conductive composition of the present invention irradiates the resist layer formed on the surface of the resist layer with charged particle beams in a pattern. Specifically, the laminated body is irradiated with a charged particle beam from the side of the conductive film. A latent image is formed in the resist layer between the substrate and the conductive film by the exposure step.
  • the resist layer is made of a chemically amplified resist, acid is generated from the acid generator in the charged particle beam irradiation unit (exposure unit).
  • the conductive film since the conductive film is provided on the surface of the resist layer, the conductive film can be grounded and the entire laminate can be prevented from being charged. Therefore, it is possible to suppress the position of the electrons incident on the resist layer from being displaced due to the influence of charging, and it is possible to accurately form a latent image corresponding to the target resist pattern.
  • the PEB step is a step of heating (PEB) the resist layer after the exposure step.
  • the laminate is heated by a known heating means such as a hot plate.
  • a known heating means such as a hot plate.
  • the resist layer irradiated with the charged particle beam is heated in the exposure process, in the case of the positive type resist layer, the reaction due to the action of the acid generated from the acid generator is promoted in the charged particle beam irradiation part (exposure part).
  • the solubility in the developing solution is increased.
  • the solubility in a developing solution is lowered.
  • the heating conditions differ depending on the resist, but from the viewpoint of heat resistance of the conductive film, it is preferably 200 ° C. or lower and 1 hour or less.
  • the water washing / developing step is a step of removing the conductive film by washing with water and developing a resist layer to form a resist pattern. Since the conductive film is water-soluble, the conductive film is dissolved and removed by washing with water. Washing with water indicates contact with an aqueous solution.
  • the aqueous solution include water, water containing at least one of a base and a basic salt, water containing an acid, and a mixture of water and a water-soluble organic solvent.
  • the positive resist layer When the positive resist layer is developed, the charged particle beam irradiation part (exposed part) of the positive type resist layer is dissolved and removed, and the resist pattern composed of the charged particle beam unirradiated part (unexposed part) of the positive type resist layer. Is formed.
  • the negative type resist layer when the negative type resist layer is developed, contrary to the case of the positive type resist layer, the charged particle beam unexposed portion (unexposed portion) is dissolved and removed, and the charged particle beam irradiated portion of the negative type resist layer is dissolved and removed. A resist pattern composed of (exposed areas) is formed.
  • the washing / developing step can be performed by, for example, the following method ( ⁇ ) or ( ⁇ ).
  • Method ( ⁇ ) An alkaline developer is used for washing with water, and the resist layer is developed while removing the conductive film.
  • the alkaline developer (alkaline aqueous solution) used in the method ( ⁇ ) is not particularly limited, and known ones can be used.
  • an aqueous solution of tetramethylammonium hydroxide can be mentioned.
  • the washing with water of the method ( ⁇ ) can be carried out using an aqueous solution that does not correspond to the developing solution, for example, water.
  • the development can be carried out using an alkaline developer as in the method ( ⁇ ).
  • the substrate After the washing / developing step, the substrate may be rinsed with pure water or the like, if necessary. After the washing / developing step or the rinsing treatment, the substrate on which the resist pattern is formed may be heated (post-baked), if necessary.
  • a substrate having a resist pattern on one side is obtained, and a step (etching step) of etching the resist pattern as a mask is performed to obtain a substrate on which the pattern is formed. If the resist pattern remains on the substrate after the etching step, it may further have a step of removing the resist pattern on the substrate with a release agent.
  • a measurement sample is prepared by adding a surfactant (B) to water, and the surface tension of the obtained measurement sample at 25 ° C. is measured using an automatic surface tension meter (Kyowa Surface Science Co., Ltd., "CBVP-Z type"). , Measured based on the plate method (Wilhelmi method). That is, when the stylus (platinum plate) is immersed in a measurement sample adjusted to 25 ° C., the force that the stylus is pulled by the measurement sample (surface tension) and the force of the spring that fixes the stylus are balanced. , The surface tension was calculated from the displacement of the stylus sunk in the measurement sample.
  • the surface tension of the measurement sample is measured by adding 0.01 to 1% by mass of the surfactant (B) to water, and the surface tension does not decrease even if the amount of the surfactant (B) added is increased.
  • the concentration of the surfactant at this time was defined as the critical micelle concentration.
  • the conductor was heat-treated at 80 ° C. for 2 minutes to form a conductive film having a film thickness of about 30 nm on the substrate to obtain a conductor.
  • the surface resistivity [ ⁇ / ⁇ ] of the conductive film was measured by the two-terminal method (distance between electrodes 20 mm) using Hiresta UX-MCP-HT800 (manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • (2A) Film thickness measurement of resist layer 1 A part of the resist layer formed on the substrate is peeled off, and a high-speed spectroscopic ellipsometer (manufactured by JA Woollam), "M", with the substrate surface as a reference position. -2000D ”) was used to measure the film thickness a [nm] of the initial resist layer.
  • PEB treatment A base material in which a conductive film and a resist layer are laminated is heated on a hot plate at 120 ° C. for 20 minutes in an air atmosphere, and the base material in this state is heated in air at room temperature (25 ° C.) for 90 seconds. It was left still.
  • reaction solution was filtered through a centrifugal filter, the precipitate (reaction product) was collected, the reaction product was washed with 1 L of methanol, and then dried. 20 g of the reaction product after drying was dissolved in 980 g of pure water to obtain 1000 g of a conductive polymer solution (A1-1) having a solid content concentration of 2% by mass.
  • the column was filled with 500 mL of a cation exchange resin (“Amberlite IR-120B” manufactured by Organo Corporation) washed with ultrapure water.
  • a cation exchange resin (“Amberlite IR-120B” manufactured by Organo Corporation) washed with ultrapure water.
  • this conductive polymer solution (A1-3) was analyzed by ion chromatography, 80% or more of residual monomers, 99% or more of sulfate ions, and 99% or more of basic substances were removed. Moreover, as a result of measuring the heating residue, it was 2.0% by mass. That is, the solid content concentration of the conductive polymer solution (A1-3) is 2.0% by mass.
  • 1 sverdrup (SV) is defined as 1 ⁇ 10 6 m 3 / s (1 GL / s).
  • the dropping polymerization was carried out while keeping the temperature of the isopropyl alcohol at 80 ° C. After completion of the dropping, the mixture was aged at 80 ° C. for another 2 hours and then allowed to cool. Then, the mixture was concentrated under reduced pressure, and the concentrate was dissolved in 30 mL of acetone to obtain a water-soluble polymer solution. The obtained water-soluble polymer solution was added to 1000 mL of n-hexane to form a white precipitate, and the obtained precipitate was filtered off. The obtained water-soluble polymer was washed with n-hexane and then dried to obtain 45 g of a powdery water-soluble polymer (B-1).
  • the dropping polymerization was carried out while keeping the temperature of the isopropyl alcohol at 80 ° C. After completion of the dropping, the mixture was aged at 80 ° C. for another 2 hours and then allowed to cool. Then, the mixture was concentrated under reduced pressure, and the concentrate was dissolved in 30 mL of acetone to obtain a water-soluble polymer solution. The obtained water-soluble polymer solution was added to 1000 mL of n-hexane to form a white precipitate, and the obtained precipitate was filtered off. The obtained water-soluble polymer was washed with n-hexane and then dried to obtain 48 g of a powdery water-soluble polymer (B-2).
  • Example 1 20 parts by mass of conductive polymer solution (A1-3) (0.4 parts by mass in terms of solid content), 0.6 parts by mass of water-soluble polymer (B-1), 4 parts by mass of isopropyl alcohol (IPA), 75.4 parts by mass of water was mixed to obtain a conductive composition.
  • Table 1 shows the contents of the conductive polymer (A), the surfactant (B), the solvent (C), etc. with respect to the total mass of the conductive composition.
  • the obtained conductive composition was evaluated for conductivity and subjected to a film loss test. These results are shown in Table 1.
  • Examples 2 to 4 / Comparative Examples 1 to 2 The same as in Example 1 except that the content of each component was changed so that the content of the water-soluble polymer (B-1) with respect to 100 parts by mass of the conductive polymer (A) was the value shown in Table 1.
  • a conductive composition was prepared. The obtained conductive composition was evaluated for conductivity and subjected to a film loss test. These results are shown in Table 1.
  • the surface resistivity is 1 ⁇ 10 10 [ ⁇ / ⁇ ] or less and the film thinning rate is 6.2% or less, and the conductivity obtained in each example is obtained.
  • the sex composition it was possible to form a conductive film having excellent conductivity and less film loss of the resist layer.
  • the resist layer was likely to be thinned.
  • Example 5 45 parts by mass of conductive polymer solution (A1-3) (0.9 parts by mass in terms of solid content), 0.1 parts by mass of water-soluble polymer (B-2), 4 parts by mass of isopropyl alcohol (IPA), A conductive composition was obtained by mixing with 50.9 parts by mass of water.
  • Table 2 shows the contents of the conductive polymer (A), the surfactant (B), the solvent (C), etc. with respect to the total mass of the conductive composition.
  • the obtained conductive composition was evaluated for conductivity and subjected to a film loss test. These results are shown in Table 2.
  • Example 6 to 7 The same as in Example 5 except that the content of each component was changed so that the content of the water-soluble polymer (B-2) with respect to 100 parts by mass of the conductive polymer (A) was the value shown in Table 2.
  • a conductive composition was prepared. The obtained conductive composition was evaluated for conductivity and subjected to a film loss test. These results are shown in Table 2.
  • the surface resistivity is 1 ⁇ 10 10 [ ⁇ / ⁇ ] or less and the film thinning rate is 6.2% or less, and the conductivity obtained in each example is obtained.
  • the sex composition it was possible to form a conductive film having excellent conductivity and less film loss of the resist layer.
  • a water-soluble polymer (B-2) having a critical micelle concentration of 0.01% by mass is used, the effect of preventing film loss of the resist layer can be sufficiently obtained even with a small amount.
  • Example 8 18 parts by mass of conductive polymer solution (A1-3) (0.36 parts by mass in terms of solid content), 0.55 parts by mass of water-soluble polymer (B-1), 4 parts by mass of isopropyl alcohol (IPA), 0.09 parts by mass of 1,5,7-triazabicyclo [4.4.0] deca-5-ene (TBD) and 77.36 parts by mass of water were mixed to obtain a conductive composition.
  • Table 3 shows the contents of the conductive polymer (A), the surfactant (B), the solvent (C), the basic compound (D), etc. with respect to the total mass of the conductive composition.
  • the obtained conductive composition was evaluated for conductivity and subjected to a film loss test. These results are shown in Table 3.
  • Example 9 18 parts by mass of conductive polymer solution (A1-3) (0.36 parts by mass in terms of solid content), 0.6 parts by mass of water-soluble polymer (B-1), 4 parts by mass of isopropyl alcohol (IPA), 0.04 parts by mass of potassium hydroxide (KOH) and 77.36 parts by mass of water were mixed to obtain a conductive composition.
  • Table 3 shows the contents of the conductive polymer (A), the surfactant (B), the solvent (C), the basic compound (D), etc. with respect to the total mass of the conductive composition.
  • the obtained conductive composition was evaluated for conductivity and subjected to a film loss test. These results are shown in Table 3.
  • the surface resistivity is 1 ⁇ 10 10 [ ⁇ / ⁇ ] or less and the film thinning rate is 6.2% or less, and the conductivity obtained in each example. According to the sex composition, it was possible to form a conductive film having excellent conductivity and less film loss of the resist layer.
  • the conductive composition of the present invention can form, for example, a conductive film having less film loss on the resist layer when it is formed on a resist layer and a pattern is formed using a charged particle beam, and is charged during drawing of a charged particle beam. It is useful for prevention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)

Abstract

優れた導電性を有するとともに、レジスト層の膜減りが少ない導電膜を形成できる導電性組成物を提供する。本発明の導電性組成物は、導電性ポリマーと、界面活性剤とを含む。前記界面活性剤の臨界ミセル濃度が0.1質量%未満の場合、前記界面活性剤の含有量は前記導電性ポリマー100質量部に対して5質量部以上である。また、前記界面活性剤の臨界ミセル濃度が0.1質量%以上の場合、前記界面活性剤の含有量は前記導電性ポリマー100質量部に対して100質量部超である。

Description

導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法
 本発明は、導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法に関する。
 本願は、2020年1月29日に日本で出願された特願2020-012623号に基づき優先権を主張し、その内容をここに援用する。
 電子線やイオン線等の荷電粒子線を用いたパターン形成技術は、光リソグラフィーの次世代技術として期待されている。荷電粒子線を用いる場合、生産性向上にはレジスト層の感度向上が重要である。
 従って、露光部分又は荷電粒子線が照射された部分に酸を発生させ、続いてポストエクスポージャーベーク(PEB)処理と呼ばれる加熱処理により架橋反応又は分解反応を促進させる、高感度な化学増幅型レジストの使用が主流となっている。
 また、近年、半導体デバイスの微細化の流れに伴い、数nmオーダーでのレジスト形状の管理も要求されるようになってきている。
 ところで、荷電粒子線を用いるパターン形成方法においては、特に基板が絶縁性の場合、基板の帯電(チャージアップ)によって発生する電界が原因で、荷電粒子線の軌道が曲げられ、所望のパターンが得られにくいという課題がある。
 この課題を解決する手段として、導電性ポリマーを含む導電性組成物をレジスト層の表面に塗布して導電膜を形成し、前記導電膜でレジスト層の表面を被覆する技術が知られている。
 導電性ポリマーとして、酸性基を有する導電性ポリマーが知られている。酸性基を有する導電性ポリマーは、ドープ剤を添加することなく導電性を発現できる。
 酸性基を有する導電性ポリマーは、例えば、トリメチルアミンやピリジン等の塩基性化合物の存在下で、酸性基を有するアニリンを酸化剤により重合することで得られる(例えば特許文献1参照。)。
 塩基性化合物の存在下で酸性基置換アニリンを重合する方法では、ポリアニリンや、未反応のモノマー、副反応の併発に伴うオリゴマー中の酸性基の一部が、塩基性化合物と塩を形成しやすい。
 しかし、塩基性化合物が、その塩基強度等の物性上、ポリアニリンの酸性基を安定して中和できないことから、ポリアニリンの酸性基部は加水分解等を受けやすく、不安定である。そのため、レジスト層上にポリアニリンを塗布した後、加熱処理して導電膜を形成する際に酸性基が脱離しやすい。また、重合の際に用いた酸化剤が分解して硫酸イオン等を発生することがある。その結果、脱離した酸性基や酸化剤の分解物がレジスト層へ移行し、現像時に未露光部のレジスト層が溶解してしまい、レジスト層の膜減りなどが起こることがある。
 そこで、塩基性化合物の存在下で酸性基置換アニリンを酸化剤により重合して得られたポリアニリンをイオン交換法、電気透析法などにより脱塩処理して塩基性化合物等を除去した後に、新たに強塩基な塩基性化合物を添加する方法が提案されている(例えば特許文献2参照。)。
 また、上述の導電性ポリマーを含む導電性組成物をレジスト層の表面に塗布する際の塗布性の向上を目的として、導電性組成物に界面活性剤を配合することが知られている(例えば特許文献3参照。)。
日本国特開平7-324132号公報 日本国特開2011-219680号公報 日本国特開2017-171940号公報
 特許文献2に記載の方法によれば、新たに添加した塩基性化合物がポリアニリンの酸性基の一部と安定したと塩を形成するため、ポリアニリンの酸性基部分を安定化することができ、ポリアニリンからの酸性基の脱離を抑制できる。また、新たに添加した塩基性化合物は、酸化剤の分解物とも塩を形成しやすい。よって、酸性基や酸化剤の分解物がレジスト層へ移行しにくく、レジスト層の膜減りを抑制できる。
 しかしながら、レジスト層の膜減り防止には未だ改善の余地があり、さらなる膜減り防止の向上が求められる。
 また、界面活性剤が配合された導電性組成物においては、塗布性とレジスト層への影響がトレードオフの関係にあることが知られており、特許文献3に記載の導電性組成物においても、膜減り防止の面で必ずしも充分なレベルではなかった。
 本発明は、優れた導電性を有するとともにレジスト層の膜減りが少ない導電膜を形成できる導電性組成物、レジスト被覆材料、レジスト及びレジストパターンの形成方法を提供することを目的とする。
 本発明は、以下の態様を有する。
[1]導電性ポリマーと、界面活性剤とを含む導電性組成物であって、
 前記界面活性剤の臨界ミセル濃度が0.1質量%未満であり、前記界面活性剤の含有量が前記導電性ポリマー100質量部に対して5質量部以上である導電性組成物。
[2]前記界面活性剤の含有量が前記導電性ポリマー100質量部に対して10質量部以上である、[1]の導電性組成物。
[3]導電性ポリマーと、界面活性剤とを含む導電性組成物であって、
 前記界面活性剤の臨界ミセル濃度が0.1質量%以上であり、前記界面活性剤の含有量が前記導電性ポリマーの含有量100質量部に対して100質量部超である導電性組成物。
[4]前記界面活性剤の含有量が前記導電性ポリマー100質量部に対して110質量部以上である、[3]の導電性組成物。
[5]前記界面活性剤が、末端疎水性基を有する水溶性ポリマーである、[1]~[4]のいずれかの導電性組成物。
[6]さらに塩基性化合物を含む、[1]~[5]のいずれかの導電性組成物。
[7]前記塩基性化合物の25℃における酸解離定数が13以上であり、前記塩基性化合物の分子量が200以下であり、前記塩基性化合物の含有量が前記導電性ポリマー100質量部に対して1~50質量部である、[6]の導電性組成物。
[8]前記導電性ポリマーが酸性基を有する、[1]~[7]のいずれかの導電性組成物。
[9]表面抵抗率が1×1010[Ω/□]以下である、[1]~[8]のいずれかの導電性組成物。
[10][1]~[9]のいずれかの導電性組成物を含むレジスト被覆材料。
[11][1]~[9]のいずれかの導電性組成物を含む導電膜が表面に形成されたレジスト。
[12]化学増幅型レジストからなるレジスト層を片面上に有する基板の前記レジスト層の表面に、[1]~[9]のいずれかの導電性組成物を含む導電膜を形成する積層工程と、前記導電膜が形成された前記基板に対し、前記導電膜側から荷電粒子線をパターン状に照射する露光工程とを有するレジストパターンの形成方法。
 本発明によれば、優れた導電性を有するとともにレジスト層の膜減りが少ない導電膜を形成できる導電性組成物、レジスト被覆材料、レジスト及びレジストパターンの形成方法を提供できる。
 以下、本発明を詳細に説明する。以下の実施の形態は、本発明を説明するための単なる例示であって、本発明をこの実施の形態にのみ限定することは意図されない。本発明は、その趣旨を逸脱しない限り、様々な態様で実施することが可能である。
 本発明において「導電性」とは、1×1011Ω/□以下の表面抵抗率を有することである。表面抵抗率は、一定の電流を流した場合の電極間の電位差より求められる。
 本明細書において「溶解性」とは、水、塩基及び塩基性塩の少なくとも一方を含む水、酸を含む水、水と水溶性有機溶媒との混合物のうちの1つ以上の溶媒10g(液温25℃)に、0.1g以上均一に溶解することを意味する。本明細書において「水溶性」とは、水に対する上記の溶解性を意味する。
 本明細書において「末端疎水性基」の「末端」とは、ポリマーを構成する繰り返し単位以外の部位を意味する。
 本明細書において「質量平均分子量」とは、ゲルパーミエーションクロマトグラフィ(GPC)によって測定される質量平均分子量(ポリスチレンスルホン酸ナトリウム換算又はポリエチレングリコール換算)である。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[導電性組成物]
 本発明の導電性組成物は、導電性ポリマー(以下、「導電性ポリマー(A)とも」言う。)と、界面活性剤(以下、「界面活性剤(B)」とも言う。)とを含む。本発明の導電性組成物は、例えば、溶剤(以下、「溶剤(C)」とも言う。)、塩基性化合物(以下、「塩基性化合物(D)とも言う。」を含む任意成分の1つ以上を必要に応じて含んでいてもよい。
<導電性ポリマー(A)>
 導電性ポリマー(A)としては公知のものを使用できる。例えば、ポリピロール、ポリチオフェン、ポリチオフェンビニレン、ポリテルロフェン、ポリフェニレン、ポリフェニレンビニレン、ポリアニリン、ポリアセン、ポリアセチレンが挙げられる。
 これらの中でも、導電性に優れる観点から、ポリピロール、ポリチオフェン、ポリアニリンが好ましい。
 導電性ポリマー(A)は、水溶性又は水分散性を有することが好ましい。導電性ポリマー(A)が水溶性又は水分散性を有すると、導電性組成物の塗布性が高まり、均一な厚さの導電体が得られやすい。
 導電性ポリマー(A)は、酸性基を有することが好ましい。酸性基を有すると水溶性が高まる。酸性基はスルホン酸基又はカルボキシ基が好ましい。一分子中に1種の酸性基のみを有していても、2種以上の酸性基を有していてもよい。酸性基の一部又は全部が塩を形成していてもよい。
 酸性基を有する導電性ポリマー(A)としては、例えば、日本国特開昭61-197633号公報、日本国特開昭63-39916号公報、日本国特開平1-301714号公報、日本国特開平5-504153号公報、日本国特開平5-503953号公報、日本国特開平4-32848号公報、日本国特開平4-328181号公報、日本国特開平6-145386号公報、日本国特開平6-56987号公報、日本国特開平5-226238号公報、日本国特開平5-178989号公報、日本国特開平6-293828号公報、日本国特開平7-118524号公報、日本国特開平6-32845号公報、日本国特開平6-87949号公報、日本国特開平6-256516号公報、日本国特開平7-41756号公報、日本国特開平7-48436号公報、日本国特開平4-268331号公報、日本国特開2014-65898号公報に示された導電性ポリマーが、溶解性の観点から好ましい。
 導電性ポリマー(A)としては、例えば、α位若しくはβ位がスルホン酸基及びカルボキシ基からなる群より選択される少なくとも1つの基でそれぞれ置換されたフェニレンビニレン、ビニレン、チエニレン、ピロリレン、フェニレン、イミノフェニレン、イソチアナフテン、フリレン、及びカルバゾリレンからなる群から選ばれた少なくとも1種を繰り返し単位として含むπ共役系導電性ポリマーが挙げられる。
 π共役系導電性ポリマーが、α位若しくはβ位がスルホン酸基及びカルボキシ基からなる群より選択される少なくとも1つの基でそれぞれ置換されたイミノフェニレン及びカルバゾリレンからなる群から選ばれた少なくとも1種の繰り返し単位を含む場合は、例えば、スルホン酸基及びカルボキシ基からなる群より選択される少なくとも1つの基を繰り返し単位の窒素原子上に有するπ共役系導電性ポリマー、スルホン酸基及びカルボキシ基からなる群より選択される少なくとも1つの基で置換されたアルキル基を繰り返し単位の窒素原子上に有するπ共役系導電性ポリマー、スルホン酸基及びカルボキシ基からなる群より選択される少なくとも1つの基で置換されたエーテル結合を含むアルキル基を繰り返し単位の窒素原子上に有するπ共役系導電性ポリマーが挙げられる。
 これらの中でも、導電性や溶解性の観点から、β位がスルホン酸基及びカルボキシ基からなる群より選択される少なくとも1つの基で置換されたフェニレンビニレン、チエニレン、ピロリレン、イミノフェニレン、イソチアナフテン、及びカルバゾリレンからなる群から選ばれた少なくとも1種を繰り返し単位として含むπ共役系導電性ポリマーが好ましい。
 導電性ポリマー(A)は、高い導電性や溶解性を発現できる観点から、導電性ポリマーを構成する全単位(100mol%)のうちの20~100mol%が、下記一般式(1)~(4)で表されるいずれかの繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 式(1)~(4)中、
 Xは硫黄原子又は窒素原子を表し、
 R~R15は各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐鎖のアルキル基、炭素数1~24の直鎖若しくは分岐鎖のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、ハロゲン原子(-F、-Cl、-Br又は-I)、-N(R16、-NHCOR16、-SR16、-OCOR16、-COOR16、-COR16、-CHO、又は-CNを表す。
 R16は炭素数1~24のアルキル基、炭素数6~24のアリール基、又は炭素数7~24のアラルキル基を表す。
 ただし、一般式(1)のR、Rのうちの少なくとも1つ、一般式(2)のR~Rのうちの少なくとも1つ、一般式(3)のR~R10のうちの少なくとも1つ、一般式(4)のR11~R15のうちの少なくとも1つは、それぞれ酸性基又はその塩である。
 ここで、「酸性基」とは、スルホン酸基(スルホ基)又はカルボン酸基(カルボキシ基)を意味する。
 スルホン酸基は、遊離酸型の状態(-SOH)で含まれていてもよく、イオンの状態(-SO-)で含まれていてもよい。さらに、スルホン酸基には、スルホン酸基を有する置換基(-R17SOH)も含まれる。
 一方、カルボン酸基は、遊離酸型の状態(-COOH)で含まれていてもよく、イオンの状態(-COO-)で含まれていてもよい。さらに、カルボン酸基には、カルボン酸基を有する置換基(-R17COOH)も含まれる。
 R17は炭素数1~24の直鎖若しくは分岐鎖のアルキレン基、炭素数6~24の直鎖若しくは分岐鎖のアリーレン基、又は炭素数7~24の直鎖若しくは分岐鎖のアラルキレン基を表す。
 酸性基の塩としては、例えば、スルホン酸基又はカルボン酸基のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、又は置換アンモニウム塩が挙げられる。
 アルカリ金属塩としては、例えば、硫酸リチウム、炭酸リチウム、水酸化リチウム、硫酸ナトリウム、炭酸ナトリウム、水酸化ナトリウム、硫酸カリウム、炭酸カリウム、水酸化カリウム及びこれらの骨格を有する誘導体が挙げられる。
 アルカリ土類金属塩としては、例えば、マグネシウム塩、カルシウム塩が挙げられる。
 置換アンモニウム塩としては、例えば、脂肪族アンモニウム塩、飽和脂環式アンモニウム塩、不飽和脂環式アンモニウム塩が挙げられる。
 脂肪族アンモニウム塩としては、例えば、メチルアンモニウム、ジメチルアンモニウム、トリメチルアンモニウム、エチルアンモニウム、ジエチルアンモニウム、トリエチルアンモニウム、メチルエチルアンモニウム、ジエチルメチルアンモニウム、ジメチルエチルアンモニウム、プロピルアンモニウム、ジプロピルアンモニウム、イソプロピルアンモニウム、ジイソプロピルアンモニウム、ブチルアンモニウム、ジブチルアンモニウム、メチルプロピルアンモニウム、エチルプロピルアンモニウム、メチルイソプロピルアンモニウム、エチルイソプロピルアンモニウム、メチルブチルアンモニウム、エチルブチルアンモニウム、テトラメチルアンモニウム、テトラメチロールアンモニウム、テトラエチルアンモニウム、テトラn-ブチルアンモニウム、テトラsec-ブチルアンモニウム、テトラt-ブチルアンモニウムが挙げられる。
 飽和脂環式アンモニウム塩としては、例えば、ピペリジニウム、ピロリジニウム、モルホリニウム、ピペラジニウム及びこれらの骨格を有する誘導体が挙げられる。
 不飽和脂環式アンモニウム塩としては、例えば、ピリジニウム、α-ピコリニウム、β-ピコリニウム、γ-ピコリニウム、キノリニウム、イソキノリニウム、ピロリニウム、及びこれらの骨格を有する誘導体が挙げられる。
 導電性ポリマー(A)としては、高い導電性を発現できる観点から、上記一般式(4)で表される繰り返し単位を有することが好ましい。その中でも、溶解性にも優れる観点から、下記一般式(5)で表される繰り返し単位を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、
 R18~R21は、各々独立に、水素原子、炭素数1~24の直鎖若しくは分岐鎖のアルキル基、炭素数1~24の直鎖若しくは分岐鎖のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、又はハロゲン原子(-F、-Cl、-Br又は-I)を表す。
 ただし、R18~R21のうちの少なくとも1つは酸性基又はその塩である。
 一般式(5)で表される繰り返し単位としては、製造が容易な点で、R18~R21のうち、いずれか1つが炭素数1~4の直鎖若しくは分岐鎖のアルコキシ基であり、他のいずれか1つがスルホン酸基であり、残りが水素原子であることが好ましい。
 導電性ポリマー(A)は、pHに関係なく水及び有機溶媒への溶解性に優れる観点から、導電性ポリマー(A)を構成する全単位(100mol%)のうち、一般式(5)で表される繰り返し単位の含有量は10~100mol%が好ましく、50~100mol%がより好ましく、90~100mol%がさらに好ましく、100mol%が特に好ましい。
 導電性ポリマー(A)は、導電性に優れる観点で、一般式(5)で表される単位を1分子中に10以上含有することが好ましい。
 導電性ポリマー(A)において、溶解性がより向上する観点から、ポリマー中の芳香環の総数に対する、酸性基が結合した芳香環の数は、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましく、100%が最も好ましい。
 ポリマー中の芳香環の総数に対する酸性基が結合した芳香環の数は、導電性ポリマー(A)製造時のモノマーの仕込み比から算出する。
 導電性ポリマー(A)において、繰り返し単位の芳香環上の酸性基以外の置換基は、モノマーへの反応性付与の観点から電子供与性基が好ましい。例えば、炭素数1~24のアルキル基、炭素数1~24のアルコキシ基、ハロゲン基(-F、-Cl、-Br又は-I)が好ましい。これらの中でも、電子供与性の観点から、炭素数1~24のアルコキシ基が最も好ましい。
 導電性ポリマー(A)は、一般式(5)で表される繰り返し単位以外の繰り返し単位として、溶解性、導電性及び性状に影響を及ぼさない限り、置換又は無置換のアニリン、チオフェン、ピロール、フェニレン、ビニレン、二価の不飽和基、二価の飽和基からなる群より選ばれる1種以上の繰り返し単位を含んでいてもよい。
 導電性ポリマー(A)としては、高い導電性と溶解性を発現できる観点から、下記一般式(6)で表される構造を有する化合物であることが好ましく、下記一般式(6)で表される構造を有する化合物の中でも、ポリ(2-スルホ-5-メトキシ-1,4-イミノフェニレン)が特に好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(6)中、
 R22~R37は、各々独立に、水素原子、炭素数1~4の直鎖若しくは分岐鎖のアルキル基、炭素数1~4の直鎖若しくは分岐鎖のアルコキシ基、酸性基、ヒドロキシ基、ニトロ基、又はハロゲン原子(-F、-Cl、-Br又は-I)を表す。
 ただし、R22~R37のうち少なくとも1つは酸性基又はその塩である。
 nは5~2500の整数である。
 導電性ポリマー(A)に含有される酸性基は、導電性向上の観点から少なくともその一部が遊離酸型であることが好ましい。
 導電性ポリマー(A)の質量平均分子量は、GPCのポリスチレンスルホン酸ナトリウム換算で、導電性、溶解性及び成膜性の観点から、1000~100万が好ましく、1500~80万がより好ましく、2000~50万がさらに好ましく、2000~10万が特に好ましい。
 導電性ポリマー(A)の質量平均分子量が1000未満の場合、溶解性には優れるものの、導電性及び成膜性が不足する場合がある。一方、質量平均分子量が100万を超える場合、導電性には優れるものの、溶解性が不充分な場合がある。
 ここで、「成膜性」とは、例えば、ハジキが無い均一な膜となる性質のことを指し、例えば、ガラス上へのスピンコートで評価することができる。
 導電性ポリマー(A)は、例えば、重合溶媒及び酸化剤の存在下、導電性ポリマー(A)の原料モノマーを重合することで得られる。
 以下に、導電性ポリマー(A)の製造方法の一例について説明する。
(導電性ポリマー(A)の製造方法)
 導電性ポリマー(A)の製造方法は、重合溶媒及び酸化剤の存在下、導電性ポリマー(A)の原料モノマーを重合する工程(重合工程)を含む。導電性ポリマー(A)の製造方法は、重合工程で得られた反応生成物を精製する工程(精製工程)を含んでいてもよい。
<<重合工程>>
 重合工程は、重合溶媒及び酸化剤の存在下、導電性ポリマー(A)の原料モノマーを重合する工程である。
 原料モノマーとしては、上述した繰り返し単位の由来となる重合性単量体が挙げられ、例えば、酸性基置換アニリン、並びに、酸性基置換アニリンのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩及び置換アンモニウム塩からなる群より選ばれる少なくとも1種が挙げられる。
 酸性基置換アニリンとしては、例えば、酸性基としてスルホン酸基を有するスルホン酸基置換アニリンが挙げられる。
 スルホン酸基置換アニリンとしては、アミノベンゼンスルホン酸類が挙げられる。アミノベンゼンスルホン酸類としては、例えば、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、アニリン-2,6-ジスルホン酸、アニリン-2,5-ジスルホン酸、アニリン-3,5-ジスルホン酸、アニリン-2,4-ジスルホン酸、アニリン-3,4-ジスルホン酸が挙げられる。
 アミノベンゼンスルホン酸類以外のスルホン酸基置換アニリンとしては、例えば、メチルアミノベンゼンスルホン酸、エチルアミノベンゼンスルホン酸、n-プロピルアミノベンゼンスルホン酸、iso-プロピルアミノベンゼンスルホン酸、n-ブチルアミノベンゼンスルホン酸、sec-ブチルアミノベンゼンスルホン酸、t-ブチルアミノベンゼンスルホン酸等のアルキル基置換アミノベンゼンスルホン酸類;メトキシアミノベンゼンスルホン酸、エトキシアミノベンゼンスルホン酸、プロポキシアミノベンゼンスルホン酸等のアルコキシ基置換アミノベンゼンスルホン酸類;ヒドロキシ基置換アミノベンゼンスルホン酸類;ニトロ基置換アミノベンゼンスルホン酸類;フルオロアミノベンゼンスルホン酸、クロロアミノベンゼンスルホン酸、ブロムアミノベンゼンスルホン酸等のハロゲン置換アミノベンゼンスルホン酸類を挙げることができる。
 これらの中では、導電性や溶解性に特に優れる導電性ポリマー(A)が得られる点で、アルキル基置換アミノベンゼンスルホン酸類、アルコキシ基置換アミノベンゼンスルホン酸類、ヒドロキシ基置換アミノベンゼンスルホン酸類、ハロゲン置換アミノベンゼンスルホン酸類が好ましい。さらに製造が容易な点で、アルコキシ基置換アミノベンゼンスルホン酸類、アルコキシ基置換アミノベンゼンスルホン酸類のアルカリ金属塩、アンモニウム塩及び置換アンモニウム塩が特に好ましい。
 これらのスルホン酸基置換アニリンは、いずれか1種を単独で用いてもよいし、2種以上を任意の割合で併用してもよい。
 重合溶媒としては、例えば、水、有機溶媒、水と有機溶媒との混合溶媒が挙げられる。
 水としては、例えば、水道水、イオン交換水、純水、蒸留水が挙げられる。
 有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール等のアルコール類;アセトン、エチルイソブチルケトン等のケトン類;エチレングリコール、エチレングリコールメチルエーテル等のエチレングリコール類;プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のプロピレングリコール類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;N-メチルピロリドン、N-エチルピロリドン等のピロリドン類が挙げられる。
 重合溶媒としては、水、又は水と有機溶媒との混合溶媒が好ましい。
 重合溶媒として水と有機溶媒との混合溶媒を用いる場合、これらの質量比(水/有機溶媒)は1/100~100/1であることが好ましく、2/100~100/2であることがより好ましい。
 酸化剤としては、標準電極電位が0.6V以上である酸化剤であれば限定されない。例えば、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等のペルオキソ二硫酸類;過酸化水素が挙げられる。
 これらの酸化剤は、いずれか1種を単独で用いてもよいし、2種以上を任意の割合で併用してもよい。
 重合工程は、重合溶媒及び酸化剤に加えて、塩基性反応助剤の存在下で原料モノマーを重合してもよい。
 塩基性反応助剤としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の無機塩基;アンモニア;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチルメチルアミン、エチルジメチルアミン、ジエチルメチルアミン等の脂式アミン類;環式飽和アミン類;ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、キノリン等の環式不飽和アミン類が挙げられる。
 これらの中では、無機塩基、脂式アミン類、環式不飽和アミン類が好ましく、環式不飽和アミン類がより好ましい。
 これらの塩基性反応助剤は、いずれか1種を単独で用いてもよいし、2種以上を任意の割合で併用してもよい。
 重合の方法としては、例えば、酸化剤溶液中に原料モノマー溶液を滴下する方法、原料モノマー溶液に酸化剤溶液を滴下する方法、反応容器に原料モノマー溶液と、酸化剤溶液を同時に滴下する方法が挙げられる。原料モノマー溶液には、必要に応じて塩基性反応助剤が含まれていてもよい。
 酸化剤溶液及び原料モノマー溶液の溶媒としては、上述した重合溶媒を用いることができる。
 重合反応の反応温度は、50℃以下が好ましく、-15~30℃がより好ましく、-10~20℃がさらに好ましい。重合反応の反応温度が50℃以下、特に30℃以下であれば、副反応の進行や、生成する導電性ポリマー(A)の主鎖の酸化還元構造の変化による導電性の低下を抑止できる。重合反応の反応温度が-15℃以上であれば、十分な反応速度を維持し、反応時間を短縮できる。
 重合工程により、反応生成物である導電性ポリマー(A)が重合溶媒に溶解又は沈殿した状態で得られる。
 反応生成物が重合溶媒に溶解している場合は、重合溶媒を留去して反応生成物を得る。
 反応生成物が重合溶媒に沈殿している場合は、遠心分離器等の濾過器により重合溶媒を濾別して反応生成物を得る。
 反応生成物には、未反応の原料モノマー、副反応の併発に伴うオリゴマー、酸性物質(導電性ポリマー(A)から脱離した遊離の酸性基や、酸化剤の分解物である硫酸イオンなど)、塩基性物質(塩基性反応助剤や、酸化剤の分解物であるアンモニウムイオンなど)等の低分子量成分が含まれている場合がある。これら低分子量成分は不純物であり、導電性を阻害する要因となる。
 よって、反応生成物を精製して低分子量成分を除去することが好ましい。
<<精製工程>>
 精製工程は、重合工程で得られた反応生成物を精製する工程である。
 反応生成物を精製する方法としては、例えば、洗浄溶媒を用いた洗浄法、膜濾過法、イオン交換法、加熱処理による不純物の除去、中和析出を用いることができる。これらの中でも、純度の高い導電性ポリマー(A)を容易に得ることができる観点から、洗浄法、イオン交換法が好ましい。特に、原料モノマー、オリゴマー、酸性物質などを効率よく除去できる観点では、洗浄法が好ましい。導電性ポリマー(A)の酸性基と塩を形成した状態で存在する塩基性物質などを効率よく除去できる観点では、イオン交換法が好ましい。精製工程では、洗浄法とイオン交換法とを組み合わせて用いてもよい。
 洗浄溶媒としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、2-ブタノール、3-ブタノール、t-ブタノール、1-ペンタノール、3-メチル-1-ブタノール、2-ペンタノール、n-ヘキサノール、4-メチル-2-ペンタノール、2-エチルブチノール、ベンジルアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メトキシメトキシエタノール、プロピレングリコールモノエチルエーテル、グリセリルモノアセテート等の多価アルコール誘導体;アセトン;アセトニトリル;N,N-ジメチルホルムアミド;N-メチルピロリドン;ジメチルスルホキシドが挙げられる。これらの中でも、メタノール、エタノール、イソプロパノール、アセトン、アセトニトリルが好ましい。
 洗浄後の反応生成物、すなわち洗浄後の導電性ポリマー(A)を乾燥すれば、固体状の導電性ポリマー(A)が得られる。
 イオン交換法としては、例えば、陽イオン交換樹脂や陰イオン交換樹脂等のイオン交換樹脂を用いたカラム式、バッチ式の処理;電気透析法が挙げられる。
 反応生成物が重合溶媒に溶解している場合は、溶解した状態のままイオン交換樹脂と接触させればよい。反応生成物の濃度が高い場合は、水性媒体で希釈してもよい。
 反応生成物が重合溶媒に沈殿している場合は、重合溶媒を濾別した後に、反応生成物を所望の固形分濃度になるように水性媒体に溶解させ、ポリマー溶液としてからイオン交換樹脂に接触させることが好ましい。
 洗浄後の反応生成物をイオン交換処理する場合は、洗浄後の反応生成物を所望の固形分濃度になるように水性媒体に溶解させ、ポリマー溶液としてからイオン交換樹脂に接触させることが好ましい。
 水性媒体としては、後述する溶剤(C)が挙げられる。
 ポリマー溶液中の導電性ポリマー(A)の濃度としては、工業性や精製効率の観点から、0.1~20質量%が好ましく、0.1~10質量%がより好ましい。
 イオン交換樹脂を用いたイオン交換法の場合、イオン交換樹脂に対する試料液の量は、例えば固形分濃度5質量%のポリマー溶液の場合、イオン交換樹脂に対して10倍の容積までが好ましく、5倍の容積までがより好ましい。陽イオン交換樹脂としては、例えば、オルガノ株式会社製の「アンバーライトIR-120B」が挙げられる。陰イオン交換樹脂としては、例えば、オルガノ株式会社製の「アンバーライトIRA410」が挙げられる。
 イオン交換処理後の導電性ポリマー(A)は、重合溶媒又は水性媒体に溶解した状態である。従って、エバポレータなどで重合溶媒又は水性媒体を全て除去すれば固体状の導電性ポリマー(A)が得られるが、導電性ポリマー(A)は重合溶媒又は水性媒体に溶解した状態のまま導電性組成物の製造に用いてもよい。
<界面活性剤(B)>
 界面活性剤(B)としては、陰イオン系界面活性剤、陽イオン系界面活性剤、両性界面活性剤、非イオン系界面活性剤などが挙げられる。これらの界面活性剤は、いずれか1種を単独で用いてもよいし、2種以上を任意の割合で併用してもよい。
 陰イオン系界面活性剤としては、例えば、ジアルキルスルホコハク酸ナトリウム、オクタン酸ナトリウム、デカン酸ナトリウム、ラウリン酸ナトリウム、ミリスチン酸ナトリウム、パルミチン酸ナトリウム、ステアリン酸ナトリウム、ペルフルオロノナン酸、N-ラウロイルサルコシンナトリウム、ココイルグルタミン酸ナトリウム、アルファスルホ脂肪酸メチルエステル塩、ラウリル硫酸ナトリウム、ミリスチル硫酸ナトリウム、ラウレス硫酸ナトリウム、ポリオキシエチレンアルキルフェノールスルホン酸ナトリウム、ラウリル硫酸アンモニウム、ラウリルリン酸、ラウリルリン酸ナトリウム、ラウリルリン酸カリウムが挙げられる。
 陽イオン系界面活性剤としては、例えば、塩化テトラメチルアンモニウム、水酸化テトラメチルアンモニウム、塩化テトラブチルアンモニウム、塩化ドデシルジメチルベンジルアンモニウム、塩化アルキルトリメチルアンモニウム、塩化オクチルトリメチルアンモニウム、塩化デシルトリメチルアンモニウム、塩化ドデシルトリメチルアンモニウム、塩化テトラデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、臭化アルキルトリメチルアンモニウム、臭化ヘキサデシルトリメチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウム、塩化ベンザルコニウム、臭化ベンザルコニウム、塩化ベンゼトニウム、塩化ジアルキルジメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化ジステアリルジメチルアンモニウム、モノメチルアミン塩酸塩、ジメチルアミン塩酸塩、トリメチルアミン塩酸塩、塩化ブチルピリジニウム、塩化ドデシルピリジニウム、塩化セチルピリジニウムが挙げられる。
 両性界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ドデシルアミノメチルジメチルスルホプロピルベタイン、オクタデシルアミノメチルジメチルスルホプロピルベタイン、コカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウロイルグルタミン酸ナトリウム、ラウロイルグルタミン酸カリウム、ラウロイルメチル-β-アラニン、ラウリルジメチルアミン-N-オキシド、オレイルジメチルアミンN-オキシドが挙げられる。
 非イオン系界面活性剤としては、例えば、ラウリン酸グリセリン、モノステアリン酸グリセリン、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ペンタエチレングリコールモノドデシルエーテル、オクタエチレングリコールモノドデシルエーテル、ポリオキシエチレンアルキルフェニルエーテル、オクチルフェノールエトキシレート、ノニルフェノールエトキシレート、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヘキシタン脂肪酸エステル、ソルビタン脂肪酸エステルポリエチレングリコール、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、オクチルグルコシド、デシルグルコシド、ラウリルグルコシド、セタノール、ステアリルアルコール、オレイルアルコールが挙げられる。
 非イオン系界面活性剤として、上述した以外にも、末端疎水性基を有する水溶性ポリマーを用いてもよい。末端疎水性基を有する水溶性ポリマーとしては、例えば、含窒素官能基及び末端疎水性基を有する水溶性ポリマーが挙げられる。含窒素官能基及び末端疎水性基を有する水溶性ポリマーは従来の界面活性剤とは異なり、含窒素官能基を有する主鎖部分(親水性部分)と、末端の疎水性基部分とによって界面活性能を有し、塗布性の向上効果が高い。よって、他の界面活性剤を併用しなくても、優れた塗布性を導電性組成物に付与できる。しかも、この水溶性ポリマーは酸や塩基を含まないうえ、加水分解により副生成物が生じにくいことから、例えば、レジスト層への悪影響が特に少ない。
 含窒素官能基としては、溶解性の観点から、アミド基が好ましい。
 末端疎水性基としては、例えば、アルキル基、アラルキル基、アリール基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、アルキルチオ基、アラルキルチオ基、アリールチオ基、一級又は二級のアルキルアミノ基、アラルキルアミノ基、アリールアミノ基が挙げられる。これらの中でも、アルキルチオ基、アラルキルチオ基、アリールチオ基が好ましい。
 末端疎水性基の炭素数は、7~100が好ましく、7~50がより好ましく、10~30が特に好ましい。
 水溶性ポリマー中の末端疎水性基の数は特に制限されない。また、同一分子内に末端疎水性基を2つ以上有する場合、末端疎水性基は同じ種類であってもよいし、異なる種類であってもよい。
 水溶性ポリマーとしては、含窒素官能基を有するビニルモノマーのホモポリマー、又は含窒素官能基を有するビニルモノマーと、含窒素官能基を有さないビニルモノマー(その他のビニルモノマー)とのコポリマーを主鎖構造とし、かつ、ポリマーを構成する繰り返し単位以外の部位に疎水性基を有する化合物が好ましい。
 含窒素官能基を有するビニルモノマーとしては、例えば、アクリルアミド及びその誘導体、含窒素官能基を有する複素環状モノマーが挙げられ、その中でもアミド結合を持つものが好ましい。例えば、アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、t-ブチルアクリルアミド、ジアセトンアクリルアミド、N,N’-メチレンビスアクリルアミド、N-ビニル-N-メチルアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタムが挙げられる。これらの中でも、溶解性の観点から、アクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタムが特に好ましい。
 その他のビニルモノマーとしては、含窒素官能基を有するビニルモノマーと共重合可能であれば特に制限されないが、例えば、スチレン、アクリル酸、酢酸ビニル、長鎖α-オレフィンが挙げられる。
 水溶性ポリマーへの末端疎水性基の導入方法としては特に制限されないが、通常、ビニル重合時の連鎖移動剤を選択することにより導入するのが簡便で好ましい。この場合、連鎖移動剤としてはアルキル基、アラルキル基、アリール基、アルキルチオ基、アラルキルチオ基、アリールチオ基等の疎水性基を含む基が、得られる重合体の末端に導入されるものであれば特に限定はされない。例えば、末端疎水性基としてアルキルチオ基、アラルキルチオ基、又はアリールチオ基を有する水溶性ポリマーを得る場合は、これらの末端疎水性基に対応する疎水性基を有する連鎖移動剤、例えば、チオール、ジスルフィド、チオエーテルを用いてビニル重合することが好ましい。このような連鎖移動剤としては、例えば、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、2-エチルヘキシルメルカプタン、n-オクタデシルメルカプタンが挙げられる。
 これらは1種を単独で用いてもよく、2種以上を任意の割合で併用してもよい。
 ビニル重合時に用いる重合開始剤としては、例えば、アゾビスメチルブチロニトリルや、末端疎水性基を有する重合開始剤を用いることができる。
 末端疎水性基を有する重合開始剤としては、炭素数6~20の直鎖若しくは分岐鎖のアルキル基を有し、シアノ基及びヒドロキシ基を有さないものが挙げられる。例えば、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ヘキシルパーオキサイド、ジ(2-エチルヘキシル)パーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイドが挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の割合で併用してもよい。
 水溶性ポリマーの主鎖部分は水溶性であり、含窒素官能基を有する。主鎖部分の単位数(重合度)は、1分子中に2~1000が好ましく、2~100がより好ましく、2~50が特に好ましい。含窒素官能基を有する主鎖部分の単位数が上記上限値以下であれば、界面活性能が低下しにくい。
 水溶性ポリマー中の主鎖部分と、末端疎水性基部分との分子量比(主鎖部分の質量平均分子量/末端疎水性基部分の質量平均分子量)は、0.3~170であることが好ましい。
 水溶性ポリマーの質量平均分子量は、GPCのポリエチレングリコール換算で、100~100万が好ましく、100~10万がより好ましく、600~2000がさらに好ましく、600~1800が特に好ましい。水溶性ポリマーの質量平均分子量が上記下限値以上であれば、導電性組成物の塗布性が高まる。一方、水溶性ポリマーの質量平均分子量が上記上限値以下であれば、導電性組成物の水溶性が高まる。特に、水溶性ポリマーの質量平均分子量が600~1800であれば、実用的な水への溶解性と塗布性のバランスに優れる。
 界面活性剤(B)としては、上述した中でもレジスト層への影響が少ない点で、非イオン系界面活性剤が好ましく、その中でも特に末端疎水性基を有する水溶性ポリマーが好ましい。末端疎水性基を有する水溶性ポリマーの中でも、特に、下記一般式(7)で表される化合物(以下、「化合物(7)」とも言う。)、下記一般式(8)で表される化合物(以下、「化合物(8)」とも言う。)が好ましい。これら化合物は、いずれか1種を単独で用いてもよいし、2種以上を任意の割合で併用してもよい。
Figure JPOXMLDOC01-appb-C000007
 式(7)中、
 R38は水素原子、直鎖若しくは分岐鎖のアルキル基、アラルキル基又はアリール基を表し、
 R39は水素原子、アルキルチオ基、アラルキルチオ基、アリールチオ基又は炭化水素基を表し、
 R40は親水性基を表し、
 R41は水素原子又はメチル基を表し、
 Zは単結合、-S-、-S(=O)-、-C(=O)-O-又は-O-を表し、
 pは1~50の数である。
 ただし、R38及びR39が同時に水素原子であることはない。
Figure JPOXMLDOC01-appb-C000008
 式(8)中、
 R42及びR43は各々独立に、メチル基又はエチル基を表し、
 R44は水素原子、アルキルチオ基、アラルキルチオ基、アリールチオ基又は炭化水素基を表し、
 R45は親水性基を表し、
 R46は水素原子又はメチル基を表し、
 Zはシアノ基又はヒドロキシ基を表し、
 qは1~50の数である。
 R38におけるアルキル基の炭素数は6~20が好ましい。
 R38におけるアラルキル基の炭素数は7~20が好ましい。
 R38におけるアリール基の炭素数は6~20が好ましい。
 R39、R44におけるアルキルチオ基としては、炭素数1~20の直鎖若しくは分岐鎖のアルキル基に硫黄原子が結合した基が挙げられる。
 R39、R44におけるアラルキルチオ基としては、炭素数7~20の直鎖若しくは分岐鎖のアラルキル基に硫黄原子が結合した基が挙げられる。
 R39、R44におけるアリール基としては、炭素数6~20の直鎖若しくは分岐鎖のアリール基に硫黄原子が結合した基が挙げられる。
 R39、R44における炭化水素基としては、炭素数1~20の直鎖若しくは分岐鎖のアルキル基、炭素数1~20の直鎖若しくは分岐鎖のアルケニル基、炭素数1~20の直鎖若しくは分岐鎖のアルキニル基が挙げられる。
 R40、R45における親水性基は、水溶性ポリマーの原料モノマーである水溶性ビニルモノマー由来である。ここで、水溶性ビニルモノマーとは、水と任意の割合で混合可能なビニル単量体を示す。このような水溶性ビニルモノマーとしては、例えば、N-ビニルピロリドン、2-ヒドロキシエチル(メタ)アクリレート、(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、アクリロイルモルホリン、N-ビニルホルムアミドが挙げられる。
 化合物(7)としては、例えば、下記一般式(71)で表される化合物(以下、「化合物(71)」とも言う。)が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(71)中、
 R38は水素原子、直鎖若しくは分岐鎖のアルキル基、アラルキル基又はアリール基を表し、
 R39は水素原子、アルキルチオ基、アラルキルチオ基、アリールチオ基又は炭化水素基を表し、
 Zは単結合、-S-、-S(=O)-、-C(=O)-O-又は-O-を表し、
 pは1~50の数であり、
 rは1~5の数である。
 ただし、R38及びR39が同時に水素原子であることはない。
 化合物(8)としては、例えば、下記一般式(81)で表される化合物(以下、「化合物(81)」とも言う。)が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(81)中、
 R42及びR43は各々独立に、メチル基又はエチル基を表し、
 R44は水素原子、アルキルチオ基、アラルキルチオ基、アリールチオ基又は炭化水素基を表し、
 Zはシアノ基又はヒドロキシ基を表し、
 qは1~50の数であり、
 sは1~5の数である。
<溶剤(C)>
 溶剤(C)としては、導電性ポリマー(A)及び界面活性剤(B)を溶解することができる溶剤であれば特に限定はされない。例えば、水、有機溶剤、水と有機溶剤との混合溶剤が挙げられる。
 水としては、例えば、水道水、イオン交換水、純水、蒸留水が挙げられる。
 有機溶剤としては、導電性ポリマー(A)の製造方法において重合溶媒としての有機溶媒として例示した溶剤が挙げられる。
 溶剤(C)として、水と有機溶剤との混合溶剤を用いる場合、これらの質量比(水/有機溶剤)は1/100~100/1であることが好ましく、2/100~100/2であることがより好ましい。
<任意成分>
 導電性組成物は、必要に応じて、導電性ポリマー(A)、界面活性剤(B)及び溶剤(C)以外の成分(任意成分)を含んでいてもよい。
 任意成分としては、例えば、塩基性化合物(D)、高分子化合物(ただし、導電性ポリマー(A)、界面活性剤(B)及び塩基性化合物(D)を除く。)、添加剤が挙げられる。
 塩基性化合物(D)としては、塩基性を有する化合物であれば特に限定されないが、例えば、下記の第4級アンモニウム化合物(d-1)、塩基性化合物(d-2)、塩基性化合物(d-3)、塩基性化合物(d-4)が挙げられる。
 第4級アンモニウム化合物(d-1):窒素原子に結合する4つの置換基のうちの少なくとも1つが炭素数1以上の炭化水素基である第4級アンモニウム化合物。
 塩基性化合物(d-2):1つ以上の窒素原子を有する塩基性化合物(ただし、第4級アンモニウム化合物(d-1)及び塩基性化合物(d-3)を除く。)。
 塩基性化合物(d-3):同一分子内に塩基性基と2つ以上のヒドロキシ基とを有し、かつ30℃以上の融点を有する塩基性化合物。
 塩基性化合物(d-4):無機塩基。
 第4級アンモニウム化合物(d-1)において、4つの置換基が結合する窒素原子は、第4級アンモニウムイオンの窒素原子である。
 第4級アンモニウム化合物(d-1)において、第4級アンモニウムイオンの窒素原子に結合する炭化水素基としては、例えば、アルキル基、アラルキル基、アリール基が挙げられる。
 第4級アンモニウム化合物(d-1)としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラペンチルアンモニウム、水酸化テトラヘキシルアンモニウム、水酸化ベンジルトリメチルアンモニウムが挙げられる。
 塩基性化合物(d-2)としては、例えば、アンモニア、ピリジン、4-ジメチルアミノピリジン、4-ジメチルアミノメチルピリジン、3,4-ビス(ジメチルアミノ)ピリジン、ピコリン、トリエチルアミン、4-ジメチルアミノピリジン、4-ジメチルアミノメチルピリジン、3,4-ビス(ジメチルアミノ)ピリジン、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1-(3-アミノプロピル)-2-ピロリドン、N-(3-アミノプロピル)-ε-カプロラクタム、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン及びそれらの誘導体が挙げられる。
 塩基性化合物(d-3)において、塩基性基としては、例えば、アレニウス塩基、ブレンステッド塩基、ルイス塩基等で定義される塩基性基が挙げられる。具体的には、例えば、アンモニアが挙げられる。ヒドロキシ基は、-OHの状態であってもよいし、保護基で保護された状態であってもよい。保護基としては、例えば、アセチル基;トリメチルシリル基、t-ブチルジメチルシリル基等のシリル基;メトキシメチル基、エトキシメチル基、メトキシエトキシメチル基等のアセタール型保護基;ベンゾイル基;アルコキシド基が挙げられる。
 塩基性化合物(d-3)としては、例えば、2-アミノ-1,3-プロパンジオール、トリス(ヒドロキシメチル)アミノメタン、2-アミノ-2-メチル-1,3-プロパンジオール、2-アミノ-2-エチル-1,3-プロパンジオール、3-[N-トリス(ヒドロキシメチル)メチルアミノ]-2-ヒドロキシプロパンスルホン酸、N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸が挙げられる。
 塩基性化合物(d-4)としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウム、水酸化バナジウム、水酸化カルシウム、水酸化ストロンチウムが挙げられる。
 これら塩基性化合物(D)は、いずれか1種を単独で用いてもよいし、2種以上を任意の割合で併用してもよい。
 塩基性化合物(D)としては、25℃における酸解離定数(pKa)が13以上であり、分子量が200以下である化合物が好ましい。
 塩基性化合物(D)の25℃における酸解離定数が13以上であれば、導電性ポリマー(A)の酸性基や酸化剤の分解物と塩基性化合物とで、安定した塩を形成させることができ、レジスト層の膜減りを抑制できる傾向にある。
 塩基性化合物(D)の酸解離定数の上限値については特に制限されない。
 なお、酸解離定数は「化学便覧 基礎編II」(日本化学会編、丸善、昭和41.9.25発行)に記載されている数値である。
 塩基性化合物(D)の分子量が200以下であれば、塩基性化合物(D)自体に由来する立体障害による影響が少なくなることにより、導電性ポリマー(A)の酸性基や酸化剤の分解物と塩基性化合物とで、安定した塩を形成させることができ、レジスト層の膜減りを抑制できる傾向にある。
 塩基性化合物(B)の分子量の下限値については特に制限されない。
 25℃における酸解離定数が13以上であり、分子量が200以下である塩基性化合物としては、例えば、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(pKa=26、分子量=139.20)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(pKa=25、分子量=153.23)、水酸化テトラメチルアンモニウム(分子量=91.15)、水酸化テトラエチルアンモニウム(分子量=147.26)等の有機塩基;水酸化リチウム(分子量=23.95)、水酸化ナトリウム(分子量=39.99)、水酸化カリウム(分子量=56.10)、水酸化ルビジウム(分子量=102.48)、水酸化セシウム(分子量=149.91)、水酸化バナジウム(分子量=171.34)、水酸化カルシウム(分子量=74.09)、水酸化ストロンチウム(分子量=121.63)等の無機塩基が挙げられる。上述の4級アンモニウム及び無機塩基の25℃におけるpKaは、いずれも13以上である。これら塩基性化合物は、いずれか1種を単独で用いてもよいし、2種以上を任意の割合で併用してもよい。
 これらの中でも、導電性の向上と膜減り抑制の両立の観点から、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、水酸化カリウムがより好ましく、水酸化カリウムが特に好ましい。
 高分子化合物としては、例えば、ポリビニルホルマール、ポリビニルブチラール等のポリビニルアルコール誘導体類及びその変性体、デンプン及びその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース及びこれらの塩等)、ポリアクリルアミド、ポリ(N-t-ブチルアクリルアミド)、ポリアクリルアミドメチルプロパンスルホン酸等のポリアクリルアミド類、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、水溶性アルキド樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、水溶性フェノール樹脂、水溶性エポキシ樹脂、水溶性ポリブタジエン樹脂、水溶性アクリル樹脂、水溶性ウレタン樹脂、水溶性アクリルスチレン共重合体樹脂、水溶性酢酸ビニルアクリル共重合体樹脂、水溶性ポリエステル樹脂、水溶性スチレンマレイン酸共重合樹脂、水溶性フッ素樹脂及びこれらの共重合体が挙げられる。
 添加剤としては、例えば、顔料、消泡剤、紫外線吸収剤、酸化防止剤、耐熱性向上剤、レベリング剤、たれ防止剤、艶消し剤、防腐剤が挙げられる。
<含有量>
 導電性組成物の組成は、界面活性剤(B)の臨界ミセル濃度によって異なる。
 ここで、臨界ミセル濃度とは、界面活性剤として機能するための最低限必要な濃度のことであり、臨界ミセル濃度が低いほど界面活性能が高い。臨界ミセル濃度は、表面張力を測定することで決定できる。具体的には、水性媒体に対して界面活性剤(B)を徐々に添加して25℃における表面張力を測定し、界面活性剤(B)の添加量を増やしても表面張力が低下しなくなるときの界面活性剤の濃度を臨界ミセル濃度とする。なお、界面活性剤(B)が2種以上の混合物からなる場合、混合物の状態で臨界ミセル濃度を求める。
 以下、臨界ミセル濃度が0.1質量%未満である界面活性剤(B)を「界面活性剤(B1)」ともいい、臨界ミセル濃度が0.1質量%以上である界面活性剤(B)を「界面活性剤(B2)」ともいう。
(導電性組成物中の界面活性剤(B)の臨界ミセル濃度が0.1質量%未満の場合)
 導電性ポリマー(A)の含有量が、導電性組成物の総質量に対して0.01質量%以上であれば、形成される導電膜の導電性が優れる傾向にある。より好ましくは0.05質量%以上であり、さらに好ましくは0.1質量%以上である。導電性ポリマー(A)の含有量が、導電性組成物の総質量に対して5質量%以下であれば、導電性組成物の塗布性に優れる傾向にある。より好ましくは3質量%以下であり、さらに好ましくは2質量%以下である。
 上記の上限及び下限は任意に組み合わせることができる。例えば、導電性ポリマー(A)の含有量は、導電性組成物の総質量に対して、0.01~5質量%が好ましく、0.05~3質量%がより好ましく、0.1~2質量%がさらに好ましい。
 導電性ポリマー(A)の含有量は、導電性組成物をレジスト被覆材料として使用した場合のレジスト層の膜減りが減少する傾向にあることから、導電性組成物の固形分の総質量に対して、99質量%以下が好ましい。なお、導電性組成物の固形分は、導電性組成物から溶剤(C)を除いた残分である。より好ましくは95質量%以下であり、さらに好ましくは90質量%以下である。
 導電性ポリマー(A)の含有量が上記範囲内であれば、導電性組成物の塗布性と、導電性組成物より形成される導電膜の導電性のバランスに優れる。
 界面活性剤(B1)の含有量は、導電性ポリマー(A)100質量部に対して5質量部以上である。
 界面活性剤(B1)の含有量が上記下限値以上であれば、導電膜となったときに界面活性剤(B1)が対象物側に局在化しやすくなる。特に、対象物がレジスト層の場合、レジスト層の表面は疎水性であるのに対し、導電性ポリマー(A)は親水性であることから、界面活性剤(B1)がレジスト層側に局在化しやすい。この局在化した界面活性剤(B1)がバリア層の役割を果たすので、導電性ポリマー(A)から酸性基が脱離しても、脱離した酸性基がレジスト層などの対象物に移行するのを抑制でき、レジスト層の膜減りを抑制できる。また、レジスト層への酸化剤の分解物の移行も抑制でき、レジスト層の膜減りを抑制できる。加えて、対象物への導電性組成物の濡れ性が向上し、成膜しやすくなる。好ましくは8質量部以上であり、より好ましくは10質量部以上である。
 界面活性剤(B1)の含有量の上限値については特に限定されず、界面活性剤(B1)の含有量が多くなるほど膜減り防止の効果が高まる傾向にある。ただし、界面活性剤(B1)の含有量が多くなると、その分、導電性組成物中の導電性ポリマー(A)の含有量が少なくなり、導電性が低下する傾向にある。よって、膜減り防止と導電性のバランスを考慮すると、界面活性剤(B1)の含有量は、導電性ポリマー(A)100質量部に対して1000質量部以下が好ましい。より好ましくは500質量部以下であり、さらに好ましくは300質量部以下である。
 上記の上限と下限は任意に組み合わせることができる。例えば、界面活性剤(B1)の含有量は、導電性ポリマー(A)100質量部に対して、5~1000質量部が好ましく、8~500質量部がより好ましく、10~300質量部がさらに好ましい。
 本発明の導電性組成物が溶剤(C)を含有する場合、溶剤(C)の含有量は、導電性組成物の総質量に対して、1~99質量%が好ましく、10~98質量%がより好ましく、50~98質量%がさらに好ましい。
 溶剤(C)の含有量が上記範囲内であれば、導電性組成物の塗布性と、導電性組成物より形成される導電膜の導電性のバランスに優れる。
 なお、導電性ポリマー(A)を、イオン交換法により精製して重合溶媒又は水性媒体に溶解した状態(以下、この状態の導電性ポリマー(A)を「導電性ポリマー溶液」ともいう。)で用いる場合、導電性ポリマー溶液由来の重合溶媒又は水性媒体も導電性組成物中の溶剤(C)の含有量に含まれる。
(導電性組成物中の界面活性剤(B)の臨界ミセル濃度が0.1質量%以上の場合)
 導電性ポリマー(A)の含有量が、導電性組成物の総質量に対して0.01質量%以上であれば、形成される導電膜の導電性が優れる傾向にある。より好ましくは0.05質量%以上であり、さらに好ましくは0.1質量%以上である。導電性ポリマー(A)の含有量が、導電性組成物の総質量に対して5質量%以下であれば、導電性組成物の塗布性に優れる傾向にある。より好ましくは3質量%以下であり、さらに好ましくは2質量%以下である。
 上記の上限及び下限は任意に組み合わせることができる。例えば、導電性ポリマー(A)の含有量は、導電性組成物の総質量に対して、0.01~5質量%が好ましく、0.05~3質量%がより好ましく、0.1~2質量%がさらに好ましい。
 導電性ポリマー(A)の含有量は、導電性組成物をレジスト被覆材料として使用した場合のレジスト層の膜減りが減少する傾向にあることから、導電性組成物の固形分の総質量に対して、90質量%以下が好ましい。より好ましくは60質量%以下であり、さらに好ましくは40質量%以下である。
 導電性ポリマー(A)の含有量が上記範囲内であれば、導電性組成物の塗布性と、導電性組成物より形成される導電膜の導電性のバランスに優れる。
 界面活性剤(B2)の含有量は、導電性ポリマー(A)100質量部に対して100質量部超である。言い換えれば、界面活性剤(B2)の含有量は、導電性ポリマー(A)の含有量を超える量である。
 界面活性剤(B2)の含有量が上記下限値以上、即ち導電性ポリマー(A)に対して過剰であれば、導電膜となったときに界面活性剤(B2)が対象物側に局在化しやすくなる。この局在化した界面活性剤(B2)がバリア層の役割を果たすので、導電性ポリマー(A)から酸性基が脱離しても、脱離した酸性基がレジスト層などの対象物に移行するのを抑制でき、レジスト層の膜減りを抑制できる。また、レジスト層への酸化剤の分解物の移行も抑制でき、レジスト層の膜減りを抑制できる。加えて、対象物への導電性組成物の濡れ性が向上し、成膜しやすくなる。好ましくは110質量部以上であり、より好ましくは200質量部以上であり、さらに好ましくは250質量部以上であり、特に好ましくは300質量部以上である。
 界面活性剤(B2)の含有量の上限値については特に限定されず、界面活性剤(B2)の含有量が多くなるほど膜減り防止の効果が高まる傾向にある。ただし、界面活性剤(B2)の含有量が多くなると、その分、導電性組成物中の導電性ポリマー(A)の含有量が少なくなり、導電性が低下する傾向にある。よって、膜減り防止と導電性のバランスを考慮すると、界面活性剤(B2)の含有量は、導電性ポリマー(A)100質量部に対して2000質量部以下が好ましい。より好ましくは1500質量部以下であり、さらに好ましくは1000質量部以下であり、特に好ましくは800質量部以下である。
 上記の上限と下限は任意に組み合わせることができる。例えば、界面活性剤(B2)の含有量は、導電性ポリマー(A)100質量部に対して、100質量部超2000質量部以下が好ましく、110~2000質量部がより好ましく、200~1500質量部がさらに好ましく、250~1000質量部が特に好ましく、300~800質量部が最も好ましい。
 本発明の導電性組成物が溶剤(C)を含有する場合、溶剤(C)の含有量は、導電性組成物の総質量に対して、1~99質量%が好ましく、10~98質量%がより好ましく、50~98質量%がさらに好ましい。
 溶剤(C)の含有量が上記範囲内であれば、導電性組成物の塗布性と、導電性組成物より形成される導電膜の導電性のバランスに優れる。
 本発明の導電性組成物が塩基性化合物(D)を含む場合、塩基性化合物(D)の含有量が1質量部以上であれば、導電性ポリマー(A)が酸性基を含んでいても、導電性ポリマー(A)の酸性基や酸化剤と充分に塩を形成でき、酸性基が脱離しにくくなる。また、塩基性化合物が酸化剤の分解物とも充分に塩を形成する。よって、レジスト層への酸性基や酸化剤の分解物の移行が抑制され、レジスト層の膜減りを抑制できる。より好ましくは3質量部以上であり、さらに好ましくは5質量部以上であり、特に好ましくは7質量部以上である。
 塩基性化合物(D)の含有量が50質量部以下であれば、導電性組成物中での導電性ポリマー(A)の含有量を充分に確保できるので、導電性が良好な導電膜を形成できる。また、導電性ポリマー(A)が酸性基を含む場合、この酸性基が導電膜中で塩基性化合物(D)と塩を形成せずにフリーな状態で適度に存在するので、導電性を良好に維持できる。より好ましくは40質量部以下であり、さらに好ましくは35質量部以下であり、特に好ましくは27質量部以下である。
 上記の上限及び下限は任意に組み合わせることができる。例えば、塩基性化合物(D)の含有量は、導電性ポリマー(A)100質量部に対して、1~50質量部が好ましく、3~40質量部がより好ましく、5~35質量部がさらに好ましく、7~27質量部が特に好ましい。
<導電性組成物の製造方法>
 導電性組成物は、導電性ポリマー(A)及び界面活性剤(B)と、必要に応じて溶剤(C)及び塩基性化合物(D)を含む任意成分の1つ以上とを混合することで得られる。
 導電性ポリマー(A)の製造方法により製造した、洗浄後の導電性ポリマー(A)は固体状であることから、固体状の導電性ポリマー(A)と、界面活性剤(B)と、必要に応じて溶剤(C)及び塩基性化合物(D)を含む任意成分の1つ以上とを混合して、導電性組成物とすればよい。
 洗浄後にイオン交換法によりさらに精製した導電性ポリマー(A)を用いる場合、イオン交換処理後の導電性ポリマー(A)は、上述したように導電性ポリマー溶液の状態で得られる。そのため、この導電性ポリマー溶液に界面活性剤(B)と、必要に応じて塩基性化合物(D)を含む任意成分の1つ以上とを添加して導電性組成物としてもよいし、溶剤(C)でさらに希釈してもよい。
<作用効果>
 本発明の導電性組成物は、導電性に優れ、表面抵抗率1×1010[Ω/□]以下を達成することができ、1×10[Ω/□]以下を達成することもできる。
 本発明の導電性組成物は、レジスト被覆材料として好適に用いることができる。すなわち、導電性ポリマー(A)と、特定量の界面活性剤(B)とを含むので、導電膜となったときに界面活性剤(B)が基材やレジスト層等の対象物側に局在化しやすくなり、この局在化した界面活性剤(B)がバリア層の役割を果たす。よって、導電性ポリマー(A)が酸性基を含んでいても、導電性ポリマー(A)から脱離した酸性基や酸化剤の分解物がレジスト層へ移行しにくく、レジスト層の膜減りを抑制できる。
 なお、レジスト層の膜厚が薄いほど、膜減りした場合の影響を受けやすい傾向にある。
 しかし、本発明の導電性組成物であれば、レジスト層の膜減りが少ない導電膜を形成できる。よって、本発明の導電性組成物は、膜厚が薄い、具体的には膜厚が500nm以下、好ましくは200nm以下のレジスト層の表面に導電膜を形成する場合にも適している。
<用途>
 本発明の導電性組成物は、荷電粒子線描画時の帯電防止用として好適であり、レジスト被覆材料として好適に用いることもできる。具体的には、本発明の導電性組成物を、化学増幅型レジストを用いた荷電粒子線によるパターン形成法のレジスト層の表面に塗布して、導電膜を形成することができる。すなわち、導電性組成物を含む導電膜が表面に形成されたレジストにおいては、この導電膜がレジスト層の帯電防止膜となる。
 また、上述した以外にも、本発明の導電性組成物は、例えばコンデンサ、透明電極、半導体等の材料として使用することもできる。
 以下、本発明の導電性組成物を用いたレジストパターンの形成方法の一例について説明する。
<レジストパターンの形成方法>
 本発明のレジストパターンの形成方法は、化学増幅型レジストからなるレジスト層を片面上に有する基板のレジスト層の表面に、本発明の導電性組成物の導電膜を形成する積層工程と、本発明の導電性組成物の導電膜がレジスト層表面に形成された基板に対し、導電膜側から荷電粒子線をパターン状に照射する露光工程とを有する。
 化学増幅型レジストからなるレジスト層は、荷電粒子線に感度を有するものであればよく、ポジ型でもネガ型でもよい。公知の化学増幅型レジスト組成物を用いて形成できる。
 例えば、露光工程の後、水洗により導電膜を除去する水洗工程、レジスト層を現像してレジストパターンを形成する現像工程を必要に応じて行う。
 レジスト層が化学増幅型レジストからなる場合は、露光工程の後、現像工程の前に加熱する露光後ベーク(以下、「PEB」とも言う。)工程を行うことが好ましい。
(積層工程)
 積層工程では、化学増幅型レジストからなるレジスト層を片面上に有する基板の、レジスト層の表面に導電膜を形成する。
 基板としては、本発明の効果を有する限り特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;塩化ビニル;ナイロン;ポリスチレン;ポリカーボネート;エポキシ樹脂;フッ素樹脂;ポリスルホン;ポリイミド;ポリウレタン;フェノール樹脂;シリコーン樹脂;合成紙等の各種高分子化合物の成型品及びフィルム;紙;鉄;ガラス;石英ガラス;各種ウエハ;アルミニウム;銅;亜鉛;ニッケル;ステンレス鋼、及びこれらの基板表面に各種塗料や感光性樹脂等がコーティングされているものを例示できる。
 基板の形状は特に限定されず、板状であってもよいし、板状以外の形状であってもよい。
 基板の片面上には、ポジ型又はネガ型のレジストからなるレジスト層が設けられる。
 ポジ型のレジストは、荷電粒子線に感度を有するものであれば特に限定されず、公知のものを使用できる。荷電粒子線の照射により酸を発生する酸発生剤と、酸分解性基を有する構成単位を含む重合体とを含有する化学増幅型レジストが好ましい。
 ポジ型レジスト層は公知の方法により形成できる。例えば基板の片面上にレジストの有機溶剤溶液を塗布し、必要に応じて加熱(プリベーク)を行うことによりポジ型のレジスト層を形成できる。
 ネガ型のレジストは、荷電粒子線に感度を有するものであれば特に限定されず、公知のものを使用できる。荷電粒子線の照射により酸を発生する酸発生剤と、現像液に可溶性の重合体と、架橋剤とを含有する化学増幅型レジストが好ましい。
 ネガ型のレジスト層は、ポジ型のレジスト層と同様、公知の方法により形成できる。
 レジスト層の表面に本発明の導電性組成物を塗布し、乾燥して導電膜を形成する。必要に応じて乾燥後に加熱処理してもよい。
 本発明の導電性組成物のレジスト層への塗布方法としては、本発明の効果を有する限り特に限定はされないが、例えば、スピンコート法、スプレーコート法、ディップコート法、ロールコート法、グラビアコート法、リバースコート法、ロールブラッシュ法、エアーナイフコート法、カーテンコート法を含む手法が挙げられる。
 乾燥温度は、40℃未満が好ましい。乾燥時間は1時間以内が好ましい。
 加熱処理温度は、導電性の観点から、40℃~250℃の温度範囲が好ましく、60℃~200℃の温度範囲がより好ましい。処理時間は、安定性の観点から、1時間以内が好ましく、30分以内がより好ましい。
 積層工程により、基板とレジスト層と導電膜とがこの順に積層した積層体が得られる。
 レジスト層の膜厚は特に限定されない。
 導電膜の膜厚は、1~100nmが好ましく、5~50nmがより好ましく、5~30nmがさらに好ましい。
(露光工程)
 露光工程は、本発明の導電性組成物の導電膜がレジスト層表面に形成されたレジスト層に対して荷電粒子線をパターン状に照射する工程である。具体的には、積層体に対して、導電膜の側から荷電粒子線を照射する。
 露光工程により、基板と導電膜との間のレジスト層に潜像が形成される。前記レジスト層が化学増幅型レジストからなる場合は、荷電粒子線照射部(露光部)において酸発生剤から酸が発生する。
 このとき、レジスト層の表面に導電膜が設けられているため、導電膜からアースをとることができ、積層体全体の帯電を防止できる。そのため、帯電の影響でレジスト層に入射する電子の位置がずれることを抑制でき、目的とするレジストパターンに対応する潜像を精度良く形成できる。
(PEB工程)
 PEB工程は、露光工程の後、レジスト層を加熱(PEB)する工程である。例えば、ホットプレート等の公知の加熱手段により前記積層体を加熱する。
 露光工程で荷電粒子線が照射されたレジスト層が加熱されると、ポジ型のレジスト層の場合は荷電粒子線照射部(露光部)において、酸発生剤から発生した酸の作用による反応が促進され、現像液への溶解性が増大する。一方、ネガ型のレジスト層の場合は逆に、現像液への溶解性が低下する。
 加熱条件は、レジストにより異なるが、導電膜の耐熱性の点から、200℃以下、1時間以内が好ましい。
(水洗/現像工程)
 水洗/現像工程は、水洗により導電膜を除去し、レジスト層を現像してレジストパターンを形成する工程である。
 導電膜は水溶性であるため、水洗を行うと、導電膜が溶解除去される。
 水洗は、水性液に接触させることを示す。水性液としては、例えば、水、塩基及び塩基性塩の少なくとも一方を含む水、酸を含む水、水と水溶性有機溶媒との混合物が挙げられる。
 ポジ型のレジスト層を現像すると、ポジ型のレジスト層の荷電粒子線照射部(露光部)が溶解除去され、ポジ型のレジスト層の荷電粒子線未照射部(未露光部)からなるレジストパターンが形成される。
 一方、ネガ型のレジスト層を現像すると、ポジ型のレジスト層の場合とは逆に、荷電粒子線未照射部(未露光部)が溶解除去され、ネガ型のレジスト層の荷電粒子線照射部(露光部)からなるレジストパターンが形成される。
 水洗/現像工程は、例えば以下の(α)又は(β)の方法により行うことができる。
 方法(α):水洗にアルカリ現像液を用い、導電膜の除去と共にレジスト層の現像を行う。
 方法(β):水洗により導電膜のみを除去し、次いで、現像液によりレジスト層を現像する。
 方法(α)で用いるアルカリ現像液(アルカリ水溶液)としては、特に限定されず、公知のものを用いることができる。例えば、テトラメチルアンモニウムハイドロオキサイド水溶液が挙げられる。
 方法(β)の水洗は、現像液に該当しない水性液、例えば、水を用いて行うことができる。現像は、方法(α)と同様、アルカリ現像液を用いて行うことができる。
 水洗/現像工程の後に、必要に応じて、基板を純水等でリンス処理してもよい。
 水洗/現像工程の後、又はリンス処理後に、必要に応じて、レジストパターンが形成された基板を加熱(ポストベーク)してもよい。
 本発明のレジストパターンの形成方法で、片面上にレジストパターンを有する基板を得て、レジストパターンをマスクとしてエッチングする工程(エッチング工程)を行うことにより、パターンが形成された基板が得られる。
 エッチング工程の後に基板上にレジストパターンが残存する場合は、基板上のレジストパターンを剥離剤によって除去する工程をさらに有してもよい。
 以下、本発明を実施例により説明するが、以下の実施例は本発明の範囲を限定するものではない。
[測定/評価方法]
<臨界ミセル濃度の測定>
 水に界面活性剤(B)を添加して測定サンプルを調製し、得られた測定サンプルの25℃における表面張力を自動表面張力計(協和界面科学株式会社、「CBVP-Z型」)を用い、プレート法(ウィルヘルミ法)に基づいて測定した。
 すなわち、測定子(白金プレート)を25℃に調整した測定サンプルに浸漬させ、測定子が測定サンプルに引っ張られる力(表面張力)と、測定子を固定しているバネの力が釣り合ったときの、測定子が測定サンプルに沈んだ変位から、表面張力を求めた。
 水に対して界面活性剤(B)を0.01~1質量%ずつ添加して測定サンプルの表面張力を測定し、界面活性剤(B)の添加量を増やしても表面張力が低下しなくなるときの界面活性剤の濃度を臨界ミセル濃度とした。
<導電性の評価>
 ガラス基材上に導電性組成物を2.0mL滴下し、基材表面全体を覆うように、スピンコーターにて2000rpm×60秒間の条件で回転塗布して塗膜を形成した後、ホットプレートにて80℃で2分間加熱処理を行い、基材上に膜厚約30nmの導電膜を形成して導電体を得た。
 ハイレスタUX-MCP-HT800(株式会社三菱ケミカルアナリテック製)を用い2端子法(電極間距離20mm)にて、導電膜の表面抵抗率[Ω/□]を測定した。
<膜減り試験による評価>
(減膜率の測定)
 化学増幅型電子線レジスト(以下、「レジスト」と略す。)を使用し、レジスト層の減膜率を以下の手順(1A)~(8A)で測定した。
(1A)レジスト層の形成:基材として4インチシリコンウエハー上に、膜厚が約60nmとなるようにレジスト3μLをスピンコーターにて2000rpm×60秒間の条件で回転塗布した後、ホットプレートにて130℃で3分間プリベークを行い、溶剤を除去し、基材上にレジスト層を形成した。
(2A)レジスト層の膜厚測定1:基材上に形成されたレジスト層の一部を剥離し、基材面を基準位置として、高速分光エリプソメーター(J.A.Woollam社製、「M-2000D」)を用い、初期のレジスト層の膜厚a[nm]を測定した。
(3A)導電膜の形成:レジスト層上に導電性組成物2mLを滴下し、レジスト層の表面全体を覆うように、スピンコーターにて2000rpm×60秒間の条件で回転塗布した後、ホットプレートにて80℃で3分間プリベークを行い、溶剤を除去し、レジスト層上に膜厚約30nmの導電膜を形成した。
(4A)PEB処理:導電膜とレジスト層が積層した基材を空気雰囲気下、ホットプレートにて120℃×20分加熱し、この状態の基材を空気中、常温(25℃)で90秒静置した。
(5A)水洗:導電膜を20mLの水で洗い流した後、スピンコーターにて2000rpm×60秒間で回転させ、レジスト層の表面の水を除去した。
(6A)現像:2.38質量%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液からなる現像液20mLをレジスト層の表面に滴下した。60秒静置した後、スピンコーターにて2000rpm×60秒間で回転させ、レジスト層の表面の現像液を除去し、引き続き60秒間回転を維持して乾燥した。
(7A)レジスト層の膜厚測定2:前記(2A)においてレジスト層を一部剥離した部分から5mm以内におけるレジスト層の一部を剥離した後、触針式段差計を用いて現像後のレジスト層の膜厚b[nm]を測定した。
(8A)減膜率の算出:下記式(i)より減膜率[%]を算出した。
 減膜率[%]=100-(b/a×100)  ・・・(i)
[製造例1]
<導電性ポリマー(A)の製造>
 2-アミノアニソール-4-スルホン酸100mmolに、ピリジン100mmolと水100mLを添加して、モノマー溶液を得た。
 得られたモノマー溶液に、ペルオキソ二硫酸アンモニウム100mmolの水溶液(酸化剤溶液)を10℃で滴下した。滴下終了後、25℃で15時間さらに攪拌した後、35℃まで昇温してさらに2時間撹拌して、反応生成物が沈殿した反応液を得た(重合工程)。
 得られた反応液を遠心濾過器にて濾過し、沈殿物(反応生成物)を回収して、1Lのメタノールにて反応生成物を洗浄した後に乾燥させた。乾燥後の反応生成物20gを、純水980gに溶解させ、固形分濃度2質量%の導電性ポリマー溶液(A1-1)を1000g得た。
 超純水により洗浄した陽イオン交換樹脂(オルガノ株式会社製、「アンバーライトIR-120B」)500mLをカラムに充填した。
 このカラムに、導電性ポリマー溶液(A1-1)1000gを、50mL/分(SV=6)の速度で通過させて、塩基性物質等が除去された導電性ポリマー溶液(A1-2)を900g得た。
 次に、超純水により洗浄した陰イオン交換樹脂(オルガノ株式会社製、「アンバーライトIRA410」)500mLをカラムに充填した。
 このカラムに、導電性ポリマー溶液(A1-2)900gを、50mL/分(SV=6)の速度で通過させて、塩基性物質等が除去された導電性ポリマー溶液(A1-3)を800g得た。
 この導電性ポリマー溶液(A1-3)についてイオンクロマトグラフィにより組成分析を行なったところ、残存モノマーは80%以上、硫酸イオンは99%以上、塩基性物質は99%以上除去されていた。また、加熱残分を測定した結果、2.0質量%であった。すなわち、導電性ポリマー溶液(A1-3)の固形分濃度は2.0質量%である。
 なお、1スベルドラップ(SV)は1×10/s(1GL/s)と定義される。
[製造例2]
<界面活性剤(B)の製造>
 N-ビニルピロリドン55g(0.49mol)、重合開始剤としてアゾビスメチルブチロニトリル3g(15.60mmol)、連鎖移動剤としてn-ドデシルメルカプタン1g(4.94mmol)を、イソプロピルアルコール100mLに攪拌溶解して反応溶液を得た。その後、予め80℃に加熱しておいたイソプロピルアルコール100mL中に、前記反応溶液を1mL/minの滴下速度で滴下し、滴下重合を行った。滴下重合は、イソプロピルアルコールの温度を80℃に保ちながら行われた。滴下終了後、80℃でさらに2時間熟成した後、放冷した。その後、減圧濃縮を行い、濃縮物をアセトン30mLに溶解させ、水溶性ポリマー溶液を得た。得られた水溶性ポリマー溶液を1000mLのn-ヘキサンに添加して白色沈殿物を生成させ、得られた沈殿物を濾別した。得られた水溶性ポリマーをn-ヘキサンにて洗浄した後、乾燥させ、粉末状の水溶性ポリマー(B-1)45gを得た。
 得られた水溶性ポリマー(B-1)について分析を行ったところ、下記一般式(71-1)で表される化合物(71)と、下記一般式(81-1)で表される化合物(81)と、下記一般式(81-2)で表される化合物(81)との混合物であった。これらの質量比は、化合物(71):化合物(81)=10:90であった。
 水溶性ポリマー(B-1)の臨界ミセル濃度は、0.1質量%であった。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
[製造例3]
<界面活性剤(B)の製造>
 N-ビニルピロリドン55g(0.49mol)、重合開始剤としてジラウロイルパーオキサイド3g(7.53mmol)、連鎖移動剤としてn-ドデシルメルカプタン1g(4.94mmol)を、メチルイソブチルケトン100mLに攪拌溶解して反応溶液を得た。その後、予め80℃に加熱しておいたイソプロピルアルコール100mL中に、前記反応溶液を1mL/minの滴下速度で滴下し、滴下重合を行った。滴下重合は、イソプロピルアルコールの温度を80℃に保ちながら行われた。滴下終了後、80℃でさらに2時間熟成した後、放冷した。その後、減圧濃縮を行い、濃縮物をアセトン30mLに溶解させ、水溶性ポリマー溶液を得た。得られた水溶性ポリマー溶液を1000mLのn-ヘキサンに添加して白色沈殿物を生成させ、得られた沈殿物を濾別した。得られた水溶性ポリマーをn-ヘキサンにて洗浄した後、乾燥させ、粉末状の水溶性ポリマー(B-2)48gを得た。
 得られた水溶性ポリマー(B-2)について分析を行ったところ、前記一般式(71-1)で表される化合物(71)と、前記一般式(81-1)で表される化合物(81)との混合物であった。これらの質量比は、化合物(71):化合物(81)=40:60であった。
 水溶性ポリマー(B-2)の臨界ミセル濃度は、0.01質量%であった。
[実施例1]
 導電性ポリマー溶液(A1-3)20質量部(固形分換算で0.4質量部)と、水溶性ポリマー(B-1)0.6質量部と、イソプロピルアルコール(IPA)4質量部と、水75.4質量部とを混合し、導電性組成物を得た。導電性組成物の総質量に対する、導電性ポリマー(A)、界面活性剤(B)及び溶剤(C)の含有量等を表1に示す。
 得られた導電性組成物について、導電性を評価し、膜減り試験を行った。これらの結果を表1に示す。
[実施例2~4/比較例1~2]
 導電性ポリマー(A)100質量部に対する水溶性ポリマー(B-1)の含有量が表1に示す値となるように、各成分の含有量を変更した以外は、実施例1と同様にして導電性組成物を調製した。
 得られた導電性組成物について、導電性を評価し、膜減り試験を行った。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000014
 表1から明らかなように、各実施例の場合、表面抵抗率が1×1010[Ω/□]以下、かつ減膜率が6.2%以下であり、各実施例で得られた導電性組成物によれば、導電性に優れるとともにレジスト層の膜減りが少ない導電膜を形成できた。
 一方、比較例の場合、レジスト層が膜減りしやすかった。
[実施例5]
 導電性ポリマー溶液(A1-3)45質量部(固形分換算で0.9質量部)と、水溶性ポリマー(B-2)0.1質量部と、イソプロピルアルコール(IPA)4質量部と、水50.9質量部とを混合し、導電性組成物を得た。導電性組成物の総質量に対する、導電性ポリマー(A)、界面活性剤(B)及び溶剤(C)の含有量等を表2に示す。
 得られた導電性組成物について、導電性を評価し、膜減り試験を行った。これらの結果を表2に示す。
[実施例6~7]
 導電性ポリマー(A)100質量部に対する水溶性ポリマー(B-2)の含有量が表2に示す値となるように、各成分の含有量を変更した以外は、実施例5と同様にして導電性組成物を調製した。
 得られた導電性組成物について、導電性を評価し、膜減り試験を行った。これらの結果を表2に示す。
[比較例3]
 導電性ポリマー溶液(A1-3)49.5質量部(固形分換算で0.99質量部)と、水溶性ポリマー(B-2)0.01質量部と、イソプロピルアルコール(IPA)4質量部と、水46.49質量部とを混合し、導電性組成物を得た。導電性組成物の総質量に対する、導電性ポリマー(A)、界面活性剤(B)及び溶剤(C)の含有量等を表2に示す。
 得られた導電性組成物について、導電性を評価し、膜減り試験を行った。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000015
 表2から明らかなように、各実施例の場合、表面抵抗率が1×1010[Ω/□]以下、かつ減膜率が6.2%以下であり、各実施例で得られた導電性組成物によれば、導電性に優れるとともにレジスト層の膜減りが少ない導電膜を形成できた。特に、臨界ミセル濃度が0.01質量%である水溶性ポリマー(B-2)を用いれば、少ない量でもレジスト層の膜減り防止の効果が充分に得られることが示された。
[実施例8]
 導電性ポリマー溶液(A1-3)18質量部(固形分換算で0.36質量部)と、水溶性ポリマー(B-1)0.55質量部と、イソプロピルアルコール(IPA)4質量部と、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)0.09質量部と、水77.36質量部とを混合し、導電性組成物を得た。導電性組成物の総質量に対する、導電性ポリマー(A)、界面活性剤(B)、溶剤(C)、及び塩基性化合物(D)の含有量等を表3に示す。
 得られた導電性組成物について、導電性を評価し、膜減り試験を行った。これらの結果を表3に示す。
[実施例9]
 導電性ポリマー溶液(A1-3)18質量部(固形分換算で0.36質量部)と、水溶性ポリマー(B-1)0.6質量部と、イソプロピルアルコール(IPA)4質量部と、水酸化カリウム(KOH)0.04質量部と、水77.36質量部とを混合し、導電性組成物を得た。導電性組成物の総質量に対する、導電性ポリマー(A)、界面活性剤(B)、溶剤(C)、及び塩基性化合物(D)の含有量等を表3に示す。
 得られた導電性組成物について、導電性を評価し、膜減り試験を行った。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000016
 表3中の略号は以下の通りである。
・TBD:1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(pKa=26、分子量=136)。
・KOH:水酸化カリウム(pKa>13、分子量=56)。
 表3から明らかなように、各実施例の場合、表面抵抗率が1×1010[Ω/□]以下、かつ減膜率が6.2%以下であり、各実施例で得られた導電性組成物によれば、導電性に優れるとともにレジスト層の膜減りが少ない導電膜を形成できた。
 本発明の導電性組成物は、例えば、レジスト層上に形成して荷電粒子線を用いたパターン形成した際に、レジスト層の膜減りが少ない導電膜を形成でき、荷電粒子線描画時の帯電防止用として有用である。

Claims (12)

  1.  導電性ポリマーと、界面活性剤とを含む導電性組成物であって、
     前記界面活性剤の臨界ミセル濃度が0.1質量%未満であり、前記界面活性剤の含有量が前記導電性ポリマー100質量部に対して5質量部以上である導電性組成物。
  2.  前記界面活性剤の含有量が前記導電性ポリマー100質量部に対して10質量部以上である、請求項1に記載の導電性組成物。
  3.  導電性ポリマーと、界面活性剤とを含む導電性組成物であって、
     前記界面活性剤の臨界ミセル濃度が0.1質量%以上であり、前記界面活性剤の含有量が前記導電性ポリマーの含有量100質量部に対して100質量部超である導電性組成物。
  4.  前記界面活性剤の含有量が前記導電性ポリマー100質量部に対して110質量部以上である、請求項3に記載の導電性組成物。
  5.  前記界面活性剤が、末端疎水性基を有する水溶性ポリマーである、請求項1~4のいずれか一項に記載の導電性組成物。
  6.  さらに塩基性化合物を含む、請求項1~5のいずれか一項に記載の導電性組成物。
  7.  前記塩基性化合物の25℃における酸解離定数が13以上であり、前記塩基性化合物の分子量が200以下であり、前記塩基性化合物の含有量が前記導電性ポリマー100質量部に対して1~50質量部である、請求項6に記載の導電性組成物。
  8.  前記導電性ポリマーが酸性基を有する、請求項1~7のいずれか一項に記載の導電性組成物。
  9.  表面抵抗率が1×1010[Ω/□]以下である、請求項1~8のいずれか一項に記載の導電性組成物。
  10.  請求項1~9のいずれか一項に記載の導電性組成物を含むレジスト被覆材料。
  11.  請求項1~9のいずれか一項に記載の導電性組成物を含む導電膜が表面に形成されたレジスト。
  12.  化学増幅型レジストからなるレジスト層を片面上に有する基板の前記レジスト層の表面に、請求項1~9のいずれか一項に記載の導電性組成物を含む導電膜を形成する積層工程と、前記導電膜が形成された前記基板に対し、前記導電膜側から荷電粒子線をパターン状に照射する露光工程とを有するレジストパターンの形成方法。
PCT/JP2021/003062 2020-01-29 2021-01-28 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法 WO2021153678A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021574111A JP7517352B2 (ja) 2020-01-29 2021-01-28 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法
KR1020227023615A KR20220114591A (ko) 2020-01-29 2021-01-28 도전성 조성물, 레지스트 피복 재료, 레지스트, 및 레지스트 패턴의 형성 방법
EP21747640.7A EP4098702A4 (en) 2020-01-29 2021-01-28 CONDUCTIVE COMPOSITE, RESERVOIR COATING MATERIAL, RESERVOIR, AND RESERVOIR PATTERN FORMING METHOD
CN202180009244.4A CN114945635B (zh) 2020-01-29 2021-01-28 导电性组合物、抗蚀剂被覆材料、抗蚀剂及抗蚀剂图案的形成方法
CN202410664211.9A CN118620412A (zh) 2020-01-29 2021-01-28 导电性组合物、抗蚀剂被覆材料、抗蚀剂及抗蚀剂图案的形成方法
US17/814,718 US20220382155A1 (en) 2020-01-29 2022-07-25 Conductive composite, resist coating material, resist, and method for forming resist pattern
JP2024106874A JP2024127925A (ja) 2020-01-29 2024-07-02 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020012623 2020-01-29
JP2020-012623 2020-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,718 Continuation US20220382155A1 (en) 2020-01-29 2022-07-25 Conductive composite, resist coating material, resist, and method for forming resist pattern

Publications (1)

Publication Number Publication Date
WO2021153678A1 true WO2021153678A1 (ja) 2021-08-05

Family

ID=77079166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003062 WO2021153678A1 (ja) 2020-01-29 2021-01-28 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法

Country Status (7)

Country Link
US (1) US20220382155A1 (ja)
EP (1) EP4098702A4 (ja)
JP (2) JP7517352B2 (ja)
KR (1) KR20220114591A (ja)
CN (2) CN118620412A (ja)
TW (1) TW202130671A (ja)
WO (1) WO2021153678A1 (ja)

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197633A (ja) 1985-02-26 1986-09-01 Nitto Electric Ind Co Ltd スルホン化導電性有機重合体
JPS6339916A (ja) 1986-03-24 1988-02-20 Showa Denko Kk 自己ド−ピング機能を有する導電体及び新規高分子化合物
JPH01301714A (ja) 1987-07-23 1989-12-05 Cookson Group Plc 電導性共重合体及びその製造法
JPH0432848A (ja) 1990-05-30 1992-02-04 Hitachi Ltd 荷電粒子線照射方法及び観察方法
JPH04268331A (ja) 1991-02-25 1992-09-24 Fuji Xerox Co Ltd 自己ドーピング機能を有する導電性重合体の製造方法
JPH04328181A (ja) 1991-04-26 1992-11-17 Showa Denko Kk 導電性高分子複合材料およびその製造方法
JPH05503953A (ja) 1989-10-24 1993-06-24 ジ オハイオ ステート ユニバーシティ リサーチ ファウンデーション スルフォン化ポリアニリン塩組成物,製造法および使用法
JPH05504153A (ja) 1989-10-19 1993-07-01 ジ オハイオ ステート ユニバーシティ リサーチ ファウンデーション ポリアニリン組成物、それらの製法並びにそれらの利用
JPH05178989A (ja) 1991-12-27 1993-07-20 Nitto Chem Ind Co Ltd アニリン系共重合体スルホン化物とその製法
JPH05226238A (ja) 1991-10-31 1993-09-03 Internatl Business Mach Corp <Ibm> E−ビームレジスト用の塩基現像可能な放電トップ層
JPH0632845A (ja) 1992-07-20 1994-02-08 Showa Denko Kk 導電性高分子複合物の製造方法
JPH0656987A (ja) 1992-08-11 1994-03-01 Bridgestone Corp 導電性高分子の製造方法
JPH0687949A (ja) 1992-07-20 1994-03-29 Showa Denko Kk 導電性複合物及びその製造法
JPH06145386A (ja) 1992-11-09 1994-05-24 Showa Denko Kk 導電性複合材料およびその製造方法
JPH06256516A (ja) 1993-03-08 1994-09-13 Showa Denko Kk 導電性重合体の製造方法
JPH06293828A (ja) 1993-02-15 1994-10-21 Nitto Chem Ind Co Ltd アニリン系導電性ポリマーとその製造方法
JPH0741756A (ja) 1993-05-28 1995-02-10 Showa Denko Kk 帯電防止材料、それを用いる帯電防止方法及び観察または検査方法、及び帯電が防止された物品
JPH0748436A (ja) 1993-05-31 1995-02-21 Showa Denko Kk 導電性重合体の製造方法
JPH07118524A (ja) 1993-09-03 1995-05-09 Nitto Chem Ind Co Ltd 導電性組成物、導電体及びその形成方法
JPH07324132A (ja) 1994-04-04 1995-12-12 Nitto Chem Ind Co Ltd 可溶性アニリン系導電性ポリマーの製造方法
JP2011219680A (ja) 2010-04-13 2011-11-04 Mitsubishi Rayon Co Ltd 導電性樹脂組成物の製造方法、およびこれより得られた導電性樹脂組成物
CN102993413A (zh) * 2012-11-23 2013-03-27 东华大学 双子表面活性剂掺杂pedot导电纳米粒子的制备方法
WO2014006821A1 (ja) * 2012-07-02 2014-01-09 信越ポリマー株式会社 導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法
WO2014017540A1 (ja) * 2012-07-24 2014-01-30 三菱レイヨン株式会社 導電体、導電性組成物、及び積層体
JP2014065898A (ja) 2012-09-06 2014-04-17 Tosoh Corp ポリチオフェン及びその水溶液、並びにそのチオフェンモノマー
CN106953066A (zh) * 2017-03-31 2017-07-14 东莞市永邦新能源科技有限公司 一种正极浆料的涂布工艺
WO2019146715A1 (ja) * 2018-01-26 2019-08-01 三菱ケミカル株式会社 導電性組成物とその製造方法及び水溶性ポリマーとその製造方法
JP2020012623A (ja) 2018-07-20 2020-01-23 春日電機株式会社 除水または除塵装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964608B2 (ja) * 2006-02-08 2012-07-04 昭和電工株式会社 帯電防止剤、帯電防止膜及び帯電防止膜被覆物品
JP5394016B2 (ja) * 2008-07-03 2014-01-22 三菱レイヨン株式会社 レジストパターン形成方法
JP7087265B2 (ja) * 2015-08-20 2022-06-21 三菱ケミカル株式会社 導電性組成物、導電体及びレジストパターンの形成方法

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197633A (ja) 1985-02-26 1986-09-01 Nitto Electric Ind Co Ltd スルホン化導電性有機重合体
JPS6339916A (ja) 1986-03-24 1988-02-20 Showa Denko Kk 自己ド−ピング機能を有する導電体及び新規高分子化合物
JPH01301714A (ja) 1987-07-23 1989-12-05 Cookson Group Plc 電導性共重合体及びその製造法
JPH05504153A (ja) 1989-10-19 1993-07-01 ジ オハイオ ステート ユニバーシティ リサーチ ファウンデーション ポリアニリン組成物、それらの製法並びにそれらの利用
JPH05503953A (ja) 1989-10-24 1993-06-24 ジ オハイオ ステート ユニバーシティ リサーチ ファウンデーション スルフォン化ポリアニリン塩組成物,製造法および使用法
JPH0432848A (ja) 1990-05-30 1992-02-04 Hitachi Ltd 荷電粒子線照射方法及び観察方法
JPH04268331A (ja) 1991-02-25 1992-09-24 Fuji Xerox Co Ltd 自己ドーピング機能を有する導電性重合体の製造方法
JPH04328181A (ja) 1991-04-26 1992-11-17 Showa Denko Kk 導電性高分子複合材料およびその製造方法
JPH05226238A (ja) 1991-10-31 1993-09-03 Internatl Business Mach Corp <Ibm> E−ビームレジスト用の塩基現像可能な放電トップ層
JPH05178989A (ja) 1991-12-27 1993-07-20 Nitto Chem Ind Co Ltd アニリン系共重合体スルホン化物とその製法
JPH0632845A (ja) 1992-07-20 1994-02-08 Showa Denko Kk 導電性高分子複合物の製造方法
JPH0687949A (ja) 1992-07-20 1994-03-29 Showa Denko Kk 導電性複合物及びその製造法
JPH0656987A (ja) 1992-08-11 1994-03-01 Bridgestone Corp 導電性高分子の製造方法
JPH06145386A (ja) 1992-11-09 1994-05-24 Showa Denko Kk 導電性複合材料およびその製造方法
JPH06293828A (ja) 1993-02-15 1994-10-21 Nitto Chem Ind Co Ltd アニリン系導電性ポリマーとその製造方法
JPH06256516A (ja) 1993-03-08 1994-09-13 Showa Denko Kk 導電性重合体の製造方法
JPH0741756A (ja) 1993-05-28 1995-02-10 Showa Denko Kk 帯電防止材料、それを用いる帯電防止方法及び観察または検査方法、及び帯電が防止された物品
JPH0748436A (ja) 1993-05-31 1995-02-21 Showa Denko Kk 導電性重合体の製造方法
JPH07118524A (ja) 1993-09-03 1995-05-09 Nitto Chem Ind Co Ltd 導電性組成物、導電体及びその形成方法
JPH07324132A (ja) 1994-04-04 1995-12-12 Nitto Chem Ind Co Ltd 可溶性アニリン系導電性ポリマーの製造方法
JP2011219680A (ja) 2010-04-13 2011-11-04 Mitsubishi Rayon Co Ltd 導電性樹脂組成物の製造方法、およびこれより得られた導電性樹脂組成物
WO2014006821A1 (ja) * 2012-07-02 2014-01-09 信越ポリマー株式会社 導電性高分子組成物、該組成物より得られる帯電防止膜が設けられた被覆品、及び前記組成物を用いたパターン形成方法
WO2014017540A1 (ja) * 2012-07-24 2014-01-30 三菱レイヨン株式会社 導電体、導電性組成物、及び積層体
JP2017171940A (ja) 2012-07-24 2017-09-28 三菱ケミカル株式会社 導電性組成物
JP2014065898A (ja) 2012-09-06 2014-04-17 Tosoh Corp ポリチオフェン及びその水溶液、並びにそのチオフェンモノマー
CN102993413A (zh) * 2012-11-23 2013-03-27 东华大学 双子表面活性剂掺杂pedot导电纳米粒子的制备方法
CN106953066A (zh) * 2017-03-31 2017-07-14 东莞市永邦新能源科技有限公司 一种正极浆料的涂布工艺
WO2019146715A1 (ja) * 2018-01-26 2019-08-01 三菱ケミカル株式会社 導電性組成物とその製造方法及び水溶性ポリマーとその製造方法
JP2020012623A (ja) 2018-07-20 2020-01-23 春日電機株式会社 除水または除塵装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chemistry Handbook, Fundamentals II", 25 September 1966, CHEMICAL SOCIETY OF JAPAN
See also references of EP4098702A4
SEKIGUCHI NORIO, SHIMIZU KATSUYA: "Preparation of Oil-in-Water Emulsion with a Good Texture of Use and Waterproofness Using the Gemini Surfactant", JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS OF JAPAN (JOURNAL OF SCCJ) - NIHONKESHOHIN GIJUTSUSHAKAI KAISHI, NIHON KESHOHIN GIJUTSUSHAKAI, TOKYO, JP, vol. 51, no. 1, 1 January 2017 (2017-01-01), JP, pages 18 - 26, XP055843574, ISSN: 0387-5253, DOI: 10.5107/sccj.51.18 *

Also Published As

Publication number Publication date
JP7517352B2 (ja) 2024-07-17
US20220382155A1 (en) 2022-12-01
EP4098702A4 (en) 2023-07-26
CN118620412A (zh) 2024-09-10
CN114945635B (zh) 2024-06-18
CN114945635A (zh) 2022-08-26
KR20220114591A (ko) 2022-08-17
JP2024127925A (ja) 2024-09-20
EP4098702A1 (en) 2022-12-07
TW202130671A (zh) 2021-08-16
JPWO2021153678A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6604357B2 (ja) 導電性組成物
JP6451203B2 (ja) レジストパターンの形成方法、パターンが形成された基板の製造方法
JP6903864B2 (ja) 帯電防止膜、積層体とその製造方法、およびフォトマスクの製造方法
JP7136197B2 (ja) 導電性組成物、導電膜及び積層体
JP7517352B2 (ja) 導電性組成物、レジスト被覆材料、レジスト、及びレジストパターンの形成方法
JP7415382B2 (ja) 導電性組成物
WO2020100791A1 (ja) 導電性組成物及びその製造方法と、導電体及びその製造方法
JP7443722B2 (ja) 導電性組成物、帯電防止膜の製造方法及びパターンの形成方法
JP7206852B2 (ja) 導電性組成物の製造方法
JP7135570B2 (ja) 導電性組成物、導電体の製造方法及びレジストパターンの形成方法
JP2021095519A (ja) 導電性組成物
JP7310204B2 (ja) 導電膜の形成方法、導電体の製造方法、レジストパターンの形成方法
JP7318198B2 (ja) 導電性ポリマーの製造方法
WO2024058243A1 (ja) 導電膜の製造方法、マスクの製造方法、半導体デバイスの製造方法、導電膜の欠陥検査方法、及び欠陥検査装置
JP7293649B2 (ja) 導電性組成物及びその製造方法
JP2021038357A (ja) 導電性ポリマーの製造方法と、導電性組成物の製造方法
JP2020084004A (ja) 導電性ポリマー及び導電性組成物
JP2023100861A (ja) 導電性組成物及びその製造方法
JP2020152748A (ja) 導電性ポリマー及びその製造方法と、導電性組成物
JP2020158576A (ja) 導電性組成物
JP2020158575A (ja) 導電性組成物
JP2020186348A (ja) 導電性組成物、塗膜、レジストパターンの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574111

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227023615

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021747640

Country of ref document: EP

Effective date: 20220829