WO2021093774A1 - 一种隔膜及包括该隔膜的高电压电池 - Google Patents

一种隔膜及包括该隔膜的高电压电池 Download PDF

Info

Publication number
WO2021093774A1
WO2021093774A1 PCT/CN2020/128134 CN2020128134W WO2021093774A1 WO 2021093774 A1 WO2021093774 A1 WO 2021093774A1 CN 2020128134 W CN2020128134 W CN 2020128134W WO 2021093774 A1 WO2021093774 A1 WO 2021093774A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
diaphragm
ceramic particles
core
Prior art date
Application number
PCT/CN2020/128134
Other languages
English (en)
French (fr)
Inventor
张祖来
李素丽
李俊义
徐延铭
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to CN202080077087.6A priority Critical patent/CN114641890A/zh
Priority to EP20886697.0A priority patent/EP4050710A4/en
Publication of WO2021093774A1 publication Critical patent/WO2021093774A1/zh
Priority to US17/744,633 priority patent/US20220271329A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the technical field of lithium ion batteries, and specifically relates to a separator suitable for a high-voltage battery system and a battery including the separator.
  • the metal particles precipitated on the surface of the negative electrode on the one hand, produce metal dendrites that easily pierce the diaphragm and cause an internal short circuit in the battery; on the other hand, it affects the normal insertion of lithium ions and affects the battery's long-term cycle performance.
  • transition metal ions are adsorbed by using porous ceramic particles.
  • This method uses porous ceramic particles to cause moisture. It is very high and adversely affects electrical performance.
  • Separator is an indispensable element in lithium ion secondary batteries. Its main function is: on the one hand, it serves as a separator between the positive and negative electrodes to prevent short-circuiting of the positive and negative electrodes to ensure the safety of the battery; on the other hand, as the positive and negative electrodes The channel between lithium ions ensures the normal operation of the battery.
  • the separator which is one of the key materials of the battery, should play a greater role.
  • the purpose of this application is to provide ceramic particles, as well as a separator and battery including the ceramic particles.
  • this application is to coat a modified layer on the surface of inorganic ceramic particles
  • the modified layer can absorb the metal ions present in the battery system (such as the transition metal ions precipitated from the positive electrode material, in the battery system Incorporated metal ions or metal particles), so as to prevent metal ions from forming metal precipitates on the surface of the negative electrode, and improve the safety, rate, and cycle performance of the battery.
  • the modified layer since the modified layer is coated on the surface of the inorganic ceramic particles, it will not have a significant impact on the internal resistance of the battery, and thus will not reduce the rate, low temperature and cycle performance of the battery.
  • the ceramic particle has a core-shell structure, that is, includes a shell layer and a core core, the material forming the shell layer includes a modified material, and the material forming the core core includes Inorganic ceramic materials;
  • the modifying material is selected from substituted siloxanes, and the compound forming the substituent is selected from amine compounds containing carboxyl groups, or selected from nitrogen-containing heterocyclic compounds.
  • the amine compound containing a carboxyl group is, for example, selected from polyamine compounds containing at least two carboxyl groups, and for example, is selected from ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, and hydroxyethylethylenediaminetriacetic acid , One or more than two of ethylene glycol diethyl ether diamine tetraacetic acid.
  • the nitrogen-containing heterocyclic compound is, for example, selected from heterocyclic compounds containing one nitrogen or two nitrogens, for example, one or two or more selected from pyridine and imidazole.
  • the siloxane is selected from siloxanes containing amino groups; wherein the substituted siloxanes are obtained by substituting the amino groups in the siloxane with the above-mentioned compounds.
  • the amino-containing siloxane is, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminoethyltrimethoxysilane, 2-aminoethyltriethoxy One or more of silanes.
  • the ceramic particles can be used in the field of lithium ion batteries.
  • the inorganic ceramic material is selected from one or two of alumina, magnesia, boehmite, barium sulfate, barium titanate, zinc oxide, calcium oxide, silicon dioxide, silicon carbide, and nickel oxide the above.
  • the shell layer is also referred to as a modified layer.
  • the thickness of the shell layer is 5nm-1000nm, preferably 50nm-500nm.
  • it is 5nm, 10nm, 50nm, 100nm, 200nm, 500nm or 1000nm.
  • the average particle size of the inorganic ceramic material is 0.01 ⁇ m-20 ⁇ m.
  • it is 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 4 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, or 20 ⁇ m.
  • the modified layer ie, the shell layer formed by the modified material coated on the surface of the inorganic ceramic material can absorb the transition metal ions precipitated from the positive electrode, thereby avoiding the transition metal ions in the negative electrode. Transition metal precipitates are formed on the surface to improve the safety, rate, and cycle performance of the battery.
  • This application also provides a method for preparing the above-mentioned ceramic particles, and the method includes the following steps:
  • the shell-forming material including the modified material is coated on the surface of the core-forming material including the inorganic ceramic material to prepare the ceramic particles; wherein the ceramic particles have a core-shell structure, That is, it includes a shell layer and a core, the material forming the shell layer includes a modified material, and the material forming the core core includes an inorganic ceramic material.
  • the silanization treatment method includes the following steps:
  • the shell-forming material to the solvent by stirring to form a solution containing the shell-forming material; add the core-forming material to the aforementioned solution, stir and mix uniformly; remove the mixed system by vacuum heating and drying or spray drying, etc.
  • Solvent to obtain the ceramic particles wherein the ceramic particles have a core-shell structure, that is, include a shell layer and a core, the material forming the shell layer includes a modified material, and the material forming the core includes an inorganic ceramic material.
  • the solvent is selected from alcoholic organic solvents, specifically at least one of methanol, ethanol, propanol, ethylene glycol, propylene glycol, and glycerol.
  • the preparation of the above-mentioned ceramic particles includes the following steps:
  • the substituted siloxane ie B in Figure 1, where M is the substituent of the siloxane
  • a solvent ethanol
  • the aluminum oxide material A in Figure 1 is stirred and mixed uniformly, and the solvent in the mixture is removed to obtain particles of the modified material coated with ceramic material (C in Figure 1).
  • the present application also provides a diaphragm, as shown in FIG. 3, the diaphragm includes a diaphragm base layer (a substrate as shown in FIG. 3) and a coating layer on at least one side surface of the diaphragm base layer.
  • the coating layer consists of The above-mentioned mixed system of ceramic particles is obtained by coating at least one side surface of the diaphragm base layer (as shown in Fig. 3, a coating layer formed by modified ceramic and a binder).
  • the thickness of the coating layer is 1-10 ⁇ m, for example 2-5 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, and the thickness of the coating layer It can be obtained by one coating or multiple coatings.
  • the thickness of the coating layers on both sides of the base layer is the same or different.
  • the mixed system further includes at least one of a polymer binder and an auxiliary agent.
  • the mixed system also includes a polymer binder and auxiliary agents.
  • the mass parts of each component in the mixed system are as follows:
  • the mass parts of each component in the mixed system are as follows:
  • the parts by mass of the above-mentioned ceramic particles are 50, 55, 60, 65, 70, 75, 80, 85, 90 or 95 parts by mass.
  • the mass parts of the above-mentioned polymer binder is 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 parts by mass.
  • the parts by mass of the aforementioned auxiliary agent are 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 parts by mass.
  • the mass ratio of the shell layer and the core can be (20-100):200.
  • the mixed system further includes 100-5000 parts by mass of solvent, for example, 500-2000 parts by mass of solvent.
  • the polymer binder is selected from polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyimide, polyacrylonitrile, polymethyl (meth)acrylate, Aramid resin, poly(meth)acrylic acid, styrene butadiene rubber (SBR), polyvinyl alcohol, polyvinyl acetate, carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose (CMC-Na), carboxymethyl Base cellulose, polyacrylamide, phenolic resin, epoxy resin, water-based polyurethane, ethylene-vinyl acetate copolymer, polyacrylic copolymer, lithium polystyrene sulfonate, water-based silicone resin, nitrile-polyvinyl chloride copolymer One or more combinations of blends, styrene-acrylic latex, pure benzene latex, etc., and blend
  • the auxiliary agent is selected from the group consisting of multi-branched alcohols, triethyl phosphate, polyethylene glycol, fluorinated polyethylene oxide, polyethylene oxide, stearic acid, sodium dodecylbenzene sulfonate, hexadecyl benzene sulfonate At least one of sodium alkyl sulfonate, fatty acid glyceride, sorbitan fatty acid ester, and polysorbate.
  • the solvent is selected from water, methanol, ethanol, acetone, N-methyl-2-pyrrolidone (NMP), chloroform, xylene, tetrahydrofuran, o-chlorobenzaldehyde, hexafluoroisopropanol, N, N -At least one of dimethylformamide, N,N-dimethylacetamide, butanone and acetonitrile.
  • NMP N-methyl-2-pyrrolidone
  • the application also provides a method for preparing the above-mentioned diaphragm, wherein the method includes the following steps:
  • step (b) Coating the mixed slurry of step (a) on the surface of the diaphragm base layer, and obtaining the diaphragm after drying.
  • step (a) in the mixed slurry, the mass parts of the above-mentioned ceramic particles, optionally polymer binder, optionally auxiliary agent and solvent are as follows:
  • the mass parts of each component in the mixed system are as follows:
  • the coating method is, for example, spray coating, dip coating, gravure printing, extrusion coating, transfer coating, and the like.
  • the porosity of the diaphragm base layer is 20%-80%, the thickness is 5 ⁇ m-50 ⁇ m, and the average pore size is D ⁇ 80 nm;
  • the material system of the diaphragm base layer is selected from polyethylene, Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polynaphthalene system polymer, polyimide, polyamide, aramid and polyparaphenylene benzodiazole At least one of the others.
  • the present application also provides a lithium ion battery, which includes the above-mentioned separator.
  • the battery cell of the above-mentioned lithium-ion battery is laminated by a positive electrode, a negative electrode, and the above-mentioned separator; the lithium-ion battery further includes an electrolyte.
  • the lithium ion battery is a high voltage lithium ion battery.
  • the present application provides a separator and a high-voltage battery including the separator.
  • a modified layer is coated on the surface of inorganic ceramic particles.
  • the modified layer can absorb the transition metal ions precipitated by the electrode material, thereby preventing the transition metal ions from forming transition metal precipitates on the surface of the negative electrode, and improving the safety of the battery Performance, rate performance and cycle performance.
  • the modified layer since the modified layer is coated on the surface of the inorganic ceramic particles, it will not have a significant impact on the internal resistance of the battery, and thus will not reduce the rate, low temperature and cycle performance of the battery.
  • the introduction of the modified material can also achieve the adsorption of the trace amounts of HF generated in the battery system, on the one hand, it can inhibit the dissolution of transition metal ions, stabilize the surface structure of the positive electrode, and improve battery performance; On the other hand, it can reduce the corrosion of HF to battery outsourcing materials and improve battery safety performance.
  • FIG. 1 Schematic diagram of the modification reaction of the ceramic particles of the present application.
  • Figure 2 A schematic diagram of the ceramic particles of the present application adsorbing transition metal ions.
  • Figure 3 A schematic diagram of the cell structure of the lithium-ion battery of the present application.
  • Figure 4 Graph of battery cycle test results using the separators of Example 1 and Comparative Example 1.
  • Figure 5 Diagram of battery rate test results using the separators of Example 1 and Comparative Example 1.
  • the modified material is selected from 3-aminopropyltrimethoxysilane substituted with ethylenediaminetetraacetic acid.
  • the shell layer is a modified material containing 3-aminopropyltrimethoxysilane substituted with ethylenediaminetetraacetic acid
  • the core is aluminum oxide
  • the mass ratio of the shell layer to the core core is 20 : 200
  • the thickness of the shell layer is 10nm
  • the average particle size of the ceramic particles is about 0.8 ⁇ m.
  • the diaphragm is a wet-process substrate diaphragm with a thickness of 9 ⁇ m, coated on one side, the coating thickness is 3 ⁇ m, and the total areal density of the diaphragm is 10.6 g/m 2 .
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the modified material Dissolve 20 parts of the modified material in ethanol by stirring to form a mixed solution, add 200 parts of boehmite, stir and mix evenly, remove the solvent in the mixture by vacuum heating and drying technology to obtain a modified material coated ceramic material Particles, the modified material is selected from 3-aminopropyltrimethoxysilane substituted with hydroxyethylethylenediaminetriacetic acid.
  • the shell layer is a modified material containing 3-aminopropyltrimethoxysilane substituted with hydroxyethylethylenediaminetriacetic acid, and the core is boehmite; the mass ratio of the shell layer to the core core It is 20:200, the thickness of the shell layer is 10nm, and the average particle size of the ceramic particles is about 0.8 ⁇ m.
  • the preparation method of the diaphragm and the lithium ion battery is the same as that of Example 1, except that the ceramic particles prepared above are used.
  • modified material Dissolve 20 parts of modified material in ethylene glycol by stirring to form a mixed solution, add 200 parts of aluminum oxide, stir and mix uniformly, remove the solvent in the mixture by vacuum heating and drying technology to obtain modified material coating Particles of ceramic material, and the modified material is selected from 3-aminopropyltrimethoxysilane substituted with pyridine.
  • the shell layer is a modified material containing pyridine-substituted 3-aminopropyltrimethoxysilane
  • the core core is aluminum oxide
  • the mass ratio of the shell layer to the core core is 20:200
  • the shell layer is a modified material containing 3-aminopropyltrimethoxysilane substituted with pyridine.
  • the thickness of the layer is 10 nm, and the average particle size of the ceramic particles is about 0.8 ⁇ m.
  • the preparation method of the diaphragm and the lithium ion battery is the same as that of Example 1, except that the ceramic particles prepared above are used.
  • the modified material is selected from imidazole-substituted 3-aminopropyltrimethoxysilane.
  • the shell layer is a modified material containing imidazole-substituted 3-aminopropyltrimethoxysilane
  • the core core is aluminum oxide
  • the mass ratio of the shell layer to the core core is 50:200
  • the shell layer is a modified material containing 3-aminopropyltrimethoxysilane substituted with imidazole.
  • the thickness of the layer is 20 nm, and the average particle size of the ceramic particles is about 0.9 ⁇ m.
  • the preparation method of the diaphragm and the lithium ion battery is the same as that of Example 1, except that the ceramic particles prepared above are used.
  • modified material coated ceramic material Dissolve 20 parts of modified material in propylene glycol by stirring to form a mixed solution, add 200 parts of magnesium oxide, stir and mix uniformly, remove the solvent in the mixture by vacuum heating and drying technology to obtain particles of modified material coated ceramic material
  • the modified material is selected from 3-aminopropyltrimethoxysilane substituted with imidazole.
  • the shell layer is a modified material containing imidazole-substituted 3-aminopropyltrimethoxysilane
  • the core core is magnesium oxide
  • the mass ratio of the shell layer to the core core is 100:200
  • the shell layer is The thickness is 40 nm, and the average particle size of the ceramic particles is about 1.0 ⁇ m.
  • the preparation method of the diaphragm and the lithium ion battery is the same as that of Example 1, except that the ceramic particles prepared above are used.
  • the preparation of the modified material coated ceramic material particles is the same as in Example 1.
  • the diaphragm is a wet-process substrate diaphragm with a thickness of 9 ⁇ m, coated on one side, the coating thickness is 3 ⁇ m, and the total areal density of the diaphragm is 10.6 g/m 2 .
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the preparation of the modified material coated ceramic material particles is the same as in Example 1.
  • the diaphragm is a wet-process substrate diaphragm with a thickness of 9 ⁇ m, coated on one side, the coating thickness is 3 ⁇ m, and the total areal density of the diaphragm is 10.6 g/m 2 .
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • alumina ceramic particles 20 parts of polyvinylidene fluoride-hexafluoropropylene and 2 parts of polyethylene glycol to 900 parts of N,N-dimethylacetamide, and mix them uniformly to obtain a mixed slurry.
  • the mixed slurry is coated on the surface of the diaphragm base layer by microgravure, and the diaphragm is obtained after drying.
  • the diaphragm is a wet-process substrate diaphragm with a thickness of 9 ⁇ m, coated on one side, the coating thickness is 3 ⁇ m, and the total areal density of the diaphragm is 10.6 g/m 2 .
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the diaphragm is a wet-process substrate diaphragm with a thickness of 9 ⁇ m, coated on one side, the coating thickness is 3 ⁇ m, and the total areal density of the diaphragm is 10.6 g/m 2 .
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the lithium ion batteries prepared in Examples 1-7 and Comparative Example 1-2 were subjected to voltage test and internal resistance test. The test process was to fully charge the lithium ion batteries prepared in Example 1-7 and Comparative Example 1-2. In an environment of 25°C and 50% humidity, a voltage internal resistance meter (Amber-Applent, model AT526B) was used to test the voltage and internal resistance of the battery in a fully charged state. The results are shown in Table 1.
  • Example 1-7 the modified material coated ceramic material particles were applied in the separator and assembled into a lithium ion battery. According to the data in Table 1, the lithium ion battery prepared in Example 1-7 and Comparative Example 1-2 After sorting, the voltage was normal, but the internal resistance of Comparative Example 2 increased significantly. This was mainly because the direct addition of modified materials to the slurry would affect the permeability of lithium ions;
  • Example 1 The lithium-ion batteries prepared in Example 1 and Comparative Example 1 were subjected to charge-discharge cycle and rate performance tests.
  • the charge-discharge cycle test used 1C charge/1C discharge system; the rate performance test used 0.2C charge/0.2C, 0.5C , 1C, 3C, 5C discharge system was tested, the results are shown in Figure 4 and Figure 5. From Figure 4 and Figure 5, it can be seen that the battery of Example 1 can not only maintain a good capacity retention rate at the end of the cycle, Moreover, it can maintain a good capacity retention rate under high-rate discharge of the battery.
  • the modified material will affect the permeability of lithium ions in the lithium-ion battery and cause the internal resistance of the lithium-ion battery to increase;
  • the modified material is used to coat the particles of ceramic material and applied to the lithium ion battery separator, which does not affect the internal resistance of the lithium ion battery, does not affect the voltage of the lithium ion battery, and does not affect the charge and discharge cycle of the lithium ion battery , To meet application requirements.
  • the lithium ion battery separators prepared in Examples 1-7 and Comparative Example 1-2 were subjected to metal ion testing, and the testing process was as follows:
  • the ICP test results are as follows:
  • Example 1 The lithium ion battery prepared in Example 1 and Comparative Example 1 was disassembled after cycling, and the separator and negative electrode were tested by ICP.
  • the test results are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种隔膜及包括该隔膜的高电压电池。通过在无机陶瓷颗粒表面包覆一层改性层,所述改性层可以吸附电极材料析出的过渡金属离子,从而避免过渡金属离子在负极表面形成过渡金属析出物,提高电池的安全性、倍率性能和循环性能。同时,由于所述改性层是包覆在无机陶瓷颗粒表面的,因此并不会对电池的内阻产生明显的影响,从而不会降低电池的倍率、低温和循环性能。改性材料的引入还可以实现对电池体系中产生的微量的HF的吸附,一方面可以抑制过渡金属离子的溶出,稳定正极表面结构,改善电池性能;另一方面可以降低HF对电池外包材料的腐蚀,改善电池安全性能。

Description

一种隔膜及包括该隔膜的高电压电池 技术领域
本申请属于锂离子电池技术领域,具体涉及一种适用于高电压电池体系的隔膜及包括该隔膜的电池。
背景技术
随着3C产品的普及和电动汽车市场的兴起,对锂离子二次电池的需求越来越高。由于在整个电池体系中不可避免的会掺入一些磁性金属颗粒或者金属离子,这些磁性金属颗粒或者金属离子在电池充放电过程中会在负极表面析出;另外,正极材料本身也存在过渡金属离子溶出的情况,该溶出的过渡金属离子也会在负极表面析出;尤其在高电压电池体系下,此类析出显得更加严重。
在负极表面析出的金属颗粒,一方面产生金属枝晶容易刺穿隔膜造成电池内部短路;另一方面影响锂离子的正常插入,影响电池长期循环等性能。
由于析出的磁性金属颗粒或者金属离子(包括过渡金属离子)存在上述问题,现有技术中曾报道过通过使用多孔陶瓷颗粒吸附的方式吸附过渡金属离子,此种方式由于使用多孔陶瓷颗粒,导致水分很高而对电性能产生不良影响。现有技术中还曾报道过在陶瓷隔膜表面增加一层过渡金属离子吸附层,此种方式不仅增加隔膜制造成本,同时也由于增加过渡金属离子吸附层恶化离子导通性,恶化电池的循环及倍率放电等性能。
发明创造内容
隔膜是锂离子二次电池中必不可少的元件,其主要作用是:一方面作为正负极之间的隔离物,防止正负极短路,保证电池的安全问题;另一方面作为正负极之间锂离子的通道,保证电池的正常工作。但是,本申请的发明人经过大量的实验研究,认为随着人们对电池性能的不断追求,作为电池的关键材料之一的隔膜,应该发挥更大的作用。
为了改善现有技术的不足,本申请的目的是提供一种陶瓷颗粒,以及包括所述陶瓷颗粒的隔膜和电池。
如图2所示,本申请是通过在无机陶瓷颗粒表面包覆一层改性层,所述改性层可以吸附电池体系中存在的金属离子(如正极材料析出的过渡金属离子,电池体系中掺入的金属离子或金属颗粒),从而避免金属离子在负极表面形成金属析出物,提高电池的安全、倍率、循环等性能。同时,由于所述改性层是包覆在无机陶瓷颗粒表面的,因此并不会对电池的内阻产生明显的影响,从而不会降低电池的倍率、低温和循环性能。
本申请目的是通过如下技术方案实现的:
一种陶瓷颗粒,其中,如图2所示,所述陶瓷颗粒具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括改性材料,形成所述核芯的材料包括无机陶瓷材料;
所述改性材料选自取代的硅氧烷,形成取代基的化合物选自含有羧基的胺类化合物,或者选自含氮的杂环化合物。
根据本申请,所述含有羧基的胺类化合物例如选自含有至少两个羧基的多元胺类化合物,再例如选自乙二胺四乙酸、丙二胺四乙酸、羟乙基乙二胺三乙酸、乙二醇二乙醚二胺四乙酸中的一种或两种以上。
根据本申请,所述含氮的杂环化合物例如选自含有一个氮或两个氮的杂环化合物,例如选自吡啶、咪唑中的一种或两种以上。
根据本申请,所述硅氧烷选自含有氨基的硅氧烷;其中,通过硅氧烷中的氨基被上述化合物取代而得到所述取代的硅氧烷。所述含有氨基的硅氧烷例如为3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、2-氨乙基三甲氧基硅烷、2-氨乙基三乙氧基硅烷中的一种或多种。
根据本申请,所述陶瓷颗粒可以用于锂离子电池领域。
根据本申请,所述无机陶瓷材料选自氧化铝、氧化镁、勃姆石、硫酸钡、钛酸钡、氧化锌、氧化钙、二氧化硅、碳化硅、氧化镍中的一种或两种以上。
根据本申请,所述壳层也称为改性层。
根据本申请,所述壳层的厚度为5nm-1000nm,优选为50nm-500nm。例如为5nm、10nm、50nm、100nm、200nm、500nm或1000nm。
根据本申请,所述无机陶瓷材料的平均粒径为0.01μm-20μm。例如为0.01μm、0.05μm、0.1μm、0.5μm、1μm、4μm、5μm、8μm、10μm、12μm、15μm、18μm或20μm。
根据本申请,所述陶瓷颗粒中,包覆于无机陶瓷材料表面的改性材料形成的改性层(即所述壳层)可以吸附从正极析出的过渡金属离子,从而避免过渡金属离子在负极表面形成过渡金属析出物,提高电池的安全、倍率、循环等性能。
本申请还提供上述陶瓷颗粒的制备方法,所述方法包括如下步骤:
采用硅烷化处理法,将包括改性材料的形成壳层的材料包覆在包括无机陶瓷材料的形成核芯的材料表面,制备得到所述陶瓷颗粒;其中,所述陶瓷颗粒具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括改性材料,形成所述核芯的材料包括无机陶瓷材料。
示例性地,所述硅烷化处理法包括如下步骤:
将形成壳层的材料通过搅拌方式加入到溶剂中形成含有形成壳层的材料的溶液;在前述溶液中加入形成核芯的材料,搅拌混合均匀;通过真空加热干燥或喷雾干燥等除去混合体系中的溶剂,得到所述陶瓷颗粒,其中,所述陶瓷颗粒具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括改性材料,形成所述核芯的材料包括无机陶瓷材料。
其中,所述溶剂选自醇类有机溶剂,具体的为甲醇、乙醇、丙醇、乙二醇、丙二醇、丙三醇的至少一种。例如,在本申请的一实施方式中,上述陶瓷颗粒的制备包括如下步骤:
如图1所示,将取代的硅氧烷(即图1中B,其中的M为硅氧烷的取代基)通过搅拌方式溶解于溶剂(乙醇)中,形成混合溶液,加入无机陶瓷材料(三氧化二铝材料,即图1中的A),搅拌混合均匀后,除去混合物中的溶剂,得到改性材料包覆陶瓷材料的颗粒(图1中的C)。
本申请还提供一种隔膜,如图3所示,所述隔膜包括隔膜基层(如图3所示的基材)和位于隔膜基层至少一侧表面的涂覆层,所述涂覆层由包括上述陶瓷颗粒的混合体系在隔膜基层至少一侧表面涂覆得到(如图3中由改性陶瓷和粘结剂形成的涂覆层)。
根据本申请,所述涂覆层的厚度为1-10μm,例如为2-5μm,如1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm,所述厚度的涂覆层可以是一次涂覆得到的,也可以是多次涂覆得到的。
根据本申请,若所述隔膜包括隔膜基层和位于隔膜基层两侧表面的涂覆层, 则两侧表面的涂覆层的厚度相同或不同。
根据本申请,所述混合体系中还包括聚合物粘结剂和助剂中的至少一种。例如,所述混合体系中还包括聚合物粘结剂和助剂。
根据本申请,所述混合体系中各组分的质量份数如下所示:
50-95质量份的上述陶瓷颗粒、5-40质量份的聚合物粘结剂和0-10质量份的助剂。
例如,所述混合体系中各组分的质量份数如下所示:
60-95质量份的上述陶瓷颗粒、10-30质量份聚合物粘结剂和0-5质量份助剂。
示例性地,上述陶瓷颗粒的质量份为50、55、60、65、70、75、80、85、90或95质量份。
示例性地,上述聚合物粘结剂的质量份为5、6、7、8、9、10、15、20、25、30、35或40质量份。
示例性地,上述助剂的质量份为1、2、3、4、5、6、7、8、9或10质量份。
具体地,壳层和核芯的质量比一搬可以为(20-100):200。
根据本申请,所述混合体系还包括100-5000质量份的溶剂,例如还包括500-2000质量份的溶剂。
根据本申请,所述聚合物粘结剂选自聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯、聚酰亚胺、聚丙烯腈、聚(甲基)丙烯酸甲酯、芳纶树脂、聚(甲基)丙烯酸、丁苯橡胶(SBR)、聚乙烯醇、聚醋酸乙烯酯、羧甲基纤维素(CMC)、羧甲基纤维素钠(CMC-Na)、羧乙基纤维素、聚丙烯酰胺、酚醛树脂、环氧树脂、水性聚氨酯、乙烯-醋酸乙烯共聚物、多元丙烯酸类共聚物、聚苯乙烯磺酸锂、水性有机硅树脂、丁腈-聚氯乙烯共混物、苯丙乳胶、纯苯乳胶等及由前述聚合物改性衍生的共混、共聚聚合物中的一种或多种组合。
根据本申请,所述助剂选自多支链醇、磷酸三乙酯、聚乙二醇、氟化聚氧化乙烯、聚氧化乙烯、硬脂酸、十二烷基苯磺酸钠、十六烷基磺酸钠、脂肪酸甘油酯,山梨坦脂肪酸酯和聚山梨酯中的至少一种。
根据本申请,所述溶剂选自水、甲醇、乙醇、丙酮、N-甲基-2-吡咯烷酮(NMP)、氯仿、二甲苯、四氢呋喃、邻氯苯甲醛、六氟异丙醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丁酮和乙腈中的至少一种。
本申请还提供上述隔膜的制备方法,其中,所述方法包括如下步骤:
(a)将上述的陶瓷颗粒、任选地聚合物粘结剂和任选地助剂加入到溶剂中,混合,得到混合浆料;
(b)将步骤(a)的混合浆料涂覆在隔膜基层表面,经干燥后得到所述隔膜。
根据本申请,步骤(a)中,所述混合浆料中,上述陶瓷颗粒、任选地聚合物粘结剂、任选地助剂和溶剂的质量份数如下所示:
50-95质量份的上述陶瓷颗粒、5-40质量份的聚合物粘结剂、0-10质量份的助剂和100-5000质量份溶剂。
例如,所述混合体系中各组分的质量份数如下所示:
60-95质量份的上述陶瓷颗粒、10-30质量份聚合物粘结剂、0-5质量份助剂和500-2000质量份溶剂。
根据本申请,步骤(b)中,所述涂覆的方式例如为喷涂、浸涂、凹版印刷、挤压涂覆、转移涂覆等。
根据本申请,步骤(b)中,所述隔膜基层的孔隙率为20%-80%、厚度为5μm-50μm、平均孔径大小为D<80nm;所述隔膜基层的材料体系选自聚乙烯、聚丙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚苯乙烯、聚萘体系聚合物、聚酰亚胺、聚酰胺、芳纶和聚对苯撑苯并二唑等中的至少一种。
本申请还提供一种锂离子电池,所述锂离子电池包括上述的隔膜。
根据本申请,如图3所示,上述锂离子电池的电芯由正极、负极和上述隔膜层叠设置;所述锂离子电池还包括电解液。
根据本申请,所述锂离子电池为高电压锂离子电池。
本申请的有益效果:本申请提供了一种隔膜及包括该隔膜的高电压电池。本申请是通过在无机陶瓷颗粒表面包覆一层改性层,所述改性层可以吸附电极材料析出的过渡金属离子,从而避免过渡金属离子在负极表面形成过渡金属析出物,提高电池的安全性、倍率性能和循环性能。同时,由于所述改性层是包覆在无机陶瓷颗粒表面的,因此并不会对电池的内阻产生明显的影响,从而不会降低电池的倍率、低温和循环性能。不仅如此,发明人还出人意料地发现所述改性材料的引入还可以实现对电池体系中产生的微量的HF的吸附,一方面可以抑制过渡金属离子的溶出,稳定正极表面结构,改善电池性能;另一方面可 以降低HF对电池外包材料的腐蚀,改善电池安全性能。
附图说明
图1:本申请的陶瓷颗粒的改性反应示意图。
图2:本申请的陶瓷颗粒吸附过渡金属离子的示意图。
图3:本申请的锂离子电池的电芯结构示意图。
图4:使用实施例1和对比例1隔膜的电池循环测试结果图。
图5:使用实施例1和对比例1隔膜的电池倍率测试结果图。
具体实施方式
下文将结合具体实施例对本申请的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本申请,而不应被解释为对本申请保护范围的限制。凡基于本申请上述内容所实现的技术均涵盖在本申请旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1
将20份改性材料通过搅拌方式溶解于乙醇中,形成混合溶液,加入200份三氧化二铝,搅拌混合均匀后,通过真空加热干燥技术除去混合物中的溶剂,得到改性材料包覆陶瓷材料的颗粒,所述改性材料选自乙二胺四乙酸取代的3-氨丙基三甲氧基硅烷。
制备得到的陶瓷颗粒中,壳层为包含乙二胺四乙酸取代的3-氨丙基三甲氧基硅烷的改性材料,核芯为三氧化二铝;壳层和核芯的质量比为20:200,壳层的厚度为10nm,陶瓷颗粒的平均粒径约为0.8μm。
将80份上述制备得到的陶瓷颗粒、20份聚偏氟乙烯-六氟丙烯和2份聚乙二醇加入到900份N,N-二甲基乙酰胺中,均匀混合后得到混合浆料,将混合浆料通过微凹版涂覆在隔膜基层表面,经干燥后得到所述隔膜。
所述隔膜为厚度为9μm的湿法基材隔膜,单面涂覆,涂层厚度为3μm,隔膜总面密度为10.6g/m 2
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例2
将20份改性材料通过搅拌方式溶解于乙醇中,形成混合溶液,加入200份勃姆石,搅拌混合均匀后,通过真空加热干燥技术除去混合物中的溶剂,得到改性材料包覆陶瓷材料的颗粒,所述改性材料选自羟乙基乙二胺三乙酸取代的3-氨丙基三甲氧基硅烷。
制备得到的陶瓷颗粒中,壳层为包含羟乙基乙二胺三乙酸取代的3-氨丙基三甲氧基硅烷的改性材料,核芯为勃姆石;壳层和核芯的质量比为20:200,壳层的厚度为10nm,陶瓷颗粒的平均粒径约为0.8μm。
隔膜和锂离子电池的制备方法同实施例1,区别在于使用上述制备得到的陶瓷颗粒。
实施例3
将20份改性材料通过搅拌方式溶解于乙二醇中,形成混合溶液,加入200份三氧化二铝,搅拌混合均匀后,通过真空加热干燥技术除去混合物中的溶剂,得到改性材料包覆陶瓷材料的颗粒,所述改性材料选自吡啶取代的3-氨丙基三甲氧基硅烷。
制备得到的陶瓷颗粒中,壳层为包含吡啶取代的3-氨丙基三甲氧基硅烷的改性材料,核芯为三氧化二铝;壳层和核芯的质量比为20:200,壳层的厚度为10nm,陶瓷颗粒的平均粒径约为0.8μm。
隔膜和锂离子电池的制备方法同实施例1,区别在于使用上述制备得到的陶瓷颗粒。
实施例4
将20份改性材料通过搅拌方式溶解于丙二醇中,形成混合溶液,加入200份三氧化二铝,搅拌混合均匀后,通过真空加热干燥技术除去混合物中的溶剂,得到改性材料包覆陶瓷材料的颗粒,所述改性材料选自咪唑取代的3-氨丙基三甲氧基硅烷。
制备得到的陶瓷颗粒中,壳层为包含咪唑取代的3-氨丙基三甲氧基硅烷的改性材料,核芯为三氧化二铝;壳层和核芯的质量比为50:200,壳层的厚度为20nm,陶瓷颗粒的平均粒径约为0.9μm。
隔膜和锂离子电池的制备方法同实施例1,区别在于使用上述制备得到的陶瓷颗粒。
实施例5
将20份改性材料通过搅拌方式溶解于丙二醇中,形成混合溶液,加入200份氧化镁,搅拌混合均匀后,通过真空加热干燥技术除去混合物中的溶剂,得到改性材料包覆陶瓷材料的颗粒,所述改性材料选自咪唑取代的3-氨丙基三甲氧基硅烷。
制备得到的陶瓷颗粒中,壳层为包含咪唑取代的3-氨丙基三甲氧基硅烷的改性材料,核芯为氧化镁;壳层和核芯的质量比为100:200,壳层的厚度为40nm,陶瓷颗粒的平均粒径约为1.0μm。
隔膜和锂离子电池的制备方法同实施例1,区别在于使用上述制备得到的陶瓷颗粒。
实施例6
改性材料包覆陶瓷材料的颗粒的制备同实施例1。
将60份上述制备得到的陶瓷颗粒、40份聚(甲基)丙烯酸甲酯和4份聚乙二醇加入到900份N,N-二甲基乙酰胺中,均匀混合后得到混合浆料,将混合浆料通过微凹版涂覆在隔膜基层表面,经干燥后得到所述隔膜。
所述隔膜为厚度为9μm的湿法基材隔膜,单面涂覆,涂层厚度为3μm,隔膜总面密度为10.6g/m 2
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例7
改性材料包覆陶瓷材料的颗粒的制备同实施例1。
将95份上述制备得到的陶瓷颗粒、5份丁苯橡胶加入到900份N-甲基-2-吡咯 烷酮(NMP)中,均匀混合后得到混合浆料,将混合浆料通过微凹版涂覆在隔膜基层表面,经干燥后得到所述隔膜。
所述隔膜为厚度为9μm的湿法基材隔膜,单面涂覆,涂层厚度为3μm,隔膜总面密度为10.6g/m 2
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
对比例1
将80份氧化铝的陶瓷颗粒、20份聚偏氟乙烯-六氟丙烯和2份聚乙二醇加入到900份N,N-二甲基乙酰胺中,均匀混合后得到混合浆料,将混合浆料通过微凹版涂覆在隔膜基层表面,经干燥后得到所述隔膜。
所述隔膜为厚度为9μm的湿法基材隔膜,单面涂覆,涂层厚度为3μm,隔膜总面密度为10.6g/m 2
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
对比例2
将20份包含乙二胺四乙酸、80份氧化铝的陶瓷颗粒、20份聚偏氟乙烯-六氟丙烯和2份聚乙二醇加入到900份N,N-二甲基乙酰胺中,均匀混合后得到混合浆料,将混合浆料通过微凹版涂覆在隔膜基层表面,经干燥后得到所述隔膜。
所述隔膜为厚度为9μm的湿法基材隔膜,单面涂覆,涂层厚度为3μm,隔膜总面密度为10.6g/m 2
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
测试例1
将实施例1-7、对比例1-2制备的锂离子电池进行电压测试和内阻测试,测试过程是将实施例1-7、对比例1-2制备的锂离子电池充满电后置于25℃、50%湿度的环境中,用电压内阻仪(安柏-Applent,型号AT526B)测试电池满电状态下的电压和内阻,结果如表1所示。
表1实施例1-7、对比例1-2的锂离子电池的电压测试和内阻测试结果
样品编号 锂电池平均电压 锂离子电池内阻
实施例1 4.2016V 12.18mΩ
实施例2 4.2011V 12.32mΩ
实施例3 4.2012V 11.98mΩ
实施例4 4.2008V 12.21mΩ
实施例5 4.2011V 11.97mΩ
实施例6 4.2009V 11.87mΩ
实施例7 4.2003V 12.05mΩ
对比例1 4.2010V 12.36mΩ
对比例2 4.2017V 18.35mΩ
实施例1-7将改性材料包覆陶瓷材料的颗粒应用在隔膜中并组装成锂离子电池,通过表1的数据得知,实施例1-7和对比例1-2制备的锂离子电池分选后,电压正常,但对比例2内阻明显增加,这主要是由于在浆料中直接加入改性材料会影响锂离子的通透性;
将实施例1、对比例1制备的锂离子电池进行充放电循环和倍率性能测试,充放电循环测试采用1C充电/1C放电的制度进行测试;倍率性能测试采用0.2C充电/0.2C、0.5C、1C、3C、5C放电的制度进行测试,结果如图4和图5所示,从图4和图5中可以看出,实施例1的电池不仅在循环后期能保持良好的容量保持率,而且在电池高倍率放电下能保持很好的容量保持率。
通过对比实施例1-7、对比例1-2的实验结果,得出以下结论:
1、直接将改性材料加入到涂层中,应用在锂离子电池隔膜中,改性材料会影响锂离子电池中锂离子的通透性,导致锂离子电池的内阻增加;
2、实施例1-7中采用改性材料包覆陶瓷材料的颗粒并应用在锂离子电池隔膜中,不影响锂离子电池内阻、不影响锂离子电池电压、不影响锂离子电池充放电循环,满足应用需求。
测试例2
将实施例1-7、对比例1-2制备的锂离子电池隔膜进行金属离子测试,测试过程如下:
取100mm*100mm大小的实施例1-7、对比例1-2制备的隔膜片,分别放置于装有100mL的0.1wt%含量CoCl 2水溶液烧杯中,再将烧杯置于150℃的加热板上放置30min,待冷却后取出隔膜,对其进行ICP测试分析。
ICP测试结果如下:
样品编号 Co含量(PPM)
实施例1 177
实施例2 181
实施例3 183
实施例4 205
实施例5 227
实施例6 178
实施例7 182
对比例1 126
对比例2 183
通过以上数据可以看出:加入改性陶瓷颗粒后的隔膜对金属离子的吸附能力有显著的提升。
测试例3
将实施例1、对比例1制备的锂离子电池循环后进行拆解,对其隔膜和负极进行ICP检测,检测结果如下:
样品编号 隔膜(ppm) 负极(ppm)
实施例1 1275 336
对比例1 267 1130
通过以上数据可以看出:加入改性陶瓷颗粒后的隔膜对金属离子的吸附能力有显著的提升,从而保证电池的循环性能。
以上,对本申请的实施方式进行了说明。但是,本申请不限定于上述实施方式。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种陶瓷颗粒,其中,所述陶瓷颗粒具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括改性材料,形成所述核芯的材料包括无机陶瓷材料;
    所述改性材料选自取代的硅氧烷,形成取代基的化合物选自含有羧基的胺类化合物,或者选自含氮的杂环化合物。
  2. 根据权利要求1所述的陶瓷颗粒,其中,所述含有羧基的胺类化合物选自含有至少两个羧基的多元胺类化合物,如选自乙二胺四乙酸、丙二胺四乙酸、羟乙基乙二胺三乙酸、乙二醇二乙醚二胺四乙酸中的一种或两种以上;
    优选地,所述含氮的杂环化合物例如选自含有一个氮或两个氮的杂环化合物,如选自吡啶、咪唑中的一种或两种以上;
    优选地,所述硅氧烷选自含有氨基的硅氧烷;如选自3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、2-氨乙基三甲氧基硅烷、2-氨乙基三乙氧基硅烷中的一种或多种。
  3. 根据权利要求1或2所述的陶瓷颗粒,其中,所述无机陶瓷材料选自氧化铝、氧化镁、勃姆石、硫酸钡、钛酸钡、氧化锌、氧化钙、二氧化硅、碳化硅、氧化镍中的一种或两种以上;
    优选地,所述壳层也称为改性层;
    优选地,所述壳层的厚度为5nm-1000nm;
    优选地,所述无机陶瓷材料的平均粒径为0.01μm-20μm。
  4. 权利要求1-3任一项所述的陶瓷颗粒的制备方法,所述方法包括如下步骤:
    采用硅烷化处理法,将包括改性材料的形成壳层的材料包覆在包括无机陶瓷材料的形成核芯的材料表面,制备得到所述陶瓷颗粒;其中,所述陶瓷颗粒具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括改性材料,形成所述核芯的材料包括无机陶瓷材料;
    优选地,所述硅烷化处理法包括如下步骤:
    将形成壳层的材料通过搅拌方式加入到溶剂中形成含有形成壳层的材料的溶液;在前述溶液中加入形成核芯的材料,搅拌混合均匀;通过真空加热干燥或喷雾干燥等除去混合体系中的溶剂,得到所述陶瓷颗粒,其中,所述陶瓷颗粒具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括改性材料,形 成所述核芯的材料包括无机陶瓷材料。
  5. 一种隔膜,所述隔膜包括隔膜基层和位于隔膜基层至少一侧表面的涂覆层,所述涂覆层由包括权利要求1-3任一项所述陶瓷颗粒的混合体系在隔膜基层至少一侧表面涂覆得到。
  6. 根据权利要求5所述的隔膜,其中,所述涂覆层的厚度为1-10μm;所述厚度的涂覆层可以是一次涂覆得到的,也可以是多次涂覆得到的;
    优选地,若所述隔膜包括隔膜基层和位于隔膜基层两侧表面的涂覆层,则两侧表面的涂覆层的厚度相同或不同。
  7. 根据权利要求5或6所述的隔膜,其中,所述混合体系中还包括聚合物粘结剂和助剂中的至少一种;
    优选地,所述混合体系中各组分的质量份数如下所示:
    50-95质量份的上述陶瓷颗粒、5-40质量份的聚合物粘结剂和0-10质量份的助剂;
    优选地,所述混合体系中各组分的质量份数如下所示:
    60-95质量份的上述陶瓷颗粒、10-30质量份聚合物粘结剂和0-5质量份助剂;
    优选地,所述混合体系还包括100-5000质量份的溶剂,例如还包括500-2000质量份的溶剂。
  8. 权利要求5-7任一项所述的隔膜的制备方法,其中,所述方法包括如下步骤:
    (a)将权利要求1-3任一项所述的陶瓷颗粒、任选地聚合物粘结剂和任选地助剂加入到溶剂中,混合,得到混合浆料;
    (b)将步骤(a)的混合浆料涂覆在隔膜基层表面,经干燥后得到所述隔膜。
  9. 根据权利要求8所述的制备方法,其中,步骤(a)中,所述混合浆料中,上述陶瓷颗粒、任选地聚合物粘结剂、任选地助剂和溶剂的质量份数如下所示:
    50-95质量份的上述陶瓷颗粒、5-40质量份的聚合物粘结剂、0-10质量份的助剂和100-5000质量份溶剂;
    优选地,所述混合体系中各组分的质量份数如下所示:
    60-95质量份的上述陶瓷颗粒、10-30质量份聚合物粘结剂、0-5质量份助剂和500-2000质量份溶剂。
  10. 一种锂离子电池,所述锂离子电池包括权利要求5-7任一项所述的隔膜;
    优选地,所述锂离子电池还包括正极、负极和电解液。
PCT/CN2020/128134 2019-11-14 2020-11-11 一种隔膜及包括该隔膜的高电压电池 WO2021093774A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080077087.6A CN114641890A (zh) 2019-11-14 2020-11-11 一种隔膜及包括该隔膜的高电压电池
EP20886697.0A EP4050710A4 (en) 2019-11-14 2020-11-11 DIAPHRAGM AND HIGH VOLTAGE BATTERY INCLUDING THE LATTER
US17/744,633 US20220271329A1 (en) 2019-11-14 2022-05-14 Diaphragm and high-voltage battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911115315.XA CN111029514B (zh) 2019-11-14 2019-11-14 一种隔膜及包括该隔膜的高电压电池
CN201911115315.X 2019-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/744,633 Continuation US20220271329A1 (en) 2019-11-14 2022-05-14 Diaphragm and high-voltage battery comprising same

Publications (1)

Publication Number Publication Date
WO2021093774A1 true WO2021093774A1 (zh) 2021-05-20

Family

ID=70200305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128134 WO2021093774A1 (zh) 2019-11-14 2020-11-11 一种隔膜及包括该隔膜的高电压电池

Country Status (4)

Country Link
US (1) US20220271329A1 (zh)
EP (1) EP4050710A4 (zh)
CN (2) CN111029514B (zh)
WO (1) WO2021093774A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843702A (zh) * 2022-05-09 2022-08-02 上海恩捷新材料科技有限公司 金属化合物隔膜及其制备方法与应用
CN114927828A (zh) * 2022-07-19 2022-08-19 浙江金羽新能源科技有限公司 一种具有缓释功能的复合隔膜及其制备方法和应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029514B (zh) * 2019-11-14 2021-09-28 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的高电压电池
CN113764830A (zh) * 2020-05-19 2021-12-07 重庆恩捷纽米科技股份有限公司 离子选择性功能隔膜及其制备方法和应用
CN111900313A (zh) * 2020-07-27 2020-11-06 珠海冠宇电池股份有限公司 一种隔膜及其应用
CN111952668B (zh) * 2020-08-13 2022-05-31 梅州市量能新能源科技有限公司 电解液、锂离子电池及其制备方法
CN112234312A (zh) * 2020-08-31 2021-01-15 广东工业大学 一种静电纺丝凝胶电池隔膜及其制备方法和应用
CN112886133A (zh) * 2021-01-05 2021-06-01 中材锂膜有限公司 一种消除质子氢的涂覆隔膜及其制备方法
CN113131087B (zh) * 2021-04-12 2022-09-30 中国科学技术大学 生物基锂电池隔膜及其制备方法
CN113136121B (zh) * 2021-04-14 2022-04-19 合肥利夫生物科技有限公司 一种生物基隔膜涂敷液及其制备方法和在锂电池中的应用
CN113736430A (zh) * 2021-09-17 2021-12-03 东莞新能德科技有限公司 相变隔热材料及其制备方法和应用
CN115172990A (zh) * 2022-07-08 2022-10-11 珠海冠宇电池股份有限公司 一种隔膜和电池
CN115832623A (zh) * 2022-10-14 2023-03-21 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、二次电池和用电装置
CN116315455B (zh) * 2023-05-04 2023-08-08 合肥长阳新能源科技有限公司 一种高离子电导率耐高温锂电池隔膜及其制备方法
CN116315463B (zh) * 2023-05-11 2023-08-18 中创新航科技集团股份有限公司 一种锂电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246913A (ja) * 1999-02-04 2007-09-27 Mizutani Paint Co Ltd 水性分散体およびその製造方法並びに塗料組成物
CN104054195A (zh) * 2012-03-05 2014-09-17 株式会社Lg化学 将无机颗粒涂布在锂二次电池基底上的方法,以及包含由该方法所涂布的基底的锂二次电池
CN104934606A (zh) * 2015-05-18 2015-09-23 宁德新能源科技有限公司 一种硅基复合材料、其制备方法及应用
CN105440770A (zh) * 2014-06-30 2016-03-30 成都中科来方能源科技有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN108305972A (zh) * 2017-12-29 2018-07-20 深圳中兴创新材料技术有限公司 一种陶瓷涂层隔膜及制备方法和应用
CN109192903A (zh) * 2018-08-20 2019-01-11 合肥国轩高科动力能源有限公司 一种锂离子电池用包覆改性陶瓷涂覆隔膜的制备方法
CN111029514A (zh) * 2019-11-14 2020-04-17 珠海冠宇电池有限公司 一种隔膜及包括该隔膜的高电压电池

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969769B2 (en) * 2002-06-14 2005-11-29 Vanson Halosource, Inc. N-halamine siloxanes for use in biocidal coatings and materials
KR20120099001A (ko) * 2009-10-15 2012-09-06 도레이 카부시키가이샤 코어 쉘 입자의 제조 방법, 코어 쉘 입자 및 그것을 사용한 페이스트 조성물 및 시트 조성물
US8470898B2 (en) * 2011-05-31 2013-06-25 GM Global Technology Operations LLC Methods of making lithium ion battery separators
CN103545472B (zh) * 2012-07-17 2016-03-02 比亚迪股份有限公司 一种锂电池用复合隔膜及其制备方法和包括该复合隔膜的锂电池
CN103031006A (zh) * 2012-09-29 2013-04-10 复旦大学 无机纳微粒子的表面处理方法及复合材料的制备方法
CN103078075B (zh) * 2012-12-31 2014-04-02 深圳中兴创新材料技术有限公司 具有耐高温层的复合膜、制备方法和电池
US9680143B2 (en) * 2013-10-18 2017-06-13 Miltec Uv International Llc Polymer-bound ceramic particle battery separator coating
CN103956451B (zh) * 2014-05-16 2017-01-04 中国东方电气集团有限公司 一种锂离子电池用复合陶瓷隔膜及其制备方法
CN104091910B (zh) * 2014-06-25 2016-05-04 中国第一汽车股份有限公司 一种陶瓷改性锂离子电池隔膜的制备方法
CN105206798A (zh) * 2015-08-13 2015-12-30 深圳市三讯电子有限公司 一种负极极片及其制备方法、锂离子电池
JP6840396B2 (ja) * 2015-08-26 2021-03-10 厦▲門▼大学 改質のセラミックセパレータ複合体及びその製造方法
KR20180041683A (ko) * 2015-08-31 2018-04-24 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층, 및 비수계 이차 전지
CN106519742B (zh) * 2016-11-01 2018-11-16 旭成(福建)科技股份有限公司 一种阻燃陶瓷改性浆料及涂覆该浆料的锂离子电池隔膜
CN106684299A (zh) * 2017-02-06 2017-05-17 旭成(福建)科技股份有限公司 一种具有闭孔性能的陶瓷涂层及含有该陶瓷涂层的锂离子电池隔膜
CN107275550B (zh) * 2017-06-20 2020-07-07 深圳市星源材质科技股份有限公司 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
CN109285982B (zh) * 2017-07-20 2021-12-07 天津凯普瑞特新能源科技有限公司 一种锂电池隔膜及其生产方法
CN107492620A (zh) * 2017-08-16 2017-12-19 广州鹏辉能源科技股份有限公司 一种耐高温锂电池隔膜及其制备方法
CN107742689A (zh) * 2017-10-26 2018-02-27 申成利 一种锂电池用有机无机复合隔膜、制备方法及包含所述隔膜的锂电池
CN109841779A (zh) * 2017-11-24 2019-06-04 深圳市比亚迪锂电池有限公司 一种电池隔膜及其制备方法和电池
CN108539096A (zh) * 2018-04-03 2018-09-14 芜湖华佳新能源技术有限公司 一种用于新能源汽车的锂离子电池隔膜及其制备方法
CN109135558A (zh) * 2018-08-23 2019-01-04 上海金力泰化工股份有限公司 一种陶瓷树脂及其应用
CN109616604A (zh) * 2018-12-24 2019-04-12 珠海光宇电池有限公司 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池
CN109742298A (zh) * 2019-01-08 2019-05-10 桑顿新能源科技有限公司 多孔陶瓷隔膜浆料及其制备方法、电池隔膜及电池
CN110323395B (zh) * 2019-05-11 2022-03-25 珠海冠宇电池股份有限公司 一种聚合物锂离子电池及聚合物锂离子电池制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246913A (ja) * 1999-02-04 2007-09-27 Mizutani Paint Co Ltd 水性分散体およびその製造方法並びに塗料組成物
CN104054195A (zh) * 2012-03-05 2014-09-17 株式会社Lg化学 将无机颗粒涂布在锂二次电池基底上的方法,以及包含由该方法所涂布的基底的锂二次电池
CN105440770A (zh) * 2014-06-30 2016-03-30 成都中科来方能源科技有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN104934606A (zh) * 2015-05-18 2015-09-23 宁德新能源科技有限公司 一种硅基复合材料、其制备方法及应用
CN108305972A (zh) * 2017-12-29 2018-07-20 深圳中兴创新材料技术有限公司 一种陶瓷涂层隔膜及制备方法和应用
CN109192903A (zh) * 2018-08-20 2019-01-11 合肥国轩高科动力能源有限公司 一种锂离子电池用包覆改性陶瓷涂覆隔膜的制备方法
CN111029514A (zh) * 2019-11-14 2020-04-17 珠海冠宇电池有限公司 一种隔膜及包括该隔膜的高电压电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050710A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843702A (zh) * 2022-05-09 2022-08-02 上海恩捷新材料科技有限公司 金属化合物隔膜及其制备方法与应用
CN114927828A (zh) * 2022-07-19 2022-08-19 浙江金羽新能源科技有限公司 一种具有缓释功能的复合隔膜及其制备方法和应用
CN114927828B (zh) * 2022-07-19 2022-10-25 浙江金羽新能源科技有限公司 一种具有缓释功能的复合隔膜及其制备方法和应用

Also Published As

Publication number Publication date
CN111029514B (zh) 2021-09-28
CN111029514A (zh) 2020-04-17
EP4050710A4 (en) 2022-12-21
CN114641890A (zh) 2022-06-17
EP4050710A1 (en) 2022-08-31
US20220271329A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021093774A1 (zh) 一种隔膜及包括该隔膜的高电压电池
CN110660965B (zh) 负极片及其制备方法和锂离子电池及其制备方法和应用
US10734627B2 (en) Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
WO2018145666A1 (zh) 耐高温多种涂层的锂离子电池隔膜及其制备方法
CN112795184B (zh) 一种聚合物颗粒、含有该聚合物颗粒的隔膜及锂离子电池
CN111785923B (zh) 锂离子电池阳极及其制备方法和应用与锂离子电池
CN109755448A (zh) 一种带有补锂涂层的锂电池隔膜及其制备方法
CN104078246A (zh) 一种锂离子电池电容器
TW201436343A (zh) 電池隔板上之陶瓷塗層
CN112259803B (zh) 一种锂离子叠芯及其应用
CN110247009A (zh) 一种防过充隔膜及其制备方法和锂离子电池
CN111129579A (zh) 一种硫化物固态电解质材料及其制备方法与固态电池
WO2024011620A1 (zh) 二次电池、电池模块、电池包和用电装置
WO2018074775A1 (ko) 도파민계 단량체가 표면중합된 금속 부직포 전극 및 이를 위한 표면 개질 방법
CN115088128A (zh) 用于锂二次电池的隔板及制造该隔板的方法
CN107331528A (zh) 多层复合电极及采用该电极的锂离子电池电容
CN114006024A (zh) 一种隔膜及含有该隔膜的电池
CN113764646B (zh) 一种高能量密度快充石墨复合材料及其制备方法
CN111293256B (zh) 一种陶瓷颗粒、包括该陶瓷颗粒的隔膜及电池
CN111900317A (zh) 复合隔膜及其制备方法和锂离子电池
Luo et al. A multifunctional polyimide nanofiber separator with a self-closing polyamide–polyvinyl alcohol top layer with a Turing structure for high-performance lithium–sulfur batteries
CN116014355A (zh) 一种预钠化隔膜及其制备方法
CN107680819B (zh) 一种锂离子电容器
CN114335535B (zh) 一种防爆锂电池浆料及其制备方法
WO2023088133A1 (zh) 正极补锂添加剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020886697

Country of ref document: EP

Effective date: 20220523

NENP Non-entry into the national phase

Ref country code: DE