WO2021077715A1 - 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备 - Google Patents

电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备 Download PDF

Info

Publication number
WO2021077715A1
WO2021077715A1 PCT/CN2020/088665 CN2020088665W WO2021077715A1 WO 2021077715 A1 WO2021077715 A1 WO 2021077715A1 CN 2020088665 W CN2020088665 W CN 2020088665W WO 2021077715 A1 WO2021077715 A1 WO 2021077715A1
Authority
WO
WIPO (PCT)
Prior art keywords
top electrode
electrode
resonator
resonator according
protrusion
Prior art date
Application number
PCT/CN2020/088665
Other languages
English (en)
French (fr)
Inventor
庞慰
徐洋
郝龙
杨清瑞
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Priority to EP20879698.7A priority Critical patent/EP4072014A4/en
Publication of WO2021077715A1 publication Critical patent/WO2021077715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02125Means for compensation or elimination of undesirable effects of parasitic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps

Definitions

  • the embodiments of the present invention relate to the field of semiconductors, and in particular to a bulk acoustic wave resonator, a filter having the resonator, and an electronic device having the resonator or the filter.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Wave Resonator
  • SAW surface acoustic wave
  • the main structure of the film bulk acoustic wave resonator is a "sandwich" structure composed of electrode-piezoelectric film-electrode, that is, a layer of piezoelectric material is sandwiched between two metal electrode layers.
  • FBAR uses the inverse piezoelectric effect to convert the input electrical signal into mechanical resonance, and then uses the piezoelectric effect to convert the mechanical resonance into electrical signal output.
  • the frequency of the 5G communication band is 3GHz-6GHz, which is higher than 4G and other communication technologies.
  • the high operating frequency means that the film thickness, especially the film thickness of the electrode, must be further reduced; however, the main negative effect brought about by the reduction of the electrode film thickness is the resonator Q caused by the increase in electrical loss. The value decreases, especially the Q value near the series resonance point and its frequency.
  • the performance of the high-frequency bulk acoustic wave filter also deteriorates greatly as the Q value of the bulk acoustic wave resonator decreases.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the overlapping area of the top electrode, the bottom electrode, the acoustic mirror, and the piezoelectric layer in the thickness direction of the resonator defines the effective area of the resonator
  • the top electrode includes a gap layer, a first top electrode, and a second top electrode.
  • the gap layer is formed between the first top electrode and the second top electrode in the thickness direction of the resonator.
  • the layer forms a surface contact;
  • the first top electrode is provided with a convex structure at the edge of the effective area in the effective area, and the top surface of the convex structure is higher than the upper surface of the first top electrode in the effective area.
  • the present invention also provides a bulk acoustic wave resonator, including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the overlapping area of the top electrode, the bottom electrode, the acoustic mirror, and the piezoelectric layer in the thickness direction of the resonator defines the effective area of the resonator
  • the bottom electrode includes a gap layer, a first bottom electrode, and a second bottom electrode.
  • the gap layer is formed between the first bottom electrode and the second bottom electrode in the thickness direction of the resonator.
  • the layer forms a surface contact;
  • the second bottom electrode is provided with a convex structure at the edge of the effective area in the effective area, and in the thickness direction of the resonator, the bottom surface of the convex structure is located below the bottom surface of the second bottom electrode in the effective area.
  • the embodiment of the present invention also relates to a filter including the above-mentioned bulk acoustic wave resonator.
  • the embodiment of the present invention also relates to an electronic device including the above-mentioned filter or the above-mentioned resonator.
  • Fig. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to an exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer;
  • FIG. 3 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to an exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer;
  • FIG. 4 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer;
  • FIG. 5 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer;
  • FIG. 6 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to another exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer;
  • Fig. 7 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer;
  • Fig. 8 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer;
  • FIG. 9 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to another exemplary embodiment of the present invention, in which the top electrode and the bottom electrode are provided with a gap layer;
  • Fig. 10 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to another exemplary embodiment of the present invention, in which the top electrode and the bottom electrode are provided with a gap layer.
  • Fig. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, and in conjunction with other drawings, the reference signs are as follows:
  • Substrate, optional materials are silicon (high-resistance silicon), gallium arsenide, sapphire, quartz, etc.
  • Acoustic mirror which can be cavity 20, or Bragg reflector and other equivalent forms.
  • the first bottom electrode, the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or a combination of the above metals or their alloys.
  • Electrode pin the material is the same as the first bottom electrode.
  • the second bottom electrode, the material selection range is the same as that of the first bottom electrode 30, but the specific material is not necessarily the same as that of the first bottom electrode 30.
  • Piezoelectric film layer optional aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobate (LiNbO 3 ), quartz (Quartz), potassium niobate (KNbO 3 ) Or lithium tantalate (LiTaO 3 ) and other materials may also contain rare earth element doped materials with a certain atomic ratio of the above materials.
  • the first top electrode, the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, etc.
  • Electrode pin the same material as the first top electrode.
  • 60 An air gap located in the top electrode, between the first top electrode 50 and the second top electrode 70.
  • the second bottom electrode, the material selection range is the same as that of the first top electrode 50, but the specific material is not necessarily the same as that of the first top electrode 50.
  • the air gap constitutes the void layer.
  • the void layer may be a vacuum gap layer, or a void layer filled with another gas medium, in addition to the air gap layer.
  • Fig. 2 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to an exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer.
  • the first top electrode 50 and the second top electrode 70 have contact portions at the edges, wherein the first top electrode 50 and the second top electrode 70 are flush with the non-pin side edge and are located on the non-pin side edge.
  • the contact portion on the side enters the effective acoustic range to form a convex structure.
  • the end points of the first top electrode 50 and the second top electrode 70 on the pin side of the contact portion fall into the effective acoustic area, but the entire contact portion extends in the direction of the pin 56 beyond the effective acoustic area, so the convexity on the pin side
  • the range d is determined by the end point of the contact part in the effective acoustic area and the edge of the acoustic mirror.
  • At least part of the top surface of the protruding structure is flush with the top surface of the second top electrode 70 in the effective area.
  • the outer edge of the protruding structure in the transverse direction of the resonator coincides with the edge of the effective area. Furthermore, as shown in FIG. 2, the outer edge of the protruding structure in the transverse direction of the resonator coincides with the edge of the acoustic mirror cavity.
  • the protruding structure is formed by the second top electrode, and this situation generally occurs when the second top electrode directly contacts the first top electrode.
  • the edges of the first top electrode and the second top electrode at the non-lead end are aligned with each other.
  • Fig. 3 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to an exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer.
  • the first top electrode 50 and the second top electrode 70 have contact portions at the edges. Moreover, the first top electrode 50 and the second top electrode 70 not only have contact at the edges, but also extend outward to the upper surface of the piezoelectric layer 40 and contact with it. Therefore, for the resonator structure of FIG. 3, the effective acoustic area is determined in the lateral direction by the non-pin side edge of the second top electrode 70 (not the first top electrode 50) and the acoustic mirror 20 on the pin side edge.
  • the range of the protruding structure on the non-lead side is determined by the inner end of the contact portion of the first top electrode 50 and the second top electrode 70 on the non-lead side and the outer end of the contact portion between 70 and the piezoelectric layer 30. .
  • the end points of the first top electrode 50 and the second top electrode 70 on the pin side of the contact portion fall into the effective acoustic area, but the entire contact portion extends in the direction of the pin 56 beyond the effective acoustic area, so the convexity on the pin side
  • the range d is determined by the end point of the contact part in the effective acoustic area and the edge of the acoustic mirror.
  • the raised structure on the left side of the top electrode is a stepped structure. It should be pointed out that the stepped structure of the present invention is not limited to this, as long as the height changes are formed.
  • the non-lead end portion of the second top electrode covers a part of the non-lead end portion of the first top electrode and is in surface contact with the upper surface of the piezoelectric layer.
  • FIG. 4 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to another exemplary embodiment of the present invention, in which the top electrode is provided with a gap layer, and the second top electrode is provided with an additional electrode layer 71.
  • the height of the convex structure used in the actual situation is in the range of 0.1-2 times the thickness of the first top electrode, but the thickness of the second top electrode 70 used to form an air gap and reduce impedance is often greater than the above range.
  • the contact portion formed by the excessively thick second top electrode and the first top electrode 50 is directly formed as a protruding structure, which often produces severe parasitic modes, resulting in deterioration of the performance of the resonator.
  • first make a thin layer of the second top electrode 70 that meets the thickness requirements of the convex structure and then deposit an additional electrode layer 71 on the surface of the second top electrode 70 (and 72), and a patterning process is used to ensure that the raised structure is not covered by the additional electrode layers 71 and 72.
  • the above structure can not only ensure that the thickness of the convex structure meets the acoustic requirements, but also ensure that the electrodes outside the area of the convex structure meet the electrical impedance requirements and rigidity requirements.
  • the additional electrode layer 71 is disposed between the first protrusion structure (OB) and the second protrusion structure (OB).
  • the thickness of the additional electrode layer 71 is In the range.
  • Fig. 5 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer.
  • the first top electrode in addition to the air gap structure 60, also has a suspended wing structure 55. Since the lateral boundary of the effective acoustic area of the resonator is determined by the starting point of the lower surface of the cantilever structure on the piezoelectric layer 40, the range of the convex structure in this structure is determined by the two end points of the air gap structure 60 and the lateral boundary of the effective area. determine.
  • the first top electrode is also provided with a bridge structure 57.
  • the range of the raised structure close to the bridge structure can be determined similarly to the range of the raised structure close to the suspension wing structure.
  • Fig. 6 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to another exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer.
  • the protrusion structure range of the resonator in FIG. 6 is determined by the end points on both sides of the air gap 60 and the non-lead side edge of the top electrode 50 and the non-lead edge of the bottom electrode of the acoustic mirror 20 respectively.
  • the bottom electrode includes a gap layer, a first bottom electrode, and a second bottom electrode, and the gap layer is formed between the first bottom electrode and the second bottom electrode in the thickness direction of the resonator.
  • the second bottom electrode is in surface contact with the piezoelectric layer; and the second bottom electrode is provided with a convex structure at the edge of the effective area in the effective area. In the thickness direction of the resonator, the bottom surface of the convex structure is located Below the bottom surface of the second bottom electrode in the effective area.
  • Fig. 7 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer.
  • the second top electrode 70 is attached to the traditional resonator structure, wherein the first top electrode 50 has an acoustic structure (protrusions 56 and recesses 57), and the second top electrode 70 is connected to the protrusions 56 and recesses 57.
  • the air gap 60 is formed with the first top electrode 50, and the pin side end point of the air gap 60 falls outside the effective area.
  • Fig. 8 is a schematic cross-sectional view taken along A1-A2 in Fig. 1 according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer.
  • the edge position of the second top electrode 70 in FIG. 7 is changed and the electrical connection relationship with the second top electrode 50 is changed.
  • the second top electrode 70 It extends to the outside of the first top electrode 50 and the bump 56 on the non-pin side, and is electrically connected to the first top electrode 50 instead of being suspended.
  • the edge of the second top electrode 70 is not limited to the extension, and can also shrink inward to within the lateral range of the first top electrode 50.
  • FIG. 9 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to another exemplary embodiment of the present invention, in which the top electrode and the bottom electrode are provided with a gap layer, and the top electrode has a cantilever structure and a bridge structure.
  • Fig. 9 is a suspension wing structure 55, a bridge structure 95, and a bottom electrode air gap 60 added on the basis of Fig. 7, wherein the second top electrode 70 is in contact with the protruding structure 56 on the horizontal part of the suspension wing structure, so that The end of the air gap 61 of the top electrode extends above the horizontal part of the suspended wing structure, while the end of the air gap 60 of the bottom electrode extends beyond the boundary of the acoustic mirror 20.
  • the top surface of the suspended wing structure and the top surface of the bridge structure are provided with a convex layer structure, and the convex structure is formed in the part of the convex layer structure in contact with the first top electrode in the effective area 56.
  • FIG. 10 is a schematic cross-sectional view taken along A1-A2 in FIG. 1 according to another exemplary embodiment of the present invention, wherein the top electrode and the bottom electrode are provided with a gap layer, and the top electrode has a cantilever structure and a bridge structure.
  • the non-lead side edge of the second top electrode 70 is not necessarily aligned with the same side edge of the first top electrode 50.
  • the non-lead side edge of the second top electrode 70 is retracted inward to the effective area.
  • the edge of the second top electrode 70 can also extend beyond the horizontal part of the cantilever structure 55 and keep in contact with the left end of the cantilever structure 55, or be suspended in the air, all of which fall within the protection scope of the present invention.
  • the height of the convex structure can be selected in the range of 0.1-2 times the thickness of the first top electrode.
  • the mentioned numerical range can also be the median value between the endpoint values or other values, all of which fall within the protection scope of the present invention.
  • the "inside” and “outside” of a component are judged based on which part of the component is closer to the center of the effective area of the resonator in the transverse direction of the resonator, if it is close to the center of the effective area of the resonator , It is the inside, on the contrary, if it is far from the center of the effective area of the resonator, it is the outside.
  • the bulk acoustic wave resonator according to the present invention can be used to form a filter.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the overlapping area of the top electrode, the bottom electrode, the acoustic mirror, and the piezoelectric layer in the thickness direction of the resonator defines the effective area of the resonator
  • the top electrode includes a gap layer, a first top electrode, and a second top electrode.
  • the gap layer is formed between the first top electrode and the second top electrode in the thickness direction of the resonator.
  • the layer forms a surface contact;
  • the first top electrode is provided with a convex structure at the edge of the effective area in the effective area, and the top surface of the convex structure is higher than the upper surface of the first top electrode in the effective area.
  • the height of the protruding structure is in the range of 0.1-2 times the thickness of the first top electrode.
  • At least part of the top surface of the protruding structure is flush with the top surface of the second top electrode in the effective area.
  • the outer edge of the protruding structure in the transverse direction of the resonator coincides with the edge of the effective area.
  • the protruding structure is formed by the second top electrode.
  • the first top electrode and the second top electrode are electrically connected to each other at the non-pin end of the top electrode;
  • the protrusion structure includes a first protrusion formed by the first top electrode and the second top electrode at the pin end of the top electrode, and the non-lead of the first top electrode and the second top electrode on the top electrode The second protrusion formed at the end.
  • the edges of the first top electrode and the second top electrode at the non-lead end are aligned with each other.
  • the non-lead end portion of the second top electrode covers a part of the non-lead end portion of the first top electrode and is in surface contact with the upper surface of the piezoelectric layer.
  • the second protrusion is a stepped protrusion structure.
  • the upper surface of the second top electrode is further provided with an additional electrode layer, and in the transverse direction of the resonator, the additional electrode layer is arranged between the first protrusion and the second protrusion.
  • the thickness of the additional electrode layer is The height of the protruding structure is in the range of 0.1-2 times the thickness of the first top electrode.
  • the first top electrode is provided with a bridge structure at the pin end, the first top electrode is provided with a suspension wing structure at the non-pin end, and the bridge structure and the suspension wing structure define the boundary of the effective area;
  • the top surface of the suspended wing structure and the top surface of the bridge structure are provided with a convex layer structure, and a portion of the convex layer structure in contact with the first top electrode in the effective area forms the convex structure.
  • the gap layer is arranged between the first protrusion and the second protrusion in the lateral direction of the resonator.
  • the void layer extends to at least a part of the top surface of the bridge structure.
  • the non-lead end of the second top electrode is spaced apart from the suspended wing structure in the lateral direction of the resonator and spaced apart from the first top electrode in the thickness direction of the resonator.
  • the void layer extends to at least a part of the top surface of the suspended wing structure and at least a part of the top surface of the bridge structure.
  • the first top electrode is provided with a concave structure adjacent to the convex structure inside the convex structure.
  • the outer edge of the first protrusion is flush with the edge of the acoustic mirror or exceeds the edge of the acoustic mirror outwards.
  • the first top electrode and the second top electrode are spaced apart from each other at the non-lead end of the top electrode;
  • the protrusion structure includes a first protrusion formed on the lead end of the first top electrode, and a second protrusion formed on the non-lead end of the first top electrode;
  • the second top electrode is spaced apart from the convex structure in the thickness direction of the resonator.
  • the first top electrode is provided with a concave structure adjacent to the convex structure inside the convex structure.
  • the non-lead end of the second top electrode surrounds the second protrusion and is connected to the end surface of the non-lead end of the first top electrode.
  • the non-lead end of the second top electrode is in contact with the end surface of the non-lead end of the first top electrode, it does not make contact with the top surface of the piezoelectric layer.
  • a bulk acoustic wave resonator comprising:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the overlapping area of the top electrode, the bottom electrode, the acoustic mirror, and the piezoelectric layer in the thickness direction of the resonator defines the effective area of the resonator
  • the bottom electrode includes a gap layer, a first bottom electrode, and a second bottom electrode.
  • the gap layer is formed between the first bottom electrode and the second bottom electrode in the thickness direction of the resonator.
  • the layer forms a surface contact;
  • the second bottom electrode is provided with a convex structure at the edge of the effective area in the effective area, and in the thickness direction of the resonator, the bottom surface of the convex structure is located below the bottom surface of the second bottom electrode in the effective area.
  • the protrusion structure includes a first protrusion formed on the lead end of the first bottom electrode, and a second protrusion formed on the non-lead end of the first bottom electrode;
  • the outer edge of the first protrusion is flush with or exceeds the edge of the acoustic mirror; the outer edge of the second protrusion is flush with the end surface of the non-lead end of the top electrode, and the non-lead of the top electrode The end is in direct surface contact with the piezoelectric layer.
  • a filter comprising the bulk acoustic wave resonator according to any one of 1-24.
  • An electronic device comprising the filter according to 25 or the resonator according to any one of 1-24.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种体声波谐振器,包括:基底;声学镜;底电极;顶电极;和压电层,设置在底电极与顶电极之间,其中:顶电极、底电极、声学镜和压电层在所述谐振器的厚度方向上的重叠区域限定所述谐振器的有效区域;所述顶电极包括空隙层、第一顶电极和第二顶电极,在谐振器的厚度方向上所述空隙层形成在第一顶电极与第二顶电极之间,第一顶电极与压电层形成面接触;且所述第一顶电极在有效区域内在有效区域的边缘设置有凸起结构,所述凸起结构的顶面高出有效区域中第一顶电极的上表面。本发明还涉及一种具有上述谐振器的滤波器以及具有该滤波器或谐振器的电子设备。

Description

电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器、一种具有该谐振器的滤波器,以及一种具有该谐振器或者该滤波器的电子设备。
背景技术
电子器件作为电子设备的基本元素,已经被广泛应用,其应用范围包括移动电话、汽车、家电设备等。此外,未来即将改变世界的人工智能、物联网、5G通讯等技术仍然需要依靠电子器件作为基础。
电子器件根据不同工作原理可以发挥不同的特性与优势,在所有电子器件中,利用压电效应(或逆压电效应)工作的器件是其中很重要一类,压电器件有着非常广泛的应用情景。薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为压电器件的重要成员正在通信领域发挥着重要作用,特别是FBAR滤波器在射频滤波器领域市场占有份额越来越大,FBAR具有尺寸小、谐振频率高、品质因数高、功率容量大、滚降效应好等优良特性,其滤波器正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器,在无线通信射频领域发挥巨大作用,其高灵敏度的优势也能应用到生物、物理、医学等传感领域。
薄膜体声波谐振器的结构主体为由电极-压电薄膜-电极组成的“三明治”结构,即两层金属电极层之间夹一层压电材料。通过在两电极间输入正弦信号,FBAR利用逆压电效应将输入电信号转换为机械谐振,并且再利用压电效应将机械谐振转换为电信号输出。
通信技术的快速发展要求滤波器工作频率不断提高,例如5G通信频段(sub-6G)的频率在3GHz-6GHz,频率高于4G等通信技术。对于体声波谐振器和滤波器,高工作频率意味着薄膜厚度尤其是电极的薄膜厚度,要进一步减小;然而电极薄膜厚度的减小带来的主要负面效应为电学损耗增加导致的谐振器Q值降低,尤其是串联谐振点及其频率附近处的Q值降低; 相应地,高工作频率体声波滤波器的性能也随着体声波谐振器的Q值降低而大幅恶化。
发明内容
为缓解或解决现有技术中的上述问题,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
顶电极、底电极、声学镜和压电层在所述谐振器的厚度方向上的重叠区域限定所述谐振器的有效区域;
所述顶电极包括空隙层、第一顶电极和第二顶电极,在谐振器的厚度方向上所述空隙层形成在第一顶电极与第二顶电极之间,第一顶电极与压电层形成面接触;且
所述第一顶电极在有效区域内在有效区域的边缘设置有凸起结构,所述凸起结构的顶面高出有效区域中第一顶电极的上表面。
本发明还提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
顶电极、底电极、声学镜和压电层在所述谐振器的厚度方向上的重叠区域限定所述谐振器的有效区域;
所述底电极包括空隙层、第一底电极和第二底电极,在谐振器的厚度方向上所述空隙层形成在第一底电极与第二底电极之间,第二底电极与压 电层形成面接触;且
所述第二底电极在有效区域内在有效区域的边缘设置有凸起结构,在谐振器的厚度方向上,所述凸起结构的底面位于在有效区域中第二底电极的底面的下方。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器。
本发明的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图;
图2为根据本发明的一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层;
图3为根据本发明的一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层;
图4为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层;
图5为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层;
图6为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中底电极设置有空隙层;
图7为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层;
图8为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层;
图9为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极和底电极设置有空隙层;
图10为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极和底电极设置有空隙层。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
图1为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图,以及结合其他附图,各附图标记如下:
10:基底,可选材料为硅(高阻硅)、砷化镓、蓝宝石、石英等。
20:声学镜,可为空腔20,也可采用布拉格反射层及其他等效形式。
30:第一底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
36:电极引脚,材料与第一底电极相同。
31:第二底电极,材料选择范围同第一底电极30,但具体材料不一定与第一底电极30相同。
40:压电薄膜层,可选氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO 3)、石英(Quartz)、铌酸钾(KNbO 3)或钽酸锂(LiTaO 3)等材料,也可包含上述材料的一定原子比的稀土元素掺杂材料。
50:第一顶电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
56:电极引脚,材料与第一顶电极相同。
60:位于顶电极之中的空气间隙,处于第一顶电极50和第二顶电极70之间。
70:第二底电极,材料选择范围同第一顶电极50,但具体材料不一 定与第一顶电极50相同。
需要说明的是,空气间隙构成空隙层,但是本发明中,空隙层除了可以为空气间隙层之外,还可以是真空间隙层,也可以是填充了其他气体介质的空隙层。
图2为根据本发明的一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层。
如图2所示,第一顶电极50和第二顶电极70在边缘处具有接触部,其中第一顶电极50和第二顶电极70在非引脚侧边缘齐平,且位于非引脚侧的接触部落入有效声学范围内形成凸起结构。第一顶电极50和第二顶电极70在引脚侧的接触部端点落入有效声学区域,但整个接触部一直向引脚56方向延伸至有效声学区域之外,因此对于引脚侧的凸起结构,其范围d由接触部位于有效声学区域内的端点和声学镜的边缘共同确定。
例如,如图2以及后续的图3所示,所述凸起结构的至少部分顶面与第二顶电极70在有效区域内的顶面齐平。
如图2以及后续图3、图4等所示,所述凸起结构在谐振器的横向方向上的外缘与有效区域的边缘重合。更进一步的,如图2所示,所述凸起结构在谐振器的横向方向上的外缘与声学镜空腔的边缘重合。
如图2以及后续的图3-4所示,所述凸起结构由第二顶电极形成,这种情况一般是第二顶电极直接与第一顶电极接触而出现。
如图2和后续图3等所示,所述第一顶电极与第二顶电极在非引脚端的边缘彼此对齐。
图3为根据本发明的一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层。
在图3中,第一顶电极50和第二顶电极70在边缘处具有接触部。且第一顶电极50和第二顶电极70除在边缘有接触外还向外作延伸至压电层40上表面并与之接触。因此对于图3的谐振器结构,其有效声学区域在横向上由第二顶电极70(而非第一顶电极50)的非引脚侧边缘和声学镜20位于引脚侧边缘共同确定。而位于非引脚侧的凸起结构范围则由第一顶电极50和第二顶电极70在非引脚侧的接触部的内端点和70与压电 层30的接触部的外端点所确定。
第一顶电极50和第二顶电极70在引脚侧的接触部端点落入有效声学区域,但整个接触部一直向引脚56方向延伸至有效声学区域之外,因此对于引脚侧的凸起结构,其范围d由接触部位于有效声学区域内的端点和声学镜的边缘共同确定。
如图3所示,顶电极左侧的凸起结构为台阶状结构。需要指出的是,本发明的台阶状结构不限于此,只要形成高低变化即可。
在图3中,所述第二顶电极的非引脚端部分覆盖所述第一顶电极的非引脚端的一部分且与压电层的上表面面接触。
图4为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且第二顶电极上设置有附加电极层71。
实际情况中使用的凸起结构的高度在第一顶电极厚度的0.1-2倍的范围内,但用于形成空气间隙并减小阻抗的第二顶电极70往往厚度要大于上述范围,如果以过厚的第二顶电极与第一顶电极50形成的接触部直接做凸起结构,往往会产生严重的寄生模式,导致谐振器性能恶化。针对此问题,可如图4所示的结构那样,先制作一层满足凸起结构厚度要求的薄的第二顶电极70,然后再在第二顶电极70的表面沉积附加电极层71(和72),并通过图形化工艺确保凸起结构不被附加电极层71和72所覆盖。上述结构既可保证凸起结构的厚度满足声学要求,同时还确保了凸起结构区域之外的电极满足电阻抗要求和刚性要求。
如图4所示,在谐振器横向方向上,所述附加电极层71设置在第一凸起结构(OB)与第二凸起结构(OB)之间。
在进一步的实施例中,例如参见图4,附加电极层71的厚度在
Figure PCTCN2020088665-appb-000001
Figure PCTCN2020088665-appb-000002
的范围内。
图5为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层。
如图5所示,第一顶电极除了具有空气间隙结构60之外,还具有悬翼结构55。由于谐振器的有效声学区域横向边界由悬翼结构下表面位于 压电层40上的起点所确定,因此此结构中凸起结构的范围由空气间隙结构60的两个端点和有效区域的横向边界确定。
如图5所示,第一顶电极还设置有桥结构57。靠近桥结构的凸起结构的范围可以与靠近悬翼结构的凸起结构的范围相似的确定。
图6为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中底电极设置有空隙层。
在图6中,由于顶电极50的非引脚侧边缘位于声学镜20的边缘之内,因此有效区域的左侧边界由顶电极50边缘确定,而第一和第二底电极在非引脚侧的边缘均延伸至声学镜20之外,因此有效区域位于下电极非引脚侧的边界由声学镜的边界确定。因此图6中谐振器的凸起结构范围由空气间隙60的两侧端点分别和顶电极50的非引脚侧边缘以及声学镜20在底电极非引脚的边缘所确定。
相应的,在图6中,所述底电极包括空隙层、第一底电极和第二底电极,在谐振器的厚度方向上所述空隙层形成在第一底电极与第二底电极之间,第二底电极与压电层形成面接触;且所述第二底电极在有效区域内在有效区域的边缘设置有凸起结构,在谐振器的厚度方向上,所述凸起结构的底面位于在有效区域中第二底电极的底面的下方。
图7为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层。
在图7中,第二顶电极70附加于传统谐振器结构之上,其中第一顶电极50上具有声学结构(凸起56和凹陷57),第二顶电极70与凸起56、凹陷57及第一顶电极50形成空气间隙60,且空气间隙60的引脚侧端点落在有效区域之外。如图7所示,第一顶电极与第二顶电极之间存在间隙层,且第二顶电极在厚度方向上与第一顶电极上的声学结构也间隔开。
图8为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层。
在图8中,将图7中的第二顶电极70的边缘位置进行变化及其与第二顶电极50的电学连接关系进行变化,例如,可如图8所示,使第二顶电极70在非引脚侧延伸至第一顶电极50及凸起56的外部,并与第一顶 电极50进行电学连接,而不是悬空。显然,第二顶电极70边缘不只限于外延,同样也可以向内收缩至第一顶电极50的横向范围之内。
图9为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极和底电极设置有空隙层,顶电极具有悬翼结构以及桥结构。
图9是在图7的基础上增加了悬翼结构55,桥结构95,和底电极空气间隙60,其中第二顶电极70与悬翼结构的水平部上的凸起结构56发生接触,使顶电极的空气间隙61端点延伸至悬翼结构的水平部之上,同时底电极空气间隙60端点延伸至声学镜20边界以外。在图9中,所述悬翼结构的顶面以及所述桥结构的顶面设置有凸层结构,所述凸层结构在有效区域内与第一顶电极接触的部分形成所述凸起结构56。
图10为根据本发明的另一个示例性实施例的沿图1中的A1-A2截得的剖面示意图,其中顶电极和底电极设置有空隙层,顶电极具有悬翼结构以及桥结构。
第二顶电极70的非引脚侧边缘并不一定与第一顶电极50的同侧边缘对齐,例如在图10中,第二顶电极70的非引脚侧边缘向内缩进至有效区域横向范围内(或凹陷结构57以内)。显然,第二顶电极70的边缘也可以延伸至悬翼结构55的水平部之外,并与悬翼结构55左端保持接触,或者悬空,这些均在本发明的保护范围之内。
在本发明中,凸起结构的高度可以选择在第一顶电极厚度的0.1-2倍的范围内。
在本发明中,提到的数值范围除了可以为端点值之外,还可以为端点值之间的中值或者其他值,均在本发明的保护范围之内。
在本发明中,一个部件的“内侧”与“外侧”以在谐振器的横向方向上,该部件哪一部分更靠近谐振器的有效区域的中心来进行判断,若靠近谐振器的有效区域的中心,则为内侧,反之,若远离谐振器的有效区域的中心,则为外侧。
如本领域技术人员能够理解的,根据本发明的体声波谐振器可以用于形成滤波器。
基于以上,结合本发明的附图,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
顶电极、底电极、声学镜和压电层在所述谐振器的厚度方向上的重叠区域限定所述谐振器的有效区域;
所述顶电极包括空隙层、第一顶电极和第二顶电极,在谐振器的厚度方向上所述空隙层形成在第一顶电极与第二顶电极之间,第一顶电极与压电层形成面接触;且
所述第一顶电极在有效区域内在有效区域的边缘设置有凸起结构,所述凸起结构的顶面高出有效区域中第一顶电极的上表面。
2、根据1所述的谐振器,其中:
所述凸起结构的高度在第一顶电极厚度的0.1-2倍的范围内。
3、根据1所述的谐振器,其中:
所述凸起结构的至少部分顶面与第二顶电极在有效区域内的顶面齐平。
4、根据1所述的谐振器,其中:
所述凸起结构在谐振器的横向方向上的外缘与有效区域的边缘重合。
5、根据1所述的谐振器,其中:
所述凸起结构由第二顶电极形成。
6、根据1-4中任一项所述的谐振器,其中:
所述第一顶电极与第二顶电极在顶电极的非引脚端彼此电连接;
所述凸起结构包括所述第一顶电极与第二顶电极在顶电极的引脚端形成的第一凸起,以及所述第一顶电极与第二顶电极在顶电极的非引脚端形成的第二凸起。
7、根据6所述的谐振器,其中:
所述第一顶电极与第二顶电极在非引脚端的边缘彼此对齐。
8、根据6所述的谐振器,其中:
所述第二顶电极的非引脚端部分覆盖所述第一顶电极的非引脚端的一部分且与压电层的上表面面接触。
9、根据8所述的谐振器,其中:
所述第二凸起为台阶状凸起结构。
10、根据6所述的谐振器,其中:
所述第二顶电极的上表面还敷设有附加电极层,在谐振器横向方向上,所述附加电极层设置在第一凸起与第二凸起之间。
11、根据10所述的谐振器,其中:
所述附加电极层的厚度在
Figure PCTCN2020088665-appb-000003
的范围内,所述凸起结构的高度在第一顶电极的厚度的0.1-2倍的范围内。
12、根据6所述的谐振器,其中:
所述第一顶电极在引脚端设置有桥结构,所述第一顶电极在非引脚端设置有悬翼结构,所述桥结构和所述悬翼结构限定所述有效区域的边界;且
所述悬翼结构的顶面以及所述桥结构的顶面设置有凸层结构,所述凸层结构在有效区域内与第一顶电极接触的部分形成所述凸起结构。
13、根据12所述的谐振器,其中:
所述空隙层在谐振器的横向方向上设置在第一凸起与第二凸起之间。
14、根据12所述的谐振器,其中:
所述空隙层延伸到桥结构的顶面的至少一部分。
15、根据14所述的谐振器,其中:
所述第二顶电极的非引脚端在谐振器的横向方向上与所述悬翼结构间隔开且在谐振器的厚度方向上与第一顶电极间隔开。
16、根据14所述的谐振器,其中:
所述空隙层延伸到所述悬翼结构的顶面的至少一部分以及桥结构的顶面的至少一部分。
17、根据12-16中任一项所述的谐振器,其中:
所述第一顶电极在凸起结构的内侧与凸起结构相邻设置有凹入结构。
18、根据6所述的谐振器,其中:
第一凸起的外缘与声学镜的边缘齐平或者向外超过声学镜的边缘。
19、根据1-4中任一项所述的谐振器,其中:
所述第一顶电极与第二顶电极在顶电极的非引脚端彼此间隔开;
所述凸起结构包括在所述第一顶电极的引脚端形成的第一凸起,以及所述第一顶电极的非引脚端形成的第二凸起;且
第二顶电极与所述凸起结构在谐振器的厚度方向上间隔开。
20、根据19所述的谐振器,其中:
所述第一顶电极在凸起结构的内侧与凸起结构相邻设置有凹入结构。
21、根据19或20所述的谐振器,其中:
所述第二顶电极的非引脚端包绕所述第二凸起且与第一顶电极的非引脚端的端面相接。
22、根据21所述的谐振器,其中:
所述第二顶电极的非引脚端与第一顶电极的非引脚端的端面相接的同时,不与所述压电层的顶面形成接触。
23、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
顶电极、底电极、声学镜和压电层在所述谐振器的厚度方向上的重叠区域限定所述谐振器的有效区域;
所述底电极包括空隙层、第一底电极和第二底电极,在谐振器的厚度方向上所述空隙层形成在第一底电极与第二底电极之间,第二底电极与压电层形成面接触;且
所述第二底电极在有效区域内在有效区域的边缘设置有凸起结构,在谐振器的厚度方向上,所述凸起结构的底面位于在有效区域中第二底电极的底面的下方。
24、根据23所述的谐振器,其中:
所述凸起结构包括在所述第一底电极的引脚端形成的第一凸起,以及所述第一底电极的非引脚端形成的第二凸起;
第一凸起的外缘与声学镜的边缘齐平或者向外超过声学镜的边缘;第二凸起的外缘与顶电极的非引脚端的端面齐平,所述顶电极的非引脚端与压电层直接面接触。
25、一种滤波器,包括根据1-24中任一项所述的体声波谐振器。
26、一种电子设备,包括根据25所述的滤波器或者根据1-24中任一项所述的谐振器。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (26)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    顶电极;和
    压电层,设置在底电极与顶电极之间,
    其中:
    顶电极、底电极、声学镜和压电层在所述谐振器的厚度方向上的重叠区域限定所述谐振器的有效区域;
    所述顶电极包括空隙层、第一顶电极和第二顶电极,在谐振器的厚度方向上所述空隙层形成在第一顶电极与第二顶电极之间,第一顶电极与压电层形成面接触;且
    所述第一顶电极在有效区域内在有效区域的边缘设置有凸起结构,所述凸起结构的顶面高出有效区域中第一顶电极的上表面。
  2. 根据权利要求1所述的谐振器,其中:
    所述凸起结构的高度在第一顶电极厚度的0.1-2倍的范围内。
  3. 根据权利要求1所述的谐振器,其中:
    所述凸起结构的至少部分顶面与第二顶电极在有效区域内的顶面齐平。
  4. 根据权利要求1所述的谐振器,其中:
    所述凸起结构在谐振器的横向方向上的外缘与有效区域的边缘重合。
  5. 根据权利要求1所述的谐振器,其中:
    所述凸起结构由第二顶电极形成。
  6. 根据权利要求1-4中任一项所述的谐振器,其中:
    所述第一顶电极与第二顶电极在顶电极的非引脚端彼此电连接;
    所述凸起结构包括所述第一顶电极与第二顶电极在顶电极的引脚端形成的第一凸起,以及所述第一顶电极与第二顶电极在顶电极的非引脚端形成的第二凸起。
  7. 根据权利要求6所述的谐振器,其中:
    所述第一顶电极与第二顶电极在非引脚端的边缘彼此对齐。
  8. 根据权利要求6所述的谐振器,其中:
    所述第二顶电极的非引脚端部分覆盖所述第一顶电极的非引脚端的一部分且与压电层的上表面面接触。
  9. 根据权利要求8所述的谐振器,其中:
    所述第二凸起为台阶状凸起结构。
  10. 根据权利要求6所述的谐振器,其中:
    所述第二顶电极的上表面还敷设有附加电极层,在谐振器横向方向上,所述附加电极层设置在第一凸起与第二凸起之间。
  11. 根据权利要求10所述的谐振器,其中:
    所述附加电极层的厚度在
    Figure PCTCN2020088665-appb-100001
    的范围内,所述凸起结构的高度在第一顶电极的厚度的0.1-2倍的范围内。
  12. 根据权利要求6所述的谐振器,其中:
    所述第一顶电极在引脚端设置有桥结构,所述第一顶电极在非引脚端设置有悬翼结构,所述桥结构和所述悬翼结构限定所述有效区域的边界;且
    所述悬翼结构的顶面以及所述桥结构的顶面设置有凸层结构,所述凸层结构在有效区域内与第一顶电极接触的部分形成所述凸起结构。
  13. 根据权利要求12所述的谐振器,其中:
    所述空隙层在谐振器的横向方向上设置在第一凸起与第二凸起之间。
  14. 根据权利要求12所述的谐振器,其中:
    所述空隙层延伸到桥结构的顶面的至少一部分。
  15. 根据权利要求14所述的谐振器,其中:
    所述第二顶电极的非引脚端在谐振器的横向方向上与所述悬翼结构间隔开且在谐振器的厚度方向上与第一顶电极间隔开。
  16. 根据权利要求14所述的谐振器,其中:
    所述空隙层延伸到所述悬翼结构的顶面的至少一部分以及桥结构的顶面的至少一部分。
  17. 根据权利要求12-16中任一项所述的谐振器,其中:
    所述第一顶电极在凸起结构的内侧与凸起结构相邻设置有凹入结构。
  18. 根据权利要求6所述的谐振器,其中:
    第一凸起的外缘与声学镜的边缘齐平或者向外超过声学镜的边缘。
  19. 根据权利要求1-4中任一项所述的谐振器,其中:
    所述第一顶电极与第二顶电极在顶电极的非引脚端彼此间隔开;
    所述凸起结构包括在所述第一顶电极的引脚端形成的第一凸起,以及所述第一顶电极的非引脚端形成的第二凸起;且
    第二顶电极与所述凸起结构在谐振器的厚度方向上间隔开。
  20. 根据权利要求19所述的谐振器,其中:
    所述第一顶电极在凸起结构的内侧与凸起结构相邻设置有凹入结构。
  21. 根据权利要求19或20所述的谐振器,其中:
    所述第二顶电极的非引脚端包绕所述第二凸起且与第一顶电极的非引脚端的端面相接。
  22. 根据权利要求21所述的谐振器,其中:
    所述第二顶电极的非引脚端与第一顶电极的非引脚端的端面相接的同时,不与所述压电层的顶面形成接触。
  23. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    顶电极;和
    压电层,设置在底电极与顶电极之间,
    其中:
    顶电极、底电极、声学镜和压电层在所述谐振器的厚度方向上的重叠区域限定所述谐振器的有效区域;
    所述底电极包括空隙层、第一底电极和第二底电极,在谐振器的厚度方向上所述空隙层形成在第一底电极与第二底电极之间,第二底电极与压电层形成面接触;且
    所述第二底电极在有效区域内在有效区域的边缘设置有凸起结构,在谐振器的厚度方向上,所述凸起结构的底面位于在有效区域中第二底电极的底面的下方。
  24. 根据权利要求23所述的谐振器,其中:
    所述凸起结构包括在所述第一底电极的引脚端形成的第一凸起,以及所述第一底电极的非引脚端形成的第二凸起;
    第一凸起的外缘与声学镜的边缘齐平或者向外超过声学镜的边缘;第二凸起的外缘与顶电极的非引脚端的端面齐平,所述顶电极的非引脚端与压电层直接面接触。
  25. 一种滤波器,包括根据权利要求1-24中任一项所述的体声波谐振器。
  26. 一种电子设备,包括根据权利要求25所述的滤波器或者根据权利要求1-24中任一项所述的谐振器。
PCT/CN2020/088665 2019-10-23 2020-05-06 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备 WO2021077715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20879698.7A EP4072014A4 (en) 2019-10-23 2020-05-06 BULK WAVE RESONATOR WITH ELECTRODES WITH A GAP LAYER AND A PROJECTING STRUCTURE, FILTER AND ELECTRONIC DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911009262 2019-10-23
CN201911009262.3 2019-10-23
CN201911027015.6 2019-10-26
CN201911027015.6A CN111010123B (zh) 2019-10-23 2019-10-26 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2021077715A1 true WO2021077715A1 (zh) 2021-04-29

Family

ID=70111673

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2020/088662 WO2021077712A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备
PCT/CN2020/088665 WO2021077715A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
PCT/CN2020/088707 WO2021077717A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备
PCT/CN2020/088660 WO2021077711A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088662 WO2021077712A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/088707 WO2021077717A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备
PCT/CN2020/088660 WO2021077711A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备

Country Status (3)

Country Link
EP (4) EP4072014A4 (zh)
CN (4) CN111162748B (zh)
WO (4) WO2021077712A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162748B (zh) * 2019-10-23 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN111600566B (zh) * 2020-04-21 2021-06-01 诺思(天津)微系统有限责任公司 滤波器、体声波谐振器组件及其制造方法、电子设备
CN111600569B (zh) * 2020-04-29 2022-02-22 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法、滤波器及电子设备
CN111585537B (zh) * 2020-06-05 2024-02-20 武汉衍熙微器件有限公司 谐振器及滤波器
CN111740718A (zh) * 2020-06-22 2020-10-02 深圳市信维通信股份有限公司 一种体声波谐振装置、一种滤波装置及一种射频前端装置
CN113872553A (zh) * 2020-06-30 2021-12-31 诺思(天津)微系统有限责任公司 体声波谐振器及制造方法、滤波器及电子设备
CN112202415B (zh) * 2020-09-25 2021-09-24 杭州星阖科技有限公司 一种体声波谐振器的制造工艺方法和体声波谐振器
CN112187213B (zh) * 2020-09-29 2021-06-01 诺思(天津)微系统有限责任公司 双工器设计方法和双工器、多工器、通信设备
CN112311347B (zh) * 2020-10-16 2024-05-24 浙江大学杭州国际科创中心 一种可提高薄膜体声波谐振器品质因子q值的结构
WO2022087843A1 (zh) * 2020-10-27 2022-05-05 华为技术有限公司 谐振器及其制作方法、滤波器、电子设备
CN112511129A (zh) * 2020-12-02 2021-03-16 赛莱克斯微系统科技(北京)有限公司 一种薄膜体声波谐振器的气密封装结构及其制备方法
CN114696774A (zh) * 2020-12-31 2022-07-01 诺思(天津)微系统有限责任公司 单晶体声波谐振器、滤波器及电子设备
WO2022183379A1 (zh) * 2021-03-02 2022-09-09 天津大学 石英薄膜谐振器及其制造方法
CN115133899A (zh) * 2021-03-29 2022-09-30 诺思(天津)微系统有限责任公司 具有钨电极的体声波谐振器、滤波器及电子设备
CN115276598A (zh) * 2021-04-30 2022-11-01 诺思(天津)微系统有限责任公司 体声波谐振器及制造方法、滤波器及电子设备
CN113258901B (zh) * 2021-06-28 2021-10-29 深圳汉天下微电子有限公司 声学谐振器及其制造方法以及包括该声学谐振器的滤波器
CN115694410A (zh) * 2021-07-29 2023-02-03 诺思(天津)微系统有限责任公司 具有多个底电极层的体声波谐振器、滤波器及电子设备
CN115694398A (zh) * 2021-07-29 2023-02-03 诺思(天津)微系统有限责任公司 具有多个底电极层的体声波谐振器、滤波器及电子设备
CN115706571A (zh) * 2021-08-10 2023-02-17 诺思(天津)微系统有限责任公司 具有双压电层的体声波谐振器、滤波器及电子设备
CN113810006A (zh) * 2021-09-08 2021-12-17 常州承芯半导体有限公司 一种体声波谐振装置、滤波装置及射频前端装置
CN114006595B (zh) * 2021-12-30 2022-03-29 深圳新声半导体有限公司 体声波谐振器和体声波滤波器
CN117375568B (zh) * 2023-12-07 2024-03-12 常州承芯半导体有限公司 体声波谐振装置及体声波谐振装置的形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170077385A1 (en) * 2015-09-10 2017-03-16 Triquint Semiconductor, Inc. Air gap in baw top metal stack for reduced resistive and acoustic loss
CN109167585A (zh) * 2018-07-26 2019-01-08 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN110166018A (zh) * 2018-02-13 2019-08-23 三星电机株式会社 体声波谐振器
CN111010123A (zh) * 2019-10-23 2020-04-14 诺思(天津)微系统有限责任公司 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714917A (en) * 1996-10-02 1998-02-03 Nokia Mobile Phones Limited Device incorporating a tunable thin film bulk acoustic resonator for performing amplitude and phase modulation
JP2000209063A (ja) * 1998-11-12 2000-07-28 Mitsubishi Electric Corp 薄膜圧電素子
WO2002058235A1 (fr) * 2001-01-17 2002-07-25 Kabushiki Kaisha Toshiba Dispositif a ondes acoustiques de surface
JP2004222244A (ja) * 2002-12-27 2004-08-05 Toshiba Corp 薄膜圧電共振器およびその製造方法
US20070093229A1 (en) * 2005-10-20 2007-04-26 Takehiko Yamakawa Complex RF device and method for manufacturing the same
JP2008011140A (ja) * 2006-06-29 2008-01-17 Toshiba Corp 薄膜圧電共振器及びその製造方法
WO2009023098A2 (en) * 2007-08-14 2009-02-19 Skyworks Solutions, Inc. Bulk acoustic wave structure with aluminum copper nitride piezoelectric layer and related method
US8248185B2 (en) * 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
US8902023B2 (en) * 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US8384497B2 (en) * 2009-12-18 2013-02-26 Hao Zhang Piezoelectric resonator structure having an interference structure
CN101908865B (zh) * 2010-08-20 2014-02-12 庞慰 体波谐振器及其加工方法
FI20106063A (fi) * 2010-10-14 2012-06-08 Valtion Teknillinen Akustisesti kytketty laajakaistainen ohutkalvo-BAW-suodatin
US9083302B2 (en) * 2011-02-28 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9571064B2 (en) * 2011-02-28 2017-02-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with at least one air-ring and frame
US9048812B2 (en) * 2011-02-28 2015-06-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US9991871B2 (en) * 2011-02-28 2018-06-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising a ring
US9590165B2 (en) * 2011-03-29 2017-03-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising aluminum scandium nitride and temperature compensation feature
JP2013138425A (ja) * 2011-12-27 2013-07-11 Avago Technologies Wireless Ip (Singapore) Pte Ltd ブリッジを備えるソリッドマウントバルク音響波共振器構造
CN103684336B (zh) * 2012-08-31 2017-01-11 安华高科技通用Ip(新加坡)公司 包含具有内埋式温度补偿层的电极的谐振器装置
US9608192B2 (en) * 2013-03-28 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Temperature compensated acoustic resonator device
CN103607178B (zh) * 2013-09-17 2016-10-05 诺思(天津)微系统有限公司 薄膜体波谐振器及提高其品质因数的方法
JP6325799B2 (ja) * 2013-11-11 2018-05-16 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびデュプレクサ
US9520855B2 (en) * 2014-02-26 2016-12-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonators having doped piezoelectric material and frame elements
US10404231B2 (en) * 2014-02-27 2019-09-03 Avago Technologies International Sales Pte. Limited Acoustic resonator device with an electrically-isolated layer of high-acoustic-impedance material interposed therein
US9401691B2 (en) * 2014-04-30 2016-07-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with air-ring and temperature compensating layer
US9608594B2 (en) * 2014-05-29 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Capacitive coupled resonator device with air-gap separating electrode and piezoelectric layer
US9634642B2 (en) * 2014-05-30 2017-04-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising vertically extended acoustic cavity
JP6510996B2 (ja) * 2016-03-04 2019-05-08 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびデュプレクサ
JP6535637B2 (ja) * 2016-07-21 2019-06-26 太陽誘電株式会社 圧電薄膜共振器、フィルタ、デュプレクサ、及び圧電薄膜共振器の製造方法
JP6668201B2 (ja) * 2016-08-31 2020-03-18 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびマルチプレクサ。
DE102016124236B4 (de) * 2016-12-13 2018-07-26 Snaptrack, Inc. BAW-Resonator
JP6886357B2 (ja) * 2017-07-03 2021-06-16 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびマルチプレクサ
JP6869831B2 (ja) * 2017-07-03 2021-05-12 太陽誘電株式会社 圧電薄膜共振器およびその製造方法、フィルタ並びにマルチプレクサ
DE102018101442B4 (de) * 2018-01-23 2019-09-12 RF360 Europe GmbH BAW-Resonator mit erhöhtem Gütefaktor
CN110166014B (zh) * 2018-02-11 2020-09-08 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法
CN109889177B (zh) * 2018-12-26 2023-04-07 天津大学 具有掺杂隔离结构的体声波谐振器
CN111130490A (zh) * 2019-12-09 2020-05-08 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备
CN111082776B (zh) * 2019-12-11 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN111245394B (zh) * 2019-12-16 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170077385A1 (en) * 2015-09-10 2017-03-16 Triquint Semiconductor, Inc. Air gap in baw top metal stack for reduced resistive and acoustic loss
CN110166018A (zh) * 2018-02-13 2019-08-23 三星电机株式会社 体声波谐振器
CN109167585A (zh) * 2018-07-26 2019-01-08 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN111010123A (zh) * 2019-10-23 2020-04-14 诺思(天津)微系统有限责任公司 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4072014A4 *

Also Published As

Publication number Publication date
EP4072014A4 (en) 2024-06-26
WO2021077717A1 (zh) 2021-04-29
CN111162748B (zh) 2021-06-01
EP4068627A1 (en) 2022-10-05
EP4072013A4 (en) 2024-04-10
WO2021077712A1 (zh) 2021-04-29
EP4072014A1 (en) 2022-10-12
EP4068628A1 (en) 2022-10-05
CN111010122A (zh) 2020-04-14
CN111010123A (zh) 2020-04-14
CN111082774B (zh) 2021-03-12
EP4068628A4 (en) 2024-04-10
CN111162748A (zh) 2020-05-15
CN111082774A (zh) 2020-04-28
WO2021077711A1 (zh) 2021-04-29
CN111010122B (zh) 2021-06-01
EP4068627A4 (en) 2024-01-10
EP4072013A1 (en) 2022-10-12
CN111010123B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2021077715A1 (zh) 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
CN111245394B (zh) 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备
EP4089918A1 (en) Bulk acoustic wave resonator and manufacturing method, bulk acoustic wave resonator unit, filter and electronic device
EP4087130A1 (en) Bulk acoustic resonator with bottom electrode as gap electrode, and filter and electronic device
CN111010130B (zh) 带温补层和电学层的体声波谐振器、滤波器及电子设备
EP4050795A1 (en) Bulk acoustic resonator, filter, and electronic device
CN111082776B (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
WO2021073022A1 (zh) 带不导电插入层的体声波谐振器、滤波器和电子设备
WO2020098481A1 (zh) 具有粗糙面的体声波谐振器、滤波器和电子设备
WO2021004127A1 (zh) 体声波谐振器、滤波器及电子设备
CN114696774A (zh) 单晶体声波谐振器、滤波器及电子设备
WO2023169209A1 (zh) 一种声表面波谐振器及滤波器
CN111600569B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2020098484A1 (zh) 带断裂结构体声波谐振器及其制造方法、滤波器和电子设备
WO2022206332A1 (zh) 具有钨电极的体声波谐振器、滤波器及电子设备
CN111010124B (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
WO2022111415A1 (zh) 具有钨电极的体声波谐振器、滤波器及电子设备
CN114553169A (zh) 利用凸起结构降低声阻抗的体声波谐振器、滤波器及电子设备
CN111313860A (zh) 具有保护结构层的体声波谐振器、滤波器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020879698

Country of ref document: EP

Effective date: 20220523