WO2021120928A1 - 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用 - Google Patents

一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用 Download PDF

Info

Publication number
WO2021120928A1
WO2021120928A1 PCT/CN2020/128198 CN2020128198W WO2021120928A1 WO 2021120928 A1 WO2021120928 A1 WO 2021120928A1 CN 2020128198 W CN2020128198 W CN 2020128198W WO 2021120928 A1 WO2021120928 A1 WO 2021120928A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
based oxide
solution
oxide catalyst
catalyst
Prior art date
Application number
PCT/CN2020/128198
Other languages
English (en)
French (fr)
Inventor
王光辉
潘政宜
Original Assignee
中国科学院青岛生物能源与过程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院青岛生物能源与过程研究所 filed Critical 中国科学院青岛生物能源与过程研究所
Priority to CN202080087000.3A priority Critical patent/CN114829004B/zh
Publication of WO2021120928A1 publication Critical patent/WO2021120928A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/394
    • B01J35/60
    • B01J35/61

Definitions

  • the invention relates to the preparation of a Ni-X hydrotalcite-based metal oxide catalyst and its application in the transfer hydrogenation reaction, and has broad application prospects in the fields of biomass conversion, medicine and fine chemical production.
  • Alcohols are important organic chemical raw materials, mainly used in the production of synthetic fibers, perfumes, plasticizers, drugs, cosmetics and dyes, etc., and have a wide range of application values.
  • the reported transfer hydrogenation catalysts mainly include: homogeneous catalysts and heterogeneous catalysts such as precious metals, transition metals and metal oxides.
  • homogeneous catalysts can improve the selectivity of unsaturated alcohols, but the post-treatment process is complicated and the catalyst cost is high; precious metal catalysts such as Pt, Pd, Ru and Rh have good transfer hydrogenation activity, but the production cost is high; Transition metal catalysts such as Ni, Co, Fe or Cu have the disadvantage of poor selectivity for unsaturated alcohol products.
  • CN 110354886 A discloses a method for nitrogen-doped carbon-supported nickel-cobalt bimetallic nanocatalyst for furfural transfer hydrogenation, using isopropanol as a solvent and hydrogen source, and furfural yields obtained after the furfural is reacted at 160°C About 75%;
  • CN 109942517 A discloses a metal hydroxide catalyzed transfer hydrogenation of furfural to prepare furfuryl alcohol.
  • ethanol is used as a solvent and hydrogen source
  • Al(OH) 3 is used as a catalyst
  • the reaction temperature is 180°C.
  • CN 106928167 A discloses a method for preparing furfuryl alcohol by the transfer hydrogenation of furfural catalyzed by a zirconium catalyst. At a reaction temperature of 170°C, Zr(OH) 4 is used as a catalyst and isopropanol is used as a catalyst. Solvent and hydrogen source, furfuryl alcohol yield is about 81.5%; CN 110227551 A discloses a hydrophobically modified core-shell catalyst (ZIF-67@SiO 2 ) for the transfer hydrogenation of cinnamaldehyde to prepare cinnamyl alcohol. Propanol is the solvent and hydrogen source.
  • the present invention provides a Ni-X-based oxide catalyst and a preparation method thereof.
  • a Ni-X-based oxide catalyst Using polymer spheres as templates, an in-situ precipitation growth method was used to synthesize hydrotalcite-based precursors, and after the template agent was removed by oxidation, Ni-X-based oxide nanospheres with a hollow structure were prepared.
  • a Ni-X-based oxide catalyst with a solid structure can be prepared.
  • the present invention provides a method for preparing a Ni-X-based oxide catalyst, which includes the following steps:
  • preparation method of dispersion A in step (a) is:
  • suspension which contains polymer balls, metal salt M auxiliary agent, concentrated ammonia water and deionized water;
  • solvent A is selected from one or more of water, methanol, ethanol, n-propanol, or isopropanol, etc.
  • solvent A is selected from one or more of water, methanol, ethanol, n-propanol, or isopropanol, etc.
  • the polymer ball is a polymer ball (phenolic resin polymer ball) formed by the condensation of an aromatic compound containing at least one hydroxyl group and one or more fatty aldehydes, or is formed by polymerization of styrene Polystyrene balls.
  • the metal salt M auxiliary agent is selected from one or more of Ni, Co, Mg, Cu, Zn, Al, Fe, Zr, Ti, Cr, etc.; the metal salt M auxiliary agent is selected from nitric acid One or more of salt, acetylacetonate, chloride salt, cyanide salt, acetate salt, carbonyl salt, etc.
  • the concentration of the polymer balls is 0-20 g/L; the concentration of the metal salt M adjuvant is 0.05-2 mmol/L; the volume ratio of concentrated ammonia water and deionized water is 1. :(1 ⁇ 20).
  • the heating temperature for heating the suspension is 30-150°C; the heating time for heating the suspension is 1-20h.
  • the Ni and X precursors are selected from one or more of nitrate, acetylacetonate, chloride, acetate, etc.; wherein the molar ratio of Ni to X is (1-7):1 ; The total concentration of the Ni and X precursors is 0.01-5mol/L.
  • solution B in step (b) may also contain Y precursors, where Y is one or more selected from Co, Mg, Cu, Zn, etc.
  • the Y precursor is a divalent metal salt, and the Y 2+ metal ion can form a hydrotalcite structure similar to Ni 2+.
  • the Ni, X, and Y precursors can be selected from one or more of nitrate, acetylacetonate, chloride, acetate, etc.;
  • the molar ratio of (Ni+Y) to X is (1 ⁇ 7):1; the molar ratio of Y to Ni is (0 ⁇ 30):1; the total concentration of the precursors of Ni, X, and Y is 0.01 ⁇ 5mol/L.
  • the solution B is an aqueous alcohol solution, wherein the alcohol is one or more of methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, cyclohexanol, ethylene glycol, etc. It is preferably an aqueous methanol solution, in which the volume ratio of alcohol to water is (0-10):(1-20).
  • the alkaline solution C contains one or two of 0.01-1.5 mol/L NaOH, 0.1-2.2 mol/L Na 2 CO 3 and 0.02-2.2 mol/L NaHCO 3.
  • step (d) the dropping rate of alkali solution C is 4-30 mL/min; in step (d), the pH is controlled between 7-11.
  • step (e) the firing temperature is 250-1000°C, and the firing time is 0.5-15h.
  • the present invention also provides a Ni-X-based oxide catalyst, which is prepared by any of the above methods.
  • the present invention also provides a method for catalytic transfer hydrogenation.
  • the Ni-X based oxide catalyst, aldehyde compound and lower alcohol prepared by the present invention are added to the reaction kettle, and heated and stirred for a certain period of time.
  • the aldehyde compound is furfural, 5-hydroxymethylfurfural, folic aldehyde, citronellal, hydroxycitronellal, cinnamaldehyde, crotonaldehyde, 3-methyl-2-butenal, 2- Pentenal, lauric aldehyde, undecyl aldehyde, decanal, nonanal, octyl aldehyde, 4-hydroxynonenal, benzaldehyde, 2-methoxybenzaldehyde, 3-methoxybenzaldehyde, 4-methoxy Benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, 4-isopropylbenzaldehyde, dimethylbenzaldehyde, amylcinnamaldehyde, farnesal, anise One or more of aldehyde, camphorenal, geranial, neral
  • the products obtained by transfer hydrogenation are furfuryl alcohol, 5-hydroxymethyl furfuryl alcohol, leaf alcohol, citronellol, Hydroxycitronellol, cinnamyl alcohol, butenol, 3-methyl-2-butenol, 2-pentenol, lauryl alcohol, undecyl alcohol, decanol, nonanol, octanol, 4-hydroxynonene Alcohol, benzyl alcohol, 2-methoxybenzyl alcohol, 3-methoxybenzyl alcohol, 4-methoxybenzyl alcohol, 2-methylbenzyl alcohol, 3-methylbenzyl alcohol, 4-methylbenzyl alcohol, One or more of 4-isopropylbenzyl alcohol, dimethylbenzyl alcohol, amylcinnamyl alcohol, farnesol, anisyl alcohol, camphorenol, geraniol, nerol, citric alcohol, etc.
  • the lower alcohol is one or more of methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, cyclohexanol or ethylene glycol; the Ni-X group is oxidized
  • the mass ratio of the catalyst and the aldehyde compound is 1:(0.05-20).
  • the method of catalytic transfer hydrogenation further includes the step of catalyst regeneration: after the reaction, the catalyst is recovered by centrifugation, and washed with a washing solvent for 1 to 3 times.
  • the washing solvent is preferably methanol, ethanol, n-propanol, or isopropanol.
  • the present invention relates to the preparation of a Ni-X hydrotalcite-based metal oxide catalyst and its application in the transfer hydrogenation reaction. If no templating agent is added, a Ni-X-based oxide catalyst with a solid structure can be prepared. If polymer spheres are used as template agents, due to the strong electrostatic interaction between the metal ions and the surface of the polymer spheres, Ni 2+ , X n+ and other metal ion promoters are uniformly adsorbed on the surface of the polymer.
  • the hydrotalcite-like structure substance formed on the polymer surface is used as the catalyst precursor to achieve uniform dispersion between the metal elements; because the hydrotalcite-like structure is uniformly covered on the surface of the polymer ball, after the polymer template is oxidized and removed, Ni- X-based oxide hollow sphere structure.
  • Changing the calcination temperature of the precursor or the atomic ratio of Ni 2+ /X n+ can control the degree of interaction between the metal ions in the catalyst.
  • the obtained catalyst has the characteristics of high active specific surface area, high dispersion, high mass transfer, low production cost, easy separation, good cycle stability, etc., and has a wide range of applications in the fields of biomass conversion, medicine and fine chemical production. prospect.
  • the invention relates to a method for preparing a Ni-X-based oxide catalyst and a method for its application in a transfer hydrogenation reaction, which are described in detail below.
  • the present invention provides a method for preparing a Ni-X-based oxide catalyst, which includes the following steps:
  • a solvent A or provide a dispersion A wherein the solvent A is one or more of water, methanol, ethanol, n-propanol, or isopropanol, preferably methanol; the dispersion A is a surface modification A dispersion liquid formed by dispersing flexible polymer balls in solvent A, wherein solvent A is selected from one or more of water, methanol, ethanol, n-propanol, or isopropanol, etc., preferably a dispersion formed in methanol liquid.
  • the preparation method of dispersion A is as follows:
  • the polymer ball of the present invention can be a polymer ball formed by condensation of an aromatic compound containing at least one hydroxyl group and one or more fatty aldehydes (such as fatty aldehydes selected from aliphatic C1 to C14). It can be a polystyrene ball formed by the polymerization of styrene.
  • the metal salt M auxiliary agent is selected from one or more of Ni, Co, Mg, Cu, Zn, Al, Fe, Zr, Ti, Cr and the like.
  • the metal salt M auxiliary agent may be selected from one or more of nitrate, acetylacetonate, cyanide salt, chloride, acetate, carbonyl salt, etc., preferably nitrate.
  • the concentration of the metal salt M adjuvant is preferably between 0.05 and 2 mmol/L, more preferably between 0.05 and 1 mmol/L, and even more preferably between 0.1 and 0.5 mmol/L.
  • the concentrated ammonia water is 28-30% ammonia water.
  • the volume ratio of concentrated ammonia water to deionized water is preferably 1:(1-10).
  • the concentration of the polymer balls is preferably 0-10 g/L.
  • the suspension is heated in one step to form surface-modified polymer spheres.
  • the heating temperature of the suspension is preferably 40 to 150°C.
  • the solution heating temperature is preferably 50 to 80°C.
  • the heating time of the suspension is preferably at least 2h, and more preferably at least 5h, so as to achieve uniform adsorption of metal ions on the surface of the polymer spheres. Taking into account the cost of energy consumption, generally no more than 20h, preferably no more than 8h.
  • the specific heating time may be adjusted according to the heating temperature and the composition of the solution.
  • solvent A is selected from one or more of water, methanol, ethanol, n-propanol, or isopropanol, etc.
  • solvent A is selected from one or more of water, methanol, ethanol, n-propanol, or isopropanol, etc.
  • the modified polymer balls are dispersed in a methanol solution to obtain dispersion A.
  • Ni-X-based oxide catalysts with good catalytic effects can be obtained.
  • dispersion A dispersed in a methanol solution
  • the obtained Ni-X-based hollow oxide catalyst has the most uniform morphology.
  • X is one or more metal elements, and X contains one or more selected from Al, Fe, Zr, Ti, and Cr;
  • the precursor salt of Ni and X may be selected from one or more of nitrate, acetylacetonate, chloride, acetate, etc., preferably nitrate.
  • the molar ratio of Ni to the X precursor is (1-7):1, preferably (2-5):1, and more preferably (2-4):1.
  • the total metal concentration of the Ni and X precursors is between 0.01-5 mol/L.
  • the metal loading is extremely low, which is not suitable for practical production applications.
  • the metal salt concentration is higher than 5mol/L, the metal loading is extremely high, and the active components are easy to sinter. It is further preferred that the total metal concentration of the Ni and X precursors is between 0.1 and 2 mol/L.
  • solution B in step (b) may also contain Y precursors, where Y is one or more selected from Co, Mg, Cu, Zn, etc.
  • the Y precursor is a divalent metal salt, and the Y 2+ metal ion can form a hydrotalcite structure similar to Ni 2+.
  • the Ni, X and Y precursors can be selected from one or more of nitrate, acetylacetonate, chloride, acetate, etc.;
  • the molar ratio of (Ni+Y) to X is (1 ⁇ 7):1, preferably (2 ⁇ 5):1; the molar ratio of Y to Ni is (0 ⁇ 30):1, preferably (0 ⁇ 12):1;
  • the total concentration of the Ni, X and Y precursors is 0.01-5 mol/L, preferably 0.1-2 mol/L.
  • the solution B is an aqueous alcohol solution, wherein the alcohol is one or more of methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, cyclohexanol, ethylene glycol, etc., preferably It is an aqueous methanol solution, in which the volume ratio of alcohol to water is (0-10): (1-20).
  • Solution C is selected from one or two of 0.01-1 mol/L NaOH, 0.1-2 mol/L Na 2 CO 3 and 0.02-2 mol/L NaHCO 3 , and acts as a precipitant during the preparation of the catalyst.
  • the dropping rate of the solution C is 4-30 mL/min, preferably 4-20 mL/min, more preferably 8-12 mL/min, still more preferably 6-12 mL/min.
  • the pH is controlled between 7 and 11.
  • the pH value can be determined according to the Ksp value of Ni 2+ and X n+ completely precipitated. If the amount of alkali is too low, the ions in the solution cannot be completely precipitated; if the amount of alkali is adequate, it is conducive to better co-precipitation; but the amount of alkali is too high and the crystal grains are larger. It is further preferred that the pH is controlled between 9-10.
  • the temperature during controlled aging is 30 to 140°C, preferably 30 to 100°C, more preferably 50 to 75°C, and still more preferably 55 to 75°C.
  • the aging time at the aging temperature is preferably 8 to 48 hours, more preferably 12 to 32 hours.
  • the catalyst precursor is converted into a Ni-X-based oxide hollow sphere catalyst through a calcination process.
  • the baking temperature is selected from the range of 200 to 1000°C, preferably the range of 250 to 1000°C, preferably the range of 500 to 850°C, and more preferably the range of 600 to 800°C.
  • the calcination time at the calcination temperature is preferably 0.5 to 15 hours, more preferably 1 to 15 hours, still more preferably 4 to 6 hours, and even more preferably 2 to 6 hours.
  • the calcination time is generally at least 0.5 h, and more preferably at least 2 h. Considering the cost of energy consumption, it generally does not exceed 15 hours, preferably does not exceed 10 hours, and more preferably does not exceed 6 hours.
  • the structure of the hydrotalcite-like catalyst precursor of the present invention is layered dihydroxyhydrotalcite (LDHs), which has a highly ordered two-dimensional nano-layered structure, and each metal atom (M) has six hydroxyl groups around it to form an octahedral structure
  • LDHs dihydroxyhydrotalcite
  • M metal atom
  • the octahedral structure forms a layered lamella structure by co-edges, and the layers are filled with interlayer anions that balance the positive charge of the slab layer, and the slabs are piled up to form hydrotalcite.
  • the molecular formula is usually [M 2+ 1-x M 3+ x ( OH) 2 ] x+ (A n- ) x/n mH 2 O.
  • the hydrotalcite/hydrotalcite-like structure is used as a precursor for preparing a highly dispersed heterogeneous catalyst.
  • the composition of LDHs is easy to control, and the positive divalent and positive trivalent cations on the layer of LDHs are highly dispersed at the atomic level.
  • the calcination process can cause the destruction of the layered structure of LDHs, based on the LDH topology effect, after the calcination process, highly dispersed metal nanocrystalline particles can still be obtained.
  • a high degree of dispersion at the atomic level facilitates the interaction between different active components. Therefore, using LDHs as a precursor can successfully synthesize the metal oxide catalyst required by the present invention.
  • the invention also provides a new type of Ni-X based oxide catalyst.
  • the result is a Ni-X-based oxide hollow sphere catalyst.
  • no templating agent is added, a Ni-X-based solid spherical oxide catalyst is obtained.
  • the invention also provides a method for catalytic transfer hydrogenation.
  • the Ni-X based oxide catalyst, aldehyde compound and lower alcohol prepared by the invention are added to the reaction kettle, and heated and stirred for a certain period of time.
  • Ni-X-based oxides are catalysts
  • aldehyde compounds are substrates
  • lower alcohols are hydrogen sources.
  • the transfer hydrogenation route is used to produce alcohols.
  • gas chromatography can be used to detect the content of each component in the reaction mixture.
  • the aldehyde compound is selected from furfural, 5-hydroxymethyl furfural, folic aldehyde, citronellal, hydroxycitronellal, cinnamaldehyde, crotonaldehyde, 3-methyl-2-butenal, 2-pentene Aldehydes, lauric aldehyde, undecyl aldehyde, decanal, nonanal, octyl aldehyde, 4-hydroxynonenal, benzaldehyde, 2-methoxybenzaldehyde, 3-methoxybenzaldehyde, 4-methoxybenzene Formaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, 4-isopropylbenzaldehyde, dimethylbenzaldehyde, amylcinnamaldehyde, farnesal, anisaldehyde, One or more of camphorenal,
  • the products obtained by transfer hydrogenation are furfuryl alcohol, 5-hydroxymethyl furfuryl alcohol, leaf alcohol, citronellol, hydroxy fragrance Cinnamyl alcohol, cinnamyl alcohol, butenol, 3-methyl-2-butenol, 2-pentenol, lauryl alcohol, undecyl alcohol, decanol, nonanol, octanol, 4-hydroxynonenol, Benzyl alcohol, 2-methoxybenzyl alcohol, 3-methoxybenzyl alcohol, 4-methoxybenzyl alcohol, 2-methylbenzyl alcohol, 3-methylbenzyl alcohol, 4-methylbenzyl alcohol, 4- One or more of isopropyl benzyl alcohol, dimethyl benzyl alcohol, amylcinnamyl alcohol, farnesol, anisyl alcohol, camphorenol, geraniol, nerol, citric alcohol, and the like.
  • Ni-X-based oxides are used as catalysts
  • ⁇ , ⁇ -unsaturated aldehydes are used as substrates
  • lower alcohols are used as hydrogen sources.
  • the transfer hydrogenation route is used to produce alcohols.
  • the ⁇ , ⁇ -unsaturated aldehyde is selected from one or more of furfural, cinnamaldehyde, geranial, neral or 5-hydroxymethyl furfural, and the corresponding products obtained by transfer hydrogenation are respectively furfuryl alcohol , Cinnamyl alcohol, geraniol, nerol and 5-hydroxymethyl furfuryl alcohol.
  • the lower alcohol can be selected from one or more of methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, cyclohexanol or ethylene glycol.
  • the mass ratio of the Ni-X-based oxide catalyst to the aldehyde compound is 1:(0.05-20), preferably 1:(0.1-10), and more preferably 1:(1-10).
  • the concentration of the aldehyde compound is preferably 0.05 to 1.0 mol/L.
  • the reaction temperature is preferably 90 to 160°C.
  • the reaction time at the reaction temperature is preferably 1 to 48 hours. In order to achieve a sufficient reaction, the reaction time is generally at least 1 h, and more preferably at least 4 h. Considering the cost, it generally does not exceed 48 hours, preferably does not exceed 36 hours, and more preferably does not exceed 12 hours.
  • the specific reaction time may be adjusted according to the reaction temperature and the composition of the solution.
  • the preferred solution of the catalytic aldehyde compound transfer hydrogenation reaction method also includes catalyst regeneration: after the catalyst is recovered, it is washed with a washing solvent for 1 to 3 times.
  • the washing solvent is preferably methanol, ethanol, n-propanol, isopropanol, One or more of n-butanol, 2-butanol, cyclohexanol, ethylene glycol, etc.; dried at 60-160°C (preferably dried at 80-120°C) for 6-12 hours in an air atmosphere, and
  • the regenerated catalyst is obtained after being treated at 300-800°C for 0.5-2h (preferably 1-5h).
  • the catalyst synthesized in the present invention can be characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and other characterization methods.
  • SEM scanning electron microscopy
  • TEM transmission electron microscopy
  • XRD X-ray diffraction
  • the invention relates to a method for preparing a Ni-X-based oxide catalyst and its application in transfer hydrogenation.
  • the method uses polymer spheres as a template to prepare a precursor grafted with hydrotalcite on the surface of the polymer sphere by an in-situ precipitation growth method, and obtains a Ni-X-based hollow sphere catalyst after oxidation treatment.
  • a Ni-X-based oxide catalyst with a solid structure can be prepared.
  • the catalyst prepared by the method of the invention has high specific surface activity, simple preparation process, low cost and easy amplification.
  • the prepared catalyst has universal applicability to the transfer hydrogenation reaction of aldehyde compounds (especially unsaturated aldehydes). It also has the characteristics of mild reaction conditions, high conversion rate and selectivity, fast reaction rate, and good reusability. No significant deactivation of the catalyst was found after 12 rounds of use, which has industrial application value.
  • polystyrene ball or phenol resin ball Add 0.2g polymer ball (polystyrene ball or phenol resin ball), 0.008mmol, metal salt M additive (one of cobalt, nickel or iron nitrate), 7mL concentrated ammonia water, 28mL deionized in the dry container React with water at 50°C for 5 hours. After the reaction is completed, filter with suction, wash, and dry to obtain surface-modified polymer balls (polystyrene balls or phenolic resin balls). The surface-modified polymer balls (polystyrene balls or phenol resin balls) were dispersed in 80 mL of methanol to obtain polymer balls (polystyrene balls or phenol resin balls) dispersion A.
  • metal salt M additive one of cobalt, nickel or iron nitrate
  • a mixed alkali solution of 0.1 mol/L NaOH and 0.2 mol/L Na 2 CO 3 is configured as a precipitating agent to obtain solution C.
  • the solutions B and C were dropped into the dispersion A at the same time, and the dropping rate of the solution C was controlled to 6 mL/min, and the pH of the mixed solution was maintained at 10.0.
  • the solution B was added dropwise, the aging was continued for 36 hours.
  • the aged suspension was filtered, washed, and vacuum dried at 50°C for 12 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 800° C. for 6 hours in an air atmosphere, and cooled to room temperature to obtain a Ni-Al-based oxide hollow sphere catalyst.
  • polystyrene balls or phenolic resin balls Add 0.2g polymer balls (polystyrene balls or phenolic resin balls), 0.008mmol nickel nitrate, 7mL concentrated ammonia water, 28mL deionized water into the dry container, react at 50°C for 5h, after the reaction, filter, wash, and dry.
  • a surface-modified polymer ball (polystyrene ball or phenol resin ball) is obtained.
  • the surface-modified polymer balls (polystyrene balls or phenol resin balls) were dispersed in 80 mL of methanol to obtain polymer balls (polystyrene balls or phenol resin balls) dispersion A.
  • a mixed alkali solution of 0.1 mol/L NaOH and 0.2 mol/L Na 2 CO 3 is configured as a precipitating agent to obtain solution C.
  • the solutions B and C were added dropwise to the dispersion A at the same time, and the dropping rate of the solution C was controlled to 6 mL/min, and the pH of the mixed solution was maintained at 10.0.
  • the solution B was added dropwise, the aging was continued for 36 hours.
  • the aged suspension was filtered, washed, and vacuum dried at 50°C for 12 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined in an air atmosphere at 800° C. for 6 hours, and cooled to room temperature to obtain a Ni-Al-based oxide hollow sphere catalyst.
  • the preparation of the catalyst precursor is the same as in Example 1-2.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 500-1000° C. for 6 hours in an air atmosphere, and cooled to room temperature to obtain a Ni-Al-based oxide hollow sphere catalyst.
  • Ni-Al-based oxide hollow sphere catalyst The preparation of the Ni-Al-based oxide hollow sphere catalyst is the same as that of Examples 1-3.
  • Ni-Al-based oxide hollow sphere catalyst The preparation of the Ni-Al-based oxide hollow sphere catalyst is the same as that of Examples 1-3.
  • Ni-Al-based oxide hollow sphere catalyst The preparation of the Ni-Al-based oxide hollow sphere catalyst is the same as that of Examples 1-3.
  • solution C 0.1 mol/L NaOH and 0.2 mol/L Na 2 CO 3 alkaline solutions are used as precipitating agents to obtain solution C.
  • the salt solution and the precipitating agent were added dropwise to 80 mL of methanol (solvent A) at the same time, and the dropping rate of the precipitating agent (solution C) was controlled to 6 mL/min to maintain the pH of the mixed solution at 10.0.
  • the salt solution (solution B) was added dropwise, the aging was continued for 36 hours. The aged suspension was filtered, washed, and vacuum dried at 50°C for 12 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 800° C. for 6 hours in an air atmosphere, and cooled to room temperature to obtain a Ni-Al-based solid oxide catalyst.
  • a mixed alkali solution of 0.17 mol/L NaOH and 0.34 mol/L Na 2 CO 3 is configured as a precipitating agent to obtain solution C.
  • the solutions B and C were added dropwise to the dispersion A at the same time, and the dropping rate of the solution C was controlled to 15 mL/min to maintain the pH of the mixed solution at 9.8.
  • the solution B is added dropwise, continue to age for 8 hours.
  • the aged suspension was filtered, washed, and dried at 50°C for 6 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 800° C. for 4 hours in an air atmosphere, and cooled to room temperature to obtain a Ni-Fe-based oxide hollow sphere catalyst.
  • polystyrene balls or phenolic resin balls Add 0.3g polymer balls (polystyrene balls or phenolic resin balls), 0.008mmol nickel nitrate, 4mL concentrated ammonia water, 32mL deionized water into a dry container, and react at 30°C for 2h. After the reaction, filter, wash and dry A surface-modified polymer ball (polystyrene ball or phenol resin ball) is obtained. The surface-modified polymer balls (polystyrene balls or phenolic resin balls) were dispersed in 100 mL of methanol to obtain dispersion A.
  • a mixed alkali solution of 0.17 mol/L NaOH and 0.34 mol/L Na 2 CO 3 is configured as a precipitating agent to obtain solution C.
  • the solutions B and C were added dropwise to the dispersion A at the same time, and the dropping rate of the solution C was controlled to 15 mL/min to maintain the pH of the mixed solution at 9.8.
  • the solution B was added dropwise, the aging was continued for 36 hours.
  • the aged suspension was filtered, washed, and dried at 50°C for 6 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined in an air atmosphere at 800° C. for 4 hours, and cooled to room temperature to obtain a Ni-Fe-based oxide hollow sphere catalyst.
  • the preparation of the catalyst precursor is the same as in Example 2-2.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 500-1000° C. for 4 hours in an air atmosphere, and cooled to room temperature to obtain a Ni-Fe-based oxide hollow sphere catalyst.
  • Ni-Fe-based oxide hollow sphere catalyst The preparation of the Ni-Fe-based oxide hollow sphere catalyst is the same as in Example 3.
  • Ni-Fe-based oxide hollow sphere catalyst The preparation of the Ni-Fe-based oxide hollow sphere catalyst is the same as in Example 3.
  • Ni-Fe-based oxide hollow sphere catalyst The preparation of the Ni-Fe-based oxide hollow sphere catalyst is the same as in Example 3.
  • Alkaline solutions of 0.17mol/L NaOH and 0.34mol/L Na 2 CO 3 are configured as precipitating agents to obtain solution C.
  • solutions B and C were added dropwise to 100 mL of methanol (solvent A) at the same time, and the dropping rate of solution C was controlled to 15 mL/min to maintain the pH of the mixed solution at 9.8. After the solution B is added dropwise, continue to age for 8 hours. The aged suspension was filtered, washed, and dried at 50°C for 6 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 800° C. for 4 hours in an air atmosphere, and cooled to room temperature to obtain a Ni-Fe-based solid oxide catalyst.
  • polystyrene balls or phenolic resin balls Add 0.3g polymer balls (polystyrene balls or phenolic resin balls), 0.008mmol nickel nitrate, 4mL concentrated ammonia water, 32mL deionized water into a dry container, and react at 30°C for 2h. After the reaction, filter, wash and dry A surface-modified polymer ball (polystyrene ball or phenol resin ball) is obtained. The surface-modified polymer balls (polystyrene balls or phenolic resin balls) were dispersed in 100 mL of methanol to obtain dispersion A.
  • a mixed alkali solution of 0.17 mol/L NaOH and 0.34 mol/L Na 2 CO 3 is configured as a precipitating agent to obtain solution C.
  • the solutions B and C were added dropwise to the dispersion A at the same time, and the dropping rate of the solution C was controlled to 15 mL/min to maintain the pH of the mixed solution at 9.8.
  • the solution B is added dropwise, continue to age for 8 hours.
  • the aged suspension was filtered, washed, and dried at 50°C for 6 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 800° C. for 4 hours in an air atmosphere, and cooled to room temperature to obtain a Ni-X-based oxide hollow sphere catalyst.
  • polystyrene balls or phenolic resin balls Add 0.3g polymer balls (polystyrene balls or phenolic resin balls), 0.008mmol nickel nitrate, 4mL concentrated ammonia water, 32mL deionized water into a dry container, and react at 30°C for 2h. After the reaction, filter, wash and dry A surface-modified polymer ball (polystyrene ball or phenol resin ball) is obtained. The surface-modified polymer balls (polystyrene balls or phenolic resin balls) were dispersed in 100 mL of methanol to obtain dispersion A.
  • a mixed alkali solution of 0.17 mol/L NaOH and 0.34 mol/L Na 2 CO 3 is configured as a precipitating agent to obtain solution C.
  • the solutions B and C were added dropwise to the dispersion A at the same time, and the dropping rate of the solution C was controlled to 15 mL/min to maintain the pH of the mixed solution at 9.8.
  • the solution B is added dropwise, continue to age for 8 hours.
  • the aged suspension was filtered, washed, and dried at 50°C for 6 hours to obtain a catalyst precursor.
  • the catalyst precursor prepared above is placed in a muffle furnace, calcined at 800°C in an air atmosphere for 4 hours, and cooled to room temperature to obtain an oxide hollow sphere catalyst.

Abstract

本发明公开了一种Ni-X基氧化物催化剂的制备方法及其在醛类化合物转移加氢中应用。以聚合物球为模板,由于金属离子与聚合物球表面之间存在强静电作用,使Ni 2+、X n+和其它金属离子助剂均匀吸附在聚合物表面,并以此为基础在聚合物表面形成的类水滑石结构物质作为催化剂前驱体,可以实现金属元素之间的均匀分散;由于类水滑石均匀覆盖在聚合物球表面,氧化处理脱除聚合物后,可以构筑Ni-X基氧化物空心球结构;此外,不添加模板剂,可制备具有实心结构的Ni-X基氧化物催化剂。所获得的催化剂具有高活性比表面积、高分散度高、高传质,生产成本低,易于分离等特点,应用于醛类化合物转移加氢反应中,表现出高催化活性、高选择性、循环稳定性好等特点。

Description

一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用 技术领域
本发明涉及一种Ni-X水滑石基金属氧化物催化剂的制备及在转移加氢反应中的应用,在生物质转化、医药及精细化学品生产等领域具有广泛的应用前景。
背景技术
醇(尤其是不饱和醇)是重要的有机化工原料,主要用于生产合成纤维、香料、增塑剂、药物、化妆品和染料等,具有广泛的应用价值。不饱和醇可以通过不饱和醛的加氢反应获得,但是往往不饱和醛(如糠醛、肉桂醛和柠檬醛等)中含多种不饱和官能团(如C=C和C=O键),在加氢反应过程中容易出现过度加氢的现象,导致不饱和醇的产率低,分离困难,成本增加。因此为了提高不饱和醇的选择性,对C=O键的选择性加氢十分必要。目前,C=O键加氢的途径主要有两种,其中,与以氢气为氢源的加氢途径相比,以低级醇为氢源的转移加氢途径不需要高压设备、安全可靠、易于操作,引起人们的广泛关注。然而,目前实现C=O键的高效转移加氢催化反应仍存在巨大挑战。如何解决这一难题,催化剂的合理设计是关键。
目前,已经报道的转移加氢催化剂主要包括:均相催化剂以及贵金属、过渡金属和金属氧化物等非均相催化剂。其中,均相催化剂的使用可以提高不饱和醇的选择性,但是后处理工艺复杂,催化剂成本高;Pt、Pd、Ru和Rh等贵金属催化剂具有较好的转移加氢活性,但生产成本高;Ni、Co、Fe或Cu等过渡金属催化剂存在不饱和醇产物选择性差的缺点。另外,CN 110354886 A公开了一种氮掺杂碳负载镍钴双金属纳米催化剂用于糠醛转移加氢的方法,以异丙醇为溶剂和氢源,糠醛在160℃反应后得到的糠醇产率约为75%;CN 109942517 A公开了一种金属氢氧化物催化糠醛转移加氢制备糠醇的方法,例如,利用乙醇作为溶剂和氢源,以Al(OH) 3为催化剂,在反应温度180℃下,糠醇产率约为86.7%;CN 106928167 A公开了一种锆类催化剂催化糠醛转移加氢制备糠醇的方法,在反应温度170℃下,以Zr(OH) 4为催化剂,异丙醇为溶剂和氢源,糠醇产率约为81.5%;CN 110227551 A公开了一种疏水改性的核壳催化剂(ZIF-67@SiO 2)用于肉桂醛转移加氢制备肉桂醇的方法,使用异丙醇为溶剂和氢源,在ZIF-67@SiO 2催化剂、180℃反应条件下,糠醇产率约为93.2%。相关文献(ACS Sustainable Chemistry & Engineering,2018,6:17220-17229)报道,商业NiO催化剂在反应温度120℃下具有糠醛转移加氢反应活性,糠醇收率为80.9%。总之,上述转移加氢过程中,不饱和醇的选择性仍需进一步提高,才能避免后期的纯化过程,降低成本。另外,转移加氢催化剂的稳定性也是亟待解决的关键问题。
相关文献(ACS Catalysis,2017,7:2735-2743)报道,与NiO相比,Al掺杂的NiO催化 剂更有利于醇O-H键的断裂,这可能对转移加氢反应有良好的促进作用。因此,我们认为金属元素X掺杂的Ni-X基氧化物催化剂在以醇为氢源的不饱和醛类化合物选择性加氢反应中会有优异性能。相关文献(Chemical Society Reviews,2014,43:7040-7066)报道,以Al掺杂的Ni基水滑石为前驱体可以制备原子高度分散的Ni-Al基金属氧化物催化剂。然而,通过传统方法制备的非负载型水滑石前驱体往往存在紧密堆积的现象,导致催化剂活性比表面积低,传质受阻,影响其催化的活性、选择性和稳定性。因此,开发高活性比表面积、高传质的Ni-X基氧化物催化剂用于不饱和醛类化合物转移加氢制备不饱和醇具有重要意义。
发明内容
根据现有技术的不足,本发明提供了一种Ni-X基氧化物催化剂及其制备方法。以聚合物球为模板,采用原位沉淀生长法合成类水滑石基前驱体,经氧化脱除模板剂后,制备具有中空结构的Ni-X基氧化物纳米球。此外,不添加模板剂,可制备具有实心结构的Ni-X基氧化物催化剂。
本发明提供了一种制备Ni-X基氧化物催化剂的方法,包括以下步骤:
(a)提供一溶剂A或提供一分散液A,其中溶剂A选自水或甲醇或乙醇或正丙醇或异丙醇等中的一种或几种,分散液A为表面改性的聚合物球分散在溶剂A中形成的分散液,其中溶剂A选自水或甲醇或乙醇或正丙醇或异丙醇等中的一种或几种;
(b)配置一定浓度的含有Ni、X前驱体的溶液,其中X为一种或多种金属元素,且X包含选自Al、Fe、Zr、Ti、Cr等中的一种或几种,记为溶液B;
(c)配置一定浓度的混合碱溶液,记为溶液C;
(d)将溶液B和溶液C同时滴加到溶剂A或分散液A中形成混合溶液,并通过控制溶液C的滴加速度来调节混合溶液的pH;溶液B滴加完毕后,老化一定时间;
(e)将老化后的悬浊液过滤、洗涤、干燥,并在空气气氛下焙烧,得到最终的Ni-X基氧化物催化剂。
进一步地,步骤(a)中的分散液A的制备方法为:
提供一种悬浮液,该悬浮液中含有聚合物球、金属盐M助剂、浓氨水和去离子水;
加热该悬浮液,获得表面改性的聚合物球;
然后将改性后的聚合物球分散到溶剂A中(溶剂A选自水或甲醇或乙醇或正丙醇或异丙醇等中的一种或几种),形成分散液A。
进一步地,所述聚合物球是由一种至少包含一个羟基基团的芳香化合物与一种或多种脂肪醛缩合后形成的聚合物球(酚醛树脂聚合物球),或者由苯乙烯聚合形成的聚苯乙烯球。
进一步地,所述金属盐M助剂选自Ni、Co、Mg、Cu、Zn、Al、Fe、Zr、Ti、Cr等中的 一种或几种;所述金属盐M助剂选自硝酸盐、乙酰丙酮盐、氯化盐、氰化盐、醋酸盐、羰基盐等中的一种或多种。
进一步地,在该悬浮液中,所述聚合物球的浓度为0~20g/L;所述金属盐M助剂的浓度是0.05~2mmol/L;浓氨水和去离子水的体积比为1:(1~20)。
进一步地,加热悬浮液的加热温度是30~150℃;加热悬浮液的加热时间是1~20h。
进一步地,所述Ni、X前驱体选自硝酸盐、乙酰丙酮盐、氯化盐、醋酸盐等中的一种或多种;其中Ni与X的摩尔比是(1~7):1;所述Ni和X前驱体的总浓度为0.01~5mol/L。
可选地,步骤(b)中的溶液B中除了含有Ni、X前驱体之外,还可以含有Y前驱体,所述Y为选自Co、Mg、Cu、Zn等中的一种或多种,Y前驱体为二价金属盐,Y 2+金属离子与Ni 2+类似能够形成水滑石结构。
当溶液B中含有Ni、X和Y前驱体时,所述Ni、X、Y前驱体可分别选自硝酸盐、乙酰丙酮盐、氯化盐、醋酸盐等中的一种或多种;其中(Ni+Y)与X的摩尔比是(1~7):1;Y与Ni的摩尔比是(0~30):1;所述Ni、X、Y前驱体的总浓度为0.01~5mol/L。
进一步地,所述溶液B为醇的水溶液,其中醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇、乙二醇等中的一种或几种,优选为甲醇水溶液,其中醇与水的体积比为(0~10):(1~20)。
进一步地,步骤(c)中碱溶液C含有0.01~1.5mol/L NaOH、0.1~2.2mol/L Na 2CO 3和0.02~2.2mol/L NaHCO 3中的一种或两种。
进一步地,在步骤(d)中碱溶液C的滴加速度为4~30mL/min;在步骤(d)中控制pH在7~11之间。
进一步地,在步骤(e)中焙烧温度是250~1000℃,焙烧时间是0.5~15h。
此外,本发明还提供了一种Ni-X基氧化物催化剂,其通过上述任一方法制备得到。
此外,本发明还提供了一种催化转移加氢的方法,在反应釜中加入本发明制备得到的Ni-X基氧化物催化剂、醛类化合物、低级醇,加热搅拌一定时间。
进一步地,所述醛类化合物为糠醛、5-羟甲基糠醛、叶醛、香茅醛、羟基香茅醛、肉桂醛、丁烯醛、3-甲基-2-丁烯醛、2-戊烯醛、月桂醛、十一醛、癸醛、壬醛、辛醛、4-羟基壬烯醛、苯甲醛、2-甲氧基苯甲醛、3-甲氧基苯甲醛、4-甲氧基苯甲醛、2-甲基苯甲醛、3-甲基苯甲醛、4-甲基苯甲醛、4-异丙基苯甲醛、二甲基苯甲醛、戊基肉桂醛、金合欢醛、大茴香醛、龙脑烯醛、香叶醛、橙花醛、柠檬醛等中的一种或多种,经转移加氢得到的产物为糠醇、5-羟甲基糠醇、叶醇、香茅醇、羟基香茅醇、肉桂醇、丁烯醇、3-甲基-2-丁烯醇、2-戊烯醇、月桂醇、十一醇、癸醇、壬醇、辛醇、4-羟基壬烯醇、苄醇、2-甲氧基苄醇、3-甲氧基苄醇、 4-甲氧基苄醇、2-甲基苄醇、3-甲基苄醇、4-甲基苄醇、4-异丙基苄醇、二甲基苄醇、戊基肉桂醇、金合欢醇、大茴香醇、龙脑烯醇、香叶醇、橙花醇、柠檬醇等中的一种或多种;所述低级醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇或乙二醇等中的一种或多种;所述Ni-X基氧化物催化剂与醛类化合物的质量比为1:(0.05~20)。
进一步地,该催化转移加氢的方法还包括催化剂再生的步骤:反应后,离心回收催化剂,使用洗涤溶剂洗涤1~3次,所述洗涤溶剂优选为甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇、乙二醇等中的一种或多种;在空气氛围中,经过60~160℃干燥6~12h,以及300~800℃处理0.5~2h后得到再生催化剂。
如上所述,本发明涉及一种Ni-X水滑石基金属氧化物催化剂的制备及其在转移加氢反应中的应用。如果不添加模板剂,可制备具有实心结构的Ni-X基氧化物催化剂。如果以聚合物球为模板剂,由于金属离子与聚合物球表面之间存在强静电作用,使Ni 2+、X n+和其它金属离子助剂均匀吸附在聚合物表面,并以此为基础在聚合物表面形成的类水滑石结构物质作为催化剂前驱体,可以实现金属元素之间的均匀分散;由于类水滑石均匀覆盖在聚合物球表面,氧化脱除聚合物模板剂后,可以构筑Ni-X基氧化物空心球结构。改变前驱体焙烧温度或Ni 2+/X n+原子比可以调控催化剂中各金属离子之间的相互作用程度。所获得的催化剂具有高的活性比表面积、高分散度、高传质,生产成本低,易于分离,循环稳定性好等特点,在生物质转化、医药及精细化学品生产等领域具有广泛的应用前景。
额外的方面和优势将在接下来的描述中部分阐述,部分内容从描述中进一步了解,或可通过实际操作学习到。
具体实施方式
本发明涉及制备Ni-X基氧化物催化剂的方法及其应用在转移加氢反应中的方法,以下详细描述。
本发明提供一种制备Ni-X基氧化物催化剂的方法,包括以下步骤:
(a)提供一溶剂A或提供一分散液A,其中溶剂A为水或甲醇或乙醇或正丙醇或异丙醇等中的一种或几种,优选为甲醇;分散液A为表面改性的聚合物球分散在溶剂A中形成的分散液,其中溶剂A选自水或甲醇或乙醇或正丙醇或异丙醇等中的一种或几种,优选为在甲醇中形成的分散液。
其中,分散液A的制备方法如下:
(1)将聚合物球、金属盐M助剂分散在浓氨水和去离子水的混合液中,制备悬浮液。
本发明的聚合物球可以是由一种至少包含一个羟基基团的芳香化合物与一种或多种脂肪醛(如选自脂肪族C1到C14的脂肪醛)缩合后形成的聚合物球,也可以是由苯乙烯聚合形 成的聚苯乙烯球。
所述的金属盐M助剂选自含Ni、Co、Mg、Cu、Zn、Al、Fe、Zr、Ti、Cr等中的一种或几种。
金属盐M助剂可选自硝酸盐、乙酰丙酮盐、氰化盐、氯化盐、醋酸盐、羰基盐等中的一种或多种,优选硝酸盐。
所述金属盐M助剂的浓度优选在0.05~2mmol/L之间,更优选在0.05~1mmol/L之间,进一步优选为0.1~0.5mmol/L。
所述浓氨水是28~30%的氨水。
浓氨水与去离子水的体积比优选为1:(1~10)。
聚合物球的浓度优选为0~10g/L。
(2)将包含聚合物球、金属盐M助剂、浓氨水和去离子水的悬浮液进行加热,获得表面改性的聚合物球。
悬浮液通过加热一步形成表面改性的聚合物球。悬浮液的加热温度优选为40~150℃。进一步地,溶液加热温度优选为50~80℃。
所述悬浮液加热时间优选为至少2h,进一步优选为至少5h,以实现金属离子均匀吸附在聚合物球表面。考虑到能耗成本,一般不超过20h,优选不超过8h。具体加热时间可能会根据加热温度和溶液成分有所调整。
(3)将改性后的聚合物球分散到溶剂A中(溶剂A选自水或甲醇或乙醇或正丙醇或异丙醇等中的一种或几种),得到分散液A;更为优选地,将改性后的聚合物球分散到甲醇溶液中,得到分散液A。
实验表明,将改性后的聚合物球分散到水或甲醇或乙醇或正丙醇或异丙醇等溶液中,进行后续操作,均可以得到具有良好催化效果的Ni-X基氧化物催化剂,其中,使用分散到甲醇溶液中的分散液A,得到的Ni-X基空心氧化物催化剂具有最均一的形态。
(b)配置一定浓度的含有Ni、X前驱体的溶液,如甲醇水溶液,记为溶液B;
其中X为一种或多种金属元素,且X包含选自Al、Fe、Zr、Ti、Cr中的一种或几种;
所述Ni、X的前驱体盐可选自硝酸盐、乙酰丙酮盐、氯化盐、醋酸盐等中的一种或多种,优选硝酸盐。
Ni与X前驱体的摩尔比是(1~7):1,优选(2~5):1,更优选为(2~4):1。
所述Ni和X前驱体的金属总浓度在0.01~5mol/L之间。Ni和X前驱体的金属总浓度低于0.01mol/L时,金属负载量极低,不适于实际生产应用。金属盐浓度高于5mol/L,金属负载量极高,活性组分易烧结。进一步优选的Ni和X前驱体的金属总浓度在0.1~2mol/L 之间。
可选地,步骤(b)中的溶液B中除了含有Ni、X前驱体之外,还可以含有Y前驱体,所述Y为选自Co、Mg、Cu、Zn等中的一种或多种,Y前驱体为二价金属盐,Y 2+金属离子与Ni 2+类似能够形成水滑石结构。
当溶液B中含有Ni、X和Y前驱体时,所述Ni、X和Y前驱体可分别选自硝酸盐、乙酰丙酮盐、氯化盐、醋酸盐等中的一种或多种;其中(Ni+Y)与X的摩尔比是(1~7):1,优选为(2~5):1;Y与Ni的摩尔比是(0~30):1,优选为(0~12):1;所述Ni、X和Y前驱体的总浓度为0.01~5mol/L,优选为0.1~2mol/L。
所述溶液B为醇的水溶液,其中醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇、乙二醇等中的一种或几种,优选为甲醇水溶液,其中醇与水的体积比为(0~10):(1~20)。
(c)配置一定浓度的混合碱溶液,记为溶液C。
溶液C选自0.01~1mol/L NaOH、0.1~2mol/L Na 2CO 3和0.02~2mol/L NaHCO 3中的一种或两种,在催化剂制备过程中起到沉淀剂的作用。
(d)在一定反应温度下,将溶液B和C同时滴加到溶剂A或分散液A中,并控制溶液C的滴加速度维持混合溶液的pH。溶液B滴加完之后,继续搅拌老化一定时间,洗涤,干燥后得到聚合物球表面嫁接类水滑石的催化剂前驱体。
所述溶液C的滴加速度是4~30mL/min,优选为4~20mL/min,进一步优选为8~12mL/min,进一步优选为6~12mL/min。
聚合物球表面嫁接类水滑石的催化剂前驱体制备过程中pH控制在7~11之间。pH值可以根据Ni 2+、X n+完全沉淀的Ksp值来确定。碱量过低,溶液中的离子不能完全沉淀;碱适当过量,有利于更好的共沉淀;但碱量太高,晶粒较大。进一步优选pH控制在9到10之间。
优选地,控制老化时的温度在30~140℃,优选为30~100℃,进一步优选为50~75℃,进一步优选为55~75℃。
老化温度下老化的时间优选为8~48h,进一步优选为12~32h。
(e)将催化剂前驱体经过焙烧过程转化成Ni-X基氧化物空心球催化剂。
所述焙烧温度选自200~1000℃的区间,优选250~1000℃的区间,优选500~850℃的区间,进一步优选为600~800℃的区间。
在焙烧温度下焙烧的时间优选为0.5~15h,更优选为1~15h,进一步优选为4~6h,进一步优选为2~6h。为了实现充分焙烧,焙烧时间一般至少0.5h,进一步优选为至少2h。考虑到能耗成本,一般不超过15h,优选不超过10h,更优选不超过6h。
本发明的类水滑石催化剂前驱体的结构为层状双羟基水滑石(LDHs),具有高度有序的二维纳米层状结构,每个金属原子(M)周围有六个羟基形成八面体结构,八面体结构通过共边形成层状板层结构,层间有平衡板层正电荷的层间阴离子填充,板层堆积形成水滑石,通常分子式为[M 2+ 1-xM 3+ x(OH) 2] x+(A n-) x/nmH 2O。在本发明中,水滑石/类水滑石的结构被用作制备高分散非均相催化剂的前驱体。LDHs的组成成分易于调控,LDHs板层上的正二价和正三价阳离子在原子水平上高度分散。虽然焙烧处理会导致LDHs的层状结构毁坏,但是基于LDH拓扑结构效应,经过焙烧处理后,仍可以得到高分散的金属纳米晶粒。原子水平的高度分散有利于不同活性组分之间的相互作用。因此,使用LDHs作为前驱体能够成功合成本发明需要的金属氧化物催化剂。
本发明还提供了一种新型的Ni-X基氧化物催化剂。当使用聚合物球为模板剂时,得到的是Ni-X基氧化物空心球催化剂。当不添加模板剂时,得到的是Ni-X基实心球氧化物催化剂。
本发明还提供了一种催化转移加氢的方法,在反应釜中加入本发明制备得到的Ni-X基氧化物催化剂、醛类化合物、低级醇,加热搅拌一定时间。
其中,Ni-X基氧化物为催化剂,醛类化合物为底物,低级醇为氢源,利用转移加氢途径制醇。之后,可采用气相色谱检测反应混合液中各组分的含量。
所述醛类化合物选自糠醛、5-羟甲基糠醛、叶醛、香茅醛、羟基香茅醛、肉桂醛、丁烯醛、3-甲基-2-丁烯醛、2-戊烯醛、月桂醛、十一醛、癸醛、壬醛、辛醛、4-羟基壬烯醛、苯甲醛、2-甲氧基苯甲醛、3-甲氧基苯甲醛、4-甲氧基苯甲醛、2-甲基苯甲醛、3-甲基苯甲醛、4-甲基苯甲醛、4-异丙基苯甲醛、二甲基苯甲醛、戊基肉桂醛、金合欢醛、大茴香醛、龙脑烯醛、香叶醛、橙花醛、柠檬醛等中的一种或多种,经转移加氢得到的产物为糠醇、5-羟甲基糠醇、叶醇、香茅醇、羟基香茅醇、肉桂醇、丁烯醇、3-甲基-2-丁烯醇、2-戊烯醇、月桂醇、十一醇、癸醇、壬醇、辛醇、4-羟基壬烯醇、苄醇、2-甲氧基苄醇、3-甲氧基苄醇、4-甲氧基苄醇、2-甲基苄醇、3-甲基苄醇、4-甲基苄醇、4-异丙基苄醇、二甲基苄醇、戊基肉桂醇、金合欢醇、大茴香醇、龙脑烯醇、香叶醇、橙花醇、柠檬醇等中的一种或多种。
比如,Ni-X基氧化物为催化剂,α,β-不饱和醛为底物,低级醇为氢源,利用转移加氢途径制醇。所述α,β-不饱和醛选自糠醛、肉桂醛、香叶醛、橙花醛或5-羟甲基糠醛中的一种或多种,经转移加氢得到的对应产物依次分别为糠醇、肉桂醇、香叶醇、橙花醇和5-羟甲基糠醇。
所述低级醇可选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇或乙二醇等中的一种或多种。
所述Ni-X基氧化物催化剂与醛类化合物的质量比为1:(0.05~20),优选为1:(0.1~10), 进一步优选为1:(1~10)。
醛类化合物的浓度优选为0.05~1.0mol/L。
反应温度优选为90~160℃。
在反应温度下反应时间优选为1~48h。为了实现充分反应,反应时间一般至少1h,进一步优选为至少4h。考虑到成本,一般不超过48h,优选不超过36h,更优选不超过12h。具体反应时间可能会根据反应温度和溶液成分有所调整。
该催化醛类化合物转移加氢反应方法的优选方案,还包括催化剂再生:催化剂回收后,使用洗涤溶剂洗涤1~3次,所述洗涤溶剂优选为甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇、乙二醇等中的一种或多种;在空气氛围下,经过60~160℃干燥(优选为80~120℃干燥)6~12h,及300~800℃处理0.5~2h(优选为1~5h)后得到再生催化剂。
本发明合成的催化剂可以采用扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)等表征方法进行表征。
本发明涉及一种Ni-X基氧化物催化剂的制备及其在转移加氢中的应用的方法。该方法利用聚合物球为模板剂,通过原位沉淀生长法制备聚合物球表面嫁接类水滑石的前驱体,经氧化处理后得到Ni-X基空心球催化剂。此外,不添加模板剂,可制备具有实心结构的Ni-X基氧化物催化剂。
本发明所述方法制备的催化剂活性比表面高、制备工艺简捷、成本低、易于放大。所制备的催化剂对醛类化合物(尤其是不饱和醛)转移加氢反应具有普遍的适用性,同时具有反应条件温和、转化率和选择性高、反应速率快、重复使用性好等特点,重复使用12轮未发现催化剂明显失活,具有工业化应用价值。
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合具体实施例对本发明的技术方案进行以下详细说明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围。
[实施例1-1]
于干容器中加入0.2g聚合物球(聚苯乙烯球或酚醛树脂球)、0.008mmol、金属盐M助剂(钴、镍或铁硝酸盐中的一种)、7mL浓氨水、28mL去离子水,50℃反应5h,反应结束后抽滤,洗涤,干燥,得到表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)。将表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)分散到80mL甲醇中,得到聚合物球(聚苯乙烯球或酚醛树脂球)分散液A。
按[Ni 2+]与[Al 3+]原子比为3:1,配成总金属浓度为0.12mol/L的混合盐溶液,其中甲醇与水的体积比为1:19,得到溶液B。
配置0.1mol/L NaOH和0.2mol/L Na 2CO 3混合碱溶液作为沉淀剂,得到溶液C。
在65℃下,将溶液B和C同时滴加到分散液A中,并控制溶液C的滴加速度为6mL/min,维持混合溶液的pH为10.0。溶液B滴加完成后,继续老化36h。将老化后的悬浊液过滤,洗涤,50℃真空干燥12h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下800℃焙烧6h,冷却至室温后得到Ni-Al基氧化物空心球催化剂。
向反应釜中加入0.08g上述得到的Ni-Al基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热1h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表1所示。
[实施例1-2]
于干容器中加入0.2g聚合物球(聚苯乙烯球或酚醛树脂球)、0.008mmol硝酸镍、7mL浓氨水、28mL去离子水,50℃反应5h,反应结束后抽滤,洗涤,干燥,得到表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)。将表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)分散到80mL甲醇中,得到聚合物球(聚苯乙烯球或酚醛树脂球)分散液A。
按硝酸镍和硝酸铝原子比为(2~4):1,配成总金属浓度为0.12mol/L的混合盐溶液,其中甲醇与水的体积比为1:19,得到溶液B。
配置0.1mol/L NaOH和0.2mol/L Na 2CO 3混合碱溶液作为沉淀剂,得到溶液C。
在65℃下,将溶液B和C同时滴加到分散液A中,并控制溶液C的滴加速度为6mL/min,维持混合溶液的pH为10.0。溶液B滴加完成后,继续老化36h。将老化后的悬浊液过滤,洗涤,50℃真空干燥12h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛中800℃焙烧6h,冷却至室温后得到Ni-Al基氧化物空心球催化剂。
向反应釜中加入0.08g Ni-Al基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热12h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表1所示。
[实施例1-3]
催化剂前驱体的制备同实施例1-2。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下500~1000℃焙烧6h,冷却至室温后得到Ni-Al基氧化物空心球催化剂。
向反应釜中加入0.08g Ni-Al基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热12h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各 组分的含量,结果如表1所示。
[实施例1-4]
Ni-Al基氧化物空心球催化剂的制备同实施例1-3。
向反应釜中加入0.08g上述得到的高温氧化处理的Ni-Al基氧化物空心球催化剂、0.5mmol肉桂醛、柠檬醛或5-羟甲基糠醛中的一种、10mL异丙醇,在120℃、500min -1下加热搅拌12~96h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表1所示。
[实施例1-5]
Ni-Al基氧化物空心球催化剂的制备同实施例1-3。
向反应釜中加入0.08g Ni-Al基氧化物空心球催化剂、1mmol糠醛、10mL溶剂(低级醇),在120℃、加热2h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表1所示。
[实施例1-6]
Ni-Al基氧化物空心球催化剂的制备同实施例1-3。
向反应釜中加入0.08g Ni-Al基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热2~24h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表1所示。
[实施例1-7]
按[Ni 2+]与[Al 3+]原子比为3:1,配成总金属浓度为0.12mol/L的盐溶液,其中甲醇与水的体积比为1:19,得到溶液B。
配置0.1mol/L NaOH和0.2mol/L Na 2CO 3碱溶液作为沉淀剂,得到溶液C。
在65℃下,将盐溶液和沉淀剂同时滴加到80mL甲醇(溶剂A)中,并控制沉淀剂(溶液C)的滴加速度为6mL/min,维持混合溶液的pH为10.0。盐溶液(溶液B)滴加完成后,继续老化36h。将老化后的悬浊液过滤,洗涤,50℃真空干燥12h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下800℃焙烧6h,冷却至室温后得到Ni-Al基实心氧化物催化剂。
向反应釜中加入0.08g上述得到的Ni-Al基实心氧化物催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热24h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表1所示。
[实施例2-1]
于干容器中加入0.3g聚合物球(聚苯乙烯球或酚醛树脂球)、0.008mmol金属盐M助剂 (钴、铁、锆、钛或镍硝酸盐中的一种)、4mL浓氨水、32mL去离子水,30℃反应2h,反应结束后抽滤,洗涤,干燥,得到表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)。将表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)分散到100mL甲醇中,得到分散液A。
按[Ni 2+]与[Fe 3+]原子比为3:1,配成总金属浓度为0.2mol/L的混合盐溶液,其中甲醇与水的体积比为1:30,得到溶液B。
配置0.17mol/L NaOH和0.34mol/L Na 2CO 3混合碱溶液作为沉淀剂,得到溶液C。
在65℃下,将溶液B和C同时滴加到分散液A中,并控制溶液C的滴加速度为15mL/min,维持混合溶液的pH为9.8。溶液B滴加完成后,继续老化8h。将老化后的悬浊液过滤,洗涤,50℃干燥6h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下800℃焙烧4h,冷却至室温后得到Ni-Fe基氧化物空心球催化剂。
向反应釜中加入0.1g上述得到的Ni-Fe基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热1h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表2所示。
[实施例2-2]
于干容器中加入0.3g聚合物球(聚苯乙烯球或酚醛树脂球)、0.008mmol硝酸镍、4mL浓氨水、32mL去离子水,30℃反应2h,反应结束后抽滤,洗涤,干燥,得到表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)。将表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)分散到100mL甲醇中,得到分散液A。
按[Ni 2+]与[Fe 3+]原子比为(2~4):1,配成总金属浓度为0.2mol/L的混合盐溶液,其中甲醇与水的体积比为1:30,得到溶液B。
配置0.17mol/L NaOH和0.34mol/L Na 2CO 3混合碱溶液作为沉淀剂,得到溶液C。
在65℃下,将溶液B和C同时滴加到分散液A中,并控制溶液C的滴加速度为15mL/min,维持混合溶液的pH为9.8。溶液B滴加完成后,继续老化36h。将老化后的悬浊液过滤,洗涤,50℃干燥6h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛中800℃焙烧4h,冷却至室温后得到Ni-Fe基氧化物空心球催化剂。
向反应釜中加入0.1g Ni-Fe基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热12h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表2所示。
[实施例3]
催化剂前驱体的制备同实施例2-2。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下500~1000℃焙烧4h,冷却至室温后得到Ni-Fe基氧化物空心球催化剂。
向反应釜中加入0.1g Ni-Fe基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热12h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表2所示。
[实施例4]
Ni-Fe基氧化物空心球催化剂的制备同实施例3。
向反应釜中加入0.1g上述得到的高温氧化处理的Ni-Fe基氧化物空心球催化剂、0.5mmol肉桂醛、柠檬醛、5-羟甲基糠醛、4-甲氧基苯甲醛、4-甲基苯甲醛、大茴香醛或月桂醛中的一种、10mL异丙醇,在120℃、500min -1下加热搅拌12~48h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表2所示。
[实施例5]
Ni-Fe基氧化物空心球催化剂的制备同实施例3。
向反应釜中加入0.1g Ni-Fe基氧化物空心球催化剂、1mmol糠醛、10mL溶剂(低级醇),在120℃、加热2h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表2所示。
[实施例6]
Ni-Fe基氧化物空心球催化剂的制备同实施例3。
向反应釜中加入0.1g Ni-Fe基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热6~12h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表2所示。
[实施例7]
按[Ni 2+]与[Fe 3+]原子比为3:1,配成总金属浓度为0.2mol/L的盐溶液,其中甲醇与水的体积比为1:30,得到溶液B。
配置0.17mol/L NaOH和0.34mol/L Na 2CO 3碱溶液作为沉淀剂,得到溶液C。
在65℃下,将溶液B和C同时滴加到100mL甲醇(溶剂A)中,并控制溶液C的滴加速度为15mL/min,维持混合溶液的pH为9.8。溶液B滴加完成后,继续老化8h。将老化后的悬浊液过滤,洗涤,50℃干燥6h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下800℃焙烧4h,冷却至室温后得到Ni-Fe基实心氧化物催化剂。
向反应釜中加入0.1g上述得到的Ni-Fe基实心氧化物催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热24h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表2所示。
[实施例8]
于干容器中加入0.3g聚合物球(聚苯乙烯球或酚醛树脂球)、0.008mmol硝酸镍、4mL浓氨水、32mL去离子水,30℃反应2h,反应结束后抽滤,洗涤,干燥,得到表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)。将表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)分散到100mL甲醇中,得到分散液A。
按[Ni 2+]与[X n+]原子比为3:1(具体X n+见表3),配成总金属浓度为0.2mol/L的混合盐溶液,其中甲醇与水的体积比为1:30,得到溶液B。
配置0.17mol/L NaOH和0.34mol/L Na 2CO 3混合碱溶液作为沉淀剂,得到溶液C。
在65℃下,将溶液B和C同时滴加到分散液A中,并控制溶液C的滴加速度为15mL/min,维持混合溶液的pH为9.8。溶液B滴加完成后,继续老化8h。将老化后的悬浊液过滤,洗涤,50℃干燥6h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下800℃焙烧4h,冷却至室温后得到Ni-X基氧化物空心球催化剂。
向反应釜中加入0.1g上述得到的Ni-X基氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热1h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表3所示。
[实施例9]
于干容器中加入0.3g聚合物球(聚苯乙烯球或酚醛树脂球)、0.008mmol硝酸镍、4mL浓氨水、32mL去离子水,30℃反应2h,反应结束后抽滤,洗涤,干燥,得到表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)。将表面改性的聚合物球(聚苯乙烯球或酚醛树脂球)分散到100mL甲醇中,得到分散液A。
按[Ni 2+]:[Y 2+]:[X n+]原子比为2:1:1(具体Y和X见表4),配成总金属浓度为0.2mol/L的混合盐溶液,其中甲醇与水的体积比为1:30,得到溶液B。
配置0.17mol/L NaOH和0.34mol/L Na 2CO 3混合碱溶液作为沉淀剂,得到溶液C。
在65℃下,将溶液B和C同时滴加到分散液A中,并控制溶液C的滴加速度为15mL/min,维持混合溶液的pH为9.8。溶液B滴加完成后,继续老化8h。将老化后的悬浊液过滤,洗涤,50℃干燥6h,得到催化剂前驱体。
将上述制备的催化剂前体置于马弗炉中,在空气气氛下800℃焙烧4h,冷却至室温后 得到氧化物空心球催化剂。
向反应釜中加入0.1g上述得到的氧化物空心球催化剂、1mmol糠醛、10mL异丙醇,在120℃、加热1h。反应结束后,离心分离固体催化剂。采用气相色谱检测反应混合液中各组分的含量,结果如表4所示。
表1
Figure PCTCN2020128198-appb-000001
表2
Figure PCTCN2020128198-appb-000002
表2(续)
Figure PCTCN2020128198-appb-000003
表2(续)
Figure PCTCN2020128198-appb-000004
表3
Figure PCTCN2020128198-appb-000005
表4
Figure PCTCN2020128198-appb-000006
本发明经过上述的描述,已清楚地公开了本发明催化剂制备条件。但是,本领域内的技术人员十分清楚,对本发明可以进行一些修改和改进。所以,只要不离开本发明的精神,对本发明所进行的任何修改和改进都应在本发明的范围内。

Claims (16)

  1. 一种制备Ni-X基氧化物催化剂的方法,包括以下步骤:
    (a)提供一溶剂A或提供一分散液A,其中溶剂A选自水或甲醇或乙醇或正丙醇或异丙醇等中的一种或几种,分散液A为表面改性的聚合物球分散在溶剂A中形成的分散液,
    (b)配置一定浓度的含有Ni前驱体和X前驱体的溶液,其中X为一种或多种金属元素,且X包含选自Al、Fe、Zr、Ti、Cr等中的一种或几种,记为溶液B;
    (c)配置一定浓度的混合碱溶液,记为溶液C;
    (d)将溶液B和溶液C同时滴加到溶剂A或分散液A中形成混合溶液,并通过控制溶液C的滴加速度来调节混合溶液的pH;溶液B滴加完毕后,老化一定时间;
    (e)将老化后的悬浊液过滤、洗涤、干燥,并在空气气氛下焙烧,得到最终的Ni-X基氧化物催化剂。
  2. 根据权利要求1所述的制备Ni-X基氧化物催化剂的方法,其特征是,步骤(a)中的分散液A的制备方法为:
    提供一种悬浮液,该悬浮液中含有聚合物球、金属盐M助剂、浓氨水和去离子水;
    加热该悬浮液,获得表面改性的聚合物球;
    然后将改性后的聚合物球分散到溶剂A中,形成分散液A。
  3. 根据权利要求2所述的制备Ni-X基氧化物催化剂的方法,其特征是,所述聚合物球是由一种至少包含一个羟基基团的芳香化合物与一种或多种脂肪醛缩合后形成的聚合物球,或者由苯乙烯聚合形成的聚苯乙烯球。
  4. 根据权利要求2所述的制备Ni-X基氧化物催化剂的方法,其特征是,所述金属盐M助剂选自含Ni、Co、Mg、Cu、Zn、Al、Fe、Zr、Ti、Cr中的一种或几种;所述金属盐M助剂选自硝酸盐、乙酰丙酮盐、氯化盐、氰化盐、醋酸盐、羰基盐中的一种或多种。
  5. 根据权利要求2所述的制备Ni-X基氧化物催化剂的方法,其特征是,在该悬浮液中,所述聚合物球的浓度为0~20g/L;所述金属盐M助剂的浓度是0.05~2mmol/L;浓氨水:去离子水的体积比为1:(1~20)。
  6. 根据权利要求2所述的制备Ni-X基氧化物催化剂的方法,其特征是,加热悬浮液的加热温度是30~150℃;加热悬浮液的加热时间是1~20h。
  7. 根据权利要求1所述的制备Ni-X基氧化物催化剂的方法,其特征是,步骤(b)中所述Ni前驱体和X前驱体分别选自硝酸盐、乙酰丙酮盐、氯化盐、醋酸盐中的一种或多种;其中Ni与X的摩尔比是(1~7):1;所述Ni前驱体和X前驱体的总浓度为0.01~5mol/L。
  8. 根据权利要求1所述的制备Ni-X基氧化物催化剂的方法,其特征是,步骤(b)中的溶 液B中除了含有Ni前驱体和X前驱体之外,还含有Y前驱体,所述Y为选自Co、Mg、Cu、Zn等中的一种或多种,Y前驱体为二价金属盐。
  9. 根据权利要求1所述的制备Ni-X基氧化物催化剂的方法,其特征是,所述含有Ni前驱体和X前驱体的溶液为醇的水溶液,其中醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇、乙二醇中的一种或几种,其中醇与水的体积比为(0~10):(1~20)。
  10. 根据权利要求1所述的制备Ni-X基氧化物催化剂的方法,其特征是,步骤(c)中碱溶液C含有0.01~1.5mol/L NaOH、0.1~2.2mol/L Na 2CO 3和0.02~2.2mol/L NaHCO 3中的一种或两种。
  11. 根据权利要求1所述的制备Ni-X基氧化物催化剂的方法,其特征是,在步骤(d)中碱溶液C的滴加速度为4~30mL/min;在步骤(d)中控制pH在7~11之间。
  12. 根据权利要求1所述的制备Ni-X基氧化物催化剂的方法,其特征是,在步骤(e)中焙烧温度是200~1000℃,焙烧时间是0.5~15h。
  13. 一种Ni-X基氧化物催化剂,其通过权利要求1到12任一所述的方法制备得到。
  14. 一种催化转移加氢的方法,在反应釜中加入通过权利要求1到12任一所述的方法制备得到的Ni-X基氧化物催化剂、醛类化合物、低级醇,加热搅拌一定时间。
  15. 根据权利要求14所述的催化转移加氢的方法,其特征是,所述醛类化合物为糠醛、5-羟甲基糠醛、叶醛、香茅醛、羟基香茅醛、肉桂醛、丁烯醛、3-甲基-2-丁烯醛、2-戊烯醛、月桂醛、十一醛、癸醛、壬醛、辛醛、4-羟基壬烯醛、苯甲醛、2-甲氧基苯甲醛、3-甲氧基苯甲醛、4-甲氧基苯甲醛、2-甲基苯甲醛、3-甲基苯甲醛、4-甲基苯甲醛、4-异丙基苯甲醛、二甲基苯甲醛、戊基肉桂醛、金合欢醛、大茴香醛、龙脑烯醛、香叶醛、橙花醛、柠檬醛中的一种或多种,经转移加氢得到的产物为糠醇、5-羟甲基糠醇、叶醇、香茅醇、羟基香茅醇、肉桂醇、丁烯醇、3-甲基-2-丁烯醇、2-戊烯醇、月桂醇、十一醇、癸醇、壬醇、辛醇、4-羟基壬烯醇、苄醇、2-甲氧基苄醇、3-甲氧基苄醇、4-甲氧基苄醇、2-甲基苄醇、3-甲基苄醇、4-甲基苄醇、4-异丙基苄醇、二甲基苄醇、戊基肉桂醇、金合欢醇、大茴香醇、龙脑烯醇、香叶醇、橙花醇、柠檬醇中的一种或多种;所述低级醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、2-丁醇、环己醇、乙二醇中的一种或多种;所述Ni-X基氧化物催化剂与醛类化合物的质量比为1:(0.05~20)。
  16. 根据权利要求14所述的催化转移加氢的方法,其特征是,还包括催化剂再生的步骤:反应后,离心回收催化剂,使用洗涤溶剂洗涤1~3次,在空气氛围中,经过60~160℃干燥6~12h,以及300~800℃处理0.5~2h后得到再生催化剂。
PCT/CN2020/128198 2019-12-20 2020-11-11 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用 WO2021120928A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080087000.3A CN114829004B (zh) 2019-12-20 2020-11-11 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911328809.6 2019-12-20
CN201911328809.6A CN113000049B (zh) 2019-12-20 2019-12-20 一种制备Ni-Al基氧化物催化剂的方法

Publications (1)

Publication Number Publication Date
WO2021120928A1 true WO2021120928A1 (zh) 2021-06-24

Family

ID=76382119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128198 WO2021120928A1 (zh) 2019-12-20 2020-11-11 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用

Country Status (2)

Country Link
CN (2) CN113000049B (zh)
WO (1) WO2021120928A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522294A (zh) * 2021-08-11 2021-10-22 中国科学院青岛生物能源与过程研究所 一种Ni基催化剂及其制备方法与在还原胺化中的应用
CN114573419A (zh) * 2022-02-09 2022-06-03 大连理工大学 一种以水作为廉价供氢体的α,β-不饱和醛原位选择性加氢反应工艺
CN114849711A (zh) * 2022-04-27 2022-08-05 苏州大学 一种金属纳米催化剂、其制备方法及应用
CN115779956A (zh) * 2022-12-07 2023-03-14 万华化学集团股份有限公司 一种己二腈加氢催化剂的制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115999537A (zh) * 2023-02-02 2023-04-25 中国科学院青岛生物能源与过程研究所 一种多孔复合氧化物封装金属催化剂及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767221A (en) * 1953-06-11 1956-10-16 Shell Dev Production of unsaturated alcohols
CN101733105A (zh) * 2009-11-27 2010-06-16 昆明理工大学 以二元类水滑石为前驱体制备的羰基硫水解催化剂及制备方法
CN101797492A (zh) * 2010-04-16 2010-08-11 北京化工大学 一种层状双羟基复合金属氢氧化物多孔微球的制备方法
CN102078813A (zh) * 2010-12-13 2011-06-01 昆明理工大学 一种低温下水解羰基硫的催化剂及其制备方法
CN102407121A (zh) * 2011-10-18 2012-04-11 华南理工大学 一种以X/Ni/Al类水滑石为前驱体的加氢催化剂的制备方法
CN103464165A (zh) * 2013-08-23 2013-12-25 东莞上海大学纳米技术研究院 一种蜂窝状铈铜复合多元氧化物催化剂、制备方法及应用
CN107282050A (zh) * 2017-07-14 2017-10-24 成都理工大学 一种乙酸自热重整制氢的类水滑石型铁促进镍基催化剂及制备方法
CN109261152A (zh) * 2018-10-08 2019-01-25 天津理工大学 一种催化糠醛还原的负载型催化剂及其制备方法及应用
CN109745993A (zh) * 2017-11-01 2019-05-14 中国石油天然气股份有限公司 一种介孔本体型Mo-Ni加氢脱氧催化剂的制备方法
CN110180553A (zh) * 2019-04-04 2019-08-30 沈阳化工大学 一种高效糠醛气相转化为2-甲基呋喃催化剂的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544355A (zh) * 2009-05-05 2009-09-30 北京化工大学 一种层状双羟基复合金属氧化物花状微球的水热制备方法
CN103962140B (zh) * 2014-05-12 2016-05-11 北京化工大学 一种微球形中空结构镍基加氢催化剂及其制备方法
CN105289619B (zh) * 2015-11-19 2018-06-29 中科合成油技术有限公司 镍基催化剂及其制备方法与在5-羟甲基糠醛加氢中的应用
CN109942517A (zh) * 2019-04-19 2019-06-28 信阳师范学院 一种金属氢氧化物催化糠醛转移加氢制备糠醇的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767221A (en) * 1953-06-11 1956-10-16 Shell Dev Production of unsaturated alcohols
CN101733105A (zh) * 2009-11-27 2010-06-16 昆明理工大学 以二元类水滑石为前驱体制备的羰基硫水解催化剂及制备方法
CN101797492A (zh) * 2010-04-16 2010-08-11 北京化工大学 一种层状双羟基复合金属氢氧化物多孔微球的制备方法
CN102078813A (zh) * 2010-12-13 2011-06-01 昆明理工大学 一种低温下水解羰基硫的催化剂及其制备方法
CN102407121A (zh) * 2011-10-18 2012-04-11 华南理工大学 一种以X/Ni/Al类水滑石为前驱体的加氢催化剂的制备方法
CN103464165A (zh) * 2013-08-23 2013-12-25 东莞上海大学纳米技术研究院 一种蜂窝状铈铜复合多元氧化物催化剂、制备方法及应用
CN107282050A (zh) * 2017-07-14 2017-10-24 成都理工大学 一种乙酸自热重整制氢的类水滑石型铁促进镍基催化剂及制备方法
CN109745993A (zh) * 2017-11-01 2019-05-14 中国石油天然气股份有限公司 一种介孔本体型Mo-Ni加氢脱氧催化剂的制备方法
CN109261152A (zh) * 2018-10-08 2019-01-25 天津理工大学 一种催化糠醛还原的负载型催化剂及其制备方法及应用
CN110180553A (zh) * 2019-04-04 2019-08-30 沈阳化工大学 一种高效糠醛气相转化为2-甲基呋喃催化剂的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522294A (zh) * 2021-08-11 2021-10-22 中国科学院青岛生物能源与过程研究所 一种Ni基催化剂及其制备方法与在还原胺化中的应用
CN113522294B (zh) * 2021-08-11 2023-08-29 中国科学院青岛生物能源与过程研究所 一种Ni基催化剂及其制备方法与在还原胺化中的应用
CN114573419A (zh) * 2022-02-09 2022-06-03 大连理工大学 一种以水作为廉价供氢体的α,β-不饱和醛原位选择性加氢反应工艺
CN114849711A (zh) * 2022-04-27 2022-08-05 苏州大学 一种金属纳米催化剂、其制备方法及应用
CN114849711B (zh) * 2022-04-27 2023-08-11 苏州大学 一种金属纳米催化剂、其制备方法及应用
CN115779956A (zh) * 2022-12-07 2023-03-14 万华化学集团股份有限公司 一种己二腈加氢催化剂的制备方法与应用
CN115779956B (zh) * 2022-12-07 2024-04-09 万华化学集团股份有限公司 一种己二腈加氢催化剂的制备方法与应用

Also Published As

Publication number Publication date
CN114829004B (zh) 2024-02-27
CN113000049A (zh) 2021-06-22
CN114829004A (zh) 2022-07-29
CN113000049B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2021120928A1 (zh) 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用
JP7019813B2 (ja) アセトフェノンの水素化によってα-フェニルエタノールを製造するための触媒、その製造方法および応用
JP2015527190A (ja) 流動層反応器に使用されるブテンの酸化脱水素によるブタジエン製造用触媒およびその製造方法と用途
CN107899575B (zh) 用于醛和醇一步氧化酯化生成酯的纳米金催化剂及其制备方法和应用
CN101584986A (zh) 一种合成甲醇催化剂的制备方法
CN104624196B (zh) 一种高比表面积费托合成催化剂及其制备方法与应用
JP5740658B2 (ja) 金ヒドロキソ陰イオン錯体溶液及び金ナノ粒子担持体の製造方法
CN109364931B (zh) 一种核壳结构的二氧化碳加氢制甲醇催化剂及其制备方法
CN110787789A (zh) 一种用于二氧化碳加氢制甲醇的催化剂的制备及其应用
CN114405505A (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN111013592A (zh) 一种具有插层结构的水滑石镍基纳米催化剂及其制备方法与应用
CN112221509B (zh) 一种高稳定性甲醇合成催化剂的制备方法
CN112547067A (zh) 用于浆态床甲烷合成反应催化剂的制备方法
CN104028267B (zh) 一种苯选择性加氢制环己烯贵金属Ru催化剂的制法
CN111686740B (zh) 合成甲醇催化剂的制法
CN107824199B (zh) 醛类一步氧化酯化合成酯的磁性纳米金催化剂及其制备方法和应用
CN116060035A (zh) 固体反相催化剂及其制备方法与催化低温二氧化碳甲烷化的应用
CN113828319B (zh) 一种Cu-Zn-M的复合氧化物催化剂及其制备方法和用途
CN111760572B (zh) 一种NiZnCu纳米复合脱氢催化剂及其制备方法
CN114797882A (zh) 一种环己醇脱氢制环己酮的催化剂及其制备方法和应用
CN113952960A (zh) 一种由合成气制低碳醇的Co-CeO2催化剂、制备方法及应用
CN110935478B (zh) 合成甲醇催化剂的制备方法
CN110893347A (zh) 低温高活性镍基双金属甲烷化催化剂及其制备方法与应用
CN110479259B (zh) 一种以氧化钼-氧化锌-氧化锆复合氧化物为载体的负载型Ru基催化剂
CN107442120A (zh) 一种Cu/ZrO2催化剂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901102

Country of ref document: EP

Kind code of ref document: A1