CN115532272B - 一种NiY稀土单原子合金纳米催化剂的制备方法及应用 - Google Patents

一种NiY稀土单原子合金纳米催化剂的制备方法及应用 Download PDF

Info

Publication number
CN115532272B
CN115532272B CN202211248957.9A CN202211248957A CN115532272B CN 115532272 B CN115532272 B CN 115532272B CN 202211248957 A CN202211248957 A CN 202211248957A CN 115532272 B CN115532272 B CN 115532272B
Authority
CN
China
Prior art keywords
catalyst
niy
monoatomic
rare earth
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211248957.9A
Other languages
English (en)
Other versions
CN115532272A (zh
Inventor
徐�明
付玉静
武沙莎
陈娟
董猛
王以谢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202211248957.9A priority Critical patent/CN115532272B/zh
Publication of CN115532272A publication Critical patent/CN115532272A/zh
Application granted granted Critical
Publication of CN115532272B publication Critical patent/CN115532272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明首次提出了一种NiY稀土单原子合金纳米催化剂的制备方法及应用,实现了较温和条件下甲烷干重整反应的高转化率。本发明以硝酸镍和硝酸钇为前驱体,氧化铈为载体,通过尿素沉积沉淀法,进一步还原得到高分散高稳定的负载型NiY单原子合金催化剂。研究表明Y原子级分散到载体与金属表面,该催化剂具有增强的双活性位协同催化作用,将其应用在甲烷干重整反应中表现良好的催化性能和稳定性,从而有效解决了在反应过程中高温烧结以及积碳问题,为甲烷和二氧化碳高效转化提供了新的方法。

Description

一种NiY稀土单原子合金纳米催化剂的制备方法及应用
技术领域
本发明属于催化剂制备技术领域,公开了一种NiY稀土单原子合金纳米催化剂的制备方法以及采用该制备方法制得的NiY稀土单原子合金纳米催化剂和该催化剂在甲烷干重整反应过程中的应用。
背景技术
石油、天然气和煤炭等化石燃料的燃烧导致二氧化碳的大量排放。众所周知,二氧化碳是主要的温室气体,并且甲烷是仅次于二氧化碳的第二大温室气体。同时减少二氧化碳和甲烷排放转化为有用的化学品,从而尽量减少它们对气候变化的影响,对有效利用资源具有重要意义。甲烷干重整是一种将两种温室气体转化为合成气(H2+CO)的有效方法,然后将合成气用于下游反应,如费托合成,以生产更高价值的化学品。在反应的过程中碳的形成堵塞了催化剂表面的活性位点,降低了反应活性。DRM需要在高温下进行,催化剂烧结,积碳,稳定性差,因此阻碍了其在工业上的应用。
到目前为止,DRM的研究已经非常广泛,其中贵金属用于反应,但由于其价格较高,导致其经济使用价值较低。从经济角度看,非金属镍基催化剂在干重整反应中具有优异的优势,可与贵金属催化剂相媲美。近年来,人们对镍基催化剂的研究有了广泛的认识。通过调节载体和活性金属的性能,合成了抗沉积镍基催化剂。其中Ni与稀土金属负载在氧化铈上形成了单原子合金纳米催化剂,有效地抑制了积碳的形成,并且可以获得较好的稳定性和较高的反应活性。
鉴于上述不足,一种稳定性和反应活性均较高的NiY稀土单原子合金纳米催化剂及其制备方法是目前行业内急需的。
发明内容
针对现有技术存在的高温烧结以及积碳严重的问题,本发明提供一种高稳定性的NiY单原子合金纳米催化剂的制备方法,以及将其应用于甲烷干重整反应中。本发明是通过如下技术手段实现的:
本发明公开了一种NiY稀土单原子合金纳米催化剂的制备方法,具体步骤如下:
(1)用去离子水配置可溶镍盐、可溶Y盐与尿素的混合溶液,得到第一混合液;
(2)取一定的蒸馏水与载体氧化铈混合,然后超声分散,得到第二混合液;
(3)将第一混合液转移至第二混合液中,在一定温度下进行水浴搅拌,得第三产物;
(4)第三产物洗涤、干燥、研磨,即得一种NiY稀土单原子合金纳米催化剂。
进一步地,步骤(1)中所述可溶镍盐选自硝酸镍、醋酸镍、氯化镍、硫酸镍中任意一种。
进一步地,步骤(1)中所述可溶Y盐选自硝酸钇、醋酸钇、氯化钇中任意一种或多种。
进一步地,步骤(1)中所述尿素的摩尔量是第一混合溶液中阳离子总摩尔量的200-400倍。
进一步地,步骤(2)所述超声分散时间为10-120min。
进一步地,步骤(3)中所述搅拌转速为200-500rpm,温度为50-90℃。
本发明还公开了一种根据上述任一制备方法制得的NiY稀土单原子合金纳米催化剂。
本发明还公开了一种上述NiY稀土单原子合金纳米催化剂在甲烷干重整反应过程中的应用。
进一步的,所述NiY稀土单原子合金纳米催化剂在应用前还包括:
在H2与N2体积比1:9的混合气氛下,350-700℃还原2-5h。
进一步地,所述甲烷干重整反应的条件为:
常压条件下,在连续固定床反应器中通入等体积甲烷和二氧化碳混合气进行反应,反应温度为500-900℃,空速为6000-60000mgml-1h-1,生成CO和H2
本发明的有益效果在于:
采用本发明制备出的NiY单原子合金纳米催化剂,通过调控较低的Ni含量与稀土金属具有协同催化的作用,Y分散度高,有利于抑制Ni颗粒上面的缺陷位以及提高二氧化碳的转化率,实现了Ni与稀土金属的高效利用。基于此,将其应用在干重整反应中表现出良好的催化性能,在650℃时,CO2的转化率可以达到78%-87%,而且反应中催化剂稳定性良好,在反应24h后活性仅降低5-10%。与现有技术的催化剂相比,本发明提供的甲烷干重整催化剂有较强的抗积碳性能,具有制备方法简单,生产成本低的优势。
附图说明
图1是本发明实施例1所得的NiY稀土单原子合金纳米催化剂的高分辨电镜照片。
图2是本发明实施例2所得的NiY稀土单原子合金纳米催化剂的扩展边X射线吸收精细结构。
图3是本发明实施例2所得的NiY稀土单原子合金纳米催化剂的性能图。
图4是本发明实施例2与例4所得的催化剂的对比性能图。
具体实施方式
为了使本技术领域的人员更好地理解本发明技术方案,下面结合说明书附图并通过具体实施方式来进一步说明本发明一种NiY稀土单原子合金纳米催化剂的制备方法的技术方案。
实施例1
一种NiY稀土单原子合金纳米催化剂的制备方法,具体步骤如下:
首先用去离子水配置0.5mol/L硝酸镍盐溶液、0.5mol/L氯化钇盐溶液,加入阳离子总摩尔量的200倍的尿素的混合溶液;取100ml蒸馏水与500mg载体氧化铈混合在三口烧瓶中进行超声分散;将混合溶液转移至三口烧瓶中,在80℃下进行搅拌,保温2h;所得产物经洗涤、干燥、研磨后,在氢气气氛下以5℃/min升温至600℃,保温4h后以10℃/min降至室温。干重整反应称取0.2g催化剂,在氢气气氛下以5℃/min升温至600℃,保温4h后以5-10℃/min降至室温,进行反应。
本实施例所获的NiY稀土单原子合金纳米催化剂的HRTEM图为附图1。从图1可以看出NiY纳米粒子尺寸在10nm左右,颗粒大小分布均匀,且有明显的NiY-CeO2界面。
实施例2
一种NiY稀土单原子合金纳米催化剂的制备方法,具体步骤如下:
首先用去离子水配置0.5mol/L硝酸镍盐溶液、0.5mol/L醋酸钇盐溶液,阳离子总摩尔量的400倍的尿素的混合溶液;取100ml蒸馏水与500mg载体氧化铈混合在三口烧瓶中进行超声分散;将混合溶液转移至三口烧瓶中,在90℃下进行搅拌,保温3h;所得产物经洗涤、干燥、研磨后,在氢气气氛下以5℃/min升温至600℃,保温4h后以10℃/min降至室温。干重整反应称取0.2g催化剂,在氢气气氛下以5℃/min升温至600℃,保温4h后以5-10℃/min降至室温,进行反应。
图2是本实施例所得NiY单原子合金纳米催化剂还原后钇元素的X射线吸收近边结构图谱(XANES)和相应的傅里叶变换图谱(FT-EXAFS),如图2所示,显示钇原子周围的配位结构,证明大部分Y颗粒已经变成了金属态。图3表明,NiY单原子合金纳米催化剂在10000空速下,有较好的催化活性。
实施例3
以本发明方法用NiY-CeO2催化剂用作甲烷干重整的反应过程,具体如下:
首先用去离子水配置0.25mol/L硝酸镍盐溶液、0.25mol/L硝酸钇盐溶液,阳离子总摩尔量的400倍的尿素的混合溶液;取100ml蒸馏水与500mg载体氧化铈混合在三口烧瓶中进行超声分散;将混合溶液转移至三口烧瓶中,在80℃下进行搅拌,保温4h;所得产物经洗涤、干燥、研磨后,在氢气气氛下以5℃/min升温至600℃,保温4h后以10℃/min降至室温。干重整反应称取0.2g催化剂,在氢气气氛下以5℃/min升温至600℃,保温4h后以5-10℃/min降至室温,进行反应。
实施例4
以本发明方法用NiLa-CeO2催化剂用作甲烷干重整的反应过程,具体如下:
首先用去离子水配置0.25mol/L硝酸镍盐溶液、0.25mol/L醋酸镧盐溶液,阳离子总摩尔量的400倍的尿素的混合溶液;取100ml蒸馏水与500mg载体氧化铈混合在三口烧瓶中进行超声分散;将混合溶液转移至三口烧瓶中,在90℃下进行搅拌,保温4h;所得产物经洗涤、干燥、研磨后,在氢气气氛下以5℃/min升温至600℃,保温4h后以10℃/min降至室温。干重整反应称取0.2g催化剂,在氢气气氛下以5℃/min升温至600℃,保温4h后以5-10℃/min降至室温,进行反应。
图4是本发明实施例2与例4所得的催化剂的对比性能图,如图所示,NiY单原子合金纳米催化剂具有良好的催化性能。
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种NiY稀土单原子合金纳米催化剂的制备方法,包括:
(1)去离子水配置可溶镍盐、可溶Y盐与尿素的混合溶液,得第一溶液;
(2)取一定的蒸馏水与载体氧化铈混合,然后超声分散,得第二溶液;
(3)将第一溶液转移至第二溶液中,在一定温度下进行水浴搅拌,得第三产物;
(4)第三产物经洗涤、干燥、研磨,在氢气气氛下以5℃/min升温至600℃,保温4h后以10℃/min降至室温,即得一种NiY稀土单原子合金纳米催化剂。
2.根据权利要求1所述的制备方法,其中:
步骤(1)所述Ni盐选自硝酸镍、醋酸镍、氯化镍、硫酸镍中任意一种。
3.根据权利要求1所述的制备方法,其中:
步骤(1)所述Y盐选自硝酸钇、醋酸钇、氯化钇中的任意一种或多种。
4.根据权利要求1所述的制备方法,其中:
步骤(1)所述尿素的摩尔量是第一溶液中阳离子总摩尔量的200-400倍。
5.根据权利要求1所述的制备方法,其中:
步骤(2)所述超声分散时间为10-120min。
6.根据权利要求1所述的制备方法,其中:
步骤(3)所述搅拌转速为200-500rpm,温度为50-90℃。
7.一种根据权利要求1~6所述任一制备方法制得的NiY稀土单原子合金纳米催化剂。
8.一种根据权利要求7所述NiY稀土单原子合金纳米催化剂在甲烷干重整反应过程中的应用。
9.根据权利要求8所述的应用,其中:
所述NiY稀土单原子合金纳米催化剂在应用前还包括:
在H2与N2体积比1:9的混合气氛下,350-700℃还原2-5h。
10.根据权利要求8所述的应用,其中:
所述甲烷干重整反应条件包括:
常压条件下,在连续固定床反应器中通入甲烷和二氧化碳混合气进行反应,反应温度为300-900℃,空速为6000-240000mg ml-1h-1,生成CO和H2
CN202211248957.9A 2022-10-12 2022-10-12 一种NiY稀土单原子合金纳米催化剂的制备方法及应用 Active CN115532272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211248957.9A CN115532272B (zh) 2022-10-12 2022-10-12 一种NiY稀土单原子合金纳米催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211248957.9A CN115532272B (zh) 2022-10-12 2022-10-12 一种NiY稀土单原子合金纳米催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115532272A CN115532272A (zh) 2022-12-30
CN115532272B true CN115532272B (zh) 2023-09-05

Family

ID=84734283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211248957.9A Active CN115532272B (zh) 2022-10-12 2022-10-12 一种NiY稀土单原子合金纳米催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115532272B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0406690A (pt) * 2003-01-27 2005-12-20 Robert C Dalton Medidor de susceptibilidade de energia eletromagnética revestido para processamento quìmico, método para concentrar localmente um campo elétrico, medidor de susceptibilidade eletromagnético para processamento quìmico, método de produção de ozÈnio a partir da interação em um medidor de susceptibilidade eletromagnético
WO2009126769A2 (en) * 2008-04-09 2009-10-15 Velocys Inc. Process for upgrading a carbonaceous material using microchannel process technology
CN106902829A (zh) * 2017-04-01 2017-06-30 太原理工大学 一种负载型双金属重整催化剂及其制备方法和应用
CN106984320A (zh) * 2017-04-24 2017-07-28 北京化工大学 一种高分散负载型金属催化剂及其制备方法
CN107108206A (zh) * 2014-12-01 2017-08-29 沙特基础工业全球技术公司 通过均相沉积沉淀合成三金属纳米颗粒,以及负载型催化剂用于甲烷的二氧化碳重整的应用
JP2019037905A (ja) * 2017-08-22 2019-03-14 国立研究開発法人物質・材料研究機構 低温メタン改質触媒活物質
CN109499579A (zh) * 2018-09-25 2019-03-22 北京化工大学 一种Zn-Cu合金催化剂及其在二氧化碳原位氢化反应中的应用
CN113813964A (zh) * 2021-09-16 2021-12-21 西北工业大学 一种甲烷干重整制备合成气用单原子催化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0406690A (pt) * 2003-01-27 2005-12-20 Robert C Dalton Medidor de susceptibilidade de energia eletromagnética revestido para processamento quìmico, método para concentrar localmente um campo elétrico, medidor de susceptibilidade eletromagnético para processamento quìmico, método de produção de ozÈnio a partir da interação em um medidor de susceptibilidade eletromagnético
WO2009126769A2 (en) * 2008-04-09 2009-10-15 Velocys Inc. Process for upgrading a carbonaceous material using microchannel process technology
CN107108206A (zh) * 2014-12-01 2017-08-29 沙特基础工业全球技术公司 通过均相沉积沉淀合成三金属纳米颗粒,以及负载型催化剂用于甲烷的二氧化碳重整的应用
CN106902829A (zh) * 2017-04-01 2017-06-30 太原理工大学 一种负载型双金属重整催化剂及其制备方法和应用
CN106984320A (zh) * 2017-04-24 2017-07-28 北京化工大学 一种高分散负载型金属催化剂及其制备方法
JP2019037905A (ja) * 2017-08-22 2019-03-14 国立研究開発法人物質・材料研究機構 低温メタン改質触媒活物質
CN109499579A (zh) * 2018-09-25 2019-03-22 北京化工大学 一种Zn-Cu合金催化剂及其在二氧化碳原位氢化反应中的应用
CN113813964A (zh) * 2021-09-16 2021-12-21 西北工业大学 一种甲烷干重整制备合成气用单原子催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CeO2负载Ni基催化剂的制备及其催化甲烷干重整的研究";陈杰;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》(第07期);全文 *

Also Published As

Publication number Publication date
CN115532272A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN106975506B (zh) 氮化硼复合介孔氧化物镍基催化剂及其制备方法
CN106238046B (zh) 钙钛矿为前驱体的负载型铑基催化剂的制备方法与应用
CN113198476A (zh) 一种掺杂过渡金属氨分解催化剂及其制备方法和应用
US8642496B2 (en) Method for forming a catalyst comprising catalytic nanoparticles and a catalyst support
CN107042111B (zh) 一种乙酸自热重整制氢的层状钙钛矿型催化剂及制备方法
CN107597119B (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
Li et al. Highly stable activity of cobalt based catalysts with tungsten carbide-activated carbon support for dry reforming of methane: Role of tungsten carbide
CN110947388A (zh) 一种石墨烯气凝胶负载镍的催化剂及其制备方法和应用
CN111111684A (zh) 乙酸自热重整制氢用介孔氧化硅负载钨促进镍基催化剂
WO2021042874A1 (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN112264074A (zh) 一种氮掺杂碳纳米片负载的Fe基催化剂及其制备方法和应用
AU2011357640B2 (en) Nickel-M-alumina xerogel catalyst, method for preparing same, and method for preparing methane using the catalyst
CN112452328A (zh) NiO@SiO2@CoAl-LDH多级核壳催化剂的制备方法
CN114768859A (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN103191744A (zh) 一种改性蛭石负载镍催化剂及其制备方法
CN114602474A (zh) 层状硅酸镍催化剂的制备方法
Wells et al. Mesoporous silica-encaged ultrafine ceria–nickel hydroxide nanocatalysts for solar thermochemical dry methane reforming
Xu et al. Rare earths modified highly dispersed fibrous Ni/KCC-1 nanosphere catalysts with superb low-temperature CO2 methanation performances
Bao et al. Effect of CeO2 on carbon deposition resistance of Ni/CeO2 catalyst supported on SiC porous ceramic for ethanol steam reforming
CN112191252B (zh) 一种纳米镍颗粒分散于二氧化铈修饰的管状四氧化三钴催化剂及其制备方法与应用
CN111450834B (zh) 用于乙酸自热重整制氢的二氧化铈负载的钴基催化剂
CN106391031B (zh) 一种甲烷干气重整催化剂及其制备方法
CN115532272B (zh) 一种NiY稀土单原子合金纳米催化剂的制备方法及应用
CN116809070A (zh) 一种低温逆水汽变换的单原子催化剂及其制备方法
CN114308046B (zh) 一种乙酸自热重整制氢用镨促进镍镧层状钙钛矿型催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant