WO2021120165A1 - 一种2-4μm电池级四氧化钴的制备方法 - Google Patents

一种2-4μm电池级四氧化钴的制备方法 Download PDF

Info

Publication number
WO2021120165A1
WO2021120165A1 PCT/CN2019/126928 CN2019126928W WO2021120165A1 WO 2021120165 A1 WO2021120165 A1 WO 2021120165A1 CN 2019126928 W CN2019126928 W CN 2019126928W WO 2021120165 A1 WO2021120165 A1 WO 2021120165A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
battery
grade
flow rate
tetroxide
Prior art date
Application number
PCT/CN2019/126928
Other languages
English (en)
French (fr)
Inventor
许开华
蒋振康
张爱青
李炳忠
王超
许东伟
Original Assignee
格林美(江苏)钴业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格林美(江苏)钴业股份有限公司 filed Critical 格林美(江苏)钴业股份有限公司
Priority to KR1020227021474A priority Critical patent/KR20220117880A/ko
Priority to EP19956620.9A priority patent/EP4063326A4/en
Priority to JP2022538222A priority patent/JP7477614B2/ja
Publication of WO2021120165A1 publication Critical patent/WO2021120165A1/zh
Priority to US17/842,817 priority patent/US20220315445A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of cobalt tetroxide, and specifically relates to a method for preparing 2-4 ⁇ m battery-grade cobalt tetroxide.
  • the lithium cobalt oxide battery material needs to be made by mixing and matching large and small particles of cobalt tetroxide to improve the overall performance of the lithium cobalt oxide battery material, so it needs to have a higher tapping and a larger specific surface area.
  • the preparation method used for battery-grade cobalt tetroxide is mainly to use ammonium bicarbonate and cobalt sulfate solution to prepare large particles of cobalt carbonate with a particle size of 10-20 ⁇ m, and then sinter the cobalt carbonate to release Take out the CO 2 and obtain the cobalt tetroxide with the required particle size.
  • the cobalt tetroxide prepared by this method has a low tapping ratio of only about 2.2g/cm3, and the cobalt carbonate is prone to particle explosion during the sintering process.
  • the present application provides a method for preparing 2-4 ⁇ m battery-grade cobalt tetroxide, which solves the problem that the core-shell structure precursor prepared by the prior art has a loose interior and a dense exterior structure.
  • the distribution of Li is not uniform, the required calcining temperature is higher, and the structural stability formed after calcining is poor, which affects the electrochemical performance of the cathode material.
  • a method for preparing 2-4 ⁇ m battery-grade cobalt tetroxide includes the following steps:
  • Step 1 Add the cobalt salt solution and liquid caustic soda into the reactor containing the bottom liquid and ventilated with air at a certain feed rate, and control the pH of the system to 10-11 by adjusting the flow rate of the liquid caustic soda. And the co-precipitation reaction is carried out under a certain stirring rate. After the reaction liquid starts to overflow, the pH value of the reaction system is reduced by 0.1 to 0.2 and the cobalt salt flow rate is increased by 15 to 25 L/h every hour, until the pH value of the reaction system drops to 9.2 ⁇ 9.8. The cobalt salt flow rate is increased to 320 ⁇ 360L/h, and the particle size is continuously monitored. When D50 reaches 2-4 ⁇ m, stop feeding and obtain cobalt oxyhydroxide slurry;
  • Step 2 The cobalt oxyhydroxide slurry obtained in step 1 is sequentially aged, washed, iron-removed, and dried to obtain dried cobalt oxyhydroxide;
  • Step 3 The dried cobalt oxyhydroxide obtained in step 2 is calcined through a low temperature zone and a high temperature zone in sequence to obtain 2-4 ⁇ m battery grade cobalt tetraoxide.
  • the concentration of the cobalt salt solution is 120-140 g/L, and the concentration of the liquid caustic soda is 300-600 g/L.
  • the feed rate of the cobalt salt solution is 220-260 L/h; the feed rate of the liquid caustic soda is 50-150 L/h.
  • the stirring rate is 150-350 r/min.
  • the temperature of the co-precipitation reaction is 60-80°C.
  • the pH value of the reaction system is decreased by 0.1-0.2 and the cobalt salt flow rate is increased by 15-25 L/h every hour, until the pH value of the reaction system drops to 9.2-9.8 , The flow rate of cobalt salt is increased to 320-360L/h.
  • the bottom liquid in the reactor containing the bottom liquid is pure water.
  • the low temperature zone is 200-400°C; the high temperature zone is 600-800°C.
  • the present invention firstly prepares cobalt oxyhydroxide by reacting sodium hydroxide, air, and cobalt salt solution, and then calcinates the prepared cobalt oxyhydroxide, so that the tap density of the finally obtained cobalt tetroxide is reduced. It is much higher than the tap density of cobalt tetroxide prepared by the prior art; in addition, the method of the present invention releases water molecules during the sintering process of cobalt oxyhydroxide, which is higher than the rigid carbon dioxide released in the prior art. In other words, water molecules are flexible molecules, which are not easy to cause particles to explode. It is more conducive to the sintering of cobalt tetroxide without polluting the environment. At the same time, it can greatly reduce the power consumption of the sintering process.
  • Figure 1 is an SEM image of 2-4 ⁇ m battery-grade cobalt tetroxide obtained in Example 1 of the present invention
  • Fig. 3 is an SEM image of 2-4 ⁇ m battery-grade cobalt tetroxide obtained in Example 3 of the present invention.
  • the present invention uses a laser particle size analyzer to measure the particle size in the process of generating cobalt tetroxide and the particle size of the finally obtained cobalt tetroxide particles.
  • the chemical reagents used in the embodiments of the present invention are obtained through conventional commercial channels unless otherwise specified.
  • An embodiment of the present invention provides a method for preparing 2-4 ⁇ m battery-grade cobalt tetroxide, the method includes the following steps:
  • Step 1 Combine a cobalt salt solution with a cobalt ion concentration of 120 ⁇ 140g/L and a liquid caustic with a concentration of 300 ⁇ 600g/L g/L at 220 ⁇ 260L/h and 50 ⁇ 150L/h respectively.
  • the flow is added to a reactor containing pure water and air, and the pH of the system is controlled to be 10 to 11 by adjusting the flow rate of liquid caustic soda under the conditions of 65-80°C and a stirring rate of 150-350 r/min Carry out co-precipitation reaction.
  • the pH value of the reaction system is decreased by 0.1 ⁇ 0.2 and the cobalt salt flow rate is increased by 15-25L/h every hour, until the pH value of the reaction system drops to 9.2 ⁇ 9.8, the cobalt salt flow rate Increase to 320 ⁇ 360L/h, continuously monitor the particle size, stop feeding when D50 reaches the required size, and obtain cobalt oxyhydroxide slurry;
  • the cobalt salt is at least one of cobalt chloride, cobalt sulfate, and cobalt nitrate, preferably cobalt sulfate;
  • Step 2 The cobalt oxyhydroxide slurry obtained in step 1 is sequentially aged, washed, iron-removed, and dried to obtain dried cobalt oxyhydroxide;
  • Step 3 The dried cobalt oxyhydroxide obtained in step 2 is calcined sequentially through a low temperature zone of 200-400° C. and a high temperature zone of 700-800° C. to obtain battery-grade tricobalt tetroxide of 2 to 4 ⁇ m.
  • the cobalt oxyhydroxide is prepared by first reacting with sodium hydroxide, air, and cobalt salt solution, and then the prepared cobalt oxyhydroxide is calcined, so that the tap density of the cobalt tetroxide finally obtained will be far greater. It is higher than the tap density of cobalt tetroxide prepared by the prior art; in addition, water molecules are released during the sintering process of cobalt oxyhydroxide in the method of the present invention, which is compared with the rigid molecular carbon dioxide released in the prior art , Water molecules are flexible molecules, which are not easy to cause the particles to explode. It is more conducive to the sintering of cobalt tetroxide without polluting the environment. At the same time, it can greatly reduce the power consumption of the sintering process.
  • the 2-4 ⁇ m battery-grade cobalt tetroxide provided in Example 1 of the present invention is prepared through the following steps:
  • Step 1 The cobalt sulphate solution with a cobalt ion concentration of 130g/L and a liquid caustic soda with a concentration of 450g/L were added to the pure water containing pure water and air-vented at a feed rate of 240L/h and 100L/h respectively.
  • the pH value of the system is controlled to 10.3 by adjusting the flow rate of liquid caustic soda for co-precipitation reaction.
  • the reaction system is made every hour Decrease the pH value of 0.1 and increase the flow rate of cobalt salt by 20L/h until the pH value of the reaction system drops to 9.5 and the flow rate of cobalt salt increases to 340L/h. Continue to monitor the particle size. When D50 reaches the required size, stop feeding to obtain hydroxyl Cobalt oxide slurry;
  • Step 2 The cobalt oxyhydroxide slurry obtained in step 1 is sequentially aged, washed, iron-removed, and dried to obtain dried cobalt oxyhydroxide;
  • Step 3 The dried cobalt oxyhydroxide obtained in step 2 is sequentially calcined through a low temperature zone of 300° C. and a high temperature zone of 750° C. to obtain battery-grade cobalt tetraoxide with an average particle size of 3 m.
  • the 2-4 ⁇ m battery-grade cobalt tetroxide provided in Example 2 of the present invention is prepared through the following steps:
  • Step 1 Cobalt sulphate with a cobalt ion concentration of 120g/L and a liquid caustic soda with a concentration of 300g/L are added to the reaction containing pure water and passing air at a feed rate of 220L/h and 50L/h respectively.
  • the pH of the system is controlled to 10 for co-precipitation reaction by adjusting the flow rate of liquid caustic at 65°C and the stirring rate is 150r/min.
  • the reaction liquid starts to overflow, the reaction system The pH value drops by 0.1 and the cobalt salt flow rate is increased by 15L/h until the pH value of the reaction system drops to 9.2 and the cobalt salt flow rate is increased to 320L/h.
  • D50 reaches the required size, stop feeding to obtain hydroxyl oxidation Cobalt slurry
  • Step 2 The cobalt oxyhydroxide slurry obtained in step 1 is sequentially aged, washed, iron-removed, and dried to obtain dried cobalt oxyhydroxide;
  • Step 3 The dried cobalt oxyhydroxide obtained in step 2 is sequentially calcined through a low temperature zone of 200° C. and a high temperature zone of 700° C. to obtain 2 ⁇ m battery grade cobalt tetroxide.
  • the 2-4 ⁇ m battery-grade cobalt tetroxide provided in Example 3 of the present invention is prepared through the following steps:
  • Step 1 Cobalt sulfate with a cobalt ion concentration of 140g/L and a liquid caustic soda with a concentration of 600g/L were added to the reaction containing pure water and air-flowed at a feed rate of 260L/h and 150L/h respectively.
  • the pH of the system is controlled to 11 for co-precipitation reaction by adjusting the flow rate of liquid caustic soda at 80°C and the stirring rate is 350r/min.
  • the reaction liquid starts to overflow, the reaction system The pH value drops by 0.2 and the cobalt salt flow rate is increased by 25L/h until the pH value of the reaction system drops to 9.8 and the cobalt salt flow rate is increased to 360L/h.
  • D50 reaches the required size, stop feeding to obtain hydroxyl oxidation Cobalt slurry
  • Step 2 The cobalt oxyhydroxide slurry obtained in step 1 is sequentially aged, washed, iron-removed, and dried to obtain dried cobalt oxyhydroxide;
  • Step 3 The dried cobalt oxyhydroxide obtained in step 2 is sequentially calcined through a low temperature zone of 400° C. and a high temperature zone of 800° C. to obtain 4 ⁇ m battery-grade cobalt tetraoxide.
  • the battery-grade cercocobalt tetroxide obtained in Example 1 and Example 3 is now scanned by electron microscopy, as shown in Figure 1 and Figure 2.
  • the battery-grade Co3O4 obtained by the present invention has no surface cracking phenomenon, and the particles are compact.
  • Example 1-3 of the present invention The intermediate product cobalt content in the process of preparing battery-grade cobalt tetroxide in Example 1-3 of the present invention was tested, and the tap density and specific surface area of the battery-grade cobalt tetroxide prepared in Example 1 to Example 3 were tested.
  • the test results As follows:
  • the intermediate cobalt content in the process of preparing cobalt tetraoxide prepared by the present invention is as high as 70.01%.
  • the tap density of battery-grade cobalt tetraoxide obtained by the present invention is as high as 2.47 g/cm 3 and the specific surface area is as high as 4.64. m 2 /g.
  • the present invention firstly prepares cobalt oxyhydroxide by reacting sodium hydroxide, air, and cobalt salt solution, and then calcinates the prepared cobalt oxyhydroxide, so that the final obtained battery-grade tricobalt tetroxide of 2-4 ⁇ m
  • the tap density is as high as 2.47g/cm 3
  • the specific surface area is as high as 4.64m 2 /g; in addition, water molecules are released during the sintering process of cobalt oxyhydroxide in the method of the present invention, which is compared with the release in the prior art.
  • the rigid molecule carbon dioxide is concerned, the water molecule is a flexible molecule, which is not easy to cause the particles to explode. It is more conducive to the sintering of cobalt tetroxide without polluting the environment. At the same time, it can greatly reduce the power consumption of the sintering process.

Abstract

一种2-4μm电池级四氧化三钴的制备方法,该方法包括如下步骤:1)将钴盐溶液、液碱并流加入至含有底液且通有空气的反应器中,并通过调节液碱的流量来控制体系的pH值且在一定的搅拌速率下进行共沉淀反应,待反应液开始溢流后每小时使反应体系的pH值下降0.1且提升钴盐流量20L/h,直至反应体系的pH值下降至9.5、钴盐流量提升至340L/h,持续监测粒径,获得羟基氧化钴浆料;2)对羟基氧化钴浆料依次进行陈化、干燥,获得干燥后的羟基氧化钴;3)对干燥后的羟基氧化钴进行煅烧,获得电池级四氧化三钴。通过采用上述方法,使得获得的电池级四氧化三钴的振实密度会远高于现有技术制得的同粒径规格四氧化三钴的振实密度。

Description

一种2-4μm电池级四氧化钴的制备方法 技术领域
本发明属于四氧化三钴技术领域,具体涉及一种2-4μm电池级四氧化钴的制备方法。
背景技术
一般而言,钴酸锂电池材料需要利用大小颗粒四氧化三钴混合搭配制成,以提高钴酸锂电池材料的整体性能,所以需要其有较高的振实和较大的比表面积。
在当前的电池材料制造领域,电池级四氧化钴采用的制备方法主要是利用碳酸氢铵与硫酸钴溶液反应制备出颗粒大小为10-20μm的大颗粒碳酸钴,再对碳酸钴进行烧结,释放出其中的CO 2,得到所需粒度的四氧化三钴。通过这种方法制备出的四氧化三钴,振实比较低,只有2.2g/cm3左右,并且碳酸钴在烧结的过程中容易出现颗粒炸裂的现象,其原因在于碳酸钴的钴含量只有49.6%,其他成分为碳酸根,所以在烧结的过程中会释放大量的二氧化碳气体,二氧化碳释放过快的话,就会引起颗粒炸裂,导致产品一致性变差,细碎微粒变多,进而影响电池的各种性能,因此需要严格控制烧结温度,不能变化过快。
发明内容
有鉴于此,本申请提供一种2-4μm电池级四氧化钴的制备方法,解决了现有技术制备得到的核壳结构前驱体形貌为内部疏松、外部致密的结构,这种结构的前驱体在后续与Li混合煅烧时导致Li分布不均匀,所需的煅烧温度较高,同时煅烧后形成的结构稳定性较差,从而影响正极材料的电化学性能的问 题。
为达到上述目的,本发明的技术方案是这样实现的:一种2-4μm电池级四氧化钴的制备方法,该方法包括如下步骤:
步骤1、将钴盐溶液、液碱分别以一定的进料速度并流加入至含有底液且通有空气的反应器中,并通过调节液碱的流量来控制体系的pH值为10~11且在一定的搅拌速率下进行共沉淀反应,待反应液开始溢流后每小时使反应体系的pH值下降0.1~0.2且钴盐流量提升15~25L/h,直至反应体系的pH值下降至9.2~9.8、钴盐流量提升至320~360L/h,持续监测粒径,当D50达到2-4μm则停止加料,获得羟基氧化钴浆料;
步骤2、对步骤1获得的羟基氧化钴浆料依次进行陈化、洗涤、除铁、干燥,获得干燥后的羟基氧化钴;
步骤3、将步骤2获得的干燥后的羟基氧化钴依次通过低温区和高温区进行煅烧,获得2-4μm电池级四氧化三钴。
优选地,所述步骤1中,所述钴盐溶液的浓度为120~140g/L,所述液碱的浓度为300~600g/L。
优选地,所述步骤1中,所述钴盐溶液的进料速度为220~260L/h;所述液碱的进料速度为50~150L/h。
优选地,所述步骤1中,所述搅拌速率为150~350r/min。
优选地,所述步骤1中,所述共沉淀反应的温度为60~80℃。
优选地,所述步骤1中,待反应液开始溢流后每小时使反应体系的pH值下降0.1~0.2且钴盐流量提升15~25L/h,直至反应体系的pH值下降至9.2~9.8、钴盐流量提升至320-360L/h。
优选地,所述步骤1中,所述含有底液的反应器中的底液为纯水。
优选地,所述步骤3中,所述低温区为200~400℃;所述高温区为600~800℃。
与现有技术相比,本发明通过先采用氢氧化钠、空气、钴盐溶液反应制备出羟基氧化钴,再对制备出羟基氧化钴进行煅烧的方法,使得最终获得的四氧化三钴的振实密度会远高于现有技术制得的四氧化三钴的振实密度;此外,通过本发明方法中在对羟基氧化钴进行烧结过程中释放的是水分子,相比于现有技术中释放的刚性分子二氧化碳而言,水分子属于柔性分子,不容易使颗粒出现炸裂的现象,更有利于四氧化三钴的烧结,且不会污染环境,同时还能大大降低烧结工序的电能消耗。
附图说明
图1是本发明实施例1获得的2-4μm电池级四氧化钴的SEM图;
图3是本发明实施例3获得的2-4μm电池级四氧化钴的SEM图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明采用激光粒度分析仪测定生成四氧化三钴过程中的颗粒粒径以及最终获得的四氧化三钴的颗粒的粒径,本发明实施例所使用的化学试剂,如无特殊说明,均通过常规商业途径获得。
本发明实施例提供的一种2-4μm电池级四氧化钴的制备方法,该方法包括如下步骤:
步骤1、将钴离子浓度浓度为120~140g/L的钴盐溶液和浓度为300~600g/L g/L的液碱分别以220~260L/h、50~150L/h的进料速度并流加入至含有纯水且通 有空气的反应器中,并在65~80℃且搅拌速率为150~350r/min的条件下,通过调节液碱的流量来控制体系的pH值为10~11进行共沉淀反应,待反应液开始溢流后每小时使反应体系的pH值下降0.1~0.2且钴盐流量提升15~25L/h,直至反应体系的pH值下降至9.2~9.8、钴盐流量提升至320~360L/h,持续监测粒径,当D50达到所需大小则停止加料,获得羟基氧化钴浆料;
其中,所述钴盐为氯化钴、硫酸钴、硝酸钴中的至少一种,优选为硫酸钴;
步骤2、对步骤1获得的羟基氧化钴浆料依次进行陈化、洗涤、除铁、干燥,获得干燥后的羟基氧化钴;
步骤3、将步骤2获得的干燥后的羟基氧化钴依次通过200~400℃的低温区和700~800℃的高温区进行煅烧,获得2~4μm电池级的四氧化三钴。
采用上述方案后,通本发明通过先采用氢氧化钠、空气、钴盐溶液反应制备出羟基氧化钴,再对制备出羟基氧化钴进行煅烧的方法,使得最终获得的四氧化三钴的振实密度会远高于现有技术制得的四氧化三钴的振实密度;此外,通过本发明方法中在对羟基氧化钴进行烧结过程中释放的是水分子,相比于现有技术中释放的刚性分子二氧化碳而言,水分子属于柔性分子,不容易使颗粒出现炸裂的现象,更有利于四氧化三钴的烧结,且不会污染环境,同时还能大大降低烧结工序的电能消耗。
为了能够更好的解释本发明方案,下面结合具体实施例作进一步说明。
实施例1
本发明实施例1提供的2-4μm电池级四氧化钴是通过如下步骤制备得到的:
步骤1、将钴离子浓度浓度为130g/L的硫酸钴溶液和浓度为450g/L的液碱分别以240L/h、100L/h的进料速度并流加入至含有纯水且通有空气的反应器中,并在70℃且搅拌速率为200r/min的条件下,通过调节液碱的流量来控制体系的 pH值为10.3进行共沉淀反应,待反应液开始溢流后每小时使反应体系的pH值下降0.1且钴盐流量提升20L/h,直至反应体系的pH值下降至9.5、钴盐流量提升至340L/h,持续监测粒径,当D50达到所需大小则停止加料,获得羟基氧化钴浆料;
步骤2、对步骤1获得的羟基氧化钴浆料依次进行陈化、洗涤、除铁、干燥,获得干燥后的羟基氧化钴;
步骤3、将步骤2获得的干燥后的羟基氧化钴依次通过300℃的低温区和750℃的高温区进行煅烧,获得平均粒径为3m电池级的四氧化三钴。
实施例2
本发明实施例2提供的2-4μm电池级四氧化钴是通过如下步骤制备得到的:
步骤1、将钴离子浓度浓度为120g/L的硫酸钴和浓度为300g/L的液碱分别以220L/h、50L/h的进料速度并流加入至含有纯水且通有空气的反应器中,并在65℃且搅拌速率为150r/min的条件下,通过调节液碱的流量来控制体系的pH值为10进行共沉淀反应,待反应液开始溢流后每小时使反应体系的pH值下降0.1且钴盐流量提升15L/h,直至反应体系的pH值下降至9.2、钴盐流量提升至320L/h,持续监测粒径,当D50达到所需大小则停止加料,获得羟基氧化钴浆料;
步骤2、对步骤1获得的羟基氧化钴浆料依次进行陈化、洗涤、除铁、干燥,获得干燥后的羟基氧化钴;
步骤3、将步骤2获得的干燥后的羟基氧化钴依次通过200℃的低温区和700℃的高温区进行煅烧,获得2μm电池级的四氧化三钴。
实施例3
本发明实施例3提供的2-4μm电池级四氧化钴是通过如下步骤制备得到的:
步骤1、将钴离子浓度浓度为140g/L的硫酸钴和浓度为600g/L的液碱分别以260L/h、150L/h的进料速度并流加入至含有纯水且通有空气的反应器中,并在80℃且搅拌速率为350r/min的条件下,通过调节液碱的流量来控制体系的pH值为11进行共沉淀反应,待反应液开始溢流后每小时使反应体系的pH值下降0.2且钴盐流量提升25L/h,直至反应体系的pH值下降至9.8、钴盐流量提升至360L/h,持续监测粒径,当D50达到所需大小则停止加料,获得羟基氧化钴浆料;
步骤2、对步骤1获得的羟基氧化钴浆料依次进行陈化、洗涤、除铁、干燥,获得干燥后的羟基氧化钴;
步骤3、将步骤2获得的干燥后的羟基氧化钴依次通过400℃的低温区和800℃的高温区进行煅烧,获得4μm电池级的四氧化三钴。
为了验证通过本实施例制备得到的2-4μm电池级的四氧化三钴是否有炸裂的现象,现对实施例1和实施例3获得的电池级的四氧化三钴进行电镜扫描检测,如图1和图2所示,从图1和图2中可以看出,本发明获得的电池级的四氧化三钴表面无炸裂现象,且颗粒紧实。
对本发明实施例1-3在制备电池级四氧化三钴的过程中的中间品钴含量进行检测,以及对本实施例1-实施例3制备得到的电池级四氧化三钴的振实密度以及比表面积进行测试,检测结果如下所示:
  中间品钴含量/% 振实密度(g/cm 3) 比表面积(m 2/g)
实施例1 70.01% 2.41 4.34
实施例2 69.54% 2.47 4.36
实施例3 69.89% 2.40 4.64
从表1中的数据可知,本发明制备的四氧化三钴的过程中的中间品钴的含 量高达70.01%,此外,本发明获得的电池级四氧化三钴的振实密度高达2.47g/cm 3、比表面积高达4.64m 2/g。
综上所述,本发明通过先采用氢氧化钠、空气、钴盐溶液反应制备出羟基氧化钴,再对制备出羟基氧化钴进行煅烧的方法,使得最终获得的2-4μm的电池级四氧化三钴的振实密度高达2.47g/cm 3,比表面积高达4.64m 2/g;此外,通过本发明方法中在对羟基氧化钴进行烧结过程中释放的是水分子,相比于现有技术中释放的刚性分子二氧化碳而言,水分子属于柔性分子,不容易使颗粒出现炸裂的现象,更有利于四氧化三钴的烧结,且不会污染环境,同时还能大大降低烧结工序的电能消耗。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

  1. 一种2-4μm电池级四氧化钴的制备方法,其特征在于,该方法包括如下步骤:
    步骤1、将钴盐溶液、液碱分别以一定的进料速度并流加入至含有底液且通有空气的反应器中,并通过调节液碱的流量来控制体系的pH值为10~11且在一定的搅拌速率下进行共沉淀反应,待反应液开始溢流后每小时使反应体系的pH值下降0.1~0.2且钴盐流量提升15~25L/h,直至反应体系的pH值下降至9.2~9.8、钴盐流量提升至320~360L/h,持续监测粒径,当D50达到2-4μm则停止加料,获得羟基氧化钴浆料;
    步骤2、对步骤1获得的羟基氧化钴浆料依次进行陈化、洗涤、除铁、干燥,获得干燥后的羟基氧化钴;
    步骤3、将步骤2获得的干燥后的羟基氧化钴依次通过低温区和高温区进行煅烧,获得2-4μm电池级四氧化三钴。
  2. 根据权利要求1所述的一种2-4μm电池级四氧化钴的制备方法,其特征在于,所述步骤1中,所述钴盐溶液的浓度为120~140g/L,所述液碱的浓度为300~600g/L。
  3. 根据权利要求2所述的一种2-4μm电池级四氧化钴的制备方法,其特征在于,所述步骤1中,所述钴盐溶液的进料速度为220~260L/h;所述液碱的进料速度为50~150L/h。
  4. 根据权利要求3所述的一种2-4μm电池级四氧化钴的制备方法,其特征在于,所述步骤1中,所述搅拌速率为150~350r/min。
  5. 根据权利要求4所述的一种2-4μm电池级四氧化钴的制备方法,其特征在于,所述步骤1中,所述共沉淀反应的温度为60~80℃。
  6. 根据权利要求5所述的一种2-4μm电池级四氧化钴的制备方法,其特征在于,所述步骤1中,待反应液开始溢流后每小时使反应体系的pH值下降0.1~0.2且钴盐流量提升15~25L/h,直至反应体系的pH值下降至9.2~9.8、钴盐流量提升至320-360L/h。
  7. 根据权利要求6所述的一种2-4μm电池级四氧化钴的制备方法,其特征在于,所述步骤1中,所述含有底液的反应器中的底液为纯水。
  8. 根据权利要求1-7任意一项所述的一种2-4μm电池级四氧化钴的制备方法,其特征在于,所述步骤3中,所述低温区为200~400℃;所述高温区为600~800℃。
PCT/CN2019/126928 2019-12-19 2019-12-20 一种2-4μm电池级四氧化钴的制备方法 WO2021120165A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227021474A KR20220117880A (ko) 2019-12-19 2019-12-20 2-4μm 배터리 등급 사산화코발트의 제조 방법
EP19956620.9A EP4063326A4 (en) 2019-12-19 2019-12-20 PROCESS FOR PREPARING 2 TO 4 ?M BATTERY QUALITY COBALT TETRAOXIDE
JP2022538222A JP7477614B2 (ja) 2019-12-19 2019-12-20 2~4μmの電池グレードの四酸化コバルトの調製方法
US17/842,817 US20220315445A1 (en) 2019-12-19 2022-06-17 Preparation method for 2-4 micrometers battery-grade cobalt tetroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911319087.8 2019-12-19
CN201911319087.8A CN113003613A (zh) 2019-12-19 2019-12-19 一种2-4μm电池级四氧化钴的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/842,817 Continuation US20220315445A1 (en) 2019-12-19 2022-06-17 Preparation method for 2-4 micrometers battery-grade cobalt tetroxide

Publications (1)

Publication Number Publication Date
WO2021120165A1 true WO2021120165A1 (zh) 2021-06-24

Family

ID=76381272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126928 WO2021120165A1 (zh) 2019-12-19 2019-12-20 一种2-4μm电池级四氧化钴的制备方法

Country Status (6)

Country Link
US (1) US20220315445A1 (zh)
EP (1) EP4063326A4 (zh)
JP (1) JP7477614B2 (zh)
KR (1) KR20220117880A (zh)
CN (1) CN113003613A (zh)
WO (1) WO2021120165A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800572B (zh) * 2021-08-24 2023-09-15 南通金通储能动力新材料有限公司 一种表面致密内部疏松的羟基氧化钴及其制备方法
CN113735185A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种窄分布中粒度四氧化三钴的制备方法
CN113896249B (zh) * 2021-09-29 2023-03-24 衢州华友钴新材料有限公司 一种锂电池正极材料包覆用钴氧化物及其制备方法
CN115028208A (zh) * 2022-07-22 2022-09-09 衢州华友钴新材料有限公司 四氧化三钴材料与制备方法、正极及锂电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508471A (zh) * 2009-03-30 2009-08-19 南通新玮镍钴科技发展有限公司 四氧化三钴生产工艺
EP2314545A1 (en) * 2008-03-28 2011-04-27 Toda Kogyo Corporation Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
CN103359794A (zh) * 2012-03-30 2013-10-23 北京当升材料科技股份有限公司 一种球形四氧化三钴及其制备方法
CN103715418A (zh) * 2012-09-28 2014-04-09 北京当升材料科技股份有限公司 一种球形四氧化三钴的制备方法
CN103833088A (zh) * 2012-11-23 2014-06-04 宁波科博特钴镍有限公司 一种掺杂球形四氧化三钴的制备方法
CN108862404A (zh) * 2017-05-08 2018-11-23 江苏凯力克钴业股份有限公司 一种用于钴酸锂电池的掺杂小粒径氧化钴的制备方法及装置
CN109354075A (zh) * 2018-09-30 2019-02-19 衢州华友钴新材料有限公司 一种小粒径均匀掺铝球形四氧化三钴的制备方法
CN109942030A (zh) * 2019-05-05 2019-06-28 衢州华友钴新材料有限公司 一种高致密小粒径球形四氧化三钴的制备方法
CN110255629A (zh) * 2019-07-05 2019-09-20 衢州华友钴新材料有限公司 一种超细粒径四氧化三钴的制备方法
CN110342587A (zh) * 2019-04-23 2019-10-18 金川集团股份有限公司 一种窄分布大粒度四氧化三钴制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669214B2 (ja) 2003-09-30 2011-04-13 株式会社田中化学研究所 オキシ水酸化コバルト粒子及びその製造方法
CN103172125A (zh) * 2013-04-18 2013-06-26 宁波科博特钴镍有限公司 一种四氧化三钴的生产方法
CN106784800B (zh) * 2017-01-12 2020-04-28 格林美(江苏)钴业股份有限公司 一种动力锂离子电池用高活性球形四氧化三钴及其制备方法
CN109368709A (zh) * 2018-11-26 2019-02-22 荆门市格林美新材料有限公司 一种碳酸钴、四氧化三钴粒度控制性生产工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314545A1 (en) * 2008-03-28 2011-04-27 Toda Kogyo Corporation Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
CN101508471A (zh) * 2009-03-30 2009-08-19 南通新玮镍钴科技发展有限公司 四氧化三钴生产工艺
CN103359794A (zh) * 2012-03-30 2013-10-23 北京当升材料科技股份有限公司 一种球形四氧化三钴及其制备方法
CN103715418A (zh) * 2012-09-28 2014-04-09 北京当升材料科技股份有限公司 一种球形四氧化三钴的制备方法
CN103833088A (zh) * 2012-11-23 2014-06-04 宁波科博特钴镍有限公司 一种掺杂球形四氧化三钴的制备方法
CN108862404A (zh) * 2017-05-08 2018-11-23 江苏凯力克钴业股份有限公司 一种用于钴酸锂电池的掺杂小粒径氧化钴的制备方法及装置
CN109354075A (zh) * 2018-09-30 2019-02-19 衢州华友钴新材料有限公司 一种小粒径均匀掺铝球形四氧化三钴的制备方法
CN110342587A (zh) * 2019-04-23 2019-10-18 金川集团股份有限公司 一种窄分布大粒度四氧化三钴制备方法
CN109942030A (zh) * 2019-05-05 2019-06-28 衢州华友钴新材料有限公司 一种高致密小粒径球形四氧化三钴的制备方法
CN110255629A (zh) * 2019-07-05 2019-09-20 衢州华友钴新材料有限公司 一种超细粒径四氧化三钴的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063326A4 *

Also Published As

Publication number Publication date
JP7477614B2 (ja) 2024-05-01
KR20220117880A (ko) 2022-08-24
CN113003613A (zh) 2021-06-22
EP4063326A1 (en) 2022-09-28
US20220315445A1 (en) 2022-10-06
EP4063326A4 (en) 2024-01-03
JP2023507208A (ja) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2021120165A1 (zh) 一种2-4μm电池级四氧化钴的制备方法
WO2022083120A1 (zh) 一种锂离子电池正极材料及其制备方法
CN108428862B (zh) 铝包覆三元掺锆复合材料、复合正极材料及其制备和在锂离子电池中的应用
WO2019037459A1 (zh) 一种高电压镍钴锰酸锂前驱体及其制备方法和高电压镍钴锰酸锂正极材料
WO2021134153A1 (zh) 一种通过晶种加入量调控晶面择优生长的高镍三元前驱体的制备方法
WO2023011672A1 (zh) 一种表面包覆型锂离子电池正极材料前驱体及其制备方法
CN107324405A (zh) 一种镍钴锰酸锂材料前驱体及其制备方法、以及由该前驱体制备的锂离子电池
CN108217753A (zh) 一种梯度掺杂四氧化三钴材料及其制备方法
WO2021120040A1 (zh) 一种高密度铝掺杂氧化钴的制备方法
CN108134064B (zh) 一种正极材料前驱体及其制备方法和正极材料
CN109942030B (zh) 一种高致密小粒径球形四氧化三钴的制备方法
CN106684374A (zh) 锂离子电池三元正极材料多孔球状镍钴锰酸锂的制备方法
WO2022242714A1 (zh) 铁锰基正极材料及其制备方法和应用
CN104716303A (zh) 球形羟基氧化钴-四氧化三钴复合材料的制备方法
CN114835173A (zh) 一种正极材料前驱体及其制备方法和正极材料
CN108807967A (zh) 一种镍钴铝三元正极材料的制备方法
CN111153447A (zh) 一种网格状多孔前驱体材料及其制备方法、以及一种正极材料
CN111362319B (zh) 一种降低高镍三元镍钴锰酸锂表面残锂含量的方法
CN116730317A (zh) 一种磷酸铁锂的制备方法
CN109250697B (zh) 一种低成本高纯度绿色环保纳米晶电池级无水FePO4的制备方法
CN115490273B (zh) 一种大比表三元前驱体连续制备的方法及制备得到的前驱体
WO2023160016A1 (zh) 微气泡预氧化制备三元前驱体的方法及其应用
CN112850801A (zh) 一种大颗粒四氧化三钴的制备方法
CN114715956A (zh) 改性多孔富镍正极材料及其制备方法
WO2024000742A1 (zh) 一种钙钛矿氧化物 - 过渡金属磷化物异质结构复合电极材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538222

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019956620

Country of ref document: EP

Effective date: 20220623

NENP Non-entry into the national phase

Ref country code: DE