WO2022183379A1 - 石英薄膜谐振器及其制造方法 - Google Patents

石英薄膜谐振器及其制造方法 Download PDF

Info

Publication number
WO2022183379A1
WO2022183379A1 PCT/CN2021/078732 CN2021078732W WO2022183379A1 WO 2022183379 A1 WO2022183379 A1 WO 2022183379A1 CN 2021078732 W CN2021078732 W CN 2021078732W WO 2022183379 A1 WO2022183379 A1 WO 2022183379A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz
region
thin film
mechanical
film resonator
Prior art date
Application number
PCT/CN2021/078732
Other languages
English (en)
French (fr)
Inventor
张孟伦
庞慰
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to PCT/CN2021/078732 priority Critical patent/WO2022183379A1/zh
Publication of WO2022183379A1 publication Critical patent/WO2022183379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz

Definitions

  • the invention relates to the technical field of piezoelectric resonators, in particular to a quartz thin film resonator and a manufacturing method thereof.
  • Quartz Crystal Resonator (Quartz Crystal Resonator) is a kind of electronic components that use the piezoelectric effect of quartz crystals. It is a key component in electronic devices such as oscillators and filters. It has outstanding performance in frequency stabilization, frequency selection and precision timing. advantages and wide application. Current development trends require quartz resonators to have higher resonant frequencies (eg greater than 40MHz) and better stability and reliability against mechanical shocks.
  • the quartz piezoelectric film Since the target frequency is higher, the quartz piezoelectric film is required to be thinner. However, when the quartz film is thinner, external stress, such as the stress from the substrate, is more easily transmitted to the resonance region of the quartz film to affect the frequency stability of the resonator; at the same time, when the quartz film is thinner, the resonator is more susceptible to mechanical shocks and the environment The influence of vibration, its reliability is further deteriorated compared with the low frequency quartz resonator. There is an urgent need to find a structural design and fabrication method, which can meet the requirements of high resonance frequency of quartz resonators on the one hand, and can meet the requirements of external stress, mechanical shock resistance stability and reliability at the same time.
  • the present invention proposes a quartz thin film resonator and a manufacturing method thereof to overcome the defects in the prior art.
  • a first aspect of the present invention provides a quartz thin-film resonator, which may include a substrate, a bottom electrode, a quartz layer, and a top electrode stacked in sequence, wherein the quartz layer includes a quartz piezoelectric region located inside the effective area of the resonator and a quartz piezoelectric region located inside the effective area of the resonator.
  • the quartz mechanical region outside the effective area of the resonator; the thickness of the quartz piezoelectric region is smaller than the thickness of the quartz mechanical region.
  • a metal etching barrier layer under the top electrode.
  • top electrode connection structure under the top electrode.
  • the top electrode connection structure under the top electrode is located in the quartz piezoelectric region.
  • the quartz mechanical region is located on both sides or one side of the quartz piezoelectric region.
  • the lower surface of the quartz piezoelectric region has a groove, and the bottom electrode and the top electrode connecting structure are located in the groove of the lower surface; or, the upper surface of the quartz piezoelectric region has a groove.
  • a groove, the top electrode and the metal etching barrier layer are located in the groove on the upper surface; or, the upper surface and the lower surface of the quartz piezoelectric region have grooves, the top electrode,
  • the metal etch stop layer is located in the groove on the upper surface, and the bottom electrode and the top electrode connecting structure are located in the groove on the lower surface.
  • the upper and lower surfaces of the quartz piezoelectric region have concave structures and convex structures.
  • the thickness of the quartz piezoelectric region is in the range of 0.1 micrometers to 50 micrometers, and the thickness of the quartz mechanical region is in the range of 50 micrometers to 100 micrometers.
  • the material of the substrate is silicon or glass.
  • the substrate and the quartz layer are bonded in the quartz mechanical region.
  • an encapsulation layer is also included, and the material of the encapsulation layer is silicon or glass.
  • a second aspect of the present invention provides a method for manufacturing a quartz thin film resonator, which may include: sequentially forming a metal etching barrier layer and a top electrode on a first side of a quartz crystal; on the sacrificial substrate; forming a quartz piezoelectric region inside the effective region of the resonator and a quartz mechanical region outside the effective region of the resonator in the quartz crystal, wherein the thickness of the quartz piezoelectric region is smaller than the thickness of the Thickness of the quartz mechanical region; forming a bottom electrode over the quartz piezoelectric region; removing the sacrificial substrate; bonding to the substrate after a second inversion of the currently obtained structure.
  • a quartz piezoelectric region located inside the effective area of the resonator and a piezoelectric region located in the quartz crystal are formed in the quartz crystal.
  • the thickness of the quartz piezoelectric region is in the range of 0.1 micrometers to 50 micrometers, and the thickness of the quartz mechanical region is in the range of 50 micrometers to 100 micrometers.
  • the material of the substrate is silicon or glass.
  • the substrate and the quartz crystal are bonded in the quartz mechanical region.
  • the quartz thin film resonator includes both a thicker quartz mechanical region and a thinner quartz piezoelectric region, so that it is not only insensitive to external stress, mechanical shock and environmental vibration, but also has higher reliability and reliability. frequency stability, and can achieve the target frequency.
  • the quartz wafer is thinned as a whole by processes such as grinding, chemical mechanical polishing, dry etching, etc., which are usually applied to MEMS in micro-electromechanical systems (hereinafter referred to as MEMS process).
  • the quartz resonant region has reached the target thickness (that is, the target frequency is achieved), and at the same time, a structure with stronger mechanical stability is arranged in the non-resonant region, especially the connection and bonding position with the substrate.
  • Quartz thin film resonators mainly use MEMS process flow and large-scale wafer-level packaging (such as 12-inch wafer) technology, which can achieve large-scale, low-cost production, and the devices produced have high precision and good consistency.
  • FIG. 1 is a schematic cross-sectional view of a quartz thin-film resonator according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a quartz thin-film resonator according to a second embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of a quartz thin-film resonator according to a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a quartz thin-film resonator according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a quartz thin-film resonator according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a quartz thin-film resonator according to a sixth embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a quartz thin-film resonator according to a seventh embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a quartz thin-film resonator according to an eighth embodiment of the present invention.
  • FIGS. 9A to 9L are schematic diagrams of the processing flow of the quartz thin film resonator according to the first embodiment of the present invention.
  • FIG. 10A to FIG. 10L are schematic diagrams of the processing flow of the quartz thin film resonator according to the third embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a quartz thin film resonator according to a first embodiment of the present invention.
  • 01 is the substrate
  • 02 is the bonding layer
  • 03 is the sealing layer
  • 04 is the bottom electrode
  • 05 is the top electrode connection structure
  • 06 is the thin quartz piezoelectric region within the effective area of the resonator
  • 07 is the top electrode
  • 08 is the metal etching barrier layer
  • 09 is the encapsulation layer
  • 10 is the electrode connection structure passing through the encapsulation layer
  • 11 is the thicker quartz mechanical region outside the effective area of the resonator.
  • the top electrode 07 has a metal etching barrier layer 08 under the top electrode 07 .
  • the top electrode 07 has a top electrode connection structure 05 under it.
  • the top electrode connection structure 05 under the top electrode 07 is located in the quartz piezoelectric region 06 .
  • the thin film thickness of the quartz piezoelectric region 06 in the effective area of the resonator is determined by the frequency of the resonator, and the thickness can range from 0.1 micrometers to 50 micrometers.
  • the thicker quartz mechanical region 11 outside the active area of the resonator may have a thickness ranging from 50 microns to 100 microns.
  • the structure of the thicker quartz mechanical region 11 outside the effective area of the resonator is thicker than the thinner quartz piezoelectric region 06 inside the effective area of the resonator, and is located at the bottom electrode 04 and the top electrode of the resonator
  • the bonding layer 02 under the connection structure 05 is located in the thicker part of the quartz mechanical region 11, that is, there is a distance d1 and d2 between the left and right sides of the bonding layer 02 and the edge of the quartz mechanical region 11, wherein d1, d2> 0, so that the bonding area is surrounded by the mechanical area and the range is smaller than that of the mechanical area, so that the bonding area not only acts as an electrical connection and mechanical support, but also helps to reduce external influences such as stress coupling.
  • the thickness of the quartz mechanical region 11 is relatively thick; when the stress in the substrate is transmitted to the quartz mechanical region 11 through the bonding layer 02, it can withstand greater stress without deformation, nor will the stress be transmitted to the quartz pressure In the electrical region 06, the phenomenon of resonance frequency drift caused by stress transfer can be avoided; at the same time, the mechanical stability of the quartz resonator can be stronger, and it is not easily affected by mechanical shock and environmental vibration, and its resistance to mechanical shock can be obtained. Improvement means higher reliability, and lower noise signal due to external environment vibration means higher stability.
  • the mechanical properties of the resonator can be more stable, and the resonator can be subjected to large stress changes in the external environment without affecting the resonator. performance.
  • the electrode shapes of the bottom electrode 04 and the top electrode 07 can be any other shapes such as quadrilateral, pentagon, and hexagon.
  • FIG. 2 is a schematic cross-sectional view of a quartz thin film resonator according to a second embodiment of the present invention.
  • 2 is basically the same as FIG. 1, the difference is that in this embodiment, the quartz mechanical region 11 is only arranged on one side of the quartz piezoelectric region 06, while in the first embodiment, the quartz mechanical region 11 is arranged on both sides of the quartz piezoelectric region 06. side.
  • the entire quartz resonator is bonded to the substrate only through the thicker quartz mechanical region on the right. Since the thickness of the quartz mechanical region at the connection part is relatively thick, it can withstand greater stress, making its mechanical properties more stable and the frequency control of the resonator more precise.
  • 3 is a schematic cross-sectional view of a quartz thin film resonator according to a third embodiment of the present invention. 3 is basically the same as FIG. 1 , the difference is that in this embodiment, according to the perspective in the figure, the grooves in the quartz piezoelectric region 06 are located on the upper surface thereof, that is, the top electrode 07 of the resonator and the metal etching barrier 08 located in the groove.
  • FIG. 4 is a schematic cross-sectional view of a quartz thin film resonator according to a fourth embodiment of the present invention. 4 is basically the same as FIG. 3 , the difference is that in this embodiment, according to the perspective in the figure, the thicker quartz mechanical layer 11 located in the non-effective area has only a part of the left side, that is, the entire quartz resonator passes through only one side The thicker quartz mechanical layer 11 is bonded to the substrate 01 .
  • FIG. 5 is a schematic cross-sectional view of a quartz thin film resonator according to a fifth embodiment of the present invention.
  • 5 is basically the same as FIG. 1 and FIG. 3, the difference is that in this embodiment, the grooves in the quartz piezoelectric region 06 are located on the upper and lower surfaces of the quartz piezoelectric region 06, that is, the top electrode 07 and the metal etching barrier layer 08 of the resonator are located at the same time.
  • the top electrode connection structure 05 corresponding to the bottom electrode 04 and the top electrode 07 is located in the groove on the lower surface of the quartz piezoelectric region 06 .
  • the thickness of the piezoelectric layer structure 11 in the inactive region is thicker, so that the resonator can withstand greater stress transmitted through the bonding layer 02, so that its mechanical structure and performance can be more stable. .
  • FIG. 6 is a schematic cross-sectional view of a quartz thin film resonator according to a sixth embodiment of the present invention. 6 is basically the same as FIG. 1 , except that in this embodiment, the upper and lower surfaces of the quartz piezoelectric region 06 have concave structures 12 and convex structures 13 .
  • FIG. 7 is a schematic cross-sectional view of a quartz thin film resonator according to a seventh embodiment of the present invention.
  • 7 and FIG. 3 are basically the same, the difference is that in this embodiment, the upper and lower surfaces of the quartz piezoelectric region 06 have concave structures 12 and convex structures 13 .
  • 8 is a schematic cross-sectional view of a quartz thin film resonator according to an eighth embodiment of the present invention. 8 is basically the same as FIG. 5 , except that in this embodiment, the upper and lower surfaces of the quartz piezoelectric region 06 have concave structures 12 and convex structures 13 .
  • the manufacturing method of the quartz thin film resonator in the embodiment of the present invention includes: sequentially forming a metal etching barrier layer and a top electrode on the first surface of the quartz crystal; inverting the currently obtained structure for the first time and bonding it to the sacrificial substrate ; In the quartz crystal, a quartz piezoelectric area located inside the effective area of the resonator and a quartz mechanical area located outside the effective area of the resonator are formed, wherein the thickness of the quartz piezoelectric area is smaller than the thickness of the quartz mechanical area; between the quartz piezoelectric area A bottom electrode is formed on it; the sacrificial substrate is removed; and the currently obtained structure is bonded to the substrate after a second inversion.
  • the thickness of the quartz piezoelectric region may range from 0.1 micrometer to 50 micrometers, and the thickness of the quartz mechanical region may range from 50 micrometers to 100 micrometers.
  • a quartz piezoelectric region located inside the effective region of the resonator and the effective region of the resonator are formed in the quartz crystal. outside the quartz mechanical area.
  • the manufacturing method of this embodiment mainly adopts the MEMS process and successively processes fine structures on the two surfaces of the quartz crystal, so as to ensure that the processed quartz crystal has both a quartz mechanical region with a thicker thickness and a quartz piezoelectric region with a thinner thickness. , the two constitute the quartz layer.
  • FIG. 9A to FIG. 9L are schematic diagrams of the processing flow of the quartz thin film resonator according to the first embodiment of the present invention, which mainly includes the following steps 1 to 11 .
  • Step 1 As shown in FIG. 9A , first, a metal etching barrier layer 08 is formed on the quartz crystal 25 through thin film deposition, photolithography and etching processes.
  • Step 2 As shown in FIG. 9B, the top electrode 07 is then formed by the same process method.
  • Step 3 As shown in FIG. 9C , another sacrificial substrate 18 is provided, and a bonding adhesive layer 19 is formed on its upper surface.
  • the material of the bonding adhesive layer 19 can be resin or the like.
  • the material of the sacrificial substrate 18 is also quartz crystal or a material with a thermal expansion coefficient similar to that of the quartz crystal, so as to prevent the thermal expansion coefficient of the two materials from being too different after the bonding of the two substrates is completed in the subsequent steps. film bending, breaking and other problems.
  • Step 4 As shown in FIG. 9D, the structure shown in FIG. 9B is reversed and connected with the structure shown in FIG. 9C by a bonding method.
  • Step 5 As shown in FIG. 9E, the quartz crystal 25 is thinned to an appropriate thickness by chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • Step 6 As shown in FIG. 9F , concave structures 22 and 23 are formed on the upper surface of the quartz crystal 25 by means of photolithography and etching.
  • Step 7 As shown in FIG. 9G , an etching barrier layer is formed on the surface of the quartz crystal 25 .
  • the etching barrier can be made of photoresist and other similar "soft mask” materials; for low-frequency resonators, due to the required quartz piezoelectric region
  • the thickness of the area is relatively thick, which may reach tens of microns or hundreds of microns. At this time, materials such as photoresist can no longer meet the requirements, so metal materials, such as Al, Cr/Au and other similar "hard masks" are used instead. Material.
  • Step 8 As shown in FIG. 9H , the exposed quartz crystal 25 is etched through an etching method, which may be wet etching or dry etching, to form the electrode connection channel 20 and the sealing channel 21 .
  • an etching method which may be wet etching or dry etching
  • Step 9 As shown in FIG. 9I, the etching barrier layer 22 is removed, and the quartz crystal 25 is finally formed into two parts, one part is the relatively thin quartz piezoelectric region 06 in the middle and the thicker quartz mechanical parts that play a stabilizing role on both sides. District 11.
  • Step 9 as shown in FIG. 9J , a metal thin film is deposited and etched to form a top electrode electrical connection structure 05 corresponding to the bottom electrode 04 and the top electrode 07 .
  • Step 10 As shown in FIG. 9K, bond the structure shown in FIG. 9J to the substrate 01 used in the finished device, wherein the material of the substrate 01 can be silicon or glass, and there is a bonding layer between the bonding of the two structures 02. After the bonding is completed, the substrate is turned upside down, and the sacrificial substrate 18 is removed by wet etching.
  • Step 11 as shown in FIG. 9L , the electrode connection structure 10 is finally formed in the encapsulation layer 09 , and the structure shown in FIG. 1 of the embodiment can be obtained.
  • FIG. 10A to FIG. 10L are schematic diagrams of the processing flow of the quartz thin film resonator according to the third embodiment of the present invention, which mainly includes the following steps 1 to 12 .
  • Step 1 As shown in FIG. 10A , first, groove structures 22 and 23 are formed on the quartz crystal 25 through thin film deposition, photolithography and etching processes.
  • Step 2 As shown in FIG. 10B , a metal etching barrier structure 08 is then formed by the same process method.
  • Step 3 As shown in FIG. 10C, the top electrode 07 is then formed by the same process method.
  • Step 4 As shown in Fig. 10D, another sacrificial substrate 18 is provided, and a bonding adhesive layer 19 is formed on its upper surface, and the material of the bonding adhesive layer 19 can be resin or the like.
  • the material of the sacrificial substrate 18 is also quartz crystal or a material with a thermal expansion coefficient similar to that of quartz crystal, so as to avoid the film bending caused by the large difference between the thermal expansion coefficients of the two materials after the bonding of the two substrates is completed. , fracture and other problems exist.
  • Step 5 As shown in FIG. 10E, the structure shown in FIG. 10C and the structure shown in FIG. 10D are bonded together by a bonding method.
  • Step 6 As shown in FIG. 10F, the quartz crystal 25 is thinned to an appropriate thickness by chemical mechanical polishing (CMP) to a desired frequency thickness.
  • CMP chemical mechanical polishing
  • Step 7 As shown in FIG. 10G , an etching barrier layer is formed on the surface of the quartz crystal 25 .
  • the etching barrier can be made of photoresist and other similar "soft mask” materials; for low-frequency resonators, due to the required quartz mechanical region The thickness of the film is relatively thick, which may reach tens of microns or hundreds of microns. At this time, materials such as photoresist can no longer meet the needs, so metal materials are used instead, such as Al, Cr/Au and other similar "hard mask” materials. .
  • Step 8 As shown in FIG. 10H , by etching, wet etching or dry etching, the exposed quartz crystal 25 is etched through to form the electrode connection channel 20 and the sealing channel 21 .
  • Step 9 As shown in FIG. 10I, the etching barrier layer 22 is removed, and the quartz crystal 25 is finally formed into two parts. District 11.
  • Step 10 as shown in FIG. 10J , a metal thin film is deposited and etched to form a top electrode electrical connection structure 05 of the bottom electrode 04 and the top electrode 07 .
  • Step 11 As shown in FIG. 10K, bond the structure shown in FIG. 10J to the substrate 01 used in the finished device, wherein the material of the substrate 01 can be silicon or glass, and there is a bonding layer between the bonding of the two structures 02. After the bonding is completed, the substrate is turned upside down, and the sacrificial substrate 18 is removed by wet etching.
  • Step 12 as shown in FIG. 10L , the electrode connection structure 10 is finally formed in the encapsulation layer 09 , and the structure shown in FIG. 3 of the embodiment can be obtained.
  • the electrode material can be: gold (Au), silver (Ag), tungsten (W), molybdenum (Mo), platinum (Pt), ruthenium (Ru), iridium (Ir), titanium tungsten (TiW) , aluminum (Al), titanium (Ti), osmium (Os), magnesium (Mg), germanium (Ge), copper (Cu), chromium (Cr), arsenic doped gold and other similar metals.
  • the substrate 01 can be silicon or glass, and its thickness can be in the range of less than 500 microns.
  • the material of the encapsulation layer 09 can also be silicon or glass.
  • the quartz thin film resonator of the embodiment of the present invention includes both a thicker quartz mechanical region and a thinner quartz piezoelectric region, so it is not only insensitive to external stress, mechanical shock and environmental vibration, but also has a higher performance. reliability and frequency stability while achieving the target frequency.
  • the quartz wafer is overall thinned by MEMS processes such as grinding, chemical mechanical polishing, dry etching, etc., so that the quartz resonant area has reached the target thickness (that is, the target frequency is achieved).
  • a structure with stronger mechanical stability is configured in the non-resonant region (especially the connection and bonding position with the substrate).
  • Quartz thin film resonators mainly use MEMS process flow and large-scale wafer-level packaging (such as 12-inch wafer) technology, which can achieve large-scale, low-cost production, and the devices produced have high precision and good consistency.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种石英薄膜谐振器及其制造方法。石英薄膜谐振器可以包括依次堆叠的基底、底电极、石英层、顶电极,其中,所述石英层包括位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区; 所述石英压电区的厚度小于所述石英机械区的厚度。本发明的石英薄膜谐振器同时包括较厚的石英机械区和较薄的石英压电区,因此既能够对外部应力、机械冲击和环境振动不敏感,有更高的可靠性和频率稳定性,又能实现目标频率。石英薄膜谐振器主要采用MEMS工艺流程和大尺寸晶圆级封装工艺,可以实现大批量、低成本的制作,且制作的器件精度高、一致性好。

Description

石英薄膜谐振器及其制造方法 技术领域
本发明涉及压电谐振器技术领域,具体涉及一种石英薄膜谐振器及其制造方法。
背景技术
石英晶体谐振器(Quartz Crystal Resonator)是一类利用石英晶体压电效应工作的电子元器件,是振荡器、滤波器等电子器件中的关键元件,在稳频,选频和精密计时方面具有突出的优势和广泛的应用。当前发展趋势要求石英谐振器拥有更高的谐振频率(如大于40MHz)以及更好的抗机械冲击稳定性和可靠性。
由于目标频率较高,则要求石英压电薄膜较薄。但是当石英薄膜较薄时,外部应力例如来自基底的应力更容易传递到石英薄膜谐振区域从而影响谐振器的频率稳定性;同时,当石英薄膜较薄时,谐振器更容易受到机械冲击和环境振动的影响,其可靠性和低频石英谐振器相比进一步恶化。急需寻找一种结构设计和制作方法,一方面能够满足石英谐振器高谐振频率的要求,同时能够满足外部应力、抗机械冲击稳定性和可靠性的要求。
发明内容
有鉴于此,本发明提出一种石英薄膜谐振器及其制造方法以克服现有技术中的缺陷。
本发明第一方面提出一种石英薄膜谐振器,可以包括依次堆叠的基底、底电极、石英层、顶电极,其中,所述石英层包括位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区;所述石英压电区的厚度小于所述石英机械区的厚度。
可选地,所述顶电极下方具有金属刻蚀阻挡层。
可选地,所述顶电极下方具有顶电极连接结构。
可选地,所述顶电极下方具有的顶电极连接结构位于所述石英压电区内。
可选地,所述石英机械区位于所述石英压电区的双侧或单侧。
可选地,所述石英压电区的下表面具有凹槽,所述底电极和所述顶电极连接结构位于所述下表面的凹槽中;或者,所述石英压电区的上表面具有凹槽,所述顶电极、所述金属刻蚀阻挡层位于所述上表面的凹槽之中;或者,所述石英压电区的上表面和下表面均具有凹槽,所述顶电极、所述金属刻蚀阻挡层位于所述上表面的凹槽之中,所述底电极和所述顶电极连接结构位于所述下表面的凹槽之中。
可选地,所述石英压电区的上下表面具有凹陷结构和凸起结构。
可选地,所述石英压电区的厚度范围为0.1微米至50微米,所述石英机械区的厚度范围为50微米至100微米。
可选地,所述基底的材料为硅或玻璃。
可选地,所述基底与所述石英层在所述石英机械区键合。
可选地,还包括封装层,所述封装层的材料为硅或玻璃。
本发明第二方面提出一种石英薄膜谐振器的制造方法,可以包括:在石英晶体的第一侧依次形成金属刻蚀阻挡层和顶电极;将当前所得结构作第一次倒转后键合到牺牲基底之上;在所述石英晶体中形成位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区,其中,所述石英压电区的厚度小于所述石英机械区的厚度;在所述石英压电 区之上形成底电极;去除所述牺牲基底;将当前所得结构作第二次倒转后键合到基底上。
可选地,通过在所述石英晶体第二侧进行减薄、薄膜沉积、光刻和刻蚀的方式,在所述石英晶体中形成位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区。
可选地,所述石英压电区的厚度范围为0.1微米至50微米,所述石英机械区的厚度范围为50微米至100微米。
可选地,所述基底的材料为硅或玻璃。
可选地,所述基底与所述石英晶体在所述石英机械区键合。
根据本发明的技术方案,石英薄膜谐振器同时包括较厚的石英机械区和较薄的石英压电区,因此既能够对外部应力、机械冲击和环境振动不敏感,有更高的可靠性和频率稳定性,又能实现目标频率。本发明实施例的石英薄膜谐振器的制造方法中通过磨片、化学机械抛光、干法刻蚀等通常应用于微机电系统MEMS的工艺(以下简称作MEMS工艺)来整体减薄石英晶圆,使石英谐振区域已到目标厚度(也即实现目标频率),同时在非谐振区域尤其是和基底的连接键合位置配置机械稳定性更强的结构。石英薄膜谐振器主要采用MEMS工艺流程和大尺寸晶圆级封装(如12寸晶圆)工艺,可以实现大批量、低成本的制作,且制作的器件精度高、一致性好。
附图说明
为了说明而非限制的目的,现在将根据本发明的优选实施例、特别是参考附图来描述本发明,其中:
图1为本发明第一实施例的石英薄膜谐振器的截面示意图;
图2为本发明第二实施例的石英薄膜谐振器的截面示意图;
图3为本发明第三实施例的石英薄膜谐振器的截面示意图;
图4为本发明第四实施例的石英薄膜谐振器的截面示意图;
图5为本发明第五实施例的石英薄膜谐振器的截面示意图;
图6为本发明第六实施例的石英薄膜谐振器的截面示意图;
图7为本发明第七实施例的石英薄膜谐振器的截面示意图;
图8为本发明第八实施例的石英薄膜谐振器的截面示意图;
图9A至图9L为本发明第一实施例的石英薄膜谐振器的加工流程示意图;
图10A至图10L为本发明第三实施例的石英薄膜谐振器的加工流程示意图。
具体实施方式
下面结合实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
图1所示为根据本发明的第一实施例的石英薄膜谐振器的截面示意图。其中,01为基底,02为键合层,03为密封层,04为底电极,05为顶电极连接结构,06为谐振器有效区域之内较薄的石英压电区,07为顶电极,08为金属刻蚀阻挡层,09为封装层,10为穿过封装层的电极连接结构,11为谐振器有效区域之外较厚的石英机械区。
其中,顶电极07下方具有金属刻蚀阻挡层08。顶电极07下方具有顶电极连接结构05。顶电极07下方具有的顶电极连接结构05位于石英压电区06内。
其中,谐振器有效区域之内较薄的石英压电区06的薄膜厚度由谐振器频率决定,厚度范围可为0.1微米至50微米。谐振器有效区域之外较厚的石英机械区11的厚度范围可为50微米至100微米。
在本实施例中,谐振器有效区域之外较厚的石英机械区11的结构比谐振器有效区域之内较薄的石英压电区06要厚,并且位于谐振器的底电极04和顶电极连接结构05之下的键合层02位于石英机械区11中较厚的部位,即键合层02的左右两侧与石英机械区11的边缘之间有一距离d1和d2,其中d1、d2>0,这样键合区被机械区包围并且范围小于机械区,使键合区在起到电学连接和机械支撑的同时,还有助于减小应力耦合等外界影响。因为石英机械区11厚度较厚;当基底中的应力通过键合层02传递到石英机械区11中,能够使其本身承受更大的应力不会发生形变,也不会将应力传导到石英压电区06中,从而能够避免由于应力传递导致的谐振频率漂移的现象;同时,可以使得石英谐振器的机械稳定性更强,不容易受到机械冲击和环境振动的影响,其抗机械冲击能力得到提高即可靠性更高,由于外界环境振动引入的噪声信号更低即稳定性更高。
在本实施例中,由于非有效区域的设置了厚度较厚的石英机械区11,这样可以使得谐振器的机械性能更为稳定,能够承受外界环境较大的应力变化而不会影响到谐振器的性能。底电极04和顶电极07的电极形状可以为四边形、五边形、六边形等其他任意形状。
图2为根据本发明第二实施例的石英薄膜谐振器的截面示意图。其中,图2与图1基本相同,区别在于本实施例中石英机械区11仅设置在石英压电区06的单侧而第一实施例中石英机械区11是设置在石英压电区06双侧。如图所示,整个石英谐振器只通过右侧较厚的石英机械区与基底进行键合连接在一起。由于连接部位处石英机械区的厚度比较厚,因此其能承受的应力更大,使其机械性能更为稳定,谐振器的频率控制更为精准。
图3为本发明第三实施例的石英薄膜谐振器的截面示意图。其中,图3与图1基本相同,区别在于本实施例中,按图中视角,石英压电区06中的凹槽位于其上表面,即谐振器的顶电极07、金属刻蚀阻挡层08位于凹槽之中。
图4为本发明第四实施例的石英薄膜谐振器的截面示意图。其中,图4与图3基本相同,区别在于在本实施例中,按图中视角,位于非有效区域中较厚的石英机械层11只有左侧的一部分,即整个石英谐振器只通过单侧较厚的石英机械层11与基底01进行键合连接在一起。
图5为本发明第五实施例的石英薄膜谐振器的截面示意图。其中,图5与图1、图3基本相同,区别在于本实施例中,石英压电区06中的凹槽同时位于其上下表面,即谐振器的顶电极07、金属刻蚀阻挡层08位于石英压电区06上表面的凹槽之中,底电极04和顶电极07对应的顶电极连接结构05位于石英压电区06下表面的凹槽之中。这样使得非有效区域中的压电层结构11的厚度更厚,从而可以使得谐振器能够承受通过键合层02传导过来的更大应力,从而可以使其机械结构更为稳固、性能更为稳定。
图6为本发明第六实施例的石英薄膜谐振器的截面示意图。其中,图6与图1基本相同,区别在于本实施例中,在石英压电区06的上下表面具有凹陷结构12和凸起结构13。
图7为本发明第七实施例的石英薄膜谐振器的截面示意图。其中,图7与图3基本相同,区别在于本实施例中,在石英压电区06的上下表面具有凹陷结构12和凸起结构13。
图8为本发明第八实施例的石英薄膜谐振器的截面示意图。其中,图8与图5基本相同,区别在于本实施例中,在石英压电区06的上下表面具有凹陷结构12和凸起结构13。
在图6、图7、图8的结构中,由于凹陷结构和凸起结构的声学阻抗和谐振器有效区域中的声学阻抗不匹配,从而能够将横向模式的声波反射回有效区域中,因此能够减小谐振器的能量损耗,使其性能得到提升。
本发明实施方式中的石英薄膜谐振器的制造方法包括:在石英晶体的第一表面依次形成金属刻蚀阻挡层和顶电极;将当前所得结构作第一次倒转后键合到牺牲基底之上;在石英晶体中形成位于谐振器有效区域内部的石英压电区和位于谐振器有效区域外的石英机械区,其中,石英压电区的厚度小于石英机械区的厚度;在石英压电区之上形成底电极;去除牺牲基底;将当前所得结构作第二次倒转后键合到基底上。其中,石英压电区的厚度范围可为0.1微米至50微米,石英机械区的厚度范围可为50微米至100微米。
可选地,通过在石英晶体第二侧进行减薄、薄膜沉积、光刻和刻蚀的方式,在石英晶体中形成位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区。该实施例的制造方法主要采用MEMS工艺和对石英晶体的两个表面先后加工出精细结构,确保加工后的石英晶体既拥有厚度较厚的石英机械区,又拥有厚度较薄的石英压电区,二者构成石英层。
图9A至图9L为本发明第一实施例的石英薄膜谐振器的加工流程示意图,主要包括如下的步骤1至步骤11。
步骤1:如图9A所示,首先在石英晶体25上通过薄膜沉积、光刻和刻蚀工艺形成金属刻蚀阻挡层08。
步骤2:如图9B所示,然后通过相同的工艺方法形成顶电极07。
步骤3:如图9C所示,然后在提供另一牺牲基底18,并在其上表面形成一层键合粘附层19,键合粘附层19的材料可以为树脂类等类似材料。其中牺牲基底18的材料也为石英晶体或者也可以为与石英晶体热膨胀系数相近的材料,这样能够避免在后续步骤中两种基底键合完成后,因两种材料的热膨胀系数相差太大而导致的薄膜弯曲、断裂等问题。
步骤4:如图9D所示,通过键合的方法将图9B所示结构倒转后与图9C所示结构连接在一起。
步骤5:如图9E所示,通过化学机械研磨(CMP)将石英晶体25进行减薄到合适的厚度。
步骤6:如图9F所示,通过光刻、刻蚀的工艺方法在石英晶体25的上表面形成凹陷结构22和23。
步骤7:如图9G所示,在石英晶体25的表面形成一层刻蚀阻挡层。对于高频谐振器,由于所需的石英压电区的厚度比较薄,所以刻蚀阻挡层可以选用光刻胶等类似的“软掩膜”材料;对于低频谐振器,由于所需石英压电区的厚度比较厚,可能会达到几十微米或者上百微米,此时光刻胶等材料已不能满足需求,所以在改为选用金属材料,比如Al、Cr/Au等类似的“硬掩膜”材料。
步骤8:如图9H所示,通过刻蚀的方法,可以为湿法刻蚀或者干法刻蚀,将暴露的石英晶体25刻穿,形成电极连接通道20和密封通道21。
步骤9:如图9I所示,将刻蚀阻挡层22去掉,石英晶体25最终形成两部分,一部分为中间较薄的石英压电区06和两侧起到稳固作用的厚度较厚的石英机械区11。
步骤9:如图9J所示,沉积一层金属薄膜并刻蚀形成底电极04和顶电极07对应的顶电极电连接结构05。
步骤10:如图9K所示,将图9J所示结构与成品器件所采用的基底01进行键合,其中基底01的材料可以为硅或者玻璃,在两种结构键合之间存在键合层02。键合完成之后将基底倒转过来,并通过湿法刻蚀的方法将牺牲基底18去除。
步骤11:如图9L所示,最后在封装层09中形成电极连接结构10,即可得到实施例图1所示的结构。
图10A至图10L为本发明第三实施例的石英薄膜谐振器的加工流程示意图,主要包括如下的步骤1至步骤12。
步骤1:如图10A所示,首先在石英晶体25上通过薄膜沉积、光刻和刻蚀工艺形成凹槽结构22和23。
步骤2:如图10B所示,然后在通过相同的工艺方法形成金属刻蚀阻挡层结构08。
步骤3:如图10C所示,然后通过相同的工艺方法形成顶电极07。
步骤4:如图10D所示,然后在提供另一牺牲基底18,并在其上表面 形成一层键合粘附层19,键合粘附层19的材料可以为树脂类等类似材料。其中牺牲基底18的材料也为石英晶体或者也可以为与石英晶体热膨胀系数相近的材料,这样能够避免之后两种基底键合完成后,因两种材料的热膨胀系数相差太大而导致的薄膜弯曲、断裂等问题的存在。
步骤5:如图10E所示,通过键合的方法将图10C所示结构与图10D所示结构键合在一起。
步骤6:如图10F所示,通过化学机械研磨(CMP)将石英晶体25进行减薄到合适的厚度成为所需频率厚度。
步骤7:如图10G所示,在石英晶体25的表面形成一层刻蚀阻挡层。对于高频谐振器,由于所需的石英压电区的厚度比较薄,所以刻蚀阻挡层可以选用光刻胶等类似的“软掩膜”材料;对于低频谐振器,由于所需石英机械区的厚度比较厚,可能会达到几十微米或者上百微米,此时光刻胶等材料已不能满足需求,所以在改为选用金属材料,比如Al、Cr/Au等类似的“硬掩膜”材料。
步骤8:如图10H所示,通过刻蚀的方法,可以为湿法刻蚀或者干法刻蚀,将暴露的石英晶体25刻穿,形成电极连接通道20和密封通道21。
步骤9:如图10I所示,将刻蚀阻挡层22去掉,石英晶体25最终形成两部分,一部分为中间较薄的石英压电区06和两侧起到稳固作用的厚度较厚的石英机械区11。
步骤10:如图10J所示,沉积一层金属薄膜并刻蚀形成底电极04和顶电极07的顶电极电连接结构05。
步骤11:如图10K所示,将图10J所示结构与成品器件所采用的基底01进行键合,其中基底01的材料可以为硅或者玻璃,在两种结构键合之间存在键合层02。键合完成之后将基底倒转过来,并通过湿法刻蚀的方法将牺牲基底18去除。
步骤12:如图10L所示,最后在封装层09中形成电极连接结构10,即可得到实施例图3所示的结构。
在本发明中,电极材料可以为:金(Au)、银(Ag)、钨(W)、钼(Mo)、铂(Pt),钌(Ru)、铱(Ir)、钛钨(TiW)、铝(Al)、钛(Ti)、锇(Os)、镁(Mg)、 锗(Ge)、铜(Cu)、铬(Cr)、砷掺杂金等类似金属形成。
基底01可以为硅或者玻璃,其厚度范围可以为均小于500微米。
封装层09的材料也可以为硅或者玻璃。
综上所述,本发明实施例的石英薄膜谐振器同时包括较厚的石英机械区和较薄的石英压电区,因此既能够对外部应力、机械冲击和环境振动不敏感,有更高的可靠性和频率稳定性,又能实现目标频率。本发明实施例的石英薄膜谐振器的制造方法中通过磨片、化学机械抛光、干法刻蚀等MEMS工艺整体减薄石英晶圆,使石英谐振区域已到目标厚度(也即实现目标频率),同时在非谐振区域(尤其是和基底的连接键合位置)配置机械稳定性更强的结构。石英薄膜谐振器主要采用MEMS工艺流程和大尺寸晶圆级封装(如12寸晶圆)工艺,可以实现大批量、低成本的制作,且制作的器件精度高、一致性好。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (16)

  1. 一种石英薄膜谐振器,其特征在于:包括依次堆叠的基底、底电极、石英层、顶电极,其中,
    所述石英层包括位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区;
    所述石英压电区的厚度小于所述石英机械区的厚度。
  2. 根据权利要求1所述的石英薄膜谐振器,其特征在于:所述顶电极下方具有金属刻蚀阻挡层。
  3. 根据权利要求1所述的石英薄膜谐振器,其特征在于:所述顶电极下方具有顶电极连接结构。
  4. 根据权利要求1所述的石英薄膜谐振器,其特征在于:所述顶电极下方具有的顶电极连接结构位于所述石英压电区内。
  5. 根据权利要求1所述的石英薄膜谐振器,其特征在于:所述石英机械区位于所述石英压电区的双侧或单侧。
  6. 根据权利要求2所述的石英薄膜谐振器,其特征在于:
    所述石英压电区的下表面具有凹槽,所述底电极和所述顶电极连接结构位于所述下表面的凹槽中;或者,
    所述石英压电区的上表面具有凹槽,所述顶电极、所述金属刻蚀阻挡层位于所述上表面的凹槽之中;或者,
    所述石英压电区的上表面和下表面均具有凹槽,所述顶电极、所述金属刻蚀阻挡层位于所述上表面的凹槽之中,所述底电极和所述顶电极连接结构位于所述下表面的凹槽之中。
  7. 根据权利要求1所述的石英薄膜谐振器,其特征在于:所述石英 压电区的上下表面具有凹陷结构和凸起结构。
  8. 根据权利要求1至7中任一项所述的石英薄膜谐振器,其特征在于:所述石英压电区的厚度范围为0.1微米至50微米,所述石英机械区的厚度范围为50微米至100微米。
  9. 根据权利要求8所述的石英薄膜谐振器,其特征在于:所述基底的材料为硅或玻璃。
  10. 根据权利要求8所述的石英薄膜谐振器,其特征在于:所述基底与所述石英层在所述石英机械区键合。
  11. 根据权利要求8所述的石英薄膜谐振器,其特征在于:还包括封装层,所述封装层的材料为硅或玻璃。
  12. 一种石英薄膜谐振器的制造方法,其特征在于,包括:
    在石英晶体的第一侧依次形成金属刻蚀阻挡层和顶电极;
    将当前所得结构作第一次倒转后键合到牺牲基底之上;
    在所述石英晶体中形成位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区,其中,所述石英压电区的厚度小于所述石英机械区的厚度;
    在所述石英压电区之上形成底电极;
    去除所述牺牲基底;
    将当前所得结构作第二次倒转后键合到基底上。
  13. 根据权利要求12所述的制造方法,其特征在于:通过在所述石英晶体第二侧进行减薄、薄膜沉积、光刻和刻蚀的方式,在所述石英晶体中形成位于谐振器有效区域内部的石英压电区和位于所述谐振器有效区域外的石英机械区。
  14. 根据权利要求12所述的制造方法,其特征在于:所述石英压电区的厚度范围为0.1微米至50微米,所述石英机械区的厚度范围为50微米至100微米。
  15. 根据权利要求12所述的制造方法,其特征在于:所述基底的材料为硅或玻璃。
  16. 根据权利要求12所述的制造方法,其特征在于:所述基底与所述石英晶体在所述石英机械区键合。
PCT/CN2021/078732 2021-03-02 2021-03-02 石英薄膜谐振器及其制造方法 WO2022183379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078732 WO2022183379A1 (zh) 2021-03-02 2021-03-02 石英薄膜谐振器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078732 WO2022183379A1 (zh) 2021-03-02 2021-03-02 石英薄膜谐振器及其制造方法

Publications (1)

Publication Number Publication Date
WO2022183379A1 true WO2022183379A1 (zh) 2022-09-09

Family

ID=83153787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078732 WO2022183379A1 (zh) 2021-03-02 2021-03-02 石英薄膜谐振器及其制造方法

Country Status (1)

Country Link
WO (1) WO2022183379A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139167A (ja) * 2014-01-23 2015-07-30 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびデュプレクサ
CN110266285A (zh) * 2019-05-31 2019-09-20 武汉大学 一种微机械谐振器、其制备及频率微调校正方法
CN111010099A (zh) * 2019-03-02 2020-04-14 天津大学 带凹陷结构和凸结构的体声波谐振器、滤波器及电子设备
CN111010123A (zh) * 2019-10-23 2020-04-14 诺思(天津)微系统有限责任公司 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
CN111262548A (zh) * 2019-12-31 2020-06-09 诺思(天津)微系统有限责任公司 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139167A (ja) * 2014-01-23 2015-07-30 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびデュプレクサ
CN111010099A (zh) * 2019-03-02 2020-04-14 天津大学 带凹陷结构和凸结构的体声波谐振器、滤波器及电子设备
CN110266285A (zh) * 2019-05-31 2019-09-20 武汉大学 一种微机械谐振器、其制备及频率微调校正方法
CN111010123A (zh) * 2019-10-23 2020-04-14 诺思(天津)微系统有限责任公司 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
CN111262548A (zh) * 2019-12-31 2020-06-09 诺思(天津)微系统有限责任公司 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法

Similar Documents

Publication Publication Date Title
US8765615B1 (en) Quartz-based MEMS resonators and methods of fabricating same
TWI714785B (zh) 表面聲波元件用複合結構
JP4930595B2 (ja) 圧電共振子
US10263598B2 (en) Acoustic resonator and method of manufacturing the same
US9929716B2 (en) Acoustic resonator and method of manufacturing the same
KR102418744B1 (ko) 에어갭형 fbar 및 이의 제조방법
US8431031B2 (en) Method for producing a bulk wave acoustic resonator of FBAR type
JP2005333642A (ja) エアギャップ型の薄膜バルク音響共振器およびその製造方法
JP2005033774A (ja) 金属膜の内部応力を用いた薄膜バルク音響共振器の製造方法および共振器
JPWO2014010696A1 (ja) 複合基板、圧電デバイス及び複合基板の製法
JP4395892B2 (ja) 圧電薄膜デバイス及びその製造方法
WO2021135022A1 (zh) 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
CN113395053B (zh) 石英薄膜谐振器及其制造方法
CN114513186B (zh) 一种高频声表面波谐振器及其制备方法
WO2023134252A1 (zh) 一种baw滤波器结构及制备方法
JP2020014088A (ja) 弾性波共振器、フィルタ並びにマルチプレクサ
WO2022183379A1 (zh) 石英薄膜谐振器及其制造方法
JP5862368B2 (ja) 圧電デバイスの製造方法
CN113037245A (zh) 基于压电薄膜换能的石英谐振器以及电子设备
JP2002076824A (ja) 圧電薄膜共振子、フィルタおよび電子機器
JP2010147874A (ja) Baw共振装置およびその製造方法
JP2005303573A (ja) 薄膜圧電共振器及びその製造方法
WO2022183491A1 (zh) 石英薄膜体声波谐振器及其加工方法、电子设备
JP2005033775A (ja) 電子部品及びその製造方法
US20220103157A1 (en) Lithium niobate or lithium tantalate fbar structure and fabricating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928470

Country of ref document: EP

Kind code of ref document: A1