WO2021125704A1 - 표시 장치 - Google Patents

표시 장치 Download PDF

Info

Publication number
WO2021125704A1
WO2021125704A1 PCT/KR2020/018158 KR2020018158W WO2021125704A1 WO 2021125704 A1 WO2021125704 A1 WO 2021125704A1 KR 2020018158 W KR2020018158 W KR 2020018158W WO 2021125704 A1 WO2021125704 A1 WO 2021125704A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
disposed
outer side
light emitting
unit
Prior art date
Application number
PCT/KR2020/018158
Other languages
English (en)
French (fr)
Inventor
이신흥
이희근
태창일
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Priority to US17/757,448 priority Critical patent/US20230057723A1/en
Priority to CN202080088375.1A priority patent/CN114830343A/zh
Publication of WO2021125704A1 publication Critical patent/WO2021125704A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a display device.
  • OLED organic light emitting display
  • LCD liquid crystal display
  • a device for displaying an image of a display device includes a display panel such as an organic light emitting display panel or a liquid crystal display panel.
  • the light emitting display panel may include a light emitting device.
  • a light emitting diode LED
  • OLED organic light emitting diode
  • An object of the present invention is to provide a display device including electrodes having curved sides and facing each other.
  • Another object of the present invention is to provide a display device in which the electrodes are arranged around the outer portion of each pixel so that the curved side faces the center of each pixel.
  • a display device includes a substrate including a plurality of pixels and an electrode unit disposed in the pixels of the substrate, the substrate having a center of curvature and including a first outer side having a curved shape.
  • An electrode unit including a first electrode and a second outer side having a curved shape corresponding to the first outer side and a second electrode spaced apart from the first electrode, and between the first electrode and the second electrode and a plurality of light emitting devices disposed on the .
  • the first electrode is disposed such that the center of curvature is positioned at the outer portion of the pixel, and the first outer side faces the center of the pixel.
  • the electrode unit further includes a first short side extending in a first direction and a second short side extending in a second direction intersecting the first direction and having one side connected to one side of the first short side and a first type electrode unit in which the first outer side connects the other side of the first short side and the other side of the second short side, wherein the first electrode of the first type electrode unit is disposed on the first outer side
  • a center of curvature may be the one side of the first short side.
  • the second electrode may include a third outer edge having a curved shape corresponding to the second outer edge; Connecting one side of the second outer side and one side of the third outer side, connecting a third short side extending in the first direction, the other side of the second outer side, and the other side of the third outer side, and connecting the second side It may further include a fourth short side extending in the direction.
  • the electrode unit may include a first electrode unit having a center of curvature of the first outer side positioned on one side of the pixel and a second electrode unit having a center of curvature of the first outer side positioned on the other side of the pixel. .
  • the second electrode of the first electrode unit may be directly connected to the second electrode of the second electrode unit.
  • It may further include a bridge electrode disposed in the pixel, one side connected to the first electrode of the first electrode unit and the other side connected to the second electrode of the second electrode unit.
  • the second electrode may further include an electrode protrusion from which a portion of the third outer side protrudes.
  • the electrode unit further includes a third electrode disposed between the first electrode and the second electrode and a fourth electrode disposed between the third electrode and the first electrode, wherein the third electrode includes the second electrode.
  • the electrode may have a curved shape corresponding to the second outer side, and the fourth electrode may have a curved shape corresponding to the first outer side of the first electrode.
  • the third electrode and the fourth electrode may be disposed to face each other and spaced apart from each other, and the light emitting device may also be disposed between the third electrode and the fourth electrode.
  • first floating pattern having a shape extending in the first direction and including a first short side of the first electrode and a portion spaced apart from the third electrode in the second direction; and a second floating pattern having a shape extending in the second direction and including a fourth short side of the second electrode and a portion spaced apart from the fourth electrode in the first direction.
  • the electrode unit includes a second type electrode unit in which the first electrode includes a fifth short side extending in the first direction, and the first outer side connects both sides of the fifth short side;
  • a center of curvature of the first outer side may be disposed between both sides of the fifth short side.
  • the electrode unit may further include a third type electrode unit in which the first electrode has a circular shape.
  • first contact electrode disposed on the first electrode and including a curved side along the first outer side
  • second contact electrode disposed on the second electrode and including a curved side along the second outer side, wherein the first contact electrode is in contact with the first electrode and one end of the light emitting device and the second contact electrode may be in contact with the second electrode and the other end of the light emitting device.
  • a first interval between the first outer side of the first electrode and the second outer side of the second electrode may be smaller than a second interval between the first contact electrode and the second contact electrode.
  • a display device extends in a direction crossing each other to connect first short sides and second short sides having one side interconnected, and the other sides of the first short side and the second short side,
  • a plurality of first electrodes including a first outer side having a curved shape, disposed to face the first outer side of the first electrode and spaced apart from each other, the second outer side having a curved shape corresponding to the first outer side
  • a plurality of second electrodes including a side and a plurality of light emitting devices disposed between the first electrode and the second electrode, wherein the plurality of light emitting devices are disposed between the first outer side and the second outer side and arranged along the curvature of the first outer side.
  • the second outer side may have a curved shape
  • the fourth electrode may have a curved shape corresponding to the first outer side of the first electrode.
  • first contact electrode disposed on the first electrode and including a curved edge along the first outer edge
  • second contact electrode disposed on the second electrode and including a curved edge along the second outer edge. It may further include a contact electrode.
  • the first outer side and the second outer side have the same center of curvature, but at least some of the plurality of first electrodes have different centers of curvature, and at least some of the plurality of second electrodes have different centers of curvature. can have
  • At least some of the second electrodes having different centers of curvature may be directly connected to each other.
  • a bridge electrode connecting the first electrode and the second electrode having a center of curvature different from that of the first electrode may be further included.
  • a display device includes a first electrode having a center of curvature and including a curved outer side, and a second electrode having the same center of curvature corresponding to the outer side of the first electrode and including a curved outer side. do.
  • the display device may include a plurality of first and second electrodes for each pixel or sub-pixel, and these may be arranged so that a center of curvature is located at an outer portion of the pixel or sub-pixel.
  • a ratio of a unit area occupied by electrodes disposed per unit area of each pixel or sub-pixel may increase, and the number of light emitting devices disposed per unit area may increase.
  • the amount of light emitted per unit area of each pixel or sub-pixel may increase.
  • FIG. 1 is a plan view of a display device according to an exemplary embodiment.
  • FIG. 2 is a plan view illustrating one pixel of a display device according to an exemplary embodiment.
  • FIG 3 is a plan view illustrating one sub-pixel of a display device according to an exemplary embodiment.
  • FIG. 4 is a schematic plan view illustrating an electrode unit according to an exemplary embodiment.
  • FIG. 5 is a cross-sectional view taken along line I-I' of FIG. 3 .
  • FIG. 6 is a schematic layout diagram illustrating an electrode unit and alignment wiring according to an exemplary embodiment.
  • FIG. 7 is a cross-sectional view taken along line II-II' of FIG. 6 .
  • FIG. 8 is a cross-sectional view taken along line III-III' of FIG. 6 .
  • FIG. 9 is a schematic diagram of a light emitting device according to an embodiment.
  • 10 to 12 are plan views illustrating a part of a manufacturing process of a display device according to an exemplary embodiment.
  • FIG. 13 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • FIG. 14 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • 15 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • FIG. 16 is a schematic plan view illustrating an electrode unit of the display device of FIG. 15 .
  • FIG. 17 is a schematic layout diagram illustrating an electrode unit and alignment wiring of the display device of FIG. 15 .
  • FIG. 18 is a cross-sectional view taken along line IV-IV' of FIG. 15 .
  • 19 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • 20 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • 21 and 22 are plan views illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • FIG. 23 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • 24 and 25 are plan views illustrating a part of a manufacturing process of the display device of FIG. 23 .
  • 26 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • FIG. 1 is a schematic plan view of a display device according to an exemplary embodiment.
  • the display device 10 displays a moving image or a still image.
  • the display device 10 may refer to any electronic device that provides a display screen.
  • An electronic notebook, an electronic book, a portable multimedia player (PMP), a navigation system, a game machine, a digital camera, a camcorder, etc. may be included in the display device 10 .
  • the display device 10 includes a display panel that provides a display screen.
  • the display panel include an inorganic light emitting diode display panel, an organic light emitting display panel, a quantum dot light emitting display panel, a plasma display panel, a field emission display panel, and the like.
  • an inorganic light emitting diode display panel is applied is exemplified as an example of the display panel, but the present invention is not limited thereto, and the same technical idea may be applied to other display panels if applicable.
  • the shape of the display device 10 may be variously modified.
  • the display device 10 may have a shape such as a long rectangle, a long rectangle, a square, a rectangle with rounded corners (vertices), other polygons, or a circle.
  • the shape of the display area DPA of the display device 10 may also be similar to the overall shape of the display device 10 . In FIG. 1 , the display device 10 and the display area DPA having a horizontal long rectangular shape are illustrated.
  • the display device 10 may include a display area DPA and a non-display area NDA.
  • the display area DPA is an area in which a screen can be displayed
  • the non-display area NDA is an area in which a screen is not displayed.
  • the display area DPA may be referred to as an active area
  • the non-display area NDA may also be referred to as a non-active area.
  • the display area DPA may generally occupy the center of the display device 10 .
  • the display area DPA may include a plurality of pixels PX.
  • the plurality of pixels PX may be arranged in a matrix direction.
  • the shape of each pixel PX may be a rectangular shape or a square shape in plan view, but is not limited thereto, and each side may have a rhombus shape inclined with respect to one direction.
  • Each pixel PX may be alternately arranged in a stripe type or a pentile type.
  • each of the pixels PX may include one or more light emitting devices 300 emitting light of a specific wavelength band to display a specific color.
  • a non-display area NDA may be disposed around the display area DPA.
  • the non-display area NDA may completely or partially surround the display area DPA.
  • the display area DPA may have a rectangular shape, and the non-display area NDA may be disposed adjacent to four sides of the display area DPA.
  • the non-display area NDA may constitute a bezel of the display device 10 .
  • Wires or circuit drivers included in the display device 10 may be disposed in each of the non-display areas NDA, or external devices may be mounted thereon.
  • FIG. 2 is a plan view illustrating one pixel of a display device according to an exemplary embodiment.
  • the display device 10 includes a plurality of pixels PX, and each of the plurality of pixels PX is a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX2 .
  • a pixel PX3 may be included.
  • the first sub-pixel PX1 emits light of a first color
  • the second sub-pixel PX2 emits light of a second color
  • the third sub-pixel PX3 emits light of a third color.
  • the first color may be blue
  • the second color may be green
  • the third color may be red.
  • the present invention is not limited thereto, and each of the sub-pixels PXn may emit light of the same color.
  • one pixel PX includes three sub-pixels PXn in FIG. 2
  • the present invention is not limited thereto, and the pixel PX may include a larger number of sub-pixels PXn. .
  • Each of the sub-pixels PXn of the display device 10 may include an area defined as the emission area EMA.
  • the first sub-pixel PX1 has a first emission area EMA1
  • the second sub-pixel PX2 has a second emission area EMA2
  • the third sub-pixel PX3 has a third emission area EMA2 .
  • the light emitting area EMA may be defined as an area in which the light emitting device 300 included in the display device 10 is disposed to emit light in a specific wavelength band.
  • the light emitting device 300 includes an active layer ( '330' in FIG. 9 ), and the active layer 330 may emit light in a specific wavelength band without direction.
  • Lights emitted from the active layer 330 of the light emitting device 300 may be emitted in the lateral direction of the light emitting device 300 including both ends of the light emitting device 300 .
  • the light emitting area EMA may include an area in which the light emitting device 300 is disposed, and an area adjacent to the light emitting device 300 , from which light emitted from the light emitting device 300 is emitted.
  • the light emitting area EMA is not limited thereto, and the light emitting area EMA may also include an area in which light emitted from the light emitting device 300 is reflected or refracted by other members.
  • the plurality of light emitting devices 300 may be disposed in each sub-pixel PXn, and may form a light emitting area EMA including an area in which they are disposed and an area adjacent thereto.
  • each sub-pixel PXn of the display device 10 may include a non-emission area defined as an area other than the light-emitting area EMA.
  • the non-emission region may be a region in which the light emitting device 300 is not disposed and the light emitted from the light emitting device 300 does not reach, and thus the light is not emitted.
  • a region in which layers disposed under the layer in which the light emitting devices 300 are disposed are partially patterned may be formed.
  • some wirings disposed below may be patterned. The patterning may be performed in a non-emission area in which the light emitting devices 300 are not disposed in each sub-pixel PXn. A detailed description thereof will be provided later.
  • Each sub-pixel PXn of the display device 10 may include a plurality of electrodes 210 and 220 , a plurality of light emitting devices 300 , and a plurality of contact electrodes 260 . Also, the display device 10 may further include an external bank 450 disposed to surround each sub-pixel PXn. According to an exemplary embodiment, in the display device 10 , the number of light emitting devices 300 disposed per unit area of each sub-pixel PXn, including the first electrode 210 and the second electrode 220 having curved sides, is can increase In addition, the light emitting devices 300 may be disposed between the curved sides of each of the electrodes 210 and 220 , and each sub-pixel PXn may have various light exit directions.
  • the electrodes 210 and 220 and the light emitting devices 300 disposed in each sub-pixel PXn of the display device 10 will be described in detail with further reference to other drawings.
  • 3 is a plan view illustrating one sub-pixel of a display device according to an exemplary embodiment.
  • 4 is a schematic plan view illustrating an electrode unit according to an exemplary embodiment.
  • FIG. 3 shows only the first sub-pixel PX1 of FIG. 2
  • FIG. 4 is an enlarged view of the electrode unit EU including the first electrode 210 and the second electrode 220 .
  • each sub-pixel PXn of the display device 10 may include an electrode unit EU including a plurality of electrodes 210 and 220 .
  • the electrode unit EU may include a first electrode 210 and a second electrode 220
  • one sub-pixel PXn may include a plurality of electrode units EU.
  • one sub-pixel PXn includes a first electrode unit EU1 , a second electrode unit EU2 , a third electrode unit EU3 , and a fourth electrode unit EU4 . may include.
  • FIG. 4 illustrates the first electrode 210 and the second electrode 220 included in the first electrode unit EU1 of FIG. 3 .
  • the first electrode 210 of the electrode unit EU may have a shape in which at least one side is curved.
  • the first electrode 210 may include a first short side SS1 extending in the first direction DR1 , a second short side SS2 extending in the second direction DR2 , and a first short side SS1 , It may include a first outer side OS1 connecting the second short side SS2 and having a curved shape.
  • the first short side SS1 and the second short side SS2 of the first electrode 210 may extend in a direction crossing each other and have one side connected to each other, and the other sides thereof may be connected to the first outer side OS1. have.
  • the first electrode 210 may have a quad-circle shape in plan view. 4 , the first electrode 210 extends such that the first short side SS1 and the second short side SS2 are perpendicular to each other, and the first outer side OS1 has the first short side SS1 and The second short side SS2 may have a curved shape with respect to the interconnected portion. That is, the first outer side OS1 of the first electrode 210 has a center of curvature at one side where the first short side SS1 and the second short side SS2 are interconnected, and a quadrant having the shape of the first electrode 210 . may be an arc of
  • the present invention is not limited thereto.
  • the first electrode 210 includes the first outer side OS1 having a curved shape with respect to a specific center of curvature
  • the first short side SS1 and the second short side SS2 may not necessarily have an intersecting shape.
  • the first electrode 210 may have a shape in which the first short side SS1 and the second short side SS2 do not intersect or extend in one direction.
  • the first electrode 210 may not be directly connected to the first short side SS1 and the second short side SS2, but may further include another side to be interconnected through this.
  • the other side may extend in one direction or may have a curved shape like the first outer side OS1 .
  • the first electrode 210 may be electrically connected to a wiring disposed below the first electrode 210 through a first contact hole CT1 penetrating at least a portion of the layers disposed below the first electrode 210 . This will be described later.
  • the second electrode 220 may be disposed to face apart from the first electrode 210 .
  • the second electrode 220 may be disposed to be spaced apart from and face the first curved outer side OS1 of the first electrode 210 , and may include a curved side along the first outer side OS1 .
  • the second electrode 220 includes a second outer edge OS2 and a third outer edge OS3 having the same curvature corresponding to the first outer edge OS1, and the second outer edge (OS1).
  • a third short side SS3 and a fourth short side SS4 respectively connecting both sides of the OS2 and the third outer side OS3 may be included.
  • the second outer side OS2 is spaced apart from the first outer side OS1 of the first electrode 210
  • the third outer side OS3 is the second outer side OS2 of the second electrode 220 . It could be the other side.
  • the second outer side OS2 and the third outer side OS3 may have the same curvature and center of curvature. However, since the second outer side OS2 is positioned closer to the center of curvature, the length of the second outer side OS2 may be shorter than the length of the third outer side OS3 .
  • the third short side SS3 of the second electrode 220 may extend in the first direction DR1
  • the fourth short side SS4 may extend in the second direction DR2
  • the first short side SS1 of the first electrode 210 and the third short side SS3 of the second electrode 220 may extend in the first direction DR1 and lie on the same straight line
  • the second short side SS2 of the first electrode 210 and the fourth short side SS4 of the second electrode 220 may extend in the second direction DR2 and lie on the same straight line.
  • the second electrode 220 may include a portion having a specific width on a plane and a curved arc shape.
  • the second electrode 220 may include a portion having a curved arc shape to face the first outer side OS1 of the first electrode 210 by being spaced apart from each other.
  • the second outer side OS2 of the second electrode 220 may have at least the same center of curvature as the first outer side OS1 of the first electrode 210 .
  • the present invention is not limited thereto.
  • the second electrode 220 includes at least the second outer side OS2 having a curved shape corresponding to the first outer side OS1 of the first electrode 210, the third outer side OS3, which is another side,
  • the third and fourth short sides SS3 and SS4 may have different shapes.
  • the second electrode 220 includes a second outer side OS2, but the third outer side OS3 is omitted so that the third short side SS3 and the fourth short side SS4 are directly connected to each other.
  • the second electrode 220 may further include a portion that is connected to one side of a portion having a curved arc shape and protrudes from the one side.
  • the second electrode 220 includes an electrode curved portion 220R having a curved arc shape, and an electrode protruding portion 220P connected to one side of the electrode curved portion 220R and protruding from the one side. may include.
  • the electrode protrusion 220P may have a shape protruding in one direction and may be connected to the electrode curved portion 220R. For example, as shown in FIG. 4 , the electrode protruding portion 220P may protrude from the third outer side OS3 of the electrode curved portion 220R in one direction.
  • the electrode protrusion 220P may be a portion electrically connected to wires disposed under the second electrode 220 .
  • 4 illustrates that the second electrode 220 includes an electrode curved portion 220R and an electrode protruding portion 220P, but is not limited thereto.
  • the electrode unit EU may include the second electrode 220 omitting the electrode protrusion 220P and including only the electrode curved portion 220R having a curved arc shape.
  • the second electrode 220 includes a wiring disposed below through the second contact hole CT2 and the third contact hole CT3 penetrating at least a portion of the layers disposed under the second electrode 220 , and can be electrically connected. This will be described later.
  • the second electrode 220 in some of the electrode units EU disposed in each sub-pixel PXn, the second electrode 220 does not include the electrode protrusion 220P, and at least one electrode unit ( EU), the second electrode 220 may include an electrode protrusion 220P.
  • the electrode protrusion 220P may be electrically connected to wires disposed below, for example, a voltage wire, and the electrode unit EU including the electrode protrusion 220P may receive an electrical signal directly from the voltage wire. have.
  • the present invention is not limited thereto.
  • the electrode unit EU shown in FIGS. 4 and 5 may be a type electrode unit EU in which the first electrode 210 has a quadrangular shape. That is, it includes the first type of first electrode 210 having a quadrangular shape including the first outer edge OS1 , and includes the second electrode 220 disposed to surround the first outer edge OS1 .
  • the electrode unit EU may be a first type electrode unit.
  • the display device 10 according to an exemplary embodiment may include the first electrode 210 having various shapes in addition to the first type electrode unit including the first type first electrode 210 .
  • the first electrode 210 has a semicircle or circular shape, and correspondingly, the electrode unit EU includes a second electrode 220 surrounding the first outer side OS1.
  • An electrode unit EU may be included.
  • the plurality of light emitting devices 300 may be disposed between the first electrode 210 and the second electrode 220 .
  • the light emitting devices 300 may be disposed to be spaced apart from each other between the first electrode 210 and the second electrode 220 .
  • the interval at which the light emitting devices 300 are spaced apart is not particularly limited.
  • a plurality of light emitting devices 300 are arranged adjacent to each other to form a group, and a plurality of other light emitting devices 300 may form a group spaced apart from each other by a predetermined interval, or may be disposed with non-uniform density.
  • the light emitting device 300 may include the active layers 330 including different materials to emit light of different wavelength bands to the outside.
  • the display device 10 may include light emitting devices 300 emitting light of different wavelength bands.
  • the light emitting device 300 of the first sub-pixel PX1 includes an active layer 330 emitting light of a first color having a first wavelength in a central wavelength band, and the light emitting device 300 of the second sub-pixel PX2 .
  • ) includes an active layer 330 emitting light of a second color having a center wavelength band having a second wavelength
  • the light emitting device 300 of the third sub-pixel PX3 has a third wavelength band having a center wavelength band of the third wavelength.
  • An active layer 330 that emits colored light may be included.
  • the light of the first color is emitted from the first sub-pixel PX1
  • the light of the second color is emitted from the second sub-pixel PX2
  • the light of the third color is emitted from the third sub-pixel PX3 .
  • the light of the first color is blue light having a central wavelength band ranging from 450 nm to 495 nm
  • the light of the second color is green light having a central wavelength band ranging from 495 nm to 570 nm
  • light of the third color may be red light having a central wavelength band of 620 nm to 752 nm.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include the same type of light emitting device 300 to emit light of substantially the same color. have.
  • the light emitting devices 300 are to be disposed in a space between the first electrode 210 and the second electrode 220, that is, between the first outer side OS1 and the second outer side OS2.
  • the first outer side OS1 and the second outer side OS2 may have a curved shape, and the plurality of light emitting devices 300 disposed therebetween are curved with respect to the center of the first electrode 210 . It may be arranged along the first outer side OS1 and the second outer side OS2 .
  • the plurality of light emitting devices 300 may have a shape extending in one direction.
  • the light emitting devices 300 may have an orientation direction in which they extend, and the light emitting devices 300 disposed between the first electrode 210 and the second electrode 220 may have different alignment directions.
  • the light emitting device disposed between the first outer side OS1 and the second outer side OS2 is adjacent to the first short side SS1 and the third short side SS3 .
  • the device 300 may be disposed such that the orientation direction is toward the first direction DR1 .
  • the light emitting device 300 is disposed between the first outer side OS1 and the second outer side OS2 adjacent to the second short side SS2 and the fourth short side SS4 .
  • the light emitting devices 300 disposed therebetween are disposed such that the alignment direction faces between the first direction DR1 and the second direction DR2 .
  • the plurality of light emitting devices 300 are disposed along the curvature direction of the first outer side OS1 and the second outer side OS2 , and they may have different alignment directions.
  • the light emitting devices 300 may be electrically connected to the first electrode 210 and the second electrode 220 , and may receive an electrical signal from them to emit light in a specific wavelength band.
  • the light emitting device 300 may emit light from both ends in the extended direction.
  • the display device 10 according to the exemplary embodiment includes a first electrode 210 and a second electrode 220 having at least one side curved in shape, the curved sides facing each other and spaced apart from each other, and disposed therebetween.
  • the light emitting devices 300 to be used may have different orientation directions. Each sub-pixel PXn may emit light in various directions without being limited to a specific direction, and visibility of the display device 10 may be improved in various directions.
  • the display device 10 may include one or more electrode units EU in which light emitting devices 300 having various alignment directions are disposed for each sub-pixel PXn.
  • one sub-pixel PXn includes a plurality of electrode units EU, including a first electrode unit EU1 , a second electrode unit EU2 , a third electrode unit EU3 , and a fourth electrode unit EU4 .
  • Each of the electrode units EU includes a first electrode 210 and a second electrode 220 including at least one curved side, and thus the first to fourth electrode units EU1, EU2, EU3, EU4. ) may include a center of curvature of the first outer side OS1 of the first electrode 210 .
  • the center of curvature of the plurality of electrode units EU disposed in each sub-pixel PXn of the first outer side OS1 of the first electrode 210 is each sub-pixel.
  • the pixel PXn may be disposed opposite to the center of the pixel PXn.
  • each sub-pixel PXn extends in the first direction DR1 and includes a first imaginary line (not shown) crossing the center of the sub-pixel PXn and a sub-pixel extending in the second direction DR2 .
  • a second virtual line (not shown) crossing the center of the pixel PXn may be included.
  • upper and lower sides of the first virtual line and left and right sides of the second virtual line may be defined.
  • the plurality of electrode units EU may be disposed such that a center of curvature of the first outer side OS1 of the first electrode 210 is located opposite to each other based on the first virtual line and the second virtual line.
  • the first electrode unit EU1 may be disposed such that the center of curvature of the first outer side OS1 is located above the first virtual line and to the left of the second virtual line.
  • the center of curvature of the first outer side OS1 is located above the first virtual line and to the right of the second virtual line
  • the third electrode unit EU3 has the curvature of the first outer side OS1 .
  • the center is positioned below the first imaginary line and to the right of the second imaginary line
  • the fourth electrode unit EU4 is disposed such that the center of curvature of the first outer edge OS1 is positioned below the first imaginary line and to the left of the second imaginary line can be
  • the center of curvature of the first outer side OS1 of the first electrode 210 may be one side in which the first short side SS1 and the second short side SS2 are interconnected. That is, the first electrode unit EU1 and the second electrode unit EU2 are connected to the fourth electrode unit EU4 and the third electrode unit EU3 with respect to the first virtual line extending in the first direction DR1. It can be arranged symmetrically. In addition, the first electrode unit EU1 and the fourth electrode unit EU4 are connected to the second electrode unit EU4 and the third electrode unit EU3 with respect to the second virtual line extending in the second direction DR2. It can be arranged symmetrically.
  • the center of curvature of the first outer side OS1 is located at the outer portion of each sub-pixel PXn, and the first outer side ( OS1 may have a convex shape toward the center of each sub-pixel PXn.
  • the center of curvature of the first outer sides OS1 of the first electrode 210 may be located at an oblique outer portion of each sub-pixel PXn, and the plurality of first electrodes 210 may have the first outer side OS1 of the first electrode 210 .
  • ) may be arranged to be curved from the center of curvature toward the center of the sub-pixel PXn.
  • the plurality of first electrodes 210 may be disposed such that first outer sides OS1 face each other, and in the second electrodes 220 , the second outer side OS2 is spaced apart from the first outer side OS1 to face each other. It may be arranged to have a shape surrounding the first outer side OS1.
  • the display device 10 according to an exemplary embodiment includes at least one first electrode 210 disposed in each sub-pixel PXn, and the first outer sides OS1 of the first electrode 210 are opposite to each other. and at least one second electrode 220 may be disposed between them.
  • each sub-pixel PXn includes the electrode units EU including the first electrode 210 having a quadratic shape
  • the number of the first electrodes 210 is occupied according to the number of the first electrodes 210 .
  • the area may have a circular shape.
  • the area occupied by the four first electrodes 210 is one It may be the same as the area occupied by the circular electrode.
  • an area of a region where no electrodes are disposed may be increased, and a ratio of an area occupied by the circular electrode may be low.
  • the display device 10 may increase the amount of light emitted per unit area of each sub-pixel PXn.
  • the second electrode 220 includes the electrode protrusion 220P
  • the second to fourth electrode units EU2 , EU3 , and EU4 the second electrode 220 includes the electrode protrusion.
  • the electrode units EU disposed in each sub-pixel PXn may be integrated with the second electrode 220 partially connected thereto.
  • the electrical signal transmitted through the second contact hole CT2 is transmitted to the second electrode unit EU. It may also be transmitted to the electrode 220 .
  • each sub-pixel PXn when each sub-pixel PXn includes a plurality of electrode units EU, the second electrode 220 between the electrode units EU may be partially connected.
  • at least a partial region of the second electrode 220 of the electrode units EU disposed in each sub-pixel PXn may be connected and integrated.
  • the second electrode 220 of the first electrode unit EU1 and the second electrode 220 of the second electrode unit EU2 and the second electrode 220 of the fourth electrode unit EU4 are partially can be integrated with
  • the second electrode 220 of the third electrode unit EU3 may also be partially integrated with the second electrode 220 of the second electrode unit EU2 and the second electrode 220 of the fourth electrode unit EU4. have.
  • the first electrodes 210 disposed in each sub-pixel PXn are disposed to be spaced apart from each other, and the electrical signals transmitted to the second electrode 220 of the first electrode unit EU1 are applied to the second to fourth It may be transferred to the second electrodes 220 of the electrode units EU2 , EU3 , and EU4 .
  • the present invention is not limited thereto, and the electrode units EU disposed in each sub-pixel PXn may be spaced apart from each other without being connected to the second electrode 220 .
  • the other electrode units EU may receive an electrical signal from a voltage wire connected through the second contact hole CT2 through other electrodes or wires.
  • the first contact electrode 261 may be disposed on the first electrode 210 .
  • the first contact electrode 261 may have the same shape as the first electrode 210 .
  • the first contact electrode 261 may include both short sides extending in one direction and intersecting each other, like the first electrode 210 , and a curved outer side connecting them.
  • the width of the first contact electrode 261 measured in one direction is greater than that of the first electrode 210 to completely cover the first electrode 210 .
  • the present invention is not limited thereto.
  • the second contact electrode 262 may be disposed on the second electrode 220 .
  • the second contact electrode 262 may have the same shape as the electrode curved portion 220R of the second electrode 210 .
  • the second contact electrode 262 may include both short sides extending in one direction like the second electrode 220 , and curved outer sides connecting them.
  • the width of the second contact electrode 262 measured in one direction may be greater than that of the second electrode 220 to cover both short sides and both outer sides of the second electrode 210 .
  • the second contact electrode 262 may not be disposed on the electrode protrusion 220P.
  • the second contact electrode 262 is disposed only on the electrode curved portion 220R, and the electrode protrusion 220P has the electrode protrusion 220P. may not be placed.
  • the second contact electrode 262 forms the second electrode 220 . It may be arranged to cover.
  • the second contact electrodes 262 disposed in each sub-pixel PXn may also be partially connected to be integrated into one contact electrode.
  • the present invention is not limited thereto.
  • the first contact electrode 261 and the second contact electrode 262 may be electrically connected to at least one end of the light emitting device 300 and the first electrode 210 or the second electrode 220 , respectively.
  • the first contact electrode 261 is in direct contact with one end of the first electrode 210 and the light emitting device 300
  • the second contact electrode 262 is the second electrode 220 and the light emitting device 300 .
  • Electrical signals transmitted to the first electrode 210 and the second electrode 220 may be transmitted to the light emitting device 300 through the first contact electrode 261 and the second contact electrode 262 , respectively.
  • the light emitting device 300 may receive the electric signal and emit light in a specific wavelength band.
  • the first gap W1 which is the distance between the first outer side OS1 of the first electrode 210 and the second outer side OS2 of the second electrode 220 , is the first contact electrode. It may be larger than the second gap W2 that is the gap between the 261 and the second contact electrode 262 .
  • the light emitting device 300 may be disposed such that both ends thereof are placed on the first electrode 210 and the second electrode 220 , respectively. However, at least some of the light emitting devices 300 may have either end of which is disposed between the first electrode 210 and the second electrode 220 .
  • the contact electrodes 261 and 262 are disposed between the electrodes 210 and 220 by being disposed such that the second spacing W2 therebetween is smaller than the first spacing W1 between the respective electrodes 210 and 220 . may be in contact with the light emitting devices 300 .
  • the contact electrodes 261 and 262 have a second gap W2 between the electrodes 210 and 220. By being narrower than the gap W1 , both ends of the light emitting device 300 may be in contact.
  • the present invention is not limited thereto.
  • the external bank 450 may be disposed at a boundary between each sub-pixel PXn.
  • the outer bank 450 is disposed to extend in at least the second direction DR2 , and includes a region in which the light emitting device 300 is disposed between the inner banks 410 and 420 and the electrodes 210 and 220 . It may be disposed to surround portions of the electrodes 210 and 220 and the electrodes 410 and 420 .
  • the external bank 450 may further include a portion extending in the first direction DR1 to form a grid pattern on the entire surface of the display area DPA.
  • the present invention is not limited thereto, and the external bank 450 may be omitted in some cases.
  • FIG. 5 is a cross-sectional view taken along line I-I' of FIG. 3 .
  • FIG. 5 illustrates only a partial cross-section of FIG. 3 , but the description of FIG. 5 may be equally applied to other pixels PX or sub-pixels PXn.
  • FIG. 5 illustrates a cross-section crossing one end and the other end of the light emitting device 300 disposed in the first sub-pixel PX1 of FIG. 3 .
  • the display device 10 may include a circuit element layer and a display element layer disposed on the first substrate 101 .
  • a semiconductor layer, a plurality of conductive layers, and a plurality of insulating layers are disposed on the first substrate 101 , which may constitute a circuit element layer and a display element layer, respectively.
  • the plurality of conductive layers is disposed under the first planarization layer 109 to form a circuit element layer, including a first gate conductive layer, a second gate conductive layer, a first data conductive layer, a second data conductive layer, and a first It may include electrodes 210 and 220 and contact electrodes 260 disposed on the planarization layer 109 to form the display device layer.
  • the plurality of insulating layers include a buffer layer 102 , a first gate insulating layer 103 , a first protective layer 105 , a first interlayer insulating layer 107 , a second interlayer insulating layer 108 , and a first planarization layer ( 109 ), a first insulating layer 510 , a second insulating layer 520 , and a third insulating layer 550 .
  • the circuit element layer includes a circuit element and a plurality of wires for driving the light emitting device 300 , and includes a driving transistor DT, a switching transistor ST, a first conductive pattern CDP, a plurality of alignment wires AL1 and a plurality of wires. of voltage lines VL1 and VL2, and the display device layer includes a light emitting device 300, a first electrode 210, a second electrode 220, a first contact electrode 261, and a second contact electrode (262) and the like.
  • the first substrate 101 may be an insulating substrate.
  • the first substrate 101 may be made of an insulating material such as glass, quartz, or polymer resin.
  • the first substrate 101 may be a rigid substrate, but may also be a flexible substrate capable of bending, folding, rolling, and the like.
  • the light blocking layers BML1 and BML2 may be disposed on the first substrate 101 .
  • the light blocking layers BML1 and BML2 may include a first light blocking layer BML1 and a second light blocking layer BML2.
  • the first light blocking layer BML1 and the second light blocking layer BML2 may overlap at least the first active material layer DT_ACT of the driving transistor DT and the second active material layer ST_ACT of the switching transistor ST, respectively.
  • the light blocking layers BML1 and BML2 may include a light blocking material to prevent light from being incident on the first and second active material layers DT_ACT and ST_ACT.
  • the first and second light blocking layers BML1 and BML2 may be formed of an opaque metal material that blocks light transmission.
  • the present invention is not limited thereto, and the light blocking layers BML1 and BML2 may be omitted in some cases.
  • the first light blocking layer BML1 is electrically connected to a first source/drain electrode DT_SD1 of a driving transistor DT to be described later
  • the second light blocking layer BML2 is a switching transistor ST. may be electrically connected to the first source/drain electrode ST_SD1 of
  • the buffer layer 102 may be completely disposed on the first substrate 101 including the light blocking layers BML1 and BML2 .
  • the buffer layer 102 is formed on the first substrate 101 to protect the transistors DT and ST of the pixel PX from moisture penetrating through the first substrate 101, which is vulnerable to moisture permeation, and has a surface planarization function. can be done
  • the buffer layer 102 may be formed of a single inorganic layer, or a plurality of inorganic layers alternately stacked or multi-layered.
  • the buffer layer 102 is formed as a multi-layer in which inorganic layers including at least one of silicon oxide (SiO x ), silicon nitride (SiN x ), and silicon oxynitride (SiO x N y ) are alternately stacked.
  • SiO x silicon oxide
  • SiN x silicon nitride
  • SiO x N y silicon oxynitride
  • a semiconductor layer is disposed on the buffer layer 102 .
  • the semiconductor layer may include a first active material layer DT_ACT of the driving transistor DT and a second active material layer ST_ACT of the switching transistor ST. These may be disposed to partially overlap with the gate electrodes DT_G and ST_G of the first gate conductive layer, which will be described later.
  • the semiconductor layer may include polycrystalline silicon, single crystal silicon, an oxide semiconductor, or the like.
  • Polycrystalline silicon may be formed by crystallizing amorphous silicon. Examples of the crystallization method include a rapid thermal annealing (RTA) method, a solid phase crystallization (SPC) method, an excimer laser annealing (ELA) method, a metal induced crystallization (MILC) method, and a sequential lateral solidification (SLS) method. , but is not limited thereto.
  • the first active material layer DT_ACT may include a first doped region DT_ACTa, a second doped region DT_ACTb, and a first channel region DT_ACTc.
  • the first channel region DT_ACTc may be disposed between the first doped region DT_ACTa and the second doped region DT_ACTb.
  • the second active material layer ST_ACT may include a third doped region ST_ACTa, a fourth doped region ST_ACTb, and a second channel region ST_ACTc.
  • the second channel region ST_ACTc may be disposed between the third doped region ST_ACTa and the fourth doped region ST_ACTb.
  • the first doped region DT_ACTa, the second doped region DT_ACTb, the third doped region ST_ACTa, and the fourth doped region ST_ACTb are formed of the first active material layer DT_ACT and the second active material layer ST_ACT.
  • a partial region is doped with an impurity, and may be a source/drain region of the first active material layer DT_ACT and the second active material layer ST_ACT.
  • the first active material layer DT_ACT and the second active material layer ST_ACT may include an oxide semiconductor.
  • each of the doped regions of the first active material layer DT_ACT and the second active material layer ST_ACT may be a conductive region.
  • the oxide semiconductor may be an oxide semiconductor containing indium (In).
  • the oxide semiconductor is indium-tin oxide (ITO), indium-zinc oxide (IZO), indium-gallium oxide (IGO), indium- Indium-Zinc-Tin Oxide (IZTO), Indium-Gallium-Zinc Oxide (IGZO), Indium-Gallium-Tin Oxide (IGTO), Indium -gallium-zinc-tin oxide (Indium-Gallium-Zinc-Tin Oxide, IGZTO), or the like.
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • IGO indium-gallium oxide
  • IZTO indium-Indium-Zinc-Tin Oxide
  • IGZO Indium-Gallium-Zinc Oxide
  • IGTO Indium-gallium-zinc-tin oxide
  • IGZTO Indium-gallium-zinc-tin oxide
  • the first gate insulating layer 103 is disposed on the semiconductor layer and the buffer layer 102 .
  • the first gate insulating layer 103 may function as a gate insulating layer of the driving transistor DT and the switching transistor ST.
  • the first gate insulating layer 103 is made of a single inorganic layer including an inorganic material, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), or silicon oxynitride (SiO x N y ), or these are alternately stacked. or may be formed in a multi-layered structure.
  • the first gate conductive layer is disposed on the first gate insulating layer 103 .
  • the first gate conductive layer may include a first gate electrode DT_G of the driving transistor DT and a second gate electrode ST_G of the switching transistor ST.
  • the first gate electrode DT_G is disposed to overlap at least a partial area of the first active material layer DT_ACT
  • the second gate electrode ST_G is disposed to overlap at least a partial area of the second active material layer ST_ACT. do.
  • the first gate electrode DT_G is disposed to overlap the first channel region DT_ACTc of the first active material layer DT_ACT in the thickness direction
  • the second gate electrode ST_G is the second active material layer It may be disposed to overlap the second channel region ST_ACTc of (ST_ACT) in the thickness direction.
  • the first gate conductive layer may include any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu) or these It may be formed as a single layer or multiple layers made of an alloy of However, the present invention is not limited thereto.
  • the first passivation layer 105 is disposed on the first gate conductive layer.
  • the first passivation layer 105 may be disposed to cover the first gate conductive layer to protect the first gate conductive layer.
  • the first protective layer 105 is made of a single inorganic layer including an inorganic material, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), or silicon oxynitride (SiO x N y ), or these are alternately stacked, or It may be formed in a multi-layered structure.
  • a second gate conductive layer is disposed on the first passivation layer 105 .
  • the second gate conductive layer may include the first capacitance electrode CSE1 of the storage capacitor disposed so that at least a partial region overlaps the first gate electrode DT_G in the thickness direction.
  • the first capacitor electrode CSE1 may overlap the first gate electrode DT_G in a thickness direction with the first passivation layer 105 interposed therebetween, and a storage capacitor may be formed therebetween.
  • the second gate conductive layer may include any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu) or these It may be formed as a single layer or multiple layers made of an alloy of However, the present invention is not limited thereto.
  • the first interlayer insulating layer 107 is disposed on the second gate conductive layer.
  • the first interlayer insulating layer 107 may function as an insulating layer between the second gate conductive layer and other layers disposed thereon.
  • the first interlayer insulating layer 107 is made of a single inorganic layer including an inorganic material, silicon oxide (SiO x ), silicon nitride (SiN x ), or silicon oxynitride (SiO x N y ), or these are alternately stacked or It may be formed in a multi-layered structure.
  • the first data conductive layer is disposed on the first interlayer insulating layer 107 .
  • the first gate conductive layer includes the first source/drain electrodes DT_SD1 and the second source/drain electrodes DT_SD2 of the driving transistor DT, and the first source/drain electrodes ST_SD1 and the second of the switching transistor ST. It may include a source/drain electrode ST_SD2 and a second voltage line VL2 .
  • the first source/drain electrode DT_SD1 and the second source/drain electrode DT_SD2 of the driving transistor DT are connected through a contact hole penetrating the first interlayer insulating layer 107 and the first gate insulating layer 103 .
  • the first doped region DT_ACTa and the second doped region DT_ACTb of the first active material layer DT_ACT may be in contact with each other.
  • the first source/drain electrode ST_SD1 and the second source/drain electrode ST_SD2 of the switching transistor ST are connected through a contact hole penetrating the first interlayer insulating layer 107 and the first gate insulating layer 103 .
  • the third doped region ST_ACTa and the fourth doped region ST_ACTb of the second active material layer ST_ACT may be in contact with each other.
  • the first source/drain electrode DT_SD1 of the driving transistor DT and the first source/drain electrode ST_SD1 of the switching transistor ST are connected to the first light blocking layer BML1 and the first light blocking layer BML1 through another contact hole, respectively. It may be electrically connected to the second light blocking layer BML2.
  • the first source/drain electrodes DT_SD1 and ST_SD1 and the second source/drain electrodes DT_SD2 and ST_SD2 of the driving transistor DT and the switching transistor ST have a drain when one electrode is a source electrode. It may be an electrode.
  • the present invention is not limited thereto, and when one of the first source/drain electrodes DT_SD1 and ST_SD1 and the second source/drain electrodes DT_SD2 and ST_SD2 is a drain electrode, the other electrode may be a source electrode.
  • the second voltage line VL2 may be connected to any one of the source/drain electrodes DT_SD1 and DT_SD2 of the driving transistor DT.
  • the second voltage line VL2 may be electrically connected to the second source/drain electrode DT_SD2 of the driving transistor DT.
  • a high potential voltage (second power supply voltage, VDD) supplied to the driving transistor DT may be applied to the second voltage line VL2 .
  • the driving transistor DT may be electrically connected to the second electrode 220 as will be described later, and the second power voltage VDD applied through the second voltage line VL2 is applied through the driving transistor DT. It may be transferred to the second electrode 220 .
  • the first data conductive layer may include any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu) or these It may be formed as a single layer or multiple layers made of an alloy of However, the present invention is not limited thereto.
  • the second interlayer insulating layer 108 may be disposed on the first data conductive layer.
  • the second interlayer insulating layer 108 may cover the first data conductive layer and be entirely disposed on the first interlayer insulating layer 107 , and may function to protect the first data conductive layer.
  • the second interlayer insulating layer 108 is made of a single inorganic layer including an inorganic material, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), or silicon oxynitride (SiO x N y ), or these are alternately stacked. or may be formed in a multi-layered structure.
  • a second data conductive layer is disposed on the second interlayer insulating layer 108 .
  • the second data conductive layer may include a first voltage line VL1 , a first alignment line AL1 , and a first conductive pattern CDP.
  • a low potential voltage (a first power voltage, VSS) supplied to the first electrode 210 may be applied to the first voltage line VL1 .
  • An alignment signal necessary for aligning the light emitting device 300 during the manufacturing process of the display device 10 may be applied to the first alignment line AL1 , and the alignment signal is electrically connected to the second electrode 220 . may be transferred to the second electrode 220 .
  • the alignment signal may also be applied to the first voltage line VL1 during the manufacturing process of the display device 10 and may be transmitted to the first electrode 210 .
  • the first alignment line AL1 is patterned in a subsequent process after the light emitting devices 300 are aligned, and an electric signal may not be applied while the display device 10 is being driven.
  • the first alignment line AL1 may be electrically connected to the second electrode 220 through the third contact hole CT3 penetrating the second internal bank 420 and the first planarization layer 109 .
  • the first conductive pattern CDP may be electrically connected to the first source/drain electrode DT_SD1 of the driving transistor DT through a contact hole formed in the second interlayer insulating layer 108 .
  • the first conductive pattern CDP is also electrically connected to the second electrode 220 to be described later, and the driving transistor DT applies the second power voltage VDD applied from the second voltage line VL2 to the first conductive pattern. (CDP) may be transmitted to the second electrode 220 .
  • the second data conductive layer includes one first alignment line AL1 in the drawings, the present invention is not limited thereto.
  • a greater number of the first alignment lines AL1 may be disposed according to the number of electrodes 210 and 220 disposed in each sub-pixel PXn.
  • the number of first alignment lines AL1 may also be increased.
  • the present invention is not limited thereto, and when each sub-pixel PXn further includes other electrodes, other alignment lines other than the first alignment line AL1 may be further disposed in the second data conductive layer.
  • the second data conductive layer may include any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu) or these It may be formed as a single layer or multiple layers made of an alloy of However, the present invention is not limited thereto.
  • the first planarization layer 109 is disposed on the second data conductive layer.
  • the first planarization layer 109 may include an organic insulating material to perform a surface planarization function.
  • first planarization layer 109 On the first planarization layer 109 , inner banks 410 and 420 , a plurality of electrodes 210 and 220 , an outer bank 450 , a plurality of contact electrodes 260 , and a light emitting device 300 are disposed. In addition, a plurality of insulating layers 510 , 520 , and 550 may be further disposed on the first planarization layer 109 .
  • the inner banks 410 and 420 are disposed directly on the first planarization layer 109 .
  • the internal banks 410 and 420 may include a first internal bank 410 and a second internal bank 420 disposed adjacent to the center of each pixel PX or sub-pixel PXn.
  • the first internal bank 410 and the second internal bank 420 may have a shape similar to that of the first electrode 210 and the second electrode 220 in plan view, respectively.
  • the first internal bank 410 may include both short sides that cross each other and one side are interconnected like the first electrode 210 , and a curved outer side that connects the other side of the both short sides.
  • the second inner bank 420 has both short sides extending in a direction crossing each other, and both short sides connected to each other and both curved outer sides may include.
  • the first inner bank 410 may have a shape of a quadrant in plan view
  • the second inner bank 420 may have a curved shape to face the curved outer side of the first inner bank 410 while being spaced apart from each other.
  • the first inner bank 410 and the second inner bank 420 are also spaced apart from each other, and the curved outer side of the first inner bank 410 is one of the curved outer sides of the second inner bank 420 and Can be spaced apart.
  • the first internal bank 410 and the second internal bank 420 may be disposed in each sub-pixel PXn to form a pattern on the front surface of the display device 10 .
  • the inner banks 410 and 420 may be disposed to face each other to be spaced apart from each other, thereby forming a region in which the light emitting device 300 is disposed.
  • only one first internal bank 410 and one second internal bank 420 are illustrated, but the present invention is not limited thereto.
  • the first internal bank 410 and the second internal bank 420 disposed in each sub-pixel PXn may vary according to the number of electrodes 210 and 220 .
  • first inner bank 410 and the second inner bank 420 may have a structure in which at least a portion protrudes from the top surface of the first planarization layer 109 .
  • the protruding portions of the first inner bank 410 and the second inner bank 420 may have inclined side surfaces, and light emitted from the light emitting device 300 disposed therebetween is transmitted to the inner banks 410 and 420 . may proceed towards the inclined side of the As will be described later, when the electrodes 210 and 220 disposed on the inner banks 410 and 420 include a material having high reflectivity, the light emitted from the light emitting device 300 is transmitted to the inner banks 410 and 420 of the inner banks 410 and 420 .
  • the internal banks 410 and 420 may provide a region in which the light emitting device 300 is disposed and at the same time perform the function of a reflective barrier rib that reflects the light emitted from the light emitting device 300 in an upward direction.
  • the internal banks 410 and 420 may include an organic insulating material such as polyimide (PI), but is not limited thereto.
  • the plurality of electrodes 210 and 220 are disposed on the inner banks 410 and 420 and the first planarization layer 109 .
  • the plurality of first electrodes 210 may be disposed on the first internal bank 410
  • the second electrode 220 may be disposed on the second internal bank 420 .
  • the first electrode 210 may be disposed to cover the first internal bank 410 .
  • the first electrode 210 may have the same shape as that of the first internal bank 410 , but may be formed to have a larger width to cover the outer surface of the first internal bank 410 . Accordingly, a portion of the lower surface of the first electrode 210 may be disposed on the first internal bank 410 , and the other portion may be disposed on the first planarization layer 109 .
  • a first contact hole CT1 may be formed in a portion of the first electrode 210 disposed on the first planarization layer 109 . The first contact hole CT1 may penetrate the first planarization layer 109 to expose a portion of the top surface of the first voltage line VL1 .
  • the first electrode 210 may contact the first voltage line VL1 through the first contact hole CT1 , and the first electrode 210 may be electrically connected to the first voltage line VL1 .
  • the second electrode 220 may also be disposed to cover the second internal bank 420 .
  • the second electrode 220 may have the same shape as that of the first internal bank 410 , but may be formed to have a larger width to cover the outer surface of the second internal bank 420 . Accordingly, a portion of the lower surface of the second electrode 220 may be disposed on the second internal bank 420 , and another portion of the second electrode 220 may be disposed on the first planarization layer 109 .
  • the second electrode 220 may further include an electrode protrusion 220P disposed directly on the first planarization layer 109 .
  • a second contact hole CT2 may be formed in the electrode protrusion 220P of the second electrode 220 .
  • the second contact hole CT2 may penetrate the first planarization layer 109 to expose a portion of the upper surface of the first conductive pattern CDP.
  • the second electrode 220 may contact the first conductive pattern CDP through the second contact hole CT2 , and the second electrode 220 may contact the driving transistor DT through the first conductive pattern CDP. may be electrically connected to the first source/drain electrode DT_SD1 of
  • a third contact hole CT3 may be formed in a portion of the second electrode 220 disposed on the second internal bank 420 .
  • the third contact hole CT3 may penetrate the second internal bank 420 and the first planarization layer 109 to expose a portion of the top surface of the first alignment line AL1 , and the second electrode 220 may 1 It can be in direct contact with the alignment wiring (AL1). This will be described later with reference to other drawings.
  • the plurality of electrodes 210 and 220 may be electrically connected to the light emitting devices 300 and may receive a predetermined voltage so that the light emitting devices 300 emit light.
  • the plurality of electrodes 210 and 220 are electrically connected to the light emitting device 300 through a contact electrode 260 to be described later, and transmit an electrical signal applied to the electrodes 210 and 220 to the contact electrode 260 . ) through the light emitting device 300 .
  • any one of the first electrode 210 and the second electrode 220 is an anode electrode of the light emitting device 300 , and the other is a cathode electrode of the light emitting device 300 .
  • the first electrode 210 may be a cathode electrode and the second electrode 220 may be an anode electrode, but is not limited thereto, and vice versa.
  • each of the electrodes 210 and 220 may be used to form an electric field in the sub-pixel PXn to align the light emitting device 300 .
  • the light emitting device 300 applies an alignment signal to the first electrode 210 and the second electrode 220 to form an electric field between the first electrode 210 and the second electrode 220 to form the first electrode It may be disposed between the 210 and the second electrode 220 .
  • the light emitting device 300 is sprayed onto the first electrode 210 and the second electrode 220 in a state of being dispersed in ink through an inkjet process, and the first electrode 210 and the second electrode 220 . ), by applying an alignment signal between them, the light emitting device 300 may be aligned through a method of applying a dieletrophoretic force.
  • Each of the electrodes 210 and 220 may include a transparent conductive material.
  • each of the electrodes 210 and 220 may include a material such as indium tin oxide (ITO), indium zinc oxide (IZO), or indium tin-zinc oxide (ITZO), but is not limited thereto.
  • each of the electrodes 210 and 220 may include a highly reflective conductive material.
  • each of the electrodes 210 and 220 is a material having high reflectivity and may include a metal such as silver (Ag), copper (Cu), or aluminum (Al).
  • each of the electrodes 210 and 220 transmits light emitted from the light emitting device 300 and traveling to the side surfaces of the first internal bank 410 and the second internal bank 420 in the upper direction of each sub-pixel PXn. can be reflected by
  • each of the electrodes 210 and 220 may have a structure in which a transparent conductive material and a metal layer having high reflectance are stacked in one or more layers, or may be formed as one layer including them.
  • each of the electrodes 210 and 220 has a stacked structure of ITO/silver (Ag)/ITO/IZO, or an alloy including aluminum (Al), nickel (Ni), lanthanum (La), and the like. can be
  • the first insulating layer 510 is disposed on the first planarization layer 109 , the first electrode 210 , and the second electrode 220 .
  • the first insulating layer 510 is disposed on the opposite side of the region between the electrodes 210 and 220 or the inner banks 410 and 420 in addition to the spaced apart region between the inner banks 410 and 420 as the center. can be
  • the first insulating layer 510 is disposed to partially cover the first electrode 210 and the second electrode 220 .
  • the first insulating layer 510 is entirely disposed on the first planarization layer 109 including the first electrode 210 and the second electrode 220 , and includes the first electrode 210 and the second electrode 220 .
  • the second electrode 220 may be disposed to expose a portion of the upper surface of the second electrode 220 .
  • An opening (not shown) partially exposing the first electrode 210 and the second electrode 220 is formed in the first insulating layer 510 , and one of the first electrode 210 and the second electrode 220 is formed. It may be arranged to cover only the side and the other side. A portion of the first electrode 210 and the second electrode 220 disposed on the internal banks 410 and 420 may be exposed by the opening.
  • the first insulating layer 510 may protect the first electrode 210 and the second electrode 220 and at the same time insulate them from each other. Also, it is possible to prevent the light emitting device 300 disposed on the first insulating layer 510 from being damaged by direct contact with other members.
  • the shape and structure of the first insulating layer 510 is not limited thereto.
  • a step may be formed on a portion of the upper surface of the first insulating layer 510 between the first electrode 210 and the second electrode 220 .
  • the first insulating layer 510 includes an inorganic insulating material, and the first insulating layer 510 disposed to partially cover the first electrode 210 and the second electrode 220 is disposed thereunder.
  • a step may be formed in a portion of the upper surface by the step formed by the disposed electrodes 210 and 220 . Accordingly, the light emitting device 300 disposed on the first insulating layer 510 between the first electrode 210 and the second electrode 220 may form an empty space with the upper surface of the first insulating layer 510 . have. The empty space may be filled with a material constituting the second insulating layer 520 to be described later.
  • the external bank 450 may be disposed on the first insulating layer 510 . As described above, the external bank 450 may be disposed at a boundary between each sub-pixel PXn.
  • the outer bank 450 may include a region in which the light emitting device 300 is disposed between the inner banks 410 and 420 and the electrodes 210 and 220 and may be disposed to surround them.
  • the height of the outer bank 450 may be greater than the height of the inner banks 410 and 420 .
  • the external bank 450 separates the neighboring sub-pixels PXn and is used for disposing the light emitting device 300 during the manufacturing process of the display device 10 as will be described later.
  • a function of preventing ink from overflowing into the adjacent sub-pixels PXn may be performed. That is, the external bank 450 may separate the inks in which the different light emitting devices 300 are dispersed in each of the different sub-pixels PXn so as not to mix them.
  • the light emitting device 300 may be disposed in a region formed between the first electrode 210 and the second electrode 220 or between the first internal bank 410 and the second internal bank 420 .
  • the light emitting device 300 may be disposed on the first insulating layer 510 disposed between the internal banks 410 and 420 .
  • the light emitting device 300 may be disposed such that a partial region overlaps each of the electrodes 210 and 220 in the thickness direction. One end of the light emitting device 300 overlaps the first electrode 210 in the thickness direction and is placed on the first electrode 210 , and the other end overlaps the second electrode 220 and the second electrode in the thickness direction. 220 .
  • each sub-pixel PXn may be in a region other than the region formed between the internal banks 410 and 420 , for example, an internal region. It may be disposed between the banks 410 and 420 and the external bank 450 .
  • a plurality of layers may be disposed in a direction parallel to the top surface of the first substrate 101 or the first planarization layer 109 .
  • the light emitting device 300 of the display device 10 may have a shape extending in one direction, and may have a structure in which a plurality of semiconductor layers are sequentially disposed in one direction.
  • the light emitting device 300 is disposed so that one extended direction is parallel to the first planarization layer 109 , and the plurality of semiconductor layers included in the light emitting device 300 are disposed in a direction parallel to the top surface of the first planarization layer 109 .
  • the present invention is not limited thereto.
  • the plurality of layers may be disposed in a direction perpendicular to the first planarization layer 109 .
  • the second insulating layer 520 may be partially disposed on the light emitting device 300 disposed between the first electrode 210 and the second electrode 220 .
  • the second insulating layer 520 is disposed to partially surround the outer surface of the light emitting device 300 to protect the light emitting device 300 and the light emitting device 300 during the manufacturing process of the display device 10 . may be fixed.
  • a portion of the second insulating layer 520 disposed on the light emitting device 300 is disposed between the first electrode 210 and the second electrode 220 in the same direction as the outer sides OS1 , OS2 , and OS3 of the second insulating layer 520 .
  • the second insulating layer 520 may form a curved pattern such as an arc in each sub-pixel PXn.
  • the second insulating layer 520 may be disposed on the light emitting device 300 to expose one end and the other end of the light emitting device 300 .
  • the exposed end of the light emitting device 300 may be in contact with a contact electrode 260 to be described later.
  • the shape of the second insulating layer 520 may be formed by a patterning process using a material constituting the second insulating layer 520 using a conventional mask process.
  • the mask for forming the second insulating layer 520 has a width narrower than the length of the light emitting device 300 , and the material constituting the second insulating layer 520 is patterned to expose both ends of the light emitting device 300 .
  • the present invention is not limited thereto.
  • a portion of the material of the second insulating layer 520 may be disposed between the lower surface of the light emitting device 300 and the first insulating layer 510 .
  • the second insulating layer 520 may be formed to fill a space between the first insulating layer 510 and the light emitting device 300 formed during the manufacturing process of the display device 10 . Accordingly, the second insulating layer 520 may be formed to surround the outer surface of the light emitting device 300 .
  • the present invention is not limited thereto.
  • a plurality of contact electrodes 260 may be disposed on the second insulating layer 520 .
  • the contact electrode 260 may include a first contact electrode 261 and a second contact electrode 262 .
  • the first contact electrode 261 and the second contact electrode 262 are in contact with one end and the other end of the light emitting device 300 , respectively, and also contact the first electrode 210 and the second electrode 220 , respectively.
  • the top surfaces of the first electrode 210 and the second electrode 220 are partially exposed, and the first contact electrode 261 and the second contact electrode 262 are the first electrode 210 and the second electrode 262 . It may be in contact with the exposed upper surface of the electrode 220 .
  • the first contact electrode 261 is in contact with a portion of the first electrode 210 located on the first internal bank 410
  • the second contact electrode 262 is the second electrode 220 of the second electrode 220 .
  • 2 may be in contact with a portion located on the inner bank 420 .
  • the present invention is not limited thereto, and in some cases, the width of the first contact electrode 261 and the second contact electrode 262 is smaller than that of the first electrode 210 and the second electrode 220, so that the upper surface is exposed. It may be arranged to cover only a portion.
  • at least a partial region of each of the first contact electrode 261 and the second contact electrode 262 is also disposed on the first insulating layer 510 .
  • the semiconductor layer is exposed on both end surfaces of the light emitting device 300 in the extended direction, and the first contact electrode 261 and the second contact electrode 262 are end surfaces on which the semiconductor layer is exposed. may be in contact with the light emitting device 300 .
  • the present invention is not limited thereto. In some cases, side surfaces of both ends of the light emitting device 300 may be partially exposed.
  • an insulating film ( '380 in FIG. 9 ) surrounding the semiconductor layer of the light emitting device 300 .
  • the exposed side surface of the light emitting device 300 may contact the first contact electrode 261 and the second contact electrode 262 .
  • One end of the light emitting device 300 is electrically connected to the first electrode 210 through the first contact electrode 261 , and the other end is electrically connected to the second electrode 220 through the second contact electrode 262 . can be connected to
  • first contact electrode 261 and the second contact electrode 262 is disposed on the second insulating layer 520 .
  • the first contact electrode 261 and the second contact electrode 262 may be spaced apart from each other on the second insulating layer 520 , and side surfaces opposite to each other may be disposed on the second insulating layer 520 .
  • the second insulating layer 520 may include an organic insulating material, and the first contact electrode 261 and the second contact electrode 262 may be formed together in the same process.
  • the first contact electrode 261 and the second contact electrode 262 may not be in direct contact and may be electrically insulated.
  • an insulating layer may be further disposed between the first contact electrode 261 and the second contact electrode 262 .
  • the insulating layer may prevent the first contact electrode 261 and the second contact electrode 262 from directly contacting each other.
  • the contact electrode 260 may include a conductive material.
  • it may include ITO, IZO, ITZO, aluminum (Al), and the like.
  • the contact electrode 260 may include a transparent conductive material, and light emitted from the light emitting device 300 may pass through the contact electrode 260 to travel toward the electrodes 210 and 220 .
  • Each of the electrodes 210 and 220 includes a material with high reflectivity, and the electrodes 210 and 220 placed on the inclined sides of the inner banks 410 and 420 direct the incident light to the upper direction of the first substrate 101 . can be reflected by
  • the present invention is not limited thereto.
  • the third insulating layer 550 may be entirely disposed on the first substrate 101 .
  • the third insulating layer 550 may function to protect members disposed on the first substrate 101 from an external environment.
  • first insulating layer 510 , the second insulating layer 520 , and the third insulating layer 550 described above may include an inorganic insulating material or an organic insulating material.
  • the first insulating layer 510 , the second insulating layer 520 , and the third insulating layer 550 are silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO ).
  • x N y ), aluminum oxide (Al x O y ), aluminum nitride (Al x N y ), and the like may include an inorganic insulating material.
  • organic insulating materials such as acrylic resin, epoxy resin, phenol resin, polyamide resin, polyimide resin, unsaturated polyester resin, polyphenylene resin, polyphenylene sulfide resin, benzocyclobutene, cardo resin, siloxane resin , silsesquioxane resin, polymethyl methacrylate, polycarbonate, polymethyl methacrylate-polycarbonate synthetic resin, and the like.
  • the present invention is not limited thereto.
  • the first electrode 210 and the second electrode 220 disposed in each sub-pixel PXn may be used to align the light emitting device 300 during the manufacturing process of the display device 10 .
  • the first electrode 210 and the second electrode 220 are electrically connected to the first voltage line VL1 and the first alignment line AL1 disposed on the second data conductive layer, and an alignment signal therefrom can be transmitted.
  • FIG. 6 is a schematic plan view illustrating an electrode unit and an alignment line according to an exemplary embodiment.
  • 7 is a cross-sectional view taken along line II-II' of FIG. 6 .
  • FIG. 6 illustrates a first voltage line VL1 of a second data conductive layer in addition to the first electrodes 210 , the second electrodes 220 , and the external bank 450 disposed in one sub-pixel PXn.
  • the first alignment lines AL1 and the second voltage line VL2 of the first data conductive layer are illustrated.
  • FIG. 6 only some electrodes and wirings are shown for convenience of description.
  • FIG. 7 illustrates a cross-section crossing the contact holes CT1 , CT2 , and CT3 formed in the first electrode 210 and the second electrode 220 of FIG. 6 .
  • the first voltage lines VL1 , the second voltage lines VL2 , and the first alignment lines AL1 will be described in detail.
  • a plurality of, for example, two first voltage lines VL1 may be disposed in each sub-pixel PXn.
  • the first voltage line VL1 may be disposed to overlap the first electrode 210 disposed in each sub-pixel PXn in the thickness direction, and may be disposed to be connected to the first electrode 210 through the first contact hole CT1 . can be contacted
  • the first voltage line VL1 may be disposed on the left and right sides of the sub-pixel PXn, respectively, with respect to the center thereof.
  • the first voltage line VL1 disposed on the left side of the sub-pixel PXn is electrically connected to the first electrode 210 of the first electrode unit EU1 and the fourth electrode unit EU4, and the sub-pixel PXn ), the first voltage line VL1 disposed on the right side may be electrically connected to the first electrode 210 of the second electrode unit EU2 and the third electrode unit EU3 .
  • the number of first voltage lines VL1 may vary according to the number of first electrodes 210 disposed in each sub-pixel PXn.
  • the first voltage line VL1 may be disposed to extend in the second direction DR2 , and may be disposed in other sub-pixels PXn beyond the boundary with the sub-pixel PXn neighboring in the second direction DR2 .
  • the second voltage line VL2 may also be disposed in each sub-pixel PXn and extend in the second direction DR2 . However, unlike the first voltage line VL1 , one line may be disposed for each sub-pixel PXn in the second voltage line VL2 , but is not limited thereto.
  • the second voltage line VL2 may be disposed adjacent to the electrode protrusion 220P of the second electrode 220 .
  • the second voltage line VL2 may be electrically connected to the source/drain electrodes of the driving transistor DT, and as described above, the electrode protrusion 220P of the second electrode 220 connects the second contact hole CT2. It may be electrically connected to the driving transistor DT through the first conductive pattern CDP connected thereto.
  • first alignment lines AL1 may be disposed in each sub-pixel PXn, for example, two lines.
  • the first alignment line AL1 may be disposed to overlap the second electrode 220 disposed in each sub-pixel PXn in the thickness direction, and may be disposed to overlap the second electrode 220 through the third contact hole CT3 . can be contacted
  • the first alignment line AL1 may be disposed on the left and right sides of the sub-pixel PXn, respectively, with respect to the center thereof.
  • the first alignment line AL1 disposed on the left side of the sub-pixel PXn is electrically connected to the second electrode 220 of the first electrode unit EU1 and the fourth electrode unit EU4, and the sub-pixel PXn ), the first alignment line AL1 disposed on the right side may be electrically connected to the second electrode 220 of the second electrode unit EU2 and the third electrode unit EU3 .
  • the number of first alignment lines AL1 may vary according to the number of second electrodes 220 disposed in each sub-pixel PXn.
  • the electrode curved portion 220R may be electrically connected to the first alignment line AL1 through the third contact hole CT3 .
  • a third contact hole CT3 may be formed in each sub-pixel PXn according to the number of second electrodes 220 electrically connected to the first alignment line AL1 .
  • the first voltage line VL1 , the second voltage line VL2 , and the first alignment line AL1 extend in the second direction DR2 , respectively, and include pads (not shown) disposed in the non-display area NDA; can be connected An electric signal may be applied from the pad to the first voltage line VL1 , the second voltage line VL2 , and the first alignment line AL1 , and may be transmitted to the electrodes 210 and 220 .
  • an alignment signal for aligning the light emitting device 300 may be applied through the first voltage line VL1 and the first alignment line AL1 .
  • the alignment signal applied to the first voltage line VL1 may be transmitted to the first electrode 210
  • the alignment signal applied to the first alignment line AL1 may be transmitted to the second electrode 220 .
  • the alignment signal transmitted to the first electrode 210 and the second electrode 220 may generate an electric field therebetween, and the light emitting device 300 may generate an electric field between the first electrode 210 and the second electrode 220 by the electric field. 220) may be disposed between.
  • a driving signal for driving the light emitting device 300 may be applied through the first voltage line VL1 and the second voltage line VL2 .
  • the first electrode 210 different electrical signals are applied during the manufacturing process and driving of the display device 10 , but in the same way, the signals may be applied through the first voltage line VL1 .
  • the second electrode 220 different signals may be applied through different wires during the manufacturing process and driving of the display device 10 .
  • the first alignment wiring AL1 to which the alignment signal is applied may be partially disconnected after aligning the light emitting device 300 .
  • FIG. 8 is a cross-sectional view taken along line III-III' of FIG. 6 .
  • the display device 10 may include a plurality of floating wirings AL1a and AL1b as the first alignment wiring AL1 is partially disconnected.
  • the first alignment line AL1 disposed in each sub-pixel PXn may include a first floating line AL1a and a second floating line AL1b.
  • the first floating wiring AL1a and the second floating wiring AL1b extend in the second direction DR2 , and the wiring may be partially disconnected in the non-emission area of each sub-pixel PXn.
  • a wiring contact hole ( 'CLT' in FIG. 8 ) penetrating the first planarization layer 109 may be formed in the non-emission region of each sub-pixel PXn.
  • the wiring contact hole CLT may be formed to expose a portion of the first alignment wiring AL1 after aligning the light emitting devices 300 .
  • the exposed portion of the first alignment line AL1 may be etched to be disconnected, and the first alignment line AL1 may be divided into a first floating line AL1a and a second floating line AL1b.
  • the first floating wiring AL1a is a wiring in contact with the second electrode 220 through the third contact hole CT3
  • the second floating wiring AL1b is the second electrode 220 of another sub-pixel PXn. It may be a wiring in contact with
  • the first floating wiring AL1a and the second floating wiring AL1b may not be electrically connected to each other and may also be electrically disconnected from the pad disposed in the non-display area.
  • an alignment signal may be applied to the second electrode 220 through the first alignment line AL1 . While the display device 10 is being driven, only an electric signal applied to the second voltage line VL2 is transmitted to the second electrode 220 , and an electric signal is transmitted to the first alignment line AL1 or the floating lines AL1a and AL1b. may not be delivered.
  • the light emitting device 300 may be a light emitting diode (Light Emitting diode), specifically, the light emitting device 300 has a size of a micro-meter (micro-meter) to nano-meter (nano-meter) unit, and is made of an inorganic material. It may be an inorganic light emitting diode made of.
  • the inorganic light emitting diode may be aligned between the two electrodes in which polarity is formed when an electric field is formed in a specific direction between the two electrodes facing each other.
  • the light emitting device 300 may be aligned between the electrodes by an electric field formed on the two electrodes.
  • the light emitting device 300 may have a shape extending in one direction.
  • the light emitting device 300 may have a shape such as a rod, a wire, or a tube.
  • the light emitting device 300 may be cylindrical or rod-shaped.
  • the shape of the light emitting device 300 is not limited thereto, and has a shape of a polygonal prism, such as a cube, a rectangular parallelepiped, or a hexagonal prism, or a light emitting device such as extending in one direction and having a partially inclined shape. 300) may have various forms.
  • a plurality of semiconductors included in the light emitting device 300 to be described later may have a structure in which they are sequentially disposed or stacked along the one direction.
  • the light emitting device 300 may include a semiconductor layer doped with an arbitrary conductivity type (eg, p-type or n-type) impurity.
  • the semiconductor layer may transmit an electrical signal applied from an external power source and emit it as light in a specific wavelength band.
  • FIG. 9 is a schematic diagram of a light emitting device according to an embodiment.
  • the light emitting device 300 may include a first semiconductor layer 310 , a second semiconductor layer 320 , an active layer 330 , an electrode layer 370 , and an insulating layer 380 .
  • the first semiconductor layer 310 may be an n-type semiconductor.
  • the first semiconductor layer 310 when the light emitting device 300 emits light in a blue wavelength band, the first semiconductor layer 310 is AlxGayIn1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ It may include a semiconductor material having the chemical formula of 1).
  • it may be any one or more of AlGaInN, GaN, AlGaN, InGaN, AlN, and InN doped with n-type.
  • the first semiconductor layer 310 may be doped with an n-type dopant, for example, the n-type dopant may be Si, Ge, Sn, or the like.
  • the first semiconductor layer 310 may be n-GaN doped with n-type Si.
  • the length of the first semiconductor layer 310 may be in a range of 1.5 ⁇ m to 5 ⁇ m, but is not limited thereto.
  • the second semiconductor layer 320 is disposed on the active layer 330 to be described later.
  • the second semiconductor layer 320 may be a p-type semiconductor.
  • the second semiconductor layer 320 may be AlxGayIn1-x-yN (0 ⁇ and a semiconductor material having a formula of x ⁇ 1,0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
  • it may be any one or more of AlGaInN, GaN, AlGaN, InGaN, AlN, and InN doped with p-type.
  • the second semiconductor layer 320 may be doped with a p-type dopant, for example, the p-type dopant may be Mg, Zn, Ca, Se, Ba, or the like. In an exemplary embodiment, the second semiconductor layer 320 may be p-GaN doped with p-type Mg. The length of the second semiconductor layer 320 may be in the range of 0.05 ⁇ m to 0.10 ⁇ m, but is not limited thereto.
  • the drawing shows that the first semiconductor layer 310 and the second semiconductor layer 320 are configured as one layer, the present invention is not limited thereto. According to some embodiments, depending on the material of the active layer 330, the first semiconductor layer 310 and the second semiconductor layer 320 have a larger number of layers, for example, a clad layer or a TSBR (Tensile strain barrier reducing). It may further include a layer. This will be described later with reference to other drawings.
  • the active layer 330 is disposed between the first semiconductor layer 310 and the second semiconductor layer 320 .
  • the active layer 330 may include a material having a single or multiple quantum well structure.
  • the active layer 330 may have a structure in which a plurality of quantum layers and a well layer are alternately stacked.
  • the active layer 330 may emit light by combining electron-hole pairs according to an electric signal applied through the first semiconductor layer 310 and the second semiconductor layer 320 .
  • the active layer 330 when the active layer 330 emits light in a blue wavelength band, it may include a material such as AlGaN or AlGaInN.
  • the active layer 330 when the active layer 330 has a multi-quantum well structure in which quantum layers and well layers are alternately stacked, the quantum layer may include a material such as AlGaN or AlGaInN, and the well layer may include a material such as GaN or AlInN.
  • the active layer 330 includes AlGaInN as a quantum layer and AlInN as a well layer. As described above, the active layer 330 has a central wavelength band in the range of 450 nm to 495 nm. can emit.
  • the active layer 330 may have a structure in which a type of semiconductor material having a large band gap energy and a semiconductor material having a small band gap energy are alternately stacked with each other, and the wavelength band of the emitted light It may include other group 3 to group 5 semiconductor materials according to the present invention.
  • the light emitted by the active layer 330 is not limited to light in a blue wavelength band, and in some cases, light in a red or green wavelength band may be emitted.
  • the length of the active layer 330 may have a range of 0.05 ⁇ m to 0.10 ⁇ m, but is not limited thereto.
  • light emitted from the active layer 330 may be emitted not only from the longitudinal outer surface of the light emitting device 300 , but also from both sides.
  • the direction of the light emitted from the active layer 330 is not limited in one direction.
  • the electrode layer 370 may be an ohmic contact electrode. However, the present invention is not limited thereto, and may be a Schottky contact electrode.
  • the light emitting device 300 may include at least one electrode layer 370 . 9 illustrates that the light emitting device 300 includes one electrode layer 370, but is not limited thereto. In some cases, the light emitting device 300 may include a larger number of electrode layers 370 or may be omitted. The description of the light emitting device 300 to be described later may be applied in the same manner even if the number of electrode layers 370 is changed or other structures are further included.
  • the electrode layer 370 may reduce resistance between the light emitting device 300 and the electrode or contact electrode when the light emitting device 300 is electrically connected to the electrodes 210 and 220 or the contact electrode 260 .
  • the electrode layer 370 may include a conductive metal.
  • the electrode layer 370 may include aluminum (Al), titanium (Ti), indium (In), gold (Au), silver (Ag), indium tin oxide (ITO), indium zinc oxide (IZO), and ITZO ( Indium Tin-Zinc Oxide) may include at least one.
  • the electrode layer 370 may include a semiconductor material doped with n-type or p-type. However, the present invention is not limited thereto.
  • the insulating layer 380 is disposed to surround outer surfaces of the plurality of semiconductor layers and electrode layers described above.
  • the insulating layer 380 may be disposed to surround at least the outer surface of the active layer 330 , and may extend in one direction in which the light emitting device 300 extends.
  • the insulating layer 380 may function to protect the members.
  • the insulating layer 380 may be formed to surround side surfaces of the members, and both ends of the light emitting device 300 in the longitudinal direction may be exposed.
  • the insulating layer 380 extends in the longitudinal direction of the light emitting device 300 and is formed to cover from the first semiconductor layer 310 to the side surface of the electrode layer 370 , but is not limited thereto.
  • the insulating layer 380 may cover only the outer surface of a portion of the semiconductor layer including the active layer 330 , or cover only a portion of the outer surface of the electrode layer 370 so that the outer surface of each electrode layer 370 is partially exposed.
  • the insulating layer 380 may be formed to have a rounded upper surface in cross-section in a region adjacent to at least one end of the light emitting device 300 .
  • the thickness of the insulating layer 380 may have a range of 10 nm to 1.0 ⁇ m, but is not limited thereto. Preferably, the thickness of the insulating layer 380 may be about 40 nm.
  • the insulating layer 380 is formed of materials having insulating properties, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), aluminum nitride (Al x N y ), oxide aluminum (Al x O y ) and the like. Accordingly, an electrical short that may occur when the active layer 330 is in direct contact with an electrode through which an electrical signal is transmitted to the light emitting device 300 can be prevented. In addition, since the insulating layer 380 protects the outer surface of the light emitting device 300 including the active layer 330 , a decrease in luminous efficiency can be prevented.
  • the outer surface of the insulating layer 380 may be surface-treated.
  • the light emitting device 300 may be sprayed onto the electrode while being dispersed in ink to be aligned.
  • the surface of the insulating layer 380 may be hydrophobic or hydrophilic.
  • the light emitting device 300 may have a length h of 1 ⁇ m to 10 ⁇ m or 2 ⁇ m to 6 ⁇ m, preferably 3 ⁇ m to 5 ⁇ m.
  • the diameter of the light emitting device 300 may be in the range of 300 nm to 700 nm, and the aspect ratio of the light emitting device 300 may be 1.2 to 100.
  • the present invention is not limited thereto, and the plurality of light emitting devices 300 included in the display device 10 may have different diameters depending on a difference in composition of the active layer 330 .
  • the diameter of the light emitting device 300 may have a range of about 500 nm.
  • 10 to 12 are plan views illustrating a part of a manufacturing process of a display device according to an exemplary embodiment.
  • a first electrode 210 and a second electrode 220 disposed in each sub-pixel PXn are formed. Since the description of the shapes of the first electrode 210 and the second electrode 220 is the same as described above, a detailed description thereof will be omitted.
  • the first electrode 210 may be electrically connected to the first voltage line VL1
  • the second electrode 220 may be electrically connected to the first alignment line AL1 and the driving transistor DT.
  • the first alignment line AL1 may be disconnected and extend in the second direction DR2 without being separated by the floating line.
  • a plurality of light emitting devices 300 are arranged between the first electrode 210 and the second electrode 220 .
  • the process of aligning the light emitting device 300 may be performed by spraying ink in which the light emitting device 300 is dispersed and applying an alignment signal to the first electrode 210 and the second electrode 220 .
  • an alignment signal is applied to the first electrode 210 and the second electrode 220 , an electric field is generated between them, and the light emitting devices 300 dispersed in the ink may receive a dielectrophoretic force by the electric field.
  • the light emitting devices 300 subjected to dielectrophoresis may be disposed between the first electrode 210 and the second electrode 220 while the orientation direction and position are changed.
  • the light emitting devices 300 are disposed between the first outer side OS1 of the first electrode 210 and the second outer side OS2 of the second electrode 220 to have various orientation directions.
  • the plurality of light emitting devices 300 are arranged along the curved side of the first outer side OS1 , and alignment directions thereof may be different from each other.
  • the alignment signal transmitted to the first electrode 210 may be applied through the first voltage line VL1
  • the alignment signal transmitted to the second electrode 220 may be applied through the first alignment line AL1 .
  • the alignment signal for aligning the light emitting device 300 may be applied while the first alignment line AL1 is connected. Thereafter, in a subsequent process, the first alignment line AL1 that transmits the alignment signal to the second electrode 220 may be partially disconnected.
  • a portion of the first alignment line AL1 is patterned to be separated into a plurality of floating lines AL1a and AL1b.
  • the first alignment line AL1 may be patterned in the non-emission area of each sub-pixel PXn (a portion 'CB' of FIG. 12 ). A description thereof is the same as described above.
  • the display device 10 is formed by forming the second insulating layer 520 , the contact electrodes 261 and 262 , and the third insulating layer 550 disposed on the light emitting device 300 . can be manufactured.
  • FIG. 13 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • each sub-pixel PXn may include a larger number of electrode units EU.
  • a larger number for example, four or more electrode units EU, may be disposed in each sub-pixel PXn.
  • some of the electrodes (210, 220) may be directly connected or integrated with the electrodes (210, 220) of the other electrode unit (EU), the other type of electrode (210) , 220) can be formed.
  • the display device 10_1 of FIG. 13 is different from the embodiment of FIG. 2 in that each sub-pixel PXn further includes a larger number of electrode units EU and other types of electrode units EU.
  • overlapping descriptions will be omitted and description will be focused on differences.
  • the display device 10_1 of FIG. 13 may further include fifth to eighth electrode units EU5 , EU6 , EU7 , and EU8 in addition to the first to fourth electrode units EU1 , EU2 , EU3 , and EU4 .
  • the fifth electrode unit EU5 is positioned on one side of the second electrode unit EU2 in the first direction DR1
  • the sixth electrode unit EU6 is positioned on one side of the fifth electrode unit EU5 in the first direction DR1 . can be located on the side.
  • the fifth electrode unit EU5 and the sixth electrode unit EU6 may have the same shape as the first electrode unit EU1 and the second electrode unit EU2 , respectively.
  • the eighth electrode unit EU8 is positioned on one side of the third electrode unit EU3 in the first direction DR1
  • the seventh electrode unit EU7 is positioned on one side of the eighth electrode unit EU8 in the first direction. (DR1) may be located on one side.
  • the seventh electrode unit EU7 and the eighth electrode unit EU8 may have the same shape as the third electrode unit EU3 and the fourth electrode unit EU4 , respectively.
  • the plurality of electrode units EU may be integrated with the second electrode 220 directly connected to each other.
  • the fifth to eighth electrode units EU5, EU6, EU7, and EU8 may have second electrodes 220 connected to each other, of which In the five-electrode unit EU5 , the second electrode 220 may further include an electrode protrusion 220P.
  • the second electrode unit EU2 and the fifth electrode unit EU5, and the third electrode unit EU3 and the eighth electrode unit EU8 have a symmetrical structure with respect to the center of the sub-pixel PXn. It can be formed to have.
  • the second electrode unit EU2 and the fifth electrode unit EU5 , and the third electrode unit EU3 and the eighth electrode unit EU8 may be formed by integrating the first electrodes 210 , respectively. Another type of first electrode 210 or electrode unit EU may be formed.
  • the first electrode 210 of the second electrode unit EU2 and the first electrode 210 of the fifth electrode unit EU5 are integrated with the second short side SS2 extending in the second direction DR2, respectively,
  • the first outer side OS1 may be connected to each other.
  • the first short side SS1 extending in the first direction DR1 may have a longer length.
  • the electrode unit EU of the display device 10_1 includes one short side on which the first electrode 210 extends in the first direction DR1 , and the first outer side OS1 has the one short side. It may include a second type electrode unit connecting both sides of the.
  • the second electrode unit EU2 and the fifth electrode unit EU5, and the third electrode unit EU3 and the eighth electrode unit EU8 have first electrodes 210 integrated with each other. It may have a half-circle shape, and the second electrode 220 may also have a shape like an arc of a half-circle by integrating the fourth short sides SS4 .
  • different electrode units are shown depending on the area, for example, the second electrode unit EU2 and the fifth electrode unit EU5, and the third electrode unit EU3 and the eighth electrode unit EU8, It is not limited thereto.
  • the first electrode 210 and the second electrode 220 may be integrated to form one electrode unit EU having a different shape.
  • the first type of first electrode 210 having a quadrangular shape may have a semicircular shape when the other first electrode 210 and one short side are integrated with each other.
  • the display device 10_1 may further include a second type of first electrode 210 having a semicircular shape.
  • the second type of first electrode 210 may include one short side extending in the first direction DR1 or the second direction DR2 and a first outer side OS1 connecting both sides of the one short side.
  • a center of curvature of the first outer side OS1 may be disposed between both sides of the one short side.
  • the center of curvature of the first outer side OS1 may be the midpoint of both sides of the one short side.
  • each sub-pixel PXn includes a plurality of first-type electrode units, some of which are partially integrated with the electrodes 210 and 220 to form one different type of electrode. Units EU may be formed. 13 , one sub-pixel PXn may include two second-type electrode units and four first-type electrode units.
  • FIG. 14 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • the display device 10_2 may include a larger number of electrode units EU, and each sub-pixel PXn includes a different type of first electrode 210 and an electrode. It may further include units (EUs).
  • the display device 10_2 of FIG. 14 is different from the embodiment of FIG. 13 in that it includes a larger number of electrode units EU.
  • one sub-pixel PXn may further include ninth to twelfth electrode units EU9, EU10, EU11, and EU12.
  • the ninth to twelfth electrode units EU9 , EU10 , EU11 , and EU12 are a fourth electrode unit EU4 , a third electrode unit EU3 , and an eighth electrode unit EU8 in the sub-pixel PXn of FIG. 13 , respectively. and the other side of the seventh electrode unit EU7 in the second direction DR2 .
  • the ninth electrode unit EU9 and the twelfth electrode unit EU12 one short side of the first electrode 210 may be integrated with the fourth electrode unit EU4 and the seventh electrode unit EU7 , respectively. .
  • the fourth electrode unit EU4 and the ninth electrode unit EU9 and the seventh electrode unit EU7 and the twelfth electrode unit EU12 may each form a second type electrode unit.
  • the tenth electrode unit EU10 and the eleventh electrode unit EU11 may be disposed to contact the third electrode unit EU3 and the eighth electrode unit EU8 . That is, one short side of the first electrodes 210 may be integrated with each other.
  • the sub-pixel PXn of the display device 10_2 may further include a third type electrode unit in which the first electrode 210 has a circular shape.
  • the electrode unit EU of the display device 10_2 has a third type of first electrode 210 having a circular shape by integrating four first electrodes 210 having a quadrant shape. ), and the electrode unit EU may include a third type electrode unit including the first electrode 210 of the third type.
  • the second electrode 220 may have a shape such that the second outer side OS2 corresponds to the first outer side OS1 of the first electrode 210 .
  • the second outer side OS2 of the second electrode 220 may have a shape like an arc of a circle.
  • each sub-pixel PXn includes a plurality of first-type electrode units and second-type electrode units, some of which are partially integrated with the electrodes 210 and 220 .
  • One different type of electrode unit EU may be formed.
  • one sub-pixel PXn may include two first-type electrode units, three second-type electrode units, and one third-type electrode unit.
  • the embodiment of FIG. 14 is different from the embodiment of FIG. 13 in that it further includes other types of electrodes 210 and 220 or electrode units. A duplicate description will be omitted.
  • the electrode unit EU may further include other electrodes disposed between the first electrode 210 and the second electrode 220 .
  • 15 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • 16 is a schematic plan view illustrating an electrode unit of the display device of FIG. 15 .
  • an electrode unit EU_3 includes a third electrode 230_3 disposed between a first electrode 210_3 and a second electrode 220_3, and A fourth electrode 240_3 may be further included.
  • the display device 10_3 of FIGS. 15 and 16 is different from the embodiment of FIG. 2 in that each electrode unit EU_3 includes a larger number of electrodes 230_3 and 240_3 .
  • overlapping descriptions will be omitted, and the third electrode 230_3 and the fourth electrode 240_3 will be described in detail.
  • the third electrode 230_3 may be disposed between the first electrode 210_3 and the second electrode 220_3 .
  • the third electrode 230_3 may have substantially the same shape as the second electrode 220_3 or the electrode curved portion 220R_3 and may be disposed to face the second electrode 220_3 and spaced apart from each other.
  • the third electrode 230_3 may have a curved shape corresponding to the second outer side OS2 of the second electrode 220_3 .
  • One outer side of the third electrode 230_3 may face the second outer side OS2 and spaced apart from each other, and the light emitting devices 300 may be disposed therebetween.
  • the fourth electrode 240_3 may be disposed between the first electrode 210_3 and the third electrode 230_3 .
  • the fourth electrode 240_3 may also have substantially the same shape as the second electrode 220_3 or the electrode curved portion 220R_3 and be disposed to face the first electrode 210_3 and the third electrode 230_3 to be spaced apart from each other.
  • the fourth electrode 240_3 may have a curved shape corresponding to the first outer side OS1 of the first electrode 210_3 .
  • One outer side of the fourth electrode 240_3 may face the first outer side OS1 to be spaced apart from each other, and the light emitting devices 300 may be disposed therebetween.
  • the third electrode 230_3 and the fourth electrode 240_3 may have the same center of curvature as the first outer side OS1 of the first electrode 210_3 and may have a quadrant arc shape. However, the length and area of the second electrode 220_3 , the third electrode 230_4 , and the fourth electrode 240_3 may increase as the distance from the center of curvature increases.
  • the first electrode 210_3 , the second electrode 220_3 , the third electrode 230_3 , and the fourth electrode 240_3 may be spaced apart from each other, and curved outer sides thereof may face each other. The spacing between them may be substantially the same, and as described above with reference to FIG. 4 , the first electrode 210_3 , the second electrode 220_3 , the third electrode 230_3 and the fourth electrode 240_3 are The spaced interval may be constant as the first interval ('W1' in FIG. 4 ).
  • a plurality of light emitting devices 300 may be arranged between the first electrode 210_3 , the second electrode 220_3 , the third electrode 230_3 , and the fourth electrode 240_3 .
  • a third contact electrode 263_3 and a fourth contact electrode 264_3 may be disposed on the third electrode 230_3 and the fourth electrode 240_3 , respectively.
  • the third contact electrode 263_3 and the fourth contact electrode 264_3 have the same shape as the second contact electrode 262_3, but their sizes vary depending on the shape of the third electrode 230_3 and the fourth electrode 240_3, respectively. can be different.
  • the plurality of light emitting devices 300 may be electrically connected to the first electrode 210_3 , the second electrode 220_3 , the third electrode 230_3 , and the fourth electrode 240_3 , respectively.
  • Both ends of the light emitting devices 300 may directly contact any one of the first contact electrode 261_3 , the second contact electrode 262_3 , the third contact electrode 263_3 , and the fourth contact electrode 264_3 . A detailed description thereof will be omitted.
  • the third electrode 230_3 and the fourth electrode 240_3 may not be directly connected to the first voltage line VL1 and the second voltage line VL2 to which the driving signal of the display device 10_3 is applied.
  • a driving signal applied through the first voltage line VL1 and the second voltage line VL2 is transmitted only to the first electrode 210_3 and the second electrode 220_3 , and the third electrode 230_3 ) and the fourth electrode 240_3 may not be transmitted.
  • the electrical signal transmitted to the first electrode 210_3 may be transmitted to the fourth electrode 240_3 through the light emitting device 300 electrically connected to the first electrode 210_3 .
  • the electric signal transmitted to the fourth electrode 240_3 may be transmitted through the light emitting device 300 disposed between the fourth electrode 240_3 and the third electrode 230_3 .
  • the electrical signal transmitted to the second electrode 220_3 may be transmitted to the third electrode 230_3 and the fourth electrode 240_3 through the light emitting device 300 electrically connected to the second electrode 220_3. have.
  • the display device 10_3 further includes a third electrode 230_3 and a fourth electrode 240_3 through which the electrode unit EU_3 does not transmit an electrical signal directly from the voltage lines VL1 and VL2. Accordingly, the light emitting devices 300 connected between the respective electrodes 210_3, 220_3, 230_3, and 240_3 may be partially connected in series. Accordingly, it is possible to increase the number of light emitting devices 300 arranged per unit area, and at the same time, luminous efficiency may be improved due to serial connection.
  • the third electrode 230_3 and the fourth electrode 240_3 are not directly connected to the first voltage line VL1 and the second voltage line VL2 , but may be directly connected to the alignment lines to which the alignment signal is applied.
  • 17 is a schematic plan view illustrating an electrode unit and an alignment line of the display device of FIG. 15 .
  • 18 is a cross-sectional view taken along line IV-IV' of FIG. 15 .
  • 17 illustrates a partially enlarged view of the first electrode unit EU1_3 of the display device 10_3 of FIG. 15 .
  • the electrode unit EU_3 includes a larger number of electrodes, for example, a third electrode 230_3 and a fourth electrode 240_3. Accordingly, a larger number of internal banks and alignment lines AL1_3 , AL2_3 , and AL3_3 may be included.
  • a third internal bank 430 and a fourth internal bank 440 may be disposed between the first internal bank 410 and the second internal bank 420 .
  • the third internal bank 430 is disposed between the first planarization layer 109 and the third electrode 230_3
  • the fourth internal bank 440 is disposed between the first planarization layer 109 and the fourth electrode 240_3 .
  • the third inner bank 430 and the fourth inner bank 440 may each have a shape similar to that of the second inner bank 420 . A detailed description thereof will be omitted.
  • the alignment lines AL1_3 , AL2_3 , and AL3_3 may further include a second alignment line AL2_3 and a third alignment line AL3_3 in addition to the first alignment line AL1_3 .
  • the description of the first alignment line AL1_3 is the same as described above.
  • the first alignment line AL1_3 may be electrically connected to the second electrode 220_3 through the third contact hole CT3_3 and may transmit an alignment signal.
  • the description of the first voltage line VL1_3 and the second voltage line VL2_3 is the same as described above.
  • the second alignment line AL2_3 and the third alignment line AL3_3 will be described. .
  • the second alignment line AL2_3 and the third alignment line AL3_3 may extend in the second direction DR2 like the first alignment line AL1_3 .
  • the second alignment line AL2_3 and the third alignment line AL3_3 are second data conductive layers, and may be disposed to overlap the third electrode 230_3 and the fourth electrode 240_3 in the thickness direction, respectively.
  • the third internal bank 430 and the first planarization layer 109 penetrate through a fourth region to expose a portion of the second alignment line AL2_3 .
  • a contact hole CT4_3 may be formed.
  • the fourth internal bank 440 and the first planarization layer 109 penetrate through the fifth alignment line AL3_3 to expose a portion of the third alignment line AL3_3 .
  • a contact hole CT5_3 may be formed.
  • the third electrode 230_3 and the fourth electrode 240_3 are electrically connected to the second alignment line AL2_3 and the third alignment line AL3_3 through the fourth contact hole CT4_3 and the fifth contact hole CT5_3, respectively.
  • an alignment signal is applied to the second alignment line AL2_3 and the third alignment line AL3_3 to be transmitted to the third electrode 230_3 and the fourth electrode 240_3 , respectively.
  • the fourth contact hole CT4_3 penetrates through the third internal bank 430 and the first planarization layer 109 to expose the second alignment wiring AL2_3 , and the fifth contact hole CT5_3 has the fourth internal portion.
  • the third alignment line AL3_3 may be exposed through the bank 440 and the first planarization layer 109 .
  • the third electrode 230_3 and the fourth electrode 240_3 are electrically connected to the second alignment line AL2_3 and the third alignment line AL3_3 through the fourth contact hole CT4_3 and the fifth contact hole CT5_3, respectively.
  • the first electrode 210 and the second electrode 220 are spaced apart from the electrodes 210 and 220 of the other electrode unit EU. can be placed. They are not integrated with each other, and may be electrically connected through different parts or electrodes.
  • 19 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • the second electrodes 220_4 of the electrode unit EU are disposed to be spaced apart from each other, and they each include an electrode protrusion 220P_4 and an electrode protrusion 220P_4 . ) can be interconnected.
  • the embodiment of FIG. 19 is different from the embodiment of FIG. 15 in that each electrode unit EU_4 includes an electrode protrusion 220P_4 and they are interconnected.
  • overlapping descriptions will be omitted and descriptions will be made focusing on differences.
  • the first electrode unit EU1_4 , the second electrode unit EU2_4 , the third electrode unit EU_3 , and the fourth electrode unit EU4_4 have the same second electrode 220_4 , respectively. ) may be included.
  • the second electrode 220_4 may include an electrode curved portion 220R_4 and an electrode protruding portion 220P_4 . Both ends of the second electrodes 220_4 of the first to fourth electrode units EU1_4, EU2_4, EU3_4, and EU4_4 may be spaced apart from each other without being integrated.
  • the second electrode 220_4 includes an electrode protrusion 220P_4 , and they may be connected to each other.
  • the first outer side OS1 of the first electrode 210_4 and the second outer side OS2 of the second electrode 220_4 are sub-pixels (
  • the third electrode 230_4 and the fourth electrode 240_4 may also have a curved shape toward the center of the sub-pixel PXn.
  • the electrode protrusion 220P_4 of the second electrode 220_4 may protrude from the third outer side OS3 toward the center of the sub-pixel PXn, and may be interconnected at the center of the sub-pixel PXn.
  • the plurality of first to fourth electrode units EU1_4 , EU2_4 , EU3_4 , and EU4_4 have one electrode protrusion 220P_4 connected to each other even if the second electrode 220_4 is not integrated. may be electrically connected to the driving transistor DT through the second contact hole CT2 of Accordingly, the same electrical signal may be transmitted to the second electrodes 220_4 of the first to fourth electrode units EU1_4 , EU2_4 , EU3_4 , and EU4_4 .
  • the light emitting devices 300 of each of the electrode units EU_4 may form a series connection between the light emitting devices 300 disposed between different electrodes, and the light emitting devices 300 of the different electrode units EU_4 are parallel to each other. You can configure the connection.
  • the first electrode 210 of one electrode unit EU may be electrically connected to the second electrode 220 of the other electrode unit EU.
  • the electrical signal transmitted to the second electrode 220 may be transmitted to the second electrode 220 of another electrode unit EU through the first electrode 210 .
  • the light emitting devices 300 of the plurality of electrode units EU disposed in each sub-pixel PXn may be connected in series to each other.
  • 20 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • a display device 10_5 is disposed in each sub-pixel PXn, and one side thereof is electrically connected to the first electrode 210_5 of any one electrode unit EU_5,
  • the other side may further include bridge electrodes BE1_5 , BE2_5 , and BE3_5 electrically connected to the second electrode 220_5 of the other electrode unit EU_5 .
  • the embodiment of FIG. 20 further includes bridge electrodes BE1_5, BE2_5, and BE3_5 connecting the first electrode 210_5 and the second electrode 220_5 of the different electrode units EU_5, and the second electrode 220_5 is It is different from the embodiment of FIG. 19 in that only a part of the electrode protrusion 220P is included.
  • the overlapping description will be omitted and the bridge electrodes BE1_5, BE2_5, and BE3_5 will be described in detail.
  • One side of the bridge electrodes BE1_5 , BE2_5 , and BE3_5 may be electrically connected to the first electrode 210_5 of any one electrode unit EU_5 .
  • one side of the first bridge electrode BE1_5 is directly connected to the first electrode 210_5 of the first electrode unit EU1_5, and one side of the second bridge electrode BE2_5 has one side of the second electrode unit ( The first electrode 210_5 of EU2_5 may be directly connected, and one side of the third bridge electrode BE3_5 may be directly connected with the first electrode 210_5 of the third electrode unit EU3_5.
  • the other side of the bridge electrodes BE1_5 , BE2_5 , and BE3_5 may be electrically connected to the second electrode 220_5 of any one electrode unit EU_5 .
  • the other side of the first bridge electrode BE1_5 is directly connected to the second electrode 220_5 of the second electrode unit EU2_5, and the second bridge electrode BE2_5 has the other side of the third electrode unit ( The second electrode 220_5 of EU3_5 may be directly connected, and the other side of the third bridge electrode BE3_5 may be directly connected with the second electrode 220_5 of the fourth electrode unit EU4_5.
  • the bridge electrodes BE1_5 , BE2_5 , and BE3_5 are disposed in the non-emission region to extend in one direction, and are connected to the first electrode 210_5 and the second electrode 220_5 of the different electrode units EU_5 . That is shown
  • the present invention is not limited thereto, and the shapes of the bridge electrodes BE1_5 , BE2_5 , and BE3_5 may be variously modified according to the area of the sub-pixel PXn.
  • the first electrode 210_5 and the second electrode 220_5 connected to the bridge electrodes BE1_5 , BE2_5 , and BE3_5 may not be directly connected to the first voltage line VL1 and the second voltage line VL2 , respectively. That is, the first contact hole CT1 and the second contact hole CT2 may not be formed in the first electrode 210_5 and the second electrode 220_5 connected to the bridge electrodes BE1_5 , BE2_5 , and BE3_5 . These may substantially transmit electrical signals through the light emitting device 300 and the bridge electrodes BE1_5, BE2_5, and BE3_5 like the third electrode 230_5 and the fourth electrode 240_5.
  • the first electrodes 210_5 of the first electrode unit EU1_5 , the second electrode unit EU2_5 , and the third electrode unit EU3_5 are respectively connected to the bridge electrodes BE1_5 , BE2_5 , and BE3_5 to form the first It may not be electrically connected to the voltage line VL1.
  • the first electrode 210_5 of the fourth electrode unit EU4_5 is electrically connected to the first voltage line VL1 through the first contact hole CT1 .
  • the second electrodes 220_5 of the second electrode unit EU2_5 , the third electrode unit EU3_5 , and the fourth electrode unit EU4_5 are connected to the bridge electrodes BE1_5 , BE2_5 , and BE3_5 respectively to drive transistors (DT) may not be electrically connected.
  • the second electrode 220_5 of the first electrode unit EU1_5 may include the electrode protrusion 220P_5 and may be electrically connected to the driving transistor DT through the second contact hole CT2 .
  • the bridge electrodes BE1_5 , BE2_5 , and BE3_5 electrically connect the first electrode 210_5 and the second electrode 220_5 of the different electrode units EU_5 , and a driving signal is transmitted as a bridge while the display device 10_5 is being driven. It may be transmitted through the electrodes BE1_5, BE2_5, and BE3_5.
  • the driving signal transmitted to the second electrode 220_5 of the first electrode unit EU1_5 is transmitted to the first electrode 210_5 of the first electrode unit EU1_5, which is transmitted to the second electrode BE1_5 through the first bridge electrode BE1_5. It is transferred to the second electrode 220_5 of the electrode unit EU2_5.
  • the driving signal transmitted to the second electrode 220_5 of the second electrode unit EU2_5 is transmitted to the other electrode unit EU_5 through the first electrodes 210_5 and the bridge electrodes BE2_5 and BE3_5. can be transmitted to
  • the driving signal transmitted to the first electrode 210_5 of the fourth electrode unit EU4_5 is similarly transmitted to the other electrode units EU_5 through the second electrodes 220_5 and the bridge electrodes BE1_5, BE2_5, and BE3_5. can be transmitted.
  • the display device 10_5 further includes bridge electrodes BE1_5 , BE2_5 , and BE3_5 connecting the electrode units EU_5 of each sub-pixel PXn to each other, and includes light emitting devices of different electrode units EU_5 . 300 may constitute a series connection.
  • some electrode units EU are connected to a bridge electrode BE, and some other electrode units EU are electrodes of the second electrode 220 . They may be connected to each other through the protrusions 220P.
  • 21 and 22 are plan views illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • some electrode units EU_6 have electrode protrusions 220P_6 of a second electrode 220_6 connected to each other, and some other electrode units EU_6 have bridges.
  • the first electrode 210_6 and the second electrode 220_6 may be connected to each other through the electrodes BE1_6 and BE3_6 .
  • the second electrode 220_6 of the first electrode unit EU1_6 and the third electrode unit EU3_6 may include an electrode protrusion 220P_6 and may be connected to each other.
  • first electrode 210_6 of the first electrode unit EU1_6 and the second electrode 220_6 of the second electrode unit EU2_6 are connected through the first bridge electrode BE1_6, and the third electrode unit EU3_6 ) and the second electrode 220_6 of the fourth electrode unit EU4_6 may be connected through the third bridge electrode BE3_6.
  • the second electrode 220_6 is electrically connected to the driving transistor DT through the second contact hole CT2, and the second electrode unit EU2_6 And in each of the fourth electrode units EU4_6 , the first electrode 210_6 may be electrically connected to the first voltage line VL1 through the first contact hole CT1 .
  • Other descriptions are the same as described above.
  • a display device 10_7 includes a larger number and different types of electrode units EU_7 , and includes a larger number of bridge electrodes BE1_7 , BE2_7 , BE3_7 , and BE4_7 . can do.
  • the embodiment of FIG. 22 is different from the embodiment of FIGS. 13 and 15 in that it further includes bridge electrodes BE1_7, BE2_7, BE3_7, and BE4_7.
  • the display device 10_7 includes first to eighth electrode units EU1_7, EU2_7, EU3_7, EU4_7, EU5_7, EU6_7, EU7_7, EU8_7.
  • the first electrode unit EU1_7 , the fourth electrode unit EU4_7 , the sixth electrode unit EU6_7 , and the seventh electrode unit EU7_7 may be a first type electrode unit.
  • Other electrode units EU_7 may be integrated with each other to form a second type electrode unit.
  • each of the electrode units EU_7 may include a third electrode 230_7 and a fourth electrode 240_7 . A description thereof is the same as described above with reference to FIGS. 13 and 15 .
  • the bridge electrodes BE1_7, BE2_7, BE3_7, and BE4_7 may include first to fourth bridge electrodes BE1_7, BE2_7, BE3_7, and BE4_7.
  • the first bridge electrode BE1_7 may connect the first electrode 210_7 of the first electrode unit EU1_7 and the second electrode 220_7 of the second electrode unit EU2_7.
  • the second bridge electrode BE2_7 may connect the first electrode 210_7 of the fifth electrode unit EU5_7 and the second electrode 220_7 of the sixth electrode unit EU6_7.
  • the third bridge electrode BE3_7 may connect the first electrode 210_7 of the seventh electrode unit EU7_7 and the second electrode 220_7 of the eighth electrode unit EU8_7 to each other.
  • the fourth bridge electrode BE4_7 may connect the first electrode 210_7 of the third electrode unit EU3_7 and the second electrode 220_7 of the fourth electrode unit EU4_7.
  • the second electrode 220_7 includes the electrode protrusion 220P_7 and may be electrically connected to the driving transistor DT through the first contact hole CT1.
  • the fourth electrode unit EU4_7 and the sixth electrode unit EU6_7 may be electrically connected to the first voltage line VL1 through the second contact hole CT2 .
  • a description thereof is the same as that described above with reference to FIGS. 19 and 20, and a detailed description thereof will be omitted.
  • the display device 10 further includes a bridge electrode BE so that the first electrode 210 or the second electrode 220 of some electrode units EU is connected to the first voltage line VL1 or the driving transistor DT. It may not be electrically connected. Accordingly, the light emitting devices 300 between different electrode units EU may form a series connection.
  • a connection electrode connecting the third electrode 230 and the fourth electrode 240 and the first electrode 210 or the second electrode 220 during a manufacturing process. may further include.
  • FIG. 23 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • a display device 10_8 includes a plurality of floating patterns FE1_8 disposed in each sub-pixel PXn and spaced apart from some electrodes 210_8, 220_8, 230_8, and 240_8. FE2_8) may be included.
  • the embodiment of FIG. 23 is different from the embodiment of FIG. 15 in that it further includes floating patterns FE1_8 and FE2_8.
  • overlapping descriptions will be omitted and descriptions will be made focusing on differences.
  • the floating patterns FE1_8 and FE2_8 include a plurality of first floating patterns FE1_8 having a shape extending in the first direction DR1 , and a plurality of second floating patterns having a shape extending in the second direction DR2 . (FE2_8) may be included.
  • the first floating patterns FE1_8 and the second floating patterns FE2_8 are one side of each of the electrode units EU_8 in the first direction DR1 and the second direction DR2 in the non-emission area of each sub-pixel PXn. can be placed in Two first floating patterns FE1_8 may be respectively disposed above and below the center of the sub-pixel PXn.
  • One second floating pattern FE2_8 may be disposed on each of the left and right sides of the center of the sub-pixel PXn. These may be disposed to correspond to the first electrode unit EU1_8 and the fourth electrode unit EU4_8 , and the second electrode unit EU2_8 and the third electrode unit EU3_8 , respectively.
  • floating patterns FE1_8 and FE2_8 disposed to correspond to the first electrode unit EU1_8 will be described by example. It is obvious that the following description can be equally applied to other floating patterns FE1_8 and FE2_8.
  • At least a portion of the floating patterns FE1_8 and FE2_8 may be disposed to be spaced apart from at least some of the electrodes of the electrode unit EU_8 .
  • the first floating pattern FE1_8 has a shape extending in the first direction DR1 and is spaced apart from at least the first electrode 210_8 and the third electrode 230_8 in the second direction DR2. It may include a placed part.
  • the first floating pattern FE1_8 may be disposed to be spaced apart from the first short side SS1 of the first electrode 210_8 and move in the second direction DR2 among both short sides of the third electrode 230_8 . It may be disposed spaced apart from the facing short side.
  • the second floating pattern FE2_8 has a shape extending in the second direction DR2 , and includes at least the second electrode 220_8 and the fourth electrode 240_8 and the first direction DR1 . It may include parts arranged spaced apart from each other.
  • the second floating pattern FE2_8 may be disposed to be spaced apart from the fourth short side SS4 of the second electrode 220_8 and move in the first direction DR1 among both short sides of the fourth electrode 240_8 . It may be disposed spaced apart from the facing short side.
  • the floating patterns FE1_8 and FE2_8 may be formed while being connected to other electrodes during a manufacturing process of the display device 10_8 and then disconnected in a subsequent process.
  • the first floating pattern FE1_8 is formed in a state in which it is connected to the first electrode 210_8 and the third electrode 230_8, and the second floating pattern FE2_8 includes the second electrode 220_8 and the fourth electrode 230_8. 240_8) may be formed in a connected state.
  • 24 and 25 are plan views illustrating a part of a manufacturing process of the display device of FIG. 23 .
  • connection electrodes CE1_8 and CE2_8 are the first connection electrode CE1_8 connected to the first electrode 210_8 and the third electrode 230_8 and the second connection electrode connected to the second electrode 220_8 and the fourth electrode 240_8 (CE2_8) may be included.
  • the first connection electrode CE1_8 and the second connection electrode CE2_8 may be disposed in the non-emission area and may have shapes extending in the first direction DR1 and the second direction DR2 , respectively.
  • the connection electrodes CE1_8 and CE2_8 may also be disposed to correspond to the respective electrode units EU_8 .
  • the connection electrodes CE1_8 and CE2_8 disposed to correspond to the first electrode unit EU1_8 will be described by way of example. It is obvious that the following description may be equally applied to other connection electrodes CE1_8 and CE2_8.
  • the first electrode 210_8 may receive an alignment signal through the first voltage line VL1 and the second electrode 220_8 may receive the alignment signal through the first alignment line AL1 . . 17
  • the third electrode 230_8 and the fourth electrode 240_8 may also receive an alignment signal through the second alignment line AL2 and the third alignment line AL3 , but is not limited thereto. does not In some embodiments, the second alignment line AL2 and the third alignment line AL3 may be omitted, and the third electrode 230_8 and the fourth electrode 240_8 may include the fourth contact hole CT4 and the fifth alignment line CT4 .
  • the contact hole CT5 may not be formed.
  • connection electrode CE1_8 and CE2_8 may be connected to the first connection electrode CE1_8 and the second connection electrode CE2_8 connected to the first electrode 210_8 and the second electrode 220_8, through which the alignment signal may be transmitted. That is, the connection electrodes CE1_8 and CE2_8 may perform a function of transferring an alignment signal to another electrode.
  • the first connection electrode CE1_8 may be connected to the first electrode 210_8 and the third electrode 230_8 .
  • the first connection electrode CE1_8 may be directly connected to the first short side SS1 of the first electrode 210_8 and one short side of the third electrode 230_8 facing the second direction DR2 .
  • the first connection electrode CE1_8 may transmit it to the third electrode 230_8 .
  • the second connection electrode CE2_8 may be connected to the second electrode 220_8 and the fourth electrode 240_8 .
  • the second connection electrode CE2_8 may be directly connected to the fourth short side SS4 of the second electrode 220_8 and one short side of the fourth electrode 240_8 facing the first direction DR1 .
  • the second connection electrode CE2_8 may transmit it to the fourth electrode 240_8 .
  • each of the electrodes 210_8 , 220_8 , 230_8 , and 240_8 is applied through the first connection electrode CE1_8 and the second connection electrode CE2_8 .
  • the light emitting devices 300 may be disposed between the electrodes 210_8, 220_8, 230_8, and 240_8 by the electric field.
  • connection electrodes CE1_8 and CE2_8 are disconnected from each of the electrodes 210_8 , 220_8 , 230_8 and 240_8 ( 'CB' in FIG. 25 ).
  • the first connection electrode CE1_8 is disconnected from the first electrode 210_8 and the third electrode 230_8 to form the first floating pattern FE1_8 of FIG. 23
  • the second connection electrode CE2_8 is connected to the second electrode ( 220_8) and the fourth electrode 240_8 may be disconnected to form the second floating pattern FE2_8 of FIG. 23 .
  • connection electrodes CE1_8 and CE2_8 may be patterned after disposing the light emitting device 300 to be disconnected from each of the electrodes 210_8 , 220_8 , 230_8 , and 240_8 , and may remain in a floating state.
  • each electrode unit EU_8 includes the third electrode 230_8 and the fourth electrode 240_8 and a larger number of alignment wires are included, the wiring contact hole ('CLT' in FIG. 8 ) formed in the non-light emitting region area can be increased.
  • the wiring contact hole ('CLT' in FIG. 8 ) formed in the non-light emitting region area can be increased.
  • the third electrode 230_8 and the fourth electrode Reference numeral 240_8 may be disconnected from the first electrode 210_8 and the second electrode 220_8 on the first planarization layer 109 , respectively, and the wiring contact hole CLT is a portion in which the first alignment wiring AL1 is positioned. can be formed only in
  • a portion of the connection electrodes CE1_8 and CE2_8 is connected to one end of each of the electrodes 210_8, 220_8, 230_8, and 240_8. can be left as it is.
  • a plurality of electrode fragments ES1_8, ES2_8, ES3_8, and ES4_8 formed on at least one short side of each electrode 210_8, 220_8, 230_8, and 240_8. may include.
  • the plurality of electrode fragment parts ES1_8, ES2_8, ES3_8, and ES4_8 include a first electrode fragment part ES1_8 connected to the first electrode 210_8, a second electrode fragment part ES2_8 connected to the second electrode 220_8, and a second electrode fragment part ES2_8 connected to the second electrode 220_8. It may include a third electrode fragment part ES3_8 connected to the third electrode 230_8 and a fourth electrode fragment part ES4_8 connected to the fourth electrode 240_8.
  • the first electrode fragment part ES1_8 may be connected to the first short side SS1 of the first electrode 210_8 so that a portion of the first short side SS1 protrudes in the second direction DR2 .
  • the third electrode fragment part ES3_8 is connected to one short side of the third electrode 230_8 facing the second direction DR2 , and the one short side of the third electrode 230_8 is the second side of the fourth electrode 240_8 . It may protrude more than the short side facing the direction DR2.
  • the first fragment part ES1_8 and the third fragment part ES3_8 may each remain as traces of the first connection electrode CE1_8 , and may face the first floating pattern FE1_8 in the second direction DR2 to be spaced apart from each other. have.
  • the second electrode fragment part ES2_8 is connected to the fourth short side SS4 of the second electrode 220_8 so that the fourth short side SS4 is connected to the third electrode 230_8 in the first direction DR1 . It may protrude in the first direction DR1 rather than the short side facing toward the .
  • the fourth electrode fragment part ES4_8 is connected to one short side of the fourth electrode 240_8 facing the first direction DR1 , and the one short side of the fourth electrode 240_8 is the first side of the third electrode 230_8 . It may protrude more than the short side facing the direction DR1.
  • the second fragment part ES2_8 and the fourth fragment part ES4_8 may remain as traces of the second connection electrode CE2_8, respectively, and may face the second floating pattern FE2_8 and spaced apart from each other in the first direction DR1. have.
  • the present invention is not limited thereto.
  • the electrode fragments ES may be removed and may not remain in the display device 10 .
  • 26 is a plan view illustrating one sub-pixel of a display device according to another exemplary embodiment.
  • electrode fragments may be removed. After disposing the light emitting device 300 , in the process of patterning the connection electrodes, the electrode fragment portions ES may be removed so as not to remain, depending on process conditions.
  • the embodiment of FIG. 26 is different from the embodiment of FIG. 25 in that the electrode fragments ES are not removed and only the floating patterns FE1_9 and FE2_9 are disposed. Since the descriptions are duplicated below, detailed descriptions thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

표시 장치가 제공된다. 표시 장치는 복수의 화소를 포함하는 기판, 상기 기판의 상기 화소 내에 배치된 전극 유닛으로써, 곡률 중심을 갖고 곡률진 형상의 제1 외측변을 포함하는 제1 전극 및 상기 제1 외측변에 대응하여 곡률진 형상을 갖는 제2 외측변을 포함하여 상기 제1 전극과 이격 대향하는 제2 전극을 포함하는 전극 유닛 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 복수의 발광 소자들을 포함하고, 상기 제1 전극은 상기 곡률 중심이 상기 화소의 외곽부에 위치하고, 상기 제1 외측변이 상기 화소의 중심을 향하도록 배치된다.

Description

표시 장치
본 발명은 표시 장치에 관한 것이다.
표시 장치는 멀티미디어의 발달과 함께 그 중요성이 증대되고 있다. 이에 부응하여 유기발광 표시 장치(Organic Light Emitting Display, OLED), 액정 표시 장치(Liquid Crystal Display, LCD) 등과 같은 여러 종류의 표시 장치가 사용되고 있다.
표시 장치의 화상을 표시하는 장치로서 유기 발광 표시 패널이나 액정 표시 패널과 같은 표시 패널을 포함한다. 그 중, 발광 표시 패널로써, 발광 소자를 포함할 수 있는데, 예를 들어 발광 다이오드(Light Emitting Diode, LED)의 경우, 유기물을 형광 물질로 이용하는 유기 발광 다이오드(OLED), 무기물을 형광물질로 이용하는 무기 발광 다이오드 등이 있다.
본 발명이 해결하고자 하는 과제는 곡률진 측면을 갖고 서로 대향하는 전극들을 포함하는 표시 장치를 제공하고자 하는 것이다.
또한, 본 발명이 해결하고자 하는 과제는 상기 전극들이 각 화소의 외곽부를 중심으로 배치되어 곡률진 측면이 각 화소의 중심부를 향하는 표시 장치를 제공하고자 하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 일 실시예에 따른 표시 장치는 복수의 화소를 포함하는 기판, 상기 기판의 상기 화소 내에 배치된 전극 유닛으로써, 곡률 중심을 갖고 곡률진 형상의 제1 외측변을 포함하는 제1 전극 및 상기 제1 외측변에 대응하여 곡률진 형상을 갖는 제2 외측변을 포함하여 상기 제1 전극과 이격 대향하는 제2 전극을 포함하는 전극 유닛 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 복수의 발광 소자들을 포함하고, 상기 제1 전극은 상기 곡률 중심이 상기 화소의 외곽부에 위치하고, 상기 제1 외측변이 상기 화소의 중심을 향하도록 배치된다.
상기 전극 유닛은 상기 제1 전극이 제1 방향으로 연장된 제1 단변 및 상기 제1 방향과 교차하는 제2 방향으로 연장되고 일 측이 상기 제1 단변의 일 측과 연결된 제2 단변을 더 포함하고, 상기 제1 외측변이 상기 제1 단변의 타 측과 상기 제2 단변의 타 측을 연결하는 제1 타입 전극 유닛을 포함하며, 상기 제1 타입 전극 유닛의 제1 전극은 상기 제1 외측변의 곡률 중심이 상기 제1 단변의 상기 일 측일 수 있다.
상기 제2 전극은 상기 제2 외측변에 대응하여 곡률진 형상을 갖는 제3 외측변; 상기 제2 외측변의 일 측 및 상기 제3 외측변의 일 측을 연결하고 상기 제1 방향으로 연장된 제3 단변 및 상기 제2 외측변의 타 측 및 상기 제3 외측변의 타 측을 연결하고 상기 제2 방향으로 연장된 제4 단변을 더 포함할 수 있다.
상기 전극 유닛은 상기 제1 외측변의 곡률 중심이 상기 화소의 일 측에 위치하는 제1 전극 유닛 및 상기 제1 외측변의 곡률 중심이 상기 화소의 타 측에 위치하는 제2 전극 유닛을 포함할 수 있다.
상기 제1 전극 유닛의 상기 제2 전극은 상기 제2 전극 유닛의 상기 제2 전극과 직접 연결될 수 있다.
상기 화소에 배치되고, 일 측이 상기 제1 전극 유닛의 상기 제1 전극과 연결되고 타 측이 상기 제2 전극 유닛의 상기 제2 전극과 연결된 브릿지 전극을 더 포함할 수 있다.
상기 제2 전극은 상기 제3 외측변의 일부분이 돌출된 전극 돌출부를 더 포함할 수 있다.
상기 전극 유닛은 상기 제1 전극과 상기 제2 전극 사이에 배치된 제3 전극 및 상기 제3 전극과 상기 제1 전극 사이에 배치된 제4 전극을 더 포함하고, 상기 제3 전극은 상기 제2 전극의 상기 제2 외측변에 대응하여 곡률진 형상을 갖고, 상기 제4 전극은 상기 제1 전극의 제1 외측변에 대응하여 곡률진 형상을 가질 수 있다.
상기 제3 전극과 상기 제4 전극은 서로 이격 대향하도록 배치되고, 상기 발광 소자는 상기 제3 전극과 상기 제4 전극 사이에도 배치될 수 있다.
상기 제1 방향으로 연장된 형상을 갖고, 상기 제1 전극의 제1 단변 및 상기 제3 전극과 상기 제2 방향으로 이격되어 배치된 부분을 포함하는 제1 플로팅 패턴; 및 상기 제2 방향으로 연장된 형상을 갖고, 상기 제2 전극의 제4 단변 및 상기 제4 전극과 상기 제1 방향으로 이격되어 배치된 부분을 포함하는 제2 플로팅 패턴을 더 포함할 수 있다.
상기 전극 유닛은 상기 제1 전극이 상기 제1 방향으로 연장된 제5 단변을 포함하고, 상기 제1 외측변이 상기 제5 단변의 양 측을 연결하는 제2 타입 전극 유닛을 포함하며, 상기 제2 타입 전극 유닛의 제1 전극은 상기 제1 외측변의 곡률 중심이 상기 제5 단변의 양 측 사이에 놓일 수 있다.
상기 전극 유닛은 상기 제1 전극이 원형의 형상을 갖는 제3 타입 전극 유닛을 더 포함할 수 있다.
상기 제1 전극 상에 배치되고, 상기 제1 외측변을 따라 곡률진 변을 포함하는 제1 접촉 전극; 및 상기 제2 전극 상에 배치되고 상기 제2 외측변을 따라 곡률진 변을 포함하는 제2 접촉 전극을 더 포함하고, 상기 제1 접촉 전극은 상기 제1 전극 및 상기 발광 소자의 일 단부와 접촉하고, 상기 제2 접촉 전극은 상기 제2 전극 및 상기 발광 소자의 타 단부와 접촉할 수 있다.
상기 제1 전극의 상기 제1 외측변과 상기 제2 전극의 상기 제2 외측변 사이의 제1 간격은 상기 제1 접촉 전극과 상기 제2 접촉 전극 사이의 제2 간격보다 작을 수 있다.
상기 과제를 해결하기 위한 다른 실시예에 따른 표시 장치는 서로 교차하는 방향으로 연장되어 일 측이 상호 연결된 제1 단변 및 제2 단변, 및 상기 제1 단변과 상기 제2 단변의 타 측들을 연결하며 곡률진 형상을 갖는 제1 외측변을 포함하는 복수의 제1 전극, 상기 제1 전극의 제1 외측변과 이격 대향하도록 배치되고, 상기 제1 외측변에 대응하여 곡률진 형상을 갖는 제2 외측변을 포함하는 복수의 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치된 복수의 발광 소자들을 포함하고, 상기 복수의 발광 소자들은 상기 제1 외측변과 상기 제2 외측변 사이에 배치되며, 상기 제1 외측변의 곡률을 따라 배열된다.
상기 제1 전극과 상기 제2 전극 사이에 배치된 제3 전극 및 상기 제3 전극과 상기 제1 전극 사이에 배치된 제4 전극을 더 포함하고, 상기 제3 전극은 상기 제2 전극의 상기 제2 외측변에 대응하여 곡률진 형상을 갖고, 상기 제4 전극은 상기 제1 전극의 제1 외측변에 대응하여 곡률진 형상을 가질 수 있다.
상기 제1 전극 상에 배치되고, 상기 제1 외측변을 따라 곡률진 변을 포함하는 제1 접촉 전극 및 상기 제2 전극 상에 배치되고 상기 제2 외측변을 따라 곡률진 변을 포함하는 제2 접촉 전극을 더 포함할 수 있다.
상기 제1 외측변과 상기 제2 외측변은 동일한 곡률 중심을 갖되 상기 복수의 제1 전극들 중 적어도 일부는 서로 다른 곡률 중심을 갖고, 상기 복수의 제2 전극들 중 적어도 일부는 서로 다른 곡률 중심을 가질 수 있다.
곡률 중심이 서로 다른 상기 제2 전극들 중 적어도 일부는 서로 직접 연결될 수 있다.
상기 제1 전극 및 상기 제1 전극과 다른 곡률 중심을 갖는 상기 제2 전극을 연결하는 브릿지 전극을 더 포함할 수 있다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
일 실시예에 따른 표시 장치는 곡률 중심을 갖고 곡률진 외측변을 포함하는 제1 전극과, 제1 전극의 외측변에 대응하여 동일한 곡률 중심을 갖고 곡률진 외측변을 포함하는 제2 전극을 포함한다. 표시 장치는 각 화소 또는 서브 화소마다 복수개의 제1 전극과 제2 전극을 포함하고, 이들은 곡률 중심이 화소 또는 서브 화소의 외곽부에 위치하도록 배치될 수 있다.
이에 따라, 표시 장치는 각 화소 또는 서브 화소의 단위 면적 당 배치된 전극들이 차지하는 단위 면적의 비율이 증가할 수 있고, 단위 면적당 배치되는 발광 소자의 수가 증가할 수 있다. 일 실시예에 따른 표시 장치는 각 화소 또는 서브 화소의 단위 면적 당 발광량이 증가할 수 있다.
실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 일 실시예에 따른 표시 장치의 평면도이다.
도 2는 일 실시예에 따른 표시 장치의 일 화소를 나타내는 평면도이다.
도 3은 일 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 4는 일 실시예에 따른 전극 유닛을 나타내는 개략적인 평면도이다.
도 5는 도 3의 I-I'선을 따라 자른 단면도이다.
도 6은 일 실시예에 따른 전극 유닛과 정렬 배선을 나타내는 개략적인 레이아웃도이다.
도 7은 도 6의 II-II'선을 따라 자른 단면도이다.
도 8은 도 6의 III-III'선을 따라 자른 단면도이다.
도 9는 일 실시예에 따른 발광 소자의 개략도이다.
도 10 내지 도 12는 일 실시예에 따른 표시 장치의 제조 공정 중 일부를 나타내는 평면도들이다.
도 13은 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 14는 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 15는 또 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 16은 도 15의 표시 장치의 전극 유닛을 나타내는 개략적인 평면도이다.
도 17은 도 15의 표시 장치의 전극 유닛과 정렬 배선을 나타내는 개략적인 레이아웃도이다.
도 18은 도 15의 Ⅳ-Ⅳ'선을 따라 자른 단면도이다.
도 19는 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 20은 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도들이다.
도 21 및 도 22는 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도들이다.
도 23은 또 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 24 및 도 25는 도 23의 표시 장치의 제조 공정 중 일부를 나타내는 평면도들이다.
도 26은 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
소자(elements) 또는 층이 다른 소자 또는 층의 "상(on)"으로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
이하, 첨부된 도면을 참고로 하여 실시예들에 대해 설명한다.
도 1은 일 실시예에 따른 표시 장치의 개략적인 평면도이다.
도 1을 참조하면, 표시 장치(10)는 동영상이나 정지영상을 표시한다. 표시 장치(10)는 표시 화면을 제공하는 모든 전자 장치를 지칭할 수 있다. 예를 들어, 표시 화면을 제공하는 텔레비전, 노트북, 모니터, 광고판, 사물 인터넷, 모바일 폰, 스마트 폰, 태블릿 PC(Personal Computer), 전자 시계, 스마트 워치, 워치 폰, 헤드 마운트 디스플레이, 이동 통신 단말기, 전자 수첩, 전자 책, PMP(Portable Multimedia Player), 내비게이션, 게임기, 디지털 카메라, 캠코더 등이 표시 장치(10)에 포함될 수 있다.
표시 장치(10)는 표시 화면을 제공하는 표시 패널을 포함한다. 표시 패널의 예로는 무기 발광 다이오드 표시 패널, 유기발광 표시 패널, 양자점 발광 표시 패널, 플라즈마 표시 패널, 전계방출 표시 패널 등을 들 수 있다. 이하에서는 표시 패널의 일 예로서, 무기 발광 다이오드 표시 패널이 적용된 경우를 예시하지만, 그에 제한되는 것은 아니며, 동일한 기술적 사상이 적용 가능하다면 다른 표시 패널에도 적용될 수 있다.
표시 장치(10)의 형상은 다양하게 변형될 수 있다. 예를 들어, 표시 장치(10)는 가로가 긴 직사각형, 세로가 긴 직사각형, 정사각형, 코너부(꼭지점)가 둥근 사각형, 기타 다각형, 원형 등의 형상을 가질 수 있다. 표시 장치(10)의 표시 영역(DPA)의 형상 또한 표시 장치(10)의 전반적인 형상과 유사할 수 있다. 도 1에서는 가로가 긴 직사각형 형상의 표시 장치(10) 및 표시 영역(DPA)이 예시되어 있다.
표시 장치(10)는 표시 영역(DPA)과 비표시 영역(NDA)을 포함할 수 있다. 표시 영역(DPA)은 화면이 표시될 수 있는 영역이고, 비표시 영역(NDA)은 화면이 표시되지 않는 영역이다. 표시 영역(DPA)은 활성 영역으로, 비표시 영역(NDA)은 비활성 영역으로도 지칭될 수 있다. 표시 영역(DPA)은 대체로 표시 장치(10)의 중앙을 차지할 수 있다.
표시 영역(DPA)은 복수의 화소(PX)를 포함할 수 있다. 복수의 화소(PX)는 행렬 방향으로 배열될 수 있다. 각 화소(PX)의 형상은 평면상 직사각형 또는 정사각형일 수 있지만, 이에 제한되는 것은 아니고 각 변이 일 방향에 대해 기울어진 마름모 형상일 수도 있다. 각 화소(PX)는 스트라이프 타입 또는 펜타일 타입으로 교대 배열될 수 있다. 또한, 화소(PX)들 각각은 특정 파장대의 광을 방출하는 발광 소자(300)를 하나 이상 포함하여 특정 색을 표시할 수 있다.
표시 영역(DPA)의 주변에는 비표시 영역(NDA)이 배치될 수 있다. 비표시 영역(NDA)은 표시 영역(DPA)을 전부 또는 부분적으로 둘러쌀 수 있다. 표시 영역(DPA)은 직사각형 형상이고, 비표시 영역(NDA)은 표시 영역(DPA)의 4변에 인접하도록 배치될 수 있다. 비표시 영역(NDA)은 표시 장치(10)의 베젤을 구성할 수 있다. 각 비표시 영역(NDA)들에는 표시 장치(10)에 포함되는 배선들 또는 회로 구동부들이 배치되거나, 외부 장치들이 실장될 수 있다.
도 2는 일 실시예에 따른 표시 장치의 일 화소를 나타내는 평면도이다.
도 2를 참조하면, 표시 장치(10)는 복수의 화소(PX)를 포함하고, 복수의 화소(PX)들 각각은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 제1 서브 화소(PX1)는 제1 색의 광을 발광하고, 제2 서브 화소(PX2)는 제2 색의 광을 발광하며, 제3 서브 화소(PX3)는 제3 색의 광을 발광할 수 있다. 제1 색은 청색, 제2 색은 녹색, 제3 색은 적색일 수 있다. 다만, 이에 제한되지 않고, 각 서브 화소(PXn)들은 동일한 색의 광을 발광할 수도 있다. 또한, 도 2에서는 하나의 화소(PX)가 3개의 서브 화소(PXn)들을 포함하는 것을 예시하였으나, 이에 제한되지 않고, 화소(PX)는 더 많은 수의 서브 화소(PXn)들을 포함할 수 있다.
표시 장치(10)의 각 서브 화소(PXn)들은 발광 영역(EMA)으로 정의되는 영역을 포함할 수 있다. 제1 서브 화소(PX1)는 제1 발광 영역(EMA1)을, 제2 서브 화소(PX2)는 제2 발광 영역(EMA2)을, 제3 서브 화소(PX3)는 제3 발광 영역(EMA2)을 포함할 수 있다. 발광 영역(EMA)은 표시 장치(10)에 포함되는 발광 소자(300)가 배치되어 특정 파장대의 광이 출사되는 영역으로 정의될 수 있다. 발광 소자(300)는 활성층(도 9의 '330')을 포함하고, 활성층(330)은 특정 파장대의 광을 방향성 없이 방출할 수 있다. 발광 소자(300)의 활성층(330)에서 방출된 광들은 발광 소자(300)의 양 단부 방향을 포함하여, 발광 소자(300)의 측면 방향으로도 방출될 수 있다. 발광 영역(EMA)은 발광 소자(300)가 배치된 영역을 포함하여, 발광 소자(300)와 인접한 영역으로 발광 소자(300)에서 방출된 광들이 출사되는 영역을 포함할 수 있다.
이에 제한되지 않고, 발광 영역(EMA)은 발광 소자(300)에서 방출된 광이 다른 부재에 의해 반사되거나 굴절되어 출사되는 영역도 포함할 수 있다. 복수의 발광 소자(300)들은 각 서브 화소(PXn)에 배치되고, 이들이 배치된 영역과 이에 인접한 영역을 포함하여 발광 영역(EMA)을 형성할 수 있다.
도면에 도시되지 않았으나, 표시 장치(10)의 각 서브 화소(PXn)들은 발광 영역(EMA) 이외의 영역으로 정의된 비발광 영역을 포함할 수 있다. 비발광 영역은 발광 소자(300)가 배치되지 않고, 발광 소자(300)에서 방출된 광들이 도달하지 않아 광이 출사되지 않는 영역일 수 있다. 한편, 비발광 영역에는 발광 소자(300)들이 배치되는 층의 하부에 배치된 층들을 부분적으로 패터닝한 영역이 형성될 수 있다. 표시 장치(10)의 제조 공정 중, 발광 소자(300)들이 배치된 후에 하부에 배치된 일부 배선들을 패터닝할 수 있다. 상기 패터닝은 각 서브 화소(PXn)에서 발광 소자(300)들이 배치되지 않은 비발광 영역에서 수행될 수 있다. 이에 대한 자세한 설명은 후술하기로 한다.
표시 장치(10)의 각 서브 화소(PXn)들은 복수의 전극(210, 220)들, 복수의 발광 소자(300)들, 및 복수의 접촉 전극(260)들을 포함할 수 있다. 또한, 표시 장치(10)는 각 서브 화소(PXn)를 둘러싸도록 배치되는 외부 뱅크(450)를 더 포함할 수 있다. 일 실시예에 따르면 표시 장치(10)는 곡률진 변을 갖는 제1 전극(210) 및 제2 전극(220)을 포함하여 각 서브 화소(PXn)의 단위 면적당 배치되는 발광 소자(300)의 수가 증가할 수 있다. 또한, 발광 소자(300)들은 각 전극(210, 220)의 곡률진 변 사이에 배치될 수 있고, 각 서브 화소(PXn)는 다양한 출광 방향을 가질 수 있다. 이하, 다른 도면들을 더 참조하여 표시 장치(10)의 각 서브 화소(PXn)에 배치된 전극(210, 220)들 및 발광 소자(300)들에 대하여 자세히 설명하기로 한다.
도 3은 일 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다. 도 4는 일 실시예에 따른 전극 유닛을 나타내는 개략적인 평면도이다.
도 3은 도 2의 제1 서브 화소(PX1)만을 도시하고 있고, 도 4는 제1 전극(210)과 제2 전극(220)을 포함하는 전극 유닛(EU)을 확대하여 도시하고 있다.
도 3 및 도 4를 참조하면, 표시 장치(10)의 각 서브 화소(PXn)들은 복수의 전극(210, 220)들을 포함하는 전극 유닛(EU)을 포함할 수 있다. 전극 유닛(EU)은 제1 전극(210) 및 제2 전극(220)을 포함하고, 하나의 서브 화소(PXn)는 복수개의 전극 유닛(EU)들을 포함할 수 있다. 예를 들어, 도 3에 도시된 바와 같이 하나의 서브 화소(PXn)는 제1 전극 유닛(EU1), 제2 전극 유닛(EU2), 제3 전극 유닛(EU3) 및 제4 전극 유닛(EU4)을 포함할 수 있다. 도 4는 도 3의 제1 전극 유닛(EU1)에 포함된 제1 전극(210)과 제2 전극(220)을 도시하고 있다.
구체적으로 설명하면, 전극 유닛(EU)의 제1 전극(210)은 적어도 일 변이 곡률진 형상을 가질 수 있다. 예를 들어, 제1 전극(210)은 제1 방향(DR1)으로 연장된 제1 단변(SS1), 제2 방향(DR2)으로 연장된 제2 단변(SS2) 및 제1 단변(SS1)과 제2 단변(SS2)을 연결하며 곡률진 형상의 제1 외측변(OS1)을 포함할 수 있다. 제1 전극(210)의 제1 단변(SS1)과 제2 단변(SS2)은 서로 교차하는 방향으로 연장되며 일 측들이 상호 연결되고, 이들의 타 측들은 제1 외측변(OS1)과 연결될 수 있다.
예시적인 실시예에서 제1 전극(210)은 평면상 사분원(quad-circle)의 형상을 가질 수 있다. 도 4에 도시된 바와 같이, 제1 전극(210)은 제1 단변(SS1)과 제2 단변(SS2)이 서로 직교하도록 연장되고, 제1 외측변(OS1)은 제1 단변(SS1)과 제2 단변(SS2)이 상호 연결된 부분을 중심으로 곡률진 형상을 가질 수 있다. 즉, 제1 전극(210)의 제1 외측변(OS1)은 곡률 중심이 제1 단변(SS1)과 제2 단변(SS2)이 상호 연결된 일 측이며 제1 전극(210)의 형상이 갖는 사분원의 호(arc)일 수 있다.
다만, 이에 제한되는 것은 아니다. 제1 전극(210)은 특정 곡률 중심을 기준으로 곡률진 형상을 갖는 제1 외측변(OS1)을 포함한다면, 제1 단변(SS1)과 제2 단변(SS2)은 반드시 교차하는 형상을 갖지 않을 수도 있다. 예를 들어, 제1 전극(210)은 제1 단변(SS1)과 제2 단변(SS2)이 교차하지 않거나 일 방향으로 연장되지 않은 형상을 가질 수도 있다. 또한, 제1 전극(210)은 제1 단변(SS1)과 제2 단변(SS2)이 직접 연결되지 않고, 다른 변을 더 포함하여 이를 통해 상호 연결될 수도 있다. 상기 다른 변은 일 방향으로 연장되거나 제1 외측변(OS1)과 같이 곡률진 형상을 가질 수도 있다.
또한, 제1 전극(210)은 제1 전극(210)의 하부에 배치된 층들 중 적어도 일부분을 관통하는 제1 컨택홀(CT1)을 통해 하부에 배치된 배선과 전기적으로 연결될 수 있다. 이에 대한 설명은 후술하기로 한다.
제2 전극(220)은 제1 전극(210)과 이격 대향하도록 배치될 수 있다. 제2 전극(220)은 제1 전극(210)의 곡률진 제1 외측변(OS1)과 이격 대향하도록 배치되고, 제1 외측변(OS1)을 따라 곡률진 변을 포함할 수 있다. 예를 들어, 제2 전극(220)은 제1 외측변(OS1)에 대응하여 이와 동일한 곡률을 갖는 제2 외측변(OS2) 및 제3 외측변(OS3)을 포함하고, 제2 외측변(OS2)과 제3 외측변(OS3)의 양 측들을 각각 연결하는 제3 단변(SS3) 및 제4 단변(SS4)을 포함할 수 있다. 제2 전극(220)은 제2 외측변(OS2)이 제1 전극(210)의 제1 외측변(OS1)과 이격 대향하고, 제3 외측변(OS3)은 제2 외측변(OS2)의 반대편 타 변일 수 있다. 제2 외측변(OS2)과 제3 외측변(OS3)은 동일한 곡률 및 곡률 중심을 가질 수 있다. 다만, 제2 외측변(OS2)이 곡률 중심과 더 인접하여 위치하는 바, 제2 외측변(OS2)의 길이는 제3 외측변(OS3)의 길이보다 짧을 수 있다.
제2 전극(220)의 제3 단변(SS3)은 제1 방향(DR1)으로 연장되고, 제4 단변(SS4)은 제2 방향(DR2)으로 연장된 형상을 가질 수 있다. 일 실시예에서, 제1 전극(210)의 제1 단변(SS1)과 제2 전극(220)의 제3 단변(SS3)은 제1 방향(DR1)으로 연장되어 동일한 일 직선 상에 놓일 수 있고, 제1 전극(210)의 제2 단변(SS2)과 제2 전극(220)의 제4 단변(SS4)은 제2 방향(DR2)으로 연장되어 동일한 일 직선 상에 놓일 수 있다.
예시적인 실시예에서, 제2 전극(220)은 평면상 특정 폭을 갖고 곡률진 호(arc)의 형상을 갖는 부분을 포함할 수 있다. 제2 전극(220)은 곡률진 호의 형상을 갖는 부분을 포함하여 제1 전극(210)의 제1 외측변(OS1)과 이격 대향할 수 있다. 다시 말해, 제2 전극(220)의 제2 외측변(OS2)은 적어도 제1 전극(210)의 제1 외측변(OS1)과 동일한 곡률 중심을 가질 수 있다.
다만, 이에 제한되지 않는다. 제2 전극(220)은 적어도 제1 전극(210)의 제1 외측변(OS1)에 대응하여 곡률진 형상을 갖는 제2 외측변(OS2)을 포함한다면 다른 변인 제3 외측변(OS3), 제3 및 제4 단변(SS3, SS4)은 다른 형상을 가질 수도 있다. 예를 들어, 제2 전극(220)은 제2 외측변(OS2)을 포함하되, 제3 외측변(OS3)이 생략되어 제3 단변(SS3)과 제4 단변(SS4)이 서로 직접 연결된 구조를 가질 수도 있고, 제3 단변(SS3) 및 제4 단변(SS4) 사이에 제3 외측변(OS3) 외에 다른 변들을 더 포함할 수도 있다. 이에 대한 설명은 제1 전극(210)을 참조하여 상술한 바와 동일하다.
제2 전극(220)은 곡률진 호의 형상을 갖는 부분의 일 변과 연결되어, 상기 일 변으로부터 돌출된 부분을 더 포함할 수 있다. 일 실시예에 따르면, 제2 전극(220)은 곡률진 호의 형상을 갖는 전극 곡선부(220R)와, 전극 곡선부(220R)의 일 변과 연결되어 상기 일 변으로부터 돌출된 전극 돌출부(220P)를 포함할 수 있다. 전극 돌출부(220P)는 일 방향으로 돌출된 형상을 갖고, 전극 곡선부(220R)와 연결될 수 있다. 예를 들어, 도 4에 도시된 바와 같이 전극 돌출부(220P)는 전극 곡선부(220R)의 제3 외측변(OS3)으로부터 일 방향으로 돌출될 수 있다. 전극 돌출부(220P)는 제2 전극(220)의 하부에 배치되는 배선들과 전기적으로 연결되는 부분일 수 있다. 도 4에서는 제2 전극(220)이 전극 곡선부(220R)와 전극 돌출부(220P)를 포함하는 것이 도시되어 있으나, 이에 제한되지 않는다. 몇몇 실시예에서 전극 유닛(EU)은 전극 돌출부(220P)가 생략되고 곡률진 호의 형상을 갖는 전극 곡선부(220R)만 포함하는 제2 전극(220)을 포함할 수 있다.
또한, 제2 전극(220)은 제2 전극(220)의 하부에 배치된 층들 중 적어도 일부분을 관통하는 제2 컨택홀(CT2) 및 제3 컨택홀(CT3)을 통해 하부에 배치된 배선과 전기적으로 연결될 수 있다. 이에 대한 설명은 후술하기로 한다.
한편, 예시적인 실시예에서, 각 서브 화소(PXn)에 배치되는 전극 유닛(EU)들 중 일부는 제2 전극(220)이 전극 돌출부(220P)를 포함하지 않고, 적어도 어느 하나의 전극 유닛(EU)은 제2 전극(220)이 전극 돌출부(220P)를 포함할 수 있다. 전극 돌출부(220P)는 하부에 배치된 배선들, 예를 들어 전압 배선과 전기적으로 연결될 수 있고, 전극 돌출부(220P)를 포함하는 전극 유닛(EU)은 상기 전압 배선으로부터 전기 신호를 직접 전달 받을 수 있다. 다만, 이에 제한되지 않는다.
도 4 및 도 5에 도시된 전극 유닛(EU)은 제1 전극(210)이 사분원 형상을 갖는 타입의 전극 유닛(EU)일 수 있다. 즉, 제1 외측변(OS1)을 포함하여 사분원 형상을 갖는 제1 타입의 제1 전극(210)을 포함하고, 제1 외측변(OS1)을 둘러싸도록 배치되는 제2 전극(220)을 포함하는 전극 유닛(EU)은 제1 타입 전극 유닛일 수 있다. 일 실시예에 따른 표시 장치(10)는 제1 타입의 제1 전극(210)을 포함하는 제1 타입 전극 유닛에 더하여 다양한 형상을 갖는 제1 전극(210)을 포함할 수 있다. 예를 들어, 전극 유닛(EU)은 제1 전극(210)이 반원 또는 원형의 형상을 갖고, 이에 대응하여 제1 외측변(OS1)을 둘러싸는 제2 전극(220)을 포함하는 다른 타입의 전극 유닛(EU)을 포함할 수도 있다. 이에 대한 설명은 다른 실시예가 참조된다.
복수의 발광 소자(300)들은 제1 전극(210)과 제2 전극(220) 사이에 배치될 수 있다. 일 예로, 발광 소자(300)들은 제1 전극(210)과 제2 전극(220) 사이에서 서로 이격되어 배치될 수 있다. 다만, 발광 소자(300)들이 이격되는 간격은 특별히 제한되지 않는다. 경우에 따라서 복수의 발광 소자(300)들이 인접하게 배치되어 무리를 이루고, 다른 복수의 발광 소자(300)들은 일정 간격 이격된 상태로 무리를 이룰 수도 있으며, 불균일한 밀집도를 갖고 배치될 수도 있다.
일 실시예에 따른 발광 소자(300)는 서로 다른 물질을 포함하는 활성층(330)을 포함하여 서로 다른 파장대의 광을 외부로 방출할 수 있다. 일 실시예에 따른 표시 장치(10)는 서로 다른 파장대의 광을 방출하는 발광 소자(300)들을 포함할 수 있다. 제1 서브 화소(PX1)의 발광 소자(300)는 중심 파장대역이 제1 파장인 제1 색의 광을 방출하는 활성층(330)을 포함하고, 제2 서브 화소(PX2)의 발광 소자(300)는 중심 파장대역이 제2 파장인 제2 색의 광을 방출하는 활성층(330)을 포함하고, 제3 서브 화소(PX3)의 발광 소자(300)는 중심 파장대역이 제3 파장인 제3 색의 광을 방출하는 활성층(330)을 포함할 수 있다.
이에 따라 제1 서브 화소(PX1)에서는 제1 색의 광이 출사되고, 제2 서브 화소(PX2)에서는 제2 색의 광이 출사되고, 제3 서브 화소(PX3)에서는 제3 색의 광이 출사될 수 있다. 몇몇 실시예에서, 제1 색의 광은 중심 파장대역이 450nm 내지 495nm의 범위를 갖는 청색광이고, 제2 색의 광은 중심 파장대역이 495nm 내지 570nm의 범위를 갖는 녹색광이고, 제3 색의 광은 중심 파장대역이 620nm 내지 752nm의 범위를 갖는 적색광 일 수 있다. 다만, 이에 제한되지 않는다. 경우에 따라서는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 동일한 종류의 발광 소자(300)를 포함하여 실질적으로 동일한 색의 광을 방출할 수도 있다.
일 실시예에 따르면, 발광 소자(300)들은 제1 전극(210)과 제2 전극(220)의 이격된 공간, 즉 제1 외측변(OS1)과 제2 외측변(OS2) 사이에 배치될 수 있다. 제1 외측변(OS1)과 제2 외측변(OS2)은 곡률진 형상을 가질 수 있고, 이들 사이에 배치된 복수의 발광 소자(300)들은 제1 전극(210)의 중심을 기준으로 곡률진 제1 외측변(OS1)과 제2 외측변(OS2)을 따라 배열될 수 있다.
도면에 도시된 바와 같이, 복수의 발광 소자(300)들은 일 방향으로 연장된 형상을 가질 수 있다. 발광 소자(300)들은 연장된 방향이 향하는 배향 방향을 가질 수 있고, 제1 전극(210)과 제2 전극(220) 사이에 배치된 발광 소자(300)들은 서로 다른 배향 방향을 가질 수 있다. 예를 들어, 복수의 발광 소자(300)들 중, 제1 단변(SS1) 및 제3 단변(SS3)에 인접하여 제1 외측변(OS1)과 제2 외측변(OS2) 사이에 배치된 발광 소자(300)는 배향 방향이 제1 방향(DR1)을 향하도록 배치될 수 있다. 복수의 발광 소자(300)들 중, 제2 단변(SS2) 및 제4 단변(SS4)에 인접하여 제1 외측변(OS1)과 제2 외측변(OS2) 사이에 배치된 발광 소자(300)는 배향 방향이 제2 방향(DR2)을 향하도록 배치될 수 있고, 이들 사이에 배치된 발광 소자(300)들은 배향 방향이 제1 방향(DR1)과 제2 방향(DR2) 사이를 향하도록 배치될 수 있다. 즉, 복수의 발광 소자(300)들은 제1 외측변(OS1) 및 제2 외측변(OS2)의 곡률진 방향을 따라 배치되고, 이들은 서로 다른 배향 방향을 가질 수 있다.
후술할 바와 같이, 발광 소자(300)들은 제1 전극(210)과 제2 전극(220)과 전기적으로 연결되고, 이들로부터 전기 신호를 전달받아 특정 파장대의 광을 방출할 수 있다. 발광 소자(300)는 연장된 방향의 양 단부에서 광을 방출할 수 있다. 일 실시예에 따른 표시 장치(10)는 적어도 일 변이 곡률진 형상을 갖고, 상기 곡률진 변들이 서로 이격 대향하는 제1 전극(210) 및 제2 전극(220)을 포함하여, 이들 사이에 배치되는 발광 소자(300)들은 배향 방향이 서로 다를 수 있다. 각 서브 화소(PXn)는 특정 방향에 한정되지 않고 다양한 방향으로 광들이 방출될 수 있고, 표시 장치(10)는 다양한 방향에서 시인성이 개선될 수 있다.
또한, 일 실시예에 따른 표시 장치(10)는 각 서브 화소(PXn)마다 다양한 배향 방향을 갖는 발광 소자(300)들이 배치된 전극 유닛(EU)을 하나 이상 포함할 수 있다. 예를 들어, 하나의 서브 화소(PXn)는 복수개의 전극 유닛(EU)으로 제1 전극 유닛(EU1), 제2 전극 유닛(EU2), 제3 전극 유닛(EU3) 및 제4 전극 유닛(EU4)을 포함할 수 있다. 각 전극 유닛(EU)들은 적어도 하나의 곡률진 변을 포함하는 제1 전극(210)과 제2 전극(220)을 포함하고, 이에 따라 제1 내지 제4 전극 유닛(EU1, EU2, EU3, EU4)들은 제1 전극(210)의 제1 외측변(OS1)이 갖는 곡률 중심을 포함할 수 있다. 일 실시예에 따르면, 표시 장치(10)는 각 서브 화소(PXn)에 배치된 복수의 전극 유닛(EU)들이 제1 전극(210)의 제1 외측변(OS1)이 갖는 곡률 중심이 각 서브 화소(PXn)의 중심을 기준으로 반대편에 위치하도록 배치될 수 있다.
예를 들어, 각 서브 화소(PXn)는 제1 방향(DR1)으로 연장되며 서브 화소(PXn)의 중심을 가로지르는 제1 가상선(미도시)과, 제2 방향(DR2)으로 연장되며 서브 화소(PXn)의 중심을 가로지르는 제2 가상선(미도시)을 포함할 수 있다. 각 서브 화소(PXn)는 제1 가상선의 상측 및 하측과, 제2 가상선의 좌측 및 우측이 정의될 수 있다. 복수의 전극 유닛(EU)들은 제1 전극(210)의 제1 외측변(OS1)이 갖는 곡률 중심이 상기 제1 가상선 및 제2 가상선을 기준으로 서로 반대편에 위치하도록 배치될 수 있다. 예를 들어, 제1 전극 유닛(EU1)은 제1 외측변(OS1)의 곡률 중심이 제1 가상선의 상측 및 제2 가상선의 좌측에 위치하도록 배치될 수 있다. 제2 전극 유닛(EU2)은 제1 외측변(OS1)의 곡률 중심이 제1 가상선의 상측 및 제2 가상선의 우측에 위치하고, 제3 전극 유닛(EU3)은 제1 외측변(OS1)의 곡률 중심이 제1 가상선의 하측 및 제2 가상선의 우측에 위치하고, 제4 전극 유닛(EU4)은 제1 외측변(OS1)의 곡률 중심이 제1 가상선의 하측 및 제2 가상선의 좌측에 위치하도록 배치될 수 있다.
한편, 상술한 바와 같이, 제1 전극(210)의 제1 외측변(OS1)은 곡률 중심이 제1 단변(SS1)과 제2 단변(SS2)이 상호 연결된 일 측일 수 있다. 즉, 제1 전극 유닛(EU1) 및 제2 전극 유닛(EU2)은 제1 방향(DR1)으로 연장된 제1 가상선을 기준으로 제4 전극 유닛(EU4) 및 제3 전극 유닛(EU3)과 대칭적으로 배치될 수 있다. 또한, 제1 전극 유닛(EU1) 및 제4 전극 유닛(EU4)은 제2 방향(DR2)으로 연장된 제2 가상선을 기준으로 제2 전극 유닛(EU4) 및 제3 전극 유닛(EU3)과 대칭적으로 배치될 수 있다.
또한, 일 실시예에 따르면, 각 전극 유닛(EU)의 제1 전극(210)들은 제1 외측변(OS1)의 곡률 중심은 각 서브 화소(PXn)의 외곽부에 위치하고, 제1 외측변(OS1)은 각 서브 화소(PXn)의 중심을 향해 볼록한 형상을 가질 수 있다. 제1 전극(210)의 제1 외측변(OS1)들은 곡률 중심이 각 서브 화소(PXn)의 사선 방향 외곽부에 위치할 수 있고, 복수의 제1 전극(210)들은 제1 외측변(OS1)들이 곡률 중심으로부터 서브 화소(PXn)의 중심을 향해 곡률지게 배치될 수 있다. 복수의 제1 전극(210)들은 제1 외측변(OS1)들이 서로 대향하도록 배치될 수 있고, 제2 전극(220)들은 제2 외측변(OS2)이 제1 외측변(OS1)과 이격 대향하도록 배치되어 제1 외측변(OS1)을 둘러싸는 형상을 갖도록 배치될 수 있다. 일 실시예에 따른 표시 장치(10)는 각 서브 화소(PXn)에 배치된 적어도 하나의 제1 전극(210)들을 포함하고, 제1 전극(210)의 제1 외측변(OS1)들은 상호 대향하며 이들 사이에는 적어도 하나의 제2 전극(220)이 배치될 수 있다.
각 서브 화소(PXn)가 사분원 형상을 갖는 제1 전극(210)을 포함하는 전극 유닛(EU)들을 포함하는 경우, 제1 전극(210)의 수에 따라 복수의 제1 전극(210)들이 차지하는 면적은 원형의 형상을 가질 수 있다. 예를 들어, 도 3과 같이 각 서브 화소(PXn)가 제1 내지 제4 전극 유닛(EU1, EU2, EU3, EU4)을 포함하는 경우, 4개의 제1 전극(210)이 차지하는 면적은 하나의 원형 전극이 차지하는 면적과 동일할 수 있다. 단위 면적당 원형의 형상을 갖는 전극이 복수개 배치되는 경우, 전극이 배치되지 않는 영역의 면적이 커지게 되고, 원형의 전극이 차지하는 면적의 비율이 낮을 수 있다. 즉, 각 서브 화소(PXn)의 전극(210, 220)들이 원형의 형상을 갖는 경우, 단위 면적당 전극(210, 220)이 차지하는 면적이 작고, 단위 면적당 배치되는 발광 소자(300)의 수가 적을 수 있다. 다만, 도 3과 같이 각 전극 유닛(EU)의 제1 전극(210)들이 사분원의 형상을 갖고, 곡률 중심이 서브 화소(PXn)의 중심이 아닌 외곽부에 배치되는 경우 단위 면적당 전극이 차지하는 면적의 비율이 높을 수 있다. 즉, 각 서브 화소(PXn)의 단위 면적당 전극(210, 220)이 차지하는 면적이 크고, 단위 면적당 배치되는 발광 소자(300)의 수가 증가할 수 있다. 이에 따라, 표시 장치(10)는 각 서브 화소(PXn)의 단위 면적당 발광량이 증가할 수 있다.
한편, 제1 전극 유닛(EU1)은 제2 전극(220)이 전극 돌출부(220P)를 포함하고, 제2 내지 제4 전극 유닛(EU2, EU3, EU4)는 제2 전극(220)이 전극 돌출부(220P)를 포함하지 않을 수 있다. 다만, 각 서브 화소(PXn)에 배치되는 전극 유닛(EU)들은 제2 전극(220)이 부분적으로 연결되어 일체화될 수 있다. 하나의 전극 유닛(EU)에 포함된 제2 전극(220)이 전극 돌출부(220P)를 포함하는 경우, 제2 컨택홀(CT2)을 통해 전달된 전기 신호가 다른 전극 유닛(EU)의 제2 전극(220)에도 전달될 수 있다.
도 3과 같이, 각 서브 화소(PXn)들이 복수개의 전극 유닛(EU)들을 포함하는 경우, 전극 유닛(EU)들 간의 제2 전극(220)은 부분적으로 연결될 수 있다. 일 실시예에 따르면, 표시 장치(10)는 각 서브 화소(PXn)에 배치된 전극 유닛(EU)들의 제2 전극(220)은 적어도 일부 영역이 연결되어 일체화될 수 있다. 예를 들어, 제1 전극 유닛(EU1)의 제2 전극(220)은 제2 전극 유닛(EU2)의 제2 전극(220) 및 제4 전극 유닛(EU4)의 제2 전극(220)과 부분적으로 일체화될 수 있다. 제3 전극 유닛(EU3)의 제2 전극(220)도 제2 전극 유닛(EU2)의 제2 전극(220) 및 제4 전극 유닛(EU4)의 제2 전극(220)과 부분적으로 일체화될 수 있다. 즉, 제2 전극(220)은 곡률 중심이 서로 다른 제2 전극(220)들 중 적어도 일부가 서로 직접 연결될 수 있다. 이에 따라, 각 서브 화소(PXn)에 배치된 제1 전극(210)들은 서로 이격되어 배치되되, 제1 전극 유닛(EU1)의 제2 전극(220)으로 전달된 전기 신호는 제2 내지 제4 전극 유닛(EU2, EU3, EU4)의 제2 전극(220)들로 전달될 수 있다. 다만, 이에 제한되지 않으며, 각 서브 화소(PXn)에 배치된 전극 유닛(EU)들은 제2 전극(220)도 서로 연결되지 않고 이격되어 배치될 수 있다. 이 경우, 다른 전극 유닛(EU)들은 다른 전극들 또는 배선들을 통해 제2 컨택홀(CT2)을 통해 연결된 전압 배선으로부터 전기 신호를 전달 받을 수 있다.
제1 접촉 전극(261)은 제1 전극(210) 상에 배치될 수 있다. 예시적인 실시예에서, 제1 접촉 전극(261)은 제1 전극(210)과 동일한 형상을 가질 수 있다. 예를 들어, 제1 접촉 전극(261)은 제1 전극(210)과 같이 일 방향으로 연장되어 상호 교차하는 양 단변, 및 이들을 연결하는 곡률진 외측변을 포함할 수 있다. 후술할 바와 같이 제1 접촉 전극(261)은 일 방향으로 측정된 폭이 제1 전극(210)보다 크게 형성되어 제1 전극(210)을 전면적으로 덮을 수 있다. 다만, 이에 제한되지 않는다.
제2 접촉 전극(262)은 제2 전극(220) 상에 배치될 수 있다. 예시적인 실시예에서, 제2 접촉 전극(262)은 제2 전극(210)의 전극 곡선부(220R)와 동일한 형상을 가질 수 있다. 예를 들어, 제2 접촉 전극(262)은 제2 전극(220)과 같이 일 방향으로 연장된 양 단변, 및 이들은 연결하는 곡률진 외측변들을 포함할 수 있다. 후술할 바와 같이 제2 접촉 전극(262)은 일 방향으로 측정된 폭이 제2 전극(220)보다 크게 형성되어 제2 전극(210)의 양 단변 및 양 외측변들을 덮을 수 있다. 다만, 제2 접촉 전극(262)은 전극 돌출부(220P) 상에는 배치되지 않을 수 있다. 제2 전극(220)이 전극 돌출부(220P)를 포함하는 제1 전극 유닛(EU1)의 경우, 제2 접촉 전극(262)은 전극 곡선부(220R) 상에만 배치되고, 전극 돌출부(220P)에는 배치되지 않을 수 있다. 반면, 제2 전극(220)이 전극 돌출부(220P)를 포함하지 않는 제2 내지 제4 전극 유닛(EU2, EU3, EU4)의 경우, 제2 접촉 전극(262)은 제2 전극(220)을 덮도록 배치될 수 있다. 또한, 제2 전극(220)과 유사하게 각 서브 화소(PXn)에 배치되는 제2 접촉 전극(262)들도 부분적으로 연결되어 하나의 접촉 전극으로 일체화될 수 있다. 다만, 이에 제한되지 않는다.
제1 접촉 전극(261)과 제2 접촉 전극(262)은 각각 발광 소자(300)의 적어도 일 단부, 및 제1 전극(210) 또는 제2 전극(220)과 전기적으로 연결될 수 있다. 일 예로, 제1 접촉 전극(261)은 제1 전극(210) 및 발광 소자(300)의 일 단부와 직접 접촉하고, 제2 접촉 전극(262)은 제2 전극(220) 및 발광 소자(300)의 타 단부와 직접 접촉할 수 있다. 제1 전극(210)과 제2 전극(220)에 전달되는 전기 신호는 각각 제1 접촉 전극(261) 및 제2 접촉 전극(262)을 통해 발광 소자(300)로 전달될 수 있다. 발광 소자(300)는 상기 전기 신호를 전달받아 특정 파장대의 광을 방출할 수 있다.
일 실시예에 따르면, 제1 전극(210)의 제1 외측변(OS1)과 제2 전극(220)의 제2 외측변(OS2) 사이의 간격인 제1 간격(W1)은 제1 접촉 전극(261)과 제2 접촉 전극(262) 사이의 간격인 제2 간격(W2)보다 클 수 있다. 발광 소자(300)는 양 단부가 각각 제1 전극(210) 및 제2 전극(220) 상에 놓이도록 배치될 수 있다. 다만, 발광 소자(300)들 중 적어도 일부는 양 단부 중 어느 하나가 제1 전극(210)과 제2 전극(220) 사이에 놓일 수도 있다. 접촉 전극(261, 262)은 이들 사이의 제2 간격(W2)이 각 전극(210, 220)들 사이의 제1 간격(W1)보다 작도록 배치됨으로써, 전극(210, 220)들 사이에 배치된 발광 소자(300)들과 접촉할 수 있다. 특히, 일 단부가 전극(210, 220)들 상에 놓이지 않고 이들 사이에 놓이도록 배치되더라도, 접촉 전극(261, 262)들은 제2 간격(W2)이 전극(210, 220)들 사이의 제1 간격(W1)보다 좁음으로써 발광 소자(300)의 양 단부와 접촉할 수 있다. 다만, 이에 제한되지 않는다.
외부 뱅크(450)는 각 서브 화소(PXn)들 간의 경계에 배치될 수 있다. 외부 뱅크(450)는 적어도 제2 방향(DR2)으로 연장되도록 배치되며, 내부 뱅크(410, 420) 및 전극(210, 220)들 사이에 발광 소자(300)가 배치되는 영역을 포함하여 내부 뱅크(410, 420)들과 전극(210, 220)들의 일부를 둘러싸도록 배치될 수 있다. 또한, 외부 뱅크(450)는 제1 방향(DR1)으로 연장된 부분을 더 포함하여 표시 영역(DPA) 전면에 있어서 격자형 패턴을 형성할 수 있다. 다만, 이에 제한되지 않고, 경우에 따라서 외부 뱅크(450)는 생략될 수도 있다.
이하에서는 다른 도면을 더 참조하여 표시 장치(10)의 적층 구조에 대하여 상세히 설명하기로 한다.
도 5는 도 3의 I-I'선을 따라 자른 단면도이다.
도 5 도 3의 일부 단면만을 도시하고 있으나, 도 5에 대한 설명은 다른 화소(PX) 또는 서브 화소(PXn)의 경우에도 동일하게 적용될 수 있다. 도 5는 도 3의 제1 서브 화소(PX1)에 배치된 발광 소자(300)의 일 단부와 타 단부를 가로지르는 단면을 도시하고 있다.
구체적으로, 도 5를 참조하면, 표시 장치(10)는 제1 기판(101) 상에 배치되는 회로 소자층과 표시 소자층을 포함할 수 있다. 제1 기판(101) 상에는 반도체층, 복수의 도전층, 및 복수의 절연층이 배치되고, 이들은 각각 회로 소자층과 표시 소자층을 구성할 수 있다. 복수의 도전층은 제1 평탄화층(109)의 하부에 배치되어 회로소자층을 구성하는 제1 게이트 도전층, 제2 게이트 도전층, 제1 데이터 도전층, 제2 데이터 도전층과, 제1 평탄화층(109) 상에 배치되어 표시소자층을 구성하는 전극(210, 220) 및 접촉 전극(260)들을 포함할 수 있다. 복수의 절연층은 버퍼층(102), 제1 게이트 절연층(103), 제1 보호층(105), 제1 층간 절연층(107), 제2 층간 절연층(108), 제1 평탄화층(109), 제1 절연층(510), 제2 절연층(520), 및 제3 절연층(550) 등을 포함할 수 있다.
회로소자층은 발광 소자(300)를 구동하기 위한 회로 소자와 복수의 배선들로써, 구동 트랜지스터(DT), 스위칭 트랜지스터(ST), 제1 도전 패턴(CDP), 복수의 정렬 배선(AL1) 및 복수의 전압 배선(VL1, VL2)을 포함하고, 표시소자층은 발광 소자(300)를 포함하여 제1 전극(210), 제2 전극(220), 제1 접촉 전극(261) 및 제2 접촉 전극(262)등을 포함할 수 있다.
제1 기판(101)은 절연 기판일 수 있다. 제1 기판(101)은 유리, 석영, 또는 고분자 수지 등의 절연 물질로 이루어질 수 있다. 또한, 제1 기판(101)은 리지드 기판일 수 있지만, 벤딩(bending), 폴딩(folding), 롤링(rolling) 등이 가능한 플렉시블(flexible) 기판일 수도 있다.
차광층(BML1, BML2)은 제1 기판(101) 상에 배치될 수 있다. 차광층(BML1, BML2)은 제1 차광층(BML1) 및 제2 차광층(BML2)을 포함할 수 있다. 제1 차광층(BML1)과 제2 차광층(BML2)은 적어도 각각 구동 트랜지스터(DT)의 제1 활성물질층(DT_ACT) 및 스위칭 트랜지스터(ST)의 제2 활성물질층(ST_ACT)과 중첩하도록 배치된다. 차광층(BML1, BML2)은 광을 차단하는 재료를 포함하여, 제1 및 제2 활성물질층(DT_ACT, ST_ACT)에 광이 입사되는 것을 방지할 수 있다. 일 예로, 제1 및 제2 차광층(BML1, BML2)은 광의 투과를 차단하는 불투명한 금속 물질로 형성될 수 있다. 다만, 이에 제한되지 않으며 경우에 따라서 차광층(BML1, BML2)은 생략될 수 있다. 도면에 도시되지 않았으나, 제1 차광층(BML1)은 후술하는 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 전기적으로 연결되고, 제2 차광층(BML2)은 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(ST_SD1)과 전기적으로 연결될 수 있다.
버퍼층(102)은 차광층(BML1, BML2)을 포함하여 제1 기판(101) 상에 전면적으로 배치될 수 있다. 버퍼층(102)은 투습에 취약한 제1 기판(101)을 통해 침투하는 수분으로부터 화소(PX)의 트랜지스터(DT, ST)들을 보호하기 위해 제1 기판(101) 상에 형성되며, 표면 평탄화 기능을 수행할 수 있다. 버퍼층(102)은 단일한 무기층, 또는 교번하여 적층되거나 다중으로 적층된 복수의 무기층들로 이루어질 수 있다. 예를 들어, 버퍼층(102)은 실리콘 산화물(SiO x), 실리콘 질화물(SiN x), 실리콘 산질화물(SiO xN y) 중 적어도 어느 하나를 포함하는 무기층이 교번하여 적층된 다중층으로 형성될 수 있다.
반도체층은 버퍼층(102) 상에 배치된다. 반도체층은 구동 트랜지스터(DT)의 제1 활성물질층(DT_ACT)과 스위칭 트랜지스터(ST)의 제2 활성물질층(ST_ACT)을 포함할 수 있다. 이들은 후술하는 제1 게이트 도전층의 게이트 전극(DT_G, ST_G)등과 부분적으로 중첩하도록 배치될 수 있다.
예시적인 실시예에서, 반도체층은 다결정 실리콘, 단결정 실리콘, 산화물 반도체 등을 포함할 수 있다. 다결정 실리콘은 비정질 실리콘을 결정화하여 형성될 수 있다. 상기 결정화 방법의 예로는 RTA(Rapid thermal annealing)법, SPC(Solid phase crystallization)법, ELA(Excimer laser annealing)법, MILC(Metal induced crystallization)법, SLS(Sequential lateral solidification)법 등을 들 수 있으나, 이에 제한되는 것은 아니다. 반도체층이 다결정 실리콘을 포함하는 경우, 제1 활성물질층(DT_ACT)은 제1 도핑 영역(DT_ACTa), 제2 도핑 영역(DT_ACTb) 및 제1 채널 영역(DT_ACTc)을 포함할 수 있다. 제1 채널 영역(DT_ACTc)은 제1 도핑 영역(DT_ACTa)과 제2 도핑 영역(DT_ACTb) 사이에 배치될 수 있다. 제2 활성물질층(ST_ACT)은 제3 도핑 영역(ST_ACTa), 제4 도핑 영역(ST_ACTb) 및 제2 채널 영역(ST_ACTc)을 포함할 수 있다. 제2 채널 영역(ST_ACTc)은 제3 도핑 영역(ST_ACTa)과 제4 도핑 영역(ST_ACTb) 사이에 배치될 수 있다. 제1 도핑 영역(DT_ACTa), 제2 도핑 영역(DT_ACTb), 제3 도핑 영역(ST_ACTa) 및 제4 도핑 영역(ST_ACTb)은 제1 활성물질층(DT_ACT) 및 제2 활성물질층(ST_ACT)의 일부 영역이 불순물로 도핑된 영역으로, 제1 활성물질층(DT_ACT)과 제2 활성물질층(ST_ACT)의 소스/드레인 영역일 수 있다.
예시적인 실시예에서, 제1 활성물질층(DT_ACT) 및 제2 활성물질층(ST_ACT)은 산화물 반도체를 포함할 수도 있다. 이 경우, 제1 활성물질층(DT_ACT)과 제2 활성물질층(ST_ACT)의 도핑 영역은 각각 도체화 영역일 수 있다. 상기 산화물 반도체는 인듐(In)을 함유하는 산화물 반도체일 수 있다. 몇몇 실시예에서, 상기 산화물 반도체는 인듐-주석 산화물(Indium-Tin Oxide, ITO), 인듐-아연 산화물(Indium-Zinc Oxide, IZO), 인듐-갈륨 산화물(Indium-Gallium Oxide, IGO), 인듐-아연-주석 산화물(Indium-Zinc-Tin Oxide, IZTO), 인듐-갈륨-아연 산화물(Indium-Gallium-Zinc Oxide, IGZO), 인듐-갈륨-주석 산화물(Indium-Gallium-Tin Oxide, IGTO), 인듐-갈륨-아연-주석 산화물(Indium-Gallium-Zinc-Tin Oxide, IGZTO) 등일 수 있다. 다만, 이에 제한되지 않는다.
제1 게이트 절연층(103)은 반도체층 및 버퍼층(102)상에 배치된다. 제1 게이트 절연층(103)은 구동 트랜지스터(DT) 및 스위칭 트랜지스터(ST)의 게이트 절연막으로 기능할 수 있다. 제1 게이트 절연층(103)은 무기물, 예컨대 실리콘 산화물(SiO x), 실리콘 질화물(SiN x), 실리콘 산질화물(SiO xN y)을 포함하는 단일한 무기층으로 이루어지거나, 이들이 교번하여 적층되거나 다중으로 적층된 구조로 형성될 수 있다.
제1 게이트 도전층은 제1 게이트 절연층(103) 상에 배치된다. 제1 게이트 도전층은 구동 트랜지스터(DT)의 제1 게이트 전극(DT_G)과 스위칭 트랜지스터(ST)의 제2 게이트 전극(ST_G)을 포함할 수 있다. 제1 게이트 전극(DT_G)은 제1 활성물질층(DT_ACT)의 적어도 일부 영역과 중첩하도록 배치되고, 제2 게이트 전극(ST_G)은 제2 활성물질층(ST_ACT)의 적어도 일부 영역과 중첩하도록 배치된다. 예를 들어, 제1 게이트 전극(DT_G)은 제1 활성물질층(DT_ACT)의 제1 채널 영역(DT_ACTc)과 두께 방향으로 중첩하도록 배치되고, 제2 게이트 전극(ST_G)은 제2 활성물질층(ST_ACT)의 제2 채널 영역(ST_ACTc)과 두께 방향으로 중첩하도록 배치될 수 있다.
제1 게이트 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제1 보호층(105)은 제1 게이트 도전층 상에 배치된다. 제1 보호층(105)은 제1 게이트 도전층을 덮도록 배치되어 이를 보호하는 기능을 수행할 수 있다. 제1 보호층(105)은 무기물, 예컨대 실리콘 산화물(SiO x), 실리콘 질화물(SiN x), 실리콘 산질화물(SiO xN y)을 포함하는 단일한 무기층으로 이루어지거나, 이들이 교번하여 적층되거나 다중으로 적층된 구조로 형성될 수 있다.
제2 게이트 도전층은 제1 보호층(105) 상에 배치된다. 제2 게이트 도전층은 적어도 일부 영역이 제1 게이트 전극(DT_G)과 두께 방향으로 중첩하도록 배치된 스토리지 커패시터의 제1 용량 전극(CSE1)을 포함할 수 있다. 제1 용량 전극(CSE1)은 제1 보호층(105)을 사이에 두고 제1 게이트 전극(DT_G)과 두께 방향으로 중첩하고, 이들 사이에는 스토리지 커패시터가 형성될 수 있다. 제2 게이트 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제1 층간 절연층(107)은 제2 게이트 도전층 상에 배치된다. 제1 층간 절연층(107)은 제2 게이트 도전층과 그 위에 배치되는 다른 층들 사이에서 절연막의 기능을 수행할 수 있다. 제1 층간 절연층(107)은 무기물, 실리콘 산화물(SiO x), 실리콘 질화물(SiN x), 실리콘 산질화물(SiO xN y)을 포함하는 단일한 무기층으로 이루어지거나, 이들이 교번하여 적층되거나 다중으로 적층된 구조로 형성될 수 있다.
제1 데이터 도전층은 제1 층간 절연층(107) 상에 배치된다. 제1 게이트 도전층은 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 제2 소스/드레인 전극(DT_SD2), 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(ST_SD1)과 제2 소스/드레인 전극(ST_SD2), 및 제2 전압 배선(VL2)을 포함할 수 있다.
구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 제2 소스/드레인 전극(DT_SD2)은 제1 층간 절연층(107)과 제1 게이트 절연층(103)을 관통하는 컨택홀을 통해 제1 활성물질층(DT_ACT)의 제1 도핑 영역(DT_ACTa) 및 제2 도핑 영역(DT_ACTb)과 각각 접촉될 수 있다. 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(ST_SD1)과 제2 소스/드레인 전극(ST_SD2)은 제1 층간 절연층(107)과 제1 게이트 절연층(103)을 관통하는 컨택홀을 통해 제2 활성물질층(ST_ACT)의 제3 도핑 영역(ST_ACTa) 및 제4 도핑 영역(ST_ACTb)과 각각 접촉될 수 있다. 또한, 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(ST_SD1)은 또 다른 컨택홀을 통해 각각 제1 차광층(BML1) 및 제2 차광층(BML2)과 전기적으로 연결될 수 있다. 한편, 구동 트랜지스터(DT)와 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(DT_SD1, ST_SD1) 및 제2 소스/드레인 전극(DT_SD2, ST_SD2)은 어느 한 전극이 소스 전극인 경우 다른 전극은 드레인 전극일 수 있다. 다만 이에 제한되지 않고, 제1 소스/드레인 전극(DT_SD1, ST_SD1) 및 제2 소스/드레인 전극(DT_SD2, ST_SD2)은 어느 한 전극이 드레인 전극인 경우 다른 전극은 소스 전극일 수 있다.
제2 전압 배선(VL2)은 구동 트랜지스터(DT)의 소스/드레인 전극(DT_SD1, DT_SD2) 중 어느 하나와 연결될 수 있다. 예를 들어, 제2 전압 배선(VL2)은 구동 트랜지스터(DT)의 제2 소스/드레인 전극(DT_SD2)과 전기적으로 연결될 수 있다. 제2 전압 배선(VL2)은 구동 트랜지스터(DT)에 공급되는 고전위 전압(제2 전원 전압, VDD)이 인가될 수 있다. 구동 트랜지스터(DT)는 후술할 바와 같이 제2 전극(220)과 전기적으로 연결될 수 있고, 제2 전압 배선(VL2)을 통해 인가된 제2 전원 전압(VDD)은 구동 트랜지스터(DT)를 통해 제2 전극(220)으로 전달될 수 있다.
제1 데이터 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제2 층간 절연층(108)은 제1 데이터 도전층 상에 배치될 수 있다. 제2 층간 절연층(108)은 제1 데이터 도전층을 덮으며 제1 층간 절연층(107) 상에 전면적으로 배치되고, 제1 데이터 도전층을 보호하는 기능을 수행할 수 있다. 제2 층간 절연층(108)은 무기물, 예컨대 실리콘 산화물(SiO x), 실리콘 질화물(SiN x), 실리콘 산질화물(SiO xN y)을 포함하는 단일한 무기층으로 이루어지거나, 이들이 교번하여 적층되거나 다중으로 적층된 구조로 형성될 수 있다.
제2 데이터 도전층은 제2 층간 절연층(108) 상에 배치된다. 제2 데이터 도전층은 제1 전압 배선(VL1), 제1 정렬 배선(AL1) 및 제1 도전 패턴(CDP)을 포함할 수 있다. 제1 전압 배선(VL1)은 제1 전극(210)에 공급되는 저전위 전압(제1 전원 전압, VSS)이 인가될 수 있다.
제1 정렬 배선(AL1)은 표시 장치(10)의 제조 공정 중 발광 소자(300)를 정렬시키는 데에 필요한 정렬 신호가 인가될 수 있고, 제2 전극(220)과 전기적으로 연결되어 상기 정렬 신호를 제2 전극(220)으로 전달할 수 있다. 제1 전압 배선(VL1)도 표시 장치(10)의 제조 공정 중에는 상기 정렬 신호가 인가될 수도 있고, 이를 제1 전극(210)에 전달할 수 있다. 다만, 제1 정렬 배선(AL1)은 발광 소자(300)들이 정렬된 후 후속 공정에서 패터닝되며, 표시 장치(10)의 구동 중에는 전기 신호가 인가되지 않을 수 있다. 후술할 바와 같이, 제1 정렬 배선(AL1)은 제2 내부 뱅크(420) 및 제1 평탄화층(109)을 관통하는 제3 컨택홀(CT3)을 통해 제2 전극(220)과 전기적으로 연결될 수 있다.
제1 도전 패턴(CDP)은 제2 층간 절연층(108)에 형성된 컨택홀을 통해 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 전기적으로 연결될 수 있다. 제1 도전 패턴(CDP)은 후술하는 제2 전극(220)과도 전기적으로 연결되며, 구동 트랜지스터(DT)는 제2 전압 배선(VL2)으로부터 인가되는 제2 전원 전압(VDD)을 제1 도전 패턴(CDP)을 통해 제2 전극(220)으로 전달할 수 있다.
한편, 도면에서는 제2 데이터 도전층이 하나의 제1 정렬 배선(AL1)을 포함하는 것이 도시되어 있으나, 이에 제한되지 않는다. 제1 정렬 배선(AL1)은 각 서브 화소(PXn)에 배치된 전극(210, 220)의 수에 따라 더 많은 수로 배치될 수 있다. 예를 들어, 각 서브 화소(PXn)에 배치된 제2 전극(220)의 수가 더 많을 경우, 제1 정렬 배선(AL1)도 더 많은 수로 배치될 수 있다. 다만, 이에 제한되지 않고, 각 서브 화소(PXn)가 다른 전극들을 더 포함하는 경우, 제2 데이터 도전층은 제1 정렬 배선(AL1) 이외에 다른 정렬 배선들이 더 배치될 수도 있다.
제2 데이터 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제1 평탄화층(109)은 제2 데이터 도전층 상에 배치된다. 제1 평탄화층(109)은 유기 절연 물질을 포함하여, 표면 평탄화 기능을 수행할 수 있다.
제1 평탄화층(109) 상에는 내부 뱅크(410, 420), 복수의 전극(210, 220)들, 외부 뱅크(450), 복수의 접촉 전극(260) 및 발광 소자(300)가 배치된다. 또한, 제1 평탄화층(109) 상에는 복수의 절연층(510, 520, 550)들이 더 배치될 수 있다.
내부 뱅크(410, 420)는 제1 평탄화층(109) 상에 직접 배치된다. 내부 뱅크(410, 420)는 각 화소(PX) 또는 서브 화소(PXn)의 중심부에 인접하여 배치된 제1 내부 뱅크(410)와 제2 내부 뱅크(420)를 포함할 수 있다.
제1 내부 뱅크(410)와 제2 내부 뱅크(420)는 평면상 각각 제1 전극(210) 및 제2 전극(220)과 유사한 형상을 가질 수 있다. 예를 들어, 제1 내부 뱅크(410)는 제1 전극(210)과 같이 서로 교차하며 일 측이 상호 연결된 양 단변과, 상기 양 단변의 타 측을 연결하는 곡률진 외측변을 포함할 수 있다. 제2 내부 뱅크(420)는 제2 전극(220)의 전극 곡선부(220R)와 같이, 서로 교차하는 방향으로 연장된 양 단변과, 상기 양 단변의 각 측들을 상호 연결하며 곡률진 양 외측변을 포함할 수 있다. 즉, 제1 내부 뱅크(410)는 평면상 사분원의 형상을 갖고, 제2 내부 뱅크(420)는 제1 내부 뱅크(410)의 곡률진 외측변과 이격되어 대향하도록 곡률진 형상을 가질 수 있다. 제1 내부 뱅크(410)와 제2 내부 뱅크(420)도 서로 이격되어 배치되고, 제1 내부 뱅크(410)의 곡률진 외측변은 제2 내부 뱅크(420)의 곡률진 외측변 중 하나와 이격 대향할 수 있다.
제1 내부 뱅크(410)와 제2 내부 뱅크(420)는 각 서브 화소(PXn) 마다 배치되어 표시 장치(10)의 전면에 있어 패턴을 이룰 수 있다. 내부 뱅크(410, 420)는 서로 이격 대향하도록 배치됨으로써, 이들 사이에 발광 소자(300)가 배치되는 영역을 형성할 수 있다. 도면에서는 하나의 제1 내부 뱅크(410)와 하나의 제2 내부 뱅크(420)만을 도시하고 있으나, 이에 제한되지 않는다. 각 서브 화소(PXn)에 배치되는 제1 내부 뱅크(410)와 제2 내부 뱅크(420)는 각 전극(210, 220)들의 수에 따라 달라질 수 있다.
또한, 제1 내부 뱅크(410)와 제2 내부 뱅크(420)는 제1 평탄화층(109)의 상면을 기준으로 적어도 일부가 돌출된 구조를 가질 수 있다. 제1 내부 뱅크(410)와 제2 내부 뱅크(420)의 돌출된 부분은 경사진 측면을 가질 수 있고, 이들 사이에 배치되는 발광 소자(300)에서 방출된 광은 내부 뱅크(410, 420)의 경사진 측면을 향해 진행될 수 있다. 후술할 바와 같이, 내부 뱅크(410, 420) 상에 배치되는 전극(210, 220)들이 반사율이 높은 재료를 포함하는 경우, 발광 소자(300)에서 방출된 광은 내부 뱅크(410, 420)의 측면에서 반사되어, 제1 기판(101)의 상부 방향으로 출사될 수 있다. 즉, 내부 뱅크(410, 420)는 발광 소자(300)가 배치되는 영역을 제공함과 동시에 발광 소자(300)에서 방출된 광을 상부 방향으로 반사시키는 반사격벽의 기능을 수행할 수도 있다. 예시적인 실시예에서 내부 뱅크(410, 420)들은 폴리이미드(Polyimide, PI)와 같은 유기 절연 물질을 포함할 수 있으나, 이에 제한되지 않는다.
복수의 전극(210, 220)은 내부 뱅크(410, 420)와 제1 평탄화층(109) 상에 배치된다. 복수의 제1 전극(210)은 제1 내부 뱅크(410) 상에 배치되고, 제2 전극(220)은 제2 내부 뱅크(420) 상에 배치될 수 있다.
제1 전극(210)은 제1 내부 뱅크(410)를 덮도록 배치될 수 있다. 예를 들어, 제1 전극(210)은 제1 내부 뱅크(410)와 동일한 형상을 갖되, 폭이 더 크게 형성되어 제1 내부 뱅크(410)의 외면을 덮도록 배치될 수 있다. 이에 따라, 제1 전극(210)은 하면 중 일부는 제1 내부 뱅크(410) 상에 배치되고, 다른 일부는 제1 평탄화층(109) 상에 배치될 수 있다. 제1 전극(210)의 제1 평탄화층(109) 상에 배치된 부분에는 제1 컨택홀(CT1)이 형성될 수 있다. 제1 컨택홀(CT1)은 제1 평탄화층(109)을 관통하여 제1 전압 배선(VL1) 상면 일부를 노출시킬 수 있다. 제1 전극(210)은 제1 컨택홀(CT1)을 통해 제1 전압 배선(VL1)과 접촉할 수 있고, 제1 전극(210)은 제1 전압 배선(VL1)과 전기적으로 연결될 수 있다.
제2 전극(220)도 제2 내부 뱅크(420)를 덮도록 배치될 수 있다. 예를 들어, 제2 전극(220)은 제1 내부 뱅크(410)와 동일한 형상을 갖되, 폭이 더 크게 형성되어 제2 내부 뱅크(420)의 외면을 덮도록 배치될 수 있다. 이에 따라, 제2 전극(220)은 하면 중 일부는 제2 내부 뱅크(420) 상에 배치되고, 다른 일부는 제1 평탄화층(109) 상에 배치될 수 있다. 또한, 제2 전극(220)은 제1 평탄화층(109) 상에 직접 배치되는 전극 돌출부(220P)를 더 포함할 수도 있다. 제2 전극(220)의 전극 돌출부(220P)에는 제2 컨택홀(CT2)이 형성될 수 있다. 제2 컨택홀(CT2)은 제1 평탄화층(109)을 관통하여 제1 도전 패턴(CDP) 상면 일부를 노출시킬 수 있다. 제2 전극(220)은 제2 컨택홀(CT2)을 통해 제1 도전 패턴(CDP)과 접촉할 수 있고, 제2 전극(220)은 제1 도전 패턴(CDP)을 통해 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 전기적으로 연결될 수 있다.
또한, 제2 전극(220)의 제2 내부 뱅크(420) 상에 배치된 부분에는 제3 컨택홀(CT3)이 형성될 수도 있다. 제3 컨택홀(CT3)은 제2 내부 뱅크(420) 및 제1 평탄화층(109)을 관통하여 제1 정렬 배선(AL1)의 상면 일부를 노출할 수 있고, 제2 전극(220)은 제1 정렬 배선(AL1)과 직접 접촉할 수 있다. 이에 대한 설명은 다른 도면을 참조하여 후술하기로 한다.
복수의 전극(210, 220)들은 발광 소자(300)들과 전기적으로 연결되고, 발광 소자(300)가 광을 방출하도록 소정의 전압을 인가 받을 수 있다. 예를 들어, 복수의 전극(210, 220)들은 후술하는 접촉 전극(260)을 통해 발광 소자(300)와 전기적으로 연결되고, 전극(210, 220)들로 인가된 전기 신호를 접촉 전극(260)을 통해 발광 소자(300)에 전달할 수 있다.
예시적인 실시예에서, 제1 전극(210)과 제2 전극(220) 중 어느 하나는 발광 소자(300)의 애노드(Anode) 전극이고, 다른 하나는 발광 소자(300)의 캐소드(Cathode) 전극일 수 있다. 예를 들어, 제1 전극(210)은 캐소드 전극이고 제2 전극(220)은 애노드 전극일 수 있으나, 이에 제한되지 않으며 그 반대의 경우일 수도 있다.
또한, 각 전극(210, 220)은 발광 소자(300)를 정렬하기 위해 서브 화소(PXn) 내에 전기장을 형성하는 데에 활용될 수도 있다. 발광 소자(300)는 제1 전극(210)과 제2 전극(220)에 정렬 신호를 인가하여 제1 전극(210)과 제2 전극(220) 사이에 전기장을 형성하는 공정을 통해 제1 전극(210)과 제2 전극(220) 사이에 배치될 수 있다. 예를 들어, 발광 소자(300)는 잉크젯 공정을 통해 잉크에 분산된 상태로 제1 전극(210)과 제2 전극(220) 상에 분사되고, 제1 전극(210)과 제2 전극(220) 사이에 정렬 신호를 인가하여 발광 소자(300)에 유전영동힘(Dieletrophoretic Force)을 인가하는 방법을 통해 이들 사이에 정렬될 수 있다.
각 전극(210, 220)은 투명성 전도성 물질을 포함할 수 있다. 일 예로, 각 전극(210, 220)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ITZO(Indium Tin-Zinc Oxide) 등과 같은 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다. 몇몇 실시예에서, 각 전극(210, 220)은 반사율이 높은 전도성 물질을 포함할 수 있다. 예를 들어, 각 전극(210, 220)은 반사율이 높은 물질로 은(Ag), 구리(Cu), 알루미늄(Al) 등과 같은 금속을 포함할 수 있다. 이 경우, 각 전극(210, 220)은 발광 소자(300)에서 방출되어 제1 내부 뱅크(410)와 제2 내부 뱅크(420)의 측면으로 진행하는 광을 각 서브 화소(PXn)의 상부 방향으로 반사시킬 수 있다.
이에 제한되지 않고, 각 전극(210, 220)은 투명성 전도성 물질과 반사율이 높은 금속층이 각각 한층 이상 적층된 구조를 이루거나, 이들을 포함하여 하나의 층으로 형성될 수도 있다. 예시적인 실시예에서, 각 전극(210, 220)은 ITO/은(Ag)/ITO/IZO의 적층구조를 갖거나, 알루미늄(Al), 니켈(Ni), 란타늄(La) 등을 포함하는 합금일 수 있다.
제1 절연층(510)은 제1 평탄화층(109), 제1 전극(210) 및 제2 전극(220) 상에 배치된다. 제1 절연층(510)은 각 전극(210, 220)들, 또는 내부 뱅크(410, 420)들이 이격된 사이 영역에 더하여, 내부 뱅크(410, 420)를 중심으로 이들 사이 영역의 반대편에도 배치될 수 있다. 또한, 제1 절연층(510)은 제1 전극(210)과 제2 전극(220)을 부분적으로 덮도록 배치된다. 예를 들어, 제1 절연층(510)은 제1 전극(210)과 제2 전극(220)을 포함하여 제1 평탄화층(109) 상에 전면적으로 배치되되, 제1 전극(210)과 제2 전극(220)의 상면 일부를 노출하도록 배치될 수 있다. 제1 절연층(510)에는 제1 전극(210)과 제2 전극(220)을 부분적으로 노출시키는 개구부(미도시)가 형성되고, 제1 전극(210)과 제2 전극(220)의 일 측과 타 측만을 덮도록 배치될 수 있다. 제1 전극(210)과 제2 전극(220)은 상기 개구부에 의해 내부 뱅크(410, 420) 상에 배치된 부분 중 일부가 노출될 수 있다.
제1 절연층(510)은 제1 전극(210)과 제2 전극(220)을 보호함과 동시에 이들을 상호 절연시킬 수 있다. 또한, 제1 절연층(510) 상에 배치되는 발광 소자(300)가 다른 부재들과 직접 접촉하여 손상되는 것을 방지할 수도 있다. 다만, 제1 절연층(510)의 형상 및 구조는 이에 제한되지 않는다.
예시적인 실시예에서, 제1 절연층(510)은 제1 전극(210)과 제2 전극(220) 사이에서 상면 일부에 단차가 형성될 수 있다. 몇몇 실시예에서, 제1 절연층(510)은 무기물 절연성 물질을 포함하고, 제1 전극(210)과 제2 전극(220)을 부분적으로 덮도록 배치된 제1 절연층(510)은 하부에 배치되는 전극(210, 220)들이 형성하는 단차에 의해 상면의 일부에 단차가 형성될 수 있다. 이에 따라 제1 전극(210)과 제2 전극(220) 사이에서 제1 절연층(510) 상에 배치되는 발광 소자(300)는 제1 절연층(510)의 상면과 빈 공간을 형성할 수 있다. 상기 빈 공간은 후술하는 제2 절연층(520)을 이루는 재료에 의해 채워질 수도 있다.
외부 뱅크(450)는 제1 절연층(510) 상에 배치될 수 있다. 상술한 바와 같이, 외부 뱅크(450)는 각 서브 화소(PXn)들 간의 경계에 배치될 수 있다. 외부 뱅크(450)는 내부 뱅크(410, 420) 및 전극(210, 220)들 사이에 발광 소자(300)가 배치되는 영역을 포함하여 이들을 둘러싸도록 배치될 수 있다.
일 실시예에 따르면, 외부 뱅크(450)의 높이는 내부 뱅크(410, 420)의 높이보다 클 수 있다. 내부 뱅크(410, 420)와 달리, 외부 뱅크(450)는 이웃하는 서브 화소(PXn)들을 구분함과 동시에 후술할 바와 같이 표시 장치(10)의 제조 공정 중 발광 소자(300)를 배치하기 위한 잉크젯 프린팅 공정에서 잉크가 인접한 서브 화소(PXn)로 넘치는 것을 방지하는 기능을 수행할 수 있다. 즉, 외부 뱅크(450)는 서로 다른 서브 화소(PXn)마다 다른 발광 소자(300)들이 분산된 잉크가 서로 혼합되지 않도록 이들을 분리시킬 수 있다.
발광 소자(300)는 제1 전극(210)과 제2 전극(220) 사이, 또는 제1 내부 뱅크(410)와 제2 내부 뱅크(420) 사이에 형성된 영역에 배치될 수 있다. 예를 들어, 발광 소자(300)는 내부 뱅크(410, 420) 사이에 배치된 제1 절연층(510) 상에 배치될 수 있다. 발광 소자(300)는 일부 영역이 각 전극(210, 220)과 두께 방향으로 중첩하도록 배치될 수 있다. 발광 소자(300)의 일 단부는 제1 전극(210)과 두께 방향으로 중첩하여 제1 전극(210) 상에 놓이고, 타 단부는 제2 전극(220)과 두께 방향으로 중첩하여 제2 전극(220) 상에 놓일 수 있다. 다만, 이에 제한되지 않으며, 도면에 도시되지 않았으나 각 서브 화소(PXn) 내에 배치된 발광 소자(300)들 중 적어도 일부는 내부 뱅크(410, 420) 사이에 형성된 영역 이외의 영역, 예를 들어 내부 뱅크(410, 420)와 외부 뱅크(450) 사이에 배치될 수도 있다.
발광 소자(300)는 제1 기판(101) 또는 제1 평탄화층(109)의 상면과 평행한 방향으로 복수의 층들이 배치될 수 있다. 일 실시예에 따른 표시 장치(10)의 발광 소자(300)는 일 방향으로 연장된 형상을 갖고, 복수의 반도체층들이 일 방향으로 순차적으로 배치된 구조를 가질 수 있다. 발광 소자(300)는 연장된 일 방향이 제1 평탄화층(109)과 평행하도록 배치되고, 발광 소자(300)에 포함된 복수의 반도체층들은 제1 평탄화층(109)의 상면과 평행한 방향을 따라 순차적으로 배치될 수 있다. 다만, 이에 제한되지 않는다. 경우에 따라서는 발광 소자(300)가 다른 구조를 갖는 경우, 복수의 층들은 제1 평탄화층(109)에 수직한 방향으로 배치될 수도 있다.
제2 절연층(520)은 제1 전극(210)과 제2 전극(220) 사이에 배치된 발광 소자(300) 상에 부분적으로 배치될 수 있다. 예를 들어, 제2 절연층(520)은 발광 소자(300)의 외면을 부분적으로 감싸도록 배치되어 발광 소자(300)를 보호함과 동시에 표시 장치(10)의 제조 공정 중 발광 소자(300)를 고정시킬 수도 있다. 제2 절연층(520) 중 발광 소자(300) 상에 배치된 부분은 평면상 제1 전극(210)과 제2 전극(220) 사이에서 이들의 외측변(OS1, OS2, OS3)과 동일한 방향으로 곡률진 형상을 가질 수 있다. 일 예로, 제2 절연층(520)은 각 서브 화소(PXn) 내에서 호(arc)와 같은 곡선형 패턴을 형성할 수 있다.
제2 절연층(520)은 발광 소자(300) 상에 배치되되, 발광 소자(300)의 일 단부 및 타 단부를 노출할 수 있다. 발광 소자(300)의 노출된 단부는 후술하는 접촉 전극(260)과 접촉할 수 있다. 이러한 제2 절연층(520)의 형상은 통상적인 마스크 공정을 이용하여 제2 절연층(520)을 이루는 재료를 이용한 패터닝 공정으로 형성된 것일 수 있다. 제2 절연층(520)을 형성하기 위한 마스크는 발광 소자(300)의 길이보다 좁은 폭을 갖고, 제2 절연층(520)을 이루는 재료가 패터닝되어 발광 소자(300)의 양 단부가 노출될 수 있다. 다만, 이에 제한되는 것은 아니다.
또한, 예시적인 실시예에서, 제2 절연층(520)의 재료 중 일부는 발광 소자(300)의 하면과 제1 절연층(510) 사이에 배치될 수도 있다. 제2 절연층(520)은 표시 장치(10)의 제조 공정 중에 형성된 제1 절연층(510)과 발광 소자(300) 사이의 공간을 채우도록 형성될 수도 있다. 이에 따라 제2 절연층(520)은 발광 소자(300)의 외면을 감싸도록 형성될 수도 있다. 다만, 이에 제한되지 않는다.
제2 절연층(520) 상에는 복수의 접촉 전극(260)들이 배치될 수 있다. 상술한 바와 같이, 접촉 전극(260)은 제1 접촉 전극(261) 및 제2 접촉 전극(262)을 포함할 수 있다. 제1 접촉 전극(261)과 제2 접촉 전극(262)은 각각 발광 소자(300)의 일 단부 및 타 단부와 접촉함과 동시에, 제1 전극(210) 및 제2 전극(220)과도 접촉할 수 있다. 몇몇 실시예에서, 제1 전극(210)과 제2 전극(220)은 상면 일부가 노출되고, 제1 접촉 전극(261)과 제2 접촉 전극(262)은 제1 전극(210)과 제2 전극(220)의 노출된 상면과 접촉할 수 있다. 예를 들어, 제1 접촉 전극(261)은 제1 전극(210) 중 제1 내부 뱅크(410) 상에 위치한 부분과 접촉하고, 제2 접촉 전극(262)은 제2 전극(220) 중 제2 내부 뱅크(420) 상에 위치한 부분과 접촉할 수 있다. 다만, 이에 제한되지 않고, 경우에 따라서 제1 접촉 전극(261) 및 제2 접촉 전극(262)은 그 폭이 제1 전극(210)과 제2 전극(220)보다 작게 형성되어 상면의 노출된 부분만을 덮도록 배치될 수도 있다. 또한, 제1 접촉 전극(261)과 제2 접촉 전극(262)은 각각 적어도 일부 영역이 제1 절연층(510) 상에도 배치된다.
일 실시예에 따르면, 발광 소자(300)는 연장된 방향의 양 단부면에는 반도체층이 노출되고, 제1 접촉 전극(261)과 제2 접촉 전극(262)은 상기 반도체층이 노출된 단부면에서 발광 소자(300)와 접촉할 수 있다. 다만, 이에 제한되지 않는다. 경우에 따라서 발광 소자(300)는 양 단부의 측면이 부분적으로 노출될 수도 있다. 표시 장치(10)의 제조 공정 중, 발광 소자(300)의 외면을 덮는 제2 절연층(520)을 형성하는 공정에서 발광 소자(300)의 반도체층 외면을 둘러싸는 절연막(도 9의 '380')이 부분적으로 제거될 수 있고, 발광 소자(300)의 노출된 측면은 제1 접촉 전극(261) 및 제2 접촉 전극(262)과 접촉할 수도 있다. 발광 소자(300)의 일 단부는 제1 접촉 전극(261)을 통해 제1 전극(210)과 전기적으로 연결되고, 타 단부는 제2 접촉 전극(262)을 통해 제2 전극(220)과 전기적으로 연결될 수 있다.
또한, 제1 접촉 전극(261)과 제2 접촉 전극(262)은 적어도 일부분이 제2 절연층(520) 상에 배치된다. 제1 접촉 전극(261)과 제2 접촉 전극(262)은 제2 절연층(520) 상에서 서로 이격 배치되어 서로 이격 대향하는 측면이 제2 절연층(520) 상에 배치될 수 있다. 제2 절연층(520)은 유기 절연물질을 포함할 수 있고, 제1 접촉 전극(261)과 제2 접촉 전극(262)은 동일한 공정에서 함께 형성될 수 있다. 제1 접촉 전극(261)과 제2 접촉 전극(262)은 직접 접촉되지 않고 전기적으로 절연될 수 있다. 다만, 이에 제한되지 않으며, 제1 접촉 전극(261)과 제2 접촉 전극(262) 사이에는 절연층이 더 배치될 수 있다. 상기 절연층은 제1 접촉 전극(261)과 제2 접촉 전극(262)이 직접 접촉하는 것을 방지할 수 있다.
접촉 전극(260)은 전도성 물질을 포함할 수 있다. 예를 들어, ITO, IZO, ITZO, 알루미늄(Al) 등을 포함할 수 있다. 일 예로, 접촉 전극(260)은 투명성 전도성 물질을 포함하고, 발광 소자(300)에서 방출된 광은 접촉 전극(260)을 투과하여 전극(210, 220)들을 향해 진행할 수 있다. 각 전극(210, 220)은 반사율이 높은 재료를 포함하고, 내부 뱅크(410, 420)의 경사진 측면 상에 놓인 전극(210, 220)은 입사되는 광을 제1 기판(101)의 상부 방향으로 반사시킬 수 있다. 다만, 이에 제한되는 것은 아니다.
제3 절연층(550)은 제1 기판(101) 상에 전면적으로 배치될 수 있다. 제3 절연층(550)은 제1 기판(101) 상에 배치된 부재들 외부 환경에 대하여 보호하는 기능을 할 수 있다.
상술한 제1 절연층(510), 제2 절연층(520), 및 제3 절연층(550) 각각은 무기물 절연성 물질 또는 유기물 절연성 물질을 포함할 수 있다. 예시적인 실시예에서, 제1 절연층(510), 제2 절연층(520), 및 제3 절연층(550)은 실리콘 산화물(SiO x), 실리콘 질화물(SiN x), 실리콘 산질화물(SiO xN y), 산화 알루미늄(Al xO y), 질화 알루미늄(Al xN y)등과 같은 무기물 절연성 물질을 포함할 수 있다. 또는, 이들은 유기물 절연성 물질로써, 아크릴 수지, 에폭시 수지, 페놀 수지, 폴리아마이드 수지, 폴리이미드 수지, 불포화 폴리에스테르 수지, 폴리페닐렌 수지, 폴리페닐렌설파이드 수지, 벤조사이클로부텐, 카도 수지, 실록산 수지, 실세스퀴옥산 수지, 폴리메틸메타크릴레이트, 폴리카보네이트, 폴리메틸메타크릴레이트-폴리카보네이트 합성수지 등을 포함할 수 있다. 다만, 이에 제한되는 것은 아니다.
한편, 상술한 바와 같이 각 서브 화소(PXn)에 배치된 제1 전극(210)과 제2 전극(220)은 표시 장치(10)의 제조 공정 중 발광 소자(300)를 정렬시키는 데에 활용될 수 있다. 일 예로, 제1 전극(210)과 제2 전극(220)은 제2 데이터 도전층에 배치된 제1 전압 배선(VL1) 및 제1 정렬 배선(AL1)과 전기적으로 연결되고, 이들로부터 정렬 신호가 전달될 수 있다.
도 6은 일 실시예에 따른 전극 유닛과 정렬 배선을 나타내는 개략적인 평면도이다. 도 7은 도 6의 II-II'선을 따라 자른 단면도이다.
도 6은 하나의 서브 화소(PXn)에 배치된 제1 전극(210)들, 제2 전극(220)들 및 외부 뱅크(450)에 더하여, 제2 데이터 도전층의 제1 전압 배선(VL1)들과 제1 정렬 배선(AL1)들, 및 제1 데이터 도전층의 제2 전압 배선(VL2)을 도시하고 있다. 도 6에서는 설명의 편의를 위해 일부 전극들 및 배선들만을 도시하고 있다. 도 7은 도 6의 제1 전극(210)과 제2 전극(220)에 형성된 컨택홀(CT1, CT2, CT3)들을 가로지르는 단면을 도시하고 있다. 이하에서는 제1 전압 배선(VL1)들, 제2 전압 배선(VL2) 및 제1 정렬 배선(AL1)들에 대하여 상세히 설명하기로 한다.
도 6 및 도 7을 참조하면, 제1 전압 배선(VL1)은 각 서브 화소(PXn)에서 복수개, 예를 들어 2개의 배선으로 배치될 수 있다. 제1 전압 배선(VL1)은 각 서브 화소(PXn)에 배치된 제1 전극(210)과 두께 방향으로 중첩하도록 배치될 수 있고, 제1 컨택홀(CT1)을 통해 제1 전극(210)과 접촉할 수 있다. 일 예로, 제1 전압 배선(VL1)은 서브 화소(PXn)의 중심을 기준으로, 양 측인 좌측과 우측에 각각 배치될 수 있다. 서브 화소(PXn)의 좌측에 배치된 제1 전압 배선(VL1)은 제1 전극 유닛(EU1) 및 제4 전극 유닛(EU4)의 제1 전극(210)과 전기적으로 연결되고, 서브 화소(PXn)의 우측에 배치된 제1 전압 배선(VL1)은 제2 전극 유닛(EU2) 및 제3 전극 유닛(EU3)의 제1 전극(210)과 전기적으로 연결될 수 있다. 다만, 이에 제한되지 않는다. 제1 전압 배선(VL1)의 수는 각 서브 화소(PXn)에 배치된 제1 전극(210)의 수에 따라 달라질 수도 있다.
제1 전압 배선(VL1)은 제2 방향(DR2)으로 연장되어 배치될 수 있고, 제2 방향(DR2)으로 이웃하는 서브 화소(PXn)와의 경계를 넘어 다른 서브 화소(PXn)들에도 배치될 수 있다.
제2 전압 배선(VL2)도 각 서브 화소(PXn)에 배치되어 제2 방향(DR2)으로 연장될 수 있다. 다만, 제1 전압 배선(VL1)과 달리, 제2 전압 배선(VL2)은 각 서브 화소(PXn)마다 하나의 배선이 배치될 수 있으나, 이에 제한되지 않는다. 제2 전압 배선(VL2)은 제2 전극(220)의 전극 돌출부(220P)와 인접한 위치에 배치될 수 있다. 제2 전압 배선(VL2)은 구동 트랜지스터(DT)의 소스/드레인 전극과 전기적으로 연결될 수 있고, 상술한 바와 같이 제2 전극(220)의 전극 돌출부(220P)는 제2 컨택홀(CT2)을 통해 연결된 제1 도전 패턴(CDP)을 통해 구동 트랜지스터(DT)와 전기적으로 연결될 수 있다.
제1 정렬 배선(AL1)은 제1 전압 배선(VL1)과 유사하게 각 서브 화소(PXn)에서 복수개, 예를 들어 2개의 배선으로 배치될 수 있다. 제1 정렬 배선(AL1)은 각 서브 화소(PXn)에 배치된 제2 전극(220)과 두께 방향으로 중첩하도록 배치될 수 있고, 제3 컨택홀(CT3)을 통해 제2 전극(220)과 접촉할 수 있다. 일 예로, 제1 정렬 배선(AL1)은 서브 화소(PXn)의 중심을 기준으로, 양 측인 좌측과 우측에 각각 배치될 수 있다. 서브 화소(PXn)의 좌측에 배치된 제1 정렬 배선(AL1)은 제1 전극 유닛(EU1) 및 제4 전극 유닛(EU4)의 제2 전극(220)과 전기적으로 연결되고, 서브 화소(PXn)의 우측에 배치된 제1 정렬 배선(AL1)은 제2 전극 유닛(EU2) 및 제3 전극 유닛(EU3)의 제2 전극(220)과 전기적으로 연결될 수 있다. 다만, 이에 제한되지 않는다. 제1 정렬 배선(AL1)의 수는 각 서브 화소(PXn)에 배치된 제2 전극(220)의 수에 따라 달라질 수도 있다.
각 전극 유닛(EU)의 제2 전극(220)들은 전극 곡선부(220R)가 제3 컨택홀(CT3)을 통해 제1 정렬 배선(AL1)과 전기적으로 연결될 수 있다. 각 서브 화소(PXn)에는 제1 정렬 배선(AL1)과 전기적으로 연결되는 제2 전극(220)의 수에 따라 제3 컨택홀(CT3)이 형성될 수 있다.
제1 전압 배선(VL1), 제2 전압 배선(VL2) 및 제1 정렬 배선(AL1)은 각각 제2 방향(DR2)으로 연장되어 비표시 영역(NDA)에 배치된 패드(미도시)들과 연결될 수 있다. 제1 전압 배선(VL1), 제2 전압 배선(VL2) 및 제1 정렬 배선(AL1)은 상기 패드로부터 전기 신호가 인가되고, 이를 각 전극(210, 220)들에 전달할 수 있다.
표시 장치(10)의 제조 공정 중, 발광 소자(300)를 정렬시키기 위한 정렬 신호는 제1 전압 배선(VL1) 및 제1 정렬 배선(AL1)을 통해 인가될 수 있다. 제1 전압 배선(VL1)으로 인가된 정렬 신호는 제1 전극(210)으로 전달되고, 제1 정렬 배선(AL1)으로 인가된 정렬 신호는 제2 전극(220)으로 전달될 수 있다. 제1 전극(210)과 제2 전극(220)에 전달된 정렬 신호는 이들 사이에 전기장을 생성할 수 있고, 발광 소자(300)는 상기 전기장에 의해 제1 전극(210)과 제2 전극(220) 사이에 배치될 수 있다.
다만, 표시 장치(10)의 구동 중, 발광 소자(300)를 구동시키기 위한 구동 신호는 제1 전압 배선(VL1) 및 제2 전압 배선(VL2)을 통해 인가될 수 있다. 제1 전극(210)의 경우, 표시 장치(10)의 제조 공정과 구동 중 서로 다른 전기 신호가 인가되되, 동일하게 제1 전압 배선(VL1)을 통해 상기 신호들이 인가될 수 있다. 반면, 제2 전극(220)의 경우, 표시 장치(10)의 제조 공정과 구동 중 서로 다른 신호가 서로 다른 배선들을 통해 인가될 수 있다. 제2 전극(220)과 연결된 배선들 중, 정렬 신호가 인가되는 제1 정렬 배선(AL1)은 발광 소자(300)를 정렬시킨 뒤에 부분적으로 단선될 수 있다.
도 8은 도 6의 III-III'선을 따라 자른 단면도이다.
도 6 및 도 8을 참조하면, 일 실시예에 따른 표시 장치(10)는 제1 정렬 배선(AL1)이 부분적으로 단선되어 복수의 플로팅 배선(AL1a, AL1b)들을 포함할 수 있다. 각 서브 화소(PXn)에 배치된 제1 정렬 배선(AL1)은 제1 플로팅 배선(AL1a) 및 제2 플로팅 배선(AL1b)을 포함할 수 있다. 제1 플로팅 배선(AL1a) 및 제2 플로팅 배선(AL1b)은 제2 방향(DR2)으로 연장되되, 각 서브 화소(PXn)의 비발광 영역에서 배선이 부분적으로 단선될 수 있다.
도 8에 도시된 바와 같이, 각 서브 화소(PXn)의 비발광 영역에는 제1 평탄화층(109)을 관통하는 배선 컨택홀(도 8의 'CLT')이 형성될 수 있다. 배선 컨택홀(CLT)은 발광 소자(300)를 정렬시킨 뒤, 제1 정렬 배선(AL1) 일부를 노출하도록 형성될 수 있다. 제1 정렬 배선(AL1)의 노출된 부분은 식각되어 단선될 수 있고, 제1 정렬 배선(AL1)은 제1 플로팅 배선(AL1a) 및 제2 플로팅 배선(AL1b)으로 분리될 수 있다. 제1 플로팅 배선(AL1a)은 제3 컨택홀(CT3)을 통해 제2 전극(220)과 접촉하는 배선이고, 제2 플로팅 배선(AL1b)은 다른 서브 화소(PXn)의 제2 전극(220)과 접촉하는 배선일 수 있다. 제1 플로팅 배선(AL1a) 및 제2 플로팅 배선(AL1b)은 서로 전기적으로 연결되지 않고, 비표시 영역에 배치된 패드와도 전기적으로 단선될 수 있다.
표시 장치(10)의 제조 공정 중에는 제2 전극(220)은 제1 정렬 배선(AL1)을 통해 정렬 신호가 인가될 수 있다. 표시 장치(10)의 구동 중에는 제2 전극(220)은 제2 전압 배선(VL2)으로 인가되는 전기 신호만 전달되고, 제1 정렬 배선(AL1) 또는 플로팅 배선(AL1a, AL1b)에는 전기 신호가 전달되지 않을 수 있다.
한편, 발광 소자(300)는 발광 다이오드(Light Emitting diode)일 수 있으며, 구체적으로 발광 소자(300)는 마이크로 미터(micro-meter) 내지 나노미터(nano-meter) 단위의 크기를 가지고, 무기물로 이루어진 무기 발광 다이오드일 수 있다. 무기 발광 다이오드는 서로 대향하는 두 전극들 사이에 특정 방향으로 전계를 형성하면 극성이 형성되는 상기 두 전극 사이에 정렬될 수 있다. 발광 소자(300)는 두 전극 상에 형성된 전계에 의해 전극 사이에 정렬될 수 있다.
일 실시예에 따른 발광 소자(300)는 일 방향으로 연장된 형상을 가질 수 있다. 발광 소자(300)는 로드, 와이어, 튜브 등의 형상을 가질 수 있다. 예시적인 실시예에서, 발광 소자(300)는 원통형 또는 로드형(rod)일 수 있다. 다만, 발광 소자(300)의 형태가 이에 제한되는 것은 아니며, 정육면체, 직육면체, 육각기둥형 등 다각기둥의 형상을 갖거나, 일 방향으로 연장되되 외면이 부분적으로 경사진 형상을 갖는 등 발광 소자(300)는 다양한 형태를 가질 수 있다. 후술하는 발광 소자(300)에 포함되는 복수의 반도체들은 상기 일 방향을 따라 순차적으로 배치되거나 적층된 구조를 가질 수 있다.
발광 소자(300)는 임의의 도전형(예컨대, p형 또는 n형) 불순물로 도핑된 반도체층을 포함할 수 있다. 반도체층은 외부의 전원으로부터 인가되는 전기 신호가 전달되고, 이를 특정 파장대의 광으로 방출할 수 있다.
도 9는 일 실시예에 따른 발광 소자의 개략도이다.
도 9를 참조하면 참조하면, 발광 소자(300)는 제1 반도체층(310), 제2 반도체층(320), 활성층(330), 전극층(370) 및 절연막(380)을 포함할 수 있다.
제1 반도체층(310)은 n형 반도체일 수 있다. 일 예로, 발광 소자(300)가 청색 파장대의 광을 방출하는 경우, 제1 반도체층(310)은 AlxGayIn1-x-yN(0≤x≤1,0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예를 들어, n형으로 도핑된 AlGaInN, GaN, AlGaN, InGaN, AlN 및 InN 중에서 어느 하나 이상일 수 있다. 제1 반도체층(310)은 n형 도펀트가 도핑될 수 있으며, 일 예로 n형 도펀트는 Si, Ge, Sn 등일 수 있다. 예시적인 실시예에서, 제1 반도체층(310)은 n형 Si로 도핑된 n-GaN일 수 있다. 제1 반도체층(310)의 길이는 1.5㎛ 내지 5㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
제2 반도체층(320)은 후술하는 활성층(330) 상에 배치된다. 제2 반도체층(320)은 p형 반도체일 수 있으며 일 예로, 발광 소자(300)가 청색 또는 녹색 파장대의 광을 방출하는 경우, 제2 반도체층(320)은 AlxGayIn1-x-yN(0≤x≤1,0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예를 들어, p형으로 도핑된 AlGaInN, GaN, AlGaN, InGaN, AlN 및 InN 중에서 어느 하나 이상일 수 있다. 제2 반도체층(320)은 p형 도펀트가 도핑될 수 있으며, 일 예로 p형 도펀트는 Mg, Zn, Ca, Se, Ba 등일 수 있다. 예시적인 실시예에서, 제2 반도체층(320)은 p형 Mg로 도핑된 p-GaN일 수 있다. 제2 반도체층(320)의 길이는 0.05㎛ 내지 0.10㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
한편, 도면에서는 제1 반도체층(310)과 제2 반도체층(320)이 하나의 층으로 구성된 것을 도시하고 있으나, 이에 제한되는 것은 아니다. 몇몇 실시예에 따르면 활성층(330)의 물질에 따라 제1 반도체층(310)과 제2 반도체층(320)은 더 많은 수의 층, 예컨대 클래드층(clad layer) 또는 TSBR(Tensile strain barrier reducing)층을 더 포함할 수도 있다. 이에 대한 설명은 다른 도면을 참조하여 후술하기로 한다.
활성층(330)은 제1 반도체층(310)과 제2 반도체층(320) 사이에 배치된다. 활성층(330)은 단일 또는 다중 양자 우물 구조의 물질을 포함할 수 있다. 활성층(330)이 다중 양자 우물 구조의 물질을 포함하는 경우, 양자층(Quantum layer)과 우물층(Well layer)이 서로 교번적으로 복수개 적층된 구조일 수도 있다. 활성층(330)은 제1 반도체층(310) 및 제2 반도체층(320)을 통해 인가되는 전기 신호에 따라 전자-정공 쌍의 결합에 의해 광을 발광할 수 있다. 일 예로, 활성층(330)이 청색 파장대의 광을 방출하는 경우, AlGaN, AlGaInN 등의 물질을 포함할 수 있다. 특히, 활성층(330)이 다중 양자 우물 구조로 양자층과 우물층이 교번적으로 적층된 구조인 경우, 양자층은 AlGaN 또는 AlGaInN, 우물층은 GaN 또는 AlInN 등과 같은 물질을 포함할 수 있다. 예시적인 실시예에서, 활성층(330)은 양자층으로 AlGaInN를, 우물층으로 AlInN를 포함하여 상술한 바와 같이, 활성층(330)은 중심 파장대역이 450nm 내지 495nm의 범위를 갖는 청색(Blue)광을 방출할 수 있다.
다만, 이에 제한되는 것은 아니며, 활성층(330)은 밴드갭(Band gap) 에너지가 큰 종류의 반도체 물질과 밴드갭 에너지가 작은 반도체 물질들이 서로 교번적으로 적층된 구조일 수도 있고, 발광하는 광의 파장대에 따라 다른 3족 내지 5족 반도체 물질들을 포함할 수도 있다. 활성층(330)이 방출하는 광은 청색 파장대의 광으로 제한되지 않고, 경우에 따라 적색, 녹색 파장대의 광을 방출할 수도 있다. 활성층(330)의 길이는 0.05㎛ 내지 0.10㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
한편, 활성층(330)에서 방출되는 광은 발광 소자(300)의 길이방향 외부면뿐만 아니라, 양 측면으로 방출될 수 있다. 활성층(330)에서 방출되는 광은 하나의 방향으로 방향성이 제한되지 않는다.
전극층(370)은 오믹(Ohmic) 접촉 전극일 수 있다. 다만, 이에 제한되지 않고, 쇼트키(Schottky) 접촉 전극일 수도 있다. 발광 소자(300)는 적어도 하나의 전극층(370)을 포함할 수 있다. 도 9에서는 발광 소자(300)가 하나의 전극층(370)을 포함하는 것을 도시하고 있으나, 이에 제한되지 않는다. 경우에 따라서 발광 소자(300)는 더 많은 수의 전극층(370)을 포함하거나, 생략될 수도 있다. 후술하는 발광 소자(300)에 대한 설명은 전극층(370)의 수가 달라지거나 다른 구조를 더 포함하더라도 동일하게 적용될 수 있다.
전극층(370)은 발광 소자(300)가 전극(210, 220) 또는 접촉 전극(260)과 전기적으로 연결될 때, 발광 소자(300)와 전극 또는 접촉 전극 사이의 저항을 감소시킬 수 있다. 전극층(370)은 전도성이 있는 금속을 포함할 수 있다. 예를 들어, 전극층(370)은 알루미늄(Al), 티타늄(Ti), 인듐(In), 금(Au), 은(Ag), ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide) 및 ITZO(Indium Tin-Zinc Oxide) 중에서 적어도 어느 하나를 포함할 수 있다. 또한 전극층(370)은 n형 또는 p형으로 도핑된 반도체 물질을 포함할 수도 있다. 다만, 이에 제한되는 것은 아니다.
절연막(380)은 상술한 복수의 반도체층 및 전극층들의 외면을 둘러싸도록 배치된다. 예시적인 실시예에서, 절연막(380)은 적어도 활성층(330)의 외면을 둘러싸도록 배치되고, 발광 소자(300)가 연장된 일 방향으로 연장될 수 있다. 절연막(380)은 상기 부재들을 보호하는 기능을 수행할 수 있다. 일 예로, 절연막(380)은 상기 부재들의 측면부를 둘러싸도록 형성되되, 발광 소자(300)의 길이방향의 양 단부는 노출되도록 형성될 수 있다.
도면에서는 절연막(380)이 발광 소자(300)의 길이방향으로 연장되어 제1 반도체층(310)으로부터 전극층(370)의 측면까지 커버하도록 형성된 것을 도시하고 있으나, 이에 제한되지 않는다. 절연막(380)은 활성층(330)을 포함하여 일부의 반도체층의 외면만을 커버하거나, 전극층(370) 외면의 일부만 커버하여 각 전극층(370)의 외면이 부분적으로 노출될 수도 있다. 또한, 절연막(380)은 발광 소자(300)의 적어도 일 단부와 인접한 영역에서 단면상 상면이 라운드지게 형성될 수도 있다.
절연막(380)의 두께는 10nm 내지 1.0㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는 절연막(380)의 두께는 40nm 내외일 수 있다.
절연막(380)은 절연특성을 가진 물질들, 예를 들어, 실리콘 산화물(SiO x), 실리콘 질화물(SiN x), 실리콘 산질화물(SiO xN y), 질화알루미늄(Al xN y), 산화알루미늄(Al xO y) 등을 포함할 수 있다. 이에 따라 활성층(330)이 발광 소자(300)에 전기 신호가 전달되는 전극과 직접 접촉하는 경우 발생할 수 있는 전기적 단락을 방지할 수 있다. 또한, 절연막(380)은 활성층(330)을 포함하여 발광 소자(300)의 외면을 보호하기 때문에, 발광 효율의 저하를 방지할 수 있다.
또한, 몇몇 실시예에서, 절연막(380)은 외면이 표면처리될 수 있다. 발광 소자(300)는 표시 장치(10)의 제조 시, 잉크 내에서 분산된 상태로 전극 상에 분사되어 정렬될 수 있다. 여기서, 발광 소자(300)가 잉크 내에서 인접한 다른 발광 소자(300)와 응집되지 않고 분산된 상태를 유지하기 위해, 절연막(380)은 표면이 소수성 또는 친수성 처리될 수 있다.
발광 소자(300)는 길이(h)가 1㎛ 내지 10㎛ 또는 2㎛ 내지 6㎛의 범위를 가질 수 있으며, 바람직하게는 3㎛ 내지 5㎛의 길이를 가질 수 있다. 또한, 발광 소자(300)의 직경은 300nm 내지 700nm의 범위를 갖고, 발광 소자(300)의 종횡비(Aspect ratio)는 1.2 내지 100일 수 있다. 다만, 이에 제한되지 않고, 표시 장치(10)에 포함되는 복수의 발광 소자(300)들은 활성층(330)의 조성 차이에 따라 서로 다른 직경을 가질 수도 있다. 바람직하게는 발광 소자(300)의 직경은 500nm 내외의 범위를 가질 수 있다.
이하에서는 다른 도면들을 참조하여 일 실시예에 따른 표시 장치(10)의 제조 공정에 대하여 설명하기로 한다.
도 10 내지 도 12는 일 실시예에 따른 표시 장치의 제조 공정 중 일부를 나타내는 평면도들이다.
먼저, 도 10을 참조하면, 각 서브 화소(PXn)마다 배치되는 제1 전극(210) 및 제2 전극(220)을 형성한다. 제1 전극(210)과 제2 전극(220)의 형상에 대한 설명은 상술한 바와 동일하므로, 자세한 설명은 생략한다. 제1 전극(210)은 제1 전압 배선(VL1)과 전기적으로 연결되고, 제2 전극(220)은 제1 정렬 배선(AL1) 및 구동 트랜지스터(DT)와 전기적으로 연결될 수 있다. 제1 정렬 배선(AL1)은 단선되어 플로팅 배선으로 분리되지 않은 상태로 제2 방향(DR2)으로 연장될 수 있다,
이어, 도 11을 참조하면, 제1 전극(210)과 제2 전극(220) 사이에 복수의 발광 소자(300)들을 정렬시킨다. 발광 소자(300)를 정렬시키는 공정은 발광 소자(300)가 분산된 잉크를 분사하고, 제1 전극(210)과 제2 전극(220)에 정렬 신호를 인가하는 공정으로 수행될 수 있다. 제1 전극(210)과 제2 전극(220)에 정렬 신호가 인가되면, 이들 사이에는 전기장이 생성되고, 잉크에 분산된 발광 소자(300)들은 상기 전기장에 의해 유전영동힘을 받을 수 있다. 유전영동힘들 받은 발광 소자(300)들은 배향 방향 및 위치가 변하면서 제1 전극(210)과 제2 전극(220) 사이에 배치될 수 있다. 상술한 바와 같이, 발광 소자(300)들은 제1 전극(210)의 제1 외측변(OS1)과 제2 전극(220)의 제2 외측변(OS2) 사이에 배치되어 다양한 배향 방향을 갖도록 배치될 수 있다. 복수의 발광 소자(300)들은 제1 외측변(OS1)의 곡률진 변을 따라 배열되며 이들의 배향 방향은 서로 다를 수 있다.
한편, 제1 전극(210)에 전달되는 정렬 신호는 제1 전압 배선(VL1)을 통해 인가되고, 제2 전극(220)에 전달되는 정렬 신호는 제1 정렬 배선(AL1)을 통해 인가될 수 있다. 발광 소자(300)를 정렬시키기 위한 정렬 신호는 제1 정렬 배선(AL1)이 연결된 상태로 인가될 수 있다. 이후, 후속 공정에서 제2 전극(220)에 정렬 신호를 전달하는 제1 정렬 배선(AL1)은 부분적으로 단선될 수 있다.
도 12를 참조하면, 제1 정렬 배선(AL1)의 일부분을 패터닝하여 복수의 플로팅 배선(AL1a, AL1b)로 분리한다. 제1 정렬 배선(AL1)은 각 서브 화소(PXn)의 비발광 영역에서 패터닝될 수 있다(도 12의 'CB'부분). 이에 대한 설명은 상술한 바와 동일하다.
이후, 도면으로 도시하지 않았으나, 발광 소자(300) 상에 배치되는 제2 절연층(520), 접촉 전극(261, 262)들, 및 제3 절연층(550)을 형성하여 표시 장치(10)를 제조할 수 있다.
이하에서는 표시 장치(10)의 다양한 실시예에 대하여 설명하기로 한다.
도 13은 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 13을 참조하면, 일 실시예에 따른 표시 장치(10_1)는 각 서브 화소(PXn)가 더 많은 수의 전극 유닛(EU)들을 포함할 수 있다. 하나의 서브 화소(PXn)가 차지하는 면적이 증가할 경우, 각 서브 화소(PXn)에는 더 많은 수, 예를 들어 4개 이상의 전극 유닛(EU)들이 배치될 수 있다. 예시적인 실시예에서, 전극 유닛(EU)들은 전극(210, 220)들 중 일부가 다른 전극 유닛(EU)의 전극(210, 220)과 직접 연결되거나 일체화될 수 있고, 다른 타입의 전극(210, 220)을 형성할 수 있다. 도 13의 표시 장치(10_1)는 각 서브 화소(PXn)가 더 많은 수의 전극 유닛(EU) 및 다른 타입의 전극 유닛(EU)을 더 포함하는 점에서 도 2의 실시예와 차이가 있다. 이하, 중복되는 설명은 생략하고 차이점을 중심으로 설명하기로 한다.
도 13의 표시 장치(10_1)는 제1 내지 제4 전극 유닛(EU1, EU2, EU3, EU4)에 더하여 제5 내지 제8 전극 유닛(EU5, EU6, EU7, EU8)을 더 포함할 수 있다. 제5 전극 유닛(EU5)은 제2 전극 유닛(EU2)의 제1 방향(DR1) 일 측에 위치하고, 제6 전극 유닛(EU6)은 제5 전극 유닛(EU5)의 제1 방향(DR1) 일 측에 위치할 수 있다. 제5 전극 유닛(EU5)과 제6 전극 유닛(EU6)은 각각 제1 전극 유닛(EU1) 및 제2 전극 유닛(EU2)과 동일한 형상을 가질 수 있다. 이와 동일하게, 제8 전극 유닛(EU8)은 제3 전극 유닛(EU3)의 제1 방향(DR1) 일 측에 위치하고, 제7 전극 유닛(EU7)은 제8 전극 유닛(EU8)의 제1 방향(DR1) 일 측에 위치할 수 있다. 제7 전극 유닛(EU7)과 제8 전극 유닛(EU8)은 각각 제3 전극 유닛(EU3) 및 제4 전극 유닛(EU4)과 동일한 형상을 가질 수 있다.
상술한 바와 같이, 복수의 전극 유닛(EU)들 중 일부는 제2 전극(220)이 서로 직접 연결되어 일체화될 수 있다. 제1 내지 제4 전극 유닛(EU1, EU2, EU3, EU4)과 같이 제5 내지 제8 전극 유닛(EU5, EU6, EU7, EU8)은 제2 전극(220)들이 상호 연결될 수 있고, 이 중 제5 전극 유닛(EU5)은 제2 전극(220)이 전극 돌출부(220P)를 더 포함할 수 있다.
한편, 제2 전극 유닛(EU2)과 제5 전극 유닛(EU5), 및 제3 전극 유닛(EU3)과 제8 전극 유닛(EU8)은 서브 화소(PXn)의 중심을 기준으로 서로 대칭적 구조를 갖도록 형성될 수 있다. 제2 전극 유닛(EU2)과 제5 전극 유닛(EU5), 및 제3 전극 유닛(EU3)과 제8 전극 유닛(EU8)은 각각 제1 전극(210)들이 일체화되어 형성될 수 있고, 이들은 각각 다른 타입의 제1 전극(210) 또는 전극 유닛(EU)을 형성할 수 있다.
제2 전극 유닛(EU2)의 제1 전극(210)과 제5 전극 유닛(EU5)의 제1 전극(210)은 각각 제2 방향(DR2)으로 연장된 제2 단변(SS2)이 일체화되고, 제1 외측변(OS1)이 서로 연결될 수 있다. 제1 방향(DR1)으로 연장된 제1 단변(SS1)은 그 길이가 더 길어질 수 있다. 일 실시예에 따른 표시 장치(10_1)의 전극 유닛(EU)은 제1 전극(210)이 제1 방향(DR1)으로 연장된 일 단변을 포함하고, 제1 외측변(OS1)이 상기 일 단변의 양 측을 연결하는 제2 타입 전극 유닛을 포함할 수 있다. 도면에 도시된 바와 같이, 제2 전극 유닛(EU2)과 제5 전극 유닛(EU5), 및 제3 전극 유닛(EU3)과 제8 전극 유닛(EU8)은 각각 제1 전극(210)들이 일체화되어 반원(half-circle) 형상을 가질 수 있고, 제2 전극(220)도 제4 단변(SS4)들이 일체화되어 반원(half-circle)의 호(arc)와 같은 형상을 가질 수 있다. 도면에서는 영역에 따라 다른 전극 유닛, 예를 들어 제2 전극 유닛(EU2)과 제5 전극 유닛(EU5), 및 제3 전극 유닛(EU3)과 제8 전극 유닛(EU8)인 것으로 도시되어 있으나, 이에 제한되지 않는다. 이들은 제1 전극(210) 및 제2 전극(220)들이 일체화되어 다른 형상을 갖는 하나의 전극 유닛(EU)을 형성할 수 있다.
사분원 형상을 갖는 제1 타입의 제1 전극(210)은 다른 제1 전극(210)과 어느 한 단변이 상호 일체화되면 하나의 반원의 형상을 가질 수 있다. 표시 장치(10_1)는 반원의 형상을 갖는 제2 타입의 제1 전극(210)을 더 포함할 수 있다. 제2 타입의 제1 전극(210)은 제1 방향(DR1) 또는 제2 방향(DR2)으로 연장된 일 단변과, 상기 일 단변의 양 측을 연결하는 제1 외측변(OS1)을 포함할 수 있다. 제1 외측변(OS1)은 곡률 중심이 상기 일 단변의 양 측 사이에 놓일 수 있다. 일 예로, 제1 외측변(OS1)은 곡률 중심이 상기 일 단변의 양 측의 중점일 수 있다.
제2 전극(220)은 제2 외측변(OS2)이 제1 전극(210)의 제1 외측변(OS1)에 대응한 형상을 가질 수 있다. 제1 전극(210)이 제2 타입의 형상을 가질 경우, 제2 전극(220)의 제2 외측변(OS2)은 반원의 호와 같은 형상을 가질 수 있다. 일 실시예에 따른 표시 장치(10_1)는 각 서브 화소(PXn)가 복수의 제1 타입 전극 유닛을 포함하되, 이들 중 일부는 부분적으로 전극(210, 220)들이 일체화되어 하나의 다른 타입의 전극 유닛(EU)을 형성할 수 있다. 도 13의 실시예는 하나의 서브 화소(PXn)가 2개의 제2 타입 전극 유닛과 4개의 제1 타입 전극 유닛을 포함할 수 있다.
도 14는 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 14를 참조하면, 일 실시예에 따른 표시 장치(10_2)는 더 많은 수의 전극 유닛(EU)들을 포함할 수 있고, 각 서브 화소(PXn)는 다른 타입의 제1 전극(210) 및 전극 유닛(EU)들을 더 포함할 수 있다. 도 14의 표시 장치(10_2)는 더 많은 수의 전극 유닛(EU)들을 포함하는 점에서 도 13의 실시예와 차이가 있다.
도 14의 표시 장치(10_2)는 하나의 서브 화소(PXn)가 제9 내지 제12 전극 유닛(EU9, EU10, EU11, EU12)을 더 포함할 수 있다. 제9 내지 제12 전극 유닛(EU9, EU10, EU11, EU12)은 각각 도 13의 서브 화소(PXn)에서 제4 전극 유닛(EU4), 제3 전극 유닛(EU3), 제8 전극 유닛(EU8) 및 제7 전극 유닛(EU7)의 제2 방향(DR2) 타 측에 배치될 수 있다. 이 중, 제9 전극 유닛(EU9) 및 제12 전극 유닛(EU12)은 제1 전극(210)의 일 단변이 각각 제4 전극 유닛(EU4) 및 제7 전극 유닛(EU7)과 일체화될 수 있다. 이에 따라, 제4 전극 유닛(EU4) 및 제9 전극 유닛(EU9)과, 제7 전극 유닛(EU7) 및 제12 전극 유닛(EU12)은 각각 제2 타입 전극 유닛을 형성할 수 있다.
한편, 제10 전극 유닛(EU10)과 제11 전극 유닛(EU11)은 제3 전극 유닛(EU3) 및 제8 전극 유닛(EU8)과 접촉하도록 배치될 수 있다. 즉, 이들의 제1 전극(210)들은 서로 일 단변이 일체화될 수 있다. 일 실시예에 따르면, 표시 장치(10_2)의 서브 화소(PXn)는 제1 전극(210)이 원형의 형상을 갖는 제3 타입 전극 유닛을 더 포함할 수 있다.
일 실시예에 따른 표시 장치(10_2)의 전극 유닛(EU)은 사분원의 형상을 갖는 4개의 제1 전극(210)이 일체화되어 원형(circle)의 형상을 갖는 제3 타입의 제1 전극(210)을 형성할 수 있고, 전극 유닛(EU)은 제3 타입의 제1 전극(210)을 포함하는 제3 타입 전극 유닛을 포함할 수 있다.
제2 전극(220)은 제2 외측변(OS2)이 제1 전극(210)의 제1 외측변(OS1)에 대응한 형상을 가질 수 있다. 제1 전극(210)이 제3 타입의 형상을 가질 경우, 제2 전극(220)의 제2 외측변(OS2)은 원의 호와 같은 형상을 가질 수 있다. 일 실시예에 따른 표시 장치(10_2)는 각 서브 화소(PXn)가 복수의 제1 타입 전극 유닛 및 제2 타입 전극 유닛을 포함하되, 이들 중 일부는 부분적으로 전극(210, 220)들이 일체화되어 하나의 다른 타입의 전극 유닛(EU)을 형성할 수 있다. 도 14의 실시예는 하나의 서브 화소(PXn)가 2개의 제1 타입 전극 유닛, 3개의 제2 타입 전극 유닛과 1개의 제3 타입 전극 유닛을 포함할 수 있다. 도 14의 실시예는 다른 타입의 전극(210, 220) 또는 전극 유닛을 더 포함하는 점에서 도 13의 실시예와 차이가 있다. 중복되는 설명은 생략하기로 한다.
한편, 전극 유닛(EU)은 제1 전극(210)과 제2 전극(220) 사이에 배치되는 다른 전극들을 더 포함할 수 있다.
도 15는 또 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다. 도 16은 도 15의 표시 장치의 전극 유닛을 나타내는 개략적인 평면도이다.
도 15 및 도 16을 참조하면, 일 실시예에 따른 표시 장치(10_3)는 전극 유닛(EU_3)이 제1 전극(210_3)과 제2 전극(220_3) 사이에 배치된 제3 전극(230_3) 및 제4 전극(240_3)을 더 포함할 수 있다. 도 15 및 도 16의 표시 장치(10_3)는 각 전극 유닛(EU_3)이 더 많은 수의 전극(230_3, 240_3)들을 포함하는 점에서 도 2의 실시예와 차이가 있다. 이하, 중복되는 설명은 생략하고, 제3 전극(230_3) 및 제4 전극(240_3)에 대하여 상세히 설명하기로 한다.
제3 전극(230_3)은 제1 전극(210_3) 및 제2 전극(220_3) 사이에 배치될 수 있다. 제3 전극(230_3)은 실질적으로 제2 전극(220_3) 또는 전극 곡선부(220R_3)와 동일한 형상을 갖고 제2 전극(220_3)과 이격 대향하도록 배치될 수 있다. 일 실시예에 따르면, 제3 전극(230_3)은 제2 전극(220_3)의 제2 외측변(OS2)에 대응하여 곡률진 형상을 가질 수 있다. 제3 전극(230_3)의 일 외측변은 제2 외측변(OS2)과 이격 대향할 수 있고, 이들 사이에는 발광 소자(300)들이 배치될 수 있다.
제4 전극(240_3)은 제1 전극(210_3) 및 제3 전극(230_3) 사이에 배치될 수 있다. 제4 전극(240_3)도 실질적으로 제2 전극(220_3) 또는 전극 곡선부(220R_3)와 동일한 형상을 갖고 제1 전극(210_3) 및 제3 전극(230_3)과 이격 대향하도록 배치될 수 있다. 일 실시예에 따르면, 제4 전극(240_3)은 제1 전극(210_3)의 제1 외측변(OS1)에 대응하여 곡률진 형상을 가질 수 있다. 제4 전극(240_3)의 일 외측변은 제1 외측변(OS1)과 이격 대향할 수 있고, 이들 사이에는 발광 소자(300)들이 배치될 수 있다.
제3 전극(230_3)과 제4 전극(240_3)은 제1 전극(210_3)의 제1 외측변(OS1)과 동일한 곡률 중심을 갖고 사분원의 호의 형상을 가질 수 있다. 다만, 제2 전극(220_3), 제3 전극(230_4) 및 제4 전극(240_3)은 곡률 중심으로부터 멀어질수록 그 길이 및 면적이 커질 수 있다.
제1 전극(210_3), 제2 전극(220_3), 제3 전극(230_3) 및 제4 전극(240_3)은 각각 서로 이격되며, 이들의 곡률진 외측변들은 서로 대향할 수 있다. 이들이 이격된 간격은 실질적으로 동일할 수 있으며, 도 4를 참조하여 상술한 바와 같이, 제1 전극(210_3), 제2 전극(220_3), 제3 전극(230_3) 및 제4 전극(240_3)들이 이격된 간격은 제1 간격(도 4의 'W1')으로 일정할 수 있다. 제1 전극(210_3), 제2 전극(220_3), 제3 전극(230_3) 및 제4 전극(240_3)들 사이에는 복수의 발광 소자(300)들이 배열될 수 있다.
또한, 제3 전극(230_3)과 제4 전극(240_3) 상에는 각각 제3 접촉 전극(263_3) 및 제4 접촉 전극(264_3)들이 배치될 수 있다. 제3 접촉 전극(263_3)과 제4 접촉 전극(264_3)은 제2 접촉 전극(262_3)과 동일한 형상을 갖되, 각각 제3 전극(230_3) 및 제4 전극(240_3)의 형상에 따라 그 크기가 다를 수 있다. 복수의 발광 소자(300)들은, 각각 제1 전극(210_3), 제2 전극(220_3), 제3 전극(230_3) 및 제4 전극(240_3)과 전기적으로 연결될 수 있다. 발광 소자(300)들은 양 단부가 제1 접촉 전극(261_3), 제2 접촉 전극(262_3), 제3 접촉 전극(263_3) 및 제4 접촉 전극(264_3) 중 어느 하나와 직접 접촉할 수 있다. 이에 대한 자세한 설명은 생략하기로 한다.
제3 전극(230_3) 및 제4 전극(240_3)은 표시 장치(10_3)의 구동 신호가 인가되는 제1 전압 배선(VL1) 및 제2 전압 배선(VL2)과 직접 연결되지 않을 수 있다. 표시 장치(10_3)는 제1 전압 배선(VL1) 및 제2 전압 배선(VL2)을 통해 인가되는 구동 신호는 제1 전극(210_3) 및 제2 전극(220_3)에만 전달되고, 제3 전극(230_3) 및 제4 전극(240_3)에는 전달되지 않을 수 있다. 제1 전극(210_3)으로 전달된 전기 신호는 제1 전극(210_3)과 전기적으로 연결된 발광 소자(300)를 통해 제4 전극(240_3)으로 전달될 수 있다. 제4 전극(240_3)으로 전달된 상기 전기 신호는 제4 전극(240_3) 및 제3 전극(230_3) 사이에 배치된 발광 소자(300)를 통해 전달될 수 있다. 이와 동일하게, 제2 전극(220_3)으로 전달된 전기 신호는 제2 전극(220_3)과 전기적으로 연결된 발광 소자(300)를 통해 제3 전극(230_3) 및 제4 전극(240_3)으로 전달될 수 있다.
일 실시예에 따르면, 표시 장치(10_3)는 전극 유닛(EU_3)이 전기 신호가 전압 배선(VL1, VL2)들로부터 직접 전달되지 않는 제3 전극(230_3) 및 제4 전극(240_3)을 더 포함하여 각 전극(210_3, 220_3, 230_3, 240_3)들 사이에 연결된 발광 소자(300)들이 부분적으로 직렬 연결될 수 있다. 이에 따라, 단위 면적당 배치된 발광 소자(300)의 개수를 증가시킬 수 있음과 동시에, 직렬 연결로 인하여 발광 효율이 향상될 수 있다.
한편, 제3 전극(230_3)과 제4 전극(240_3)은 제1 전압 배선(VL1) 및 제2 전압 배선(VL2)과 직접 연결되지 않되, 정렬 신호가 인가되는 정렬 배선들과는 직접 연결될 수도 있다.
도 17은 도 15의 표시 장치의 전극 유닛과 정렬 배선을 나타내는 개략적인 평면도이다. 도 18은 도 15의 Ⅳ-Ⅳ'선을 따라 자른 단면도이다. 도 17은 도 15의 표시 장치(10_3)의 제1 전극 유닛(EU1_3)을 부분적으로 확대한 것을 도시하고 있다.
도 17 및 도 18을 참조하면, 일 실시예에 따른 표시 장치(10_3)는 전극 유닛(EU_3)이 더 많은 수의 전극들, 예컨대 제3 전극(230_3) 및 제4 전극(240_3)을 포함함에 따라, 더 많은 수의 내부 뱅크들 및 정렬 배선(AL1_3, AL2_3, AL3_3)들을 포함할 수 있다.
제1 내부 뱅크(410)와 제2 내부 뱅크(420) 사이에는 제3 내부 뱅크(430) 및 제4 내부 뱅크(440)가 배치될 수 있다. 제3 내부 뱅크(430)는 제1 평탄화층(109)과 제3 전극(230_3) 사이에 배치되고, 제4 내부 뱅크(440)는 제1 평탄화층(109)과 제4 전극(240_3) 사이에 배치될 수 있다. 제3 내부 뱅크(430) 및 제4 내부 뱅크(440)는 각각 제2 내부 뱅크(420)와 유사한 형상을 가질 수 있다. 이에 대한 자세한 설명은 생략하기로 한다.
정렬 배선(AL1_3, AL2_3, AL3_3)들은 제1 정렬 배선(AL1_3)에 더하여 제2 정렬 배선(AL2_3) 및 제3 정렬 배선(AL3_3)을 더 포함할 수 있다. 제1 정렬 배선(AL1_3)에 대한 설명은 상술한 바와 동일하다. 제1 정렬 배선(AL1_3)은 제3 컨택홀(CT3_3)을 통해 제2 전극(220_3)과 전기적으로 연결되고, 정렬 신호를 전달할 수 있다. 또한, 제1 전압 배선(VL1_3) 및 제2 전압 배선(VL2_3)에 대한 설명도 상술한 바와 동일한 바, 이하에서는 제2 정렬 배선(AL2_3) 및 제3 정렬 배선(AL3_3)에 대하여 설명하기로 한다.
제2 정렬 배선(AL2_3)과 제3 정렬 배선(AL3_3)은 제1 정렬 배선(AL1_3)과 같이 제2 방향(DR2)으로 연장될 수 있다. 제2 정렬 배선(AL2_3)과 제3 정렬 배선(AL3_3)은 제2 데이터 도전층으로써, 각각 제3 전극(230_3) 및 제4 전극(240_3)과 두께 방향으로 중첩하도록 배치될 수 있다. 제3 전극(230_3)과 제2 정렬 배선(AL2_3)이 중첩하는 영역에는 제3 내부 뱅크(430)와 제1 평탄화층(109)을 관통하여 제2 정렬 배선(AL2_3) 일부를 노출하는 제4 컨택홀(CT4_3)이 형성될 수 있다. 제4 전극(240_3)과 제3 정렬 배선(AL3_3)이 중첩하는 영역에는 제4 내부 뱅크(440)와 제1 평탄화층(109)을 관통하여 제3 정렬 배선(AL3_3) 일부를 노출하는 제5 컨택홀(CT5_3)이 형성될 수 있다. 제3 전극(230_3)과 제4 전극(240_3)은 각각 제4 컨택홀(CT4_3)과 제5 컨택홀(CT5_3)을 통해 제2 정렬 배선(AL2_3) 및 제3 정렬 배선(AL3_3)과 전기적으로 연결될 수 있다. 표시 장치(10_3)의 제조 공정 중, 제2 정렬 배선(AL2_3)과 제3 정렬 배선(AL3_3)에는 정렬 신호가 인가되고, 이들은 각각 제3 전극(230_3)과 제4 전극(240_3)으로 전달될 수 있다.
한편, 제4 컨택홀(CT4_3)은 제3 내부 뱅크(430) 및 제1 평탄화층(109)을 관통하여 제2 정렬 배선(AL2_3)을 노출하고, 제5 컨택홀(CT5_3)은 제4 내부 뱅크(440) 및 제1 평탄화층(109)을 관통하여 제3 정렬 배선(AL3_3)을 노출할 수 있다. 제3 전극(230_3)과 제4 전극(240_3)은 각각 제4 컨택홀(CT4_3) 및 제5 컨택홀(CT5_3)을 통해 제2 정렬 배선(AL2_3) 및 제3 정렬 배선(AL3_3)과 전기적으로 연결될 수 있다. 한편, 도면으로 도시하지 않았으나, 제2 정렬 배선(AL2_3) 및 제3 정렬 배선(AL3_3)의 경우에도 각 서브 화소(PXn)의 비발광 영역에서 단선되어 복수의 플로팅 배선들로 분리될 수 있다. 이하, 중복되는 설명은 생략하기로 한다.
한편, 상술한 바와 같이, 표시 장치(10)의 전극 유닛(EU)은 제1 전극(210)과 제2 전극(220)이 다른 전극 유닛(EU)의 전극(210, 220)들과 이격되어 배치될 수 있다. 이들은 서로 일체화되지 않고, 다른 부분, 또는 전극을 통해 전기적으로 연결될 수 있다.
도 19는 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 19를 참조하면, 일 실시예에 따른 표시 장치(10_4)는 전극 유닛(EU)의 제2 전극(220_4)들이 서로 이격되어 배치되고, 이들은 각각 전극 돌출부(220P_4)를 포함하여 전극 돌출부(220P_4)들이 상호 연결될 수 있다. 도 19의 실시예는 각 전극 유닛(EU_4)들이 전극 돌출부(220P_4)를 포함하여 이들이 상호 연결된 점에서 도 15의 실시예와 차이가 있다. 이하에서는 중복되는 설명은 생략하고 차이점을 중심으로 설명하기로 한다.
도 19의 표시 장치(10_4)는 제1 전극 유닛(EU1_4), 제2 전극 유닛(EU2_4), 제3 전극 유닛(EU_3) 및 제4 전극 유닛(EU4_4)들이 각각 동일한 형상의 제2 전극(220_4)을 포함할 수 있다. 제1 내지 제4 전극 유닛(EU1_4, EU2_4, EU3_4, EU4_4)들은 각각 제2 전극(220_4)이 전극 곡선부(220R_4)와 전극 돌출부(220P_4)를 포함할 수 있다. 제1 내지 제4 전극 유닛(EU1_4, EU2_4, EU3_4, EU4_4)들의 제2 전극(220_4)은 양 단부가 일체화되지 않고 이격 배치될 수 있다.
다만, 제1 내지 제4 전극 유닛(EU1_4, EU2_4, EU3_4, EU4_4)들은 제2 전극(220_4)이 전극 돌출부(220P_4)를 포함하고, 이들은 서로 연결될 수 있다. 제1 내지 제4 전극 유닛(EU1_4, EU2_4, EU3_4, EU4_4)들은 제1 전극(210_4)의 제1 외측변(OS1) 및 제2 전극(220_4)의 제2 외측변(OS2)이 서브 화소(PXn)의 중심을 향하도록 배치되고, 제3 전극(230_4) 및 제4 전극(240_4)도 서브 화소(PXn)의 중심을 향해 곡률진 형상을 가질 수 있다. 제2 전극(220_4)의 전극 돌출부(220P_4)는 제3 외측변(OS3)으로부터 서브 화소(PXn)의 중심을 향해 돌출될 수 있고, 이들은 서브 화소(PXn)의 중심에서 상호 연결될 수 있다.
일 실시예에 따른 표시 장치(10_4)는 복수의 제1 내지 제4 전극 유닛(EU1_4, EU2_4, EU3_4, EU4_4)들은 제2 전극(220_4)이 일체화되지 않더라도 전극 돌출부(220P_4)가 서로 연결되어 하나의 제2 컨택홀(CT2)을 통해 구동 트랜지스터(DT)와 전기적으로 연결될 수 있다. 이에 따라, 제1 내지 제4 전극 유닛(EU1_4, EU2_4, EU3_4, EU4_4)들의 제2 전극(220_4)들은 동일한 전기 신호를 전달될 수 있다. 각 전극 유닛(EU_4)들의 발광 소자(300)들은 서로 다른 전극 사이에 배치된 발광 소자(300)간 직렬 연결을 구성할 수 있고, 서로 다른 전극 유닛(EU_4)들의 발광 소자(300)들은 서로 병렬 연결을 구성할 수 있다.
한편, 몇몇 실시예에서, 어느 한 전극 유닛(EU)의 제1 전극(210)은 다른 전극 유닛(EU)의 제2 전극(220)과 전기적으로 연결될 수 있다. 제2 전극(220)으로 전달된 전기 신호는 제1 전극(210)을 통해 다른 전극 유닛(EU)의 제2 전극(220)으로 전달될 수 있다. 일 실시예에 따르면, 각 서브 화소(PXn)에 배치된 복수의 전극 유닛(EU)들은 발광 소자(300)들이 서로 직렬 연결을 구성할 수도 있다.
도 20은 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도들이다.
도 20을 참조하면, 일 실시예에 따른 표시 장치(10_5)는 각 서브 화소(PXn)에 배치되고, 일 측이 어느 한 전극 유닛(EU_5)의 제1 전극(210_5)과 전기적으로 연결되고, 타 측이 다른 전극 유닛(EU_5)의 제2 전극(220_5)과 전기적으로 연결된 브릿지 전극(BE1_5, BE2_5, BE3_5)을 더 포함할 수 있다. 도 20의 실시예는 서로 다른 전극 유닛(EU_5)의 제1 전극(210_5) 및 제2 전극(220_5)을 연결하는 브릿지 전극(BE1_5, BE2_5, BE3_5)을 더 포함하고 제2 전극(220_5)이 전극 돌출부(220P)를 일부만 포함하는 점에서 도 19의 실시예와 차이가 있다. 이하에서는 중복되는 설명은 생략하고 브릿지 전극(BE1_5, BE2_5, BE3_5)에 대하여 상세히 설명하기로 한다.
브릿지 전극(BE1_5, BE2_5, BE3_5)은 일 측이 어느 한 전극 유닛(EU_5)의 제1 전극(210_5)과 전기적으로 연결될 수 있다. 예를 들어, 제1 브릿지 전극(BE1_5)은 일 측이 제1 전극 유닛(EU1_5)의 제1 전극(210_5)과 직접 연결되고, 제2 브릿지 전극(BE2_5)은 일 측이 제2 전극 유닛(EU2_5)의 제1 전극(210_5)과 직접 연결되고, 제3 브릿지 전극(BE3_5)은 일 측이 제3 전극 유닛(EU3_5)의 제1 전극(210_5)과 직접 연결될 수 있다.
또한, 브릿지 전극(BE1_5, BE2_5, BE3_5)은 타 측이 어느 한 전극 유닛(EU_5)의 제2 전극(220_5)과 전기적으로 연결될 수 있다. 예를 들어, 제1 브릿지 전극(BE1_5)은 타 측이 제2 전극 유닛(EU2_5)의 제2 전극(220_5)과 직접 연결되고, 제2 브릿지 전극(BE2_5)은 타 측이 제3 전극 유닛(EU3_5)의 제2 전극(220_5)과 직접 연결되고, 제3 브릿지 전극(BE3_5)은 타 측이 제4 전극 유닛(EU4_5)의 제2 전극(220_5)과 직접 연결될 수 있다.
도면에서는 브릿지 전극(BE1_5, BE2_5, BE3_5)들이 비발광 영역에 배치되어 일 방향으로 연장된 형상을 갖고, 서로 다른 전극 유닛(EU_5)의 제1 전극(210_5)과 제2 전극(220_5)에 연결된 것이 도시되어 있다. 다만, 이에 제한되지 않으며 브릿지 전극(BE1_5, BE2_5, BE3_5)들의 형상은 서브 화소(PXn)의 면적에 따라 다양하게 변형될 수 있다.
브릿지 전극(BE1_5, BE2_5, BE3_5)과 연결된 제1 전극(210_5) 및 제2 전극(220_5)은 각각 제1 전압 배선(VL1) 및 제2 전압 배선(VL2)과 직접 연결되지 않을 수 있다. 즉, 브릿지 전극(BE1_5, BE2_5, BE3_5)과 연결된 제1 전극(210_5) 및 제2 전극(220_5)에는 제1 컨택홀(CT1) 및 제2 컨택홀(CT2)이 형성되지 않을 수 있다. 이들은 실질적으로 제3 전극(230_5) 및 제4 전극(240_5)과 같이 발광 소자(300) 및 브릿지 전극(BE1_5, BE2_5, BE3_5)을 통해 전기 신호를 전달될 수 있다.
예를 들어, 제1 전극 유닛(EU1_5), 제2 전극 유닛(EU2_5) 및 제3 전극 유닛(EU3_5)의 제1 전극(210_5)들은 각각 브릿지 전극(BE1_5, BE2_5, BE3_5)과 연결되어 제1 전압 배선(VL1)과 전기적으로 연결되지 않을 수 있다. 제4 전극 유닛(EU4_5)의 제1 전극(210_5)은 제1 컨택홀(CT1)을 통해 제1 전압 배선(VL1)과 전기적으로 연결된다. 이와 유사하게, 제2 전극 유닛(EU2_5), 제3 전극 유닛(EU3_5) 및 제4 전극 유닛(EU4_5)의 제2 전극(220_5)들은 각각 브릿지 전극(BE1_5, BE2_5, BE3_5)과 연결되어 구동 트랜지스터(DT)와 전기적으로 연결되지 않을 수 있다. 제1 전극 유닛(EU1_5)의 제2 전극(220_5)은 전극 돌출부(220P_5)를 포함하고, 제2 컨택홀(CT2)을 통해 구동 트랜지스터(DT)와 전기적으로 연결될 수 있다.
브릿지 전극(BE1_5, BE2_5, BE3_5)은 서로 다른 전극 유닛(EU_5)의 제1 전극(210_5)과 제2 전극(220_5)을 전기적으로 연결하고, 표시 장치(10_5)의 구동 중, 구동 신호가 브릿지 전극(BE1_5, BE2_5, BE3_5)을 통해 전달될 수 있다. 제1 전극 유닛(EU1_5)의 제2 전극(220_5)으로 전달된 구동 신호는 제1 전극 유닛(EU1_5)의 제1 전극(210_5)으로 전달되고, 이는 제1 브릿지 전극(BE1_5)을 통해 제2 전극 유닛(EU2_5)의 제2 전극(220_5)으로 전달된다. 또한, 이와 동일하게 제2 전극 유닛(EU2_5)의 제2 전극(220_5)으로 전달된 구동 신호는 제1 전극(210_5)들, 및 브릿지 전극들(BE2_5, BE3_5)들 통해 다른 전극 유닛(EU_5)들에 전달될 수 있다. 제4 전극 유닛(EU4_5)의 제1 전극(210_5)으로 전달된 구동 신호도 유사하게 제2 전극(220_5)들 및 브릿지 전극들(BE1_5, BE2_5, BE3_5)을 통해 다른 전극 유닛(EU_5)들에 전달될 수 있다. 일 실시예에 따른 표시 장치(10_5)는 각 서브 화소(PXn)의 전극 유닛(EU_5)들을 상호 연결하는 브릿지 전극(BE1_5, BE2_5, BE3_5)을 더 포함하여 서로 다른 전극 유닛(EU_5)들의 발광 소자(300)들은 직렬 연결을 구성할 수 있다.
도 19 및 도 20의 실시예를 참조하면, 표시 장치(10)는 일부 전극 유닛(EU)들은 브릿지 전극(BE)으로 연결되고, 다른 일부 전극 유닛(EU)들은 제2 전극(220)의 전극 돌출부(220P)로 서로 연결될 수 있다.
도 21 및 도 22는 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도들이다.
도 21을 참조하면, 일 실시예에 따른 표시 장치(10_6)는 일부 전극 유닛(EU_6)들은 제2 전극(220_6)의 전극 돌출부(220P_6)가 서로 연결되고, 다른 일부 전극 유닛(EU_6)들은 브릿지 전극(BE1_6, BE3_6)을 통해 제1 전극(210_6)과 제2 전극(220_6)이 서로 연결될 수 있다. 예를 들어, 도 21의 표시 장치(10_6)는 제1 전극 유닛(EU1_6)과 제3 전극 유닛(EU3_6)의 제2 전극(220_6)이 전극 돌출부(220P_6)를 포함하여 이들이 서로 연결될 수 있다. 또한, 제1 전극 유닛(EU1_6)의 제1 전극(210_6)과 제2 전극 유닛(EU2_6)의 제2 전극(220_6)은 제1 브릿지 전극(BE1_6)을 통해 연결되고, 제3 전극 유닛(EU3_6)의 제1 전극(210_6)과 제4 전극 유닛(EU4_6)의 제2 전극(220_6)은 제3 브릿지 전극(BE3_6)을 통해 연결될 수 있다.
제1 전극 유닛(EU1_6) 및 제3 전극 유닛(EU3_6)은 제2 컨택홀(CT2)을 통해 제2 전극(220_6)이 구동 트랜지스터(DT)와 전기적으로 연결되고, 제2 전극 유닛(EU2_6) 및 제4 전극 유닛(EU4_6)은 각각 제1 컨택홀(CT1)을 통해 제1 전극(210_6)이 제1 전압 배선(VL1)과 전기적으로 연결될 수 있다. 그외 다른 설명은 상술한 바와 동일하다.
도 22를 참조하면, 일 실시예에 따른 표시 장치(10_7)는 더 많은 수 및 다른 타입의 전극 유닛(EU_7)들을 포함하고, 더 많은 수의 브릿지 전극(BE1_7, BE2_7, BE3_7, BE4_7)들을 포함할 수 있다. 도 22의 실시예는 브릿지 전극(BE1_7, BE2_7, BE3_7, BE4_7)들을 더 포함하는 점에서 도 13 및 도 15의 실시예와 차이가 있다.
구체적으로, 표시 장치(10_7)는 제1 내지 제8 전극 유닛(EU1_7, EU2_7, EU3_7, EU4_7, EU5_7, EU6_7, EU7_7, EU8_7,)들을 포함한다. 이들 중, 제1 전극 유닛(EU1_7), 제4 전극 유닛(EU4_7), 제6 전극 유닛(EU6_7) 및 제7 전극 유닛(EU7_7)은 제1 타입 전극 유닛일 수 있다. 그 외 다른 전극 유닛(EU_7)들은 서로 일체화되어 제2 타입 전극 유닛을 구성할 수 있다. 또한, 각 전극 유닛(EU_7)들은 제3 전극(230_7) 및 제4 전극(240_7)을 포함할 수 있다. 이에 대한 설명은 도 13 및 도 15를 참조하여 상술한 바와 동일하다.
브릿지 전극(BE1_7, BE2_7, BE3_7, BE4_7)은 제1 내지 제4 브릿지 전극(BE1_7, BE2_7, BE3_7, BE4_7)을 포함할 수 있다. 제1 브릿지 전극(BE1_7)은 제1 전극 유닛(EU1_7)의 제1 전극(210_7)과 제2 전극 유닛(EU2_7)의 제2 전극(220_7)을 연결할 수 있다. 제2 브릿지 전극(BE2_7)은 제5 전극 유닛(EU5_7)의 제1 전극(210_7)과 제6 전극 유닛(EU6_7)의 제2 전극(220_7)을 연결할 수 있다. 제3 브릿지 전극(BE3_7)은 제7 전극 유닛(EU7_7)의 제1 전극(210_7)과 제8 전극 유닛(EU8_7)의 제2 전극(220_7)을 연결할 수 있다. 제4 브릿지 전극(BE4_7)은 제3 전극 유닛(EU3_7)의 제1 전극(210_7)과 제4 전극 유닛(EU4_7)의 제2 전극(220_7)을 연결할 수 있다. 제1 전극 유닛(EU1_7)과 제7 전극 유닛(EU7_7)은 제2 전극(220_7)이 전극 돌출부(220P_7)를 포함하여 제1 컨택홀(CT1)을 통해 구동 트랜지스터(DT)와 전기적으로 연결될 수 있다. 또한, 제4 전극 유닛(EU4_7)과 제6 전극 유닛(EU6_7)은 제2 컨택홀(CT2)을 통해 제1 전압 배선(VL1)과 전기적으로 연결될 수 있다. 이에 대한 설명은 도 19 및 도 20을 참조하여 상술한 바와 동일한 바, 자세한 설명은 생략하기로 한다.
표시 장치(10)는 브릿지 전극(BE)을 더 포함하여 일부 전극 유닛(EU)의 제1 전극(210) 또는 제2 전극(220)들이 제1 전압 배선(VL1) 또는 구동 트랜지스터(DT)와 전기적으로 연결되지 않을 수 있다. 이에 따라, 서로 다른 전극 유닛(EU) 간 발광 소자(300)들이 직렬 연결을 구성할 수 있다. 이와 유사하게, 일 실시예에 따른 표시 장치(10)는 제조 공정 중 제3 전극(230) 및 제4 전극(240)과 제1 전극(210) 또는 제2 전극(220)을 연결하는 연결 전극을 더 포함할 수 있다.
도 23은 또 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 23을 참조하면, 일 실시예에 따른 표시 장치(10_8)는 각 서브 화소(PXn)에 배치되되 일부 전극(210_8, 220_8, 230_8, 240_8)들과 이격되어 배치된 복수의 플로팅 패턴(FE1_8, FE2_8)들을 포함할 수 있다. 도 23의 실시예는 플로팅 패턴(FE1_8, FE2_8)들을 더 포함하는 점에서 도 15의 실시예와 차이가 있다. 이하에서는 중복되는 설명은 생략하고 차이점을 중심으로 설명하기로 한다.
플로팅 패턴(FE1_8, FE2_8)은 제1 방향(DR1)으로 연장된 형상을 갖는 복수의 제1 플로팅 패턴(FE1_8)들, 및 제2 방향(DR2)으로 연장된 형상을 갖는 복수의 제2 플로팅 패턴(FE2_8)들을 포함할 수 있다. 제1 플로팅 패턴(FE1_8)들과 제2 플로팅 패턴(FE2_8)들은 각 서브 화소(PXn)의 비발광 영역에서 각 전극 유닛(EU_8)들의 제1 방향(DR1) 및 제2 방향(DR2) 일 측에 배치될 수 있다. 제1 플로팅 패턴(FE1_8)은 서브 화소(PXn)의 중심을 기준으로 상측과 하측에 각각 2개씩 배치될 수 있다. 이들은 각각 제1 전극 유닛(EU1_8), 제2 전극 유닛(EU2_8), 제3 전극 유닛(EU3_8) 및 제4 전극 유닛(EU4_8)에 대응되어 배치될 수 있다. 제2 플로팅 패턴(FE2_8)은 서브 화소(PXn)의 중심을 기준으로 좌측과 우측에 각각 1개씩 배치될 수 있다. 이들은 각각 제1 전극 유닛(EU1_8)과 제4 전극 유닛(EU4_8), 및 제2 전극 유닛(EU2_8)과 제3 전극 유닛(EU3_8)에 대응되어 배치될 수 있다. 이하에서는 제1 전극 유닛(EU1_8)에 대응되어 배치된 플로팅 패턴(FE1_8, FE2_8)들을 예시하여 설명하기로 한다. 이하의 설명은 다른 플로팅 패턴(FE1_8, FE2_8)들에도 동일하게 적용될 수 있음은 자명하다.
플로팅 패턴(FE1_8, FE2_8)들은 적어도 일부분이 전극 유닛(EU_8)의 전극들 중 적어도 일부와 이격된 상태로 배치될 수 있다. 일 실시예에 따르면, 제1 플로팅 패턴(FE1_8)은 제1 방향(DR1)으로 연장된 형상을 갖고 적어도 제1 전극(210_8) 및 제3 전극(230_8)과 제2 방향(DR2)으로 이격되어 배치된 부분을 포함할 수 있다. 예를 들어, 제1 플로팅 패턴(FE1_8)은 제1 전극(210_8)의 제1 단변(SS1)과 이격되어 배치될 수 있고, 제3 전극(230_8)의 양 단변 중 제2 방향(DR2)을 향하는 단변과 이격되어 배치될 수 있다.
이와 유사하게, 일 실시예에 따르면 제2 플로팅 패턴(FE2_8)은 제2 방향(DR2)으로 연장된 형상을 갖고 적어도 제2 전극(220_8) 및 제4 전극(240_8)과 제1 방향(DR1)으로 이격되어 배치된 부분을 포함할 수 있다. 예를 들어, 제2 플로팅 패턴(FE2_8)은 제2 전극(220_8)의 제4 단변(SS4)과 이격되어 배치될 수 있고, 제4 전극(240_8)의 양 단변 중 제1 방향(DR1)을 향하는 단변과 이격되어 배치될 수 있다.
이러한 플로팅 패턴(FE1_8, FE2_8)들은 표시 장치(10_8)의 제조 공정 중 다른 전극들과 연결된 상태로 형성되었다가 이후 공정에서 단선된 것일 수 있다. 일 예로, 제1 플로팅 패턴(FE1_8)은 제1 전극(210_8) 및 제3 전극(230_8)과 연결된 상태로 형성되고, 제2 플로팅 패턴(FE2_8)은 제2 전극(220_8) 및 제4 전극(240_8)과 연결된 상태로 형성된 것일 수 있다.
도 24 및 도 25는 도 23의 표시 장치의 제조 공정 중 일부를 나타내는 평면도들이다.
도 24 및 도 25를 참조하여 구체적으로 설명하면, 표시 장치(10_8)의 제조 공정 중, 각 전극 유닛(EU_8)의 제1 전극(210_8)과 제3 전극(230_8), 및 제2 전극(220_8)과 제4 전극(240_8)은 연결 전극(CE1_8, CE2_8)에 의해 서로 전기적으로 연결될 수 있다. 연결 전극(CE1_8, CE2_8)은 제1 전극(210_8) 및 제3 전극(230_8)과 연결된 제1 연결 전극(CE1_8) 및 제2 전극(220_8) 및 제4 전극(240_8)과 연결된 제2 연결 전극(CE2_8)을 포함할 수 있다. 제1 연결 전극(CE1_8)과 제2 연결 전극(CE2_8)은 비발광 영역에 배치되어 각각 제1 방향(DR1) 및 제2 방향(DR2)으로 연장된 형상을 가질 수 있다. 연결 전극(CE1_8, CE2_8)의 경우에도 각 전극 유닛(EU_8)들에 대응되어 배치될 수 있다. 이하에서는 제1 전극 유닛(EU1_8)에 대응되어 배치된 연결 전극(CE1_8, CE2_8)들을 예시하여 설명하기로 한다. 이하의 설명은 다른 연결 전극(CE1_8, CE2_8)들에도 동일하게 적용될 수 있음은 자명하다.
표시 장치(10_8)의 제조 공정 중, 제1 전극(210_8)은 제1 전압 배선(VL1)을 통해, 제2 전극(220_8)은 제1 정렬 배선(AL1)을 통해 정렬 신호를 전달받을 수 있다. 도 17의 실시예와 같이, 제3 전극(230_8)과 제4 전극(240_8)도 제2 정렬 배선(AL2) 및 제3 정렬 배선(AL3)을 통해 정렬 신호를 전달 받을 수 있으나, 이에 제한되지 않는다. 몇몇 실시예에서, 제2 정렬 배선(AL2) 및 제3 정렬 배선(AL3)은 생략될 수 있고, 제3 전극(230_8)과 제4 전극(240_8)은 제4 컨택홀(CT4) 및 제5 컨택홀(CT5)이 형성되지 않을 수 있다. 이들은 제1 전극(210_8) 및 제2 전극(220_8)과 연결된 제1 연결 전극(CE1_8) 및 제2 연결 전극(CE2_8)과 연결될 수 있고, 이를 통해 정렬 신호를 전달 받을 수 있다. 즉, 연결 전극(CE1_8, CE2_8)들은 정렬 신호를 다른 전극으로 전달하는 기능을 수행할 수도 있다.
도 24에 도시된 바와 같이, 제1 연결 전극(CE1_8)은 제1 전극(210_8) 및 제3 전극(230_8)과 연결될 수 있다. 예를 들어, 제1 연결 전극(CE1_8)은 제1 전극(210_8)의 제1 단변(SS1) 및 제3 전극(230_8)의 제2 방향(DR2)을 향하는 일 단변과 직접 연결될 수 있다. 제1 전극(210_8)을 통해 정렬 신호가 전달되면, 제1 연결 전극(CE1_8)은 이를 제3 전극(230_8)으로 전달할 수 있다. 이와 유사하게, 제2 연결 전극(CE2_8)은 제2 전극(220_8) 및 제4 전극(240_8)과 연결될 수 있다. 예를 들어, 제2 연결 전극(CE2_8)은 제2 전극(220_8)의 제4 단변(SS4) 및 제4 전극(240_8)의 제1 방향(DR1)을 향하는 일 단변과 직접 연결될 수 있다. 제2 전극(220_8)을 통해 정렬 신호가 전달되면, 제2 연결 전극(CE2_8)은 이를 제4 전극(240_8)으로 전달할 수 있다. 제1 전압 배선(VL1)과 제1 정렬 배선(AL1)을 통해서만 정렬 신호를 인가하더라도, 제1 연결 전극(CE1_8) 및 제2 연결 전극(CE2_8)을 통해 각 전극(210_8, 220_8, 230_8, 240_8)들 사이에는 전기장이 생성될 수 있다. 상기 전기장에 의해 발광 소자(300)들이 각 전극(210_8, 220_8, 230_8, 240_8)들 사이에 배치될 수 있다.
이후, 도 25에 도시된 바와 같이, 연결 전극(CE1_8, CE2_8)들은 각 전극(210_8, 220_8, 230_8, 240_8)들과 단선된다(도 25의 'CB'). 제1 연결 전극(CE1_8)은 제1 전극(210_8) 및 제3 전극(230_8)과 단선되어 도 23의 제1 플로팅 패턴(FE1_8)을 형성하고, 제2 연결 전극(CE2_8)은 제2 전극(220_8) 및 제4 전극(240_8)과 단선되어 도 23의 제2 플로팅 패턴(FE2_8)을 형성할 수 있다. 연결 전극(CE1_8, CE2_8)들은 발광 소자(300)를 배치한 뒤 패터닝되어 각 전극(210_8, 220_8, 230_8, 240_8)들과 단선되고, 플로팅(Floating) 상태로 남을 수 있다.
상술한 바와 같이, 발광 소자(300)를 정렬한 뒤, 정렬 배선들을 부분적으로 단선하는 공정이 수행될 수 있다. 각 전극 유닛(EU_8)이 제3 전극(230_8) 및 제4 전극(240_8)을 포함하여 정렬 배선도 더 많은 수로 포함되는 경우, 비발광 영역에서 형성되는 배선 컨택홀(도 8의 'CLT')의 면적이 커지게될 수 있다. 다만, 도 24와 같이 제1 전극(210_8)과 제2 전극(220_8)을 제외하고 다른 전극들은 연결 전극(CE1_8, CE2_8)을 통해 정렬 신호를 전달하면, 제3 전극(230_8)과 제4 전극(240_8)은 제1 평탄화층(109) 상에서 각각 제1 전극(210_8) 및 제2 전극(220_8)과 단선될 수 있고, 배선 컨택홀(CLT)은 제1 정렬 배선(AL1)이 위치하는 부분에만 형성될 수 있다.
한편, 연결 전극(CE1_8, CE2_8)을 단선하여 플로팅 패턴(FE1_8, FE2_8)을 형성할 때, 연결 전극(CE1_8, CE2_8)의 일부분이 각 전극(210_8, 220_8, 230_8, 240_8)들의 일 단변에 연결된 상태로 남게될 수 있다. 도 23에 도시된 바와 같이, 일 실시예에 따른 표시 장치(10_8)는 각 전극(210_8, 220_8, 230_8, 240_8)의 적어도 일 단변에 형성된 복수의 전극 단편부(ES1_8, ES2_8, ES3_8, ES4_8)를 포함할 수 있다.
복수의 전극 단편부(ES1_8, ES2_8, ES3_8, ES4_8)는 제1 전극(210_8)과 연결된 제1 전극 단편부(ES1_8), 제2 전극(220_8)과 연결된 제2 전극 단편부(ES2_8), 제3 전극(230_8)과 연결된 제3 전극 단편부(ES3_8) 및 제4 전극(240_8)과 연결된 제4 전극 단편부(ES4_8)를 포함할 수 있다. 제1 전극 단편부(ES1_8)는 제1 전극(210_8)의 제1 단변(SS1)과 연결되어, 제1 단변(SS1) 중 일부가 제2 방향(DR2)으로 돌출된 형상을 가질 수 있다. 제3 전극 단편부(ES3_8)는 제3 전극(230_8)의 제2 방향(DR2)을 향하는 일 단변과 연결되고, 제3 전극(230_8)의 상기 일 단변은 제4 전극(240_8)의 제2 방향(DR2)을 향하는 단변보다 돌출될 수 있다. 제1 단편부(ES1_8)와 제3 단편부(ES3_8)는 각각 제1 연결 전극(CE1_8)의 흔적으로 남을 수 있고, 제1 플로팅 패턴(FE1_8)과 제2 방향(DR2)으로 이격 대향할 수 있다.
이와 유사하게, 제2 전극 단편부(ES2_8)는 제2 전극(220_8)의 제4 단변(SS4)과 연결되어, 제4 단변(SS4)이 제3 전극(230_8)의 제1 방향(DR1)을 향하는 단변보다 제1 방향(DR1)으로 돌출될 수 있다. 제4 전극 단편부(ES4_8)는 제4 전극(240_8)의 제1 방향(DR1)을 향하는 일 단변과 연결되고, 제4 전극(240_8)의 상기 일 단변은 제3 전극(230_8)의 제1 방향(DR1)을 향하는 단변보다 돌출될 수 있다. 제2 단편부(ES2_8)와 제4 단편부(ES4_8)는 각각 제2 연결 전극(CE2_8)의 흔적으로 남을 수 있고, 제2 플로팅 패턴(FE2_8)과 제1 방향(DR1)으로 이격 대향할 수 있다.
다만, 이에 제한되지 않는다. 경우에 따라서 전극 단편부(ES)들은 제거되어 표시 장치(10)에 남지 않을 수 있다.
도 26은 다른 실시예에 따른 표시 장치의 일 서브 화소를 나타내는 평면도이다.
도 26을 참조하면, 일 실시예에 따른 표시 장치(10_9)는 전극 단편들이 제거될 수 있다. 발광 소자(300)를 배치한 뒤, 연결 전극들을 패터닝하는 공정에서, 공정 조건에 따라 전극 단편부(ES)들이 남지 않도록 제거될 수도 있다. 도 26의 실시예는 전극 단편부(ES)들이 제거되지 않고, 플로팅 패턴(FE1_9, FE2_9)들 만이 배치된 점에서 도 25의 실시예와 차이가 있다. 이하 중복되는 설명인 바, 자세한 설명은 생략하기로 한다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (20)

  1. 복수의 화소를 포함하는 기판;
    상기 기판의 상기 화소 내에 배치된 전극 유닛으로써, 곡률 중심을 갖고 곡률진 형상의 제1 외측변을 포함하는 제1 전극 및 상기 제1 외측변에 대응하여 곡률진 형상을 갖는 제2 외측변을 포함하여 상기 제1 전극과 이격 대향하는 제2 전극을 포함하는 전극 유닛; 및
    상기 제1 전극과 상기 제2 전극 사이에 배치된 복수의 발광 소자들을 포함하고,
    상기 제1 전극은 상기 곡률 중심이 상기 화소의 외곽부에 위치하고, 상기 제1 외측변이 상기 화소의 중심을 향하도록 배치된 표시 장치.
  2. 제1 항에 있어서,
    상기 전극 유닛은,
    상기 제1 전극이 제1 방향으로 연장된 제1 단변 및 상기 제1 방향과 교차하는 제2 방향으로 연장되고 일 측이 상기 제1 단변의 일 측과 연결된 제2 단변을 더 포함하고, 상기 제1 외측변이 상기 제1 단변의 타 측과 상기 제2 단변의 타 측을 연결하는 제1 타입 전극 유닛을 포함하며,
    상기 제1 타입 전극 유닛의 제1 전극은 상기 제1 외측변의 곡률 중심이 상기 제1 단변의 상기 일 측인 표시 장치.
  3. 제2 항에 있어서,
    상기 제2 전극은 상기 제2 외측변에 대응하여 곡률진 형상을 갖는 제3 외측변;
    상기 제2 외측변의 일 측 및 상기 제3 외측변의 일 측을 연결하고 상기 제1 방향으로 연장된 제3 단변; 및
    상기 제2 외측변의 타 측 및 상기 제3 외측변의 타 측을 연결하고 상기 제2 방향으로 연장된 제4 단변을 더 포함하는 표시 장치.
  4. 제3 항에 있어서,
    상기 전극 유닛은 상기 제1 외측변의 곡률 중심이 상기 화소의 일 측에 위치하는 제1 전극 유닛 및 상기 제1 외측변의 곡률 중심이 상기 화소의 타 측에 위치하는 제2 전극 유닛을 포함하는 표시 장치.
  5. 제4 항에 있어서,
    상기 제1 전극 유닛의 상기 제2 전극은 상기 제2 전극 유닛의 상기 제2 전극과 직접 연결된 표시 장치.
  6. 제4 항에 있어서,
    상기 화소에 배치되고, 일 측이 상기 제1 전극 유닛의 상기 제1 전극과 연결되고 타 측이 상기 제2 전극 유닛의 상기 제2 전극과 연결된 브릿지 전극을 더 포함하는 표시 장치.
  7. 제3 항에 있어서,
    상기 제2 전극은 상기 제3 외측변의 일부분이 돌출된 전극 돌출부를 더 포함하는 표시 장치.
  8. 제2 항에 있어서,
    상기 전극 유닛은 상기 제1 전극과 상기 제2 전극 사이에 배치된 제3 전극 및 상기 제3 전극과 상기 제1 전극 사이에 배치된 제4 전극을 더 포함하고,
    상기 제3 전극은 상기 제2 전극의 제2 외측변에 대응하여 곡률진 형상을 갖고,
    상기 제4 전극은 상기 제1 전극의 상기 제1 외측변에 대응하여 곡률진 형상을 갖는 표시 장치.
  9. 제8 항에 있어서,
    상기 제3 전극과 상기 제4 전극은 서로 이격 대향하도록 배치되고, 상기 발광 소자는 상기 제3 전극과 상기 제4 전극 사이에도 배치된 표시 장치.
  10. 제8 항에 있어서,
    상기 제1 방향으로 연장된 형상을 갖고, 상기 제1 전극의 제1 단변 및 상기 제3 전극과 상기 제2 방향으로 이격되어 배치된 부분을 포함하는 제1 플로팅 패턴; 및
    상기 제2 방향으로 연장된 형상을 갖고, 상기 제2 전극의 제4 단변 및 상기 제4 전극과 상기 제1 방향으로 이격되어 배치된 부분을 포함하는 제2 플로팅 패턴을 더 포함하는 표시 장치.
  11. 제2 항에 있어서,
    상기 전극 유닛은,
    상기 제1 전극이 상기 제1 방향으로 연장된 제5 단변을 포함하고, 상기 제1 외측변이 상기 제5 단변의 양 측을 연결하는 제2 타입 전극 유닛을 포함하며,
    상기 제2 타입 전극 유닛의 제1 전극은 상기 제1 외측변의 곡률 중심이 상기 제5 단변의 양 측 사이에 놓이는 표시 장치.
  12. 제2 항에 있어서,
    상기 전극 유닛은 상기 제1 전극이 원형의 형상을 갖는 제3 타입 전극 유닛을 더 포함하는 표시 장치.
  13. 제1 항에 있어서,
    상기 제1 전극 상에 배치되고, 상기 제1 외측변을 따라 곡률진 변을 포함하는 제1 접촉 전극; 및
    상기 제2 전극 상에 배치되고 상기 제2 외측변을 따라 곡률진 변을 포함하는 제2 접촉 전극을 더 포함하고,
    상기 제1 접촉 전극은 상기 제1 전극 및 상기 발광 소자의 일 단부와 접촉하고, 상기 제2 접촉 전극은 상기 제2 전극 및 상기 발광 소자의 타 단부와 접촉하는 표시 장치.
  14. 제13 항에 있어서,
    상기 제1 전극의 상기 제1 외측변과 상기 제2 전극의 상기 제2 외측변 사이의 제1 간격은 상기 제1 접촉 전극과 상기 제2 접촉 전극 사이의 제2 간격보다 작은 표시 장치.
  15. 서로 교차하는 방향으로 연장되어 일 측이 상호 연결된 제1 단변 및 제2 단변, 및 상기 제1 단변과 상기 제2 단변의 타 측들을 연결하며 곡률진 형상을 갖는 제1 외측변을 포함하는 복수의 제1 전극;
    상기 제1 전극의 제1 외측변과 이격 대향하도록 배치되고, 상기 제1 외측변에 대응하여 곡률진 형상을 갖는 제2 외측변을 포함하는 복수의 제2 전극; 및
    상기 제1 전극과 제2 전극 사이에 배치된 복수의 발광 소자들을 포함하고,
    상기 복수의 발광 소자들은 상기 제1 외측변과 상기 제2 외측변 사이에 배치되며, 상기 제1 외측변의 곡률을 따라 배열된 표시 장치.
  16. 제15 항에 있어서,
    상기 제1 전극과 상기 제2 전극 사이에 배치된 제3 전극 및 상기 제3 전극과 상기 제1 전극 사이에 배치된 제4 전극을 더 포함하고,
    상기 제3 전극은 상기 제2 전극의 상기 제2 외측변에 대응하여 곡률진 형상을 갖고, 상기 제4 전극은 상기 제1 전극의 제1 외측변에 대응하여 곡률진 형상을 갖는 표시 장치.
  17. 제16 항에 있어서,
    상기 제1 전극 상에 배치되고, 상기 제1 외측변을 따라 곡률진 변을 포함하는 제1 접촉 전극 및 상기 제2 전극 상에 배치되고 상기 제2 외측변을 따라 곡률진 변을 포함하는 제2 접촉 전극을 더 포함하는 표시 장치.
  18. 제16 항에 있어서,
    상기 제1 외측변과 상기 제2 외측변은 동일한 곡률 중심을 갖되 상기 복수의 제1 전극들 중 적어도 일부는 서로 다른 곡률 중심을 갖고,
    상기 복수의 제2 전극들 중 적어도 일부는 서로 다른 곡률 중심을 갖는 표시 장치.
  19. 제18 항에 있어서,
    곡률 중심이 서로 다른 상기 제2 전극들 중 적어도 일부는 서로 직접 연결된 표시 장치.
  20. 제18 항에 있어서,
    상기 제1 전극 및 상기 제1 전극과 다른 곡률 중심을 갖는 상기 제2 전극을 연결하는 브릿지 전극을 더 포함하는 표시 장치.
PCT/KR2020/018158 2019-12-16 2020-12-11 표시 장치 WO2021125704A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/757,448 US20230057723A1 (en) 2019-12-16 2020-12-11 Display apparatus
CN202080088375.1A CN114830343A (zh) 2019-12-16 2020-12-11 显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0168089 2019-12-16
KR1020190168089A KR20210077086A (ko) 2019-12-16 2019-12-16 표시 장치

Publications (1)

Publication Number Publication Date
WO2021125704A1 true WO2021125704A1 (ko) 2021-06-24

Family

ID=76477750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018158 WO2021125704A1 (ko) 2019-12-16 2020-12-11 표시 장치

Country Status (4)

Country Link
US (1) US20230057723A1 (ko)
KR (1) KR20210077086A (ko)
CN (1) CN114830343A (ko)
WO (1) WO2021125704A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220094808A (ko) * 2020-12-29 2022-07-06 엘지디스플레이 주식회사 표시 장치
KR20230008955A (ko) * 2021-07-07 2023-01-17 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20230010157A (ko) * 2021-07-09 2023-01-18 삼성디스플레이 주식회사 화소 및 이를 구비한 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110019420A1 (en) * 2009-07-21 2011-01-27 Citizen Electronics Co., Ltd. Light-emitting diode apparatus
JP2011108744A (ja) * 2009-11-13 2011-06-02 Sharp Corp 発光装置およびその製造方法
JP2017085096A (ja) * 2015-10-23 2017-05-18 シチズン電子株式会社 発光モジュール
KR101782889B1 (ko) * 2016-07-21 2017-09-28 피에스아이 주식회사 휘도가 향상된 풀-컬러 led 디스플레이 및 그 제조방법
KR20170141305A (ko) * 2016-06-14 2017-12-26 삼성디스플레이 주식회사 픽셀 구조체, 픽셀 구조체를 포함하는 표시장치 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110019420A1 (en) * 2009-07-21 2011-01-27 Citizen Electronics Co., Ltd. Light-emitting diode apparatus
JP2011108744A (ja) * 2009-11-13 2011-06-02 Sharp Corp 発光装置およびその製造方法
JP2017085096A (ja) * 2015-10-23 2017-05-18 シチズン電子株式会社 発光モジュール
KR20170141305A (ko) * 2016-06-14 2017-12-26 삼성디스플레이 주식회사 픽셀 구조체, 픽셀 구조체를 포함하는 표시장치 및 그 제조 방법
KR101782889B1 (ko) * 2016-07-21 2017-09-28 피에스아이 주식회사 휘도가 향상된 풀-컬러 led 디스플레이 및 그 제조방법

Also Published As

Publication number Publication date
US20230057723A1 (en) 2023-02-23
KR20210077086A (ko) 2021-06-25
CN114830343A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2021149863A1 (ko) 표시 장치
WO2021162180A1 (ko) 표시 장치
WO2021125704A1 (ko) 표시 장치
WO2020242116A1 (ko) 표시 장치
WO2021049725A1 (ko) 발광 소자, 이의 제조 방법 및 이를 포함하는 표시 장치
WO2021242074A1 (ko) 표시 장치
WO2021066287A1 (ko) 표시 장치 및 이의 제조 방법
WO2022164168A1 (ko) 발광 소자, 발광 소자를 포함하는 발광 소자 유닛, 및 표시 장치
WO2022045698A1 (ko) 표시 장치
WO2021215585A1 (ko) 표시 장치
WO2021091062A1 (ko) 표시 장치
WO2021118182A1 (ko) 발광 소자 및 이를 포함하는 표시 장치
WO2023003320A1 (ko) 표시 장치
WO2021235689A1 (ko) 표시 장치
WO2022025395A1 (ko) 표시 장치
WO2022059986A1 (ko) 표시 장치
WO2022149813A1 (ko) 표시 장치
WO2022019547A1 (ko) 표시 장치
WO2021091061A1 (ko) 표시 장치
WO2021101033A1 (ko) 발광 소자, 표시 장치 및 이의 제조 방법
WO2021246572A1 (ko) 발광 소자, 이의 제조 방법 및 표시 장치
WO2021230426A1 (ko) 표시 장치
WO2021206217A1 (ko) 표시 장치 및 이의 제조 방법
WO2021125705A1 (ko) 표시 장치
WO2022092880A1 (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903141

Country of ref document: EP

Kind code of ref document: A1