WO2023011672A1 - 一种表面包覆型锂离子电池正极材料前驱体及其制备方法 - Google Patents

一种表面包覆型锂离子电池正极材料前驱体及其制备方法 Download PDF

Info

Publication number
WO2023011672A1
WO2023011672A1 PCT/CN2022/122137 CN2022122137W WO2023011672A1 WO 2023011672 A1 WO2023011672 A1 WO 2023011672A1 CN 2022122137 W CN2022122137 W CN 2022122137W WO 2023011672 A1 WO2023011672 A1 WO 2023011672A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
ion battery
core
reaction
positive electrode
Prior art date
Application number
PCT/CN2022/122137
Other languages
English (en)
French (fr)
Inventor
陈九华
胡进
杨志
Original Assignee
巴斯夫杉杉电池材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巴斯夫杉杉电池材料有限公司 filed Critical 巴斯夫杉杉电池材料有限公司
Publication of WO2023011672A1 publication Critical patent/WO2023011672A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium-ion battery materials, in particular to a surface-coated lithium-ion battery cathode material precursor and a preparation method thereof.
  • lithium-ion batteries Due to the advantages of high specific energy and long cycle life, lithium-ion batteries are widely used in digital, energy storage, electric vehicles and other fields. Many performances of lithium-ion batteries depend largely on the performance of lithium-ion battery cathode materials; in recent years, with the rapid development of the new energy vehicle industry, higher requirements have been placed on the performance and cost of on-board batteries.
  • Ternary cathode materials are increasingly used in power battery material systems due to their high discharge capacity and long cycle life.
  • Traditional ternary materials include single-crystal nickel-cobalt-manganese ternary materials and high-nickel secondary balls. Granular nickel-cobalt-manganese, nickel-cobalt-aluminum ternary materials, etc. The mass percentage of cobalt in the precursors of these ternary materials is between 6% and 20%. It is difficult to achieve compatibility between cost and performance for primary material batteries. Therefore, decobaltized or cobalt-free battery materials have been gradually developed in recent years.
  • the publication number is CN111682197A.
  • the Chinese patent prepares the nickel-magnesium binary cobalt-free hydroxide precursor by co-precipitation method.
  • cobalt element can enhance the stability of the material, improve the power performance, and inhibit the mixing of cations.
  • yin and yang are used Ion doping replaces cobalt to improve the properties of the material.
  • the technology in this patent has improved the performance of cobalt-free materials, it still cannot achieve the rate and cycle performance of cobalt-containing ternary materials. It is worthy of further exploration to reduce cobalt while still having the rate and cycle performance of current cobalt-containing ternary materials.
  • the technical problem to be solved by the present invention is to provide a surface-coated lithium ion battery positive electrode material precursor, and the positive electrode material made from the precursor has good rate and cycle performance.
  • the present invention also provides a method for preparing the precursor of the anode material of the lithium ion battery.
  • a surface-coated lithium-ion battery positive electrode material precursor is a core-shell structure
  • the core-shell structure is composed of an inner core and a shell layer coated on the surface of the inner core
  • the inner core is Ni x Mn y M z (OH) 2 , where, 0.8 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2
  • M is the doping element
  • the doping element M is Al, Zr, W, Y
  • the shell layer is Co(OH) 2 .
  • the mass of the shell accounts for 0.2wt%-1wt% of the total mass of the precursor.
  • the half peak width of the 001 crystal plane of the precursor is 0.2-0.5
  • the half peak width of the 101 crystal plane is 0.3-0.8
  • the half peak width ratio of 001/101 is 0.8-1.2.
  • the preparation method of the above-mentioned surface-coated lithium-ion battery cathode material precursor comprises the following steps:
  • the mixed salt solution containing nickel, manganese and doping elements that the total concentration of metal ions is prepared is 90-120g/L;
  • the complexing agent is ammonia water with a concentration of 120-140 g/L
  • the precipitation agent is a sodium hydroxide solution with a concentration of 320-400 g/L.
  • the molar ratio of the mixed metal salt to the precipitation agent is 1.96-2.03, and the molar ratio of the mixed metal salt solution to the complexing agent is 0.5-0.8;
  • the reaction temperature is 40-80°C, and the reaction time is 30-50h.
  • the reaction temperature is 40-60° C.
  • the reaction time is 10-30 min.
  • the present invention has the advantages of:
  • the surface coating type lithium ion battery positive electrode material precursor among the present invention is a core-shell structure, with the matrix not containing cobalt as core, is provided with Co(OH) in the outside of core 2Shell , this shell is further It makes up for the attenuation defects of cycle performance and rate performance caused by the removal of cobalt in the core.
  • cobalt-free core and cobalt in the shell it can also significantly reduce the amount of cobalt added and greatly reduce production costs. At the same time, it can also ensure its The obtained cathode material has good cycle performance and rate performance.
  • the preparation method of the present invention first adopts co-precipitation to prepare the precursor matrix, forms a complex with the salt through the complexing agent, and then reacts with the precipitating agent to produce a spherical precursor matrix, then adds the coating agent and adjusts the pH to 11 -12, CoSO 4 is formed into a flocculent coating material by rapid precipitation method, and the flocculent is quickly coated on the surface of the precursor under stirring.
  • This coating method is simple to operate, and compared with solid phase coating The effect is more even.
  • Fig. 1 is the particle size distribution diagram of the surface-coated lithium-ion battery cathode material precursor prepared in Example 1.
  • Fig. 2 is the schematic diagram under the electron microscope of 20000 times of the surface coating type lithium ion battery positive electrode material precursor that embodiment 1 makes.
  • Example 3 is a schematic diagram of the surface-coated lithium-ion battery cathode material precursor prepared in Example 1 under a 50,000-fold electron microscope.
  • FIG. 4 is a particle size distribution diagram of the surface-coated lithium-ion battery positive electrode material precursor prepared in Example 2.
  • Example 5 is a schematic diagram of the surface-coated lithium-ion battery cathode material precursor prepared in Example 2 under a 20,000-fold electron microscope.
  • FIG. 6 is a schematic diagram of the surface-coated lithium-ion battery cathode material precursor prepared in Example 2 under a 50,000-fold electron microscope.
  • FIG. 7 is a particle size distribution diagram of the surface-coated lithium-ion battery cathode material precursor prepared in Comparative Example 1.
  • FIG. 8 is a schematic diagram of the surface-coated lithium-ion battery cathode material precursor prepared in Comparative Example 1 under a 20,000-fold electron microscope.
  • FIG. 9 is a schematic diagram of the surface-coated lithium-ion battery cathode material precursor prepared in Comparative Example 1 under a 50,000-fold electron microscope.
  • a surface-coated lithium-ion battery cathode material precursor which is a core-shell structure, consists of a core of Ni 0.8 Mn 0.15 Zr 0.05 (OH) 2 and a shell of Co(OH) 2 coated on the surface of the core.
  • reaction temperature is 50 ° C
  • pH is 11.5.
  • the material is discharged from the overflow port at the bottom of the reactor, and the collected material is washed by a centrifuge with pure water and liquid caustic soda. The washing temperature is controlled at 70°C until the pH ⁇ 10;
  • step (4) Dry the washing material obtained in step (4) through a hot air oven at a drying temperature of 110°C.
  • the moisture content of the dried material is less than 1%.
  • the dried material is sieved through a 325-mesh screen to obtain a surface coating Type lithium ion battery cathode material precursor, its degree distribution diagram is shown in Figure 1, and the scanning electron micrograph is shown in Figure 2 and Figure 3.
  • a surface-coated lithium-ion battery cathode material precursor which is a core-shell structure, consists of a core of Ni 0.9 Mn 0.08 Al 0.02 (OH) 2 and a shell of Co(OH) 2 coated on the surface of the core.
  • the half peak width of the plane is 0.4, the half peak width of the 101 crystal plane is 0.6, the tap density is 1.77g/cm 3 , the specific surface area is 12m 2 /g, and the bulk density is 1.25g/cm 3 .
  • the mixed salt solution that step (1) prepares and concentration are the hydroxide of 320g/L Sodium solution and 120g/L ammonia water were added to the reactor at the same time to react for 38h.
  • the flow rate of the mixed salt solution was 90mL/min.
  • the molar ratio of the total moles of metal in the mixed salt to sodium hydroxide was controlled at 1.99.
  • the molar ratio with ammonia water is controlled to be 0.5, and the pH value of the whole reaction system is controlled to be 12.2;
  • reaction temperature is 50 ° C
  • pH is 11.5
  • the temperature of the washing water is controlled at 70°C until the pH of the washing water is ⁇ 10;
  • step (4) Dry the washing material obtained in step (4) through a hot air oven, the drying temperature is 110°C, the moisture of the dried material is ⁇ 1%, and the dried material is sieved through a 325-mesh screen to obtain a surface-coated type
  • the density distribution diagram of the cathode material precursor for lithium-ion batteries is shown in Figure 4, and the scanning electron microscope images are shown in Figures 5 and 6.
  • the preparation method of the ternary cathode material precursor of this comparative example comprises the following steps:
  • the total concentration of nickel-cobalt-aluminum metal ions is prepared as a soluble mixed salt solution of 110g/L;
  • the mixed salt solution that step (1) prepares and concentration are the hydroxide of 320g/L Sodium solution and 120g/L ammonia water were added to the reactor at the same time to react for 38 hours, the flow rate of the mixed salt solution was 90ml/min, the metal molar ratio of the mixed salt and sodium hydroxide was controlled to be 1.98, and the metal molar ratio of the mixed salt and ammonia water was controlled is 0.5, and the pH value control of the whole reaction system is 12.3;
  • the slurry is released from the overflow port at the bottom of the reactor, and the collected materials pass through the centrifuge and are washed with pure water and liquid alkali through the centrifuge.
  • the temperature of the washing water is controlled at 70°C until the washing water pH ⁇ 10;
  • step (4) Dry the washed material obtained in step (4) through a hot air oven, the drying temperature is 110°C, the moisture of the dried material is ⁇ 1%, and the dried material is sieved through a 325-mesh screen to obtain a positive electrode material precursor , the particle size distribution diagram is shown in Figure 7, and the electron microscope images are shown in Figures 8 and 9.
  • the positive electrode material prepared by the precursors prepared in Example 1, Example 2 and Comparative Example was made into a button battery with a metal lithium sheet as the negative electrode for evaluation and testing, and was further assembled into a button battery.
  • a metal lithium sheet as the negative electrode for evaluation and testing
  • its electrochemical performance is as shown in table 1, by the experimental data of table 1, it can be known that the present invention is provided with Co(OH) 2 shells outside the surface of positive electrode material, can make up for core to remove cobalt
  • the attenuation defects of cycle performance and rate performance caused by elements ensure that it has good cycle performance and rate performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种表面包覆型锂离子电池正极材料前驱体,为核壳结构,该核壳结构由内核与包覆在内核表面的壳层组成,内核为Ni xMn yM z(OH) 2,壳层为Co(OH) 2。其制备方法为:先配制含镍锰以及掺杂元素M的混合盐溶液;然后向反应釜中加入纯水作为底液,然后加入氨水,控制底液中氨水浓度为2-6g/L;再向反应釜中通入氮气,将混合盐溶液、沉淀剂、氨水加入反应釜中进行搅拌、反应;最后向反应釜中加入CoSO 4和氨水继续反应,过滤、洗涤、烘干,得到表面包覆型锂离子电池正极材料前驱体。本发明中前驱体在内核的外部设有Co(OH) 2壳层,不仅极大降低生产成本,还能保证其具有良好的循环性能和倍率性能。

Description

一种表面包覆型锂离子电池正极材料前驱体及其制备方法 技术领域
本发明属于锂离子电池材料领域,尤其涉及一种表面包覆型锂离子电池正极材料前驱体及其制备方法。
背景技术
锂离子电池由于具有高比能量、循环寿命较长的优点,被广泛应用于数码、储能、电动汽车等领域。锂离子电池的诸多性能发挥很大程度上取决于锂离子电池正极材料的性能;近年来随着新能源汽车产业的迅速发展,对车载电池的性能和成本提出了更高的要求。三元正极材料由于具有放电容量高、循环寿命长等特点,在动力电池材料体系中应用越来越高,传统的三元材料包括单晶型镍钴锰三元材料、高镍型二次球颗粒镍钴锰、镍钴铝三元材料等,这些三元材料前驱体中钴的质量百分含量在6%-20%之间,由于金属钴元素较为稀缺,车载电池采用含钴元素的三元材料电芯,成本与性能难以得到兼容,因此近年来逐渐在开发去钴化或者无钴化的电池材料。
公开号为CN111682197A中国专利通过共沉淀法制备镍镁二元无钴氢氧化物前驱体,专利中提到了钴元素能增强材料的稳定性,改善功率性能,抑制阳离子混排,该专利中采用阴阳离子掺杂替代钴,来改善材料的性能。虽然该专利中的技术对无钴材料有一定的性能改善,但仍无法达到含钴三元材料的倍率和循环性能,因此如何对电池正极材料的前驱体进行进一步改善,在达到无钴化或者少钴化的同时,仍能具有目前含钴三元材料的倍率和循环性能是值得进行进一步探究的。
发明内容
本发明所要解决的技术问题是提供一种表面包覆型锂离子电池正极材料前驱体,由该前驱体制成的正极材料具有良好的倍率和循环性能。与之对应的,本发明还提供了上述锂离子电池正极材料前驱体的制备方法。
为解决上述技术问题,本发明提出的技术方案为:
一种表面包覆型锂离子电池正极材料前驱体,所述锂离子电池正极前驱体为核壳结构,该核壳结构为由内核与包覆在内核表面的壳层组成,所述内核为Ni xMn yM z(OH) 2,其中,0.8≤x<1,0<y<0.2,0<z<0.2,M为掺杂元素,掺杂元素M为Al、Zr、W、Y中的一种或多种,所述壳层为Co(OH) 2
优选地,所述壳层质量占所述前驱体总质量的0.2wt%-1wt%。
优选地,所述前驱体的二次粒度D10≥1.5μm、D50=2-18μm、D90≤45μm,粒度分布 (D90-D10)/D50≤1。
优选地,所述前驱体的001晶面半峰宽为0.2-0.5,101晶面半峰宽为0.3-0.8,001/101的半峰宽比值为0.8-1.2。
上述表面包覆型锂离子电池正极材料前驱体的制备方法,包括以下步骤:
(1)按照化学计量比,配制金属离子总浓度为90-120g/L的含镍锰以及掺杂元素的混合盐溶液;
(2)向反应釜中加入纯水作为底液,然后加入络合剂,控制底液中络合剂浓度为2-6g/l;
(3)向反应釜中通入氮气,然后将含镍锰以及掺杂元素的混合盐溶液、沉淀剂、络合剂加入反应釜中进行搅拌反应,控制反应过程中的pH为12-13;
(4)向反应釜中加入CoSO 4和氨水溶液继续反应,反应过程中的pH控制为11-12,反应结束后过滤、洗涤、烘干得到表面包覆型锂离子电池正极材料前驱体。
优选地,所述络合剂为浓度为120-140g/L的氨水,所述沉淀剂为浓度为320-400g/L的氢氧化钠溶液。
优选地,步骤(3)中,混合金属盐和沉淀剂的摩尔比为1.96-2.03,混合金属盐溶液和络合剂的摩尔比为0.5-0.8;
反应的温度为40-80℃,反应的时间为30-50h。
优选地,步骤(4)中,反应的温度为40-60℃,反应的时间为10-30min。
与现有技术相比,本发明的优点在于:
(1)本发明中的表面包覆型锂离子电池正极材料前驱体为核壳结构,以不含钴的基体作为内核,在内核的外部设有Co(OH) 2壳层,该壳层进一步弥补了内核去除钴元素引起的循环性能和倍率性能的衰减缺陷,通过内核无钴、壳层有钴的形式,还可明显降低钴的添加量,极大降低生产成本,同时,还能保证其所得正极材料具有良好的循环性能和倍率性能。
(2)本发明中的表面包覆型锂离子电池正极材料前驱体,通过在前驱体生产阶段掺杂Al、Zr、W、Y,掺杂元素分布更为均匀,有利于提高材料的循环性能。
(3)本发明的制备方法首先采用共沉淀制备前驱体基体,通过络合剂、与盐形成络合物,然后与沉淀剂反应生产球形前驱体基体,然后加入包覆剂并调节pH至11-12,利用快速沉淀法使CoSO 4形成絮状包覆物质,在搅拌状态下将该絮状物迅速包覆在前驱体表面,此包覆方法操作简单,相比固相包覆法包覆效果更加均匀。
附图说明
图1为实施例1制得的表面包覆型锂离子电池正极材料前驱体的粒度分布图。
图2为实施例1制得的表面包覆型锂离子电池正极材料前驱体在20000倍电镜下的示意 图。
图3为实施例1制得的表面包覆型锂离子电池正极材料前驱体在50000倍电镜下的示意图。
图4为实施例2制得的表面包覆型锂离子电池正极材料前驱体的粒度分布图。
图5为实施例2制得的表面包覆型锂离子电池正极材料前驱体在20000倍电镜下的示意图。
图6为实施例2制得的表面包覆型锂离子电池正极材料前驱体在50000倍电镜下的示意图。
图7为对比例1制得的表面包覆型锂离子电池正极材料前驱体的粒度分布图。
图8为对比例1制得的表面包覆型锂离子电池正极材料前驱体在20000倍电镜下的示意图。
图9为对比例1制得的表面包覆型锂离子电池正极材料前驱体在50000倍电镜下的示意图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
一种表面包覆型锂离子电池正极材料前驱体,为核壳结构,由内核Ni 0.8Mn 0.15Zr 0.05(OH) 2与包覆在内核表面的壳层Co(OH) 2组成,壳层Co(OH) 2质量占前驱体质量的0.6wt%,如图1所示,该前驱体的二次粒度D10=9.24μm、D50=13.5μm、D90=19.89μm,粒度分布(D90-D10)/D50=0.78;该前驱体的001晶面半峰宽为0.4,101晶面半峰宽为0.45,半峰宽比值为0.88;振实密度为2.02g/cm 3,比表面积为14m 2/g,松装密度为1.75g/cm 3
本实施例的表面包覆型锂离子电池正极材料前驱体的制备方法,包括以下步骤:
(1)按照Ni 0.8Mn 0.15Zr 0.05(OH) 2的化学计量比,配制镍锰锆金属离子总浓度为110g/L的可溶性混合盐溶液;
(2)在100L反应釜中加入40L纯水作为反应釜底液,往反应釜底液中泵入160g浓度为120g/L的氨水,调节底液的氨水浓度为4g/L;
(3)向反应釜通入纯度为99.5%的氮气,同时开启反应釜的搅拌装置,反应釜温度控制55℃,再将步骤(1)配制的混合盐溶液和320g/L的氢氧化钠溶液、120g/L的氨水同时加入反应釜中进行反应45h,其中,混合盐溶液的流量为90mL/min,混合盐中的金属总摩尔与氢氧化钠的摩尔比控制为1.99,混合盐中的金属与氨水的摩尔比控制为0.5,整个反应体系的pH值控制为12.2;
(4)反应达到目标粒度13.4μm后,按照氢氧化钴占前驱体质量的0.6wt%,添加硫酸钴溶液和氨水溶液进行反应,反应温度为50℃,pH为11.5,反应20min后,将浆料从反应釜底部溢流口放出,收集到的物料通过离心机并利用纯水和液碱洗涤,洗涤温度控制为70℃,直至pH<10;
(5)将步骤(4)得到的洗涤物料通过热风烘箱干燥,干燥温度为110℃,烘干后的物料水分<1%,烘干后的物料经过325目筛网筛分,得到表面包覆型锂离子电池正极材料前驱体,其度分布图如图1所示,扫描电镜图如图2和图3所示。
实施例2:
一种表面包覆型锂离子电池正极材料前驱体,为核壳结构,由内核Ni 0.9Mn 0.08Al 0.02(OH) 2与包覆在内核表面的壳层Co(OH) 2组成,壳层Co(OH) 2质量占前驱体质量的0.4wt%;该前驱体的二次粒度D10=2.2μm,D50=3.5μm,D90=5.3μm,粒度分布(D90-D10)/D50=0.88。001晶面半峰宽为0.4,101晶面半峰宽为0.6,振实密度为1.77g/cm 3,比表面积为12m 2/g,松装密度为1.25g/cm 3
本实施例的表面包覆型锂离子电池正极材料前驱体的制备方法,包括以下步骤:
(1)按照Ni 0.9Mn 0.08Al 0.05(OH) 2的化学计量比,配制镍锰锆金属离子总浓度为100g/L的可溶性混合盐溶液;
(2)在100L反应釜中加入40L纯水作为反应釜底液,往反应釜底液中泵入140g浓度为120g/L的氨水,调节底液的氨水浓度为4g/L;
(3)向反应釜通入纯度为99.5%的氮气,同时开启反应釜的搅拌装置,反应釜温度控制55℃,再将步骤(1)配制的混合盐溶液和浓度为320g/L的氢氧化钠溶液、120g/L的氨水同时加入反应釜中进行反应38h,混合盐溶液的流量为90mL/min,混合盐中的金属总摩尔与氢氧化钠的摩尔比控制为1.99,混合盐中的金属与氨水的摩尔比控制为0.5,整个反应体系的pH值控制为12.2;
(4)反应达到目标粒度3.4μm后,按照氢氧化钴占前驱体质量的0.4wt%,硫酸钴溶液和氨水溶液进行反应,反应温度为50℃,pH为11.5,反应20min后,将浆料从反应釜底部溢流口放出,收集到的物料通过离心机并利用纯水和液碱洗涤,洗水温度控制为70℃,直至 洗水pH<10;
(5)将步骤(4)得到的洗涤物料通过热风烘箱干燥,干燥温度为110℃,烘干后的物料水分<1%,烘干后的物料经过325目筛网筛分得到表面包覆型锂离子电池正极材料前驱体,其度分布图如图4示,扫描电镜图如图5和图6所示。
对比例1:
本对比例的正极材料前驱体,分子式Ni 0.9Co 0.08Al 0.02(OH) 2,该前驱体的二次粒度D 10=2.1μm、D 50=3.9μm、D 90=5.8μm;粒度分布(D 90-D 10)/D 50=0.94,振实密度为1.9g/cm 3,比表面积为8.8g/cm 3,松装密度为1.4g/cm 3
本对比例的三元正极材料前驱体的制备方法,包括以下步骤:
(1)按照Ni 0.9Co 0.08Al 0.02(OH) 2的化学计量比配制镍钴铝金属离子总浓度为110g/L的可溶性混合盐溶液;
(2)在100L反应釜中加入50L纯水作为反应釜底液,往反应釜底液中泵入140g浓度为120g/L的氨水,调节底液的氨水浓度为4g/L;
(3)向反应釜通入纯度为99.5%的氮气,同时开启反应釜的搅拌装置,反应釜温度控制55℃,再将步骤(1)配制的混合盐溶液和浓度为320g/L的氢氧化钠溶液、120g/L的氨水同时加入反应釜中进行反应38h,混合盐溶液的流量为90ml/min,混合盐与氢氧化钠的金属摩尔比控制为1.98,混合盐与氨水的金属摩尔比控制为0.5,整个反应体系的pH值控制为12.3;
(4)反应结束后,将浆料从反应釜底部溢流口放出,收集到的物料通过离心机,并通过离心机利用纯水和液碱洗涤,洗水温度控制为70℃,直至洗水pH<10;
(5)将步骤(4)得到的洗涤物料通过热风烘箱干燥,干燥温度为110℃,烘干后的物料水分<1%,烘干后的物料经过325目筛网筛分得到正极材料前驱体,其粒径分布图如图7所示,电镜图如图8和图9所示。
将实施例1、实施例2和对比例制备的前驱体制备得到的正极材料,制成以金属锂片为负极的扣式电池进行评价测试,进一步组装成制成扣式电池,在3-4.3V电压下进行1C充放电测试,其电化学性能如表1所示,由表1的实验数据可知,本发明在正极材料表面外部设有Co(OH) 2壳层,可以弥补了内核去除钴元素引起的循环性能和倍率性能的衰减缺陷,保证其具有良好的循环性能和倍率性能。
表1实施例1和对比例的前驱体材料的电化学性能
Figure PCTCN2022122137-appb-000001
Figure PCTCN2022122137-appb-000002

Claims (8)

  1. 一种表面包覆型锂离子电池正极材料前驱体,其特征在于,所述锂离子电池正极前驱体为核壳结构,该核壳结构由内核与包覆在内核表面的壳层组成,所述内核为Ni xMn yM z(OH) 2,其中,0.8≤x<1,0<y<0.2,0<z<0.2,M为掺杂元素,掺杂元素M为Al、Zr、W、Y中的一种或多种,所述壳层为Co(OH) 2
  2. 如权利要求1所述的表面包覆型锂离子电池正极材料前驱体,其特征在于,所述壳层质量占前驱体总质量的0.2wt%-1wt%。
  3. 如权利要求1所述的表面包覆型锂离子电池正极材料前驱体,其特征在于,所述前驱体的二次粒度D10≥1.5μm、D50=2-18μm、D90≤45μm,粒度分布(D90-D10)/D50≤1。
  4. 如权利要求1-3中任一项所述的表面包覆型锂离子电池正极材料前驱体,其特征在于,所述前驱体的001晶面半峰宽为0.2-0.5,101晶面半峰宽为0.3-0.8,001/101的半峰宽比值为0.8-1.2。
  5. 一种如权利要求1-4中任一项所述的表面包覆型锂离子电池正极材料前驱体的制备方法,其特征在于,包括以下步骤:
    (1)按照化学计量比,配制金属离子总浓度为90-120g/L的含镍锰以及掺杂元素M的混合盐溶液;
    (2)向反应釜中加入纯水作为底液,然后加入氨水,控制底液中氨水浓度为2-6g/L;
    (3)向反应釜中通入氮气,然后将步骤(1)配制的混合盐溶液、沉淀剂、氨水加入反应釜中进行搅拌、反应,控制反应过程中体系的pH为12-13;
    (4)向反应釜中加入CoSO 4和氨水继续反应,反应过程中体系的pH控制为11-12,反应结束后过滤、洗涤、烘干,得到表面包覆型锂离子电池正极材料前驱体。
  6. 如权利要求5所述的制备方法,其特征在于,所述氨水的浓度为100-140g/L,所述沉淀剂为320-400g/L的氢氧化钠溶液。
  7. 如权利要求5所述的制备方法,其特征在于,步骤(3)中,混合盐溶液中的金属元素和沉淀剂的摩尔比为1.96-2.03,混合盐溶液中的金属元素和氨水的摩尔比为0.5-0.8;反应的温度为40-80℃,反应的时间为30-50h。
  8. 如权利要求5所述的制备方法,其特征在于,步骤(4)中,反应的温度为40-60℃,反应的时间为10-30min。
PCT/CN2022/122137 2021-08-06 2022-09-28 一种表面包覆型锂离子电池正极材料前驱体及其制备方法 WO2023011672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110903857.4 2021-08-06
CN202110903857.4A CN113620354B (zh) 2021-08-06 2021-08-06 一种表面包覆型锂离子电池正极材料前驱体及其制备方法

Publications (1)

Publication Number Publication Date
WO2023011672A1 true WO2023011672A1 (zh) 2023-02-09

Family

ID=78383297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122137 WO2023011672A1 (zh) 2021-08-06 2022-09-28 一种表面包覆型锂离子电池正极材料前驱体及其制备方法

Country Status (2)

Country Link
CN (1) CN113620354B (zh)
WO (1) WO2023011672A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991507A (zh) * 2023-03-01 2023-04-21 宁波容百新能源科技股份有限公司 一种正极前驱体及其制备方法和应用
CN116314731A (zh) * 2023-05-24 2023-06-23 浙江帕瓦新能源股份有限公司 钠离子电池正极材料及其前驱体、制备方法和应用
CN117069162A (zh) * 2023-09-11 2023-11-17 浙江煌能新能源科技有限公司 一种掺杂包覆的钠电池正极材料、其制备方法及用途

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620354B (zh) * 2021-08-06 2023-04-07 巴斯夫杉杉电池材料有限公司 一种表面包覆型锂离子电池正极材料前驱体及其制备方法
CN114975983B (zh) * 2022-05-06 2024-06-18 四川新锂想能源科技有限责任公司 高镍低钴材料及其制备方法、电池正极
CN115028215A (zh) * 2022-07-08 2022-09-09 浙江帕瓦新能源股份有限公司 一种钠离子电池前驱体材料、正极材料以及制备方法
CN115159593B (zh) * 2022-09-05 2023-05-12 中南大学 元素掺杂及钴原位包覆的前驱体材料及其制备方法、正极材料
CN115710024A (zh) * 2022-10-24 2023-02-24 天津巴莫科技有限责任公司 核壳结构前驱体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436663A (zh) * 2008-12-17 2009-05-20 厦门大学 锂离子电池复合正极材料及其制备方法
CN103178259A (zh) * 2013-02-04 2013-06-26 湖南桑顿新能源有限公司 一种包覆钴的锂离子电池正极材料制备方法
US20170317344A1 (en) * 2014-10-30 2017-11-02 Institute Of Process Engineering, Chinese Academy Of Sciences Nickel lithium ion battery positive electrode material having concentration gradient, and preparation method therefor
CN112164790A (zh) * 2020-08-27 2021-01-01 荆门市格林美新材料有限公司 包覆型锂电池用前驱体、锂电池正极材料及其制备方法
CN113620354A (zh) * 2021-08-06 2021-11-09 湖南杉杉能源科技有限公司 一种表面包覆型锂离子电池正极材料前驱体及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3356628B2 (ja) * 1996-06-19 2002-12-16 株式会社田中化学研究所 アルカリ蓄電池用のβ−水酸化コバルト層で覆われた水酸化ニッケル及びその製造法
CN103359795A (zh) * 2012-04-06 2013-10-23 协鑫动力新材料(盐城)有限公司 钴包覆的锂离子电池正极材料前驱体及制备方法和应用
CN109216678B (zh) * 2018-09-12 2020-08-04 陕西红马科技有限公司 一种包覆磷酸钴锂的富镍三元材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436663A (zh) * 2008-12-17 2009-05-20 厦门大学 锂离子电池复合正极材料及其制备方法
CN103178259A (zh) * 2013-02-04 2013-06-26 湖南桑顿新能源有限公司 一种包覆钴的锂离子电池正极材料制备方法
US20170317344A1 (en) * 2014-10-30 2017-11-02 Institute Of Process Engineering, Chinese Academy Of Sciences Nickel lithium ion battery positive electrode material having concentration gradient, and preparation method therefor
CN112164790A (zh) * 2020-08-27 2021-01-01 荆门市格林美新材料有限公司 包覆型锂电池用前驱体、锂电池正极材料及其制备方法
CN113620354A (zh) * 2021-08-06 2021-11-09 湖南杉杉能源科技有限公司 一种表面包覆型锂离子电池正极材料前驱体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO SHAOHUA, HE XIANGMING, ZENG QINGXUAN, JIANG CHANGYIN, WAN CHUNRONG: "Preparation and electrochemical properties of spherical LiMn2O4 surface doped with cobalt", NEW CHEMICAL MATERIALS, vol. 35, no. 3, 31 March 2007 (2007-03-31), pages 34 - 36, XP093031868 *
LI YONGGUANG, LIU GEN-HAO: "Study on the Coating of Cobalt Hydroxide on the Ternary Precursor Ni0.82Co0.12Mn0.06(OH)2 ", DIANCHI-GONGYE = CHINESE BATTERY INDUSTRY, ZHONGGUO DIANCHI GONGYE XUEHUI, CN, vol. 24, no. 6, 31 December 2020 (2020-12-31), CN , XP093031862, ISSN: 1008-7923 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991507A (zh) * 2023-03-01 2023-04-21 宁波容百新能源科技股份有限公司 一种正极前驱体及其制备方法和应用
CN116314731A (zh) * 2023-05-24 2023-06-23 浙江帕瓦新能源股份有限公司 钠离子电池正极材料及其前驱体、制备方法和应用
CN116314731B (zh) * 2023-05-24 2023-08-15 浙江帕瓦新能源股份有限公司 钠离子电池正极材料及其前驱体、制备方法和应用
CN117069162A (zh) * 2023-09-11 2023-11-17 浙江煌能新能源科技有限公司 一种掺杂包覆的钠电池正极材料、其制备方法及用途
CN117069162B (zh) * 2023-09-11 2024-03-05 浙江煌能新能源科技有限公司 一种掺杂包覆的钠电池正极材料、其制备方法及用途

Also Published As

Publication number Publication date
CN113620354A (zh) 2021-11-09
CN113620354B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2023011672A1 (zh) 一种表面包覆型锂离子电池正极材料前驱体及其制备方法
US11345609B2 (en) High voltage lithium nickel cobalt manganese oxide precursor, method for making the same, and high voltage lithium nickel cobalt manganese oxide cathode material
CN107324405B (zh) 一种镍钴锰酸锂材料前驱体及其制备方法、以及由该前驱体制备的锂离子电池
CN108428862B (zh) 铝包覆三元掺锆复合材料、复合正极材料及其制备和在锂离子电池中的应用
CN110518219A (zh) 核壳结构高镍梯度镍钴锰铝四元正极材料及制备方法
CN106910887B (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN102013481A (zh) 一种球形梯度富锂正极材料的合成方法
WO2024066892A1 (zh) 富锰氧化物前驱体及其制备方法和应用
CN116588994B (zh) 钠离子电池正极前驱体、钠离子电池正极材料及其制备方法和钠离子电池
CN111029561A (zh) 三元锂电正极材料前驱体及其制备方法、三元锂电正极材料及制备方法和用途
CN111592053A (zh) 一种镍基层状锂离子电池正极材料及其制备方法与应用
CN115403074B (zh) 一种高镍型镍钴锰酸锂前驱体及其制备方法
CN113603159A (zh) 一种多层铝掺杂的镍钴锰前驱体及其制备方法
CN113555538A (zh) 无碳高容量正极材料及其制备方法
CN114583141A (zh) 一种三层结构的前驱体材料及其制备方法、正极材料
CN114835173A (zh) 一种正极材料前驱体及其制备方法和正极材料
CN116565182A (zh) 钠离子电池复合正极材料及其制备方法、正极极片和钠离子电池
CN113603158A (zh) 一种无钴正极材料前驱体及其制备方法
CN111106345A (zh) 一种微晶细化的镍钴锰复合氢氧化物及使用其制备的三元正极材料
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN112479266A (zh) 一种具有表面大颗粒堆积结构的球形ncm811正极材料的制备方法
CN109678217B (zh) 高振实密度的Ni0.8Co0.1Mn0.1(OH)2材料的制备方法及应用
CN112978809A (zh) 一种核壳结构铝掺杂镍钴锰正极材料前驱体及其制备方法
CN114560510B (zh) 一种改性7系三元正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE