WO2022188432A1 - 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法 - Google Patents

一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法 Download PDF

Info

Publication number
WO2022188432A1
WO2022188432A1 PCT/CN2021/127575 CN2021127575W WO2022188432A1 WO 2022188432 A1 WO2022188432 A1 WO 2022188432A1 CN 2021127575 W CN2021127575 W CN 2021127575W WO 2022188432 A1 WO2022188432 A1 WO 2022188432A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
bioethanol
doped carbon
catalyst
higher alcohols
Prior art date
Application number
PCT/CN2021/127575
Other languages
English (en)
French (fr)
Inventor
王铁军
古桔文
仇松柏
张浅
吴小平
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2022188432A1 publication Critical patent/WO2022188432A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • C07C29/34Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to the technical field of catalysts, and more particularly, to a nitrogen-doped carbon-coated nickel catalyst used for assembling bioethanol to synthesize higher alcohols and a preparation method thereof.
  • Biomass is the only carbon-containing renewable resource, and converting it into fuels, chemicals and platform compounds is important for energy conservation. Emission reduction and the establishment of sustainable societies are important.
  • Bioethanol is one of the most important bulk biomass chemical products. It can be obtained from biomass resources such as straw and subtilis that can be obtained in large quantities through biological fermentation or catalysis. 10% of the gasoline has been added to gasoline in the United States and Brazil. Ethanol (E10), China is also gradually promoting E10 gasoline.
  • E10 E10 gasoline
  • ethanol is a short-chain low-carbon alcohol, which is easy to absorb water, which will lead to a series of problems such as engine corrosion and difficulty in storage. Bioethanol is mostly obtained through biological fermentation, which has problems such as high water content and low ethanol concentration.
  • Higher alcohols are important chemical platform molecules. Compared with lower alcohols, they have better hydrophobicity, lower solubility in water, and are easy to separate and purify. They are often used as extractants in fine chemicals. At the same time, compared with low-carbon alcohols such as ethanol, it has higher energy density and is less corrosive to the engine, and the isomerized higher alcohol with branched chain in the molecular skeleton also has a higher octane number, which is expected to become the A new type of clean energy. Through the Guerbet reaction, bioethanol can be spliced into branched-rich higher alcohols in the aqueous phase.
  • the carbon-carbon coupling of bioethanol through the Guerbet reaction to form higher alcohols is divided into three parts: (1) Metal catalysts catalyze the generation of alcohols Dehydrogenation; (2) base-catalyzed aldol condensation; (3) metal catalyst hydrogenation of the aldol condensation product.
  • the whole reaction system is usually a metal catalyst/base catalyst. According to the Guerbet mechanism, on most oxide catalysts, ethanol dehydrogenation is a rate-controlling step for the conversion of lower alcohols to higher alcohols.
  • the transition metal Ni is widely used as a catalyst with good hydrogenation/dehydrogenation performance, and its reserves are very abundant, and it is expected to become a substitute for noble metal catalysts.
  • Jiang et al. (Jiang D, Wu X, Mao J, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu–CeO 2 /AC catalysts[J].
  • Chemical Communications, 2016, 52:13749-13752) disclosed A nickel-based catalyst Ni-CeO 2 /AC for the conversion of small molecular alcohols to higher alcohols, but due to the excessive metallicity of Ni, the catalyst has excessive dehydrogenation in the process of catalyzing the conversion of small molecular alcohols to higher alcohols. C-C bond cleavage leads to methanation, which leads to low C4+ higher alcohol formation efficiency and low bioethanol utilization efficiency.
  • the primary purpose of the present invention is to overcome the problem that when the existing nickel-based catalyst is used for the synthesis of higher alcohols from water-phase small molecular alcohols, excessive dehydrogenation causes C-C bond cleavage to lead to methanation, which in turn leads to low catalytic efficiency, and provides a method for assembly Preparation method of nitrogen-doped carbon-coated nickel catalyst for bioethanol synthesis of higher alcohols.
  • Another object of the present invention is to provide a nitrogen-doped carbon-coated nickel catalyst for assembling bioethanol to synthesize higher alcohols.
  • a further object of the present invention is to provide the application of the above-mentioned nitrogen-doped carbon-coated nickel catalyst for assembling bioethanol to synthesize higher alcohols.
  • a method for preparing a nitrogen-doped carbon-coated nickel catalyst for assembling bioethanol to synthesize higher alcohols comprising the following steps:
  • the precursor is placed in an inert atmosphere and pyrolyzed at 300 to 800° C. for 1 to 6 hours, and the obtained is a nitrogen-doped carbon-coated nickel catalyst.
  • Ni is modified in the form of nitrogen doping to form Ni 3 N and nitrogen-doped carbon layer, and Ni is combined with the nitrogen-containing carbon layer in the form of bonds, thereby changing the electronic structure of Ni, and at the same time generating a small amount of Ni 3
  • the synergistic effect of the N active phase and the nitrogen-doped carbon coating layer weakens the metallicity of Ni, which can effectively solve the technical problems of severe methanation and low catalytic efficiency of the existing nickel-based catalysts in the synthesis of higher alcohols from small molecular alcohols in aqueous phase.
  • the molar ratio of soluble nickel salt and polyacrylamide is 1:(1-6). More preferably, it is 1:(1-3).
  • the average molecular weight of the polyacrylamide is 2 million to 14 million.
  • the soluble nickel salt can be selected from conventional nickel salts in the field.
  • the soluble nickel salt is selected from one or more of nickel nitrate, nickel formate, nickel acetate, nickel chloride, and nickel sulfate.
  • the drying is drying at 50-120° C. for 12-100 h.
  • the temperature is raised to 400-700° C. at a heating rate of 1-30° C./min, and the temperature is kept for 2-5 hours.
  • a nitrogen-doped carbon-coated nickel catalyst used for assembling bioethanol to synthesize high-carbon alcohol is prepared by the above method.
  • the present invention also protects the application of the above nitrogen-doped carbon-coated nickel catalyst for assembling bioethanol to synthesize higher alcohols in the aqueous phase synthesis of higher alcohols from small molecular alcohols.
  • the small-molecule alcohol is ethanol
  • the higher alcohol is an isomeric alcohol with 4-16 carbon atoms.
  • the isomeric alcohols with 4 to 16 carbon atoms can be n-butanol, 2-ethyl-1-butanol, n-hexanol, 2-ethyl-1-hexanol, n-octanol, 2-ethyl alcohol Octanol, n-decanol, isomeric C10+ alcohol, etc.
  • the nitrogen-doped carbon-coated nickel catalyst of the invention has high selectivity when used for catalyzing ethanol to synthesize isomeric alcohols with 4-16 carbon atoms.
  • the steps of the nitrogen-doped carbon-coated nickel catalyst provided by the present invention to efficiently assemble bioethanol to synthesize higher alcohols are as follows:
  • the prepared nitrogen-doped carbon-coated nickel catalyst was reacted in a 60ml steel high-pressure slurry bed reactor with a homogeneous alkali synergistic catalyst bioethanol to synthesize higher alcohols, wherein the catalyst: NaOH: ethanol: water mass ratio was 0.06 : 0.17: 2: 2, the reaction temperature is 180 ⁇ 250°C, the actual pressure is 0.1MPa, the reaction time is 6 ⁇ 48h, the liquid product is centrifuged and analyzed by gas chromatography.
  • soluble nickel salt and polyacrylamide are used as raw materials to prepare precursors, and by placing the precursors in an inert atmosphere for pyrolysis, a nitrogen-doped carbon-coated nickel for assembling bioethanol to synthesize higher alcohols is prepared.
  • catalyst The catalyst of the invention has a highly dispersed active phase, can efficiently assemble bioethanol to synthesize higher alcohols, has high stability, and can still maintain high conversion rate and organic phase yield even after 10 times of repeated use .
  • Example 1 is an X-ray powder diffraction (XRD) pattern of the nitrogen-doped carbon-coated nickel catalysts prepared in Example 1 and Comparative Example 1 of the present invention.
  • XRD X-ray powder diffraction
  • Example 2 is a scanning electron microscope (SEM) image of the nitrogen-doped carbon-coated nickel catalyst prepared in Example 1 of the present invention.
  • Example 3 is a transmission electron microscope (TEM) image of the nitrogen-doped carbon-coated nickel catalyst prepared in Example 1 of the present invention and its carbon layer after acid etching.
  • TEM transmission electron microscope
  • FIG. 4 is a graph of the stability test data of the nitrogen-doped carbon-coated nickel catalyst prepared in Example 1 of the present invention.
  • the polyacrylamide used in the present invention is purchased from aladdin and Macklin, and the trade names are P108471 (molecular weight 2 million-14 million), P821239 (molecular weight 5 million), P821240 (molecular weight 7 million), P821241 (molecular weight 12 million) and P821242 (molecular weight 14 million) .
  • a method for preparing a nitrogen-doped carbon-coated nickel catalyst for assembling bioethanol to synthesize higher alcohols comprising the following steps:
  • the dried precursor was pyrolyzed at 500°C for 6 hours in an inert atmosphere, and the heating rate was 10°C/min to obtain a nitrogen-doped carbon-coated nickel catalyst.
  • the nitrogen content was 6.86wt% as measured by elemental analysis .
  • This embodiment is the second embodiment of the present invention.
  • the difference from Embodiment 1 is that the molar ratio of nickel salt to polyacrylamide in this embodiment is 1:3.
  • This embodiment is the third embodiment of the present invention.
  • the difference from Embodiment 1 is that the molar ratio of nickel salt to polyacrylamide in this embodiment is 1:6.
  • This embodiment is the fourth embodiment of the present invention.
  • the difference from Embodiment 1 is that the molar ratio of nickel salt to polyacrylamide in this embodiment is 1:8.
  • This embodiment is the fifth embodiment of the present invention.
  • the difference from Embodiment 1 is that the molar ratio of nickel salt to polyacrylamide in this embodiment is 1:1.
  • This embodiment is the sixth embodiment of the present invention.
  • the difference from Embodiment 1 is that the molar ratio of nickel salt to polyacrylamide in this embodiment is 1:0.5.
  • This embodiment is the seventh embodiment of the present invention.
  • the difference from Embodiment 1 is that the pyrolysis temperature in this embodiment is 700°C.
  • This embodiment is the eighth embodiment of the present invention.
  • the difference from Embodiment 1 is that the pyrolysis temperature in this embodiment is 800°C.
  • This embodiment is the ninth embodiment of the present invention, which is different from Embodiment 1 in that the pyrolysis temperature in this embodiment is 400°C.
  • This embodiment is the tenth embodiment of the present invention.
  • the difference from Embodiment 1 is that the pyrolysis temperature in this embodiment is 300°C.
  • This embodiment is the eleventh embodiment of the present invention.
  • the difference from Embodiment 1 is that the nickel salt in this embodiment is nickel nitrate, and the heating rate of pyrolysis is 1°C/min.
  • This embodiment is the twelfth embodiment of the present invention.
  • the difference from Embodiment 1 is that the nickel salt in this embodiment is nickel chloride, and the heating rate of pyrolysis is 10° C./min.
  • This embodiment is the thirteenth embodiment of the present invention.
  • the difference from Embodiment 1 is that the nickel salt in this embodiment is nickel formate, and the heating rate of pyrolysis is 20° C./min.
  • This embodiment is the fourteenth embodiment of the present invention.
  • the difference from Embodiment 1 is that the nickel salt in this embodiment is nickel sulfate, and the heating rate of pyrolysis is 30° C./min.
  • This comparative example is the first comparative example of the present invention, and the preparation method of the catalyst described in this comparative example is as follows:
  • the catalyst was obtained by pyrolyzing the dried precursors at 500 °C for 2 hours in an inert atmosphere with a heating rate of 30 °C/min.
  • This comparative example is the second comparative example of the present invention, and the catalyst described in this comparative example is Ni-CeO 2 /AC.
  • This comparative example is the third comparative example of the present invention, which is different from Example 1 in that the molar ratio of nickel salt to polyacrylamide in this example is 1:0.3.
  • This comparative example is the fourth comparative example of the present invention, which is different from Example 1 in that the molar ratio of nickel salt to polyacrylamide in this example is 1:9.
  • This comparative example is the fifth comparative example of the present invention, which is different from Example 1 in that in this example, chitosan is used instead of polyacrylamide as the nitrogen source.
  • Example 1 is an X-ray powder diffraction (XRD) pattern of the nitrogen-doped carbon-coated nickel catalysts prepared in Example 1 and Comparative Example 1 of the present invention. It can be seen from the figure that the catalyst described in Example 1 has diffraction peaks typical of metallic Ni accompanied by a small amount of crystal phase diffraction peaks of Ni 3 N, while the catalyst described in Comparative Example 1 has only typical diffraction peaks of metallic Ni. , the XRD patterns of the catalysts described in Examples 2-14 are basically the same as those in Example 1.
  • Example 2 is a scanning electron microscope (SEM) image of the nitrogen-doped carbon-coated nickel catalyst prepared in Example 1 of the present invention. It can be seen from the figure that the appearance of the nitrogen-doped carbon-coated nickel catalyst is a sheet-like nitrogen-doped carbon layer inlaid with nanoparticles of Ni and Ni 3 N components. The size of the nanoparticles is uniform and dispersed in the sheet-like carbon layer. superior.
  • SEM images of the catalysts described in Examples 2 to 14 are basically the same as those in Example 1.
  • FIG. 3 is a transmission electron microscope (TEM) image of the nitrogen-doped carbon-coated nickel catalyst prepared in Example 1 of the present invention and its carbon layer after acid etching.
  • a and B in FIG. 3 show that the Ni nanoparticles are uniformly coated in In the nitrogen-doped carbon layer, the main particle size distribution is between 40 and 60 nm; in Figure 3, C, D shows the carbon layer remaining after acid washing, indicating that the Ni nanoparticles disappeared after being dissolved and washed by acid, leaving only nano-voids.
  • the nitrogen-doped carbon-coated nickel catalyst prepared by the method of the present invention can fully expose its active site.
  • the TEM images of the catalysts described in Examples 2 to 14 are basically the same as those in Example 1.
  • FIG. 4 is a graph of the stability test data of the nitrogen-doped carbon-coated nickel catalyst prepared in Example 1 of the present invention. It can be seen from the figure that the catalyst still has high conversion rate and organic phase yield even after 10 times of repeated use, indicating that the catalyst has high stability.
  • the catalysts described in Examples 1 to 14 and Comparative Examples 1 to 5 were added to a 60ml steel high-pressure slurry bed reactor and reacted with a homogeneous alkali synergistic catalyst for ethanol coupling to synthesize higher alcohols, wherein catalyst: NaOH: ethanol: water quality
  • the ratio is 0.06:0.17:2:2
  • the reaction temperature is 230°C
  • the actual pressure is 0.1MPa
  • the reaction time is 12h.
  • the gas phase and liquid phase products are collected, and the catalyst and the reaction can be separated by magnetic separation.
  • the product, the liquid-phase product can be spontaneously separated to obtain an aqueous phase and an oil phase mainly containing C4+ alcohol after standing, and the liquid-phase product is separated and detected and analyzed by gas chromatography.
  • the analysis results are shown in Table 1.
  • the nitrogen-doped carbon-coated nickel catalysts prepared at different ratios and pyrolysis temperatures all have better selectivity for higher alcohols, and the ratio of nickel salt to polyacrylamide is 1: 2.
  • the nitrogen-doped carbon-coated nickel catalyst prepared under the calcination temperature of 500 °C has the best catalytic activity.
  • the catalyst described in Comparative Example 1 is not doped with nitrogen and only has a nickel phase.
  • the methanation is severe and the synthesis efficiency of higher alcohols is low.
  • the organic phase yield is 18.45%, and the organic phase C4+ alcohol selectivity is only 54.41%.
  • the catalyst described in Comparative Example 2 is Ni-CeO 2 /AC. Due to the too strong metallicity of Ni, the catalyst has excessive dehydrogenation in the process of catalyzing the conversion of small-molecule alcohols to higher alcohols, resulting in the cleavage of CC bonds, resulting in methanation.
  • the selectivity of C4+ higher alcohol is only 61.21%, and the conversion rate of ethanol is only 56.71%.
  • the amount of polyacrylamide is less or more, and the ethanol conversion rate, organic phase yield and C4+ alcohol selectivity are all low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法,所述制备方法包括如下步骤:S1.取可溶性镍盐和聚丙烯酰胺,加水搅拌,完全溶解后干燥,得到前驱体,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(0.5~8);S2.将前驱体置于惰性气氛中于300~800℃下热解1~6h,所得即为氮掺杂碳包覆镍催化剂。本发明所述方法制备得到的催化剂具有高分散的活性相,能够高效组装小分子醇合成高级醇,同时具有较高的稳定性,在重复使用10次的情况下依旧能保持较高的转化率和有机相收率。

Description

一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法 技术领域
本发明涉及催化剂技术领域,更具体地,涉及一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法。
背景技术
化石资源的过度消耗导致日益严重的环境问题,因而可再生资源的开发利用受到了人们的普遍关注,生物质是唯一的含碳可再生资源,将其转化为燃料、化学品和平台化合物对节能减排和可持续社会的建立都有重要意义。生物乙醇是最重要的大宗生物质化工产品之一,其可以由可大量获取的秸秆、枯草等生物质资源通过生物发酵或催化等方式转化得到,美国和巴西的汽油中已经添加了10%的乙醇(E10),中国也在逐步推广E10汽油。然而,乙醇属于短链低碳醇,容易吸水,这会导致发动机腐蚀和难以储存等一系列问题,且生物乙醇大多通过生物发酵获得,其存在含水量大,乙醇浓度低等问题。
高级醇是重要的化工平台分子,相比低碳醇,其疏水性好,在水中具有更低的溶解度、易于分离纯化,常在精细化工中作为萃取剂。同时相对于乙醇等低碳醇,其具有更高的能量密度,对发动机的腐蚀性更低,而分子骨架中带有支链的异构化高级醇还具有更高的辛烷值,有望成为一种新型的清洁能源。通过Guerbet反应可在水相中将生物乙醇拼接成富含支链的高级醇,生物乙醇通过Guerbet反应发生碳碳偶联形成高级醇的过程分为三个部分:(1)金属催化剂催化发生醇脱氢;(2)碱催化羟醛缩合;(3)金属催化剂对羟醛缩合产物进行加氢。整个反应体系通常为金属催化剂/碱催化剂,根据Guerbet机理,在大多数氧化物催化剂上,乙醇脱氢是低碳醇转化到高级醇的速率控制步骤,一般认为是由碱性中心催化乙醇的脱氢,而由Lewis酸或碱性中心催化中间体加氢,金属中心的加入能促进脱氢/加氢的进行,显著降低反应温度。目前常用的高效加氢-脱氢催化剂大多采用金属Ru、Ir配合物、Ir、Ru、Rh、Pd、Pt等过渡金属催化剂体系,但贵金属及其金属配合物存在价格贵,回收困难等问题,且金属配合物还存在水相中不稳定的问题。
过渡金属Ni作为一种具有良好的加氢/脱氢性能的催化剂而被广泛使用,且 其储量十分丰富,有望成为贵金属催化剂的替代品。Jiang等人(Jiang D,Wu X,Mao J,et al.Continuous catalytic upgrading of ethanol to n-butanol over Cu–CeO 2/AC catalysts[J].Chemical Communications,2016,52:13749-13752)公开了一种用于小分子醇转化成高级醇的镍基催化剂Ni-CeO 2/AC,但是由于Ni的金属性过强,该催化剂在催化小分子醇转化至高级醇的过程中存在过度脱氢使C-C键断裂导致甲烷化的情况,从而导致C4+高级醇形成效率低,生物乙醇利用效率低的情况。
发明内容
本发明的首要目的是克服现有的镍基催化剂用于水相小分子醇合成高级醇时,过度脱氢使C-C键断裂导致甲烷化,进而导致催化效率低的问题,提供一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法。
本发明的另一目的是提供一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂。
本发明的进一步目的是提供上述一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的应用。
本发明的上述目的通过以下技术方案实现:
一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,包括如下步骤:
S1.取可溶性镍盐和聚丙烯酰胺,加水搅拌,溶解后干燥,得到前驱体;可溶性镍盐与聚丙烯酰胺的摩尔比为1:(0.5~8);
S2.将前驱体置于惰性气氛中于300~800℃下热解1~6h,所得即为氮掺杂碳包覆镍催化剂。
本发明采用氮掺杂的形式对Ni进行改性,形成Ni 3N和氮掺杂碳层,Ni与含氮碳层以键的形式结合,从而改变Ni的电子结构,同时生成的少量Ni 3N活性相与氮掺杂碳包覆层协同作用,减弱了Ni的金属性,能够有效解决现有的镍基催化剂在水相小分子醇合成高级醇中甲烷化严重,催化效率低的技术问题。
优选地,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(1~6)。更优选为1:(1~3)。
优选地,聚丙烯酰胺的平均分子量为200万~1400万。
本发明中,可溶性镍盐选择本领域常规镍盐即可。优选地,所述可溶性镍盐选自硝酸镍、甲酸镍、醋酸镍、氯化镍、硫酸镍中的一种或多种。
优选地,所述干燥为50~120℃下干燥12~100h。
优选地,所述热解为以1~30℃/min的升温速率升温至400~700℃,保温2~5h。
一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂,由上述方法制得。
本发明还保护上述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂在小分子醇水相合成高级醇中的应用。
优选地,所述小分子醇为乙醇,所述高级醇为碳原子数为4~16个的异构醇。其中碳原子数为4~16个的异构醇可以为正丁醇、2-乙基-1-丁醇、正己醇、2-乙基-1-己醇、正辛醇、2-乙基辛醇、正癸醇、异构C10+醇等。本发明所述氮掺杂碳包覆镍催化剂用于催化乙醇合成碳原子数为4~16个的异构醇时均具有较高选择性。
本发明所提供的氮掺杂碳包覆镍催化剂高效组装生物乙醇合成高级醇的步骤如下:
将制备得到的氮掺杂碳包覆镍催化剂在60ml钢质高压浆态床反应釜中与均相碱协同催化剂生物乙醇偶联合成高级醇反应,其中催化剂:NaOH:乙醇:水质量比为0.06:0.17:2:2,反应温度180~250℃、其实压力为0.1MPa,反应时间为6~48h,液相产物离心分离后通过气相色谱进行检测分析。
与现有技术相比,本发明的有益效果是:
本发明以可溶性镍盐和聚丙烯酰胺作为原料制备前驱体,通过将前驱体置于惰性气氛下热解,制备得到了一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂。本发明所述催化剂具有高分散的活性相,能够高效组装生物乙醇合成高级醇,同时具有较高的稳定性,在重复使用10次的情况下依旧能保持较高的转化率和有机相收率。
附图说明
图1为本发明实施例1和对比例1制备得到的氮掺杂碳包覆镍催化剂的X射线粉末衍射(XRD)图。
图2为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的扫描电镜(SEM)图。
图3为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂及其酸蚀后碳层的透射电镜(TEM)图。
图4为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的稳定性测试数据图。
具体实施方式
为了更清楚、完整的描述本发明的技术方案,以下通过具体实施例进一步详细说明本发明,应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明,可以在本发明权利限定的范围内进行各种改变。本发明所用聚丙烯酰胺购自aladdin和Macklin,牌号为P108471(分子量200万-1400万)P821239(分子量500万),P821240(分子量700万),P821241(分子量1200万)和P821242(分子量1400万)。
实施例1
一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,包括如下步骤:
S1.以1:2的摩尔比称量一定量的醋酸镍和聚丙烯酰胺(平均分子量200万~1400万),加水搅拌,100℃下加热至醋酸镍和聚丙烯酰胺完全溶解后,在70℃下干燥24小时,得到硬质的绿色络合物前驱体;
S2.将干燥后的前驱体在惰性气氛中于500℃下热解6小时,升温速率10℃/min,得到氮掺杂碳包覆镍催化剂,通过元素分析测得含氮量为6.86wt%。
实施例2
本实施例为本发明的第二实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:3。
实施例3
本实施例为本发明的第三实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:6。
实施例4
本实施例为本发明的第四实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:8。
实施例5
本实施例为本发明的第五实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:1。
实施例6
本实施例为本发明的第六实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:0.5。
实施例7
本实施例为本发明的第七实施例,与实施例1不同的是,本实施例中热解温度为700℃。
实施例8
本实施例为本发明的第八实施例,与实施例1不同的是,本实施例中热解温度为800℃。
实施例9
本实施例为本发明的第九实施例,与实施例1不同的是,本实施例中热解温度为400℃。
实施例10
本实施例为本发明的第十实施例,与实施例1不同的是,本实施例中热解温度为300℃。
实施例11
本实施例为本发明的第十一实施例,与实施例1不同的是,本实施例中镍盐为硝酸镍,热解升温速率为1℃/min。
实施例12
本实施例为本发明的第十二实施例,与实施例1不同的是,本实施例中镍盐为氯化镍,热解升温速率为10℃/min。
实施例13
本实施例为本发明的第十三实施例,与实施例1不同的是,本实施例中镍盐为甲酸镍,热解升温速率为20℃/min。
实施例14
本实施例为本发明的第十四实施例,与实施例1不同的是,本实施例中镍盐为硫酸镍,热解升温速率为30℃/min。
对比例1
本对比例为本发明的第一对比例,本对比例所述催化剂的制备方法如下:
以1:2的摩尔比称量一定量的硝酸镍和聚丙烯酸,加水搅拌,100℃下加热至硝酸镍和聚丙烯酸完全溶解后,在50℃下干燥100小时,得到硬质的绿色络合物前驱体,将干燥后的前驱体分别在惰性气氛中于500℃下热解2小时,升温速率30℃/min,得到催化剂。
对比例2
本对比例为本发明的第二对比例,本对比例所述催化剂为Ni-CeO 2/AC。
对比例3
本对比例为本发明的第三对比例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:0.3。
对比例4
本对比例为本发明的第四对比例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:9。
对比例5
本对比例为本发明的第五对比例,与实施例1不同的是,本实施例中采用壳聚糖代替聚丙烯酰胺作为氮源。
表征测试
图1为本发明实施例1和对比例1制备得到的氮掺杂碳包覆镍催化剂的X射线粉末衍射(XRD)图。从图中看出,实施例1所述催化剂具有典型的金属Ni的衍射峰,并且伴随着少量Ni 3N的晶相衍射峰,而对比例1所述催化剂仅有典型的金属Ni的衍射峰,实施例2~14所述催化剂的XRD图与实施例1基本一致。
图2为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的扫描电镜(SEM)图。从图中可以看到,氮掺杂碳包覆镍催化剂外观为镶嵌着Ni及Ni 3N组分的纳米颗粒的片状氮掺杂碳层,纳米颗粒的大小均匀,分散在片状碳层上。实施例2~14所述催化剂的SEM图与实施例1基本一致。
图3为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂及其酸蚀后碳层的透射电镜(TEM)图,图3中A和B表明,Ni纳米颗粒被均匀包覆在氮掺杂碳层内,主要粒径分布在40-60nm之间;图3中C中D显示出酸洗后残留的碳层,说明Ni纳米颗粒被酸溶解洗涤后消失,只留下纳米空穴,本发明所述方法制备的氮掺杂碳包覆镍催化剂活能够充分暴露其活性位点。实施例2~14所述催化剂的TEM图与实施例1基本一致。
图4为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的稳定性测试数据图。从图中可以看出,催化剂在重复使用10次的情况下依旧具有较高的转化率和有机相收率,表明该催化剂具有高的稳定性。
将实施例1~14及对比例1~5所述催化剂加入到60ml钢质高压浆态床反应釜中与均相碱协同催化剂乙醇偶联合成高级醇反应,其中催化剂:NaOH:乙醇:水质量比为0.06:0.17:2:2,反应温度230℃、其实压力为0.1MPa,反应时间为12h,待反应结束冷却至室温后,收集气相和液相产物,进行磁力分离即可分离催化剂和反应产物,液相产物静置后可自发分离得到水相和主要含C4+醇的油相,将液相产物分离后通过气相色谱进行检测分析。分析结果见表1。
表1
Figure PCTCN2021127575-appb-000001
从表1实施例1~14的结果可知,不同比例和热解温度制备出的氮掺杂碳包 覆镍催化剂均具有较好的高级醇选择性,其中镍盐和聚丙烯酰胺比例为1:2,焙烧温度为500℃的条件下制备的氮掺杂碳包覆镍催化剂具有最佳的催化剂活性。
对比例1所述催化剂没有掺杂氮只存在镍的相,甲烷化严重,合成高级醇效率低,有机相收率为18.45%,有机相C4+醇选择性只有54.41%。
对比例2所述催化剂为Ni-CeO 2/AC,由于Ni的金属性过强,该催化剂在催化小分子醇转化至高级醇的过程中存在过度脱氢使C-C键断裂导致甲烷化的情况,C4+高级醇选择性只有61.21%,乙醇转化率只有56.71%。
对比例3和对比例4所述方案中聚丙烯酰胺用量较少或较多,乙醇转化率、有机相收率以及C4+醇选择性均较低。
对比例5采用壳聚糖代替聚丙烯酰胺作为氮源,乙醇转化率、有机相收率以及C4+醇选择性同样均较低,分别为40.52%、20.47%和76.22%。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,包括如下步骤:
    S1.取可溶性镍盐和聚丙烯酰胺,加水搅拌,溶解后干燥,得到前驱体;可溶性镍盐与聚丙烯酰胺的摩尔比为1:(0.5~8);
    S2.将前驱体置于惰性气氛中于300~800℃下热解1~6h,所得即为氮掺杂碳包覆镍催化剂。
  2. 如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(1~6)。
  3. 如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(1~3)。
  4. 如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,聚丙烯酰胺的平均分子量为200万~1400万。
  5. 如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,可溶性镍盐选自硝酸镍、甲酸镍、醋酸镍、氯化镍、硫酸镍中的一种或多种。
  6. 如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,所述干燥为50~120℃下干燥12~100h。
  7. 如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,所述热解为以1~30℃/min的升温速率升温至400~700℃,保温2~5h。
  8. 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂,其特征在于,由权利要求1~7任一所述方法制得。
  9. 权利要求8所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂在小分子醇水相合成高级醇中的应用。
  10. 如权利要求9所述应用,其特征在于,所述小分子醇为乙醇,所述高级醇为碳原子数为4~16个的异构醇。
PCT/CN2021/127575 2021-03-09 2021-10-29 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法 WO2022188432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110256353.8A CN113145155B (zh) 2021-03-09 2021-03-09 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN202110256353.8 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022188432A1 true WO2022188432A1 (zh) 2022-09-15

Family

ID=76886672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127575 WO2022188432A1 (zh) 2021-03-09 2021-10-29 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN113145155B (zh)
WO (1) WO2022188432A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145155B (zh) * 2021-03-09 2022-06-10 广东工业大学 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN115770600A (zh) * 2021-09-07 2023-03-10 广东工业大学 一种氮掺杂碳包覆镍纳米催化剂及其制备方法和应用
CN114130395A (zh) * 2021-11-25 2022-03-04 西北民族大学 基于催化合成胺类化合物的磁性超疏水镍碳纳米复合催化材料的制备方法
CN115138377B (zh) * 2021-12-22 2023-08-15 广东工业大学 一种硫掺杂碳包覆镍催化剂及其制备方法与应用
CN115092909B (zh) * 2022-07-12 2023-06-09 中南大学 一种高浓度氟掺杂的碳点及其制备方法
CN115318296B (zh) * 2022-08-19 2024-03-19 广东工业大学 一种高分散薄膜状碳包镍催化剂及其制备方法和应用
CN115445630B (zh) * 2022-08-30 2023-11-17 广东工业大学 一种聚丙烯基锡掺杂碳包镍催化剂及其制备方法和应用
CN116212878A (zh) * 2022-12-09 2023-06-06 广东工业大学 一种嵌入式Ni基纳米催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712840A (zh) * 2014-12-02 2016-06-29 中国科学院大连化学物理研究所 一种乙醇催化转化制备高碳伯醇的方法
US20170015610A1 (en) * 2015-07-16 2017-01-19 University Of Rochester Methods for producing butanol
CN109003825A (zh) * 2018-07-27 2018-12-14 青岛科技大学 一种氮掺杂碳/镍/氧化镍纳米复合材料制备方法
CN109896923A (zh) * 2017-12-07 2019-06-18 中国科学院大连化学物理研究所 一种双组分催化剂上乙醇转化制备高碳伯醇的方法
CN110247070A (zh) * 2019-07-03 2019-09-17 北京氦舶科技有限责任公司 一种氮掺杂碳负载单原子金属复合催化剂及其制备方法和应用
US20190300463A1 (en) * 2016-05-26 2019-10-03 Abengoa Bioenergia Nuevas Tecnologias, S.A. Method for producing 1-octanol
CN111217673A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种乙醇高能化利用的方法
CN113145155A (zh) * 2021-03-09 2021-07-23 广东工业大学 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712840A (zh) * 2014-12-02 2016-06-29 中国科学院大连化学物理研究所 一种乙醇催化转化制备高碳伯醇的方法
US20170015610A1 (en) * 2015-07-16 2017-01-19 University Of Rochester Methods for producing butanol
US20190300463A1 (en) * 2016-05-26 2019-10-03 Abengoa Bioenergia Nuevas Tecnologias, S.A. Method for producing 1-octanol
CN109896923A (zh) * 2017-12-07 2019-06-18 中国科学院大连化学物理研究所 一种双组分催化剂上乙醇转化制备高碳伯醇的方法
CN109003825A (zh) * 2018-07-27 2018-12-14 青岛科技大学 一种氮掺杂碳/镍/氧化镍纳米复合材料制备方法
CN111217673A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种乙醇高能化利用的方法
CN110247070A (zh) * 2019-07-03 2019-09-17 北京氦舶科技有限责任公司 一种氮掺杂碳负载单原子金属复合催化剂及其制备方法和应用
CN113145155A (zh) * 2021-03-09 2021-07-23 广东工业大学 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法

Also Published As

Publication number Publication date
CN113145155B (zh) 2022-06-10
CN113145155A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022188432A1 (zh) 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
JP6730696B2 (ja) 金属/α−MoC1−x担持型単原子分散触媒、その合成方法および使用
WO2022178959A1 (zh) 一种NiSn/C核壳形复合纳米催化剂及其制备方法和应用
CN104998649B (zh) 核壳结构镍基甲烷干重整催化剂的制备方法
CN114405505B (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN105964259A (zh) 一种多核核壳结构镍基催化剂的制备方法
CN110681406B (zh) 一种氮磷掺杂碳纳米管@Mo/MoS2/MoP复合材料及其制备方法
CN110215927A (zh) 一种高分散的负载型磷化镍催化剂的制备方法
Chen et al. Steam reforming of acetic acid using Ni/Al2O3 catalyst: Influence of crystalline phase of Al2O3 support
Liu et al. A La-promoted Ni/MgAl2O4 catalyst with superior methanation performance for the production of synthetic natural gas
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN105944730A (zh) 介孔限域的镍基甲烷重整催化剂的制备方法
CN109046409A (zh) 一种磷化钴-二硫化钼纳米片@碳纳米管的制备方法
Li et al. β-Si4Al2O2N6 supported Ni catalyst for enhanced ethanol steam reforming: tuning metal-support interaction by high-temperature solution of Si3N4 with Al2O3
CN113559865B (zh) 一种高分散NiSn/MgAlO催化剂及其制备方法和应用
CN114308066B (zh) 一种用于加氢脱氢的双金属催化剂及其制备方法、应用
CN105170156A (zh) 类气凝胶结构的镍基甲烷干重整催化剂的制备方法
CN110026199B (zh) 碳酸氧镧改性的氧化铝负载的镍基催化剂及其制备方法
WO2019011005A1 (zh) 一种对草酸酯进行催化加氢的方法
US9598644B1 (en) Method of CO and/or CO2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
CN114160137A (zh) 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及制备方法和使用方法
CN109485543B (zh) 由纤维素一步制备乙二醇和1,2-丙二醇的方法及其催化剂
CN113509940B (zh) 一种NiSn-MgAlO@C相转移催化剂及其制备方法和应用
US11850574B2 (en) Catalyst for preparing a synthesis gas, a method for preparing the same, and a method for preparing a synthesis gas using the same
CN115532272B (zh) 一种NiY稀土单原子合金纳米催化剂的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929896

Country of ref document: EP

Kind code of ref document: A1