WO2021079434A1 - 半導体ウエハおよびその製造方法 - Google Patents
半導体ウエハおよびその製造方法 Download PDFInfo
- Publication number
- WO2021079434A1 WO2021079434A1 PCT/JP2019/041534 JP2019041534W WO2021079434A1 WO 2021079434 A1 WO2021079434 A1 WO 2021079434A1 JP 2019041534 W JP2019041534 W JP 2019041534W WO 2021079434 A1 WO2021079434 A1 WO 2021079434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon substrate
- insulating film
- semiconductor wafer
- gallium nitride
- wafer according
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 122
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 114
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 114
- 239000010703 silicon Substances 0.000 claims abstract description 114
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 72
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims description 41
- 238000005530 etching Methods 0.000 claims description 24
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/04—Pattern deposit, e.g. by using masks
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/04—Pattern deposit, e.g. by using masks
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/562—Protection against mechanical damage
Definitions
- the present invention relates to a semiconductor wafer and a method for manufacturing the same.
- Patent Document 1 discloses a method of growing a semiconductor layer having a lattice constant different from that of the substrate on a substrate which is sapphire or silicon carbide.
- a layer having an opening for selectively growing a semiconductor layer is formed in a predetermined portion on the substrate, and the predetermined portion of the substrate is exposed by the opening.
- the semiconductor layer is then selectively heteroepitaxially grown on the surface of the substrate exposed by the openings.
- the substrate When gallium nitride is grown on a silicon substrate, the substrate may warp due to the difference in lattice constant between the two.
- the warpage of the substrate can be reduced by dividing the semiconductor layer.
- the method of Patent Document 1 may not be able to sufficiently suppress the warp. This may make the subsequent steps such as the exposure step difficult.
- the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a semiconductor wafer capable of suppressing warpage of a substrate and a method for manufacturing the same.
- the method for manufacturing a semiconductor wafer according to the present invention is a first step of forming a gallium nitride growth layer divided into a plurality of small compartments on the upper surface of a silicon substrate, and a first step of filling the space between the plurality of small compartments with an insulating film.
- the insulating film comprises two steps, and the insulating film exerts a stress on the silicon substrate in the direction opposite to the stress exerted on the silicon substrate by the gallium nitride growth layer.
- the semiconductor wafer according to the present invention is provided on a silicon substrate, a gallium nitride growth layer provided on the upper surface of the silicon substrate and divided into a plurality of subsections, and a plurality of subsections provided on the upper surface of the silicon substrate.
- An insulating layer that fills the space is provided, and the insulating layer exerts a stress on the silicon substrate in the direction opposite to the stress that the gallium nitride growth layer exerts on the silicon substrate.
- the warp of the silicon substrate can be suppressed by the insulating film.
- the warp of the silicon substrate can be suppressed by the insulating layer.
- FIG. It is sectional drawing of the semiconductor wafer which concerns on Embodiment 1.
- FIG. It is a top view which shows the state which formed the thermal oxide film on the silicon substrate. It is a top view which shows the state which the thermal oxide film was removed. It is sectional drawing which shows the state which removed the thermal oxide film. It is sectional drawing which shows the state which formed the insulating film.
- FIG. It is sectional drawing of the semiconductor wafer which concerns on Embodiment 2.
- FIG. It is sectional drawing explaining the manufacturing method of the semiconductor wafer which concerns on Embodiment 2.
- FIG. It is sectional drawing which shows the state which exposed the upper surface of a plurality of small sections. It is sectional drawing of the semiconductor wafer which concerns on Embodiment 3.
- FIG. It is sectional drawing of the semiconductor wafer which concerns on Embodiment 4.
- FIG. 1 is a cross-sectional view of the semiconductor wafer 100 according to the first embodiment.
- the semiconductor wafer 100 includes a silicon substrate 10.
- a gallium nitride growth layer 12 is provided on the upper surface of the silicon substrate 10.
- the gallium nitride growth layer 12 is divided into a plurality of subsections 13.
- the plurality of subsections 13 are separated from each other.
- the gallium nitride growth layer is, for example, a multilayer film including an In 1-x-y Ga x Al y N layer.
- An insulating film 14 is provided on the upper surface of the silicon substrate 10.
- the insulating film 14 fills the space between the plurality of subsections 13.
- the thickness of the insulating film 14 is, for example, 1 ⁇ m or more, and is equal to or less than the thickness of the gallium nitride growth layer 12.
- the insulating film 14 is, for example, a silicon nitride film.
- the insulating film 14 is continuous from one end to the other end of the silicon substrate 10.
- FIG. 2 is a plan view showing a state in which the thermal oxide film 16 is formed on the silicon substrate 10.
- a grid pattern is formed on the thermal oxide film 16 by photolithography. As a result, a grid-like oxide film is formed.
- the upper surface of the silicon substrate 10 is divided into a plurality of regions 11 by a thermal oxide film 16.
- the gallium nitride growth layer 12 is formed on the silicon substrate 10.
- the gallium nitride growth layer 12 is formed by, for example, an organic metal vapor phase growth method or a molecular beam epitaxy method.
- the gallium nitride growth layer 12 is formed on the portion of the silicon substrate 10 that is not covered with the thermal oxide film 16. That is, a plurality of subdivisions 13 are grown in each of the plurality of regions 11.
- the gallium nitride growth layer 12 includes a buffer layer for epitaxially growing gallium nitride.
- FIG. 3 is a plan view showing a state in which the thermal oxide film 16 is removed.
- FIG. 4 is a cross-sectional view showing a state in which the thermal oxide film 16 is removed.
- FIG. 5 is a cross-sectional view showing a state in which the insulating film 14 is formed.
- the insulating film 14 is deposited on the silicon substrate 10 by, for example, a CVD (Chemical Vapor Deposition) method.
- the insulating film 14 is formed so as to be in close contact with the silicon substrate 10.
- the insulating film 14 exerts a stress on the silicon substrate 10 in the direction opposite to the stress exerted by the gallium nitride growth layer 12 on the silicon substrate 10.
- the insulating film 14 is formed of a material that applies a stress opposite to that of the gallium nitride growth layer 12 to the silicon substrate 10.
- the insulating film 14 is, for example, a silicon nitride film or a silicon oxide film.
- the insulating film 14 is preferably formed of a material that exerts a large stress on the silicon substrate 10.
- the silicon nitride film can generate tensile stress or compressive stress of about several GPa depending on the film forming conditions. Although it depends on the manufacturing apparatus, it is possible to obtain a film stress of about 300 MPa for a silicon nitride film formed by plasma CVD and about 1 GPa for a silicon nitride film formed by thermal CVD.
- the insulating film 14 may be formed by ECR (Electron Cyclotron Resonance) sputtering. With the silicon nitride film formed by ECR sputtering, a film stress of about 3 GPa can be obtained.
- the insulating film 14 may be formed by plasma CVD using SiH 4 and NH 3 as the process gas.
- the film stress can be changed from a tensile stress of about 100 MPa to a compressive stress of about 300 MPa. Therefore, for example, by setting the ratio of SiH 4 to NH 3 to 0.5 or less, tensile stress can be applied from the insulating film 14 to the silicon substrate 10. Further, by setting the ratio of SiH 4 to NH 3 to 2 or more, tensile stress can be applied from the insulating film 14 to the silicon substrate 10.
- the insulating film 14 is removed until the gallium nitride growth layer 12 is exposed.
- the insulating film 14 is removed by etching such as dry etching.
- the thickness of the insulating film 14 is adjusted by adjusting the etching time.
- the warp that can be corrected increases in proportion to the thickness of the insulating film 14.
- the thickness of the insulating film 14 may be determined from the amount of warpage of the silicon substrate 10 in the state before the gallium nitride growth layer 12 is formed and the insulating film 14 is formed.
- the thickness of the insulating film 14 may be set so that the silicon substrate 10 is flat in the state where the insulating film 14 is formed.
- the film thickness of the insulating film required to alleviate the warp of the substrate depends on the size of the region between the gallium nitride growth layers or the size of the film stress of the insulating film.
- the warp of the silicon substrate 10 of about several ⁇ m to 10 ⁇ m can be corrected as compared with the case where the insulating film 14 is not provided.
- the width of the insulating film 14 sandwiched between the adjacent small compartments 13 is set to 1/10 with respect to the width of the small compartment 13.
- the thickness of the silicon substrate 10 is set to 625 ⁇ m. From the above, for example, by setting the thickness of the insulating film 14 to 1 ⁇ m or more, the warpage of the silicon substrate 10 can be sufficiently suppressed.
- the insulating film 14 is formed. As shown in FIG. 3, the insulating film 14 is formed in a portion where the gallium nitride growth layer 12 is removed and the silicon substrate 10 is exposed in a grid pattern. That is, the insulating film 14 is formed in a grid pattern.
- electrodes and the like are formed on the surface of the gallium nitride growth layer 12 exposed from the insulating film 14. This forms the device.
- a heterostructure can be produced by using a nitride-based semiconductor material such as gallium nitride (GaN), aluminum gallium nitride (AlGaN), and aluminum nitride (AlN). For this reason, these materials may be used in the production of high frequency devices, optical devices or power devices.
- a nitride-based semiconductor material such as gallium nitride (GaN), aluminum gallium nitride (AlGaN), and aluminum nitride (AlN).
- GaN gallium nitride
- AlGaN aluminum gallium nitride
- AlN aluminum nitride
- Nitride-based semiconductor structures are generally made by epitaxially growing on silicon carbide, sapphire or silicon substrates.
- a silicon substrate is cheaper than silicon carbide or the like. Therefore, the material cost can be reduced.
- the substrate may warp. This may cause problems in processes such as transport or exposure steps.
- the lattice constant of gallium nitride is 0.3819 nm.
- the grid spacing of gallium nitride is narrower than that of silicon. Therefore, the silicon substrate receives compressive stress from gallium nitride grown heteroepitaxially on the (111) plane.
- the coefficient of linear expansion of silicon is 2.6 ⁇ 10 -6 K -1 .
- the coefficient of linear expansion of gallium nitride is 5.6 ⁇ 10 -6 K -1 .
- gallium nitride is grown at a high temperature of 800 ° C. or higher. Therefore, when the temperature is lowered from the growth temperature to room temperature, gallium nitride shrinks more than silicon. Therefore, the silicon substrate receives compressive stress from the gallium nitride growth layer.
- Another possible method is to divide the gallium nitride growth layer into small sections and disperse the stress to reduce the warpage of the substrate.
- it is generally difficult to completely eliminate the warp of the substrate. For example, a wafer warp of about several ⁇ m to 10 ⁇ m may remain on a 4-inch substrate. Such warpage is particularly problematic in a gate exposure process or the like that requires the formation of a fine pattern.
- the insulating film 14 of the present embodiment exerts a stress on the silicon substrate 10 in the direction opposite to the stress exerted by the gallium nitride growth layer 12 on the silicon substrate 10. That is, when the gallium nitride growth layer 12 exerts a compressive stress on the silicon substrate 10, a insulating film 14 that exerts a tensile stress on the silicon substrate is used. When the gallium nitride growth layer 12 exerts a tensile stress on the silicon substrate 10, a insulating film 14 that exerts a compressive stress on the silicon substrate is used.
- the stress received from the gallium nitride growth layer 12 on the silicon substrate 10 can be canceled by the insulating film 14. Therefore, the warp of the silicon substrate 10 can be alleviated.
- both the effect of dividing the gallium nitride growth layer 12 into the subsections 13 to disperse the stress and the effect of canceling the stress by the insulating film 14 can be obtained. Therefore, the warp of the wafer can be suppressed and the exposure step can be easily carried out.
- the stress applied to the silicon substrate 10 can be adjusted by adjusting the thickness of the insulating film 14.
- the thickness of the insulating film 14 can be adjusted by the etching time. Therefore, the silicon substrate 10 can be easily flattened.
- thermal oxide film 16 shown in FIG. 2 It is difficult to suppress the warp by forming the thermal oxide film 16 shown in FIG. 2 thickly. In this case, a thick thermal oxide film 16 is formed on the silicon substrate 10 before the epitaxial growth. At this time, since the film stress of the thermal oxide film 16 is large, the wafer may be in a state of being greatly warped at the start of epitaxial growth. Therefore, the epitaxial growth process may be difficult.
- the thermal oxide film 16 needs to be formed thin so as to prevent the silicon substrate 10 from being greatly warped.
- the insulating film 14 is formed thicker than the thermal oxide film 16 so as to apply a large stress to the silicon substrate 10.
- the region from which the gallium nitride growth layer 12 shown in FIG. 3 has been removed is not limited to a grid pattern.
- the region from which the gallium nitride growth layer 12 has been removed may have a different shape as long as the gallium nitride growth layer 12 can be divided into a plurality of subsections 13. Considering that the insulating film 14 is formed and stress is applied to the silicon substrate 10, it is desirable that the region from which the gallium nitride growth layer 12 has been removed penetrates vertically and horizontally from one end to the other end of the silicon substrate 10.
- the first step may be performed as follows. First, the gallium nitride growth layer 12 is formed on the entire upper surface of the silicon substrate 10 by the organic metal vapor phase growth method or the molecular beam epitaxy method. Then, a mask layer such as a photoresist is formed on the gallium nitride growth layer 12. Next, the gallium nitride growth layer 12 is etched using the mask layer until the silicon substrate 10 is exposed. As a result, the silicon substrate 10 is exposed in a grid pattern, and the gallium nitride growth layer 12 is divided into a plurality of subsections 13. Next, the mask layer is removed.
- FIG. 6 is a cross-sectional view of the semiconductor wafer 200 according to the second embodiment.
- the structure of the insulating film 214 is different from that of the semiconductor wafer 100.
- a recess 215 is formed in the insulating film 214 between a pair of small compartments 13 adjacent to each other among the plurality of small compartments 13.
- FIG. 7 is a cross-sectional view illustrating the method for manufacturing the semiconductor wafer according to the second embodiment.
- the upper surface of the silicon substrate 10 and the side surfaces and the upper surface of each of the plurality of subsections 13 are covered with the insulating film 214.
- the insulating film 214 is formed along the silicon substrate 10 and the plurality of subsections 13.
- the surface of the insulating film 214 is formed with irregularities reflecting the shapes of the plurality of small compartments 13.
- a recess 215 is formed in the portion of the insulating film 214 between the pair of small compartments 13 adjacent to each other.
- the thickness of the portion of the insulating film 214 that covers the side surface of the subsection 13 is 1 ⁇ 2 or less of the width of the region sandwiched between the adjacent subparts 13.
- the resist 218 is provided on the insulating film 214 so as to fill the recess 215.
- the upper surface of resist 218 is flat.
- the resist 218 has a thickness that does not reflect the unevenness of the surface of the insulating film 214 on the upper surface of the resist 218.
- FIG. 8 is a cross-sectional view showing a state in which the upper surfaces of the plurality of subsections 13 are exposed.
- the insulating film 214 together with the resist 218 is removed by dry etching until the gallium nitride growth layer 12 is exposed.
- the portion of the resist 218 provided above the upper surface of the plurality of sub-compartments 13 and the portion of the insulating film 214 provided above the upper surface of the plurality of sub-compartments 13 are removed.
- etching conditions such that the etching rates of the resist 218 and the insulating film 214 are equal.
- etching conditions such that the etching rates of the resist 218 and the insulating film 214 are equal.
- a silicon oxide film and a silicon nitride film it is possible to find an etching condition having the same etching rate as that of a resist. As a result, the upper surfaces of the plurality of subsections 13 can be exposed with high accuracy.
- the portion of the resist 218 that fills the recess 215 is removed. From the above, the insulating film 214 is formed.
- a grid-like unevenness may be formed on the surface of the insulating film 214.
- the insulating film 214 on the silicon substrate 10 is also etched. Therefore, there is a possibility that the insulating film 214 hardly remains on the silicon substrate 10.
- the thickness of the insulating film 214 is the same on the gallium nitride growth layer 12 and the silicon substrate 10. Therefore, when the insulating film 214 is etched until the gallium nitride growth layer 12 is exposed, the insulating film 214 on the silicon substrate 10 is also completely removed.
- the insulating film 214 can be left thick on the silicon substrate 10 even when the surface of the insulating film 214 is uneven. Therefore, the insulating film 214 can sufficiently suppress the warp of the silicon substrate 10.
- FIG. 9 is a cross-sectional view of the semiconductor wafer 300 according to the third embodiment.
- the structure of the silicon substrate 310 of the semiconductor wafer 300 is different from that of the semiconductor wafer 100.
- a plurality of convex portions 310a are formed on the upper surface side of the silicon substrate 310.
- the plurality of subsections 13 are provided on the plurality of convex portions 310a, respectively.
- the gallium nitride growth layer 12 is formed on the upper surface of the silicon substrate 310. In this state, the upper surface of the silicon substrate 310 is flat. Further, the gallium nitride growth layer 12 is formed on the entire upper surface of the silicon substrate 310.
- etching step first, a mask layer such as a photoresist is formed on the gallium nitride growth layer 12. Next, a part of the gallium nitride growth layer 12 is removed by etching using a mask layer. Etching is, for example, dry etching. As a result, the gallium nitride growth layer 12 is removed in a grid pattern, and the silicon substrate 310 is exposed. By the etching step, the gallium nitride growth layer 12 is divided into a plurality of subsections 13.
- etching is continued even after the silicon substrate 310 is exposed.
- the silicon substrate 310 is etched and a groove is formed in the silicon substrate 310. That is, a plurality of convex portions 310a are formed on the upper surface side of the silicon substrate 310.
- the insulating film 14 is formed.
- the insulating film 14 fills the space between the adjacent convex portions 310a.
- the subsequent steps are the same as in the first embodiment.
- the insulating film 14 can be thickened by the depth of the groove formed in the silicon substrate 310. Therefore, the insulating film 14 can apply a stress larger than that of the first embodiment to the silicon substrate 310. Further, even when the gallium nitride growth layer 12 is thinner than the thickness of the insulating film 14 required for suppressing warpage, the thickness of the insulating film 14 can be secured.
- FIG. 10 is a cross-sectional view of the semiconductor wafer 400 according to the fourth embodiment.
- the thermal oxide film 16 is provided on the upper surface of the silicon substrate 10.
- An insulating film 14 is provided on the thermal oxide film 16. The thermal oxide film 16 and the insulating film 14 form an insulating layer.
- the steps up to the step of growing the gallium nitride growth layer 12 are the same as those in the first embodiment.
- the thermal oxide film 16 is not removed.
- the insulating film 14 is formed on the thermal oxide film 16.
- the subsequent steps are the same as in the first embodiment.
- the manufacturing process can be simplified. Further, when the thermal oxide film 16 exerts a stress for correcting the warp of the silicon substrate 10, the thermal oxide film 16 can be effectively used for suppressing the warp.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Recrystallisation Techniques (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
本願の発明に係る半導体ウエハでは、絶縁層によりシリコン基板の反りを抑制できる。
図1は、実施の形態1に係る半導体ウエハ100の断面図である。半導体ウエハ100は、シリコン基板10を備える。シリコン基板10の上面には窒化ガリウム成長層12が設けられる。窒化ガリウム成長層12は、複数の小区画13に分割されている。複数の小区画13は互いに離間している。窒化ガリウム成長層は、例えばIn1-x-yGaxAlyN層を含む多層膜である。ここで、0≦x≦1、0≦y≦1である。
図6は、実施の形態2に係る半導体ウエハ200の断面図である。半導体ウエハ200では、絶縁膜214の構造が半導体ウエハ100と異なる。絶縁膜214には、複数の小区画13のうち互いに隣接する一対の小区画13の間に凹部215が形成される。
図9は、実施の形態3に係る半導体ウエハ300の断面図である。半導体ウエハ300はシリコン基板310の構造が半導体ウエハ100と異なる。シリコン基板310の上面側には複数の凸部310aが形成される。複数の小区画13は、複数の凸部310aの上にそれぞれ設けられる。
図10は、実施の形態4に係る半導体ウエハ400の断面図である。本実施の形態では、シリコン基板10の上面に熱酸化膜16が設けられる。熱酸化膜16の上には絶縁膜14が設けられる。熱酸化膜16と絶縁膜14は絶縁層を形成する。
Claims (19)
- シリコン基板の上面に複数の小区画に分割された窒化ガリウム成長層を形成する第1工程と、
前記複数の小区画の間を絶縁膜で埋める第2工程と、
を備え、
前記絶縁膜は前記窒化ガリウム成長層が前記シリコン基板に及ぼす応力と反対方向の応力を前記シリコン基板に及ぼすことを特徴とする半導体ウエハの製造方法。 - 前記絶縁膜の厚さは1μm以上であり、前記窒化ガリウム成長層の厚さ以下であることを特徴とする請求項1に記載の半導体ウエハの製造方法。
- 前記絶縁膜はシリコン窒化膜であることを特徴とする請求項1または2に記載の半導体ウエハの製造方法。
- 前記窒化ガリウム成長層は、前記シリコン基板に圧縮応力を及ぼし、
前記第2工程では、プロセスガスとしてSiH4とNH3を用い、NH3に対するSiH4の比率を0.5以下に設定してプラズマCVDにより前記絶縁膜を形成することを特徴とする請求項3に記載の半導体ウエハの製造方法。 - 前記第2工程は、
前記シリコン基板の上面と、前記複数の小区画の各々の側面および上面と、を前記絶縁膜で覆い、前記絶縁膜のうち互いに隣接する一対の小区画の間の部分に凹部を形成する工程と、
前記凹部を埋めるように、前記絶縁膜の上にレジストを設ける工程と、
前記レジストのうち前記複数の小区画の上面よりも上に設けられた部分と、前記絶縁膜のうち前記複数の小区画の上面よりも上に設けられた部分と、をエッチングにより除去し、前記複数の小区画の上面を前記絶縁膜から露出させるエッチング工程と、
前記エッチング工程の後に、前記レジストのうち前記凹部を埋める部分を除去する工程と、
を備えることを特徴とする請求項1から4の何れか1項に記載の半導体ウエハの製造方法。 - 前記第1工程は、
前記シリコン基板の上面に熱酸化膜を形成し、前記シリコン基板の上面を前記熱酸化膜で複数の領域に区切る工程と、
前記複数の領域に前記複数の小区画をそれぞれ成長させる工程と、
を備えることを特徴とする請求項1から5の何れか1項に記載の半導体ウエハの製造方法。 - 前記第1工程では、前記複数の小区画を成長させたあとに前記熱酸化膜を除去することを特徴とする請求項6に記載の半導体ウエハの製造方法。
- 前記第2工程では、前記熱酸化膜の上に前記絶縁膜を形成することを特徴とする請求項6に記載の半導体ウエハの製造方法。
- 前記絶縁膜は、前記熱酸化膜よりも厚いことを特徴とする請求項6から8の何れか1項に記載の半導体ウエハの製造方法。
- 前記第1工程は、
前記シリコン基板の上面に前記窒化ガリウム成長層を形成する工程と、
前記窒化ガリウム成長層の一部をエッチングにより除去して前記シリコン基板を露出させ、前記窒化ガリウム成長層を前記複数の小区画に分割するエッチング工程と、
を備え、
前記エッチング工程では、前記シリコン基板が露出したあともエッチングを続行し、前記シリコン基板に溝を形成することを特徴とする請求項1から5の何れか1項に記載の半導体ウエハの製造方法。 - 前記絶縁膜は、前記シリコン基板の一端から他端まで連なることを特徴とする請求項1から10の何れか1項に記載の半導体ウエハの製造方法。
- シリコン基板と、
前記シリコン基板の上面に設けられ、複数の小区画に分割された窒化ガリウム成長層と、
前記シリコン基板の上面に設けられ、前記複数の小区画の間を埋める絶縁層と、
を備え、
前記絶縁層は前記窒化ガリウム成長層が前記シリコン基板に及ぼす応力と反対方向の応力を前記シリコン基板に及ぼすことを特徴とする半導体ウエハ。 - 前記絶縁層の厚さは1μm以上であり、前記窒化ガリウム成長層の厚さ以下であることを特徴とする請求項12に記載の半導体ウエハ。
- 前記絶縁層は、シリコン窒化膜を含むことを特徴とする請求項12または13に記載の半導体ウエハ。
- 前記絶縁層には、前記複数の小区画のうち互いに隣接する一対の小区画の間に凹部が形成されることを特徴とする請求項12から14の何れか1項に記載の半導体ウエハ。
- 前記シリコン基板の上面側には複数の凸部が形成され、
前記複数の小区画は、前記複数の凸部の上にそれぞれ設けられることを特徴とする請求項12から15の何れか1項に記載の半導体ウエハ。 - 前記絶縁層は、前記シリコン基板の上面に設けられた熱酸化膜と、前記熱酸化膜の上に設けられた絶縁膜と、を有することを特徴とする請求項12から15の何れか1項に記載の半導体ウエハ。
- 前記絶縁膜は、前記熱酸化膜よりも厚いことを特徴とする請求項17に記載の半導体ウエハ。
- 前記絶縁層は、前記シリコン基板の一端から他端まで連なることを特徴とする請求項12から18の何れか1項に記載の半導体ウエハ。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/041534 WO2021079434A1 (ja) | 2019-10-23 | 2019-10-23 | 半導体ウエハおよびその製造方法 |
KR1020227006023A KR102518610B1 (ko) | 2019-10-23 | 2019-10-23 | 반도체 웨이퍼 및 그 제조 방법 |
US17/625,084 US20220290327A1 (en) | 2019-10-23 | 2019-10-23 | Semiconductor wafer and method for manufacturing same |
CN201980101276.XA CN114556529A (zh) | 2019-10-23 | 2019-10-23 | 半导体晶片及其制造方法 |
DE112019007835.6T DE112019007835T5 (de) | 2019-10-23 | 2019-10-23 | Halbleiter-Wafer und Verfahren zu dessen Herstellung |
JP2020513664A JP6795123B1 (ja) | 2019-10-23 | 2019-10-23 | 半導体ウエハおよびその製造方法 |
TW109135486A TWI750847B (zh) | 2019-10-23 | 2020-10-14 | 半導體晶圓及其製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/041534 WO2021079434A1 (ja) | 2019-10-23 | 2019-10-23 | 半導体ウエハおよびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021079434A1 true WO2021079434A1 (ja) | 2021-04-29 |
Family
ID=73544822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041534 WO2021079434A1 (ja) | 2019-10-23 | 2019-10-23 | 半導体ウエハおよびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220290327A1 (ja) |
JP (1) | JP6795123B1 (ja) |
KR (1) | KR102518610B1 (ja) |
CN (1) | CN114556529A (ja) |
DE (1) | DE112019007835T5 (ja) |
TW (1) | TWI750847B (ja) |
WO (1) | WO2021079434A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022144009A (ja) * | 2021-03-18 | 2022-10-03 | キオクシア株式会社 | 成膜装置、成膜方法、及び半導体装置の製造方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11243056A (ja) * | 1998-02-24 | 1999-09-07 | Fuji Electric Co Ltd | Iii族窒化物半導体の製造方法 |
WO2002043151A1 (en) * | 2000-11-22 | 2002-05-30 | Hitachi, Ltd | Semiconductor device and method for fabricating the same |
JP2005093914A (ja) * | 2003-09-19 | 2005-04-07 | Sharp Corp | Iii−v族系窒化物半導体素子およびその製造方法 |
JP2005228936A (ja) * | 2004-02-13 | 2005-08-25 | Dongguk Univ | 発光ダイオードおよびその製造方法 |
JP2005333154A (ja) * | 2005-07-05 | 2005-12-02 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
JP2006128627A (ja) * | 2004-10-29 | 2006-05-18 | Samsung Electro Mech Co Ltd | ナノロッドを利用した窒化物系半導体素子及びその製造方法 |
JP2007335484A (ja) * | 2006-06-13 | 2007-12-27 | Mitsubishi Cable Ind Ltd | 窒化物半導体ウェハ |
JP2011124335A (ja) * | 2009-12-09 | 2011-06-23 | Toyota Motor Corp | 半導体装置 |
JP2011135058A (ja) * | 2009-11-30 | 2011-07-07 | Honda Motor Co Ltd | 太陽電池素子、カラーセンサ、ならびに発光素子及び受光素子の製造方法 |
JP2015512151A (ja) * | 2012-02-14 | 2015-04-23 | クナノ・アーベー | 窒化ガリウムナノワイヤに基づくエレクトロニクス |
JP2018026514A (ja) * | 2016-08-01 | 2018-02-15 | 日亜化学工業株式会社 | ナノロッドの形成方法及び半導体素子の製造方法 |
JP2018520502A (ja) * | 2015-05-05 | 2018-07-26 | セレン フォトニクス リミテッド | 半導体テンプレート及び製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10135140A (ja) | 1996-10-28 | 1998-05-22 | Nippon Telegr & Teleph Corp <Ntt> | ヘテロエピタキシャル成長方法、ヘテロエピタキシャル層および半導体発光素子 |
JP5192785B2 (ja) * | 2007-11-21 | 2013-05-08 | 新日本無線株式会社 | 窒化物半導体装置の製造方法 |
KR20100085655A (ko) * | 2009-01-21 | 2010-07-29 | 주식회사 하이닉스반도체 | 반도체 소자의 콘택 플러그 형성 방법 |
JP5946771B2 (ja) * | 2009-12-16 | 2016-07-06 | ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation | 半導体基板上のラージエリアガリウム窒化物又は他の窒化物ベース構造のための応力補償 |
JP6473017B2 (ja) * | 2015-03-09 | 2019-02-20 | エア・ウォーター株式会社 | 化合物半導体基板 |
JP6544166B2 (ja) * | 2015-09-14 | 2019-07-17 | 信越化学工業株式会社 | SiC複合基板の製造方法 |
-
2019
- 2019-10-23 KR KR1020227006023A patent/KR102518610B1/ko active IP Right Grant
- 2019-10-23 WO PCT/JP2019/041534 patent/WO2021079434A1/ja active Application Filing
- 2019-10-23 US US17/625,084 patent/US20220290327A1/en active Pending
- 2019-10-23 JP JP2020513664A patent/JP6795123B1/ja active Active
- 2019-10-23 CN CN201980101276.XA patent/CN114556529A/zh active Pending
- 2019-10-23 DE DE112019007835.6T patent/DE112019007835T5/de not_active Withdrawn
-
2020
- 2020-10-14 TW TW109135486A patent/TWI750847B/zh active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11243056A (ja) * | 1998-02-24 | 1999-09-07 | Fuji Electric Co Ltd | Iii族窒化物半導体の製造方法 |
WO2002043151A1 (en) * | 2000-11-22 | 2002-05-30 | Hitachi, Ltd | Semiconductor device and method for fabricating the same |
JP2005093914A (ja) * | 2003-09-19 | 2005-04-07 | Sharp Corp | Iii−v族系窒化物半導体素子およびその製造方法 |
JP2005228936A (ja) * | 2004-02-13 | 2005-08-25 | Dongguk Univ | 発光ダイオードおよびその製造方法 |
JP2006128627A (ja) * | 2004-10-29 | 2006-05-18 | Samsung Electro Mech Co Ltd | ナノロッドを利用した窒化物系半導体素子及びその製造方法 |
JP2005333154A (ja) * | 2005-07-05 | 2005-12-02 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
JP2007335484A (ja) * | 2006-06-13 | 2007-12-27 | Mitsubishi Cable Ind Ltd | 窒化物半導体ウェハ |
JP2011135058A (ja) * | 2009-11-30 | 2011-07-07 | Honda Motor Co Ltd | 太陽電池素子、カラーセンサ、ならびに発光素子及び受光素子の製造方法 |
JP2011124335A (ja) * | 2009-12-09 | 2011-06-23 | Toyota Motor Corp | 半導体装置 |
JP2015512151A (ja) * | 2012-02-14 | 2015-04-23 | クナノ・アーベー | 窒化ガリウムナノワイヤに基づくエレクトロニクス |
JP2018520502A (ja) * | 2015-05-05 | 2018-07-26 | セレン フォトニクス リミテッド | 半導体テンプレート及び製造方法 |
JP2018026514A (ja) * | 2016-08-01 | 2018-02-15 | 日亜化学工業株式会社 | ナノロッドの形成方法及び半導体素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021079434A1 (ja) | 2021-11-18 |
TWI750847B (zh) | 2021-12-21 |
CN114556529A (zh) | 2022-05-27 |
TW202123350A (zh) | 2021-06-16 |
DE112019007835T5 (de) | 2022-07-07 |
KR20220041139A (ko) | 2022-03-31 |
US20220290327A1 (en) | 2022-09-15 |
KR102518610B1 (ko) | 2023-04-05 |
JP6795123B1 (ja) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4880456B2 (ja) | 窒素化合物系半導体装置およびその製造方法 | |
JP4741572B2 (ja) | 窒化物半導体基板及びその製造方法 | |
US9209023B2 (en) | Growing III-V compound semiconductors from trenches filled with intermediate layers | |
JP5192785B2 (ja) | 窒化物半導体装置の製造方法 | |
JP2004336040A (ja) | 複数の半導体チップの製造方法および電子半導体基体 | |
JP2002334845A (ja) | サファイア基板上に窒化ガリウム半導体層を製造するペンディオエピタキシャル方法およびそれにより製造された窒化ガリウム半導体構造体 | |
JP2016512485A (ja) | 希土類酸化物/シリコン基板上で成長した、ain中間層を含むiii−n材料 | |
JP2013123052A (ja) | シリコン基板上にGaN層を形成する方法およびGaN基板 | |
JP2017147464A (ja) | 半導体基板 | |
JP3441415B2 (ja) | 半導体結晶の製造方法 | |
JP6795123B1 (ja) | 半導体ウエハおよびその製造方法 | |
GB2519338A (en) | Crack-free gallium nitride materials | |
KR20190098715A (ko) | 상향식 핀 구조 형성을 위한 방법들 | |
KR20140051639A (ko) | 대면적 갈륨 나이트라이드 기판을 포함하는 구조체 및 그 제조방법 | |
US9799512B1 (en) | Semiconductor substrate structures and methods for forming the same | |
JPS62213117A (ja) | 半導体素子の製造方法 | |
EP2869331A1 (en) | Episubstrates for selective area growth of group iii-v material and a method for fabricating a group iii-v material on a silicon substrate | |
KR100833897B1 (ko) | 에피택셜 성장 방법 | |
WO2022185067A1 (en) | Method of controlling bow in a semiconductor structure, semiconductor structure, and semiconductor device | |
JPH02237021A (ja) | 半導体装置の製造方法 | |
JP2019075452A (ja) | 半導体装置の製造方法 | |
US9401420B2 (en) | Semiconductor device | |
JP6719754B2 (ja) | Iii族窒化物系化合物半導体結晶板製造方法 | |
CN110783395B (zh) | 半导体结构 | |
US11735418B2 (en) | Method for forming semiconductor layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020513664 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19949697 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227006023 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19949697 Country of ref document: EP Kind code of ref document: A1 |