WO2021096025A1 - 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법 - Google Patents

서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법 Download PDF

Info

Publication number
WO2021096025A1
WO2021096025A1 PCT/KR2020/009990 KR2020009990W WO2021096025A1 WO 2021096025 A1 WO2021096025 A1 WO 2021096025A1 KR 2020009990 W KR2020009990 W KR 2020009990W WO 2021096025 A1 WO2021096025 A1 WO 2021096025A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
particle diameter
electrode
range
material particles
Prior art date
Application number
PCT/KR2020/009990
Other languages
English (en)
French (fr)
Inventor
이대진
김동휘
황진태
김형일
채슬기
정왕모
이동훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20862001.3A priority Critical patent/EP3849008A4/en
Priority to JP2021516880A priority patent/JP7123251B2/ja
Priority to US17/278,233 priority patent/US20220310984A1/en
Priority to CN202080005056.XA priority patent/CN113133331B/zh
Publication of WO2021096025A1 publication Critical patent/WO2021096025A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a secondary battery including a mixture layer having a double-layer structure including active materials of different particle diameters, and a method of manufacturing the same.
  • lithium secondary batteries are widely used as an energy source for various electronic products as well as various mobile devices because of their high energy density and high operating voltage and excellent storage and lifespan characteristics.
  • the secondary battery is attracting attention as an energy source such as an electric vehicle or a hybrid electric vehicle, which has been proposed as a solution for solving air pollution such as conventional gasoline vehicles and diesel vehicles using fossil fuels.
  • a high-power battery is required.
  • an electrode having a high energy density is drawing attention as a way to increase the output characteristics of a secondary battery.
  • particles having a large particle diameter are applied as a positive electrode active material, and a thinner metal thin film is applied as a current collector in order to reduce the volume.
  • the particle diameter of the active material is increased and the thickness of the current collector is reduced, the current collector is damaged or severely disconnected in the process of rolling the electrode.
  • the present invention has been invented to solve the above problems, and an object of the present invention is to provide an electrode for a secondary battery including a buffer layer and a method of manufacturing the same.
  • the electrode for a secondary battery according to the present invention includes a current collector layer; A lower mixture layer formed on one or both surfaces of the current collector layer and including a particulate active material; And an upper mixture layer formed on a surface opposite to a surface in which the lower mixture layer is in contact with the current collector layer, and includes a particulate active material.
  • the upper mixture layer includes active material particles having a first particle size range and active material particles having a third particle size range
  • the lower mixture layer includes active material particles having a second particle size range and a third particle size range. It contains active material particles having.
  • the secondary battery electrode satisfies the following conditions 1 and 2.
  • D1 is the average particle diameter of the active material particles having a first particle diameter range
  • D2 is the average particle diameter of the active material particles having a second particle diameter range
  • D3 is the average particle diameter of active material particles having a third particle diameter range.
  • the average particle diameter of the active material particles having the first particle diameter range is in the range of 14 to 20 ⁇ m
  • the average particle diameter of the active material particles having the second particle diameter range is in the range of 10 to 13 ⁇ m
  • the active material particles having a third particle diameter range The average particle diameter of is in the range of 3 to 9 ⁇ m.
  • the content ratio of the active material particles having the first particle size range and the active material particles having the third particle size range is in the range of 6:4 to 9:1 by weight.
  • the content ratio of the active material particles having the second particle size range and the active material particles having the third particle size range is in the range of 6:4 to 9:1 by weight.
  • the buffer layer further includes a buffer layer interposed between the current collector layer and the lower mixture layer, wherein the buffer layer includes niobium-containing oxide.
  • the niobium-containing oxide included in the buffer layer includes at least one of Li 3 NbO 4 , LiNbO and Nb 2 O 5 .
  • the average thickness of the buffer layer is in the range of 1 to 10 ⁇ m.
  • the current collector layer is formed of a metal foil having an average thickness of 10 to 20 ⁇ m.
  • the electrode is an electrode for a lithium secondary battery.
  • the present invention provides a method of manufacturing an electrode for a secondary battery described above.
  • the manufacturing method may include forming a lower mixture layer including active material particles having a second particle diameter range and active material particles having a third particle diameter range on one or both surfaces of the current collector layer; Forming an upper mixture layer including active material particles having a first particle diameter range and active material particles having a third particle diameter range on the lower mixture layer; And rolling the electrode to which the lower and upper mixture layers are applied.
  • the manufacturing method satisfies the following conditions 1 and 2.
  • D1 is the average particle diameter of the active material particles having a first particle diameter range
  • D2 is the average particle diameter of the active material particles having a second particle diameter range
  • D3 is the average particle diameter of active material particles having a third particle diameter range.
  • the porosity of the mixture layer subjected to the rolling step is in the range of 20 to 30% (v/v) on average.
  • the thickness ratio of the lower mixture layer and the upper mixture layer is in the range of 1:9 to 4:6.
  • the current collector layer is formed of a metal foil having an average thickness of 10 to 20 ⁇ m.
  • the method of manufacturing an electrode for a secondary battery according to the present invention further includes forming a buffer layer including an oxide containing niobium on the current collector before forming the lower mixture layer.
  • the electrode for a secondary battery and a method of manufacturing the same according to the present invention can minimize damage to the current collector layer during the pressure of the electrode and provide a secondary battery having a high energy density.
  • FIG. 1 is an electron microscope photograph of an electrode according to an embodiment of the present invention, observing a cross-sectional structure.
  • FIG. 2 is an electron microscope photograph of an electrode according to a comparative example, observing a cross-sectional structure.
  • FIG. 3 is a graph showing the evaluation results of life characteristics for a secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a graph showing evaluation results of life characteristics for a secondary battery according to a comparative example.
  • the present invention provides an electrode for a secondary battery.
  • the secondary battery electrode includes a current collector layer; A lower mixture layer formed on one or both surfaces of the current collector layer and including a particulate active material; And an upper mixture layer formed on a surface opposite to a surface in which the lower mixture layer is in contact with the current collector layer, and includes a particulate active material.
  • the upper mixture layer includes active material particles having a first particle size range and active material particles having a third particle size range
  • the lower mixture layer includes active material particles having a second particle size range and active material particles having a third particle size range do.
  • the electrode for a secondary battery according to the present invention satisfies the following conditions 1 and 2.
  • D1 is the average particle diameter of the active material particles having a first particle diameter range
  • D2 is the average particle diameter of the active material particles having a second particle diameter range
  • D3 is the average particle diameter of active material particles having a third particle diameter range.
  • the present invention has a structure including a large particle active material having a large average particle diameter and a small particle active material having a small average particle diameter in an upper mixture layer.
  • the structure includes a neutral particle active material having a medium average particle diameter and a small particle active material having a small average particle diameter in the lower mixture layer.
  • the upper mixture layer includes active material particles having a first particle size range and active material particles having a third particle size range
  • the lower mixture layer includes active material particles having a second particle size range and an active material having a third particle size range Contains particles.
  • the active material particles having the first particle size range correspond to the large particle active material
  • the active material particles having the second particle size correspond to the neutral active material
  • the active material particles having the third particle size correspond to the small particle active material.
  • the average particle diameter of the active material particles having the first particle diameter range is in the range of 14 to 20 ⁇ m, and specifically in the range of 14 to 18 ⁇ m or 15 to 16 ⁇ m.
  • the average particle diameter of the active material particles having the second particle diameter range is in the range of 10 to 13 ⁇ m, and specifically in the range of 10 to 12 ⁇ m.
  • the average particle diameter of the active material particles having the third particle size range is in the range of 3 to 9 ⁇ m, and specifically in the range of 5 to 9 ⁇ m or 6 to 8 ⁇ m.
  • the energy density of the electrode can be increased by mixing the large particle active material and the small particle active material in the upper mixture layer. This is larger than the range of particle diameters classified by conventional counterparts.
  • a large particle active material having an average particle diameter of 14 ⁇ m or more and a metal thin film having a thickness of 20 ⁇ m or less are used as a current collector.
  • a large particle active material with an average particle diameter of 14 ⁇ m or more is applied to the mixture layer, and particle breakage occurs during the rolling process of the electrode, resulting in a disconnection, or a problem of concentration of stress between the uncoated portion and the holding portion. .
  • a structure in which a neutral particle active material and a small particle active material are mixed is introduced in the lower mixture layer.
  • the neutral particle active material has a smaller radius of curvature of the particles compared to the counterpart active material, so it can reduce damage to the current collector during the rolling process, and the number of contact with the small particle active material located around the neutral active material is large, so it can disperse the line pressure during the rolling process. I can.
  • the content ratio of the active material particles having the first particle size range and the active material particles having the third particle size range is in the range of 6:4 to 9:1 by weight.
  • the content ratio of the active material particles having the first particle size range and the active material particles having the third particle size range is in the range of 7:3 to 8:2 by weight.
  • the content ratio of the active material particles having the second particle size range and the active material particles having the third particle size range is in the range of 6:4 to 9:1 by weight.
  • the content ratio of the active material particles having the second particle size range and the active material particles having the third particle size range is in the range of 7:3 to 8:2 by weight.
  • a buffer layer interposed between the current collector layer and the lower mixture layer may be further included, and the buffer layer may include niobium-containing oxide.
  • the buffer layer may include niobium-containing oxide.
  • the oxide containing niobium contained in the buffer layer includes at least one of Li 3 NbO 4 , LiNbO and Nb 2 O 5 .
  • the niobium-containing oxide has excellent ion conductivity and electronic conductivity, and even if the buffer layer is formed therethrough, electrode characteristics are not impaired.
  • the current collector layer is prevented from being damaged in the process of rolling the electrode to which the mixture layer is applied.
  • the buffer layer includes a binder and a conductive material applied to the mixture layer.
  • the buffer layer includes a binder and a conductive material applied to the mixture layer.
  • the current collector layer When the current collector layer is severely damaged, the current collector layer may be torn or disconnected.
  • the average thickness of the buffer layer is in the range of 1 to 10 ⁇ m.
  • the average thickness of the buffer layer is in the range of 3 to 5 ⁇ m.
  • the current collector layer is formed of a metal foil having an average thickness of 10 to 20 ⁇ m. Specifically, the average thickness of the current collector layer is in the range of 15 to 20 ⁇ m or 10 to 18 ⁇ m.
  • the current collector layer is formed of aluminum (Al) foil.
  • Al aluminum
  • the thickness of the current collector layer applied to the electrode is formed to be thin.
  • the thickness of the current collector layer becomes thin, there is a problem that the current collector layer is damaged during the rolling process after forming the mixture layer. In particular, as the particle diameter of the active material included in the mixture layer increases, the likelihood of damage to the current collector layer in the rolling process increases.
  • the electrode is an electrode for a lithium secondary battery.
  • the electrode is a positive electrode for a lithium secondary battery.
  • the lithium secondary battery may include, for example, an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode; A non-aqueous electrolyte solution impregnating the electrode assembly; And a battery case containing the electrode assembly and the non-aqueous electrolyte.
  • the positive electrode has a structure in which a positive electrode mixture layer is laminated on one or both surfaces of a positive electrode current collector.
  • the positive electrode active materials may each independently be a lithium-containing oxide, and may be the same or different.
  • As the lithium-containing oxide a lithium-containing transition metal oxide may be used.
  • the positive electrode mixture layer includes a conductive material and a binder polymer in addition to the positive electrode active material, and if necessary, may further include a positive electrode additive commonly used in the art.
  • the positive electrode active material may be a lithium-containing oxide, and may be the same or different.
  • a lithium-containing transition metal oxide may be used as the lithium-containing oxide.
  • the current collector used for the positive electrode may be a metal having high conductivity, and may be used as long as it is a metal to which the positive electrode active material slurry can be easily adhered, and has no reactivity in the voltage range of the secondary battery.
  • the current collector for the positive electrode include a foil manufactured by aluminum, nickel, or a combination thereof.
  • the current collector for the positive electrode is formed of the metal component described above, and includes a metal plate having a through hole in the thickness direction, and an ion conductive porous reinforcing material filled in the through hole of the metal plate.
  • the negative electrode may include a carbon material, lithium metal, silicon or tin as a negative electrode mixture layer.
  • a carbon material is used as the negative electrode active material
  • both low crystalline carbon and high crystalline carbon may be used.
  • Typical low crystalline carbons include soft carbon and hard carbon
  • high crystalline carbons include natural graphite, kish graphite, pyrolytic carbon, and liquid crystal pitch-based carbon fiber.
  • High-temperature calcined carbons such as (mesophase pitch based carbon fiber), mesocarbon microbeads, mesophase pitches, and petroleum orcoal tar pitch derived cokes are typical.
  • Non-limiting examples of the current collector used for the negative electrode include copper, gold, nickel, or a foil manufactured by a copper alloy or a combination thereof.
  • the current collector may be used by stacking substrates made of the above materials.
  • the current collector for the negative electrode includes a metal plate formed of the described metal component and having a through hole in the thickness direction, and an ion conductive porous reinforcing material filled in the through hole of the metal plate.
  • the negative electrode may include a conductive material and a binder commonly used in the art.
  • the separator may be used as long as it is a porous substrate used in a lithium secondary battery, and for example, a polyolefin-based porous membrane or a nonwoven fabric may be used, but is not particularly limited thereto.
  • a polyolefin-based porous membrane examples include polyolefin-based polymers such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polyolefin-based polymers such as polypropylene, polybutylene, and polypentene, respectively, alone or as a mixture of them.
  • the electrolyte may be a non-aqueous electrolyte including a non-aqueous electrolyte.
  • the non-aqueous electrolyte solution include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma-butyl.
  • Lactone 1,2-dimethoxyethane, tetrahydroxy franc (franc), 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolone, formamide, dimethylformamide, dioxolone, acetonitrile , Nitromethane, methyl formate, methyl acetate, phosphate tryester, trimethoxy methane, dioxolone derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, Aprotic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyropionate, and ethyl propionate may be used. However, it is not particularly limited thereto, and a number of electrolyte components commonly used in the field of lithium secondary batteries may be added or subtracted within an appropriate range.
  • the present invention provides a vehicle or large-capacity energy storage device including the secondary battery described above.
  • the vehicle is a hybrid or electric vehicle.
  • the present invention also provides a method of manufacturing an electrode for a secondary battery described above.
  • the method of manufacturing an electrode for a secondary battery according to the present invention comprises a lower mixture layer including active material particles having a second particle size range and active material particles having a third particle size range on one or both sides of the current collector layer. Forming; Forming an upper mixture layer including active material particles having a first particle diameter range and active material particles having a third particle diameter range on the lower mixture layer; And rolling the electrode to which the lower and upper mixture layers are applied.
  • the method of manufacturing an electrode for a secondary battery according to the present invention satisfies the following conditions 1 and 2.
  • D1 is the average particle diameter of the active material particles having a first particle diameter range
  • D2 is the average particle diameter of the active material particles having a second particle diameter range
  • D3 is the average particle diameter of active material particles having a third particle diameter range.
  • each component is duplicated with that described above, and the description of the duplicated portion is omitted.
  • the description of each component is duplicated with that described above, and the description of the duplicated portion is omitted.
  • lower and upper mixture layers are sequentially formed on a current collector. After the step of applying the mixture layer, a drying process may be performed.
  • a drying process may be performed.
  • the electrode that has undergone a drying process is subjected to a step of rolling while the mixture layer is applied. Through the rolling step, it is possible to reduce the volume of the mixture layer and increase the density of the active material.
  • the mixture layer subjected to the rolling step has a porosity in the range of 20 to 30% (v/v). Specifically, the porosity of the mixture layer subjected to the rolling step is in the range of 23 to 25% (v/v).
  • the porosity range of the mixture layer subjected to the rolling step is in the range of 23 to 25% (v/v).
  • the thickness ratio of the lower mixture layer and the upper mixture layer is in the range of 1:9 to 4:6. Specifically, the thickness ratio of the lower mixture layer and the upper mixture layer is in the range of 1:9 to 3:7 or 2:8 to 3:7.
  • the electrode for a secondary battery according to the present invention includes a structure in which a double-layered mixture layer is formed on one or both surfaces of a current collector. In the present invention, the thickness of the lower mixture layer is formed to be thinner than the thickness of the upper mixture layer.
  • the upper mixture layer serves to increase the energy density of the electrode, and the lower mixture layer serves to protect the current collector during rolling.
  • the current collector layer has an average thickness of 10 to 20 ⁇ m.
  • the average thickness of the current collector layer is preferably in the range of 10 to 15 ⁇ m, or in the range of 13 to 18 ⁇ m.
  • the method of manufacturing an electrode for a secondary battery further includes forming a buffer layer including an oxide containing niobium on the current collector before forming the lower mixture layer.
  • the oxide containing niobium included in the buffer layer includes at least one of Li 3 NbO 4 , LiNbO and Nb 2 O 5 .
  • the average thickness of the formed buffer layer is in the range of 1 to 10 ⁇ m.
  • NCM LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • carbon black FX35, Denka, spherical, average diameter (D50) 15 to 40 nm
  • polyvinylidene as a binder polymer 3.5 parts by weight of fluoride (KF9700, Kureha) was added to NMP (N-methyl-2-pyrrolidone) as a solvent to prepare a slurry for the lower mixture layer.
  • the positive electrode active material is obtained by mixing an active material having an average particle diameter of 11 ⁇ m and an active material having an average particle diameter of 6 ⁇ m in a ratio of 80:20 parts by weight.
  • NCM LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • carbon black FX35, Denka, spherical, average diameter (D50) 15 to 40 nm
  • polyvinylidene as a binder polymer 3.5 parts by weight of fluoride (KF9700, Kureha) was added to NMP (N-methyl-2-pyrrolidone) as a solvent to prepare a slurry for the upper mixture layer.
  • the positive electrode active material is obtained by mixing an active material having an average particle diameter of 15 ⁇ m and an active material having an average particle diameter of 6 ⁇ m in a ratio of 80:20 parts by weight.
  • the slurry for the lower mixture layer was coated to a thickness of 15 ⁇ m on both sides of an aluminum foil having an average thickness of 18 ⁇ m, and the slurry for the upper mixture layer was coated to a thickness of 105 ⁇ m, followed by drying.
  • the electrode including the mixture layer was rolled to prepare a positive electrode.
  • the negative electrode is 100 parts by weight of artificial graphite (GT, Zichen (China)) as a negative electrode active material, 1.1 parts by weight of carbon black (Super-P) as a conductive material, 2.2 parts by weight of styrene-butadiene rubber, 0.7 parts by weight of carboxy methyl cellulose, water as a solvent After adding to to prepare a negative active material slurry, it was prepared by coating, drying, and pressing a copper current collector.
  • GT artificial graphite
  • Super-P carbon black
  • polypropylene was uniaxially stretched using a dry method to prepare a separator having a microporous structure having a melting point of 165° C. and a width of 200 mm on one side.
  • An electrode assembly having a structure in which a separator is interposed between an anode and a cathode was manufactured. After the electrode assembly was embedded in a pouch-type battery case, a secondary battery was manufactured by injecting a 1M LiPF 6 carbonate-based solution electrolyte.
  • FIG. 1 is a cross-sectional structure of an anode through a rolling process of an electrode.
  • the electrode according to the present embodiment is a positive electrode for a secondary battery, and a lower and upper mixture layers are sequentially stacked on a current collector layer formed of aluminum foil.
  • the surface of the current collector is relatively very flat. This minimizes damage to the current collector by performing the role of a kind of buffer layer on the lower mixture layer.
  • some active material particles were partially incorporated into the surface of the current collector, it can be seen that the degree of inclusion was very low, and the thickness of the current collector was maintained almost uniformly.
  • a positive electrode active material As a positive electrode active material, an active material having an average particle diameter of 11 ⁇ m and an active material having an average particle diameter of 6 ⁇ m were mixed in a ratio of 70:30 parts by weight to prepare a slurry for the lower mixture layer.
  • a slurry for a positive electrode mixture layer was prepared in the same manner as in Example 1, except that a 6 ⁇ m active material was mixed in a ratio of 70:30 parts by weight to prepare a slurry for the upper mixture layer.
  • the slurry for the lower mixture layer was coated on both sides of the aluminum foil to a thickness of 30 ⁇ m, and the slurry for the upper mixture layer was coated to a thickness of 90 ⁇ m, followed by drying.
  • the electrode including the mixture layer was rolled to prepare a positive electrode.
  • a secondary battery was manufactured in the same manner as in Example 1 in other configurations and processes.
  • a positive electrode active material As a positive electrode active material, an active material having an average particle diameter of 11 ⁇ m and an active material having an average particle diameter of 6 ⁇ m were mixed in a ratio of 60:40 parts by weight to prepare a slurry for the lower mixture layer.
  • a slurry for a positive electrode mixture layer was prepared in the same manner as in Example 1, except that a 6 ⁇ m active material was mixed in a ratio of 60:40 parts by weight to prepare a slurry for the upper mixture layer.
  • the slurry for the lower mixture layer was coated on both sides of the aluminum foil to a thickness of 40 ⁇ m, and the slurry for the upper mixture layer was coated to a thickness of 80 ⁇ m, followed by drying.
  • the electrode including the mixture layer was rolled to prepare a positive electrode.
  • a secondary battery was manufactured in the same manner as in Example 1 in other configurations and processes.
  • NCM LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • carbon black FX35, Denka, spherical, average diameter (D50) 15 to 40 nm
  • polyvinylidene as a binder polymer 3.5 parts by weight of fluoride (KF9700, Kureha) was added to NMP (N-methyl-2-pyrrolidone) as a solvent to prepare a slurry for a mixture layer.
  • the positive electrode active material is obtained by mixing an active material having an average particle diameter of 15 ⁇ m and an active material having an average particle diameter of 6 ⁇ m in a ratio of 70:30 parts by weight.
  • a secondary battery was manufactured in the same manner as in Example 1 in other configurations and processes.
  • the positive electrode for a secondary battery according to the present comparative example has a structure in which a mixture layer is stacked on both surfaces of a current collector layer formed of aluminum foil.
  • the mixture layer is in a form in which a large particle active material and a small particle active material are mixed, and active material particles pressurize the current collector in the process of rolling the electrode.
  • active material particles are partially incorporated into the current collector, and the degree is high.
  • the thickness of the current collector was measured at four points A, B, C, and D.
  • the thickness of point A was 9.68 ⁇ m
  • the thickness of point B was 10.10 ⁇ m
  • the thickness of point C was 6.19 ⁇ m
  • the thickness of point D was 8.06 ⁇ m.
  • NCM LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • carbon black FX35, Denka, spherical, average diameter (D50) 15 to 40 nm
  • polyvinylidene as a binder polymer 3.5 parts by weight of fluoride (KF9700, Kureha) was added to NMP (N-methyl-2-pyrrolidone) as a solvent to prepare a slurry for the lower mixture layer.
  • An active material having an average particle diameter of 6 ⁇ m was used as the positive electrode active material.
  • NCM LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • carbon black FX35, Denka, spherical, average diameter (D50) 15 to 40 nm
  • polyvinylidene as a binder polymer 3.5 parts by weight of fluoride (KF9700, Kureha) was added to NMP (N-methyl-2-pyrrolidone) as a solvent to prepare a slurry for the upper mixture layer.
  • An active material having an average particle diameter of 15 ⁇ m was used as an electrode active material.
  • the slurry for the lower mixture layer was coated on both sides of the aluminum foil to a thickness of 30 ⁇ m, and the slurry for the upper mixture layer was coated to a thickness of 90 ⁇ m, followed by drying.
  • the electrode including the mixture layer was rolled to prepare a positive electrode.
  • a secondary battery was manufactured in the same manner as in Example 1 in other configurations and processes.
  • FIGS. 3 and 4 is an evaluation result of the secondary battery manufactured in Examples 1 to 3
  • FIG. 4 is an evaluation result of the secondary battery manufactured in Comparative Examples 1 and 2.
  • the secondary batteries prepared in Examples 1 to 3 had a capacity retention rate of 95% or more at the point of repeating charging and discharging 150 cycles.
  • the capacity retention rate of the secondary battery prepared in Example 1 was about 94%
  • the capacity retention rate of the secondary battery prepared in Example 2 was about 93%.
  • the secondary battery manufactured in Comparative Example 1 has a capacity retention rate of about 95% at the time of repeating the charge/discharge 150 cycles, but the capacity retention rate is about 93 at the time of repeating the charge/discharge 200 cycles. % Or less, and drops to 89% or less at the point of repeated charge/discharge 250 cycles.
  • the secondary battery prepared in Comparative Example 2 has a capacity retention rate of about 92 to 93% at the time of repeating the charge/discharge 150 cycles, and the capacity retention rate drops to about 90% or less at the time of repeating the charge/discharge 200 cycles.
  • the rolling density was calculated by measuring the porosity for each specimen. Although the same pressure was applied during the manufacture of the electrode, it was confirmed that there was a difference in the measured porosity for each sample.
  • a specimen was prepared by horizontally cutting the MD surface and the TD surface for each positive electrode prepared in Examples.
  • the specimen was prepared in a size of 2 cm in width and 20 cm in length. Then, both ends of the specimen were pulled in parallel in the longitudinal direction while being fixed to the jig.
  • the tensile speed was controlled at 20 cm/min, and the force (N) was calculated by measuring the F-D curve just before the specimen was broken.
  • the measurement results are shown in Table 1 below.
  • the porosity of the specimen of Comparative Example 2 was not controlled to be 25% or less. This means that the specimen of Comparative Example 2 must be rolled with a greater force in order to achieve an equivalent level of rolling density, and thus it can be predicted that the damage to the current collector will be greater.
  • the tensile strength in the MD direction was 19.7 to 21.9 N
  • the tensile strength in the TD direction was calculated to be 18.9 to 20.5 N.
  • the specimens of Comparative Examples 1 and 2 are lower than the specimens of Examples 1 to 3 in both MD and TD direction tensile strengths. This is, it is determined that the specimens of Comparative Examples 1 and 2 have reduced tensile strength due to damage to the aluminum foil applied to the current collector during the rolling process of the electrode.
  • A, B, C, D thickness of each area of the current collector layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 평균 입경이 상이한 이종의 입자상 활물질을 포함하는 이중층 구조의 전극 및 이를 포함하는 이차전지에 관한 것으로, 전극의 기계적 강도 및 안정성을 높이고, 이를 적용한 이차전지는 우수한 방전 용량을 발휘한다.

Description

서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법
본 출원은 2019.11.14. 자 한국 특허 출원 제 10-2019-0145833호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있다. 그 중에서도, 리튬 이차전지는 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수하다는 점에서, 각종 모바일 기기는 물론 다양한 전자 제품들의 에너지원으로 널리 사용되고 있다.
또한, 이차전지는, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차 또는 하이브리드 전기자동차 등의 에너지원으로 주목받고 있다. 전기자동차의 에너지원으로 적용하기 위해서는 고출력의 전지가 필요하다.
이차전지의 출력 특성을 높이는 방안으로 높은 에너지 밀도를 갖는 전극에 대한 개발이 주목받고 있다. 예를 들어, 양극 활물질로 입경이 큰 입자를 적용하고, 체적을 줄이기 위해서 보다 얇은 금속 박막을 집전체로 적용하고자 한다. 그러나, 활물질의 입경을 증가시키고 집전체의 두께를 줄이게 되면, 전극을 압연하는 과정에서 집전체가 손상되거나 심한 경우 단선되는 문제가 발생한다.
따라서, 전지의 안정성을 저해하지 않으면서 동시에 전지의 출력 특성을 높일 수 있는 새로운 구조의 전극에 대한 개발이 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 버퍼층을 포함하는 이차전지용 전극 및 이의 제조방법을 제공함을 목적으로 한다.
본 발명에 따른 이차전지용 전극은, 집전체층; 상기 집전체층의 일면 또는 양면에 형성되되, 입자상 활물질을 포함하는 하부 합제층; 및 상기 하부 합제층이 집전체층과 접하는 면의 반대측 면에 형성되되, 입자상 활물질을 포함하는 상부 합제층을 포함한다. 하나의 예에서, 상기 상부 합제층은 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하고, 상기 하부 합제층은 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함한다. 또한, 상기 이차전지용 전극은 하기 조건 1 및 2를 만족한다.
[조건 1]
D1 > D2 > D3
[조건 2]
D1- D3 ≥ 5 (㎛)
상기 조건 1 및 2에서,
D1은 제1 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D2는 제2 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D3는 제3 입경 범위를 갖는 활물질 입자의 평균 입경이다.
구체적인 예에서, 제1 입경 범위를 갖는 활물질 입자의 평균 입경은 14 내지 20 ㎛ 범위이고, 제2 입경 범위를 갖는 활물질 입자의 평균 입경은 10 내지 13 ㎛ 범위이고, 제3 입경 범위를 갖는 활물질 입자의 평균 입경은 3 내지 9 ㎛ 범위이다.
하나의 예에서, 상부 합제층에서, 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 6:4 내지 9:1 중량비 범위이다.
또 다른 하나의 예에서, 하부 합제층에서, 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 6:4 내지 9:1 중량비 범위이다.
하나의 예에서, 집전체층과 하부 합제층 사이에 개재된 버퍼층을 더 포함하며, 상기 버퍼층은 니오븀 함유 산화물을 포함한다. 구체적인 예에서, 상기 버퍼층에 포함된 니오븀 함유 산화물은, Li 3NbO 4, LiNbO 및 Nb 2O 5 중 1 종 이상을 포함한다. 예를 들어, 상기 버퍼층의 평균 두께는 1 내지 10㎛ 범위이다.
구체적인 예에서, 상기 집전체층은 평균 두께 10 내지 20 ㎛ 인 금속 호일로 형성된다.
또 다른 구체적인 예에서, 상기 전극은 리튬 이차전지용 전극이다.
또한, 본 발명은 앞서 설명한 이차전지용 전극의 제조방법을 제공한다. 하나의 예에서, 상기 제조방법은, 집전체층의 일면 또는 양면에 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하는 하부 합제층을 형성하는 단계; 하부 합제층 상에 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하는 상부 합제층을 형성하는 단계; 및 하부 및 상부 합제층이 도포된 전극을 압연하는 단계를 포함한다. 또한, 상기 제조방법은, 하기 조건 1 및 2를 만족한다.
[조건 1]
D1 > D2 > D3
[조건 2]
D1- D3 ≥ 5 (㎛)
상기 조건 1 및 2에서,
D1은 제1 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D2는 제2 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D3는 제3 입경 범위를 갖는 활물질 입자의 평균 입경이다.
하나의 예에서, 상기 압연하는 단계를 거친 합제층의 공극율은 평균 20~30 %(v/v) 범위이다.
또 다른 하나의 예에서, 하부 합제층과 상부 합제층의 두께 비율은 1:9 내지 4:6 범위이다.
구체적인 예에서, 상기 집전체층은 평균 두께 10 내지 20 ㎛인 금속 호일로 형성된다.
또 다른 하나의 예에서, 본 발명에 따른 이차전지용 전극의 제조방법은, 하부 합제층을 형성하는 단계 전에, 집전체 상에 니오븀을 함유하는 산화물을 포함하는 버퍼층을 형성하는 단계를 더 포함한다.
본 발명에 따른 이차전지용 전극 및 그 제조방법은 전극의 압력 과정에서 집전체층의 손상을 최소화하고, 높은 에너지 밀도를 갖는 이차전지를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 전극의 단면 구조를 관찰한 전자현미경 사진이다.
도 2는 비교예에 따른 전극의 단면 구조를 관찰한 전자현미경 사진이다.
도 3은 본 발명의 실시예에 따른 이차전지에 대한 수명 특성 평가 결과를 도시한 그래프이고,
도 4는 비교예에 따른 이차전지에 대한 수명 특성 평가 결과를 도시한 그래프이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 이차전지용 전극을 제공한다. 하나의 실시예에서, 상기 이차전지용 전극은 집전체층; 상기 집전체층의 일면 또는 양면에 형성되되, 입자상 활물질을 포함하는 하부 합제층; 및 상기 하부 합제층이 집전체층과 접하는 면의 반대측 면에 형성되되, 입자상 활물질을 포함하는 상부 합제층을 포함한다. 상기 상부 합제층은 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하고, 상기 하부 합제층은 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함한다. 또한, 본 발명에 따른 이차전지용 전극은 하기 조건 1 및 2를 만족한다.
[조건 1]
D1 > D2 > D3
[조건 2]
D1- D3 ≥ 5 (㎛)
상기 조건 1 및 2에서,
D1은 제1 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D2는 제2 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D3는 제3 입경 범위를 갖는 활물질 입자의 평균 입경이다.
본 발명은 상부 합제층에 평균 입경이 큰 대립자 활물질과 평균 입경이 작은 소립자 활물질을 포함하는 구조이다. 또한, 하부 합제층에 중간 정도의 평균 입경을 갖는 중립자 활물질과 평균 입경이 작은 소립자 활물질을 포함하는 구조이다.
구체적으로, 상기 상부 합제층은 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하고, 상기 하부 합제층은 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함한다. 상기 제1 입경 범위를 갖는 활물질 입자는 대립자 활물질에 대응되며, 제2 입경을 갖는 활물질 입자는 중립자 활물질에 대응되고, 제3 입경을 갖는 활물질 입자는 소립자 활물질에 대응된다.
하나의 실시예에서, 제1 입경 범위를 갖는 활물질 입자의 평균 입경은 14 내지 20 ㎛ 범위이고, 구체적으로는 14 내지 18 ㎛ 또는 15 내지 16 ㎛ 범위이다. 상기 제2 입경 범위를 갖는 활물질 입자의 평균 입경은 10 내지 13 ㎛ 범위이고, 구체적으로는 10 내지 12 ㎛ 범위이다. 또한, 제3 입경 범위를 갖는 활물질 입자의 평균 입경은 3 내지 9㎛ 범위이고, 구체적으로는 5 내지 9 ㎛ 또는 6 내지 8 ㎛ 범위이다.
본 발명은 상부 합제층에 대립자 활물질과 소립자 활물질을 혼합함으로써, 전극의 에너지 밀도를 높일 수 있다. 이는 종래의 대립자로 구분하는 입경 범위보다 큰 것이다. 본 발명에서는 전지의 에너지 밀도를 높이기 위해서 평균 입경이 14 ㎛ 이상인 대립자 활물질와 두께가 20 ㎛ 이하인 금속 박막을 집전체로 사용한다. 평균 입경이 14 ㎛ 이상인 대립자 활물질을 합제층에 적용하게 되며, 전극에 대한 압연 과정에서 입자 박힘 현상이 발생되어 단선이 되거나, 무지부와 유지부 사이에 응력이 집중되는 문제가 발생될 수 있다. 그러나, 활물질의 입경을 증가시키고 집전체의 두께를 줄이게 되면, 전극을 압연하는 과정에서 집전체가 손상되거나 심한 경우 단선되는 문제가 발생한다. 이러한 문제는 두께가 얇은 집전체를 적용할 경우 더욱 심해지게 되고, 입경이 작은 소립자를 일부 혼용하더라도 해소되지 않는다.
이에 대해, 본 발명에서는 하부 합제층에 중립자 활물질과 소립자 활물질을 혼합하느 구조를 도입한다. 중립자 활물질은 대립자 활물질에 비하여 입자의 곡률 반경이 작아서 압연 과정에서 집전체에 주는 손상을 줄일 수 있고, 중립자 활물질 주변에 위치하는 소립자 활물질과의 접촉 개수가 많아 압연 과정에서 선압을 분산할 수 있다.
하나의 실시예에서, 상부 합제층에서, 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 6:4 내지 9:1 중량비 범위이다. 구체적으로, 상부 합제층에서, 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 7:3 내지 8:2 중량비 범위이다. 상부 합제층에서 제1 및 제3 입경을 갖는 활물질 입자의 함량을 상기 범위로 제어함으로써, 전극의 기계적 강도를 유지하면서 고에너지 밀도를 구현할 수 있다.
또 다른 하나의 실시예에서, 하부 합제층에서, 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 6:4 내지 9:1 중량비 범위이다. 구체적으로, 하부 합제층에서, 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 7:3 내지 8:2 중량비 범위이다.
하부 합제층에서 제2 및 제3 입경을 갖는 활물질 입자의 함량을 상기 범위로 제어함으로써, 전극의 에너지 밀도를 저해하지 않으면서, 압연 과정에서 활물질에 의한 집전체 박힘 현상을 최소화할 수 있다.
하나의 실시예에서, 집전체층과 하부 합제층 사이에 개재된 버퍼층을 더 포함하며, 상기 버퍼층은 니오븀 함유 산화물을 포함할 수 있다. 본 발명에서는 집전체층과 합제층 사이에 버퍼층을 형성함으로써, 높은 압연 강도에도 불구하고 집전체층의 손상을 최소화할 수 있다.
구체적인 실시예에서, 상기 버퍼층에 포함된 니오븀을 함유하는 산화물은, Li 3NbO 4, LiNbO 및 Nb 2O 5 중 1 종 이상을 포함한다. 상기 니오븀을 함유하는 산화물은 이온 전도성 및 전자 전도성이 우수하며, 이를 통해 상기 버퍼층을 형성하더라도 전극 특성을 저해하지 않는다.
본 발명은 니오븀을 함유하는 산화물을 포함하는 버퍼층을 형성함으로써, 합제층이 도포된 전극을 압연하는 과정에서 집전체층이 손상되는 것을 방지한다. 상기 버퍼층은 니오븀을 함유하는 산화물 외에도 합제층에 적용되는 바인더 및 도전재를 포함한다. 전극의 에너지 밀도를 높이기 위해서는, 활물질의 입경을 높이는 방법 외에도 합제층의 압연 강도를 높여서 밀도를 높이는 방법이 있다. 그러나, 합제층에 입경이 큰 활물질을 적용하고 압연 강도를 높이게 되면, 합제층을 압연하는 과정에서 활물질 입자가 집전체층에 박히는 형상이 발생되고 이는 집전체층의 손상으로 이어지게 된다. 집전체층의 손상이 심한 경우에는, 집전체층이 찢어지거나 단선되는 경우도 발생한다. 구체적인 실시예에서, 상기 버퍼층의 평균 두께는 1 내지 10㎛ 범위이다. 예를 들어, 상기 버퍼층의 평균 두께는 3 내지 5㎛ 범위이다. 버퍼층의 두께를 상기 범위로 제어함으로써, 버퍼층 형성에 따른 용량 저하를 최소화하면서도 집전체층에 대한 보호 효과를 달성할 수 있다.
하나의 실시예에서, 상기 집전체층은 평균 두께 10 내지 20 ㎛인 금속 호일로 형성된다. 구체적으로, 상기 집전체층의 평균 두께는 15 내지 20 ㎛ 또는 10 내지 18 ㎛ 범위이다. 예를 들어, 상기 집전체층은 알루미늄(Al) 호일로 형성된다. 전지의 에너지 밀도를 높이기 위해서, 전극에 적용되는 집전체층의 두께를 얇게 형성하게 된다. 그러나, 집전체층의 두께가 얇아지면 합제층 형성후 압연하는 과정에서 상기 집전체층이 손상되는 문제가 있다. 특히, 합제층에 포함된 활물질의 입경이 커질수록 압연 과정에서 집전체층의 손상 가능성은 높아지게 된다.
하나의 실시예에서, 상기 전극은 리튬 이차전지용 전극이다. 구체적으로, 상기 전극은 리튬 이차전지용 양극이다. 상기 리튬 이차전지는 예를 들어, 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전극 조립체; 상기 전극 조립체를 함침시키는 비수 전해액; 및 상기 전극 조립체와 상기 비수 전해액을 내장하는 전지 케이스를 포함한다.
양극은, 양극 집전체의 일면 또는 양면에 양극 합제층이 적층된 구조이다. 양극 활물질은 각각 독립적으로, 리튬 함유 산화물일 수 있으며, 동일하거나 상이할 수 있다. 상기 리튬 함유 산화물로는, 리튬 함유 전이금속 산화물이 사용될 수 있다. 하나의 예에서, 양극 합제층은 양극 활물질 외에 도전재 및 바인더 고분자 등을 포함되며, 필요에 따라, 당업계에서 통상적으로 사용되는 양극 첨가제를 더 포함할 수 있다.
상기 양극 활물질은 리튬 함유 산화물일 수 있으며, 동일하거나 상이할 수 있다. 상기 리튬 함유 산화물로는, 리튬 함유 전이금속 산화물이 사용될 수 있다.
예를 들어, 상기 리튬 함유 전이금속 산화물은, Li xCoO 2(0.5<x<1.3), Li xNiO 2(0.5<x<1.3), Li xMnO 2(0.5<x<1.3), Li xMn 2O 4(0.5<x<1.3), Li x(Ni aCo bMn c)O 2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), Li xNi 1-yCo yO 2(0.5<x<1.3, 0<y<1), Li xCo 1-yMn yO 2(0.5<x<1.3, 0≤y<1), Li xNi 1-yMn yO 2(0.5<x<1.3, O≤y<1), Li x(Ni aCo bMn c)O 4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), Li xMn 2-zNi zO 4(0.5<x<1.3, 0<z<2), Li xMn 2-zCo zO 4(0.5<x<1.3, 0<z<2), Li xCoPO 4(0.5<x<1.3) 및 Li xFePO 4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다. 또한, 상기 리튬 함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬 함유 전이금속 산화물 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 중 1종 이상이 사용될 수 있다.
상기 양극에 사용되는 집전체는 전도성이 높은 금속으로, 양극 활물질 슬러리가 용이하게 접착할 수 있는 금속이면서, 이차전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 구체적으로 양극용 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 구체적으로, 상기 양극용 집전체는, 설명한 금속 성분으로 형성되되 두께 방향 관통홀이 형성된 금속 플레이트, 및 상기 금속 플레이트의 관통홀에 충진된 이온전도성 다공성 보강재를 포함하는 형태이다.
음극은 음극 합제층으로 탄소재, 리튬 금속, 규소 또는 주석 등을 포함할 수 있다. 음극 활물질로서 탄소재가 사용되는 경우, 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (mesocarbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum orcoal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극에 사용되는 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다. 구체적으로, 상기 음극용 집전체는, 설명한 금속 성분으로 형성되되 두께 방향 관통홀이 형성된 금속 플레이트, 및 상기 금속 플레이트의 관통홀에 충진된 이온전도성 다공성 보강재를 포함하는 형태이다.
또한, 상기 음극은 당해 분야에 통상적으로 사용되는 도전재 및 바인더를 포함할 수 있다.
상기 분리막은 리튬 이차전지에서 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다. 상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.
본 발명의 일 실시예에 따르면 상기 전해액은 비수 전해액을 포함하는 비수계 전해질을 사용할 수 있다. 상기 비수 전해액으로는 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다. 그러나 특별히 여기에 한정되는 것은 아니며 통상적으로 리튬 이차전지 분야에서 사용되는 다수의 전해액 성분들이 적절한 범위 내에서 가감될 수 있다.
또한, 본 발명은 앞서 설명한 이차전지를 포함하는 자동차 또는 대용량 에너지 저장장치를 제공한다. 구체적인 예에서, 상기 자동차는 하이브리드 또는 전기 자동차이다.
본 발명은, 또한, 앞서 설명한 이차전지용 전극을 제조하는 방법을 제공한다. 하나의 실시예에서, 본 발명에 따른 이차전지용 전극의 제조방법은, 집전체층의 일면 또는 양면에 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하는 하부 합제층을 형성하는 단계; 하부 합제층 상에 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하는 상부 합제층을 형성하는 단계; 및 하부 및 상부 합제층이 도포된 전극을 압연하는 단계를 포함한다. 또한, 본 발명에 따른 이차전지용 전극의 제조방법은, 하기 조건 1 및 2를 만족한다.
[조건 1]
D1 > D2 > D3
[조건 2]
D1- D3 ≥ 5 (㎛)
상기 조건 1 및 2에서,
D1은 제1 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D2는 제2 입경 범위를 갖는 활물질 입자의 평균 입경이고,
D3는 제3 입경 범위를 갖는 활물질 입자의 평균 입경이다.
본 발명에서 각 구성에 대한 설명은 앞서 설명한 바와 중복되며, 중복된 부분에 대한 설명은 생략한다. 상기 이차전지용 전극의 제조방법은, 집전체 상에 하부 및 상부 합제층을 순차적으로 형성한다. 상기 합제층을 도포하는 단계 이후에는 건조하는 과정을 거칠 수 있다.
상기 합제층을 도포하는 단계 이후에는 건조하는 과정을 거칠 수 있다. 또한, 상기 제조방법에서, 건조과정을 거친 전극은, 합제층이 도포된 상태에서 압연하는 단계를 거치게 된다. 압연하는 단계를 통해, 합제층의 체적을 감소시키고 활물질의 밀도를 높일 수 있다.
하나의 실시예에서, 상기 압연하는 단계를 거친 합제층은 20~30 %(v/v) 범위의 공극율을 갖는다. 구체적으로, 압연하는 단계를 거친 합제층의 공극율은 23~25 %(v/v) 범위이다. 본 발명에 따른 이차전지용 전극의 제조방법에서는, 합제층의 공극율 범위를 상기 범위로 제어함으로써, 전극 특성을 저해하지 않으면서 높은 에너지 밀도를 구현할 수 있다.
하나의 실시예에서, 상기 하부 합제층과 상부 합제층의 두께 비율은 1:9 내지 4:6 범위이다. 구체적으로, 상기 하부 합제층과 상부 합제층의 두께 비율은 1:9 내지 3:7 범위 또는 2:8 내지 3:7 범위이다. 본 발명에 따른 이차전지용 전극은 집전체의 일면 또는 양면에 이중층의 합제층이 형성된 구조를 포함한다. 본 발명에서는 하부 합제층의 두께를 상부 합제층의 두께보다 얇게 형성하게 된다. 상부 합제층은 전극의 에너지 밀도를 높이는 역할을 수행하고, 하부 합제층은 압연하는 과정에서 집전체를 보호하는 역할을 수행한다.
또 다른 하나의 실시예에서, 상기 집전체층은 평균 두께 10 내지 20 ㎛이다. 구체적으로, 상기 집전체층의 평균 두께는 바람직하게 10 내지 15 ㎛ 범위, 또는 13 내지 18 ㎛ 범위이다. 집전체층의 두께를 상기 범위로 제어함으로써, 기계적 강도의 저하를 방지하면서, 집전체 형성 체적을 최소화할 수 있다.
또 다른 하나의 실시예에서, 상기 이차전지용 전극의 제조방법은, 하부 합제층을 형성하는 단계 전에, 집전체 상에 니오븀을 함유하는 산화물을 포함하는 버퍼층을 형성하는 단계를 더 포함한다.
하나의 실시예에서, 상기 버퍼층에 포함된 니오븀을 함유하는 산화물은 Li 3NbO 4, LiNbO 및 Nb 2O 5 중 1 종 이상을 포함한다. 구체적으로, 상기 버퍼층을 형성하는 단계에서, 형성된 버퍼층의 평균 두께는 1 내지 10㎛ 범위이다.
이하, 실시예 등을 통해 본 발명을 보다 상세히 설명한다. 그러나, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
실시예 및 비교예
실시예 1
양극 활물질로 NCM(LiNi 0.8Co 0.1Mn 0.1O 2) 100 중량부, 도전재로 카본 블랙(FX35, Denka, 구형, 평균 직경(D50) 15 내지 40 nm) 1.5 중량부 및 바인더 고분자로 폴리비닐리덴 플루오라이드(KF9700, Kureha) 3.5 중량부를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 하부 합제층용 슬러리를 제조하였다. 상기 양극 활물질은 평균 입경이 11 ㎛인 활물질과 평균 입경이 6 ㎛인 활물질을 80:20 중량부 비율로 혼합한 것이다.
양극 활물질로 NCM(LiNi 0.8Co 0.1Mn 0.1O 2) 100 중량부, 도전재로 카본 블랙(FX35, Denka, 구형, 평균 직경(D50) 15 내지 40 nm) 1.5 중량부 및 바인더 고분자로 폴리비닐리덴 플루오라이드(KF9700, Kureha) 3.5 중량부를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 상부 합제층용 슬러리를 제조하였다. 상기 양극 활물질은 평균 입경이 15 ㎛인 활물질과 평균 입경이 6 ㎛인 활물질을 80:20 중량부 비율로 혼합한 것이다.
평균 두께가 18 ㎛인 알루미늄 호일의 양면에 각각 상기 하부 합제층용 슬러리를 15㎛의 두께로 코팅하고, 상부 합제층용 슬러리를 105 ㎛ 두께로 코팅한 후 건조를 수행하였다. 합제층을 포함하는 전극을 압연하여 양극을 제조하였다.
음극은 음극 활물질로서 인조흑연(GT, Zichen(China)) 100 중량부, 도전재로서 카본블랙(Super-P) 1.1 중량부, 스티렌-부타디엔 고무 2.2 중량부, 카복시 메틸 셀룰로오즈 0.7 중량부를 용제인 물에 첨가하여 음극 활물질 슬러리를 제조한 후, 구리 집전체에 코팅, 건조 및 압착하여 제조하였다.
한편, 폴리프로필렌을 건식 방법을 사용하여 일축 연신하여, 융점이 165℃이고, 일측의 너비가 200 mm인 미세 다공성 구조의 분리막을 제조하였다. 양극과 음극 사이에 분리막이 개재된 구조의 전극 조립체를 제조하였다. 상기 전극조립체를 파우치형 전지케이스에 내장한 후, 1M LiPF 6 카보네이트계 용액 전해액을 주입하여 이차전지를 제조하였다.
양극의 단면 구조는 도 1에 도시하였다. 구체적으로, 도 1은 전극에 대한 압연 과정을 거친 양극의 단면 구조이다. 도 1을 참조하면, 본 실시예에 따른 전극은 이차전지용 양극이며, 알루미늄 호일로 형성된 집전체층 상에 하부 및 상분 합제층이 순차 적층된 구조이다. 본 실시예에서는, 집전체의 표면이 상대적으로 매우 평탄한 것을 알 수 있다. 이는 하부 합제층에 일종의 버퍼층의 역할을 수행함에 따라 집전체의 손상을 최소화한 것이다. 일부 활물질 입자가 집전체의 표면에 부분적으로 함입되기도 하였으나, 그 함입의 정도가 매우 낮고, 집전체의 두께가 거의 균일하게 유지되고 있음을 알 수 있다.
실시예 2
양극 활물질로 평균 입경이 11 ㎛인 활물질과 평균 입경이 6 ㎛인 활물질을 70:30 중량부 비율로 혼합하여 하부 합제층용 슬러리를 제조하였다는 점과, 평균 입경이 15 ㎛인 활물질과 평균 입경이 6 ㎛인 활물질을 70:30 중량부 비율로 혼합하여 상부 합제층용 슬러리를 제조하였다는 점을 제외하고는, 실시예 1과 동일하게 양극 합제층용 슬러리를 제조하였다.
알루미늄 호일의 양면에 각각 상기 하부 합제층용 슬러리를 30㎛의 두께로 코팅하고, 상부 합제층용 슬러리를 90 ㎛ 두께로 코팅한 후 건조를 수행하였다. 합제층을 포함하는 전극을 압연하여 양극을 제조하였다.
양극을 제외한 다른 구성 및 공정은 실시예 1과 동일하게 이차전지를 제조하였다.
실시예 3
양극 활물질로 평균 입경이 11 ㎛인 활물질과 평균 입경이 6 ㎛인 활물질을 60:40 중량부 비율로 혼합하여 하부 합제층용 슬러리를 제조하였다는 점과, 평균 입경이 15 ㎛인 활물질과 평균 입경이 6 ㎛인 활물질을 60:40 중량부 비율로 혼합하여 상부 합제층용 슬러리를 제조하였다는 점을 제외하고는, 실시예 1과 동일한 방법으로 양극 합제층용 슬러리를 제조하였다.
알루미늄 호일의 양면에 각각 상기 하부 합제층용 슬러리를 40㎛의 두께로 코팅하고, 상부 합제층용 슬러리를 80 ㎛ 두께로 코팅한 후 건조를 수행하였다. 합제층을 포함하는 전극을 압연하여 양극을 제조하였다.
양극을 제외한 다른 구성 및 공정은 실시예 1과 동일하게 이차전지를 제조하였다.
비교예 1
양극 활물질로 NCM(LiNi 0.8Co 0.1Mn 0.1O 2) 100 중량부, 도전재로 카본 블랙(FX35, Denka, 구형, 평균 직경(D50) 15 내지 40 nm) 1.5 중량부 및 바인더 고분자로 폴리비닐리덴 플루오라이드(KF9700, Kureha) 3.5 중량부를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 합제층용 슬러리를 제조하였다. 상기 양극 활물질은 평균 입경이 15 ㎛인 활물질과 평균 입경이 6 ㎛인 활물질을 70:30 중량부 비율로 혼합한 것이다.
알루미늄 호일의 양면에 각각 합제층용 슬러리를 120 ㎛의 두께로 코팅한 후 건조를 수행하였다. 합제층을 포함하는 전극을 압연하여 양극을 제조하였다.
양극을 제외한 다른 구성 및 공정은 실시예 1과 동일하게 이차전지를 제조하였다.
본 비교예에서 제조된 양극의 단면 구조는 도 2에 도시하였다. 도 2를 참조하면, 본 비교예에 따른 이차전지용 양극은 알루미늄 호일로 형성된 집전체층의 양면에 합제층이 적층된 구조이다. 상기 합제층은 대립자 활물질과 소립자 활물질이 혼합된 형태이며, 전극을 압연하는 과정에서 활물질 입자가 집전체를 가압하게 된다. 본 비교예에서는, 합제층을 가압하는 과정에서, 활물질 입자가 집전체에 부분적으로 함입되었고, 그 정도가 높은 것을 알 수 있다.
구체적으로, 도 2의 양극에서, A, B, C 및 D의 4 지점에서 집전체의 두께를 측정하였다. 측정결과, A 지점의 두께는 9.68 ㎛, B 지점의 두께는 10.10 ㎛, C 지점의 두께는 6.19 ㎛, 그리고 D 지점의 두께는 8.06 ㎛이다. 이를 통해, 도 2에서 도시된 집전체의 두께는 영역별로 매우 불규칙한 것을 알 수 있다.
비교예 2
양극 활물질로 NCM(LiNi 0.8Co 0.1Mn 0.1O 2) 100 중량부, 도전재로 카본 블랙(FX35, Denka, 구형, 평균 직경(D50) 15 내지 40 nm) 1.5 중량부 및 바인더 고분자로 폴리비닐리덴 플루오라이드(KF9700, Kureha) 3.5 중량부를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 하부 합제층용 슬러리를 제조하였다. 양극 활물질로 평균 입경이 6 ㎛인 활물질을 사용하였다.
양극 활물질로 NCM(LiNi 0.8Co 0.1Mn 0.1O 2) 100 중량부, 도전재로 카본 블랙(FX35, Denka, 구형, 평균 직경(D50) 15 내지 40 nm) 1.5 중량부 및 바인더 고분자로 폴리비닐리덴 플루오라이드(KF9700, Kureha) 3.5 중량부를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 상부 합제층용 슬러리를 제조하였다. 전극 활물질로 평균 입경이 15 ㎛인 활물질을 사용하였다.
알루미늄 호일의 양면에 각각 상기 하부 합제층용 슬러리를 30㎛의 두께로 코팅하고, 상부 합제층용 슬러리를 90 ㎛ 두께로 코팅한 후 건조를 수행하였다. 합제층을 포함하는 전극을 압연하여 양극을 제조하였다.
양극을 제외한 다른 구성 및 공정은 실시예 1과 동일하게 이차전지를 제조하였다.
실험예 1: 수명 평가
실시예 1 내지 3 그리고 비교예 1 및 2에서 제조한 이차전지에 대해서, 충방전에 따른 용량 유지율을 평가하였다. 평가는, 초기 용량을 100%로 하고, 45℃ 챔버에서 1/3C로 충방전을 실시하면서 진행하였다. 평가 결과는 도 3 및 4에 도시하였다. 도 3은 실시예 1 내지 3에서 제조한 이차전지에 대한 평가 결과이고, 도 4는 비교예 1 및 2에서 제조한 이차전지에 대한 평가 결과이다.
도 3을 참조하면, 실시예 1 내지 3에서 제조한 이차전지는 충방전 150 싸이클을 반복한 시점에서 용량 유지율이 95% 이상인 것으로 산출되었다. 또한, 충방전을 250 싸이클 반복한 시점에서, 실시예 1에서 제조한 이차전지의 용량 유지율은 약 94% 수준이고, 실시예 2에서 제조한 이차전지의 용량 유지율은 약 93% 수준이다.
이에 대해, 도 4를 참조하면, 비교예 1에서 제조한 이차전지는 충방전 150 싸이클을 반복한 시점에서 용량 유지율이 약 95% 수준이나, 충방전 200 싸이클을 반복한 시점에서 용량 유지율이 약 93% 이하이고, 충방전 250 싸이클을 반복한 시점에서는 89% 이하로 떨어진다. 또한, 비교예 2에서 제조한 이차전지는 충방전 150 싸이클을 반복한 시점에서 용량 유지율이 약 92~93% 수준이고, 충방전 200 싸이클을 반복한 시점에서는 용량 유지율이 약 90% 이하로 떨어진다.
실시예 1 내지 3에서 제조한 이차전지와 대비하여, 비교예 1 및 2에서 제조한 이차전지는 충방전 싸이클에 따라 용량 유지율을 보다 빠르게 저하됨을 알 수 있고, 특히 충방전 횟수가 150회(비교예 2) 또는 200회(비교예 1)가 경과한 시점에서는 용량 유지율이 급격히 저하됨을 알 수 있다.
실험예 2: 인장강도 측정
실시예 1 내지 3 그리고 비교예 1 및 2에서 제조한 양극에 대해서, 압연 밀도와 인장강도를 측정하였다.
먼저 각 시편 별로 기공율을 측정하여 압연 밀도를 산출하였다. 전극 제조시 동일한 압력을 가하였으나, 각 시료별로 측정된 기공율은 차이가 있는 것으로 확인되었다.
인장강도 측정은, 실시예 등에서 제조한 각 양극에 대해 MD면과 TD면을 수평으로 잘라서 시편을 제조하였다. 시편은 폭 2 cm, 길이 20 cm 크기로 제조하였다. 그런 다음, 시편의 양 끝단을 지그에 고정한 상태에서 길이 방향으로 평행하게 잡아 당겼다. 인장 속도는 20 cm/min으로 제어하고, 시편이 끊어지기 직전의 F-D 곡선을 측정하여 힘(N)을 산출하였다. 측정결과는 하기 표 1에 도시하였다.
시편 No. 기공율(%, v/v) TD 방향인장 강도(N) MD 방향인장 강도(N)
실시예 1 25 19.7 18.9
실시예 2 24.6 20.1 19.5
실시예 3 24.1 21.9 20.5
비교예 1 23.5 19.1 18.1
비교예 2 26.1 18.9 18.0
표 1을 참조하면, 비교예 2의 시편은 기공율이 25% 이하로 제어되지 않았음을 확인하였다. 이는 비교예 2의 시편은 동등 수준의 압연밀도를 달성하기 위해서는 보다 큰 힘으로 압연을 수행해야 하는 것을 의미하고, 이로 인해 집전체의 손상은 보다 커질 것을 예측할 수 있다. 실시예 1 내지 3의 시편은, MD 방향 인장 강도는 19.7 내지 21.9 N이고, TD 방향 인장 강도는 18.9 내지 20.5 N인 것으로 산출되었다. 이에 대해, 비교예 1 및 2의 시편은, MD 및 TD 방향 인장 강도 모두 실시예 1 내지 3의 시편 보다 낮은 것을 알 수 있다. 이는, 비교예 1 및 2의 시편은, 전극의 압연 과정에서 집전체로 적용된 알루미늄 호일의 손상으로 인해 인장 강도가 저하된 것으로 판단된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
(부호의 설명)
A, B, C, D: 집전체층의 영역별 두께

Claims (14)

  1. 집전체층;
    상기 집전체층의 일면 또는 양면에 형성되되, 입자상 활물질을 포함하는 하부 합제층; 및
    상기 하부 합제층이 집전체층과 접하는 면의 반대측 면에 형성되되, 입자상 활물질을 포함하는 상부 합제층을 포함하며,
    상기 상부 합제층은 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하고,
    상기 하부 합제층은 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하고,
    하기 조건 1 및 2를 만족하는 이차전지용 전극:
    [조건 1]
    D1 > D2 > D3
    [조건 2]
    D1- D3 ≥ 5 (㎛)
    상기 조건 1 및 2에서,
    D1은 제1 입경 범위를 갖는 활물질 입자의 평균 입경이고,
    D2는 제2 입경 범위를 갖는 활물질 입자의 평균 입경이고,
    D3는 제3 입경 범위를 갖는 활물질 입자의 평균 입경이다.
  2. 제 1 항에 있어서,
    제1 입경 범위를 갖는 활물질 입자의 평균 입경은 14 내지 20 ㎛ 범위이고,
    제2 입경 범위를 갖는 활물질 입자의 평균 입경은 10 내지 13 ㎛ 범위이고,
    제3 입경 범위를 갖는 활물질 입자의 평균 입경은 3 내지 9 ㎛ 범위인 이차전지용 전극.
  3. 제 1 항에 있어서,
    상부 합제층에서, 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 6:4 내지 9:1 중량비 범위인 이차전지용 전극.
  4. 제 1 항에 있어서,
    하부 합제층에서, 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자의 함량 비율은 6:4 내지 9:1 중량비 범위인 이차전지용 전극.
  5. 제 1 항에 있어서,
    집전체층과 하부 합제층 사이에 개재된 버퍼층을 더 포함하며, 상기 버퍼층은 니오븀 함유 산화물을 포함하는 것을 특징으로 하는 이차전지용 전극.
  6. 제 5 항에 있어서,
    상기 버퍼층에 포함된 니오븀 함유 산화물은,
    Li 3NbO 4, LiNbO 및 Nb 2O 5 중 1 종 이상을 포함하는 것을 특징으로 하는 이차전지용 전극.
  7. 제 5 항에 있어서,
    상기 버퍼층의 평균 두께는 1 내지 10㎛ 범위인 것을 특징으로 하는 이차전지용 전극.
  8. 제 1 항에 있어서,
    상기 집전체층은 평균 두께 10 내지 20 ㎛인 금속 호일로 형성된 것을 특징으로 하는 이차전지용 전극.
  9. 제 1 항에 있어서,
    상기 전극은 리튬 이차전지용 전극인 것을 특징으로 하는 이차전지용 전극.
  10. 집전체층의 일면 또는 양면에 제2 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하는 하부 합제층을 형성하는 단계;
    하부 합제층 상에 제1 입경 범위를 갖는 활물질 입자 및 제3 입경 범위를 갖는 활물질 입자를 포함하는 상부 합제층을 형성하는 단계; 및
    하부 및 상부 합제층이 도포된 전극을 압연하는 단계를 포함하며,
    하기 조건 1 및 2를 만족하는 이차전지용 전극의 제조방법:
    [조건 1]
    D1 > D2 > D3
    [조건 2]
    D1- D3 ≥ 5 (㎛)
    상기 조건 1 및 2에서,
    D1은 제1 입경 범위를 갖는 활물질 입자의 평균 입경이고,
    D2는 제2 입경 범위를 갖는 활물질 입자의 평균 입경이고,
    D3는 제3 입경 범위를 갖는 활물질 입자의 평균 입경이다.
  11. 제 10 항에 있어서,
    압연하는 단계를 거친 합제층의 공극율은 평균 20~30 %(v/v) 범위인 것을 특징으로 하는 이차전지용 전극의 제조방법.
  12. 제 10 항에 있어서,
    하부 합제층과 상부 합제층의 두께 비율은 1:9 내지 4:6 범위인 것을 특징으로 하는 이차전지용 전극의 제조방법.
  13. 제 10 항에 있어서,
    상기 집전체층은 평균 두께 10 내지 20 ㎛인 금속 호일로 형성된 것을 특징으로 하는 이차전지용 전극의 제조방법.
  14. 제 10 항에 있어서,
    하부 합제층을 형성하는 단계 전에,
    집전체 상에 니오븀을 함유하는 산화물을 포함하는 버퍼층을 형성하는 단계를 더 포함하는 이차전지용 전극의 제조방법.
PCT/KR2020/009990 2019-11-14 2020-07-29 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법 WO2021096025A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20862001.3A EP3849008A4 (en) 2019-11-14 2020-07-29 Secondary battery electrode having double layer-structured mixture layer comprising active material of differing diameters
JP2021516880A JP7123251B2 (ja) 2019-11-14 2020-07-29 互いに異なる粒径の活物質を含む二重層構造の合剤層を含む二次電池用電極及びその製造方法
US17/278,233 US20220310984A1 (en) 2019-11-14 2020-07-29 Secondary battery electrode including mixture layer of double layer structure containing active materials of different particle diameters, and method for manufacturing the same
CN202080005056.XA CN113133331B (zh) 2019-11-14 2020-07-29 包含含有粒径不同的活性材料的双层结构混合物层的二次电池电极及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0145833 2019-11-14
KR1020190145833A KR102608796B1 (ko) 2019-11-14 2019-11-14 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2021096025A1 true WO2021096025A1 (ko) 2021-05-20

Family

ID=75746106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009990 WO2021096025A1 (ko) 2019-11-14 2020-07-29 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20220310984A1 (ko)
EP (1) EP3849008A4 (ko)
JP (1) JP7123251B2 (ko)
KR (1) KR102608796B1 (ko)
CN (1) CN113133331B (ko)
WO (1) WO2021096025A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022248968A1 (ja) * 2021-05-28 2022-12-01 株式会社半導体エネルギー研究所 電池、電子機器、蓄電システムおよび移動体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116169246A (zh) * 2021-11-25 2023-05-26 Sk新能源株式会社 锂二次电池用正极及包括其的锂二次电池
KR20230146889A (ko) * 2022-04-13 2023-10-20 주식회사 엘지에너지솔루션 상태 추정이 용이한 리튬 이차전지
KR20230146887A (ko) * 2022-04-13 2023-10-20 주식회사 엘지에너지솔루션 상태 추정이 용이한 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216749A (ja) * 2001-01-17 2002-08-02 Matsushita Electric Ind Co Ltd アルカリ蓄電池と電極の製造方法
KR101545886B1 (ko) * 2012-04-18 2015-08-20 주식회사 엘지화학 다층구조 전극 및 그 제조방법
KR101613285B1 (ko) * 2013-08-02 2016-04-18 주식회사 엘지화학 양면에 서로 다른 전극 활물질이 도포된 전극 및 이를 포함하는 전극조립체
JP6136612B2 (ja) * 2013-06-14 2017-05-31 ソニー株式会社 リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6167854B2 (ja) * 2013-10-31 2017-07-26 株式会社豊田自動織機 蓄電装置用電極及び蓄電装置用電極組立体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521719B2 (ja) 2010-04-08 2014-06-18 トヨタ自動車株式会社 全固体二次電池用集電体、全固体二次電池用電極体および全固体二次電池
JP6287707B2 (ja) * 2014-09-08 2018-03-07 トヨタ自動車株式会社 非水電解質二次電池
JP2016171023A (ja) * 2015-03-13 2016-09-23 株式会社東芝 電池用活物質、非水電解質電池、及び電池パック
KR102100879B1 (ko) * 2015-10-30 2020-04-13 주식회사 엘지화학 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
JP6528666B2 (ja) * 2015-12-09 2019-06-12 株式会社村田製作所 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2017157529A (ja) * 2016-03-04 2017-09-07 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法、正極活物質層およびリチウム電池
JP6809108B2 (ja) 2016-10-07 2021-01-06 トヨタ自動車株式会社 リチウムイオン二次電池
KR20180118913A (ko) * 2017-04-24 2018-11-01 주식회사 엘지화학 복수의 층상 구조의 양극 및 그 제조방법
JP2017130476A (ja) 2017-05-08 2017-07-27 ソニー株式会社 リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR20190059249A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
KR102304736B1 (ko) * 2018-03-15 2021-09-24 주식회사 엘지에너지솔루션 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
US10790505B2 (en) * 2018-03-23 2020-09-29 EnPower, Inc. Electrochemical cells having improved ionic conductivity
JP6750663B2 (ja) 2018-12-12 2020-09-02 トヨタ自動車株式会社 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216749A (ja) * 2001-01-17 2002-08-02 Matsushita Electric Ind Co Ltd アルカリ蓄電池と電極の製造方法
KR101545886B1 (ko) * 2012-04-18 2015-08-20 주식회사 엘지화학 다층구조 전극 및 그 제조방법
JP6136612B2 (ja) * 2013-06-14 2017-05-31 ソニー株式会社 リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR101613285B1 (ko) * 2013-08-02 2016-04-18 주식회사 엘지화학 양면에 서로 다른 전극 활물질이 도포된 전극 및 이를 포함하는 전극조립체
JP6167854B2 (ja) * 2013-10-31 2017-07-26 株式会社豊田自動織機 蓄電装置用電極及び蓄電装置用電極組立体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3849008A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022248968A1 (ja) * 2021-05-28 2022-12-01 株式会社半導体エネルギー研究所 電池、電子機器、蓄電システムおよび移動体

Also Published As

Publication number Publication date
JP7123251B2 (ja) 2022-08-22
KR102608796B1 (ko) 2023-12-04
KR20210058415A (ko) 2021-05-24
CN113133331B (zh) 2023-12-01
EP3849008A1 (en) 2021-07-14
US20220310984A1 (en) 2022-09-29
JP2022516395A (ja) 2022-02-28
EP3849008A4 (en) 2021-12-29
CN113133331A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021096025A1 (ko) 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2017135794A1 (ko) 음극활물질 및 이를 포함하는 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018016785A1 (en) Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2019168352A1 (ko) 음극 활물질 및 이의 제조 방법, 상기 음극 활물질을 포함하는 음극 및 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021075687A1 (ko) 관통홀이 형성된 금속 플레이트와 상기 관통홀을 충진하는 다공성 보강재를 포함하는 전지용 집전체 및 이를 포함하는 이차전지
WO2021020844A1 (ko) 열적 안정성이 향상된 이차전지용 양극 및 그의 제조방법
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2022225380A1 (ko) 이차 전지의 제조 방법
WO2022197095A1 (ko) 리튬 이차전지용 음극, 및 이를 구비하는 리튬 이차전지
WO2022092679A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021075773A1 (ko) 서로 다른 바인더 함량을 갖는 전극 합제 영역을 포함하는 이차전지용 극판 및 이를 이용한 이차전지용 전극의 제조방법
WO2021086132A1 (ko) 음극의 제조 방법
WO2019143214A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2021045581A1 (ko) 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2017217769A1 (ko) 이차전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2019050203A2 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2021091168A1 (ko) Lno 함량이 상이한 이중층 구조의 합제층을 포함하는 양극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516880

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020862001

Country of ref document: EP

Effective date: 20210318

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE