WO2022178959A1 - 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用 - Google Patents

一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022178959A1
WO2022178959A1 PCT/CN2021/088326 CN2021088326W WO2022178959A1 WO 2022178959 A1 WO2022178959 A1 WO 2022178959A1 CN 2021088326 W CN2021088326 W CN 2021088326W WO 2022178959 A1 WO2022178959 A1 WO 2022178959A1
Authority
WO
WIPO (PCT)
Prior art keywords
nisn
core
catalyst
salt
shell composite
Prior art date
Application number
PCT/CN2021/088326
Other languages
English (en)
French (fr)
Inventor
王铁军
刘文平
陈铂
张浅
仇松柏
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2022178959A1 publication Critical patent/WO2022178959A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • C07C29/34Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the application belongs to the technical field of catalysts, and in particular relates to a NiSn/C core-shell composite nano-catalyst and a preparation method and application thereof.
  • higher alcohols have always been used as important chemical raw materials in many fields.
  • C4+ alcohols can also be used as a new generation of biofuels, and have high calorific value, easy mixing, high octane number, good hydrophobicity, easy separation, easy Due to its unique advantages such as passivation and non-corrosiveness to engine piping, it is considered to be a promising clean fuel mixture.
  • higher alcohols can be prepared by the condensation of small molecular alcohols to achieve carbon chain growth, which is called the Guerbet condensation reaction.
  • the Guerbet condensation reaction provides a method for the direct carbon-carbon coupling of small alcohols to synthesize isomeric higher alcohols.
  • the mechanism of the Guerbet condensation reaction is that the reaction raw material alcohol is dehydrogenated under the action of a catalyst to form aldehyde, and then nucleophilic addition is carried out.
  • Form aldol condensation remove a molecule of water to obtain unsaturated enone, and finally obtain the product by selective hydrogenation under the action of catalyst.
  • the obtained higher alcohols are mostly isomerized alcohols containing branched chains, and it is believed that the dehydrogenation of alcohols to generate corresponding aldehydes occurs under the catalysis of metals, and general dehydrogenation metal catalysts also have catalytic hydrogenation capabilities, so small molecules
  • the catalytic system of the alcohol-carbon-carbon coupling reaction is usually a dehydrogenation-hydrogenation catalyst and a basic catalyst.
  • the active metals of dehydrogenation-hydrogenation catalysts are mostly organometallics, Pt, Pd, Ir and other transition precious metals, and aldol condensation is mostly homogeneous bases such as NaOH and KOH or solid base catalysts such as MgAl hydrotalcite and HAP.
  • organometallic and precious metal catalysts show good catalytic activity, they have the problems of high price, high recovery cost, unstable performance under hydrothermal environment, difficult separation and environmental pollution, which lead to the preparation of biomass small molecule alcohol condensation Higher alcohol fuels lack application prospects.
  • the present application provides a NiSn/C core-shell composite nanocatalyst and a preparation method and application thereof, which can effectively improve the catalytic efficiency and catalytic stability of the dehydrogenation-hydrogenation catalyst, and can be used to catalyze the direct synthesis of an aqueous ethanol solution. Advanced alcohol fuel chemicals.
  • a first aspect of the present application provides a method for preparing a NiSn/C core-shell composite nanocatalyst, comprising the following steps:
  • the carbon source is selected from C 6 H 8 O 7 ⁇ H 2 O or C 6 H 8 O 7 .
  • metallic Ni as a non-precious metal element, is abundant in the earth's crust, and is one of the best substitute materials for precious metals.
  • Modification of Ni with metallic Sn can change the electronic environment of metallic Ni, and then regulate the metallicity of metallic Ni, so that the methanation during the dehydrogenation of small-molecule alcohols is weakened, which is beneficial to the formation of higher alcohols.
  • the carbon source is citric acid with multiple carboxyl groups, which can be used as a carbon source precursor and reducing agent, and can build a hydrophobic carbon shell layer on the surface of NiSn bimetals, which can obtain a large specific surface area and a complete spherical core-shell structure, thereby improving the catalyst.
  • the thermal stability of the active particles in a hydrothermal environment can avoid agglomeration, and improve the catalytic efficiency of ethanol coupling to synthesize higher alcohols in the aqueous phase.
  • the Ni salt is selected from nickel nitrate, nickel chloride or nickel sulfate
  • the Sn salt is selected from SnCl 2 ⁇ 2H 2 O or SnCl 4 ⁇ 5H 2 O.
  • the molar ratio of the mixture of the Ni salt and the Sn salt to the carbon source is 1:(0.2-5). More preferably, the molar ratio of the mixture of the Ni salt and the Sn salt to the carbon source is 1:1 or 1:2.
  • the mass ratio of the Ni salt, the Sn salt, the carbon source and the deionized water is 1.84:0.11:(0.28-7):5. More preferably, the mass ratio of the Ni salt, the Sn salt, the carbon source and the deionized water is 1.84:0.11:2.8:5.
  • the evaporation temperature is 80-120°C
  • the drying temperature is 80-120°C
  • the calcination temperature is 300-800°C.
  • the drying temperature is 100°C
  • the calcination temperature is 500°C
  • the calcination is performed in a nitrogen atmosphere.
  • the rotational speed of the stirring in S1 and S2 is 200-600 rpm.
  • a second aspect of the present application provides a NiSn/C core-shell composite nanocatalyst prepared by the above preparation method.
  • the obtained NiSn/C core-shell composite nanocatalyst is a heterogeneous catalyst, and in the process of catalyzing ethanol to synthesize higher alcohol, it is easy to separate and recover, with little pollution, and can be recycled after recovery.
  • the NiSn/C core-shell composite nanocatalyst has a specific surface area of 103.8-181.9 m 2 /g, and an average particle size of 6.4-8.8 nm.
  • the third aspect of the present application provides the application of the NiSn/C core-shell composite nanocatalyst in catalyzing the aqueous phase synthesis of higher alcohols from small molecular alcohols.
  • the NiSn/C core-shell composite nanocatalyst is used to catalyze the carbon-carbon coupling of a small molecular alcohol aqueous solution, and higher alcohols can be directly prepared.
  • the reaction conditions are mild and pollution-free, and spontaneous phase separation can be achieved, and the conversion efficiency A substantial increase.
  • the conditions for catalyzing the synthesis of higher alcohols in the aqueous phase of small molecular alcohols are:
  • NiSn/C core-shell composite nanocatalyst the mass ratio of alkali: small molecular alcohol: water is 0.1:0.1:3:3;
  • the temperature of the catalysis is 200-270° C., the pressure is 0.1 MPa, and the time is 24 hours.
  • the present application provides a NiSn/C core-shell composite nanocatalyst and a preparation method and application thereof.
  • Ni salt, Sn salt and carbon source are added into deionized water, stirred to form a homogeneous sol solution, the sol solution is stirred and evaporated to form a gel, and then dried and calcined to obtain a NiSn/C core-shell composite nanocatalyst.
  • the carbon source is citric acid with multiple carboxyl groups, which can be used as a carbon source precursor and reducing agent, and can build a hydrophobic carbon shell layer on the surface of NiSn bimetals, which can obtain a large specific surface area and a complete spherical core-shell structure, thereby improving the catalyst.
  • the thermal stability of the active particles in a hydrothermal environment can avoid agglomeration, and improve the catalytic efficiency of ethanol coupling to synthesize higher alcohols in the aqueous phase.
  • the NiSn/C core-shell composite nanocatalyst of the present application is a heterogeneous catalyst, and in the process of catalyzing the synthesis of higher alcohols from ethanol, it is easy to separate and recover, has little pollution, and can be recycled after recovery.
  • Fig. 1 is the SEM image of the product obtained in Example 5 of the application.
  • Fig. 2 is the TEM image of the product obtained in Example 5 of the application under different magnifications
  • Fig. 3 is the SEM image of the product obtained in Example 7 of the application.
  • Fig. 4 is the SEM image of the obtained product of Comparative Example 1 of the application.
  • Fig. 5 is the SEM image of the obtained product of Comparative Example 2 of the application.
  • Fig. 6 is the XRD patterns of the products prepared in Examples 1-7 of the application (except for Example 6);
  • FIG. 7 is the N 2 physical adsorption (BET) diagram of the products prepared in Example 1, Example 3, Example 5, Examples 7-8 and Comparative Examples 1-2 of the present application.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 500 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 500 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 500 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 500 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 500 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • the SEM image of the product obtained in Example 5 of the present application is shown in Figure 1, and the TEM image of the product obtained in Example 5 of the present application under different magnifications is shown in Figure 2. It can be seen from the SEM image that the prepared catalyst has a complete spherical core-shell structure, the metal particles are wrapped by carbon, the particle size is uniformly dispersed, and the particle diameter is small.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 500 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 500 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100° C. to form a gel, transfer the evaporated gel to a drying oven at 100° C. for 48 hours, and obtain a NiSn composite nano-catalyst precursor .
  • the catalyst precursor was then calcined at 600 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 300 °C for 4 h under N 2 to obtain the NiSn/C core-shell composite nanocatalyst.
  • the SEM image of the product obtained in Comparative Example 1 of the present application is shown in FIG. 4 , and it can be seen from the figure that the obtained catalyst is in the form of a block, and the arrangement is relatively cluttered.
  • Ni(NO 3 ) 2 .6H 2 O, SnCl 4 .5H 2 O and C 6 H 8 O 7 .H 2 O were simultaneously added to deionized water, and stirred to form a homogeneous sol.
  • step (2) Evaporate the sol solution obtained in step (1) on a magnetic stirrer at 100°C to form a gel, transfer the evaporated gel to a drying oven at 100°C for 48 hours, and obtain a NiSn composite nanocatalyst precursor .
  • the catalyst precursor was then calcined at 800 °C for 4 h under N 2 to obtain NiSn/C core-shell composite nanocatalysts.
  • the SEM image of the product obtained in Comparative Example 2 of the present application is shown in FIG. 5 . It can be seen from the figure that the obtained catalyst has a larger particle size, is prone to aggregation, has poor dispersion, and is easily deactivated during the reaction.
  • the N 2 physical adsorption (BET) diagrams of the products prepared in Example 1, Example 3, Example 5 and Example 7 of the present application are shown in Figures 7(a) and 7(b).
  • the N 2 physical adsorption (BET) diagrams of the products prepared in Example 8 and Comparative Examples 1-2 are shown in Figures 7(c) and 7(d).
  • Figure 7(a) and Figure 7(b) show that the particle size distribution of the products obtained in Examples 1 and 3 with less citric acid addition is wider and the particle size is uneven; The particle size of the product obtained in Example 7 is relatively large, and clustering may occur.
  • Figure 7(c) shows that under the condition of the same amount of carbon source, the properties of the products prepared with different carbonization temperatures are significantly different.
  • the corresponding isotherm hysteresis loops of the catalysts are typical H1 type, indicating a relatively narrow pore size distribution and a relatively uniform particle size; while the corresponding carbonization temperature is 300 °C.
  • the isotherm hysteresis loop is a typical H2 type, indicating that the catalyst has uneven pore size distribution and pore shape.
  • the pore size distribution results in Figure 7(d) are also consistent with the above analysis results, that is, when the carbonization temperature is 500, 600, and 800 °C, the pore size distribution is narrower, and the average pore size is about 7 nm. The reason may be related to the pore structure formed by the decomposition and carbonization of citric acid.
  • Example 1 to 7 and Comparative Examples 1 to 2 were used in a 50ml steel mechanical stirring reaction kettle to synergize with a homogeneous alkali (NaOH) to catalyze the reaction of ethanol carbon-carbon coupling to synthesize advanced fuel alcohol, wherein NiSn/C Core-shell composite nanocatalyst: the mass ratio of NaOH:ethanol:water is 0.1:0.1:3:3, the reaction temperature is 250°C, the initial pressure is 0.1MPa, and the reaction time is 24h.
  • the reaction kettle is cooled to room temperature, After centrifugation and filtration, the liquid phase and catalyst solid phase are obtained, and the gas phase and liquid phase products are collected.
  • Table 1 shows that in the preparation process, with the increase of the amount of the precursor citric acid, the effect of catalyzing the synthesis of higher alcohols first increased and then decreased. This may be related to the thickness of the carbon shell wrapped on the surface of the NiSn metal particles.
  • the appropriate thickness of the carbon shell is beneficial to protect the metal core of the catalyst, enhance its catalytic stability in a hydrothermal reaction environment, thereby improving the conversion rate of ethanol, and Selectivity of organic phase formation.
  • the thickness of the carbon shell layer continues to increase, which is not conducive to the mass transfer between the water phase and the active metal catalyst core in the reaction, and the conversion rate of ethanol declines.
  • the carbonization temperature is too low, the pore size distribution of the catalyst will be uneven, and the pore shape will be uneven.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本申请属于催化剂技术领域。本申请提供了一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用。将Ni盐、Sn盐和碳源加入去离子水中,搅拌形成均质的溶胶溶液,将溶胶溶液进行搅拌蒸发形成凝胶,再进行干燥、煅烧,获得NiSn/C核壳形复合纳米催化剂。碳源选择多羧基的柠檬酸,可作为碳源前驱体和还原剂,能够在NiSn双金属表面构筑疏水性碳壳层,可获得较大比表面积和完整球状的核壳形结构,从而提升催化剂活性粒子在水热环境下的热稳定性,且避免发生团聚现象,提升水相中乙醇偶联合成高级醇的催化效率。本申请的NiSn/C核壳形复合纳米催化剂为非均相催化剂,在催化乙醇合成高级醇的过程中,易于分离与回收、污染小,回收后可以循环利用。

Description

一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用 技术领域
本申请属于催化剂技术领域,尤其涉及一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用。
背景技术
高级醇一直以来作为重要的化工原料被用于诸多领域,近年来发现C4+醇也可以作为新一代的生物燃料,并且具有高热值、易混合、高辛烷值、疏水性好,易于分离、易钝化、对发动机管路无腐蚀性等特有的优势,被认为是一种很有潜力的清洁混合燃料。一般情况下,可通过小分子醇的缩合来实现碳链增长制备高级醇,称为Guerbet缩合反应。1899年,Marcel Guerbet首次发现以氢氧化钾作为催化剂,使低分子醇经醇醛缩合后在羟基β位上生成带支链的异构高级醇。Guerbet缩合反应提供了一种使小分子醇直接碳-碳偶联合成异构高级醇的方法,一般Guerbet缩合反应的机理是反应原料醇在催化剂的作用下脱氢生成醛,然后进行亲核加成羟醛缩合,脱去一分子水得到不饱和烯酮,最后在催化剂作用下选择性加氢得到产物。得到的高级醇多为含支链的异构醇,且认为醇脱氢生成相应的醛是在金属的催化作用下发生的,而一般脱氢金属催化剂同时也具有催化加氢能力,所以小分子醇碳碳偶联反应的催化体系通常为脱氢-加氢催化剂和碱性催化剂。
目前,脱氢-加氢催化剂的活性金属多采用有机金属、Pt、Pd、Ir等过渡贵金属,羟醛缩合则多采用NaOH、KOH等均相碱或MgAl水滑石、HAP等固体碱催化剂。尽管有机金属、贵金属催化剂表现出了较好的催化活性,但其存在价格昂贵、回收成本较高、水热环境下性能不稳定、难分离和环境污染的问题,导致生物质小分子醇缩合制备高级醇燃料缺少应用前景。
发明内容
有鉴于此,本申请提供了一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用,有效提升脱氢-加氢催化剂的催化效率和催化稳定性,能够用于催化乙醇水溶液直接合成高级醇燃料化学品。
本申请的具体技术方案如下:
本申请第一方面提供一种NiSn/C核壳形复合纳米催化剂的制备方法,包括如下步骤:
S1:将Ni盐、Sn盐和碳源加入去离子水中,搅拌形成均质的溶胶溶液;
S2:将溶胶溶液进行搅拌蒸发形成凝胶,再进行干燥、煅烧,获得NiSn/C核壳形复合纳米催化剂;
所述碳源选自C 6H 8O 7·H 2O或C 6H 8O 7
本申请中,金属Ni作为一种非贵金属元素,地壳中产量丰富,是最好的贵金属替代材料之一。采用金属Sn改性Ni可改变金属Ni的电子环境,进而调控金属Ni的金属性,使其在小分子醇脱氢过程中甲烷化减弱,从而利于高级醇的生成。碳源选择多羧基的柠檬酸,可作为碳源前驱体和还原剂,能够在NiSn双金属表面构筑疏水性碳壳层,可获得较大比表面积和完整球状的核壳形结构,从而提升催化剂活性粒子在水热环境下的热稳定性,且避免发生团聚现象,提升水相中乙醇偶联合成高级醇的催化效率。
优选的,所述Ni盐选自硝酸镍、氯化镍或硫酸镍,所述Sn盐选自SnCl 2·2H 2O或SnCl 4·5H 2O。
优选的,所述Ni盐和所述Sn盐的混合物与所述碳源的摩尔比为1:(0.2~5)。更优选的,所述Ni盐和所述Sn盐的混合物与所述碳源的摩尔比为1:1或1:2。
优选的,所述Ni盐、所述Sn盐、所述碳源以及所述去离子水的质量比为1.84:0.11:(0.28~7):5。更优选的,所述Ni盐、所述Sn盐、所述碳源以及所述去离子水的质量比为1.84:0.11:2.8:5。
优选的,S2中所述蒸发的温度为80-120℃,所述干燥的温度为80-120℃,所述煅烧的温度为300-800℃。
更优选的,S2中所述干燥的温度为100℃,所述煅烧的温度为500℃,所述煅烧在氮气氛围中进行。
优选的,S1和S2中所述搅拌的转速为200-600rpm。
本申请第二方面提供一种NiSn/C核壳形复合纳米催化剂,由上述制备方法制得。
本申请中,制得的NiSn/C核壳形复合纳米催化剂为非均相催化剂,在催 化乙醇合成高级醇的过程中,易于分离与回收、污染小,回收后可以循环利用。
优选的,所述NiSn/C核壳形复合纳米催化剂的比表面积为103.8-181.9m 2/g,平均粒径为6.4-8.8nm。
本申请第三方面提供所述NiSn/C核壳形复合纳米催化剂在催化小分子醇水相合成高级醇中的应用。
本申请中,将NiSn/C核壳形复合纳米催化剂用于催化小分子醇水溶液进行碳-碳偶联,可直接制得高级醇,反应条件温和无污染、能实现自发相分离,且转化效率大幅提高。
优选的,所述催化小分子醇水相合成高级醇的条件为:
所述NiSn/C核壳形复合纳米催化剂:碱:小分子醇:水的质量比为0.1:0.1:3:3;
所述催化的温度为200-270℃,压力为0.1MPa,时间为24h。
综上所述,本申请提供了一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用。将Ni盐、Sn盐和碳源加入去离子水中,搅拌形成均质的溶胶溶液,将溶胶溶液进行搅拌蒸发形成凝胶,再进行干燥、煅烧,获得NiSn/C核壳形复合纳米催化剂。碳源选择多羧基的柠檬酸,可作为碳源前驱体和还原剂,能够在NiSn双金属表面构筑疏水性碳壳层,可获得较大比表面积和完整球状的核壳形结构,从而提升催化剂活性粒子在水热环境下的热稳定性,且避免发生团聚现象,提升水相中乙醇偶联合成高级醇的催化效率。本申请的NiSn/C核壳形复合纳米催化剂为非均相催化剂,在催化乙醇合成高级醇的过程中,易于分离与回收、污染小,回收后可以循环利用。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例5制得产物的SEM图;
图2为本申请实施例5制得产物在不同放大倍数下的TEM图;
图3为本申请实施例7制得产物的SEM图;
图4为本申请对比例1制得产物的SEM图;
图5为本申请对比例2制得产物的SEM图;
图6为本申请实施例1~7(除实施例6以外)制得产物的XRD图;
图7为本申请实施例1、实施例3、实施例5、实施例7~8和对比例1~2制得产物的N 2物理吸附(BET)图。
具体实施方式
为使得本申请的目的、特征、优点能够更加的明显和易懂,对本申请实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
实施例1
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:0.28:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为5:1;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在500℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
实施例2
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:0.47:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为3:1;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在500℃煅烧4h得到NiSn/C核壳 形复合纳米催化剂。
实施例3
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:0.70:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为2:1;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在500℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
实施例4
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:1.40:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:1;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在500℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
实施例5
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:2.8:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:2;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在500℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
本申请实施例5制得产物的SEM图如图1所示,本申请实施例5制得产 物在不同放大倍数下的TEM图如图2所示。从SEM图中可看出制得催化剂呈完整的球状核壳结构,碳包裹着金属颗粒,粒径分散均匀,粒子的直径小。
实施例6
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:4.2:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:3;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在500℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
实施例7
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:7.0:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:5;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在500℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
本申请实施例7制得产物的SEM图如图3所示,图中可看出制得催化剂的形貌呈均匀的不规则团簇颗粒状,且团簇表面的颗粒状粗糙,表明其内部是由次级纳米颗粒聚集而成。
实施例8
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:2.8:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:2;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶, 将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在600℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
对比例1
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:2.8:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:2;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在300℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
本申请对比例1制得产物的SEM图如图4所示,图中可看出制得催化剂呈块状,排列比较絮乱。
对比例2
(1)将一定量的Ni(NO 3) 2·6H 2O、SnCl 4·5H 2O和C 6H 8O 7·H 2O同步加入去离子水中,搅拌形成均质溶胶,其中,各物质质量比如下Ni(NO 3) 2·6H 2O:SnCl 4·5H 2O:C 6H 8O 7·H 2O:水=1.84:0.11:2.8:5,即金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:2;
(2)将步骤(1)得到的溶胶溶液放在100℃的磁力搅拌器上蒸发形成凝胶,将蒸发得到的凝胶转移到100℃的干燥箱中干燥48h,得到NiSn复合纳米催化剂前驱体。再将催化剂前驱体放在N 2下在800℃煅烧4h得到NiSn/C核壳形复合纳米催化剂。
本申请对比例2制得产物的SEM图如图5所示,图中可看出制得催化剂的粒径较大,易发生聚集,分散度较差,易在反应中失活。
本申请实施例1~7(除实施例6以外)制得产物的XRD图如图6所示。图中可知,随着柠檬酸添加量的增多,慢慢出现了金属Ni与Ni 3Sn的晶型,Ni 3Sn在催化过程中起了决定性作用,说明柠檬酸作为碳源的碳壳层有利于实现金属中心的稳定性;但柠檬酸添加量持续增加时,Ni 3Sn的晶型相慢慢减弱, 直至消失。
本申请实施例1、实施例3、实施例5和实施例7制得产物的N 2物理吸附(BET)图如图7(a)和图7(b)所示,本申请实施例5、实施例8和对比例1~2制得产物的N 2物理吸附(BET)图如图7(c)和图7(d)所示。图7(a)和图7(b)表明,柠檬酸添加量较少的实施例1和实施例3制得产物的粒径分布较宽,颗粒尺寸不均匀;柠檬酸添加量较高的实施例7制得产物的粒径较大,可能发生团簇现象。图7(c)表明,在碳源用量相同的情况下,采用不同碳化温度制备的产物性能有明显差异。碳化温度为500、600和800℃时制得催化剂对应的等温线回滞环为典型的H1型,表明其相对较窄的孔径分布和较均匀的颗粒尺寸;而碳化温度为300℃时对应的等温线回滞环为典型的H2型,表明催化剂的孔径分布不均、孔形状不均匀。图7(d)的孔径分布结果也与上述分析结果相符,即当碳化温度为500、600和800℃时孔径分布较窄,平均孔径在7nm左右,其中500℃对应催化剂的孔径分布较800℃的更大些,原因可能与柠檬酸分解碳化形成的孔隙结构有关。
实施例8
将实施例1~7和对比例1~2制得产物在50ml钢制机械搅拌反应釜中与均相碱(NaOH)协同催化乙醇碳-碳偶联合成高级燃料醇反应,其中,NiSn/C核壳形复合纳米催化剂:NaOH:乙醇:水的质量比为0.1:0.1:3:3,反应温度250℃、起始压力为0.1MPa,反应时长24h,反应结束后使反应釜冷却至室温,进行离心和过滤后,得到液相和催化剂固相,收集气相和液相产物,液相产物离心后静置可加速自发相分层得到有机相和水相,液相产物离心分离后通过气相色谱进行检测分析,有机相主要产物即为C4+高级醇,实施例1~7和对比例1~2制得产物的催化活性结果见下表1所示。
表1表明,在制备过程中,随着前驱体柠檬酸量的增加,催化合成高级醇效果先呈先递增后递减的趋势。这可能与包裹在NiSn金属粒子表面的碳壳层厚度有关,适当的碳壳层厚度有利于保护催化剂金属核心,增强其在水热反应环境下的催化稳定性,从而提升乙醇的转化率,以及有机相生成的选择性。当碳前驱体量继续增加时,使得碳壳层的厚度持续增加,不利于反应中水相与催化剂金属活性核心的物质传递,乙醇的转化率出现下滑。同时,碳 化温度过低会导致催化剂的孔径分布不均、孔形状不均匀,碳化温度过高易造成颗粒聚集,从而影响催化剂的催化活性。
表1 实施例1~7和对比例1~2制得产物的催化活性结果
Figure PCTCN2021088326-appb-000001
以上实验结果表明,制备过程采用较少的柠檬酸会导致金属颗粒的聚集结块、颗粒分布不均匀,失去保护金属核心、增强催化稳定性的意义,而较多的柠檬酸则会导致碳壳层团簇、不利于水相与金属活性核心间的物质传递,当金属前驱体(Ni盐和Sn盐的混合物)与柠檬酸的摩尔比为1:1或1:2时有利于形成均一分布的球状NiSn/C颗粒。另外,当煅烧温度为500℃下制备的NiSn/C核壳形复合纳米催化剂具有更优的催化活性。本申请制得的催化剂能够用于催化乙醇合成C4+高级醇,乙醇转化率最高达到58.3%,C4+高级醇选择性达到92.1%。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种NiSn/C核壳形复合纳米催化剂的制备方法,其特征在于,包括如下步骤:
    S1:将Ni盐、Sn盐和碳源加入去离子水中,搅拌形成均质的溶胶溶液;
    S2:将溶胶溶液进行搅拌蒸发形成凝胶,再进行干燥、煅烧,获得NiSn/C核壳形复合纳米催化剂;
    所述碳源选自C 6H 8O 7·H 2O或C 6H 8O 7
  2. 根据权利要求1所述的制备方法,其特征在于,所述Ni盐选自硝酸镍、氯化镍或硫酸镍,所述Sn盐选自SnCl 2·2H 2O或SnCl 4·5H 2O。
  3. 根据权利要求1所述的制备方法,其特征在于,所述Ni盐和所述Sn盐的混合物与所述碳源的摩尔比为1:(0.2~5)。
  4. 根据权利要求1所述的制备方法,其特征在于,所述Ni盐、所述Sn盐、所述碳源以及所述去离子水的质量比为1.84:0.11:(0.28~7):5。
  5. 根据权利要求1所述的制备方法,其特征在于,S2中所述蒸发的温度为80-120℃,所述干燥的温度为80-120℃,所述煅烧的温度为300-800℃。
  6. 根据权利要求1所述的制备方法,其特征在于,S1和S2中所述搅拌的转速为200-600rpm。
  7. 一种NiSn/C核壳形复合纳米催化剂,其特征在于,由权利要求1~6任意一项所述制备方法制得。
  8. 根据权利要求7所述的NiSn/C核壳形复合纳米催化剂,其特征在于,所述NiSn/C核壳形复合纳米催化剂的比表面积为103.8-181.9m 2/g,平均粒径为6.4-8.8nm。
  9. 权利要求7所述的NiSn/C核壳形复合纳米催化剂在催化小分子醇水相合成高级醇中的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述催化小分子醇水相合成高级醇的条件为:
    所述NiSn/C核壳形复合纳米催化剂:碱:小分子醇:水的质量比为0.1:0.1:3:3;
    所述催化的温度为200-270℃,压力为0.1MPa,时间为24h。
PCT/CN2021/088326 2021-02-26 2021-04-20 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用 WO2022178959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110217123.0A CN112973707A (zh) 2021-02-26 2021-02-26 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用
CN202110217123.0 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022178959A1 true WO2022178959A1 (zh) 2022-09-01

Family

ID=76351065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088326 WO2022178959A1 (zh) 2021-02-26 2021-04-20 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112973707A (zh)
WO (1) WO2022178959A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509940B (zh) * 2021-07-08 2024-04-12 广东工业大学 一种NiSn-MgAlO@C相转移催化剂及其制备方法和应用
CN113502504B (zh) * 2021-07-12 2022-04-22 南通大学 一种NiSn/TiO2@ZnFe2O4电催化剂及其制备方法
CN113559865B (zh) * 2021-07-22 2023-12-26 广东工业大学 一种高分散NiSn/MgAlO催化剂及其制备方法和应用
CN114177908B (zh) * 2021-08-25 2023-09-15 广东工业大学 一种固体碱协同碳包覆镍基两亲性相转移催化剂及其制备方法和应用
CN115722230A (zh) * 2021-08-26 2023-03-03 广东工业大学 一种嵌入式耐水热NiSn-CS纳米催化剂及其制备方法和应用
CN114917907A (zh) * 2022-04-19 2022-08-19 大连理工大学 高催化加氢活性的负载型非贵金属催化剂、制备方法及其应用
CN115228479B (zh) * 2022-07-05 2023-10-24 广东工业大学 一种碱金属改性NiSn材料及其制备方法和应用
CN115445630B (zh) * 2022-08-30 2023-11-17 广东工业大学 一种聚丙烯基锡掺杂碳包镍催化剂及其制备方法和应用
CN118047661A (zh) * 2024-04-15 2024-05-17 广东工业大学 一种乙醇与Guerbet醇交叉偶联增碳合成异构高碳醇的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207976A (ja) * 2008-03-03 2009-09-17 Ne Chemcat Corp 脂肪族ケトンの接触水素化用白金固定炭素触媒及びそれを使用する脂肪族ケトンからの脂肪族第2級アルコールの製造方法
CN103722169A (zh) * 2013-12-23 2014-04-16 天津大学 二维多孔石墨化碳包覆镍锡合金材料及制备与应用
CN109304476A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN110102309A (zh) * 2019-06-10 2019-08-09 广东工业大学 一种NiSn复合纳米催化剂、制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549289B (zh) * 2009-05-12 2012-08-22 武汉大学 一种推进剂用核壳催化剂及其制备方法
CN102701271B (zh) * 2012-05-04 2014-06-11 中国科学院苏州纳米技术与纳米仿生研究所 制备碳包裹纳米氧化锡复合材料的方法
CN111468117A (zh) * 2019-01-23 2020-07-31 中国石油化工股份有限公司 含碱土金属的碳包覆过渡金属的纳米复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207976A (ja) * 2008-03-03 2009-09-17 Ne Chemcat Corp 脂肪族ケトンの接触水素化用白金固定炭素触媒及びそれを使用する脂肪族ケトンからの脂肪族第2級アルコールの製造方法
CN103722169A (zh) * 2013-12-23 2014-04-16 天津大学 二维多孔石墨化碳包覆镍锡合金材料及制备与应用
CN109304476A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN110102309A (zh) * 2019-06-10 2019-08-09 广东工业大学 一种NiSn复合纳米催化剂、制备方法及其应用

Also Published As

Publication number Publication date
CN112973707A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2022178959A1 (zh) 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用
US11772076B2 (en) Preparation method of nitrogen-doped hierarchical-porous carbon-loaded nanometer Pd catalyst and product and application thereof
WO2019100497A1 (zh) 多孔碳负载的费托合成催化剂及其制备方法和应用
WO2022188432A1 (zh) 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN109967081B (zh) 一种高活性、抗积碳甲烷干气重整催化剂及其制备方法
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
CN110102309B (zh) 一种NiSn复合纳米催化剂、制备方法及其应用
CN103301841B (zh) 一种石墨烯负载高分散纳米Ni催化剂及其制备方法和应用
CN113058595A (zh) 一种Ru基氨分解制氢催化剂及其制备方法
CN114405505B (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN107597119B (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
WO2021120928A1 (zh) 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用
CN115007186B (zh) 一种氮化碳基位点特异的双单原子催化剂、制备及其应用
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
JP2004089812A (ja) 水素製造触媒およびその調製方法
CN111992213A (zh) 用于催化愈创木酚加氢脱氧制备环己醇的核壳型催化剂的制备方法
WO2022121574A1 (zh) 通过能量辐射产生氢分子的方法
CN116099549B (zh) 一种三元合金脱氢催化剂、制备方法及其用途
CN114308066B (zh) 一种用于加氢脱氢的双金属催化剂及其制备方法、应用
WO2022121575A1 (zh) 通过能量辐射产生氢分子的方法
CN114797857A (zh) 一种纳米花状铜基材料及其制备方法和应用
CN113083325A (zh) 一种氨硼烷水解制氢用催化剂Ru1-xCox/P25及其制备方法
WO2023024254A1 (zh) 一种嵌入式耐水热NiSn-CS纳米催化剂及其制备方法和应用
CN113145102A (zh) 一种负载型催化剂及其制备与应用
WO2023024253A1 (zh) 一种固体碱协同碳包覆镍基两亲性相转移催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927393

Country of ref document: EP

Kind code of ref document: A1