WO2021077712A1 - 电极具有空隙层的体声波谐振器、滤波器及电子设备 - Google Patents

电极具有空隙层的体声波谐振器、滤波器及电子设备 Download PDF

Info

Publication number
WO2021077712A1
WO2021077712A1 PCT/CN2020/088662 CN2020088662W WO2021077712A1 WO 2021077712 A1 WO2021077712 A1 WO 2021077712A1 CN 2020088662 W CN2020088662 W CN 2020088662W WO 2021077712 A1 WO2021077712 A1 WO 2021077712A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resonator
electrical connection
gap
connection portion
Prior art date
Application number
PCT/CN2020/088662
Other languages
English (en)
French (fr)
Inventor
庞慰
张孟伦
徐洋
杨清瑞
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Priority to EP20879253.1A priority Critical patent/EP4068628A4/en
Publication of WO2021077712A1 publication Critical patent/WO2021077712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02125Means for compensation or elimination of undesirable effects of parasitic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps

Definitions

  • the embodiments of the present invention relate to the field of semiconductors, and in particular to a bulk acoustic wave resonator, a filter having the resonator, and an electronic device having the resonator or the filter.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Wave Resonator
  • SAW surface acoustic wave
  • the main structure of the film bulk acoustic resonator is a "sandwich" structure composed of electrode-piezoelectric film-electrode, that is, a layer of piezoelectric material is sandwiched between two layers of metal electrodes.
  • FBAR uses the inverse piezoelectric effect to convert the input electrical signal into mechanical resonance, and then uses the piezoelectric effect to convert the mechanical resonance into electrical signal output.
  • the frequency of the 5G communication band is 3GHz-6GHz, which is higher than 4G and other communication technologies.
  • the high operating frequency means that the film thickness, especially the film thickness of the electrode, must be further reduced; however, the main negative effect brought about by the reduction of the electrode film thickness is the resonator Q caused by the increase in electrical loss. The value decreases, especially the Q value near the series resonance point and its frequency.
  • the performance of the high-frequency bulk acoustic wave filter also deteriorates greatly as the Q value of the bulk acoustic wave resonator decreases.
  • Fig. 1A is a schematic top view of a bulk acoustic wave resonator.
  • Fig. 1B is a schematic cross-sectional view taken along A1-A2 in Fig. 1A, in which an air gap is provided in the top electrode.
  • Fig. 1C is a schematic cross-sectional view of another structure taken along A1-A2 in Fig. 1A, wherein the bottom electrode is provided with an air gap.
  • the resonator includes a substrate 10, an acoustic mirror 20, a bottom electrode 30, a piezoelectric layer 40, a first top electrode 50 and a second top electrode 70.
  • An air gap 60 is provided in the top electrode, and the top electrode has The electrode pin 56 has an electrode pin 36 on the bottom electrode.
  • the resonator includes a substrate 10, an acoustic mirror 20, a first bottom electrode 30, a second bottom electrode 31, a piezoelectric layer 40, and a top electrode 50.
  • An air gap 60 is provided in the bottom electrode, and the top electrode has The electrode pin 56 has an electrode pin 36 on the bottom electrode.
  • the electrode structure with an air gap can significantly reduce the electrical loss of the resonator on the one hand (shown as an increase in the Q value at and near the series resonance frequency).
  • the air gap affects the top electrode 70. Acoustic isolation is achieved, thereby basically avoiding the negative impact of the electrode 70 on the performance of the resonator (such as changes in the resonant frequency and electromechanical coupling coefficient).
  • the first top electrode 50 and the second top electrode 70 have contact portions CT1 and CT2 in the effective area AR.
  • the contact portions CT1, CT2 and the bottom electrode 30 will form a parasitic sandwich structure through the piezoelectric layer 40.
  • the first bottom electrode and the second bottom electrode are outside the effective area, and also form a parasitic sandwich structure with the piezoelectric layer and the top electrode. As shown in CT3 in Figure 1C.
  • the present invention is proposed.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the first gap electrode has a first electrode and a second electrode, the first electrode is in contact with the piezoelectric layer, the second electrode is away from the piezoelectric layer, and the gap layer is The resonator is located between the first electrode and the second electrode in the thickness direction, the first electrode and the second electrode are electrically connected at an electrical connection portion that defines at least a part of the boundary of the gap layer, and
  • the resonator further includes an electrical isolation portion, the inner side of the electrical isolation portion is used to define the boundary of the effective area of the resonator in the lateral direction of the resonator;
  • the electrical connection part In the transverse direction of the resonator, the electrical connection part is located outside the effective area; or the projection of the electrical connection part in the thickness direction of the resonator falls within the electrical isolation part.
  • the embodiment of the present invention also relates to a filter including the above-mentioned bulk acoustic wave resonator.
  • the embodiment of the present invention also relates to an electronic device including the above-mentioned filter or the above-mentioned resonator.
  • Figure 1A is a schematic top view of a bulk acoustic wave resonator
  • FIG. 1B is a schematic cross-sectional view taken along A1-A2 in FIG. 1A, in which an air gap is provided in the top electrode;
  • Fig. 1C is a schematic cross-sectional view of another structure taken along A1-A2 in Fig. 1A, wherein the bottom electrode is provided with an air gap.
  • FIG. 2 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to an exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer;
  • FIG. 3 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer and a suspended wing structure;
  • FIG. 4 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to still another exemplary embodiment of the present invention, in which the top electrode is provided with a gap layer and a suspended wing structure;
  • FIG. 5 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to still another exemplary embodiment of the present invention, in which the top electrode is provided with a gap layer, a suspended wing structure and a bridge structure;
  • FIG. 6 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the upper surface of the piezoelectric layer is provided with an electrical isolation portion The depression
  • FIG. 7 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the upper surface of the piezoelectric layer is provided with an electrical isolation portion The depression
  • FIG. 8 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the lower surface of the piezoelectric layer is provided with an electrical isolation portion The depression
  • FIG. 9 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the lower surface of the piezoelectric layer is provided with an electrical isolation portion The depression
  • FIG. 10 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to an exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer, and the top electrode is provided with a bridge structure;
  • FIG. 11 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer, the top electrode is provided with a bridge structure and the gap layer constitutes an acoustic mirror ;
  • FIG. 12 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer, and the upper surface of the piezoelectric layer is provided with an electrical isolation portion The recess and the gap layer constitute an acoustic mirror;
  • Fig. 13 is a schematic cross-sectional view similar to that taken along A1-A2 in Fig. 1A according to another exemplary embodiment of the present invention, in which the bottom electrode is provided with a gap layer, and the lower surface of the piezoelectric layer and the non-pins of the bottom electrode There is a space as an electrical isolation part between the ends;
  • FIG. 14 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, in which both the bottom electrode and the top electrode are provided with a gap layer, and the top electrode is also provided with a suspended wing structure And bridge structure;
  • FIG. 15 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode and the top electrode are both provided with a gap layer, and the lower surface and the bottom of the piezoelectric layer A space serving as an electrical isolation portion is formed between the lead ends of the electrodes, and a space serving as an electrical isolation portion is formed between the lower surface of the piezoelectric layer and the non-lead end of the bottom electrode;
  • FIG. 16 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode and the top electrode are both provided with a gap layer, and the top electrode is also provided with a suspended wing structure With the bridge structure, the upper surfaces of the first top electrode and the second top electrode are both provided with a passivation layer.
  • Substrate, optional materials are silicon (high-resistance silicon), gallium arsenide, sapphire, quartz, etc.
  • Acoustic mirror which can be a cavity 20, or a Bragg reflective layer or other equivalent forms, and can also be realized with a gap layer in the bottom electrode.
  • the first bottom electrode, the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or a combination of the above metals or their alloys.
  • Electrode pin the material is the same as the first bottom electrode.
  • the second bottom electrode, the material selection range is the same as that of the first bottom electrode 30, but the specific material is not necessarily the same as that of the first bottom electrode 30.
  • Piezoelectric film layer optional aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobate (LiNbO3), quartz (Quartz), potassium niobate (KNbO3) or tantalum
  • Materials such as lithium oxide (LiTaO3) may also contain rare earth element doped materials with a certain atomic ratio of the above materials.
  • the first top electrode, the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, etc.
  • Electrode pin the same material as the first top electrode.
  • 60 An air gap located in the top electrode, between the first top electrode 50 and the second top electrode 70.
  • the second top electrode, the material selection range is the same as that of the first top electrode 50, but the specific material is not necessarily the same as the first top electrode 50.
  • the air gap constitutes the void layer.
  • the void layer may be a vacuum gap layer, or a void layer filled with another gas medium, in addition to the air gap layer.
  • FIG. 2 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to an exemplary embodiment of the present invention, in which the top electrode is provided with a gap layer.
  • the right end of the air gap extends beyond the effective area AR, and in the lateral direction also extends to the outside of the non-lead end of the bottom electrode (of course it can also be flush), thereby eliminating the need for the additional electrode 70 at the pin end.
  • the resulting parasitic The right end of the air gap 60 extends from the AR area distance D1, where the range of D1 is 0-20 ⁇ m.
  • the electrical connection part of the first top electrode and the second top electrode at the electrode pin end is outside the effective area and does not coincide with the projection of the bottom electrode in the thickness direction of the resonator. In this way, the electrical connection part can be avoided. Together with the piezoelectric layer and other electrodes, a parasitic sandwich structure is formed.
  • the piezoelectric layer 40 when the resonator is working, an alternating electric field is applied to the piezoelectric layer 40 through the electrodes. Due to the coupling and mutual conversion of acousto-electric energy, current will flow through the electrodes. Because the top electrode of this embodiment has a double-layer electrode parallel structure Therefore, the electrical loss of the resonator can be effectively reduced. Under the excitation of the alternating electric field, the piezoelectric layer generates sound waves. When the sound waves are conducted upward to the interface between the air gap 60 and the top electrode 50 in the top electrode, the sound wave energy will be reflected back to the piezoelectric layer 40 (because the air and the electrode The degree of acoustic impedance mismatch is extremely large), and it does not enter the top electrode 70.
  • the electrode structure of the present invention with an air gap can significantly reduce the electrical loss of the resonator (indicated by increasing the Q value at and near the series resonance frequency).
  • the air gap can acoustically isolate the top electrode 70. Therefore, the negative influence of the electrode 70 on the performance of the resonator (such as the change of the resonance frequency and the electromechanical coupling coefficient) caused by the electrode 70 is basically avoided.
  • the height of the air gap is generally greater than the typical amplitude of the resonator (about 10nm), for example, the height of the air gap is within the scope, further, the height is in This facilitates the decoupling of acoustic energy between the top electrode 70 and the resonant cavity (in this embodiment, a composite structure composed of the top electrode 50, the piezoelectric layer 40, and the bottom electrode 30) when the resonator is working at high power.
  • Fig. 3 is a schematic cross-sectional view similar to that taken along A1-A2 in Fig. 1A according to another exemplary embodiment of the present invention, in which the top electrode is provided with a gap layer and a suspended wing structure.
  • a suspended wing structure 55 can be formed, and the left end of the air gap 60 extends along the surface of the wing 55 to outside the boundary of the effective acoustic area AR.
  • the lateral distance between the side edge of the pin and the AR boundary is D2, and the range of D2 is 0-40 ⁇ m.
  • the left edge of the air gap 60 shown in FIG. 3 has already extended to the horizontal part of the suspension wing structure 55. This is only a possibility. Obviously, the left edge of the air gap 60 can also only extend to the suspension wing structure. A certain position of the inclined part of 55 is within the protection scope of the present invention, and this description is applicable to the following bridge/wing structures.
  • the electrical connection portion on the right side of the first top electrode and the second top electrode is the first electrical connection portion, and the electrical connection portion on the right side is the second electrical connection portion.
  • the space 52 between the suspended wing structure and the surface of the piezoelectric layer serves as the electrical isolation portion.
  • the projection of the second electrical connection portion in the thickness direction of the resonator falls into the electrical isolation portion.
  • the inner side of the electrical isolation part is used to define the boundary of the effective area.
  • FIG. 4 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to still another exemplary embodiment of the present invention, in which the top electrode is provided with a gap layer and a suspended wing structure.
  • FIG. 4 is different from FIG. 3 in that filling the space 52 under the suspension wings with a dielectric material can also achieve the effect of eliminating parasitic structures.
  • the filling material can be silicon dioxide, silicon nitride, silicon carbide, and various metal oxides or epoxy resins and other non-piezoelectric materials.
  • Fig. 5 is a schematic cross-sectional view similar to that taken along A1-A2 in Fig. 1A according to still another exemplary embodiment of the present invention, in which the top electrode is provided with a gap layer, a suspended wing structure and a bridge structure.
  • the structure of FIG. 5 is based on the structure of FIG. 3 to form a bridge structure 57 on the pin side of the top electrode, so that the electrode of the bridge part can be separated from the piezoelectric layer, and the AR area is retracted into the air gap 60 in the lateral direction. In this area, the pin side edge of the air gap 60 extends beyond the AR boundary to extend the bridge structure, thereby eliminating parasitic structures.
  • the lateral distance between the left/right edge of the air gap 60 and the AR is D7/D8, and the range is 0-40 ⁇ m.
  • FIG. 6 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the upper surface of the piezoelectric layer is provided with an electrical isolation portion The depression.
  • the electrode 50 In addition to forming the electrode 50 into a wing/bridge structure, it is also possible to form air recesses (recesses) 41 and 42 on the upper surface of the piezoelectric layer 40 below the contact portion of the top electrode 50 and 70 as in the structure shown in FIG. , The electrode 50 is separated from the piezoelectric layer 40, thereby eliminating parasitic effects.
  • the edge of the air gap 60 extends beyond the boundary of the effective area AR, where the lateral distance between the non-lead side edge of the air gap 60 and the AR boundary is D3, and the lateral distance between the pin side edge of v60 and the AR boundary is D5, D3, and The range of D5 is 0-40 ⁇ m.
  • the left boundary of the top electrode non-lead side recess 41 is located outside the non-lead side edge of the top electrode, and the distance D4 of the two parts ranges from 0-40 ⁇ m; the left boundary of the top electrode pin side recess 42 is located at the bottom. Outside of the electrode non-lead side edge, the distance D6 between the two parts ranges from 0 to 40 ⁇ m.
  • FIG. 7 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the upper surface of the piezoelectric layer is provided with an electrical isolation portion The depression.
  • the recesses 41/42 of the structure in FIG. 6 are also filled with a dielectric material, and the material is selected as the filling material of the space 52 in FIG.
  • FIG. 8 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the lower surface of the piezoelectric layer is provided with an electrical isolation portion The depression.
  • air recesses 41 and 42 can also be formed on the lower surface of the piezoelectric layer 40, which can also play a role in eliminating parasitic effects. Based on certain processes, when manufacturing the structure with the depression located on the lower surface of 40, the structure undulation as shown in FIG. 8 may be formed.
  • the air recesses 41/42 in FIG. 8 can also be filled with non-piezoelectric dielectric materials, and the material selection can refer to the filling material of the space 52 in FIG. 4, as shown in FIG. 9 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the top electrode is provided with a gap layer, and the lower surface of the piezoelectric layer is provided with an electrical isolation portion The depression.
  • the structure in FIG. 10 can be used to eliminate it.
  • 10 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to an exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer, and the top electrode is provided with a bridge structure.
  • the pin side of the electrode 50 is arched to form a bridge structure 57, and the bridge electrode is separated from the lower piezoelectric layer 40, thereby eliminating the original piezoelectric layer and lower electrode in FIG. 1C.
  • the parasitic sandwich structure formed by 31 and 30.
  • the non-lead side edge of the bottom electrode of the air gap 60 in FIG. 10 extends beyond the newly formed effective area AR, and the distance w1 between the two is in the range of 0-40 ⁇ m.
  • FIG. 11 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer, the top electrode is provided with a bridge structure and the gap layer constitutes an acoustic mirror .
  • FIG. 12 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode is provided with a gap layer, and the upper surface of the piezoelectric layer is provided with an electrical isolation portion
  • the recess and the gap layer constitute an acoustic mirror.
  • an air recess 45 can be formed on the upper surface of the piezoelectric layer 40, which can also eliminate the original existing in FIG. 1C.
  • the parasitic sandwich structure in.
  • the lateral distance between the air gap and the AR boundary is w2, and the range of w2 is 0-40 ⁇ m.
  • Fig. 13 is a schematic cross-sectional view similar to that taken along A1-A2 in Fig. 1A according to another exemplary embodiment of the present invention, in which the bottom electrode is provided with a gap layer, and the lower surface of the piezoelectric layer and the non-pins of the bottom electrode A space as an electrical isolation part is provided between the ends.
  • the recess 44 may also be formed on the lower surface of the piezoelectric layer 40 as shown in FIG. 13.
  • the lateral distance between the air gap and the AR boundary is w3, and the range of w3 is 0-40 ⁇ m.
  • FIG. 14 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, in which both the bottom electrode and the top electrode are provided with a gap layer, and the top electrode is also provided with a suspended wing structure And bridge structure.
  • the upper electrode and the lower electrode of the resonator in FIG. 14 have air gaps 60 and 61, respectively, wherein the edges of the air gaps 60 and 61 both extend beyond the effective area AR.
  • the lateral distance between the non-pin side edge of the air gap 60 and the AR boundary is D9; the lateral distance between the pin side edge of the air gap 60 and the AR boundary is D10; the lateral distance between the pin side edge of the air gap 61 and the AR boundary The distance is w5; the lateral distance between the non-lead side edge of the air gap 61 and the AR boundary is w3.
  • the range of D9, D10, w3, and w5 is 0-40 ⁇ m.
  • FIG. 15 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode and the top electrode are both provided with a gap layer, and the lower surface and the bottom of the piezoelectric layer A space as an electrical isolation portion is formed between the lead ends of the electrodes, and a space as an electrical isolation portion is formed between the lower surface of the piezoelectric layer and the non-lead end of the bottom electrode.
  • a recess 44 is formed on the lower surface of the piezoelectric layer to eliminate the parasitic sandwich structure.
  • the size between the air gap and the AR boundary is the same as that in FIG. 14.
  • FIG. 16 is a schematic cross-sectional view similar to that taken along A1-A2 in FIG. 1A according to another exemplary embodiment of the present invention, wherein the bottom electrode and the top electrode are both provided with a gap layer, and the top electrode is also provided with a suspended wing structure And the bridge structure, the upper surface of the first top electrode and the second top electrode are both provided with a passivation layer, wherein the upper surface of the first top electrode 50 and the upper surface of the second top electrode 70 are respectively covered with passivation to prevent metal oxidation. ⁇ Layer 81 and 80.
  • a void layer is provided in the top electrode and/or the bottom electrode of the bulk acoustic wave resonator.
  • the air gap located in the electrode can effectively reflect the sound wave, greatly reducing the sound wave energy entering the additional electrode on the side away from the piezoelectric film (or piezoelectric layer), thereby effectively suppressing or eliminating the additional electrode due to the participation in acoustic vibration. Negative effects.
  • the electrical loss of the resonator can be effectively reduced, and the Q value of the resonator can be improved, especially the series resonance point and the frequency near it. Q value.
  • the additional electrode is acoustically decoupled from the resonator cavity due to the existence of the air gap (most of the sound waves are reflected back to the cavity at the air gap and do not enter the additional electrode), and the existence and parameter changes of the additional electrode do not affect the resonator except
  • Other key parameters besides Q value such as resonance frequency, electromechanical coupling coefficient, etc.).
  • the present invention avoids the parasitic series capacitance caused by the air gap, and the electromechanical coupling coefficient kt 2 of the resonator will not deteriorate; Compared with the structure in which silicon) is located between the two layers of electrodes, the air gap or vacuum gap of the present invention makes the resonant frequency of the resonator not change, other key parameters (Q value, electromechanical coupling coefficient) will not deteriorate, and the series resonance point and its vicinity The Q value at the frequency will be improved instead.
  • the effective area of the resonator is the distance between the top electrode, the piezoelectric layer, the bottom electrode and the acoustic mirror in the thickness direction of the resonator. Overlapping area.
  • the effective area of the resonator is the overlapping area of the top electrode, the bottom electrode, the piezoelectric layer, and the void layer of the bottom electrode in the thickness direction of the resonator.
  • the void layer may also be provided in the top electrode at the same time, or no void layer is provided.
  • the mentioned numerical range can also be the median value between the endpoint values or other values, all of which fall within the protection scope of the present invention.
  • the "inside” and “outside” of a component are judged based on which part of the component is closer to the center of the effective area of the resonator in the transverse direction of the resonator, if it is close to the center of the effective area of the resonator , It is the inside, on the contrary, if it is far from the center of the effective area of the resonator, it is the outside.
  • the bulk acoustic wave resonator according to the present invention can be used to form a filter.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • One of the bottom electrode and the top electrode is a first gap electrode
  • the first gap electrode has a first electrode and a second electrode
  • the first electrode is in contact with the piezoelectric layer
  • the second electrode is away from the piezoelectric layer
  • the gap layer is The resonator is located between the first electrode and the second electrode in the thickness direction
  • the first electrode and the second electrode are electrically connected at an electrical connection portion that defines at least a part of the boundary of the gap layer
  • the resonator further includes an electrical isolation portion, the inner side of the electrical isolation portion defines the boundary of the effective area of the resonator in the lateral direction of the resonator;
  • the electrical connection part In the transverse direction of the resonator, the electrical connection part is located outside the effective area; or the projection of the electrical connection part in the thickness direction of the resonator falls within the electrical isolation part.
  • the first gap electrode is a top electrode
  • the electrical connection portion includes a first electrical connection portion located outside the effective area at the pin end of the first gap electrode, and the first electrical connection portion is located at the non-pin end of the bottom electrode in the lateral direction of the resonator. Outside.
  • the first gap electrode is a top electrode, and the non-lead end of the first electrode of the first gap electrode is provided with a suspension wing structure;
  • the electrical connection portion includes a second electrical connection portion located outside the effective area at the non-pin end of the first gap electrode, and the second electrical connection portion is located on the suspension wing structure.
  • the electrical isolation portion includes an electrical isolation portion formed by a space between the suspension wing structure and the piezoelectric layer.
  • the first gap electrode is a top electrode, and the non-lead end of the first electrode of the first gap electrode is provided with a suspension wing structure;
  • the electrical connection portion includes a second electrical connection portion in which the non-pin end of the first gap electrode is located within the first effective area, and the second electrical connection portion is located on the suspension wing structure.
  • the electrical isolation portion includes an electrical isolation portion formed by a space between the suspension wing structure and the piezoelectric layer.
  • the electrical isolation part is filled with a dielectric material.
  • the first gap electrode is a top electrode, and the first electrode of the first gap electrode is provided with a bridge structure at its pin end;
  • the electrical connection portion includes a first electrical connection portion located outside the effective area at the pin end of the first gap electrode, and the first electrical connection portion is partially located on the bridge structure;
  • the electrical isolation portion includes an electrical isolation portion formed by the space between the bridge structure and the piezoelectric layer;
  • the non-lead end of the bottom electrode located in the projection of the pin end of the first gap electrode falls into the projection of the bridge structure.
  • the electrical isolation portion includes a recess portion provided on the piezoelectric layer, and the inner side of the recess portion defines a boundary of the effective area.
  • the recessed portion is filled with a dielectric material.
  • the electrical connection portion includes a first electrical connection portion where the pin end of the first gap electrode is located outside the effective area, and a second electrical connection portion where the non-pin end of the first gap electrode is located outside the effective area.
  • the outer side of the recessed portion is located on the outer side of the second electrical connection portion in the transverse direction of the resonator, or the outer side of the recessed portion is flush with the outer side of the second electrical connection portion in the thickness direction of the resonator.
  • the first gap electrode is a top electrode
  • the projection of the non-lead end of the bottom electrode located in the projection of the pin end of the top electrode falls within the projection of the corresponding recess.
  • the recess is provided on the upper surface of the piezoelectric layer.
  • the recessed portion is provided on the lower surface of the piezoelectric layer.
  • the first gap electrode is a bottom electrode, and the top electrode is provided with a bridge structure at its pin end;
  • the electrical connection portion includes a first electrical connection portion where the non-pin end of the first gap electrode is located within the projection of the top electrode;
  • the electrical isolation portion includes an electrical isolation portion formed by a space between the bridge structure and the piezoelectric layer.
  • the void layer constitutes the acoustic mirror.
  • the first gap electrode is a bottom electrode, and the electrical connection portion includes a first electrical connection portion where the non-pin end of the first gap electrode is located within the projection of the top electrode;
  • the electrical isolation portion includes an electrical isolation portion formed by the space between the lower surface of the piezoelectric layer and the first electrical connection portion at a position adjacent to the first electrical connection portion, or the electrical isolation portion includes an electrical isolation portion adjacent to the first electrical connection portion.
  • the position of the first electrical connection portion is an electrical isolation portion formed by the space between the lower surface of the piezoelectric layer and the first electrical connection portion and the upper surface of the substrate.
  • the other of the top electrode and the bottom electrode is a second gap electrode, the second gap electrode has a third electrode and a fourth electrode, the third electrode is in contact with the piezoelectric layer, the fourth electrode is away from the piezoelectric layer, and the third electrode
  • An additional gap layer is provided between the fourth electrode and the fourth electrode in the thickness direction of the resonator, and the third electrode and the fourth electrode are electrically connected at another electrical connection portion, and the additional electrical connection portion defines the additional gap At least a part of the boundary of the layer, in the lateral direction of the resonator, the additional electrical connection part is located outside the effective area.
  • the gap layer is an air gap layer or a vacuum gap layer.
  • the thickness of the void layer is In the range.
  • the thickness of the void layer is In the range.
  • a filter comprising the bulk acoustic wave resonator according to any one of 1-19.
  • An electronic device comprising the filter according to 20 or the resonator according to any one of 1-19.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种体声波谐振器,包括:基底;声学镜;底电极;顶电极;和压电层,设置在底电极与顶电极之间,其中:底电极和顶电极中的一个为第一间隙电极,第一间隙电极具有第一电极与第二电极,第一电极与压电层面接触,第二电极远离压电层,且空隙层在谐振器的厚度方向上位于第一电极与第二电极之间,第一电极与第二电极在电连接部处电连接,电连接部限定空隙层的边界的至少一部分。谐振器还包括电学隔离部,电连接部在谐振器的厚度方向上的投影落入电学隔离部之内,电学隔离部的内侧用于限定谐振器的有效区域在谐振器的横向方向上的边界。本发明还涉及一种具有上述谐振器的滤波器以及具有该滤波器或谐振器的电子设备。

Description

电极具有空隙层的体声波谐振器、滤波器及电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器、一种具有该谐振器的滤波器,以及一种具有该谐振器或者该滤波器的电子设备。
背景技术
电子器件作为电子设备的基本元素,已经被广泛应用,其应用范围包括移动电话、汽车、家电设备等。此外,未来即将改变世界的人工智能、物联网、5G通讯等技术仍然需要依靠电子器件作为基础。
电子器件根据不同工作原理可以发挥不同的特性与优势,在所有电子器件中,利用压电效应(或逆压电效应)工作的器件是其中很重要一类,压电器件有着非常广泛的应用情景。薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为压电器件的重要成员正在通信领域发挥着重要作用,特别是FBAR滤波器在射频滤波器领域市场占有份额越来越大,FBAR具有尺寸小、谐振频率高、品质因数高、功率容量大、滚降效应好等优良特性,其滤波器正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器,在无线通信射频领域发挥巨大作用,其高灵敏度的优势也能应用到生物、物理、医学等传感领域。
薄膜体声波谐振器的结构主体为由电极-压电薄膜-电极组成的“三明治”结构,即两层金属电极之间夹一层压电材料。通过在两电极间输入正弦信号,FBAR利用逆压电效应将输入电信号转换为机械谐振,并且再利用压电效应将机械谐振转换为电信号输出。
通信技术的快速发展要求滤波器工作频率不断提高,例如5G通信频段(sub-6G)的频率在3GHz-6GHz,频率高于4G等通信技术。对于体声波谐振器和滤波器,高工作频率意味着薄膜厚度尤其是电极的薄膜厚度,要进一步减小;然而电极薄膜厚度的减小带来的主要负面效应为电学损耗增加导致的谐振器Q值降低,尤其是串联谐振点及其频率附近处的Q值降低; 相应地,高工作频率体声波滤波器的性能也随着体声波谐振器的Q值降低而大幅恶化。
图1A为体声波谐振器的示意性俯视图。图1B为沿图1A中的A1-A2截得的示意性剖视图,其中顶电极内设置有空气间隙。图1C为沿图1A中的A1-A2截得的另外结构的示意性剖视图,其中底电极设置有空气间隙。
如图1B所示,谐振器包括基底10、声学镜20、底电极30、压电层40、第一顶电极50和第二顶电极70,在顶电极中设置有空气间隙60,顶电极具有电极引脚56,底电极具有电极引脚36。
如图1C所示,谐振器包括基底10、声学镜20、第一底电极30、第二底电极31、压电层40、顶电极50,在底电极中设置有空气间隙60,顶电极具有电极引脚56,底电极具有电极引脚36。
当图1B和1C中示出结构的谐振器工作时,交变电场通过电极施加在压电层40上,由于声电能量耦合并相互转化,电极中会有电流通过,由于顶电极具有双层电极并联结构,因此可以有效减小谐振器的电学损耗。在交变电场的激励下,压电层产生声波,当声波向上方传导至位于顶电极中的空气间隙60和第一顶电极50的界面时声波能量会被反射回压电层40(因为空气和电极的声阻抗不匹配程度极大),并不会进入第二顶电极70。因此,图1中,含有空气间隙的电极结构一方面可显著降低谐振器的电学损耗(表现为提升串联谐振频率处及其附近Q值的提高),另一方面,空气间隙对顶电极70起到了声学隔离作用,从而基本避免电极70对谐振器性能造成的负面影响(如谐振频率和机电耦合系数的改变)。
如图1B所示,第一顶电极50和第二顶电极70的在有效区域AR内有接触部CT1和CT2。当谐振器工作时接触部CT1、CT2和底电极30通过压电层40会形成一个寄生三明治结构。
如图1C所示,第一底电极、第二底电极在有效区域之外,也会与压电层和顶电极形成一个寄生三明治结构。如图1C中的CT3所示。
发明内容
为缓解或消除上述的寄生三明治结构,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
底电极和顶电极中的一个为第一间隙电极,所述第一间隙电极具有第一电极与第二电极,第一电极与压电层面接触,第二电极远离压电层,且空隙层在谐振器的厚度方向上位于第一电极与第二电极之间,第一电极与第二电极在电连接部处电连接,所述电连接部限定空隙层的边界的至少一部分,且
其中:
所述谐振器还包括电学隔离部,所述电学隔离部的内侧用于限定谐振器的有效区域在谐振器的横向方向上的边界;且
在谐振器的横向方向上所述电连接部位于有效区域之外;或者所述电连接部在谐振器的厚度方向上的投影落入所述电学隔离部之内。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器。
本发明的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1A为体声波谐振器的示意性俯视图;
图1B为沿图1A中的A1-A2截得的示意性剖视图,其中顶电极内设置有空气间隙;
图1C为沿图1A中的A1-A2截得的另外结构的示意性剖视图,其中底电极设置有空气间隙。
图2为根据本发明的一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层;
图3为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层和悬翼结构;
图4为根据本发明的再一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层和悬翼结构;
图5为根据本发明的再一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层、悬翼结构和桥结构;
图6为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且压电层上表面设置有作为电学隔离部的凹陷部;
图7为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且压电层上表面设置有作为电学隔离部的凹陷部;
图8为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且压电层下表面设置有作为电学隔离部的凹陷部;
图9为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且压电层下表面设置有作为电学隔离部的凹陷部;
图10为根据本发明的一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,且顶电极设置有桥结构;
图11为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,顶电极设置有桥结构且空隙层构成声学镜;
图12为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,压电层上表面设置有作为电学隔离部的凹陷部且空隙层构成声学镜;
图13为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,压电层下表面与底电极的非引脚端之间设置有作为电学隔离部的空间;
图14为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极和顶电极均设置有空隙层,顶电极还设置有悬翼结构和桥结构;
图15为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极和顶电极均设置有空隙层,压电层的下表面与底电极的引脚端之间形成有作为电学隔离部的空间以及压电层的下表面与底电极的非引脚端之间形成有作为电学隔离部的空间;
图16为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极和顶电极均设置有空隙层,顶电极还设置有悬翼结构和桥结构,第一顶电极与第二顶电极的上表面均设置有钝化层。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
在图2-16中,各附图标记如下:
10:基底,可选材料为硅(高阻硅)、砷化镓、蓝宝石、石英等。
20:声学镜,可为空腔20,也可采用布拉格反射层及其他等效形式,还可以有底电极中的空隙层实现。
30:第一底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
36:电极引脚,材料与第一底电极相同。
31:第二底电极,材料选择范围同第一底电极30,但具体材料不一 定与第一底电极30相同。
40:压电薄膜层,可选氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO3)、石英(Quartz)、铌酸钾(KNbO3)或钽酸锂(LiTaO3)等材料,也可包含上述材料的一定原子比的稀土元素掺杂材料。
50:第一顶电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
56:电极引脚,材料与第一顶电极相同。
60:位于顶电极之中的空气间隙,处于第一顶电极50和第二顶电极70之间。
70:第二顶电极,材料选择范围同第一顶电极50,但具体材料不一定与第一顶电极50相同。
需要说明的是,空气间隙构成空隙层,但是本发明中,空隙层除了可以为空气间隙层之外,还可以是真空间隙层,也可以是填充了其他气体介质的空隙层。
图2为根据本发明的一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层。
如图2所示,空气间隙右端延伸至有效区域AR之外,且在横向方向上还延伸到底电极的非引脚端的外侧(当然也可以齐平),从而可消除附加电极70在引脚端产生的寄生。空气间隙60的右端延伸出AR区域距离D1,其中D1的范围为0-20μm。在图2中,第一顶电极与第二顶电极在电极引脚端的电连接部位于有效区域之外且与底电极在谐振器的厚度方向上的投影不重合,如此,可以避免电连接部与压电层以及另外的电极之间共同形成寄生三明治结构。
此外,当谐振器工作时,交变电场通过电极施加在压电层40上,由于声电能量耦合并相互转化,电极中会有电流通过,由于本实施例的顶电极具有双层电极并联结构,因此可以有效减小谐振器的电学损耗。在交变电场的激励下,压电层产生声波,当声波向上方传导至位于顶电极中的空气间隙60和顶电极50的界面时声波能量会被反射回压电层40(因为空气和电极的声阻抗不匹配程度极大),并不会进入顶电极70。本发明中含 有空气间隙的电极结构一方面可显著降低谐振器的电学损耗(表现为提升串联谐振频率处及其附近Q值的提高),另一方面,空气间隙对顶电极70起到了声学隔离作用,从而基本避免电极70对谐振器性能造成的负面影响(如谐振频率和机电耦合系数的改变)。
空气间隙的高度一般大于谐振器的典型振幅(约10nm),例如空气间隙的高度在
Figure PCTCN2020088662-appb-000001
的范围内,进一步的,高度在
Figure PCTCN2020088662-appb-000002
的范围内,这有利于谐振器在大功率工作时顶电极70与谐振腔(此实施例为顶电极50、压电层40、底电极30组成的复合结构)的声学能量解耦。
图3为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层和悬翼结构。
如图3所示,对于顶电极的非引脚端,可形成悬翼结构55,并使空气间隙60的左端沿着翼55表面延伸至有效声学区AR边界之外,其中空气间隙60的非引脚侧边缘与AR边界的横向距离为D2,且D2的范围为0-40μm。
此处需要注意的是,图3所示的空气间隙60左边缘已经延伸至悬翼结构55的水平部,这只是一种可能性,显然空气间隙60的左边缘也可只延伸至悬翼结构55的倾斜部分的某个位置,这些均在本发明的保护范围之内,而且该说明对于后面的桥/翼结构都适用。
在图3中,第一顶电极与第二顶电极右侧的电连接部为第一电连接部,右侧的电连接部为第二电连接部。
在图3中,悬翼结构与压电层的表面之间的空间52作为电学隔离部,如图3所示,第二电连接部在谐振器的厚度方向上的投影落入电学隔离部之内,所述电学隔离部的内侧用于限定所述有效区域的边界。
图4为根据本发明的再一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层和悬翼结构。图4不同于图3在于,对悬翼下方的空间52进行介电材料填充,同样可起到消除寄生结构的效果。其中填充物质可采用二氧化硅,氮化硅,碳化硅,以及各类金属氧化物或者环氧树脂等非压电材料。
图5为根据本发明的再一个示例性实施例的类似于沿图1A中的 A1-A2截得的剖面示意图,其中顶电极设置有空隙层、悬翼结构和桥结构。图5的结构是在图3结构的基础上在顶电极的引脚侧形成桥结构57,这样可使桥部分的电极与压电层分离开,使AR区域在横向上缩入空气间隙60的区域内,从而使空气间隙60的引脚侧边缘延桥结构延伸至AR边界之外,借此消除寄生结构。其中空气间隙60左/右侧边缘与AR的横向距离为分别为D7/D8,其范围为0-40μm。
图6为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且压电层上表面设置有作为电学隔离部的凹陷部。
除了使电极50形成翼/桥结构之外,还可像图6所示结构那样,在顶电极50和70接触部的下方的压电层40的上表面形成空气凹陷(凹陷部)41和42,使电极50与压电层40分离,从而消除寄生效应。空气间隙60的边缘延伸至有效区域AR边界之外,其中空气间隙60的非引脚侧边缘与AR边界的横向距离为D3,v60的引脚侧边缘与AR边界的横向距离为D5,D3和D5的范围为0-40μm。此外,顶电极非引脚侧凹陷41的左侧边界位于顶电极非引脚侧边缘的外部,所述两部分的距离D4范围0-40μm;顶电极引脚侧凹陷42的左侧边界位于底电极非引脚侧边缘的外部,所述两部分的距离D6范围0-40μm。
图7为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且压电层上表面设置有作为电学隔离部的凹陷部。如图7所示,还在图6结构的凹陷41/42中填充介电材料,材料选用参考图4的空间52的填充材料。
图8为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中顶电极设置有空隙层,且压电层下表面设置有作为电学隔离部的凹陷部。如图8所示,还可将空气凹陷41和42形成于压电层40的下表面,同样可以起到消除寄生效应的作用。基于某些工艺,制造凹陷位于40下表面结构时,可能形成如图8所示的结构起伏。
对于图8中的空气凹陷41/42也可进行非压电型介电材料填充,材料选取可参照图4的空间52的填充材料,如图9所示。图9为根据本发明的又一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图, 其中顶电极设置有空隙层,且压电层下表面设置有作为电学隔离部的凹陷部。
对于图1C中的寄生结构,可采用图10中的结构进行消除。图10为根据本发明的一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,且顶电极设置有桥结构。图10所示的谐振器结构中,电极50的引脚侧拱起形成桥结构57,桥部电极于下方压电层40分离,从而消除了原本图1C中由上电极压电层及下电极31和30所形成的寄生三明治结构。其中图10中的空气间隙60的底电极非引脚侧边缘延伸至新形成的有效区域AR之外,且二者距离w1范围为0-40μm。
图11为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,顶电极设置有桥结构且空隙层构成声学镜。
图12为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,压电层上表面设置有作为电学隔离部的凹陷部且空隙层构成声学镜。除了通过使顶电极50的引脚侧形成拱起结构来消除寄生效应之外,还可如图12所示,在压电层40的上表面形成空气凹陷45,同样可以消除原本存在于图1C中的寄生三明治结构。空气间隙与AR边界的横向距离为w2,且w2的范围为0-40μm。
图13为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极设置有空隙层,压电层下表面与底电极的非引脚端之间设置有作为电学隔离部的空间。凹陷部44显然也可以如图13所示那样,形成于压电层40的下表面。图13中,空气间隙与AR边界的横向距离为w3,且w3的范围为0-40μm。
图14为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极和顶电极均设置有空隙层,顶电极还设置有悬翼结构和桥结构。图14中的谐振器上电极和下电极分别具有空气间隙60和61,其中空气间隙60和61的边缘均延伸至有效区域AR之外。其中,空气间隙60的非引脚侧边缘与AR边界的横向距离为D9; 空气间隙60的引脚侧边缘与AR边界的横向距离为D10;空气间隙61的引脚侧边缘与AR边界的横向距离为w5;空气间隙61的非引脚侧边缘与AR边界的横向距离为w3。图14中,D9、D10、w3和w5的范围为0-40μm。
图15为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极和顶电极均设置有空隙层,压电层的下表面与底电极的引脚端之间形成有作为电学隔离部的空间以及压电层的下表面与底电极的非引脚端之间形成有作为电学隔离部的空间。图15中,在压电层下表面形成凹陷部44,从而消除寄生三明治结构,其中空气间隙与AR边界间的尺寸同图14。
图16为根据本发明的另一个示例性实施例的类似于沿图1A中的A1-A2截得的剖面示意图,其中底电极和顶电极均设置有空隙层,顶电极还设置有悬翼结构和桥结构,第一顶电极与第二顶电极的上表面均设置有钝化层,其中在第一顶电极50的上表面及第二顶电极70的上表面分别覆盖有防止金属氧化的钝化层81和80。
在本发明中,在体声波谐振器的顶电极和/或底电极中设置空隙层。位于电极中的空气间隙可有效的反射声波,大幅降低进入远离压电薄膜(或压电层)一侧的附加电极的声波能量,从而有效抑制或消除所述附加电极由于参与声学振动所带来的负面效应。
另外,在围成空气间隙的两层(多层)电极构成并联电路结构的情况下,可有效降低谐振器的电学损耗,提高谐振器的Q值,尤其是串联谐振点及其附近频率处的Q值。
因此,附加电极由于空气间隙的存在从而与谐振器谐振腔声学解耦(绝大部分声波在空气间隙处反射回谐振腔,不进入附加电极),附加电极的存在和参数变化不影响谐振器除Q值外的其他关键参数(如谐振频率,机电耦合系数等)。
与空气间隙位于压电层和电极之间的结构相比,本发明由于避免了空气间隙带来的寄生串联电容,谐振器的机电耦合系数kt 2不会恶化;与温度补偿夹层(如二氧化硅)位于两层电极中间的结构相比,本发明的空气间隙或真空间隙使得谐振器谐振频率不会变化,其他关键参数(Q值、机电耦合系数)不会恶化,串联谐振点及其附近频率处的Q值反而会得到 提升。
在本发明中,当声学镜结构设置于基底中且底电极中并未设置空隙层时,谐振器的有效区域为顶电极、压电层、底电极与声学镜在谐振器的厚度方向上的重叠区域。
在本发明中,在底电极中设置有空隙层时,谐振器的有效区域为顶电极、底电极、压电层和底电极的空隙层在谐振器的厚度方向上的重叠区域。底电极中设置空隙层时,顶电极中也可以同时设置空隙层,或者不设置空隙层。
在本发明中,提到的数值范围除了可以为端点值之外,还可以为端点值之间的中值或者其他值,均在本发明的保护范围之内。
在本发明中,一个部件的“内侧”与“外侧”以在谐振器的横向方向上,该部件哪一部分更靠近谐振器的有效区域的中心来进行判断,若靠近谐振器的有效区域的中心,则为内侧,反之,若远离谐振器的有效区域的中心,则为外侧。
如本领域技术人员能够理解的,根据本发明的体声波谐振器可以用于形成滤波器。
基于以上,以及本发明的附图,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;和
压电层,设置在底电极与顶电极之间,
其中:
底电极和顶电极中的一个为第一间隙电极,所述第一间隙电极具有第一电极与第二电极,第一电极与压电层面接触,第二电极远离压电层,且空隙层在谐振器的厚度方向上位于第一电极与第二电极之间,第一电极与第二电极在电连接部处电连接,所述电连接部限定空隙层的边界的至少一部分,且
其中:
所述谐振器还包括电学隔离部,所述电学隔离部的内侧限定谐振器的有效区域的在谐振器的横向方向上的边界;且
在谐振器的横向方向上所述电连接部位于有效区域之外;或者所述电连接部在谐振器的厚度方向上的投影落入所述电学隔离部之内。
2、根据1所述的谐振器,其中:
所述第一间隙电极为顶电极;
所述电连接部包括在第一间隙电极的引脚端位于有效区域之外的第一电连接部,且所述第一电连接部在谐振器的横向方向上位于底电极的非引脚端的外侧。
3、根据1所述的谐振器,其中:
所述第一间隙电极为顶电极,所述第一间隙电极的第一电极的非引脚端设置有悬翼结构;
所述电连接部包括在第一间隙电极的非引脚端位于有效区域之外的第二电连接部,所述第二电连接部位于所述悬翼结构上。
所述电学隔离部包括由所述悬翼结构与所述压电层之间的空间形成的电学隔离部。
4、根据2所述的谐振器,其中:
所述第一间隙电极为顶电极,所述第一间隙电极的第一电极的非引脚端设置有悬翼结构;
所述电连接部包括在第一间隙电极的非引脚端位于第一有效区域之内的第二电连接部,所述第二电连接部位于所述悬翼结构上。
所述电学隔离部包括由所述悬翼结构与所述压电层之间的空间形成的电学隔离部。
5、根据1所述的谐振器,其中:
所述电学隔离部填充有介电材料。
6、根据1或3所述的谐振器,其中:
所述第一间隙电极为顶电极,所述第一间隙电极的第一电极在其引脚端设置有桥结构;
所述电连接部包括在第一间隙电极的引脚端位于有效区域之外的第一电连接部,所述第一电连接部部分位于所述桥结构上;
所述电学隔离部包括由所述桥结构与压电层之间的空间形成的电学隔离部;
在谐振器的厚度方向上,所述底电极位于第一间隙电极引脚端投影内的非引脚端落入到桥结构的投影之内。
7、根据1所述的谐振器,其中:
所述电学隔离部包括设置在压电层的凹陷部,所述凹陷部的内侧限定所述有效区域的边界。
8、根据7所述的谐振器,其中:
所述凹陷部填充有介电材料。
9、根据7所述的谐振器,其中:
所述电连接部包括在第一间隙电极的引脚端位于有效区域之外的第一电连接部,以及在第一间隙电极的非引脚端位于有效区域之外的第二电连接部。
10、根据9所述的谐振器,其中:
所述凹陷部的外侧在谐振器的横向方向上位于第二电连接部的外侧,或者所述凹陷部的外侧在谐振器的厚度方向上与第二电连接部的外侧齐平。
11、根据10所述的谐振器,其中:
所述第一间隙电极为顶电极;
在谐振器的厚度方向上,位于顶电极引脚端投影内的底电极的非引脚端的投影落入到对应凹陷部的投影之内。
12、根据7所述的谐振器,其中:
所述凹陷部设置在压电层的上表面;或
所述凹陷部设置在压电层的下表面。
13、根据1所述的谐振器,其中:
所述第一间隙电极为底电极,所述顶电极在其引脚端设置有桥结构;
所述电连接部包括在第一间隙电极的非引脚端位于顶电极的投影之内的第一电连接部;
所述电学隔离部包括由所述桥结构与压电层之间的空间形成的电学隔离部。
14、根据13所述的谐振器,其中:
所述空隙层构成所述声学镜。
15、根据1所述的谐振器,其中:
所述第一间隙电极为底电极,所述电连接部包括在第一间隙电极的非引脚端位于顶电极的投影之内的第一电连接部;
所述电学隔离部包括在邻近第一电连接部的位置由所述压电层的下表面与第一电连接部之间的空间形成的电学隔离部,或者,所述电学隔离部包括在邻近第一电连接部的位置由所述压电层的下表面与第一电连接部以及基底上表面之间的空间形成的电学隔离部。
16、根据1所述的谐振器,其中:
顶电极与底电极中的另一个为第二间隙电极,所述第二间隙电极具有第三电极与第四电极,第三电极与压电层面接触,第四电极远离压电层,第三电极与第四电极之间在谐振器的厚度方向上设置有另外的空隙层,第三电极与第四电极在另外的电连接部处电连接,所述另外的电连接部限定所述另外的空隙层的边界的至少一部分,在谐振器的横向方向上,所述另外的电连接部位于有效区域之外。
17、根据1-16中任一项所述的谐振器,其中:
所述空隙层为空气间隙层或者真空间隙层。
18、根据1-16中任一项所述的谐振器,其中:
所述空隙层的厚度在
Figure PCTCN2020088662-appb-000003
的范围内。
19、根据18所述的谐振器,其中:
所述空隙层的厚度在
Figure PCTCN2020088662-appb-000004
的范围内。
20、一种滤波器,包括根据1-19中任一项所述的体声波谐振器。
21、一种电子设备,包括根据20所述的滤波器或者根据1-19中任一项所述的谐振器。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (21)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    顶电极;和
    压电层,设置在底电极与顶电极之间,
    其中:
    底电极和顶电极中的一个为第一间隙电极,所述第一间隙电极具有第一电极与第二电极,第一电极与压电层面接触,第二电极远离压电层,且空隙层在谐振器的厚度方向上位于第一电极与第二电极之间,第一电极与第二电极在电连接部处电连接,所述电连接部限定空隙层的边界的至少一部分,且
    其中:
    所述谐振器还包括电学隔离部,所述电学隔离部的内侧限定谐振器的有效区域的在谐振器的横向方向上的边界;且
    在谐振器的横向方向上所述电连接部位于有效区域之外;或者所述电连接部在谐振器的厚度方向上的投影落入所述电学隔离部之内。
  2. 根据权利要求1所述的谐振器,其中:
    所述第一间隙电极为顶电极;
    所述电连接部包括在第一间隙电极的引脚端位于有效区域之外的第一电连接部,且所述第一电连接部在谐振器的横向方向上位于底电极的非引脚端的外侧。
  3. 根据权利要求1所述的谐振器,其中:
    所述第一间隙电极为顶电极,所述第一间隙电极的第一电极的非引脚端设置有悬翼结构;
    所述电连接部包括在第一间隙电极的非引脚端位于有效区域之外的第二电连接部,所述第二电连接部位于所述悬翼结构上。
    所述电学隔离部包括由所述悬翼结构与所述压电层之间的空间形成的电学隔离部。
  4. 根据权利要求2所述的谐振器,其中:
    所述第一间隙电极为顶电极,所述第一间隙电极的第一电极的非引脚端设置有悬翼结构;
    所述电连接部包括在第一间隙电极的非引脚端位于第一有效区域之内的第二电连接部,所述第二电连接部位于所述悬翼结构上。
    所述电学隔离部包括由所述悬翼结构与所述压电层之间的空间形成的电学隔离部。
  5. 根据权利要求1所述的谐振器,其中:
    所述电学隔离部填充有介电材料。
  6. 根据权利要求1或3所述的谐振器,其中:
    所述第一间隙电极为顶电极,所述第一间隙电极的第一电极在其引脚端设置有桥结构;
    所述电连接部包括在第一间隙电极的引脚端位于有效区域之外的第一电连接部,所述第一电连接部部分位于所述桥结构上;
    所述电学隔离部包括由所述桥结构与压电层之间的空间形成的电学隔离部;
    在谐振器的厚度方向上,所述底电极位于第一间隙电极引脚端投影内的非引脚端落入到桥结构的投影之内。
  7. 根据权利要求1所述的谐振器,其中:
    所述电学隔离部包括设置在压电层的凹陷部,所述凹陷部的内侧限定所述有效区域的边界。
  8. 根据权利要求7所述的谐振器,其中:
    所述凹陷部填充有介电材料。
  9. 根据权利要求7所述的谐振器,其中:
    所述电连接部包括在第一间隙电极的引脚端位于有效区域之外的第一电连接部,以及在第一间隙电极的非引脚端位于有效区域之外的第二电连接部。
  10. 根据权利要求9所述的谐振器,其中:
    所述凹陷部的外侧在谐振器的横向方向上位于第二电连接部的外侧,或者所述凹陷部的外侧在谐振器的厚度方向上与第二电连接部的外侧齐 平。
  11. 根据权利要求10所述的谐振器,其中:
    所述第一间隙电极为顶电极;
    在谐振器的厚度方向上,位于顶电极引脚端投影内的底电极的非引脚端的投影落入到对应凹陷部的投影之内。
  12. 根据权利要求7所述的谐振器,其中:
    所述凹陷部设置在压电层的上表面;或
    所述凹陷部设置在压电层的下表面。
  13. 根据权利要求1所述的谐振器,其中:
    所述第一间隙电极为底电极,所述顶电极在其引脚端设置有桥结构;
    所述电连接部包括在第一间隙电极的非引脚端位于顶电极的投影之内的第一电连接部;
    所述电学隔离部包括由所述桥结构与压电层之间的空间形成的电学隔离部。
  14. 根据权利要求13所述的谐振器,其中:
    所述空隙层构成所述声学镜。
  15. 根据权利要求1所述的谐振器,其中:
    所述第一间隙电极为底电极,所述电连接部包括在第一间隙电极的非引脚端位于顶电极的投影之内的第一电连接部;
    所述电学隔离部包括在邻近第一电连接部的位置由所述压电层的下表面与第一电连接部之间的空间形成的电学隔离部,或者,所述电学隔离部包括在邻近第一电连接部的位置由所述压电层的下表面与第一电连接部以及基底上表面之间的空间形成的电学隔离部。
  16. 根据权利要求1所述的谐振器,其中:
    顶电极与底电极中的另一个为第二间隙电极,所述第二间隙电极具有第三电极与第四电极,第三电极与压电层面接触,第四电极远离压电层,第三电极与第四电极之间在谐振器的厚度方向上设置有另外的空隙层,第三电极与第四电极在另外的电连接部处电连接,所述另外的电连接部限定所述另外的空隙层的边界的至少一部分,在谐振器的横向方向上,所述另外的电连接部位于有效区域之外。
  17. 根据权利要求1-16中任一项所述的谐振器,其中:
    所述空隙层为空气间隙层或者真空间隙层。
  18. 根据权利要求1-16中任一项所述的谐振器,其中:
    所述空隙层的厚度在
    Figure PCTCN2020088662-appb-100001
    的范围内。
  19. 根据权利要求18所述的谐振器,其中:
    所述空隙层的厚度在
    Figure PCTCN2020088662-appb-100002
    的范围内。
  20. 一种滤波器,包括根据权利要求1-19中任一项所述的体声波谐振器。
  21. 一种电子设备,包括根据权利要求20所述的滤波器或者根据权利要求1-19中任一项所述的谐振器。
PCT/CN2020/088662 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备 WO2021077712A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20879253.1A EP4068628A4 (en) 2019-10-23 2020-05-06 ACOUSTIC VOLUME RESONATOR WITH ELECTRODE HAVING A CAVITY, FILTER AND ELECTRONIC DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911009262.3 2019-10-23
CN201911009262 2019-10-23
CN201911027013.7A CN111162748B (zh) 2019-10-23 2019-10-26 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN201911027013.7 2019-10-26

Publications (1)

Publication Number Publication Date
WO2021077712A1 true WO2021077712A1 (zh) 2021-04-29

Family

ID=70111673

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2020/088660 WO2021077711A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备
PCT/CN2020/088707 WO2021077717A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备
PCT/CN2020/088662 WO2021077712A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备
PCT/CN2020/088665 WO2021077715A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/088660 WO2021077711A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备
PCT/CN2020/088707 WO2021077717A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层的体声波谐振器、滤波器及电子设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088665 WO2021077715A1 (zh) 2019-10-23 2020-05-06 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备

Country Status (3)

Country Link
EP (4) EP4072014A1 (zh)
CN (4) CN111010123B (zh)
WO (4) WO2021077711A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010123B (zh) * 2019-10-23 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
CN111600566B (zh) * 2020-04-21 2021-06-01 诺思(天津)微系统有限责任公司 滤波器、体声波谐振器组件及其制造方法、电子设备
CN111600569B (zh) * 2020-04-29 2022-02-22 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法、滤波器及电子设备
CN111585537B (zh) * 2020-06-05 2024-02-20 武汉衍熙微器件有限公司 谐振器及滤波器
CN111740718A (zh) * 2020-06-22 2020-10-02 深圳市信维通信股份有限公司 一种体声波谐振装置、一种滤波装置及一种射频前端装置
CN113872553A (zh) * 2020-06-30 2021-12-31 诺思(天津)微系统有限责任公司 体声波谐振器及制造方法、滤波器及电子设备
CN112202415B (zh) * 2020-09-25 2021-09-24 杭州星阖科技有限公司 一种体声波谐振器的制造工艺方法和体声波谐振器
CN112187213B (zh) * 2020-09-29 2021-06-01 诺思(天津)微系统有限责任公司 双工器设计方法和双工器、多工器、通信设备
CN116097562A (zh) * 2020-10-27 2023-05-09 华为技术有限公司 谐振器及其制作方法、滤波器、电子设备
CN112511129A (zh) * 2020-12-02 2021-03-16 赛莱克斯微系统科技(北京)有限公司 一种薄膜体声波谐振器的气密封装结构及其制备方法
CN114696774A (zh) * 2020-12-31 2022-07-01 诺思(天津)微系统有限责任公司 单晶体声波谐振器、滤波器及电子设备
WO2022183379A1 (zh) * 2021-03-02 2022-09-09 天津大学 石英薄膜谐振器及其制造方法
CN115133899A (zh) * 2021-03-29 2022-09-30 诺思(天津)微系统有限责任公司 具有钨电极的体声波谐振器、滤波器及电子设备
CN115276598A (zh) * 2021-04-30 2022-11-01 诺思(天津)微系统有限责任公司 体声波谐振器及制造方法、滤波器及电子设备
CN113258901B (zh) * 2021-06-28 2021-10-29 深圳汉天下微电子有限公司 声学谐振器及其制造方法以及包括该声学谐振器的滤波器
CN115694410A (zh) * 2021-07-29 2023-02-03 诺思(天津)微系统有限责任公司 具有多个底电极层的体声波谐振器、滤波器及电子设备
CN115694398A (zh) * 2021-07-29 2023-02-03 诺思(天津)微系统有限责任公司 具有多个底电极层的体声波谐振器、滤波器及电子设备
CN115706571A (zh) * 2021-08-10 2023-02-17 诺思(天津)微系统有限责任公司 具有双压电层的体声波谐振器、滤波器及电子设备
CN113810006A (zh) * 2021-09-08 2021-12-17 常州承芯半导体有限公司 一种体声波谐振装置、滤波装置及射频前端装置
CN114006595B (zh) * 2021-12-30 2022-03-29 深圳新声半导体有限公司 体声波谐振器和体声波滤波器
CN117375568B (zh) * 2023-12-07 2024-03-12 常州承芯半导体有限公司 体声波谐振装置及体声波谐振装置的形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327994A1 (en) * 2009-06-24 2010-12-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
CN104639087A (zh) * 2013-11-11 2015-05-20 太阳诱电株式会社 压电薄膜共振器、滤波器和双工器
US20170077385A1 (en) * 2015-09-10 2017-03-16 Triquint Semiconductor, Inc. Air gap in baw top metal stack for reduced resistive and acoustic loss
WO2019145258A1 (en) * 2018-01-23 2019-08-01 RF360 Europe GmbH Baw resonator with increased quality factor

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714917A (en) * 1996-10-02 1998-02-03 Nokia Mobile Phones Limited Device incorporating a tunable thin film bulk acoustic resonator for performing amplitude and phase modulation
JP2000209063A (ja) * 1998-11-12 2000-07-28 Mitsubishi Electric Corp 薄膜圧電素子
CN1418400A (zh) * 2001-01-17 2003-05-14 株式会社东芝 弹性表面波器件
JP2004222244A (ja) * 2002-12-27 2004-08-05 Toshiba Corp 薄膜圧電共振器およびその製造方法
US20070093229A1 (en) * 2005-10-20 2007-04-26 Takehiko Yamakawa Complex RF device and method for manufacturing the same
JP2008011140A (ja) * 2006-06-29 2008-01-17 Toshiba Corp 薄膜圧電共振器及びその製造方法
WO2009023098A2 (en) * 2007-08-14 2009-02-19 Skyworks Solutions, Inc. Bulk acoustic wave structure with aluminum copper nitride piezoelectric layer and related method
US8248185B2 (en) * 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
CN101908865B (zh) * 2010-08-20 2014-02-12 庞慰 体波谐振器及其加工方法
FI20106063A (fi) * 2010-10-14 2012-06-08 Valtion Teknillinen Akustisesti kytketty laajakaistainen ohutkalvo-BAW-suodatin
US9991871B2 (en) * 2011-02-28 2018-06-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising a ring
US9571064B2 (en) * 2011-02-28 2017-02-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with at least one air-ring and frame
US9083302B2 (en) * 2011-02-28 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9048812B2 (en) * 2011-02-28 2015-06-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US9590165B2 (en) * 2011-03-29 2017-03-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising aluminum scandium nitride and temperature compensation feature
JP2013138425A (ja) * 2011-12-27 2013-07-11 Avago Technologies Wireless Ip (Singapore) Pte Ltd ブリッジを備えるソリッドマウントバルク音響波共振器構造
CN103684336B (zh) * 2012-08-31 2017-01-11 安华高科技通用Ip(新加坡)公司 包含具有内埋式温度补偿层的电极的谐振器装置
US9608192B2 (en) * 2013-03-28 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Temperature compensated acoustic resonator device
CN103607178B (zh) * 2013-09-17 2016-10-05 诺思(天津)微系统有限公司 薄膜体波谐振器及提高其品质因数的方法
US9520855B2 (en) * 2014-02-26 2016-12-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonators having doped piezoelectric material and frame elements
US10404231B2 (en) * 2014-02-27 2019-09-03 Avago Technologies International Sales Pte. Limited Acoustic resonator device with an electrically-isolated layer of high-acoustic-impedance material interposed therein
US9401691B2 (en) * 2014-04-30 2016-07-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with air-ring and temperature compensating layer
US9608594B2 (en) * 2014-05-29 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Capacitive coupled resonator device with air-gap separating electrode and piezoelectric layer
US9634642B2 (en) * 2014-05-30 2017-04-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising vertically extended acoustic cavity
JP6510996B2 (ja) * 2016-03-04 2019-05-08 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびデュプレクサ
JP6535637B2 (ja) * 2016-07-21 2019-06-26 太陽誘電株式会社 圧電薄膜共振器、フィルタ、デュプレクサ、及び圧電薄膜共振器の製造方法
JP6668201B2 (ja) * 2016-08-31 2020-03-18 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびマルチプレクサ。
DE102016124236B4 (de) * 2016-12-13 2018-07-26 Snaptrack, Inc. BAW-Resonator
JP6869831B2 (ja) * 2017-07-03 2021-05-12 太陽誘電株式会社 圧電薄膜共振器およびその製造方法、フィルタ並びにマルチプレクサ
JP6886357B2 (ja) * 2017-07-03 2021-06-16 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびマルチプレクサ
CN110166014B (zh) * 2018-02-11 2020-09-08 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法
US11271543B2 (en) * 2018-02-13 2022-03-08 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator
CN109167585B (zh) * 2018-07-26 2022-10-28 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN109889177B (zh) * 2018-12-26 2023-04-07 天津大学 具有掺杂隔离结构的体声波谐振器
CN111010123B (zh) * 2019-10-23 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
CN111130490A (zh) * 2019-12-09 2020-05-08 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备
CN111082776B (zh) * 2019-12-11 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN111245394B (zh) * 2019-12-16 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327994A1 (en) * 2009-06-24 2010-12-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
CN104639087A (zh) * 2013-11-11 2015-05-20 太阳诱电株式会社 压电薄膜共振器、滤波器和双工器
US20170077385A1 (en) * 2015-09-10 2017-03-16 Triquint Semiconductor, Inc. Air gap in baw top metal stack for reduced resistive and acoustic loss
WO2019145258A1 (en) * 2018-01-23 2019-08-01 RF360 Europe GmbH Baw resonator with increased quality factor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068628A4 *

Also Published As

Publication number Publication date
WO2021077711A1 (zh) 2021-04-29
WO2021077715A1 (zh) 2021-04-29
CN111010122A (zh) 2020-04-14
EP4072014A1 (en) 2022-10-12
EP4068628A4 (en) 2024-04-10
CN111010123B (zh) 2021-06-01
CN111162748B (zh) 2021-06-01
EP4072013A1 (en) 2022-10-12
CN111082774B (zh) 2021-03-12
EP4068628A1 (en) 2022-10-05
CN111010122B (zh) 2021-06-01
CN111010123A (zh) 2020-04-14
WO2021077717A1 (zh) 2021-04-29
CN111082774A (zh) 2020-04-28
EP4068627A1 (en) 2022-10-05
EP4068627A4 (en) 2024-01-10
CN111162748A (zh) 2020-05-15
EP4072013A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2021077712A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
WO2021120499A1 (zh) 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备
US10284173B2 (en) Acoustic resonator device with at least one air-ring and frame
US10404231B2 (en) Acoustic resonator device with an electrically-isolated layer of high-acoustic-impedance material interposed therein
EP4087130A1 (en) Bulk acoustic resonator with bottom electrode as gap electrode, and filter and electronic device
WO2021114555A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN111245397A (zh) 体声波谐振器及制造方法、体声波谐振器单元、滤波器及电子设备
CN111245393B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
US20140111288A1 (en) Acoustic resonator having guard ring
CN111010130B (zh) 带温补层和电学层的体声波谐振器、滤波器及电子设备
CN105048986A (zh) 具有空气环及温度补偿层的声谐振器装置
WO2021073022A1 (zh) 带不导电插入层的体声波谐振器、滤波器和电子设备
WO2021042740A1 (zh) 体声波谐振器及其制造方法、滤波器和电子设备
WO2021077716A1 (zh) 体声波谐振器、滤波器及电子设备
JP2008507869A (ja) 体積音波によって作動する共振器
CN114696774A (zh) 单晶体声波谐振器、滤波器及电子设备
CN111600569B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
JP2024509313A (ja) 厚さ方向にせん断モードを励起する音響共振器
JP5009369B2 (ja) 圧電薄膜共振素子及びこれを用いた回路部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020879253

Country of ref document: EP

Effective date: 20220523