WO2021114091A1 - 一种基于离子液体的均相催化剂和非均相催化剂、其制备方法及应用 - Google Patents

一种基于离子液体的均相催化剂和非均相催化剂、其制备方法及应用 Download PDF

Info

Publication number
WO2021114091A1
WO2021114091A1 PCT/CN2019/124322 CN2019124322W WO2021114091A1 WO 2021114091 A1 WO2021114091 A1 WO 2021114091A1 CN 2019124322 W CN2019124322 W CN 2019124322W WO 2021114091 A1 WO2021114091 A1 WO 2021114091A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
salt
reaction
ethyl
catalyst
Prior art date
Application number
PCT/CN2019/124322
Other languages
English (en)
French (fr)
Inventor
石磊
郭建军
李新
刘铭玉
Original Assignee
沈阳化工大学
山东石大胜华化工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳化工大学, 山东石大胜华化工集团股份有限公司 filed Critical 沈阳化工大学
Priority to EP19934376.5A priority Critical patent/EP3950123B1/en
Publication of WO2021114091A1 publication Critical patent/WO2021114091A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0279Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the cationic portion being acyclic or nitrogen being a substituent on a ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0282Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aliphatic ring, e.g. morpholinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0298Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature the ionic liquids being characterised by the counter-anions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification

Definitions

  • This application belongs to chemistry and chemical engineering, the synthesis of high-purity lithium battery electrolytes. Specifically, it relates to a method for synthesizing a new type of strong alkaline ionic liquid and a rivet-type immobilization method of the new type of ionic liquid, and the prepared heterogeneous catalyst Used in the catalytic synthesis of ethyl methyl carbonate.
  • EMC Ethyl methyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • Almost all organic solvents are miscible and can be used as carbonylation or alkylation reagents in organic synthesis reactions.
  • EMC has high oxygen content, low toxicity, low long-term accumulation in organisms, and low solubility in water. It is considered an environmentally friendly chemical and a promising gasoline additive that can increase gasoline octane. Instead of methyl tertiary butyl ether (MTBE), reduce the emission of solid particles and nitrogen oxides in automobile exhaust.
  • MTBE methyl tertiary butyl ether
  • EMC flash point is 26.7°C, which is much higher than the average flash point of gasoline (-20°C).
  • the addition of EMC to gasoline can significantly improve the safety of storage and transportation.
  • EMC is more important and widely used as an excellent lithium ion battery electrolyte solvent.
  • EMC has small steric hindrance and asymmetry in structure, and it is easy to form a double-ion structure with lithium ions, which is equivalent to solvating lithium ions, thereby assisting in increasing the solubility of lithium ions and increasing the capacity density and power of the battery; in physical properties
  • EMC has excellent thermal conductivity and low electrical resistance. The battery itself generates low heat and can be dissipated in time during use.
  • EMC has structural stability in the electrochemical environment, and the solvation-like intermediates generated with lithium ions are very stable, and are not easy to decompose to produce combustible gases (such as methane), which can increase the number of charging and discharging of the battery, thereby prolonging the service life of the battery; EMC freezing point It is -14°C and boiling point 107°C.
  • EMC synthesis methods mainly include phosgene method, oxidative carbonylation method and transesterification method, but battery-grade EMC is mainly prepared by transesterification method.
  • the industry mainly uses strong basic sodium methoxide as a catalyst, and uses catalytic distillation to achieve product separation.
  • Sodium methoxide has high catalytic activity, but it is sensitive to water and is easy to deactivate.
  • the sodium salt produced by the reaction has relatively high solubility in carbonate. Low, easy to precipitate, resulting in the catalyst cannot be recycled, and it is difficult to separate, a small amount of residue will lead to a decrease in the purity of the EMC produced, and the strong alkaline solid waste produced will pollute the environment.
  • soluble strong bases include potassium hydroxide or sodium hydroxide, etc.; medium-strength bases or weak bases, such as potassium carbonate, sodium carbonate or potassium fluoride, etc.
  • strong organic bases such as sodium ethoxide or sodium tert-butoxide
  • soluble strong bases include potassium hydroxide or sodium hydroxide, etc.
  • medium-strength bases or weak bases such as potassium carbonate, sodium carbonate or potassium fluoride, etc.
  • weak bases such as potassium carbonate, sodium carbonate or potassium fluoride
  • Ionic liquids have the characteristics of low vapor pressure, strong solubility, good thermal stability, and reusability. Therefore, they have received widespread attention.
  • the current EMC synthesis research mainly focuses on alkyl imidazole salt ionic liquids, including those with different anion and cation structures.
  • Imidazole salt ionic liquid such as 1,3-dimethylimidazole chloride salt ([Mmim]Cl), 1-ethyl-3-methylimidazole chloride salt ([Emim]Cl), 1-butyl-3- Methylimidazole chloride salt ([Bmim]Cl); 1-ethyl-3-methylimidazole bromide ([Emim]Br), 1-butyl-3-methylimidazole bromide ([Bmim]Br), 1-Butyl-2-ethyl-3-methylimidazole bromide [Bemim]Br, 1-butyl-2-propyl-3-methylimidazole bromide ([Bpmim]Br); 1,3- Dimethylimidazole iodide salt ([Mmim]I), 1-ethyl-3-methylimidazole iodide salt ([Emim]I), 1-butyl-3-methylimidazole iodide salt ([
  • alkyl imidazole salt ionic liquids currently reported in the literature for EMC synthesis have the disadvantages of low activity, long reaction time, and high reaction concentration.
  • the fundamental reason is that the halogen or acetate anion has weak nucleophilicity. .
  • Literatures or patents have also reported nitrates, soluble salts containing lanthanum, titanates, and organotin compounds and other Lewis acid homogeneous catalysts, such as Mg(NO 3 ) 2 , La(NO 3 ) 3 , LaCl 3 , Ti(OBu) 4 , Ti(OPh) 4 or Bu 2 SnO, etc.
  • Lewis acid homogeneous catalysts such as Mg(NO 3 ) 2 , La(NO 3 ) 3 , LaCl 3 , Ti(OBu) 4 , Ti(OPh) 4 or Bu 2 SnO, etc.
  • such homogeneous catalysts will slowly decompose in the process of catalyzing the carbonate exchange, such as releasing products such as NOx, Cl -1 or butanol, resulting in a decrease in the purity of ethyl methyl carbonate.
  • heterogeneous catalysts such as ion exchange resins; metal oxides and composite oxides, such as MgO, CaO, MgO-Al2O3, Mg-Al- Ot-Bu or AlPO, etc.; basic molecular sieve or MOFs materials, such as Al-Zn-MCM-41, ZIF-8 or ZIF-67, etc.
  • the super acidic resin Nafion SAC-13 is a copolymer of tetrafluoroethylene and perfluoro-3,6-dioxa-4-methyl-7-octenesulfonyl fluoride, due to the strong electron withdrawing group of -CF2CF2SO3H
  • the ability results in the sulfonic acid group with super acidity, and its catalytic activity is high, reaching 61% DMC conversion rate and 52% EMC yield, which is close to Lewatit K1221.
  • strong basic ion exchange resins have higher catalytic activity, they are similar to potassium hydroxide catalysts, and their hydroxyl groups are easily lost and the catalyst deactivates faster. Both resin catalysts cannot be used industrially.
  • Yang Yanzhao et al. used AlCl 3 ⁇ 6H 2 O and ammonia as the main raw materials to synthesize ⁇ -Al 2 O 3 catalyst by the precipitation method.
  • the catalyst addition amount is 7wt%
  • nDMC/nDEC 1/ 1.
  • the EMC yield can reach 63.6%, the reaction temperature is too high, and the catalytic efficiency is low.
  • Shen et al. studied the use of self-made solid bases such as MgO, ZnO, La 2 O 3 , CeO 2 for the transesterification reaction of DMC and DEC in the gas phase and liquid phase systems.
  • [58] used aluminum isopropoxide and magnesium nitrate as the main raw materials to synthesize the mesoporous magnesium aluminum spinel MgAl2O4 (MAO) catalyst by evaporation-induced self-assembly method, nDMC/nDEC 1/1, reaction at 103°C for 0.5h , The catalyst is added 5wt%.
  • Chen et al. [59] synthesized an acid-base bifunctional mesoporous material MgO-Al2O3-SBA-15 by mixing unfired SBA-15 (mesoporous silica), magnesium nitrate and aluminum nitrate and then calcining at high temperature.
  • n DMC /n DEC 1/1, reacting at 104°C for 4 hours, adding 4wt% of the catalyst, the EMC yield reaches 46.1%.
  • Wang et al. [32] prepared a magnetic Mg-Fe binary composite oxide catalyst by a co-precipitation method, nDMC/nDEC 1/1, reacted at 100°C for 1.5 hours, and the amount of catalyst added was 1wt%.
  • the MgFe-400 catalyst can achieve 51% EMC Product yield.
  • ZIF is the zeolite imidazole ester skeleton
  • n DMC /n DEC 1/1, reacted at 100°C for 7 hours
  • the catalyst addition amount was 1.0 wt. %, when ZnCo/NC-600 is used as a catalyst, the EMC yield is 51.5%.
  • n DMC /n DEC 1/1, reacted at 100°C for 3 hours, adding 1 wt% of catalyst: ZIF-8 showed the best catalytic effect, and the EMC yield was 50.7%.
  • Yang et al. [31] used 2-methylimidazole and cobalt nitrate hexahydrate as the main raw materials to synthesize the zeolite imidazole skeleton ZIF-67 (Co(MeIm) 2 ).
  • n DMC /n DEC 1/1, react at 100°C for 24 hours, and add 2wt% of catalyst: when using ZIF-8 catalyst, the EMC yield is 50.32%; ZIF-67 has higher catalytic activity, and the EMC yield is as high as 83.39%.
  • the heterogeneous catalysts currently reported in the literature or patents all have a high reaction temperature, generally higher than 100°C, and a long reaction time, generally higher than 5h. The essential reason is low catalytic activity.
  • the process of preparing ethyl methyl carbonate by catalytic distillation of dimethyl carbonate and ethanol needs to meet the requirements of 63.4-63.6°C to produce the azeotrope of dimethyl carbonate and methanol at the top of the tower.
  • the temperature of the bottom of the tower is maintained at about 75-80°C, and the raw materials are from the top of the tower.
  • the time of falling into the bottom of the catalytic distillation tower is between 20-30 minutes. Therefore, it is necessary to ensure that the developed heterogeneous catalyst has high catalytic activity at 63-80°C, and the reaction equilibrium is reached within 30 minutes.
  • the current heterogeneous catalyst activity reported in the literature and patents is far lower than the demand for industrial applications.
  • a heterogeneous catalyst is provided.
  • the purpose of the present invention is to develop a new type of high temperature resistant and high stability strong base with a special structure in response to the problems of weak alkalinity, poor nucleophilicity or poor stability of strong alkaline ionic liquids and easy inactivation of ionic liquids reported in the literature or patents.
  • Ionic liquid A series of strongly basic ionic liquids developed for the transesterification reaction of dimethyl carbonate and ethanol, dimethyl carbonate and diethyl carbonate, and methanol and diethyl carbonate to synthesize high-purity ethyl methyl carbonate products.
  • reaction equilibrium can be reached after reacting at 76-78°C for 5 minutes, and it shows high catalytic activity even at near room temperature (30°C).
  • the synthesized ionic liquid was reused 20 times, and its catalytic activity remained basically unchanged, showing high stability.
  • the homogeneous catalyst is characterized in that the homogeneous catalyst comprises an ionic liquid; the ionic liquid comprises anions and cations;
  • Both the anion and the cation contain a nitrogen-containing heterocyclic ring
  • the cation has a structure represented by formula I or formula II;
  • the anion has a structure shown in formula III, formula IV or formula V;
  • R 1 and R 2 are independently selected from one of C1-C6 alkane groups, C2-C6 alkenyl groups, and C3-C6 aromatic hydrocarbon groups.
  • R 1 and R 2 are independently selected from one of -CH 3 , -CH 2 CH 3 , -(CH 2 ) 2 CH 3 , and -(CH 2 ) 3 CH 3 .
  • a method for preparing the homogeneous catalyst includes the following steps:
  • the solvent in the solution I is selected from at least one of ethanol, benzene, toluene, and xylene;
  • the base is an organic base or an inorganic base
  • the organic base includes sodium methoxide, sodium ethoxide or sodium tert-butoxide, potassium methoxide, potassium ethoxide or potassium tert-butoxide;
  • the inorganic base includes sodium hydroxide or potassium hydroxide
  • the ionic liquid anion metal salt is selected from at least one of ionic liquid anion Na salt and ionic liquid anion K salt.
  • the concentration of the ionic liquid anion source in the solution I is 0.05 to 0.8 g/mL;
  • the molar ratio of the ionic liquid anion source to the base is 0.9-1.1.
  • the ionic liquid anion source includes imidazole, pyrrole or morpholine.
  • step a1) the reaction conditions are: reaction at 50-80°C for 5-12 hours.
  • step a1) further includes: after the reaction is completed, removing the solvent in the reaction system to obtain an imidazole anion salt, a pyrrole anion salt or a morpholine anion salt.
  • the solvent includes a water-carrying agent
  • the water-carrying agent is selected from at least one of ethanol, benzene, toluene, and xylene;
  • the ionic liquid cationic salt is selected from the group consisting of 1-R 1 -3-methyl-imidazole bromide, 1-R 1 -3-methyl-imidazolium bromide, N-methyl-NR 2 -morpholine bromide, N -At least one of methyl-NR 2 -morpholine iodonium salts.
  • step a2) the ratio of the ionic liquid anionic metal salt to the solvent is 0.1-0.9:0.05-1.2 g/mL.
  • step a2) the reaction conditions are: reaction at 25-80° C. for 12-48 h.
  • step a2) further includes: after the reaction is completed, removing the solvent in the reaction system to obtain the ionic liquid.
  • the prepared strong alkaline ionic liquid is used to directly replace the soluble strong base such as sodium hydroxide or potassium hydroxide to promote the single or single or the like of ethyl orthosilicate, tetrabutyl titanate or aluminum metasilicate.
  • the mixed solution is hydrolyzed, and the ionic liquid is embedded in the framework of silicon dioxide, titanium dioxide, aluminum oxide or a single/multiple oxygen-containing compound with a specific structure, and does not introduce Na + or K + ions at all.
  • the prepared heterogeneous catalyst does not need to be calcined, and can be directly applied to the carbonate exchange reaction after drying/vacuum drying, showing excellent catalytic activity.
  • the ionic liquid matrix has a double nitrogen ring structure, it can be embedded in the network of -Si-O-, -Ti-O-, -Al-O- or composite oxygen-containing compound like a double-headed mountaineering cone, so the non-solid loading
  • the homogeneous catalyst exhibits high stability, and the active components of the strong alkaline ionic liquid are not easy to lose.
  • the heterogeneous catalyst is characterized in that the heterogeneous catalyst comprises an ionic liquid and a carrier;
  • the carrier embeds the ionic liquid in a riveting manner.
  • the ionic liquid includes anions and cations
  • the cation has a structure represented by formula I or formula II;
  • the anion has a structure shown in formula III, formula IV or formula V;
  • R 1 and R 1 are independently selected from one of C1-C6 alkanes, C2-C6 alkenes, and C3-C6 aromatic hydrocarbons.
  • the ionic liquid is embedded in the network of the carrier.
  • the carrier and the ionic liquid have at least one of the following forces: coupling effect and hydrogen bonding effect.
  • R 1 and R 2 are independently selected from one of -CH 3 , -CH 2 CH 3 , -(CH 2 ) 2 CH 3 and -(CH 2 ) 3 CH 3
  • the ratio of the weight content of the active ionic liquid to the carrier in the heterogeneous catalyst is 1%-30%: 10%-60%.
  • the carrier is selected from at least one of silicon dioxide, titanium dioxide, and aluminum oxide;
  • the ionic liquid is embedded in the network of the carrier.
  • the heterogeneous catalyst further includes a structure control agent; the ionic liquid is embedded in a complex network of the carrier and the structure control agent.
  • the structure control agent has divalent, trivalent or tetravalent, and forms a grid structure of the composite oxide together with the carrier, so that the environment embedded in the ionic liquid is improved, thereby enhancing the effect of the ionic liquid and the carrier composite oxide force.
  • the structure control agent includes at least one of Mg, Ca, Ba, La, Ce, Zr, Fe, Zn, Li, Cs, and Al.
  • the weight content of the structure control agent is 10%-60%.
  • a method for preparing the heterogeneous catalyst characterized in that it comprises the following steps:
  • step a) includes:
  • (1) Dissolve commercially purchased imidazole, pyrrole or morpholine in a certain amount of ethanol or benzene, toluene, xylene and other solvents, and slowly add equimolar organic or inorganic strong bases in a three-necked flask.
  • the inorganic strong bases include NaOH, KOH
  • strong organic bases include sodium methoxide, sodium ethoxide and sodium tert-butoxide, or potassium methoxide, potassium ethoxide and potassium tert-butoxide.
  • imidazole salt, pyrrole salt or morpholine salt After that, it is dried in a vacuum drying oven to a constant weight to prepare imidazole salt, pyrrole salt or morpholine salt.
  • the imidazole salt, pyrrole salt or morpholine salt obtained has Na or K cations, that is, imidazole Na or K salt, Pyrrole Na or K salt and morpholine Na or K salt.
  • the imidazole, pyrrole or morpholine ionic liquid has the following structure, the cation is 1-R-3-methyl-imidazole or N-methyl-NR-morpholine, wherein R is a normal or isomeric alkane , Olefin and aromatic structure; anion is imidazole, pyrrole or morpholine anion.
  • R -CH 3 , -CH 2 CH 3 , -(CH 2 ) 2 CH 3 and -(CH 2 ) 3 CH 3 and other alkane structures, alkenes, aromatics
  • the homogeneous catalyst is prepared according to any one of the methods described above.
  • the carrier precursor includes at least one of ethyl orthosilicate, tetrabutyl titanate, aluminum isopropoxide, and sodium metaaluminate.
  • the mixture in step b) further includes a solvent
  • the added amount of the solvent is 0.1 to 0.9;
  • the solvent includes at least one of methanol, ethanol, propanol, butanol, methyl acetate, and ethyl acetate.
  • step b)
  • the mass ratio of the carrier precursor, solvent, ionic liquid, and water is 0.2-0.8:0.03-0.4:0.1-0.4.
  • step b) after hydrolysis, aging at 40-120°C for 6-24 hours, washing and drying, to obtain the heterogeneous catalyst.
  • step b) the drying conditions are: 100-150°C vacuum drying for 2-6 hours.
  • step b) further includes:
  • the carrier precursor, the structure control agent precursor and the solvent are mixed, the ionic liquid is added, and the mixture is uniformly mixed, and then water is added for hydrolysis to obtain the heterogeneous catalyst.
  • the structure modifier precursor includes at least one of acetate, silicate, hydrochloride, and nitrate corresponding to the structure modifier.
  • the molar ratio of the carrier precursor, the structure control agent precursor, the solvent, the ionic liquid, and the water is 0.2-0.8:0.05-0.4:0.3-0.8:0.03-0.4:0.1-0.4.
  • step b) includes:
  • the carrier precursor, structure control agent and solvent are uniformly mixed, and then a certain amount of the above single or multiple ionic liquids are added, and after the mixing is uniform, 0.8-1.5 times the amount of water required by the theoretical calculation is added, and the hydrolysis temperature is controlled at 25-80°C In between, a uniform gel-like product is formed.
  • Ionic liquid not only plays the role of promoting hydrolysis, but also is the active component in the final heterogeneous catalyst.
  • the solid product is rinsed 3-5 times with the alcohol or ester solvent, in order to dissolve the ionic liquid attached to the surface. Finally, it was vacuum dried at 100-150°C for 2-6 hours to obtain a heterogeneous strong base catalyst for the caulking ionic liquid.
  • a transesterification reaction to prepare ethyl methyl carbonate characterized in that the catalyst in the transesterification reaction process contains an ionic liquid.
  • the catalyst is an ionic liquid or an ionic liquid-based heterogeneous catalyst
  • the ionic liquid is selected from the group consisting of 1-ethyl-3-methylimidazole acetate, 1-ethyl-3-methylimidazole chloride, 1-ethyl-3-methylimidazole bromide, 1-ethyl-3-methylimidazole Ethyl-3-methylimidazole iodide, 1-butyl-3-methylimidazole fluoroborate, 1-butyl-3-methylimidazole chloride, 1-butyl-3-methylimidazole bromide Salt, 1-butyl-3-methylimidazole iodide salt, 1,3-dimethylimidazole iodide salt, 1-ethyl-3-methylimidazole methoxide, 1-ethyl-3-methyl hydroxide Imidazole base, 1-ethyl-3-methylimidazole imidazole salt, 1-ethyl-3-methylimidazole pyrrole salt, 1-ethyl-3-methylimidazoline
  • the ionic liquid-based heterogeneous catalyst is selected from at least one of the heterogeneous catalysts described in any one of the above and the heterogeneous catalysts prepared according to the preparation method of any one of the above.
  • the transesterification reaction includes at least one of a transesterification reaction of dimethyl carbonate and ethanol, a transesterification reaction of dimethyl carbonate and diethyl carbonate, and a transesterification reaction of methanol and diethyl carbonate.
  • the conditions of the transesterification reaction are: the reaction equilibrium is reached after reacting at 76-78°C for 5 minutes.
  • [EmIm]Br refers to 1-ethyl-3-methylimidazole bromide.
  • [EmIm]Im refers to 1-ethyl-3-methylimidazole imidazole salt.
  • [EmIm]py” refers to 1-ethyl-3-methylimidazole pyrrole salt.
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • C1 to C6 refer to the number of carbon atoms contained.
  • C1-C6 alkane group refers to an alkane group containing 1 to 6 carbon atoms.
  • alkane group is a group formed by the loss of any hydrogen atom on the molecule of an alkane compound.
  • the alkane compound includes straight chain alkanes, branched chain alkanes, cycloalkanes, and branched cycloalkanes.
  • olefin group is a group formed by the loss of any hydrogen atom on the molecule of an olefin compound.
  • aromatic hydrocarbon group refers to a group formed by the loss of a hydrogen atom on the aromatic ring in the molecule of an aromatic compound; for example, a para-tolyl group formed by the loss of a hydrogen atom in the para position of the methyl group on the benzene ring of toluene.
  • the heterogeneous catalyst provided by this application is used for the transesterification reaction of dimethyl carbonate and ethanol, dimethyl carbonate and diethyl carbonate, and methanol and diethyl carbonate to synthesize high-purity ethyl methyl carbonate products, It exhibits extremely high reaction activity, and the reaction equilibrium can be reached after reacting at 76-78°C for 5 minutes, and it shows high catalytic activity even at near room temperature (30°C).
  • the heterogeneous catalyst provided in the present application has been used repeatedly for 20 times, and its catalytic activity is basically unchanged, showing high stability.
  • the heterogeneous catalyst provided by this application uses the prepared strong alkaline ionic liquid to directly replace the strong soluble base such as sodium hydroxide or potassium hydroxide to promote ethyl orthosilicate, tetrabutyl titanate or metasilicic acid Single or mixed solutions such as aluminum are hydrolyzed, and the ionic liquid is embedded in the framework of silicon dioxide, titanium dioxide, aluminum oxide or single/multiple oxygen-containing compounds with specific structures in a mosaic manner, and does not introduce Na + or K at all + Ion, the prepared heterogeneous catalyst does not need to be calcined, and can be directly applied to the carbonate exchange reaction after drying/vacuum drying, showing excellent catalytic activity.
  • the strong alkaline ionic liquid to directly replace the strong soluble base such as sodium hydroxide or potassium hydroxide to promote ethyl orthosilicate, tetrabutyl titanate or metasilicic acid
  • Single or mixed solutions such as aluminum are hydrolyzed, and the ionic liquid is embedded in
  • the ionic liquid matrix has a double nitrogen ring structure, it can be embedded in the network of -Si-O-, -Ti-O-, -Al-O- or composite oxygen-containing compound like a double-headed mountaineering cone, so the non-solid loading
  • the homogeneous catalyst exhibits high stability, and the active components of the strong alkaline ionic liquid are not easy to lose.
  • Figure 1 is the H-NMR spectrum of the [EmIm]Im ionic liquid synthesized in Example 1.
  • Fig. 2 is the C spectrum of [EmIm]Im ionic liquid synthesized in Example 1.
  • Figure 3 shows the H-NMR spectrum of the [EmIm]py ionic liquid synthesized in Example 1.
  • Figure 4 shows the C spectrum of the [EmIm]py ionic liquid synthesized in Example 1.
  • Figure 5 is a photo of fresh 1-butyl-3-methylimidazolepyrrole ionic liquid prepared.
  • Figure 6 is a photo of 1-butyl-3-methylimidazolepyrrole salt after repeated use 20 times.
  • Figure 7 shows the changes in the catalytic activity of ionic liquids with the number of repeated uses.
  • Figure 8 shows the 1-ethyl-3 methylimidazole imidazole ionic liquid immobilized catalyst prepared by the impregnation method.
  • Figure 9 shows the 1-ethyl-3 methylimidazole imidazole ionic liquid immobilized catalyst prepared by the embedding method.
  • Figure 10 shows the effect of different loading methods of 1-ethyl-3-methylimidazole imidazole ionic liquid on the carbonate exchange reaction.
  • Figure 11 shows the infrared spectra of ionic liquid catalysts supported by different methods.
  • Figure 12 is a SEM image of a solid-supported ionic liquid heterogeneous catalyst (Figure a is impregnated with 6g of ionic liquid catalyst; Figures b, c, and d are embedded and embedded 3g, 6g, and 12g ionic liquid catalysts, respectively).
  • Figure 13 shows the actual photos of ethyl orthosilicate-magnesium acetate-zinc acetate-sodium metaaluminate-1-ethyl-3-methylimidazolepyrrole during hydrolysis, after hydrolysis, after vacuum drying, and after roasting (A During the hydrolysis; B after hydrolysis; C after drying; D after roasting).
  • Figure 14 is an XRD pattern of ethyl orthosilicate-magnesium acetate-zinc acetate-sodium metaaluminate-1-ethyl-3-methylimidazolepyrrole after salt solution drying and roasting.
  • nuclear magnetic H spectrum analysis nuclear magnetic C spectrum analysis, infrared spectrum analysis, SEM analysis, and XRD analysis in the examples of the present application are all routine operations, and those skilled in the art can operate according to the instructions of the instrument.
  • DMC conversion rate (moles of EMC generated + moles of DEC generated)/(moles of unreacted DMC + moles of EMC generated + moles of DEC generated)
  • Ethanol (EtOH) conversion rate (moles of EMC generated + 2 * moles of DEC) / (moles of unreacted EtOH + moles of EMC + 2 * moles of DEC)
  • EMC selectivity mole of EMC/(mole of EMC+mole of DEC)
  • DEC selectivity moles of DEC / (moles of EMC + moles of DEC)
  • Table 1 shows the comparison of the activity of commercially purchased ionic liquids and laboratory-synthesized ionic liquids for transesterification of dimethyl carbonate and ethanol.
  • the catalyst evaluation conditions are: 46g ethanol and 90g dimethyl carbonate reaction materials (molar ratio 1:1) are uniformly mixed in a 250mL flask, magnetically stirred, the reaction system is heated to 76-78°C, and about 2.72g ions are added after the reflux is stable The mass of liquid and ionic liquid accounts for 2% of the mass of the reaction raw materials, and the reaction time is 30-240min.
  • the commercially purchased ionic liquids are: 1-ethyl-3-methylimidazole acetate, 1-ethyl-3-methylimidazole chloride, 1-ethyl-3-methylimidazole bromide, 1-ethyl-3-methylimidazole Ethyl-3-methylimidazole iodide, 1-butyl-3-methylimidazole fluoroborate, 1-butyl-3-methylimidazole chloride, 1-butyl-3-methylimidazole bromide Salt, 1-butyl-3-methylimidazole iodide salt, 1,3-dimethylimidazole iodide salt; the ionic liquid synthesized in the laboratory is: 1-ethyl-3-methylimidazole methoxide, hydroxide 1 -Ethyl-3-methylimidazole base, 1-ethyl-3-methylimidazole imidazole salt, 1-ethyl-3-methylimidazole pyrrole
  • Reaction conditions the molar ratio of raw materials DMC and EtOH is 1:1, the amount of catalyst added is 2wt%, and the reaction temperature is 76-78°C
  • 1-Butyl-3-methylimidazole pyrrole salt catalyst repeated use evaluation conditions 46g ethanol and 90g dimethyl carbonate reaction materials (molar ratio 1:1) are uniformly mixed in a 250mL flask, magnetically stirred, and the reaction system is heated When the temperature reaches 76-78°C, about 2.72g of 1-butyl-3-methylimidazolium pyrrole salt ionic liquid is added after the reflux is stable. The mass of the ionic liquid accounts for 2% of the mass of the reaction raw materials, and the reaction time is 30 minutes. After the reaction, the reaction materials, products and ionic liquid were rotary evaporated under reduced pressure at 110°C for 30 minutes.
  • the remaining liquid in the rotary steaming flask is 1-butyl-3-methylimidazole pyrrole salt catalyst, which is directly used for the next reaction evaluation.
  • the remaining ionic liquid in the rotary steaming flask was shown in FIG. 6, and compared with the color of the initial ionic liquid, the color was slightly yellow.
  • the change rule of the conversion rate of dimethyl carbonate and ethanol and the selectivity of ethyl methyl carbonate and diethyl carbonate with the number of repeated use is shown in Fig. 7.
  • the conversion rate of dimethyl carbonate is basically stable at about 60%
  • the conversion rate of ethanol is basically stable at about 70%
  • the selectivity of ethyl methyl carbonate is stable at 80%
  • the selectivity of diethyl carbonate is 20%.
  • the synthesized 1-butyl-3-methylimidazolepyrrole salt catalyst has good stability, and its activity is basically unchanged after 20 consecutive use.
  • the catalyst evaluation conditions are: 46g ethanol and 90g dimethyl carbonate reaction materials (molar ratio 1:1) are uniformly mixed in a 250mL flask, magnetically stirred, the reaction system is heated to 76-78°C, and the reflux is stabilized, and about 1.36g1- Ethyl-3-methylimidazolium imidazole salt ionic liquid, the mass of the ionic liquid accounts for 1% of the mass of the reaction raw material, and the reaction time is 30 minutes. 0.1% by weight of ferric oxide and 0.1% by weight of ferroferric oxide were added to the total weight of the catalyst, and 0.1% by weight of iron trichloride was added in another experiment.
  • reaction raw materials, products, ionic liquid, and ferric oxide, ferric oxide or ferric chloride are rotary steamed under reduced pressure at 110°C for 30 minutes.
  • the remainder (including liquid and solid) in the rotary steaming flask is directly used for the next reaction evaluation.
  • rust in the ionic liquid its activity changes with the number of uses as shown in Table 2.
  • Reaction conditions The molar ratio of DMC to EtOH is 1:1, the catalyst is equivalent to 1wt% of the reaction solution, 0.1wt% of ferric oxide and 0.1wt% of ferroferric oxide are added, and the reaction temperature is 76-78°C
  • ferric oxide and ferric oxide are insoluble in the solution.
  • the original catalyst is equivalent to 1wt% of the reaction solution, the reaction temperature is 76-78°C, and the reaction is at atmospheric pressure for 30 minutes.
  • the conversion rate of dimethyl carbonate decreases by about 4%
  • the conversion rate of ethanol decreases by about 11%. It shows that the addition of ferric chloride significantly reduces the activity of the prepared ionic liquid. When used repeatedly, the catalytic activity is significantly reduced, and when used repeatedly for the second time, the conversion rate of dimethyl carbonate and ethanol has been lower than 3%. It should be noted that the synthetic ionic liquid should eliminate the presence of iron ions in the industrialization process of preparing ethyl methyl carbonate and diethyl carbonate by transesterification of dimethyl carbonate and ethanol.
  • 1,3-dimethylimidazole pyrrole Using 1,3-dimethylimidazole pyrrole as a catalyst, 46g ethanol and 90g dimethyl carbonate reaction materials (molar ratio 1:1) were uniformly mixed in a 250mL flask, the catalyst mass was 0.136g, magnetic stirring, the reaction temperature was 30 °C, the results of 1min, 3min, 5min, 7min, 10min, 15min, 20min, 30min, 45min, 60min and 90min reaction are shown in Table 4. With 0.2% content of 1,3-dimethylimidazole pyrrole catalyst, the reaction temperature is 50°C, and the reaction results are shown in Table 5 for 1min, 2min, 3min, 4min, 5min, 6min, 7min, 8min, 10min, 20min and 30min. Show.
  • the content is only 0.1% and the reaction temperature is only 30°C, the conversion rate of dimethyl carbonate and ethanol gradually increases with the prolonged reaction time (1-90min), methyl ethyl carbonate The conversion rate of the ester is maintained above 90%, and the selectivity of diethyl carbonate is less than 10%. It shows that the prepared ionic liquid also has relatively good reactivity under low temperature conditions.
  • the conversion rates of DMC and DEC are approximately the same in different reaction time periods. As shown in Table 6, the conversion rate of DMC and DEC gradually increased with the extension of the reaction time, and when the reaction time exceeded 30 minutes, the conversion rate of the two reached more than 50%. When the reaction time exceeds 60 minutes, the conversion rate of DMC and DEC is stabilized at about 55%, and the reaction equilibrium is basically reached.
  • the mass fraction of DMC in the balance component is about 20%, the proportion of EMC is about 54%, and the mass fraction of DEC is about 25%.
  • 0.5wt% 1-ethyl-3 methylimidazole imidazole salt catalyzes the reaction between DMC and DEC and basically reaches the reaction equilibrium after 30 minutes, indicating that the synthesized ionic liquid also has the ability to efficiently catalyze the transesterification of DMC and DEC.
  • reaction temperature reaches 70-72°C
  • 0.45g catalyst ie 0.5% of the total mass of the reaction raw materials
  • the chromatographic analysis results are shown in Table 7 when the reaction is 5 min, 15 min, 30 min, 60 min, 120 min, 240 min, and 360 min.
  • the reaction of methanol and DEC is a step-by-step reaction.
  • the first step is the reaction of methanol and DEC to produce EMC and ethanol
  • Methanol and DEC conversion rate and EMC and DMC selectivity are shown in Table 7.
  • the reaction time prolonged the conversion rate of methanol and DEC gradually increased. Due to the relatively high proportion of methanol in the reaction system, the reaction temperature is lower than the transesterification reaction temperature of DMC and ethanol or DMC and DEC, resulting in slightly lower reaction efficiency.
  • the reaction equilibrium is basically reached, and the EMC selectivity is about 83% at this time.
  • silica carrier Add 30mL of tetraethyl orthosilicate and 21mL of ethanol into an Erlenmeyer flask, stir at room temperature for 10 minutes, heat to 60°C, and add 9mL 0.45mol/L NaOH or 0.5mol/mL hydrochloric acid solution. The ethyl acid is slowly hydrolyzed and hydrolyzed, and the system gradually solidifies. After aging for 12 hours at 60°C, it was washed three times with 50 mL ethanol and dried in vacuum at 150°C for 3 hours to obtain alkali/acid promoted hydrolysis silica support.
  • Ionic liquid immersion method Put 8g of pure carrier into a watch glass, turn on the ultrasonic in an ultrasonic device, and slowly drop 12g of 1-ethyl-3 methylimidazole imidazole ionic liquid into the carrier within 30 minutes at room temperature and stir continuously , After all the dripping is complete, stir for another 30min. Take out and dry at 120°C for 10 hours, wash with 50mL ethanol three times, and dry in vacuum at 150°C for 3 hours to obtain the impregnated ionic liquid.
  • Riveting embedding ionic liquid method Add 30mL of ethyl orthosilicate and 21mL of ethanol into the conical flask, and immediately add 3, 6, and 12g of 1-ethyl-3 methylimidazole imidazole ionic liquid after heating to 60°C. , Mix well and add 8.9g deionized water.
  • the 1-ethyl-3 methylimidazole imidazole ionic liquid acts as a base to promote the hydrolysis of ethyl orthosilicate, and at the same time is the active center of the carbonate exchange reaction.
  • the system quickly gelled. Aging at 60°C for 12 hours, drying at 120°C for 10 hours, washing with 50 mL ethanol three times, and vacuum drying at 150°C for 3 hours to obtain a heterogeneous catalyst supporting 3, 6 or 12 g of ionic liquid.
  • a fixed-bed reactor was used to evaluate the prepared heterogeneous catalyst.
  • the reaction conditions were as follows: the molar ratio of the reaction raw materials DMC to EtOH was 1:1, the reaction temperature was 76-78°C, the catalyst loading mass was 4g, and the mass space velocity of the reaction raw materials It is 1h -1 , that is, the raw material injection volume per hour is 4g.
  • the continuous evaluation time of each catalyst is 2300 minutes, and the chromatographic analysis results of the catalyst activity stable stage are shown in Table 8.
  • the heterogeneous catalysts in Table 8 are: alkali hydrolyzed silica support, acid hydrolyzed silica support, 12g potassium imidazole impregnated silica (the preparation method is the same as the ionic liquid impregnation method, the difference is that 12g potassium imidazole is used ), silicon dioxide embedded 12g imidazole potassium (the preparation method is the same as the embedded ionic liquid method, the difference is that 12g imidazole potassium is used), 12g imidazole pyrrole impregnated silica (the preparation method is the same as the ionic liquid impregnation method, the difference is 12g imidazole pyrrole), silicon dioxide embedded 12g imidazole pyrrole (the preparation method is the same as the embedded ionic liquid method, the difference is that 12g imidazole pyrrole is used), 12g morpholine imidazole impregnated silica (the preparation method is the same as the ionic liquid method) Liqui
  • the catalytic activity of the silica support after acid and alkali hydrolysis is less than 5%, indicating that the silica support alone has basically no ability to catalyze the transesterification of DMC and EtOH.
  • the catalytic activity of the silica impregnated with potassium imidazole is also less than 5%, which is similar to the support, indicating that the potassium imidazole impregnated in the silica pores is easily washed off by ethanol.
  • the catalytic activity of silica-embedded potassium imidazole can be stabilized at 20.99% DMC conversion rate and 23.24% EtOH conversion rate, indicating that even if potassium imidazole has a monocyclic structure, it can be relatively stably embedded in the grid-like structure of silica. If the bicyclic structure is embedded in the silica network, the conversion rate of raw materials DMC and EtOH is significantly higher than that of potassium imidazole, and is stable between 30% and 35%. However, the impregnated bicyclic structure was obviously washed away by ethanol, and the conversion rate of DMC and EtOH fluctuated between 5% and 10%. In summary, the embedding method exhibits superior catalytic activity and stability than the impregnation method, indicating that the developed ionic liquid immobilization method is a more reliable method for immobilizing active components than the conventional impregnation method.
  • the initial conversion rate of DMC and EtOH of the heterogeneous catalyst prepared by the impregnation method is close to 20%, but as the reaction time is prolonged, the deactivation is serious.
  • the reaction is 1000min, the conversion rate of the two drops to about 15%, and when the reaction is 2000min Below 10%, EMC selectivity rises from 85% to about 95%.
  • the 1-ethyl-3-methylimidazolium imidazole ionic liquid@silica catalyst prepared by the embedded embedding method has a conversion rate of DMC and EtOH of more than 60% in the initial stage of the reaction, and its activity is completely complete with time. There is no decrease, and even the conversion rate of ethanol has increased slightly, which fully shows that the catalyst prepared by the embedding method has good stability.
  • the reaction activity and product selectivity of the catalyst supported by the embedding method are also affected by the hydrolysis temperature, aging time, aging temperature and the amount of active components embedded.
  • Table 9 shows the changes of DMC and ethanol conversion rate and product selectivity under different catalyst preparation conditions.
  • the specific preparation method is the same as the riveting embedded ionic liquid method in Example 8, except that the aging time and the aging temperature are different, and the active component content is not used.
  • the hydrolysis temperature is 60°C
  • the aging temperature is 60°C
  • the aging time is 12h
  • the embedding mass is 12g
  • the prepared catalyst has the best activity.
  • the molar ratio of the raw materials DMC and EtOH is 1:1, the ionic liquid is 1-ethyl-3-methylimidazole imidazole, the reaction temperature is 76-78°C, the fixed bed catalyst loading amount is 4g, the mass space velocity is 1h -1 , and the reaction is 2300min
  • Figure 12 It can be seen in Figure 12 that the apparent morphology of Figure a is a striped structure, and Figure b shows the form of regular silica molecules.
  • the reason is that the amount of ionic liquid added is not enough to form a messy silane carrier and ionic liquid.
  • the structure of the complex The apparent morphology of the ionic liquid after embedding in Fig. c and d has undergone major changes. Disorderly small particles have gathered on the carrier, forming a complex of random silane carrier and ionic liquid, which further shows that the ionic liquid passes through the silane couple.
  • the co-action is successfully loaded on the carrier, and with the increase of the load, the cluster phenomenon becomes more obvious.
  • the SEM image fully shows that the ionic liquid synthesized by the embedding method is distributed in the dioxide network through the silane coupling effect. , Its microstructure is obviously different from the surface microstructure of silica.
  • the reaction material 1 refers to the reactant on the left of the'/'
  • the raw material 2 refers to the reactant on the right of the'/'
  • the product 1 refers to EMC
  • the product 2 refers to DEC or DMC.
  • Ethyl orthosilicate is used as a carrier to embed 1-ethyl-3-methylimidazole pyrrole salt ionic liquid.
  • the hydrolyzed precursor forms a completely uniform brown-yellow solid, and there is basically no liquid phase remaining in the system; as shown in 13C, the color of the dried gel mixture is obviously lighter than that of the hydrolyzed colloid. It is a light brown-yellow crunchy powder; as shown in Figure 13D, it is a photo of colloid C calcined at 550°C for 3 hours in an air atmosphere to obtain a brown powdery product.
  • the reaction material 1 refers to the reactant on the left of the'/'
  • the raw material 2 refers to the reactant on the right of the'/'
  • the product 1 refers to EMC
  • the product 2 refers to DEC.
  • the two catalysts C and D were used in the fixed-bed carbonate exchange reaction of dimethyl carbonate and ethanol and dimethyl carbonate and diethyl carbonate.
  • the mass space velocity of the raw materials was 1.5 h -1 , and the reaction results are shown in Table 11. Shown.
  • the prepared ethyl orthosilicate-magnesium acetate-zinc acetate-aluminum acetate-1-ethyl-3-methylimidazolepyrrole salt exhibited good carbonate exchange catalytic activity, and the catalyst activity after calcination was less than 3% , It fully shows that the synthesized ionic liquid is the active center of carbonate exchange, while silica and Mg 2+ , Zn 2+ and Al 3+ ions can only play the role of carrier and structure regulation.
  • the carrier can highly disperse 1-ethyl-3-methylimidazolepyrrole ionic liquid and improve the dispersibility of the ionic liquid; the metal cation acts as a structural regulator and can form a variety of four-coordination, three-coordination and two-coordination
  • the network structure or the mixed multi-coordination structure is more conducive to improving the embedding capacity of the ionic liquid and the stability of the immobilized ionic liquid.
  • Example 15 the X-ray diffraction spectra of the catalysts in FIGS. 13D and 13C are shown in FIG. 14.
  • the dried ethyl orthosilicate-magnesium acetate-zinc acetate-sodium metaaluminate-1-ethyl-3-methylimidazolepyrrole salt catalyst showed an amorphous structure, indicating that Al 3+ , Mg 2+ and Zn 2 + Ions enter the SiO 2 network; the structure of the catalyst calcined at 550°C for 3 hours is similar to that after drying, and there is no obvious peak of MgO, ZnO or Al 2 O 3 , which further illustrates the preparation of the catalyst by this method Al 3+ , Mg 2+ and Zn 2+ ions enter the SiO 2 network.
  • reaction raw material mass space velocity 0.2h -1 is 1:1
  • raw material molar ratio is 1:1
  • three kinds of carbonate exchange reaction results are shown in Table 11.
  • Different metal nitrate, silicate, sulfate or chloride precursors can also be used to effectively embed the ionic liquid, and the prepared ionic liquid solid-supported catalyst exhibits excellent reaction activity under low space velocity conditions.
  • the reaction material 1 refers to the reactant on the left of the'/'
  • the raw material 2 refers to the reactant on the right of the'/'
  • the product 1 refers to EMC
  • the product 2 refers to DEC or DMC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请公开了一种均相催化剂,所述均相催化剂包括离子液体;所述离子液体包括阴离子和阳离子;所述阴离子和阳离子均含有含氮杂环;所述阳离子具有式I或式II所示的结构;所述阴离子具有式III、式IV或式V所示的结构。含有该均相催化剂的非均相催化剂。所述均相催化剂和非均相催化剂的制备方法及其应用。该均相催化剂和非均相催化剂用于碳酸二甲酯与乙醇、碳酸二甲酯与碳酸二乙酯以及甲醇与碳酸二乙酯进行酯交换反应合成高纯碳酸甲乙酯产品,表现出极高的反应活性,76-78℃反应5min即可以达到反应平衡,即使在近室温(30℃)条件下也表现出较高的催化活性。合成的离子液体重复使用20次,其催化活性基本不变,表现出较高的稳定性。

Description

一种基于离子液体的均相催化剂和非均相催化剂、其制备方法及应用 技术领域
本申请属于化学化工,高纯锂电池电解液合成,具体而言,涉及一种新型强碱性离子液体的合成方法以及该新型离子液体嵌铆式的固载方法,所制备的非均相催化剂用于碳酸甲乙酯催化合成。
背景技术
碳酸甲乙酯(EMC)是一种具有不对称结构的线型碳酸酯类化合物,它同时兼有碳酸二甲酯(DMC)与碳酸二乙酯(DEC)的特性,与醇、醚、酮等几乎所有有机溶剂混溶,可作为羰基化或烷基化试剂用于有机合成反应。EMC具有高含氧量、低毒性和低生物体内持久积累性,且在水中溶解度低,被认为是一种环境友好的化学品,是一种有前途的汽油添加剂,可提升汽油辛烷值,替代甲基叔丁基醚(MTBE),降低汽车尾气中固体颗粒物以及氮氧化合物的排放。同时,EMC闪点为26.7℃,远高于汽油平均闪点(-20℃),汽油中添加EMC能够显著提升仓储和运输的安全性。EMC更为重要和广泛的应用是作为一种优良的锂离子电池电解液溶剂。EMC在结构上具有空间位阻小和不对称性,易与锂离子生成双离子结构,相当于溶剂化锂离子,进而辅助增加锂离子的溶解度,提高电池的电容量密度和电量;在物理性质上,EMC具有优良的导热性以及低电阻性,电池在使用中自身发热量低并能及时散出,热不会在电池内集聚而引起自燃,进而提升了锂电池的安全性;在化学性质上,EMC具有电化学环境结构稳定性,与锂离子生成的类溶剂化中间体非常稳定,不易分解产生可燃气体(如甲烷),可增加电池的充放电次数,从而延长电池使用寿命;EMC凝固点为-14℃,沸点107℃,作为溶剂使电解液液相范围扩宽,可提高电解液在低温区域的电导率,提升电池低温使用性能,从而有利于拓宽电解液工作温度范围。
EMC的合成方法主要有光气法、氧化羰基化法以及酯交换法等,但电池级EMC主要由酯交换法制备。工业上主要以强碱性甲醇钠为催化剂,采用催化精馏的方式实现产物分离,甲醇钠催化活性较高,但遇水敏感,容易失活,参与反应生成的钠盐在碳酸酯中溶解度较低,容易析出,导致催化剂不能循环使用,并且难以分离,少量残留就导致生产的EMC纯度降低,产生的强碱性固废对环境造成污染。
一些学者研究其他有机强碱如乙醇钠或叔丁醇钠等;可溶强碱包括氢氧化钾或氢氧化钠等;中等强度碱或弱碱,如碳酸钾、碳酸钠或氟化钾等,但均存在可溶有机/无机强碱失活快,生成不溶于碳酸酯类产品盐类失活产物。
离子液体具有蒸气压低、溶解性强、热稳定性好、可重复利用等特点,因此受到广泛关注,目前EMC合成的研究主要集中在烷基咪唑盐类离子液体,包括具有不同阴、阳离子结构的咪唑盐类离子液体:如1,3-二甲基咪唑氯盐([Mmim]Cl)、1-乙基-3-甲基咪唑氯盐([Emim]Cl)、1-丁基-3-甲基咪唑氯盐([Bmim]Cl);1-乙基-3-甲基咪唑溴盐([Emim]Br)、1-丁基-3-甲基咪唑溴盐([Bmim]Br)、1-丁基-2-乙基-3-甲基咪唑溴盐[Bemim]Br、1-丁基-2-丙基-3-甲基咪唑溴盐([Bpmim]Br);1,3-二甲基咪唑碘盐([Mmim]I)、1-乙基-3-甲基咪唑碘盐([Emim]I)、1-丁基-3-甲基咪唑碘盐([Bmim]I);1-丁基-3-甲基咪唑丁酸盐([Bmim]CH 3(CH 2) 2COO)和(1-(4-羟基)丁基-3-甲基咪唑苯甲酸盐([OHBmim]PhCOO)等。但目前文献报道的用于EMC合成的烷基咪唑盐类离子液体均存在活性低、反应时间长、反应浓度高等缺点,其根本原因是卤素或醋酸根阴离子亲核性弱。
文献或专利也曾报道硝酸盐、含镧的可溶盐、钛酸盐类以及有机锡类化合物等Lewis酸类均相催化剂,如Mg(NO 3) 2、La(NO 3) 3、LaCl 3、Ti(OBu) 4、Ti(OPh) 4或Bu 2SnO等。但该类均相催化剂催化碳酸酯交换过程中会缓慢分解,如释放出NOx、Cl -1或丁醇等产物,造成碳酸甲乙酯纯度降低。
鉴于均相催化剂的诸多缺点,人们逐渐把碳酸甲乙酯合成催化剂往非均相催化剂转移,如离子交换树脂;金属氧化物及复合氧化物,如MgO、CaO、MgO-Al2O3、Mg-Al-O-t-Bu或AlPO等;碱性分子筛或MOFs材料,如Al-Zn-MCM-41、ZIF-8或ZIF-67等。
强酸性磺酸树脂Lewatit K1221、Purofine PFC-100H、Dowex Marathon C、Dowex Marathon MR-3、Amberlyst 119 Wet、Lewatit K1131、Lewatit K 1461中Lewatit K1221催化活性最高,酯交换反应条件为:nDMC/nEtOH=1/2,75℃反应26.7h,催化剂占反应原料总质量的6.75wt%,达到54%DMC转化率和53%EMC收率,反应时间太长,效率不高。具有超强酸性树脂Nafion SAC-13为四氟乙烯和全氟-3,6-二氧杂-4-甲基-7-辛烯磺酰氟的共聚物,由于-CF2CF2SO3H基团的强吸电子能力导致磺酸基团具有超强酸性,其催化活性较高,达到61%DMC转化率以及52%EMC收率,与Lewatit K1221接近。强碱性离子交换树脂虽然催化活性较高,但是类似氢氧化钾类催化剂,其羟基容易流失,催化剂失活较快。两种树脂类催化剂均无法工业应用。
杨延钊等以AlCl 3·6H 2O和氨水为主要原料,采用沉淀法合成了γ-Al 2O 3催化剂,当Al 2O 3负载量12wt%,催化 剂加入量7wt%,nDMC/nDEC=1/1,120℃反应8h时,EMC的收率可以达到63.6%,反应温度过高,催化效率低。Shen等分别在气相和液相体系中研究了自制MgO、ZnO、La 2O 3、CeO 2等固体碱用于DMC和DEC的酯交换反应,103℃反应4h,催化剂加入2.4wt%,EMC收率分别为44.2%、26.5%、12.6%、7.3%,其活性也无法满足工业应用的需求。陈英等采用共沉淀法合成了MgO-Al2O3复合金属氧化物,沉淀剂为NaOH和Na2CO3,发现该催化剂催化活性优于市售的MgO以及CaO。nDMC/nDEC=1/1,103℃反应4h,EMC收率可达45.8%。Wang等[58]以异丙醇铝和硝酸镁为主要原料,通过蒸发诱导自组装法合成介孔镁铝尖晶石MgAl2O4(MAO)催化剂,nDMC/nDEC=1/1,103℃反应0.5h,催化剂加入5wt%。Chen等[59]将未焙烧的SBA-15(介孔二氧化硅)、硝酸镁和硝酸铝混合研磨后高温煅烧,合成了一种酸碱双功能介孔材料MgO-Al2O3-SBA-15,n DMC/n DEC=1/1,104℃反应4h,催化剂加入4wt%,EMC收率达到46.1%。Wang等[32]通过共沉淀法制备磁性Mg-Fe二元复合氧化物催化剂,nDMC/nDEC=1/1,100℃反应1.5h,催化剂加入量1wt%,MgFe-400催化剂能够实现51%EMC产物收率。Miao等[60]采用“一锅法”合成双金属Co/Zn-ZIF前驱体(ZIF为沸石咪唑酯骨架),n DMC/n DEC=1/1,100℃反应7h,催化剂加入量1.0wt%,以ZnCo/NC-600为催化剂时,EMC收率为51.5%。Mei等 [17]以NaOH为沉淀剂,硝酸盐为前驱体,采用共沉淀法制备了Mg-Al-NO 3HT催化剂;然后将Mg-Al-NO 3HT在叔丁醇钾的四氢呋喃溶液中搅拌24h制备Mg-Al-O-t-BuHT催化剂;通过尿素水解法制备了Mg-Al-CO 3HT催化剂;将Mg-Al-CO 3HT在500℃焙烧5h后得到Mg-Al HT催化剂。n DMC/n EtOH=1/5,80℃反应7h,催化剂加入1wt%,以Mg-Al-O-t-BuHT为催化剂时,DMC转化率可达86.4%,EMC选择性25.9%,循环使用第5次后DMC转化率(87.9%)及EMC选择性(24.3%)基本不变。Palani等 [26]以偏硅酸钠为硅源、硫酸铝和硫酸锌为主要原料,通过水热法合成了一系列MCM-41催化剂(Si/Al=50,Si/Al+Zn=100)。固定床评价,n DMC/n DEC=1/1,原料流速1.5mL/h,催化剂加入0.5g(混合原料质量空速约为3.0h -1),反应温度175℃,发现Al-Zn-MCM-41(50)活性最佳,DMC转化约为88%,EMC收率85%。Zhou等 [30]以2-甲基咪唑、氨水和Zn(OH) 2为主要原料合成沸石咪唑骨架ZIF-8([Zn(MeIm) 2],MeIm为2-甲基咪唑)。n DMC/n DEC=1/1,100℃反应3h,催化剂加入1wt%:ZIF-8展现出最优的催化效果,EMC收率为50.7%。Yang等 [31]以2-甲基咪唑和六水合硝酸钴为主要原料合成沸石咪唑骨架ZIF-67(Co(MeIm) 2)。n DMC/n DEC=1/1,100℃反应24h,催化剂加入2wt%:采用ZIF-8催化剂时,EMC收率为50.32%;ZIF-67催化活性较高,EMC收率高达83.39%。目前文献或专利中报道的非均相催化剂均存在反应温度高,一般高于100℃,反应时间长,一般高于5h,其本质原因是催化活性低。
碳酸二甲酯与乙醇催化精馏制备碳酸甲乙酯工艺需满足塔顶63.4-63.6℃采出碳酸二甲酯与甲醇共沸物,塔釜温度保持在75-80℃左右,原料从塔顶经催化精馏塔落入塔釜时间在20-30min之间,因此需保证开发的非均相催化剂在63-80℃之间具有高催化活性,反应30min之内达到反应平衡。而目前文献和专利报道的非均相催化剂活性远低于工业应用的需求。
发明内容
根据本申请的一个方面,提供了一种非均相催化剂。本发明的目的是针对文献或专利报道的离子液体碱性弱、亲核性差或强碱性离子液体稳定性差、容易失活等问题,开发新型具有特殊结构的耐高温、高稳定性的强碱性离子液体。开发的一系列强碱性离子液体用于碳酸二甲酯与乙醇、碳酸二甲酯与碳酸二乙酯以及甲醇与碳酸二乙酯进行酯交换反应合成高纯碳酸甲乙酯产品,表现出极高的反应活性,76-78℃反应5min即可以达到反应平衡,即使在近室温(30℃)条件下也表现出较高的催化活性。合成的离子液体重复使用20次,其催化活性基本不变,表现出较高的稳定性。
所述均相催化剂,其特征在于,所述均相催化剂包括离子液体;所述离子液体包括阴离子和阳离子;
所述阴离子和阳离子均含有含氮杂环;
所述阳离子具有式I或式II所示的结构;
Figure PCTCN2019124322-appb-000001
所述阴离子具有式III、式IV或式V所示的结构;
Figure PCTCN2019124322-appb-000002
其中,R 1、R 2独立地选自C1-C6的烷烃基、C2-C6的烯烃基、C3-C6的芳烃基中的一种。
可选地,R 1、R 2独立地选自-CH 3、-CH 2CH 3、-(CH 2) 2CH 3、-(CH 2) 3CH 3中的一种。
根据本申请的一个方面,提供所述均相催化剂的制备方法,包括以下步骤:
a1)向含有离子液体阴离子源的溶液I中,加入碱,反应,得到离子液体阴离子金属盐;
a2)将所述离子液体阴离子金属盐溶解在溶剂中,加入离子液体阳离子盐,反应,得到所述离子液体。
可选地,步骤a1)中,所述溶液I中的溶剂选自乙醇、苯、甲苯、二甲苯中的至少一种;
所述碱为有机碱或无机碱;
所述有机碱包括甲醇钠、乙醇钠或叔丁醇钠、甲醇钾、乙醇钾或叔丁醇钾;
所述无机碱包括氢氧化钠或氢氧化钾;
所述离子液体阴离子金属盐选自离子液体阴离子Na盐、离子液体阴离子K盐中的至少一种。
可选地,步骤a1)中,所述溶液I中,离子液体阴离子源的浓度为0.05~0.8g/mL;
所述离子液体阴离子源与所述碱的摩尔比为0.9~1.1。
可选地,步骤a1)中,所述离子液体阴离子源包括咪唑、吡咯或者吗啉。
可选地,步骤a1)中,所述反应的条件为:50~80℃下反应5~12小时。
可选地,步骤a1)还包括:反应结束后,除去反应体系中的溶剂,得到咪唑阴离子盐、吡咯阴离子盐或者吗啉阴离子盐。
可选地,步骤a2)中,所述溶剂包括带水剂;
所述带水剂选自乙醇、苯、甲苯、二甲苯中的至少一种;
所述离子液体阳离子盐选自1-R 1-3-甲基-咪唑溴盐、1-R 1-3-甲基-咪唑碘盐、N-甲基-N-R 2-吗啉溴盐、N-甲基-N-R 2-吗啉碘盐中的至少一种。
可选地,步骤a2)中,所述离子液体阴离子金属盐与溶剂的比例为0.1~0.9:0.05~1.2g/mL。
可选地,步骤a2)中,所述反应的条件为:25-80℃下反应12-48h。
可选地,步骤a2)还包括:反应结束后,除去反应体系中的溶剂,得到所述离子液体。
根据本申请的另一方面,采用制备的强碱性离子液体直接代替氢氧化钠或氢氧化钾等可溶强碱促进正硅酸乙酯、钛酸四丁酯或偏硅酸铝等单一或混合溶液水解,离子液体以镶嵌的方式包埋在二氧化硅、二氧化钛、三氧化二铝或具有特定结构的单一/多种含氧化合物骨架中,且完全不引入Na +或K +离子,所制备的非均相催化剂无需焙烧,可直接经干燥/真空干燥后应用于碳酸酯交换反应,展现出极佳的催化活性。由于离子液体母体具有双氮环结构,可以像双头登山锥一样嵌入-Si-O-、-Ti-O-、-Al-O-或复合含氧化合物的网络中,因此固载后的非均相催化剂表现出较高的稳定性,强碱性离子液体活性组分不易流失。
所述非均相催化剂,其特征在于,所述非均相催化剂包括离子液体和载体;
所述载体嵌铆式包埋所述离子液体。
可选地,所述离子液体包括阴离子和阳离子;
所述阳离子具有式I或式II所示的结构;
Figure PCTCN2019124322-appb-000003
所述阴离子具有式III、式IV或式V所示的结构;
Figure PCTCN2019124322-appb-000004
其中,R 1、R 1独立地选自C1-C6的烷烃、C2-C6的烯烃、C3-C6的芳烃中的一种。
可选地,所述离子液体嵌入所述载体的网络中。
可选地,所述载体与所述离子液体存在以下作用力中的至少一种:偶联作用、氢键作用。
可选地,R 1、R 2独立地选自-CH 3、-CH 2CH 3、-(CH 2) 2CH 3以及-(CH 2) 3CH 3中的一种
可选地,所述非均相催化剂中活性离子液体与载体重量含量的比例为1%-30%:10%-60%。
可选地,所述载体选自二氧化硅、二氧化钛、三氧化二铝中的至少一种;
所述载体形成的同时,所述离子液体嵌入所述载体的网络中。
可选地,所述非均相催化剂还包括结构调控剂;所述离子液体嵌入所述载体与所述结构调控剂复合的网络中。所述结构调控剂分别具有2价、3价或者4价,与载体共同构建复合氧化物的网格结构,使离子液体所包埋的环境得到改善,进而增强离子液体与载体复合氧化物的作用力。
可选地,所述结构调控剂包括Mg、Ca、Ba、La、Ce、Zr、Fe、Zn、Li、Cs、Al中的至少一种。
可选地,所述结构调控剂的重量含量为10%~60%。
根据本发明的另一个方面,提供一种所述的非均相催化剂的制备方法,其特征在于,包括以下步骤:
a)获得均相催化剂;
b)将水加入到含有载体前驱体和离子液体的混合物中,水解,得到所述非均相催化剂。
作为一种实施方式,步骤a)包括:
(1)将商业购买的咪唑、吡咯或吗啉溶于一定量乙醇或苯、甲苯、二甲苯等溶剂中,在三口烧瓶中缓慢加入等摩尔的有机或无机强碱,无机强碱包括NaOH,KOH,有机强碱包括甲醇钠、乙醇钠以及叔丁醇钠等,或甲醇钾、乙醇钾以及叔丁醇钾等。在50-80℃条件下剧烈搅拌5-12h,反应结束后,在油锅60-120℃条件下,减压旋蒸出去溶剂以及反应生成醇类或水。之后,放入真空干燥箱烘干至恒重,制备得到咪唑盐、吡咯盐或吗啉盐,得到的咪唑盐、吡咯盐或吗啉盐具有Na或K的阳离子,即咪唑Na或K盐、吡咯Na或K盐以及吗啉Na或K盐。
(2)将一定量的具有Na或K的阳离子咪唑盐、吡咯盐或吗啉盐溶于一定量乙醇或苯、甲苯、二甲苯等带水剂溶剂中,在三口烧瓶中加入等摩尔的商业购买的1-R-3-甲基-咪唑溴/碘盐或N-甲基-N-R-吗啉溴/碘盐离子液体进行阳离子反应,在25-80℃条件下剧烈搅拌反应12-48h,得到Na/KBr或Na/KI沉淀以及目标离子液体。
(3)将含有目标离子液体的混合物经过多次过滤后,在油锅65-100℃条件下,进行减压旋蒸除去溶剂,旋蒸1-4h后,将其置于真空干燥箱烘干至恒重,得纯组分的目标产物。
所述的咪唑类、吡咯或吗啉类离子液体具有如下结构,阳离子为1-R-3-甲基-咪唑或N-甲基-N-R-吗啉,其中R为正构或者异构的烷烃、烯烃以及芳烃结构;阴离子为咪唑、吡咯或吗啉负离子。
Figure PCTCN2019124322-appb-000005
R=-CH 3、-CH 2CH 3、-(CH 2) 2CH 3以及-(CH 2) 3CH 3等烷烃结构、烯烃、芳烃
可选地,所述均相催化剂根据上述任一项所述的方法制备得到。
可选地,步骤b)中,所述载体前驱体包括正硅酸乙酯、钛酸四丁酯、异丙醇铝、偏铝酸钠中的至少一种。
可选地,步骤b)中所述混合物中还包括溶剂;
所述溶剂的加入量为0.1~0.9;
所述溶剂包括甲醇、乙醇、丙醇、丁醇、乙酸甲酯、乙酸乙酯中的至少一种。
可选地,步骤b)中,
所述载体前驱体、溶剂、离子液体、水的质量比为0.2~0.8:0.03~0.4:0.1~0.4。
可选地,步骤b)中,水解后,40-120℃之间老化6-24小时,经洗涤、干燥,得到所述非均相催化剂。
可选地,步骤b)中,所述干燥的条件为:100-150℃真空干燥2-6h。
可选地,步骤b)还包括:
将载体前驱体、结构调控剂前驱体与溶剂混合,加入离子液体,混合均匀,然后加入水,进行水解,得到所述非均相催化剂。
可选地,步骤b),所述结构调剂前驱体包括结构调控剂相应的醋酸盐、硅酸盐、盐酸盐、硝酸盐中的至少一种。
可选地,步骤b),所述载体前驱体、结构调控剂前驱体、溶剂、离子液体、水的摩尔比为0.2~0.8:0.05~0.4:0.3~0.8:0.03~0.4:0.1~0.4。
可选地,步骤b)包括:
载体前驱体、结构调控剂与溶剂均匀混合,而后加入一定量的上述单一或多种离子液体,混合均匀后加入理论计算所需水量的0.8-1.5倍的水,水解温度控制在25-80℃之间,形成均匀的凝胶类产物。离子液体既起到促进水解的作用,又是最终非均相催化剂中的活性组分。在40-120℃之间老化6-24后,采用所述醇类或酯类的溶剂对固态产物进行3-5次漂洗,目的是溶解表面附着的离子液体。最后100-150℃真空干燥2-6h,得到嵌铆离子液体的非均相强碱催化剂。
根据本申请的一个方面,提供一种酯交换反应制备碳酸甲乙酯,其特征在于,所述酯交换反应过程中的催化剂中包含离子液体。
可选地,所述催化剂为离子液体或离子液体基非均相催化剂;
其中,所述离子液体选自1-乙基-3-甲基咪唑醋酸盐、1-乙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑溴盐、1-乙基-3-甲基咪唑碘盐、1-丁基-3-甲基咪唑氟硼酸盐、1-丁基-3-甲基咪唑氯盐、1-丁基-3-甲基咪唑溴盐、1-丁基-3-甲基咪唑碘盐、1,3-二甲基咪唑碘盐、1-乙基-3-甲基咪唑甲醇盐、氢氧化1-乙基-3-甲基咪唑碱、1-乙基-3-甲基咪唑咪唑盐、1-乙基-3-甲基咪唑吡咯盐、1-乙基-3-甲基咪唑吗啉盐、1-丁基-3-甲基咪唑咪唑盐、1,3-二甲基咪唑吡咯盐、N-甲基-N-乙基吗啉咪唑盐、N-甲基-N-乙基吗啉吡咯盐、N-甲基-N-乙基吗啉吗啉盐、N-甲基-N-丁基吗啉咪唑盐、N-甲基-N-丁基吗啉吡咯盐离子液体中的至少一种;
所述离子液体基非均相催化剂选自上述任一项所述的非均相催化剂、根据上述任一项所述的制备方法制备的非均相催化剂中的至少一种。
可选地,所述酯交换反应包括碳酸二甲酯与乙醇酯交换反应、碳酸二甲酯与碳酸二乙酯酯交换反应以及甲醇与碳酸二乙酯酯交换反应中的至少一种。
可选地,所述酯交换反应的条件为:76-78℃反应5min即达到反应平衡。
本申请中,“[EmIm]Br”,是指1-乙基-3-甲基咪唑溴盐。
本申请中,“[EmIm]Im”,是指1-乙基-3-甲基咪唑咪唑盐。
本申请中,“[EmIm]py”,是指1-乙基-3-甲基咪唑吡咯盐。
本申请中,“EtOH”,是指乙醇。
本申请中,“DMC”,是指碳酸二甲酯。
本申请中,“EMC”,是指碳酸甲乙酯。
本申请中,“DEC”,是指碳酸二乙酯。
本申请中,C1~C6指所包含的碳原子数。如“C1~C6的烷烃基”指含有碳原子数为1~6的烷烃基。
本申请中,“烷烃基”是由烷烃化合物分子上失去任意一个氢原子所形成的基团。所述烷烃化合物包括直链烷烃、支链烷烃、环烷烃、带有支链的环烷烃。
本申请中,“烯烃基”是由烯烃化合物分子上失去任意一个氢原子所形成的基团。
本申请中,“芳烃基”是芳香族化合物分子上失去芳香环上一个氢原子所形成的基团;如甲苯失去苯环上甲基对位的氢原子所形成的对甲苯基。
本申请能产生的有益效果包括:
1)本申请所提供的非均相催化剂,用于碳酸二甲酯与乙醇、碳酸二甲酯与碳酸二乙酯以及甲醇与碳酸二乙酯 进行酯交换反应合成高纯碳酸甲乙酯产品,表现出极高的反应活性,76-78℃反应5min即可以达到反应平衡,即使在近室温(30℃)条件下也表现出较高的催化活性。
2)本申请所提供的非均相催化剂,重复使用20次,其催化活性基本不变,表现出较高的稳定性。
3)本申请所提供的非均相催化剂,采用制备的强碱性离子液体直接代替氢氧化钠或氢氧化钾等可溶强碱促进正硅酸乙酯、钛酸四丁酯或偏硅酸铝等单一或混合溶液水解,离子液体以镶嵌的方式包埋在二氧化硅、二氧化钛、三氧化二铝或具有特定结构的单一/多种含氧化合物骨架中,且完全不引入Na +或K +离子,所制备的非均相催化剂无需焙烧,可直接经干燥/真空干燥后应用于碳酸酯交换反应,展现出极佳的催化活性。由于离子液体母体具有双氮环结构,可以像双头登山锥一样嵌入-Si-O-、-Ti-O-、-Al-O-或复合含氧化合物的网络中,因此固载后的非均相催化剂表现出较高的稳定性,强碱性离子液体活性组分不易流失。
附图说明
图1为实施1合成的[EmIm]Im离子液体核磁H谱。
图2为实施1合成的[EmIm]Im离子液体核磁C谱。
图3为实施1合成的[EmIm]py离子液体核磁H谱。
图4为实施1合成的[EmIm]py离子液体核磁C谱。
图5为制备的新鲜的1-丁基-3-甲基咪唑吡咯离子液体照片。
图6为重复使用20次后的1-丁基-3-甲基咪唑吡咯盐照片。
图7为离子液体催化活性随重复使用次数变化情况。
图8为采用浸渍法制备的1-乙基-3甲基咪唑咪唑离子液体固载催化剂。
图9为采用包埋法制备的1-乙基-3甲基咪唑咪唑离子液体固载催化剂。
图10为1-乙基-3-甲基咪唑咪唑离子液体不同固载方式对碳酸酯交换反应的影响。
图11为不同方法固载的离子液体催化剂红外谱图。
图12为固载离子液体非均相催化剂SEM图(图a浸渍6g离子液体催化剂;图b、c、d分别为嵌入包埋3g、6g、12g离子液体催化剂)。
图13为正硅酸乙酯-醋酸镁-醋酸锌-偏铝酸钠-1-乙基-3-甲基咪唑吡咯盐水解过程中、水解后、真空干燥后以及焙烧后的实物照片(A水解过程中;B水解后;C干燥后;D焙烧后)。
图14为正硅酸乙酯-醋酸镁-醋酸锌-偏铝酸钠-1-乙基-3-甲基咪唑吡咯盐水解干燥后以及焙烧后的XRD图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和催化剂均通过商业途径购买。
本申请的实施例中核磁H谱分析、核磁C谱分析、红外光谱分析、SEM分析、XRD分析均为常规操作,本领域技术人员根据仪器说明操作即可。
本申请的实施例中转化率、选择性计算如下:
本申请的实施例中,转化率以及选择性都基于碳摩尔数进行计算:
DMC转化率=(生成的EMC摩尔数+生成的DEC摩尔数)/(未反应的DMC摩尔数+生成的EMC摩尔数+生成的DEC摩尔数)
乙醇(EtOH)转化率=(生成的EMC摩尔数+2*生成的DEC摩尔数)/(未反应的EtOH摩尔数+生成的EMC摩尔数+2*生成的DEC摩尔数)
EMC的选择性=生成的EMC摩尔数/(生成的EMC摩尔数+生成的DEC摩尔数)
DEC的选择性=生成的DEC摩尔数/(生成的EMC摩尔数+生成的DEC摩尔数)
实施例1
1-乙基-3-甲基咪唑咪唑盐具体制备方法:将0.5mol的咪唑溶于60mL乙醇溶剂中,在三口烧瓶中加入等摩尔的乙醇钾,在60℃条件下剧烈搅拌6h,反应结束后,在油浴锅65℃条件下,减压旋蒸2h除去溶剂乙醇和产物乙醇,放入真空干燥箱烘干12h至恒重,制备得到咪唑钾盐。在三口烧瓶中加入0.5mol的商业购买的[EmIm]Br,在乙醇带水剂作溶剂的条件下,加入等摩尔比的咪唑钾,在室温条件下搅拌反应24h。反应结束之后,过滤除去生成的白 色固体KBr,在油浴锅65℃条件下,减压旋蒸2h除去溶剂,置于真空干燥箱烘干12h至恒重,得淡黄色粘稠状液体[EmIm]Im,其核磁谱图如图1和图2所示。图1合成的[EmIm]Im离子液体核磁H谱:[EmIm]Im 1H NMR(500MHz,DMSO-d6)δ(ppm):8.61(d,J=1.9Hz,1H,NCHN),7.75(d,J=1.9Hz,1H,NCH),7.58(s,1H,NCH),6.23(s,2H,NCHCHN),4.17(q,J=7.3Hz,2H,NCH 2CH 3),3.83(s,3H,NCH 3),1.37(t,J=7.3Hz,3H,NCH 2CH 3)。图2合成的[EmIm]Im离子液体核磁C谱: 13C NMR(126MHz,DMSO-d6)δ(ppm):166.43(s),136.99(s),136.18(s),123.97(s),122.39(s),122.31(s),44.51(s),36.06(s),15.56(s)。因此,合成的离子液体确定为1-乙基-3-甲基咪唑咪唑盐。
1-乙基-3-甲基咪唑吡咯盐具体制备方法:将0.5mol的吡咯溶于60mL乙醇溶剂中,在三口烧瓶中加入等摩尔的乙醇钾,在70℃条件下剧烈搅拌6h,反应结束后,在油浴锅65℃条件下,减压旋蒸2h除去溶剂乙醇和产物乙醇,放入真空干燥箱烘干至恒重12h,制备得到吡咯钾盐。在三口烧瓶中加入0.5mol的商业购买的[EmIm]Br,在乙醇带水剂作溶剂的条件下,加入等摩尔比的吡咯钾,在室温下搅拌反应24h。反应结束之后,过滤除去生成的白色固体KBr,在油浴锅65℃条件下,减压旋蒸2h除去溶剂,置于真空干燥箱烘干至恒重12h,得淡黄色粘稠状液体[EmIm]py,其核磁谱图如图3和图4所示。图3合成的[EmIm]py离子液体核磁H谱:[EmIm]Py 1H NMR(500MHz,DMSO-d 6)δ(ppm):9.30(s,1H,NCHN),7.84(s,1H,NCHCHN),7.74(s,1H,NCHCHN),6.74(d,J=1.9Hz,2H,NCHCH),6.02(d,J=1.5Hz,2H,CHCHCH),4.20(q,J=7.3Hz,2H,NCH 2CH 3),3.85(s,3H,NCH 3),1.39(t,J=7.3Hz,3H,NCH 2CH 3)。图4合成的[EmIm]py离子液体核磁C谱: 13C NMR(126MHz,DMSO-d 6)δ(ppm)136.71(s),123.96(s),122.41(s),117.79(s),107.56(s),44.56(s),36.20(s),15.63(s)。因此,合成的离子液体确定为1-乙基-3-甲基咪唑吡咯盐。
实施例2
表1为商业购买的离子液体以及实验室合成的离子液体用于碳酸二甲酯和乙醇酯交换反应的活性比较。催化剂评价条件为,46g乙醇与90g碳酸二甲酯反应原料(摩尔比为1:1)在250mL烧瓶中均匀混合,磁力搅拌,反应体系升温至76-78℃,回流稳定后加入约2.72g离子液体,离子液体的质量占反应原料质量的2%,反应时间为30-240min。其中商业购买的离子液体为:1-乙基-3-甲基咪唑醋酸盐、1-乙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑溴盐、1-乙基-3-甲基咪唑碘盐、1-丁基-3-甲基咪唑氟硼酸盐、1-丁基-3-甲基咪唑氯盐、1-丁基-3-甲基咪唑溴盐、1-丁基-3-甲基咪唑碘盐、1,3-二甲基咪唑碘盐;实验室合成的离子液体为:1-乙基-3-甲基咪唑甲醇盐、氢氧化1-乙基-3-甲基咪唑碱、1-乙基-3-甲基咪唑咪唑盐、1-乙基-3-甲基咪唑吡咯盐、1-乙基-3-甲基咪唑吗啉盐、1-丁基-3-甲基咪唑咪唑盐、1,3-二甲基咪唑吡咯盐、N-甲基-N-乙基吗啉咪唑盐、N-甲基-N-乙基吗啉吡咯盐、N-甲基-N-乙基吗啉吗啉盐、N-甲基-N-丁基吗啉咪唑盐以及N-甲基-N-丁基吗啉吡咯盐离子液体。表1中离子液体的制备方法同实施例2中1-乙基-3-甲基咪唑咪唑盐的制备方法,区别在于采用了相应的原料。
表1 不同种类离子液体对DMC与EtOH酯交换反应活性的影响
Figure PCTCN2019124322-appb-000006
Figure PCTCN2019124322-appb-000007
反应条件:原料DMC和EtOH摩尔比1:1,催化剂加入量2wt%,反应温度76-78℃
从表1中的数据可知,商业购买的咪唑类离子液活性均较低,反应120min时,碳酸二甲酯的转化率均低于25%,无法满足均相催化碳酸甲乙酯合成的工艺条件(反应温度64-80℃,反应平衡时间在30min左右)。而采用实验室合成的多种结构的咪唑类离子液体时,反应时间30min时,碳酸二甲酯转化率接近60%,乙醇转化率接近70%,其中碳酸甲乙酯的选择性80%左右,反应结果接近该温度下的平衡转化率。说明:实验室合成的新型咪唑类离子液体表现出较高的碳酸二甲酯与乙醇酯交换反应的催化活性。
实施例3
以1-丁基-3-甲基咪唑吡咯盐为催化剂,该催化剂初始状态如图5所示,制备的离子液体颜色为透明的淡黄色。
1-丁基-3-甲基咪唑吡咯盐催化剂重复使用评价条件为,46g乙醇与90g碳酸二甲酯反应原料(摩尔比为1:1)在250mL烧瓶中均匀混合,磁力搅拌,反应体系升温至76-78℃,回流稳定后加入约2.72g1-丁基-3-甲基咪唑吡咯盐离子液体,离子液体的质量占反应原料质量的2%,反应时间为30min。反应后连带反应原料、产物以及离子液体减压110℃旋蒸30min。旋蒸瓶内剩余的液体为1-丁基-3-甲基咪唑吡咯盐催化剂,直接用于下一次反应评价。该离子液体重复使用20次后,旋蒸瓶内剩余的离子液体如图6所示,与初始离子液体的颜色相比,颜色略有变黄。碳酸二甲酯和乙醇转化率以及碳酸甲乙酯和碳酸二乙酯选择性随重复使用次数的变化规律如图7所示。碳酸二甲酯的转化率基本稳定在60%左右,乙醇的转化率基本稳定在70%左右,碳酸甲乙酯的选择性稳定在80%附件,碳酸二乙酯的选择性为20%,说明合成的1-丁基-3-甲基咪唑吡咯盐催化剂稳定性较好,连续使用20次其活性基本不变。
实施例4
以1-乙基-3-甲基咪唑咪唑盐为催化剂,考察工业应用过程中铁锈以及铁离子对合成的离子液活性及重复使用稳定性的影响。以三氧化二铁和四氧化三铁的混合物模拟铁锈成分,以三氯化铁为铁离子和氯离子的来源。催化剂评价条件为:46g乙醇与90g碳酸二甲酯反应原料(摩尔比为1:1)在250mL烧瓶中均匀混合,磁力搅拌,反应体系升温至76-78℃,回流稳定后加入约1.36g1-乙基-3-甲基咪唑咪唑盐离子液体,离子液体的质量占反应原料质量的1%,反应时间为30min。分别加入催化剂总重量的0.1wt%的三氧化二铁和0.1wt%的四氧化三铁以及另一次实验加入0.1wt%含量的三氯化铁。反应后连带反应原料、产物、离子液体以及三氧化二铁、四氧化三铁或三氯化铁减压110℃旋蒸30min。旋蒸瓶内剩余物(包括液态和固态)直接用于下一次反应评价。当离子液体中存在铁锈时,其活性随使用次数变换情况如表2所示。
表2 三氧化二铁和四氧化三铁对离子液体重复使用催化活性的影响
Figure PCTCN2019124322-appb-000008
反应条件:DMC与EtOH摩尔比1:1,催化剂相当于反应液的1wt%,加入0.1wt%的三氧化二铁和0.1wt%的 四氧化三铁,反应温度76-78℃
注:反应过程中三氧化二铁和四氧化三铁不溶于溶液。
当反应体系中存在三氧化二铁和四氧化三铁时,反应30min,碳酸二甲酯和乙醇转化率与初次使用相比均略有降低,但重复使用过程中,其活性变化不明显,基本保持稳定,碳酸甲乙酯选择性有逐渐变大的趋势。
表3 三氯化铁对1-乙基-3-甲基咪唑咪唑盐重复使用性能的影响
Figure PCTCN2019124322-appb-000009
备注:原始催化剂相当于反应液的1wt%,反应温度76-78℃,常压反应30min。重复使用第0次无氯化铁,作为参照实验。重复使用第1-3次均额外加氯化铁,试样成红棕色。过滤液除初次与1次为无色澄清外,均呈现柠檬色(即淡金黄色)。
当反应体系中存在三氯化铁时,与表1中1-乙基-3-甲基咪唑咪唑盐初次使用时,碳酸二甲酯转化率下降约4%,乙醇转化率降低约11%,说明三氯化铁的加入明显降低了制备的离子液体的活性。当重复使用时,催化活性显著降低,第二次重复使用时,碳酸二甲酯和乙醇的转化率已经低于3%。应注意的是合成的离子液体在碳酸二甲酯与乙醇酯交换制备碳酸甲乙酯与碳酸二乙酯产业化过程中应杜绝铁离子的存在。
实施例5
以1,3-二甲基咪唑吡咯为催化剂,46g乙醇与90g碳酸二甲酯反应原料(摩尔比为1:1)在250mL烧瓶中均匀混合,催化剂质量0.136g,磁力搅拌,反应温度为30℃,反应1min、3min、5min、7min、10min、15min、20min、30min、45min、60min和90min结果如表4所示。以0.2%含量的以1,3-二甲基咪唑吡咯催化剂,反应温度为50℃,反应1min、2min、3min、4min、5min、6min、7min、8min、10min、20min和30min结果如表5所示。
表4
Figure PCTCN2019124322-appb-000010
表4 原料转化率及产物选择性随反应时间变化情况(0.1%,30℃)
当1,3-二甲基咪唑吡咯为催化剂含量仅为0.1%,反应温度仅为30℃时,碳酸二甲酯和乙醇转化率随着反应时间延长(1-90min)逐渐提升,碳酸甲乙酯的转化率保持在90%以上,碳酸二乙酯选择性低于10%。说明制备的离子液体在低温条件下也具有比较好的反应活性。
当反应温度升至50℃,1,3-二甲基咪唑吡咯催化剂含量为0.2%时,催化活性显著提升,反应仅为1min时碳酸二甲酯的转化率就达到了38.35%,乙醇转化率达到40.18%,随着反应时间延长至5min以后,碳酸二甲酯转化率达到50%以上,乙醇转化率接近60%,碳酸甲乙酯选择性基本遵循随着反应时间延长逐渐降低的趋势。
表5 原料转化率及产物选择性随反应时间变化情况(0.2%,50℃)
Figure PCTCN2019124322-appb-000011
实施例6
合成的所有类别的新型离子液体同样也适用于碳酸二甲酯与碳酸二乙酯发生酯交换生成碳酸甲乙酯的反应,而且合成的不同结构的强碱性离子液体活性差别不大。以1-乙基-3甲基咪唑咪唑盐为例,45g碳酸二甲酯与59g碳酸二乙酯在250mL三口瓶中均匀混合,当反应温度达到92-94℃时,迅速加入0.52g催化剂(即反应原料总质量的0.5%),当反应5min、15min、30min、60min、120min以及240min时色谱分析结果如表6所示。
表6 1-乙基-3甲基咪唑咪唑盐催化DMC与DEC酯交换反应结果
Figure PCTCN2019124322-appb-000012
反应条件:DMC和DEC摩尔比1:1(DMC 45g,DEC 59g),离子液体催化剂0.5wt%,92-94℃烧瓶反应
由于DMC和DEC反应为摩尔比1:1,没有副反应发生,因此在不同的反应时间段DMC和DEC的转化率近似一致。如表6所示,随着反应时间延长,DMC和DEC转化率逐渐增加,当反应时间超过30min时,两者的转化率达到50%以上。当反应时间超过60min时,DMC和DEC转化率稳定在55%左右,基本达到反应平衡。平衡组分中DMC质量分数为20%左右,EMC比例为54%左右,DEC质量分数为25%附近。0.5wt%1-乙基-3甲基咪唑咪唑盐催化DMC和DEC反应30min以后就基本达到反应平衡,说明合成的离子液体也具有高效催化DMC和DEC酯交换的能力。
实施例7
合成的所有类别的新型离子液体同样也适用于甲醇与碳酸二乙酯发生酯交换生成碳酸甲乙酯和乙醇的反应,而且合成的不同结构的强碱性离子液体活性差别不大。以1-乙基-3甲基咪唑吡咯盐为例,19.2g甲醇与70.8g碳酸二乙酯在250mL三口瓶中均匀混合,当反应温度达到70-72℃时,迅速加入0.45g催化剂(即反应原料总质量的0.5%),当反应5min、15min、30min、60min、120min、240min以及360min时色谱分析结果如表7所示。
表7 1-乙基-3甲基咪唑吡咯盐催化DEC与MeOH酯交换反应结果
Figure PCTCN2019124322-appb-000013
Figure PCTCN2019124322-appb-000014
反应条件:MeOH和DEC摩尔比1:1(MeOH 19.2g,DEC 70.8g),离子液体催化剂0.5wt%,70-72℃三口瓶反应。
甲醇和DEC反应为分步反应,第一步甲醇与DEC反应生成EMC和乙醇,第二步甲醇与EMC反应生成DMC和乙醇,没有其他副反应发生。甲醇以及DEC转化率以及EMC和DMC选择性如表7所示。随着反应时间延长,甲醇和DEC转化率逐渐增加。由于反应体系中甲醇比例较高,因此反应温度相对于DMC和乙醇或DMC和DEC酯交换反应温度低,导致反应效率略低。反应达到240min时,基本达到反应平衡,此时EMC选择性为83%左右。
实施例8
以单一的正硅酸乙酯水解后的二氧化硅为载体,如下详述了单纯的酸催化正硅酸乙酯水解、碱催化正硅酸乙酯水解、离子液体常规浸渍二氧化硅载体以及嵌铆式包埋离子液体的二氧化碳非均相催化剂的制备方法。
二氧化硅载体的制备:将30mL正硅酸乙酯和21mL乙醇分别加入锥形瓶,室温搅拌10min,加热到60℃后立加入9mL0.45mol/LNaOH或0.5mol/mL的盐酸溶液,正硅酸乙酯缓慢水解水解,体系逐渐凝固。60℃温度下老化12h后,采用50mL乙醇洗涤三次,150℃真空干燥3h即得碱/酸促进水解的二氧化硅载体。
离子液体浸渍法:将8g纯载体放入表面皿中,置于超声器中开启超声,室温条件下将12g 1-乙基-3甲基咪唑咪唑离子液体30min内缓慢滴加入载体中并不断搅拌,全部滴加完全后再搅拌30min。120℃取出干燥10h后用50mL乙醇洗涤三次,150℃真空干燥3h即得浸渍后的离子液体。
嵌铆式包埋离子液体法:将30mL正硅酸乙酯和21mL乙醇分别加入锥形瓶,加热到60℃后分别立即加入3、6以及12g 1-乙基-3甲基咪唑咪唑离子液体,混合均匀后加入8.9g去离子水。其中1-乙基-3甲基咪唑咪唑离子液体起到碱催化的作用促进正硅酸乙酯水解,同时又是碳酸酯交换反应的活性中心。加入去离子水后,体系迅速凝胶。60℃温度下老化12h,120℃干燥10h后用50mL乙醇洗涤三次,150℃真空干燥3h即得固载3、6或者12g离子液体的非均相催化剂。
采用浸渍法固载离子液体催化剂以及嵌铆式包埋法制备的催化剂实物照片如图8和9所示。
从实物照片观察,无论是浸渍法固载离子液体催化剂还是嵌铆式包埋法制备的催化剂外表颜色均一,为淡黄色,质地松脆,两种方法固载的催化剂外表差别不大。
实施例9
采用固定床反应器对制备的非均相催化剂进行评价,反应条件为:反应原料DMC与EtOH摩尔比为1:1,反应温度76-78℃,催化剂装填质量为4g,反应原料的质量空速为1h -1,即原料每小时进样量为4g。每个催化剂连续评价时间为2300min,催化剂活性稳定阶段的色谱分析结果如表8所示。表8中的非均相催化剂分别是:碱水解的二氧化硅载体、酸水解的二氧化硅载体、12g咪唑钾浸渍二氧化硅(制备方法同离子液体浸渍法,区别在于采用了12g咪唑钾)、二氧化硅包埋12g咪唑钾(制备方法同嵌铆式包埋离子液体法,区别在于采用了12g咪唑钾)、12g咪唑吡咯浸渍二氧化硅(制备方法同离子液体浸渍法,区别在于采用了12g咪唑吡咯)、二氧化硅包埋12g咪唑吡咯(制备方法同嵌铆式包埋离子液体法,区别在于采用了12g咪唑吡咯)、12g吗啉咪唑浸渍二氧化硅(制备方法同离子液体浸渍法,区别在于采用了12g吗啉吡咯)、二氧化硅包埋12g吗啉咪唑(制备方法同嵌铆式包埋离子液体法,区别在于采用了12g吗啉吡咯)、12g吗啉吡咯浸渍二氧化硅(制备方法同离子液体浸渍法,区别在于采用了12g吗啉吡咯)以及二氧化硅包埋12g吗啉吡咯(制备方法同嵌铆式包埋离子液体法,区别在于采用了12g吗啉吡咯)。
如表8所示,酸和碱水解后的二氧化硅载体的催化活性均低于5%,说明单独二氧化硅载体基本没有催化DMC和EtOH酯交换的能力。咪唑钾浸渍的二氧化硅催化活性也低于5%,与载体近似,说明浸渍在二氧化硅孔道中的咪唑钾很容易被乙醇洗掉。而二氧化硅包埋的咪唑钾催化活性可以稳定在20.99%DMC转化率以及23.24%EtOH转化率,说明即使咪唑钾具有单环结构也可以相对稳定地嵌入二氧化硅的网格状结构中。如果以双环结构嵌入二氧化硅网络中,原料DMC和EtOH的转化率比咪唑钾明显提高,稳定在30%-35%之间。但是浸渍的双环结构表现出明显被乙醇洗去的现象,DMC和EtOH转化率在5%-10%之间波动。综上,包埋法比浸渍法表现出优越的催化活性和稳定性,说明开发的离子液体固载方法是比常规浸渍法更可靠的活性组分固载方法。
表8 不同方法固载的离子液体催化剂对DMC和EtOH反应的影响
Figure PCTCN2019124322-appb-000015
DMC/EtOH=1/1,包埋量6g,反应温度76-78℃,催化剂装填4g,质量空速1h -1,反应2300min
实施例10
以浸渍法制备的12g1-乙基-3-甲基咪唑咪唑离子液体@二氧化硅(制备方法同离子液体浸渍法,区别在于采用1-乙基-3-甲基咪唑咪唑离子液体)和包埋法制备的1-乙基-3-甲基咪唑咪唑离子液体@二氧化硅(制备方法同嵌铆式包埋离子液体法,区别在于采用1-乙基-3-甲基咪唑咪唑离子液体)。采用固定床反应器对制备的催化剂进行评价,反应原料DMC与EtOH摩尔比为1:1,反应温度76-78℃,催化剂装填质量为4g,反应原料的质量空速为1h -1,原料DMC以及EtOH转化率以及EMC选择性随时间变化情况如图10所示。
采用浸渍法制备的非均相催化剂初始DMC和EtOH转化率接近20%,但随着反应时间延长,失活严重,当反应1000min时,两者转化率降至15%左右,反应2000min时降至10%以下,EMC选择性从85%上升至95%左右。而采用嵌入式包埋法制备的1-乙基-3-甲基咪唑咪唑离子液体@二氧化硅催化剂在反应初期DMC和EtOH转化率就达到60%以上,而且随着时间的延长其活性完全没有降低,甚至乙醇的转化率还略有上升,充分说明了包埋法制备的催化剂具有良好的稳定性。
实施例11
嵌入包埋法固载的催化剂反应活性及产物选择性还受到水解温度、老化时间、老化温度以及活性组分包埋量的影响。如表9所示为不同催化剂制备条件DMC和乙醇转化率以及产物选择性变化情况。具体制备方法同实施例8中嵌铆式包埋离子液体法,区别在于老化时间和老化温度不同、活性组分含量不用。当水解温度为60℃,老化温 度60℃,老化时间12h,嵌入包埋质量为12g时制备的催化剂活性最佳。
表9 不同嵌入包埋条件对碳酸酯交换反应的影响
Figure PCTCN2019124322-appb-000016
原料DMC和EtOH摩尔比1:1,离子液体为1-乙基-3-甲基咪唑咪唑,反应温度76-78℃,固定床催化剂装填量4g,质量空速1h -1,反应2300min
实施例12
以二氧化硅为载体,浸渍6g的1-乙基-3-甲基-咪唑咪唑盐催化剂以及嵌入包埋量分别为3、6和12g的催化剂红外光谱如图11所示。位于1064cm -1处的强吸收峰为Si-O-Si的伸缩振动特征峰,3427cm -1吸收峰为醇O-H基伸缩振动,1631cm -1为咪唑环上的C=C特征吸收峰,咪唑环的特征吸收峰的位置位于797cm -1处。说明开发的嵌入包埋法制备的离子液体固载催化剂的方法是可信和可行的,离子液体活性组分确定包埋入非均相催化剂中。所制备的催化剂中咪唑特征峰的高度严格遵照包埋法3、6以及12的规律增加,6g离子液体浸渍法制备的催化剂也展示出与高于3g包埋法但明显低于6g包埋法的咪唑特征峰强度,这与他们的催化活性关系基本一致。
实施例13
以二氧化硅为载体,浸渍6g1-乙基-3-甲基-咪唑咪唑盐以及嵌入包埋量分别为3、6和12g的催化剂SEM谱如图12所示。
图12可以看出,图a表观形貌为条状结构,图b呈现出规则的二氧化硅分子的形态,其原因是加入的离子液体量少而不足以形成杂乱的硅烷载体与离子液体的复合体结构。图c、d包埋后的离子液体表观形貌发生较大的改变,载体上聚集了杂乱无章的小颗粒,形成了无规的硅烷载体与离子液体的复合体,进一步说明离子液体通过硅烷偶联作用成功负载到载体上,且随负载量的增大,团簇现象越明显,该SEM图充分说明了嵌入包埋法导致合成的离子液体通过硅烷基偶联作用分布在二氧化物网络中,其微观结构明显区别与二氧化硅的表面微观结构。
实施例14
分别以钛酸四丁酯或正硅酸乙酯+太酸四丁酯为载体,包埋N-甲基-N-丁基吗啉咪唑盐离子液体。A:将30mL钛酸四丁酯和21mL乙醇分别加入锥形瓶,加热到60℃后加入8gN-甲基-N-丁基吗啉咪唑盐离子液体,混合均匀后加入8.9g去离子水。60℃温度下老化12h,120℃干燥10h后用50mL乙醇洗涤三次,150℃真空干燥3h即得固 载后的离子液体催化剂。B:14.5mL正硅酸乙酯、23mL钛酸丁酯和60mL乙醇加入锥形瓶,加热到60℃后加入10gN-甲基-N-丁基吗啉咪唑盐离子液体,加入2.0g醋酸钙、3.8g醋酸镧、3.6g醋酸铁、1.8g醋酸锂以及2.5g偏铝酸钠,搅拌至均匀混合后加入12.34g去离子水。60℃温度下老化12h,120℃干燥10h后用60mL乙醇洗涤三次,150℃真空干燥3h即得固载后的离子液体催化剂。
表10 基于太酸四丁酯包埋的离子液体催化三种碳酸酯交换反应情况
Figure PCTCN2019124322-appb-000017
固定床催化剂装填量4g,质量空速0.2h -1,反应1000min
反应原料1指‘/’左边反应物,原料2指‘/’右边反应物,产物1指EMC,产物2指DEC或DMC。
如表10所示,当反应原料的质量空速为0.2h -1时,以钛酸四丁酯水解产物TiO 2为载体或者以正硅酸乙酯和太酸四丁酯混合水解载体,N-甲基-N-丁基吗啉咪唑盐离子液体为活性组分的嵌入包埋法制备非均相催化剂对于碳酸二甲酯和乙醇、碳酸二甲酯和碳酸二乙酯以及甲醇和碳酸二乙酯酯交换反应均表现出较高的反应活性,产物中仅有碳酸甲乙酯、碳酸二乙酯、甲醇或乙醇生成,完全未检测到其他产物。正硅酸乙酯和太酸四丁酯以及多种金属阳离子混合包埋N-甲基-N-丁基吗啉咪唑盐离子液体时其活性略高于单一钛酸四丁酯单一载体,猜测当Li +、Al 3+、La 3+、Fe 3+以及Ca 2+进入到二氧化硅+二氧化钛网络中能够稳定结构,提升离子液体包埋量,进而导致B催化剂对于三个反应均表现出优于A催化剂的反应活性。
实施例15
以正硅酸乙酯为载体,包埋1-乙基-3-甲基咪唑吡咯盐离子液体。将31.5mL正硅酸乙酯和50mL乙醇分别加入锥形瓶,加热到60℃后加入20g 1-乙基-3-甲基咪唑吡咯盐离子,加入8.73g醋酸镁、5.5g醋酸锌、4.06g醋酸铝混合均匀后加入9.35g去离子水。60℃温度下老化12h,120℃干燥10h后用50mL乙醇洗涤三次,150℃真空干燥3h即得固载后的离子液体催化剂。催化剂水解过程中、水解后、干燥后以及焙烧后的前驱体照片如图13所示。如图13A所示,水解过程中形成均一的棕黄色溶胶,正硅酸乙酯、1-乙基-3-甲基咪唑吡咯盐离子液体以及各种醋酸盐均能够完全溶解于乙醇溶剂中;如图13B所示,水解后的前驱体形成了完全均一的棕黄色固体,体系中基本没有液相剩余;如13C所示,干燥后的凝胶混合物颜色明显比水解后胶体的颜色浅,为淡棕黄色的松脆粉末;如图13D所示,为胶体C在空气氛围中550℃焙烧3h后的照片,得到棕色粉末状产物。之所以该固态产物体现出棕色,我们推断包埋在体相中(分布在二氧化硅以及Mg 2+、Zn 2+和Al 3+网络中)的1-乙基-3-甲基咪唑吡咯盐离子液体受热分解不完全,有大量积碳剩余。这也恰好间接证明了,离子液体是嵌入在载体和结构调控剂的网络中,而不是负载在固体材料孔的表面。负载在载体表面的1-乙基-3-甲基咪唑吡咯离子液体很容易分解和燃烧,空气氛围1-乙基-3-甲基咪唑吡咯离子液体170℃开始分解,350℃之前能够分解完全。
表11 基于正硅酸乙酯-醋酸盐包埋的离子液体催化碳酸酯交换反应情况
Figure PCTCN2019124322-appb-000018
Figure PCTCN2019124322-appb-000019
固定床催化剂装填量4g,质量空速1.0h -1
反应原料1指‘/’左边反应物,原料2指‘/’右边反应物,产物1指EMC,产物2指DEC。
将C和D两种催化剂用于固定床碳酸二甲酯和乙醇以及碳酸二甲酯和碳酸二乙酯的碳酸酯交换反应,原料的质量空速为1.5h -1,其反应结果如表11所示。制备的正硅酸乙酯-醋酸镁-醋酸锌-醋酸铝-1-乙基-3-甲基咪唑吡咯盐展现出了良好的碳酸酯交换催化活性,而焙烧后的催化剂活性低于3%,充分说明合成的离子液体为碳酸酯交换的活性中心,而二氧化硅以及Mg 2+、Zn 2+和Al 3+等离子仅能起到载体和结构调控的作用。载体可以高分散1-乙基-3-甲基咪唑吡咯离子液体,提升离子液体的分散度;金属阳离子起到结构调控剂作用,能够形成四配位、三配位以及二配位的多种网络结构或混合的多配位结构,更有益于提升离子液体包埋量以及固载离子液体的稳定性。
实施例16
实施例15中,图13D和13C催化剂X射线衍射谱图如图14所示。干燥后的正硅酸乙酯-醋酸镁-醋酸锌-偏铝酸钠-1-乙基-3-甲基咪唑吡咯盐催化剂展示出无定型结构,说明Al 3+,Mg 2+以及Zn 2+离子进入到SiO 2的网络中;550℃焙烧3h后的催化剂表现出的结构与干燥后的类似,没有明显的MgO、ZnO或Al 2O 3的峰,进一步说明了这种方法制备催化剂中Al 3+,Mg 2+以及Zn 2+离子进入到了SiO 2的网络中。
实施例17
将26.61mL正硅酸乙酯和60mL乙醇分别加入锥形瓶,加入4.99g硝酸铝、4.52g硅酸钠、3.52g硫酸铁和2.36g氯化钙混合均匀加热到60℃后加入12g N-甲基-N-丁基吗啉吡咯盐盐离子,后加入7.89g去离子水。60℃温度下老化12h后用乙醇洗三次,150℃真空干燥3h即得包埋离子液体后的非均相催化剂E。4g催化剂,反应原料质量空速0.2h -1,原料摩尔比为1:1,三种碳酸酯交换反应结果如表11所示。采用不同金属硝酸盐、硅酸盐、硫酸盐或氯化物前驱体也可以实现离子液体的有效包埋,制备的离子液体固载催化剂在低空速条件下展现了极佳的反应活性。
表12 基于不同盐类结构调控剂包埋的离子液体催化碳酸酯交换反应情况
Figure PCTCN2019124322-appb-000020
固定床催化剂装填量4g,原料质量空速0.2h -1
反应原料1指‘/’左边反应物,原料2指‘/’右边反应物,产物1指EMC,产物2指DEC或DMC。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (36)

  1. 一种均相催化剂,其特征在于,所述均相催化剂包括离子液体;所述离子液体包括阴离子和阳离子;
    所述阴离子和阳离子均含有含氮杂环;
    所述阳离子具有式I或式II所示的结构;
    Figure PCTCN2019124322-appb-100001
    所述阴离子具有式III、式IV或式V所示的结构;
    Figure PCTCN2019124322-appb-100002
    其中,R 1、R 2独立地选自C1-C6的烷烃基、C2-C6的烯烃基、C3-C6的芳烃基中的一种。
  2. 根据权利要求1所述的均相催化剂,其特征在于,R 1、R 2独立地选自-CH 3、-CH 2CH 3、-(CH 2) 2CH 3、-(CH 2) 3CH 3中的一种。
  3. 权利要求1或2所述的均相催化剂的制备方法,其特征在于,包括以下步骤:
    a1)向含有离子液体阴离子源的溶液I中,加入碱,反应,得到离子液体阴离子金属盐;
    a2)将所述离子液体阴离子金属盐溶解在溶剂中,加入离子液体阳离子盐,反应,得到所述离子液体。
  4. 根据权利要求3所述方法,其特征在于,步骤a1)中,所述溶液I中的溶剂选自乙醇、苯、甲苯、二甲苯中的至少一种;
    所述碱为有机碱或无机碱;
    所述有机碱包括甲醇钠、乙醇钠或叔丁醇钠、甲醇钾、乙醇钾或叔丁醇钾;
    所述无机碱包括氢氧化钠或氢氧化钾;
    所述离子液体阴离子金属盐选自离子液体阴离子Na盐、离子液体阴离子K盐中的至少一种。
  5. 根据权利要求3所述方法,其特征在于,步骤a1)中,所述溶液I中,离子液体阴离子源的浓度为0.05~0.8g/mL;
    所述离子液体阴离子源与所述碱的摩尔比为0.9~1.1。
  6. 根据权利要求13所述方法,其特征在于,步骤a1)中,所述离子液体阴离子源包括咪唑、吡咯或者吗啉。
  7. 根据权利要求3所述方法,其特征在于,步骤a1)中,所述反应的条件为:50~80℃下反应5~12小时。
  8. 根据权利要求13所述方法,其特征在于,步骤a1)还包括:反应结束后,除去反应体系中的溶剂,得到咪唑阴离子盐、吡咯阴离子盐或者吗啉阴离子盐。
  9. 根据权利要求3所述的方法,其特征在于,步骤a2)中,所述溶剂包括带水剂;
    所述带水剂选自乙醇、苯、甲苯、二甲苯中的至少一种;
    所述离子液体阳离子盐选自1-R 1-3-甲基-咪唑溴盐、1-R 1-3-甲基-咪唑碘盐、N-甲基-N-R 2-吗啉溴盐、N-甲基-N-R 2-吗啉碘盐中的至少一种。
  10. 根据权利要求3所述的方法,其特征在于,步骤a2)中,所述离子液体阴离子金属盐与溶剂的比例为0.1~0.9:0.05~1.2g/mL。
  11. 根据权利要求13所述的制备方法,其特征在于,步骤a2)中,所述反应的条件为:25-80℃下反应12-48h。
  12. 根据权利要求13所述的制备方法,其特征在于,步骤a2)还包括:反应结束后,除去反应体系中的溶剂,得到所述离子液体。
  13. 一种非均相催化剂,其特征在于,所述非均相催化剂包括离子液体和载体;
    所述离子液体嵌铆式包埋在所述载体中。
  14. 根据权利要求13所述的非均相催化剂,其特征在于,所述离子液体包括阴离子和阳离子;
    所述阳离子具有式I或式II所示的结构;
    Figure PCTCN2019124322-appb-100003
    所述阴离子具有式III、式IV或式V所示的结构;
    Figure PCTCN2019124322-appb-100004
    其中,R 1、R 2独立地选自C1-C6的烷烃基、C2-C6的烯烃基、C3-C6的芳烃基中的一种。
  15. 根据权利要求13所述的非均相催化剂,其特征在于,所述离子液体嵌入所述载体的网络中。
  16. 根据权利要求13所述的非均相催化剂,其特征在于,所述载体与所述离子液体存在以下作用力中的至少一种:偶联作用、氢键作用。
  17. 根据权利要求13所述的非均相催化剂,其特征在于,R 1、R 2独立地选自-CH 3、-CH 2CH 3、-(CH 2) 2CH 3、-(CH 2) 3CH 3中的一种。
  18. 根据权利要求13所述的非均相催化剂,其特征在于,所述非均相催化剂中活性离子液体与载体重量含量的比例为1%-30%:10%-60%。
  19. 根据权利要求13所述的非均相催化剂,其特征在于,所述载体选自二氧化硅、二氧化钛、三氧化二铝中的至少一种;
    所述载体形成的同时,所述离子液体嵌入所述载体的网络中。
  20. 根据权利要求13所述的非均相催化剂,其特征在于,所述非均相催化剂还包括结构调控剂;
    所述离子液体嵌入所述载体与所述结构调控剂复合的网络中。
  21. 根据权利要求13所述的非均相催化剂,其特征在于,所述结构调控剂包括Mg、Ca、Ba、La、Ce、Zr、Fe、Zn、Li、Cs、Al中的至少一种。
  22. 根据权利要求13所述的非均相催化剂,其特征在于,所述结构调控剂在所述非均相催化剂中的重量含量为10%~60%。
  23. 权利要求13至22任一项所述的非均相催化剂的制备方法,其特征在于,包括以下步骤:
    a)获得均相催化剂;
    b)将水加入到含有载体前驱体和离子液体的混合物中,水解,得到所述非均相催化剂。
  24. 根据权利要求23所述的制备方法,其特征在于,所述均相催化剂根据权利要求3至12任一项所述的方法制备得到。
  25. 根据权利要求23所述的制备方法,其特征在于,步骤b)中,所述载体前驱体包括正硅酸乙酯、钛酸四丁酯、异丙醇铝、偏铝酸钠中的至少一种。
  26. 根据权利要求23所述的制备方法,其特征在于,步骤b)中所述混合物中还包括溶剂;
    所述溶剂的加入量为0.1~0.9;
    所述溶剂包括甲醇、乙醇、丙醇、丁醇、乙酸甲酯、乙酸乙酯中的至少一种。
  27. 根据权利要求23所述的制备方法,其特征在于,步骤b)中,
    所述载体前驱体、离子液体、水的质量比为0.2~0.8:0.03~0.4:0.1~0.4。
  28. 根据权利要求23所述的制备方法,其特征在于,步骤b)中,所述水解的温度为25~80℃。
  29. 根据权利要求23所述的制备方法,其特征在于,步骤b)中,水解后,40-120℃之间老化6-24小时,得到所述非均相催化剂。
  30. 根据权利要求23所述的制备方法,其特征在于,步骤b),所述混合物中包括结构调剂前驱体;
    所述结构调剂前驱体包括结构调控剂相应的醋酸盐、硅酸盐、盐酸盐、硝酸盐中的至少一种。
  31. 根据权利要求23所述的制备方法,其特征在于,步骤b)还包括:
    将载体前驱体、结构调控剂前驱体与溶剂混合,加入离子液体,混合均匀,然后加入水,进行水解,得到所述非均相催化剂。
  32. 根据权利要求31所述的制备方法,其特征在于,步骤b),所述载体前驱体、结构调控剂前驱体、溶剂、离子液体、水的质量比为0.2~0.8:0.05~0.4:0.3~0.8:0.03~0.4:0.1~0.4。
  33. 酯交换反应制备碳酸甲乙酯,其特征在于,所述酯交换反应过程中的催化剂中包含离子液体。
  34. 根据权利要求33所述的酯交换反应制备碳酸甲乙酯,其特征在于,所述催化剂为离子液体或离子液体基非均相催化剂;
    其中,所述离子液体选自1-乙基-3-甲基咪唑醋酸盐、1-乙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑溴盐、1-乙基-3-甲基咪唑碘盐、1-丁基-3-甲基咪唑氟硼酸盐、1-丁基-3-甲基咪唑氯盐、1-丁基-3-甲基咪唑溴盐、1-丁基-3-甲基咪唑碘盐、1,3-二甲基咪唑碘盐、1-乙基-3-甲基咪唑甲醇盐、氢氧化1-乙基-3-甲基咪唑碱、1-乙基-3-甲基咪唑咪唑盐、1-乙基-3-甲基咪唑吡咯盐、1-乙基-3-甲基咪唑吗啉盐、1-丁基-3-甲基咪唑咪唑盐、1,3-二甲基咪唑吡咯盐、N-甲基-N-乙基吗啉咪唑盐、N-甲基-N-乙基吗啉吡咯盐、N-甲基-N-乙基吗啉吗啉盐、N-甲基-N-丁基吗啉咪唑盐、N-甲基-N-丁基吗啉吡咯盐离子液体中的至少一种;
    所述离子液体基非均相催化剂选自权利要求13至22任一项所述的非均相催化剂、根据权利要求23至32任一项所述的制备方法制备的非均相催化剂中的至少一种。
  35. 根据权利要求34所述的酯交换反应制备碳酸甲乙酯,其特征在于,所述酯交换反应包括碳酸二甲酯与乙醇酯交换反应、碳酸二甲酯与碳酸二乙酯酯交换反应以及甲醇与碳酸二乙酯酯交换反应中的至少一种。
  36. 根据权利要求33所述的应用,其特征在于,所述酯交换反应的条件为:76-78℃反应5min即达到反应平衡。
PCT/CN2019/124322 2019-12-09 2019-12-10 一种基于离子液体的均相催化剂和非均相催化剂、其制备方法及应用 WO2021114091A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19934376.5A EP3950123B1 (en) 2019-12-09 2019-12-10 Heterogeneous catalyst based on ionic liquid, and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911253627.7 2019-12-09
CN201911253627.7A CN111804331A (zh) 2019-12-09 2019-12-09 一种基于离子液体的均相催化剂和非均相催化剂、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2021114091A1 true WO2021114091A1 (zh) 2021-06-17

Family

ID=72843679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124322 WO2021114091A1 (zh) 2019-12-09 2019-12-10 一种基于离子液体的均相催化剂和非均相催化剂、其制备方法及应用

Country Status (3)

Country Link
EP (1) EP3950123B1 (zh)
CN (1) CN111804331A (zh)
WO (1) WO2021114091A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149363A (zh) * 2021-10-20 2022-03-08 吉林师范大学 一种吡啶丙烯酸盐晶体、制备方法及其在制备碳酸甲乙酯中的应用
CN114210365A (zh) * 2021-12-23 2022-03-22 抚顺东科精细化工有限公司 一种合成碳酸甲乙酯和碳酸二乙酯的催化剂及其方法
CN114534721A (zh) * 2022-02-24 2022-05-27 河南科技大学 水相中Au@Pd核壳结构超长纳米线的制备方法及应用
CN114685773A (zh) * 2022-02-18 2022-07-01 沈阳工业大学 一种功能化锡类咪唑鎓盐催化剂及其制备方法与合成pes的应用
CN114805074A (zh) * 2022-06-06 2022-07-29 中国石油大学(华东) 由碳酸乙烯酯或碳酸丙烯酯直接制备碳酸甲乙酯的方法
CN114873632A (zh) * 2022-04-24 2022-08-09 湖北大学 一种双三氟甲磺酰亚胺锂/沸石咪唑酯骨架复合材料及其制备方法和应用
TWI781785B (zh) * 2021-10-07 2022-10-21 南亞塑膠工業股份有限公司 Pet化學回收用離子觸媒材料的製備方法及pet化學回收方法
CN115340491A (zh) * 2022-08-18 2022-11-15 井冈山大学 一种静电-氢键螯合型离子液体及其制备方法和应用
CN115337941A (zh) * 2022-08-09 2022-11-15 河南科技大学 一种光催化保鲜材料及其制备方法与应用
CN115521204A (zh) * 2021-12-23 2022-12-27 沈阳工业大学 一种碱性离子液体一锅法催化合成碳酸酯的方法
WO2023038249A1 (ko) * 2021-09-07 2023-03-16 주식회사 엘지화학 비대칭 선형 카보네이트의 제조방법
WO2023058851A1 (ko) * 2021-10-07 2023-04-13 주식회사 엘지화학 비대칭 선형 카보네이트 및 비대칭 선형 카보네이트 제조 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735805A (zh) * 2021-07-06 2021-12-03 上海昶法新材料有限公司 烯基琥珀酸酐的制备方法
CN113797973B (zh) * 2021-08-26 2023-11-17 福州大学 一种快速制备碱性框架材料催化剂的方法和应用
CN114029049B (zh) * 2021-12-06 2024-06-18 洛阳双罗铼材料科技有限公司 一种多孔铼催化剂及其应用方法
CN114890895A (zh) * 2022-04-20 2022-08-12 中国石油大学(华东) 一种固载化碱性离子液体催化反应精馏生产碳酸二甲酯的方法
CN114790281B (zh) * 2022-05-10 2023-10-24 沈阳工业大学 一种用于偶联反应制备聚酯的金属基离子液体催化剂及其制备方法与应用
CN115041227B (zh) * 2022-07-22 2024-03-29 抚顺东科新能源科技有限公司 一种金属羧酸基离子液体催化剂及其制备方法与应用
CN116393169A (zh) * 2023-05-22 2023-07-07 沈阳化工大学 一种碳氮键合法固载离子液体非均相催化剂制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617365A (zh) * 2012-03-08 2012-08-01 闽江学院 碱性固载化离子液体催化的3-氯-2-羟丙基-三甲基氯化铵的合成方法
CN102675028A (zh) * 2012-05-07 2012-09-19 浙江大学 采用离子液体吸收从裂解气中分离制备乙炔的方法
CN102863339A (zh) * 2012-09-18 2013-01-09 常州大学 一种碳酸二甲酯和碳酸二乙酯酯交换合成碳酸甲乙酯的方法
CN102978012A (zh) * 2012-11-08 2013-03-20 江南大学 一种咪唑阴离子型碱性离子液体催化制备生物柴油的方法
CN103641720A (zh) * 2013-12-17 2014-03-19 福州大学 一种采用碱性离子液体作催化剂合成碳酸二乙酯的方法
CN104311407A (zh) * 2014-09-29 2015-01-28 万华化学集团股份有限公司 一种3,5,5-三甲基-3-环己烯-1-酮的绿色制备工艺
CN109593170A (zh) * 2018-11-29 2019-04-09 常州大学 以吗啉阴离子类碱性离子液体作为催化剂制备酚醛树脂的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521263B (zh) * 2013-10-16 2015-08-12 连云港正丰生物能源有限公司 吗啉盐类离子液体催化剂、其制备方法及其用途
CN106582813A (zh) * 2016-11-18 2017-04-26 常州大学 一种用于酯交换反应合成碳酸甲乙酯的固载型离子液体催化剂及其制备方法
CN108117536B (zh) * 2016-11-30 2020-10-02 中国科学院大连化学物理研究所 一种1,2-丙二醇与二氧化碳合成碳酸丙烯酯的方法
CN107162879B (zh) * 2017-06-06 2020-05-26 常州大学 一种碱性离子液体用于催化壬烯和苯酚合成壬基酚的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617365A (zh) * 2012-03-08 2012-08-01 闽江学院 碱性固载化离子液体催化的3-氯-2-羟丙基-三甲基氯化铵的合成方法
CN102675028A (zh) * 2012-05-07 2012-09-19 浙江大学 采用离子液体吸收从裂解气中分离制备乙炔的方法
CN102863339A (zh) * 2012-09-18 2013-01-09 常州大学 一种碳酸二甲酯和碳酸二乙酯酯交换合成碳酸甲乙酯的方法
CN102978012A (zh) * 2012-11-08 2013-03-20 江南大学 一种咪唑阴离子型碱性离子液体催化制备生物柴油的方法
CN103641720A (zh) * 2013-12-17 2014-03-19 福州大学 一种采用碱性离子液体作催化剂合成碳酸二乙酯的方法
CN104311407A (zh) * 2014-09-29 2015-01-28 万华化学集团股份有限公司 一种3,5,5-三甲基-3-环己烯-1-酮的绿色制备工艺
CN109593170A (zh) * 2018-11-29 2019-04-09 常州大学 以吗啉阴离子类碱性离子液体作为催化剂制备酚醛树脂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950123A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206178A4 (en) * 2021-09-07 2024-06-19 Lg Chem, Ltd. PROCESS FOR PREPARING ASYMMETRICAL LINEAR CARBONATE
WO2023038249A1 (ko) * 2021-09-07 2023-03-16 주식회사 엘지화학 비대칭 선형 카보네이트의 제조방법
EP4230614A4 (en) * 2021-10-07 2024-06-19 Lg Chem, Ltd. ASYMMETRICAL LINEAR CARBONATE AND METHOD FOR PRODUCING ASYMMETRICAL LINEAR CARBONATE
WO2023058851A1 (ko) * 2021-10-07 2023-04-13 주식회사 엘지화학 비대칭 선형 카보네이트 및 비대칭 선형 카보네이트 제조 방법
TWI781785B (zh) * 2021-10-07 2022-10-21 南亞塑膠工業股份有限公司 Pet化學回收用離子觸媒材料的製備方法及pet化學回收方法
CN114149363A (zh) * 2021-10-20 2022-03-08 吉林师范大学 一种吡啶丙烯酸盐晶体、制备方法及其在制备碳酸甲乙酯中的应用
CN114149363B (zh) * 2021-10-20 2023-08-22 吉林师范大学 一种吡啶丙烯酸盐晶体、制备方法及其在制备碳酸甲乙酯中的应用
CN115521204A (zh) * 2021-12-23 2022-12-27 沈阳工业大学 一种碱性离子液体一锅法催化合成碳酸酯的方法
CN114210365B (zh) * 2021-12-23 2022-11-29 抚顺东科精细化工有限公司 一种合成碳酸甲乙酯和碳酸二乙酯的催化剂及其方法
CN114210365A (zh) * 2021-12-23 2022-03-22 抚顺东科精细化工有限公司 一种合成碳酸甲乙酯和碳酸二乙酯的催化剂及其方法
CN114685773A (zh) * 2022-02-18 2022-07-01 沈阳工业大学 一种功能化锡类咪唑鎓盐催化剂及其制备方法与合成pes的应用
CN114685773B (zh) * 2022-02-18 2023-06-09 沈阳工业大学 一种功能化锡类咪唑鎓盐催化剂及其制备方法与合成pes的应用
CN114534721A (zh) * 2022-02-24 2022-05-27 河南科技大学 水相中Au@Pd核壳结构超长纳米线的制备方法及应用
CN114534721B (zh) * 2022-02-24 2023-10-17 河南科技大学 水相中Au@Pd核壳结构超长纳米线的制备方法及应用
CN114873632A (zh) * 2022-04-24 2022-08-09 湖北大学 一种双三氟甲磺酰亚胺锂/沸石咪唑酯骨架复合材料及其制备方法和应用
CN114873632B (zh) * 2022-04-24 2023-09-22 湖北大学 一种双三氟甲磺酰亚胺锂/沸石咪唑酯骨架复合材料及其制备方法和应用
CN114805074A (zh) * 2022-06-06 2022-07-29 中国石油大学(华东) 由碳酸乙烯酯或碳酸丙烯酯直接制备碳酸甲乙酯的方法
CN114805074B (zh) * 2022-06-06 2024-03-26 中国石油大学(华东) 由碳酸乙烯酯或碳酸丙烯酯直接制备碳酸甲乙酯的方法
CN115337941A (zh) * 2022-08-09 2022-11-15 河南科技大学 一种光催化保鲜材料及其制备方法与应用
CN115340491B (zh) * 2022-08-18 2023-08-01 井冈山大学 一种静电-氢键螯合型离子液体及其制备方法和应用
CN115340491A (zh) * 2022-08-18 2022-11-15 井冈山大学 一种静电-氢键螯合型离子液体及其制备方法和应用

Also Published As

Publication number Publication date
EP3950123A4 (en) 2022-07-20
CN111804331A (zh) 2020-10-23
EP3950123B1 (en) 2024-04-10
EP3950123A1 (en) 2022-02-09
EP3950123C0 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2021114091A1 (zh) 一种基于离子液体的均相催化剂和非均相催化剂、其制备方法及应用
WO2021114092A1 (zh) 一种碳酸二甲酯的制备方法
Unlu et al. Biodiesel additive ethyl levulinate synthesis by catalytic membrane: SO4− 2/ZrO2 loaded hydroxyethyl cellulose
CN109772286B (zh) 一种固体碱催化剂及其制备方法和应用
WO2022178959A1 (zh) 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用
CN106861703B (zh) 一种用于顺酐液相加氢合成γ-丁内酯的催化剂的制备方法
JP4202072B2 (ja) 水素製造触媒の調製方法
WO2018121329A1 (zh) 一种磁性金属氧化物交联酸性聚离子液体及其应用
US20090214417A1 (en) Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides
CN106744677B (zh) 用RhNiCo/CeO2@C3N4纳米催化剂催化水合肼脱氢的方法
CN106694008A (zh) 用负载型RhNi/CeO2@C3N4纳米催化剂催化水合肼脱氢的方法
CN101863771B (zh) 用于合成碳酸甲乙酯的类水滑石固体催化剂的制备方法
CN103406118B (zh) 生物柴油催化剂CaO/M-Al-O及其制备方法
CN109603796A (zh) 一种固体碱催化剂及其制备方法和应用
Chen et al. Sol-gel prepared InTaO4 and its photocatalytic characteristics
Chaemchuen et al. Progress on catalyst development for direct synthesis of dimethyl carbonate from CO 2 and methanol
JP5105544B2 (ja) 水蒸気改質触媒
KR101200022B1 (ko) 디메틸카보네이트 제조용 세리아-지르코니아 복합 담체에 담지된 갈륨 옥사이드 촉매, 그 제조방법 및 상기 촉매를 이용한 디메틸카보네이트의 제조방법
CN107115863B (zh) 一种醋酸加氢制乙醇Pt-Sn/Li-Al-O催化剂的制备方法
KR100925663B1 (ko) 양이온 계면활성제를 주형물질로 사용하여 수열합성법에의해 제조된 중형기공 알루미나 담체에 담지된 니켈촉매,그 제조방법 및 상기 촉매를 이용한 액화천연가스의 수증기개질반응에 의한 수소 제조방법
CN115582148B (zh) 一种钛离子掺杂的铈基金属有机框架光催化剂的制备方法及用途
CN110560131A (zh) 用CoPt纳米片催化剂可见光催化氨硼烷脱氢的方法
CN109794249B (zh) 一种层状硅酸铜锌纳米片的制备方法
CN113694960A (zh) 一种用于合成5-乙氧基甲基糠醛的ZrCu-MOR沸石及其制备方法
CN113145102A (zh) 一种负载型催化剂及其制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019934376

Country of ref document: EP

Effective date: 20211102

NENP Non-entry into the national phase

Ref country code: DE