WO2021065951A1 - 配線基板用基材の再利用方法 - Google Patents

配線基板用基材の再利用方法 Download PDF

Info

Publication number
WO2021065951A1
WO2021065951A1 PCT/JP2020/037012 JP2020037012W WO2021065951A1 WO 2021065951 A1 WO2021065951 A1 WO 2021065951A1 JP 2020037012 W JP2020037012 W JP 2020037012W WO 2021065951 A1 WO2021065951 A1 WO 2021065951A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
base material
cured film
cured
photosensitive resin
Prior art date
Application number
PCT/JP2020/037012
Other languages
English (en)
French (fr)
Inventor
柴田 大介
康昭 荒井
佐藤 和也
瀟竹 韋
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to JP2021520239A priority Critical patent/JP6983363B2/ja
Priority to CN202080068575.0A priority patent/CN114467363A/zh
Priority to KR1020217042968A priority patent/KR102608843B1/ko
Publication of WO2021065951A1 publication Critical patent/WO2021065951A1/ja
Priority to JP2021189380A priority patent/JP2022022254A/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/288Removal of non-metallic coatings, e.g. for repairing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a method for reusing a base material for a wiring board. More specifically, the present invention recycles a base material by removing a part or all of the cured coating from a wiring board having a cured coating formed on the surface of the base material. Regarding how to use it.
  • a circuit board in which a cured film is formed only on a desired portion of the surface of a printed wiring board is manufactured. ..
  • a photosensitive resin composition is applied on a substrate, dried, exposed and developed, and a cured film is formed only on a desired portion of the substrate surface, or a so-called dry film.
  • the mainstream method is to attach a film provided with a photosensitive resin layer called, to a base material, and to form a cured film only on a desired portion of the base material surface by exposure and development.
  • the defect can be corrected by performing exposure and development processing after drying.
  • the developed coating film is heat-treated to form a cured film, it is not easy to completely peel off the cured film from the substrate with a solvent. The reason is that a crosslinked structure is formed by the crosslinking reaction of the photocurable component contained in the photosensitive resin composition.
  • Patent Document 2 after the coating film is cured after development by using a stripping solution composed of a mixed solution of an alkali metal hydroxide and an aprotic solvent (for example, N-methylpyrrolidone).
  • a method has been proposed in which the cured coating film can be peeled off from the substrate.
  • Patent Document 3 proposes that the cured film can be peeled from the substrate even with an alkaline aqueous solution by blending a curable component derived from a specific polyester with the photosensitive resin composition. ing.
  • the wiring board on which the cured film is formed is immersed in a stripping solution to remove the cured film, so that the cured film is cured even if only a small part of the cured film is defective.
  • the entire coating will be peeled off, resulting in waste of material. For example, if the cured film can be removed only at the defective portion, it can be said that the base material can be reused efficiently.
  • the method for reusing a base material proposed in Patent Document 3 focuses on the composition of the photosensitive resin composition and makes it easy to peel off the cured film from the base material by blending a specific component. ..
  • the general photosensitive resin composition soldder resist ink containing a thermosetting component, etc.
  • it is difficult to change the composition and the method of Patent Document 3 may not be applicable.
  • an object of the present invention is that when a defect is found in a part of the cured coating when manufacturing a wiring board having a cured coating on the substrate, the cured coating can be removed from the substrate only in the defective portion. It is an object of the present invention to provide a method capable of removing a cured film from a substrate regardless of the composition of the photosensitive resin composition.
  • the present inventors have general-purpose by irradiating the cured film with a predetermined active energy ray in the presence of oxygen, even if the cured film is formed through a curing treatment after exposure and development. It was found that the cured film can be easily peeled off from the substrate by a solvent.
  • the present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
  • the cured film is made of a cured product of a photosensitive resin composition.
  • a method for reusing a base material for a wiring board including.
  • the cured film was formed by applying a photosensitive resin composition on the substrate and drying it to form a dry coating film, or by applying the photosensitive resin composition to a support film and drying it.
  • a dry film having a resin layer is bonded to the dry film so that the base material and the resin layer are in contact with each other, and then the dry coating film or the resin layer of the dry film is exposed, developed, and patterned.
  • [3] The method according to [1] or [2], wherein the active energy ray contains ionizing radiation having a wavelength of 100 to 255 nm.
  • the photosensitive resin composition contains (A) a carboxyl group-containing resin, (B) a photopolymerizable monomer, (C) a photopolymerization initiator, and (D) a thermosetting component.
  • an active energy ray capable of generating active oxygen and an active energy ray capable of cleaving a CC carbon bond in the presence of oxygen can be obtained.
  • the cured film can be removed from the substrate regardless of the composition of the photosensitive resin composition.
  • the active energy rays can be irradiated only to the defective part of the cured film, if a defect is found in a part of the cured film during manufacturing of the wiring board, only the defective part is the cured film. Can be removed from the substrate.
  • the method for reusing a base material for a wiring substrate according to the present invention is a method for reusing the base material by removing a part or all of the cured coating from a wiring substrate having a cured coating formed on the surface of the base material.
  • Part or all of the cured film is irradiated with at least one of an active energy ray capable of generating active oxygen in the presence of oxygen and an active energy ray capable of cleaving a CC carbon bond.
  • a part or all of the cured film made of a cured product of the photosensitive resin composition formed on the substrate is irradiated with the above-mentioned specific active energy rays. Only the portion can be easily and easily removed from the cured film with a solvent. That is, even when the photosensitive resin composition contains a cross-linking component such as a photopolymerizable monomer or a thermosetting component such as an epoxy resin, the photosensitive resin composition is cured.
  • the cured film By irradiating the cured film with an active energy ray capable of generating active oxygen or an active energy ray capable of cleaving a CC carbon bond in the presence of oxygen, the cured film (polymer of a photosensitive resin composition).
  • the CC carbon bond of the polymer chain constituting the cured product is cleaved, or the CC carbon bond of the polymer chain constituting the cured product is cleaved by the active oxygen generated by irradiation with the active energy ray.
  • the active oxygen generated by irradiation with the active energy ray.
  • some of the cleaved hydrocarbon radicals combine with oxygen in the presence of oxygen and become carbon dioxide or the like and vaporize.
  • hydrocarbon radicals may be recombined to form low molecular weight compounds, and some of these low molecular weight compounds are vaporized.
  • the CC carbon bond in the polymer chain is broken, the molecular weight decreases, so that the cured film itself becomes embrittled.
  • the CC carbon bond of the crosslinked portion is cleaved by irradiation with active energy rays or active oxygen, so that the polymer chain is soluble in a solvent. It becomes.
  • the cured film can be removed from the substrate regardless of the composition of the photosensitive resin composition, and the active energy rays can be irradiated only to the defective portion of the cured film.
  • the present invention provides a method of removing a part or all of the cured coating from a wiring board having a cured coating formed on the surface of the substrate and reusing the substrate. That is, the present invention provides a method for removing only the defective cured film when a defect is found in a part of the cured film in the manufacturing process of the wiring board on which the cured film is formed.
  • a wiring board will be described by forming a cured film on the base material.
  • a method of forming a cured film by curing the coating film after exposure and development of the coating film such as a printed wiring board on which a solder resist layer is formed can be applied without limitation.
  • a general method for forming a cured film on a substrate will be described.
  • a photosensitive resin composition is applied and dried on a substrate to form a dry coating film, or a dry film having a resin layer formed by applying the photosensitive resin composition to a support film and drying is formed.
  • the dry film is bonded so that the base material and the resin layer are in contact with each other.
  • the resin layer of the dry coating film or the dry film is exposed and developed to form a cured film on the substrate.
  • Base material in addition to printed wiring boards and flexible printed wiring boards whose circuits are formed in advance with copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy, etc. It is made of materials such as copper-clad laminates for high-frequency circuits using synthetic fiber epoxy, fluororesin / polyethylene / polyimideether, polyphenylene oxide / cyanate, etc., and all grades (FR-4, etc.) of copper-clad laminates.
  • a wafer substrate a metal substrate, a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, a wafer plate and the like can be mentioned.
  • a copper-clad laminate is particularly preferable.
  • a copper-clad laminate or the like When a copper-clad laminate or the like is used as a base material, it is preferable to polish the surface of the copper foil in order to improve the adhesion between the base material and the cured film.
  • polishing include physical polishing of buffs, scrubs, brushes and the like, chemical polishing of CZ8101 and the like.
  • the arithmetic mean surface roughness (Ra) of the surface of the copper foil after polishing is preferably 50 to 1000 nm. According to the method of the present invention, even such a cured film having increased adhesion to the substrate can be easily removed with a solvent.
  • the photosensitive resin composition is patterned by exposure and development to form a cured film provided on the substrate.
  • a photosensitive resin composition for example, a conventionally known solder resist ink or the like can be used without limitation, but an example of a photosensitive resin composition that can be preferably used in the present invention will be described below.
  • a photosensitive resin composition containing (A) a carboxyl group-containing resin, (B) a photopolymerizable monomer, (C) a photopolymerization initiator, and (D) a thermosetting component is preferably used. Can be done.
  • the (A) carboxyl group-containing resin various conventionally known photosensitive resins having a carboxyl group in the molecule can be used.
  • the photosensitive resin composition contains (A) a carboxyl group-containing resin, alkali developability can be imparted to the photosensitive resin composition.
  • a carboxyl group-containing photosensitive resin having a (meth) acryloyl group in the molecule is preferable from the viewpoint of photocurability and development resistance.
  • the (meth) acryloyl group is preferably derived from acrylic acid or methacrylic acid or a derivative thereof.
  • Specific examples of the carboxyl group-containing resin (A) include the following compounds (either oligomer or polymer).
  • the (meth) acryloyl group is a general term for an acryloyl group, a meta-acryloyl group, and a mixture thereof, and the same applies to other similar expressions.
  • a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth) acrylic acid with an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, or isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates, carboxyl group-containing dialcoic compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate-based polyols and polyether-based compounds.
  • a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, and a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Meta)
  • bisphenol A type epoxy resin hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Meta)
  • Bisphenol A type epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Meta)
  • Meta A carboxyl group-containing photosensitive urethane resin obtained by a double addition reaction of an acrylate or a modified partial acid anhydride thereof, a carboxyl group-containing dialcohol compound and a diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are formed in the molecule, such as an isophorone diisocyanate and pentaerythritol triacrylate isomorphic reaction product.
  • a carboxyl group-containing photosensitive resin obtained by reacting a bifunctional or higher polyfunctional (solid) epoxy resin with (meth) acrylic acid and adding a dibasic acid anhydride to a hydroxyl group existing in a side chain.
  • a dicarboxylic acid such as adipic acid, phthalic acid, or hexahydrophthalic acid is reacted with a bifunctional oxetane resin, and the generated primary hydroxyl group is subjected to two bases such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
  • Carboxyl group-containing polyester resin to which acid anhydride is added is added.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol, and (meth).
  • an unsaturated group-containing monocarboxylic acid such as acrylic acid, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipine with respect to the alcoholic hydroxyl group of the obtained reaction product.
  • a carboxyl group-containing photosensitive resin obtained by reacting a polybasic anhydride such as an acid.
  • reaction obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide with an unsaturated group-containing monocarboxylic acid.
  • alkylene oxide such as ethylene oxide or propylene oxide
  • unsaturated group-containing monocarboxylic acid A carboxyl group-containing photosensitive resin obtained by reacting a product with a polybasic acid anhydride.
  • a carboxyl group-containing photosensitive resin obtained by further adding a compound having one epoxy group and one or more (meth) acryloyl groups in one molecule to the resins (1) to (11).
  • the (A) carboxyl group-containing resin that can be used in the present invention is not limited to those listed above. Also. One type of the (A) carboxyl group-containing resin listed above may be used alone, or a plurality of types may be mixed and used.
  • the weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, preferably in the range of 5,000 to 100,000.
  • the resolution and tack-free performance can be improved.
  • the developability and storage stability can be improved by using the (A) carboxyl group-containing resin having a weight average molecular weight of 150,000 or less.
  • the blending amount of the (A) carboxyl group-containing resin is 50 to 90 parts by mass when the total amount of the (A) carboxyl group-containing resin and (D) thermosetting component is 100 parts by mass in terms of solid content. It is preferable to have.
  • the blending amount of the carboxyl group-containing resin (A) within the above range, the state change of the coating film surface with time becomes appropriate, and the adhesion to the substrate can be further improved. According to the method of the present invention, even such a cured film having increased adhesion to the substrate can be easily removed with a solvent.
  • the (B) photopolymerizable monomer contained in the photosensitive resin composition is a monomer having an ethylenically unsaturated double bond.
  • the (B) photopolymerizable monomer include known and commonly used polyester (meth) acrylates, polyether (meth) acrylates, urethane (meth) acrylates, carbonate (meth) acrylates, and epoxy (meth) acrylates.
  • hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate
  • diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol and propylene glycol
  • N N-dimethylacrylamide.
  • N-methylol acrylamide acrylamides such as N, N-dimethylaminopropyl acrylamide
  • aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropyl acrylate
  • Polyhydric alcohols such as pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate or polyhydric acrylates such as their ethireoxyside adducts, propylene oxide adducts, or ⁇ -caprolactone adducts
  • phenoxyacrylates bisphenol A di.
  • Acrylate and polyvalent acrylates such as ethylene oxide adducts or propylene oxide adducts of these phenols; glycidyl ethers such as glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolpropan triglycidyl ether, triglycidyl isocyanurate.
  • Polyvalent acrylates not limited to the above, acrylates and melamine acrylates obtained by directly acrylated polyols such as polyether polyols, polycarbonate diols, hydroxyl group-terminated polybutadienes, and polyester polyols, or urethane acrylates via diisocyanates, and the acrylates. It can be appropriately selected and used from at least one of each methacrylate corresponding to the above.
  • a photopolymerizable monomer (B) can also be used as a reactive diluent.
  • An epoxy acrylate resin obtained by reacting a polyfunctional epoxy resin such as cresol novolac type epoxy resin with acrylic acid, and a hydroxy acrylate such as pentaerythritol triacrylate and a diisocyanate half urethane such as isophorone diisocyanate on the hydroxyl group of the epoxy acrylate resin.
  • An epoxy urethane acrylate compound obtained by reacting the compound or the like may be used as the (B) photopolymerizable monomer.
  • Such an epoxy acrylate-based compound can improve the photocurability without lowering the dryness to the touch.
  • the blending amount of the (B) photopolymerizable monomer is preferably 10 to 50 parts by mass, more preferably 15 to 45 parts by mass with respect to 100 parts by mass of the (A) carboxy-containing resin in terms of solid content. preferable.
  • the blending amount of the photopolymerizable monomer (B) is preferably 10 to 50 parts by mass, more preferably 15 to 45 parts by mass with respect to 100 parts by mass of the (A) carboxy-containing resin in terms of solid content. preferable.
  • the photopolymerizable monomer is (B) a photopolymerizable monomer in order to make the composition photocurable, especially when a carboxyl group-containing non-photosensitive resin having no ethylenically unsaturated double bond is used. It is effective because it is necessary to use together.
  • the (C) photopolymerization initiator contained in the photosensitive resin composition is for reacting the above-mentioned (A) carboxyl group-containing resin and (B) photopolymerizable monomer by exposure. Any known photopolymerization initiator (C) can be used.
  • the photopolymerization initiator one type may be used alone, or two or more types may be used in combination.
  • (C) photopolymerization initiator examples include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide and bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine.
  • Examples of commercially available ⁇ -aminoacetophenone-based photopolymerization initiators include Omnirad 907, 369, 369E, and 379 manufactured by IGM Resins.
  • Examples of commercially available acylphosphine oxide-based photopolymerization initiators include Omnirad TPO H and 819 manufactured by IGM Resins.
  • Commercially available oxime ester-based photopolymerization initiators include Irgacure OXE01 and OXE02 manufactured by BASF Japan Ltd., N-1919 manufactured by ADEKA Corporation, ADEKA Arkuru's NCI-831, NCI-831E, and Changzhou Powerful Electronics New Materials Co., Ltd. TR-PBG-304 and the like can be mentioned.
  • the blending amount of the (C) photopolymerization initiator is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the (A) carboxyl group-containing resin in terms of solid content.
  • the amount is 1 part by mass or more, the photocurability of the photosensitive resin composition is good, and the film characteristics such as chemical resistance are also good. Further, when the amount is 20 parts by mass or less, the effect of reducing outgas is obtained, the light absorption on the surface of the cured film is good, and the deep curability is unlikely to be lowered. More preferably, it is 2 to 15 parts by mass.
  • a photoinitiator aid or a sensitizer may be used in combination with the (C) photopolymerization initiator.
  • the photoinitiator aid or sensitizer include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds.
  • thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone.
  • the deep curability can be improved.
  • These compounds may be used as (C) photopolymerization initiator, but are preferably used in combination with (C) photopolymerization initiator.
  • one type of photoinitiator aid or sensitizer may be used alone, or two or more types may be used in combination.
  • photopolymerization initiators since these (C) photopolymerization initiators, photoinitiator aids, and sensitizers absorb specific wavelengths, their sensitivity may be lowered in some cases, and they may function as ultraviolet absorbers. However, these are not used only for the purpose of improving the sensitivity of the photosensitive resin composition. It absorbs light of a specific wavelength as needed to enhance the photoreactivity of the surface, change the line shape and aperture of the resist pattern to vertical, tapered, or reverse tapered, and the accuracy of the line width and aperture diameter. Can be improved.
  • the photosensitive resin composition contains (D) a thermosetting component.
  • a thermosetting component By including the thermosetting component (D), the barrier property (for example, etching resistance, etc.) of the cured film in the subsequent process can be improved, and both the resolution and the peelability can be achieved at a high level.
  • Any known thermosetting component (D) can be used.
  • amino resins such as melamine resin, benzoguanamine resin, melamine derivative, benzoguanamine derivative, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, epoxy compounds, oxetane compounds, episulfide resins, bismaleimide, carbodiimide resins and the like are used. it can.
  • thermosetting components may be used alone or in combination of two or more.
  • the compound having a plurality of cyclic (thio) ether groups in the molecule is a compound having a plurality of 3, 4, or 5-membered ring cyclic (thio) ether groups in the molecule, and is, for example, a plurality of epoxys in the molecule.
  • examples thereof include a compound having a group, that is, a polyfunctional epoxy compound, a compound having a plurality of oxetanyl groups in the molecule, that is, a polyfunctional oxetane compound, and a compound having a plurality of thioether groups in the molecule, that is, an episulfide resin.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, and phenol novolac type epoxy resin.
  • epoxy resins include cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, and triphenylmethane type epoxy resin.
  • Examples of commercially available epoxy resins include jER 828, 806, 807, YX8000, YX8034, 834 manufactured by Mitsubishi Chemical Corporation, YD-128, YDF-170, ZX-1059 manufactured by Nippon Steel Chemical & Materials Co., Ltd. Examples thereof include ST-3000, EPICLON 830, 835, 840, 850, N-730A, N-695 manufactured by DIC Corporation, and RE-306 manufactured by Nippon Kayaku Co., Ltd.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, and 1,4-bis [(3-3-oxythenylmethoxy) methyl] ether.
  • Methyl-3-oxetanylmethoxy) methyl] benzene 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-3) Oxetane) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and polyfunctional oxetane such as their oligomers or copolymers, as well as oxetane alcohols and novolac resins.
  • Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin and the like. Further, using the same synthesis method, an episulfide resin in which the oxygen atom of the epoxy group of the novolak type epoxy resin is replaced with a sulfur atom can also be used.
  • amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycol uryl compounds and methylol urea compounds.
  • polyisocyanate compound a polyisocyanate compound can be blended.
  • Polyisocyanate compounds include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolylene dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate) and isophorone diisocyanate; bicyclo Alicyclic polyisocyanates such as heptanthriisocyanate; and adducts, burettes, and isocyanurates of
  • the blocked isocyanate compound an addition reaction product of the isocyanate compound and the isocyanate blocking agent can be used.
  • the isocyanate compound capable of reacting with the isocyanate blocking agent include the above-mentioned polyisocyanate compound and the like.
  • the isocyanate blocking agent include phenol-based blocking agents; lactam-based blocking agents; active methylene-based blocking agents; alcohol-based blocking agents; oxime-based blocking agents; mercaptan-based blocking agents; acid amide-based blocking agents; imide-based blocking agents; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents and the like can be mentioned.
  • the number of functional groups of the (D) thermosetting component that reacts with respect to 1.0 mol of the carboxyl group contained in the (A) carboxyl group-containing resin is 0.8 to 2. It is preferably 5 mol, more preferably 1.0 to 2.0 mol.
  • the epoxy group of the epoxy resin is 1.0 to 2.0 mol per 1.0 mol of the carboxyl group of the (A) carboxyl group-containing resin. preferable.
  • the amount By setting the amount to 1 mol or more, it is possible to prevent the residue of carboxyl groups in the cured film and obtain good heat resistance, alkali resistance, electrical insulation and the like.
  • the blending amount By setting the blending amount to 2 mol or less, it is possible to prevent low molecular weight cyclic (thio) ether groups from remaining in the dry coating film and to ensure good strength of the cured film.
  • the photosensitive resin composition may contain (E) a thermosetting catalyst for accelerating the curing of the above-mentioned (D) thermosetting component.
  • thermosetting catalyst examples include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole.
  • the compound is not limited to the above-mentioned compound, and may be a catalyst for (E) thermosetting of an epoxy resin or an oxetane compound, or a compound that promotes a reaction between at least one of an epoxy group and an oxetanel group and a carboxyl group. It may be used alone or in combination of two or more.
  • a compound that also functions is used in combination with (E) a thermocuring catalyst.
  • thermosetting catalyst can be used alone or in combination of two or more.
  • the amount of the thermosetting catalyst (E) to be blended is 0 in terms of solid content with respect to 100 parts by mass of the (A) carboxyl group-containing resin. It is preferably 01 to 5 parts by mass, and more preferably 0.05 to 1 part by mass.
  • a filler can be added to the photosensitive resin composition as needed in order to increase the physical strength of the cured film.
  • known inorganic or organic fillers can be used, but barium sulfate, spherical silica, hydrotalcite and talcite are particularly preferably used.
  • barium sulfate, spherical silica, hydrotalcite and talcite are particularly preferably used.
  • a metal oxide, a metal hydroxide such as aluminum hydroxide, or the like can be used as an extender pigment filler.
  • spherical silica can be preferably used.
  • the spherical silica it is preferable to use spherical silica having an average particle size of 1 nm to 100 nm, and more preferably, the average particle size is 2 nm to 50 nm.
  • the surface states Ra1 and Ra2 of the cured coating can also be adjusted by blending spherical silica having an average particle size as described above.
  • the average particle size is the average particle size (D50) including not only the particle size of the primary particles but also the particle size of the secondary particles (aggregates), and is the value of D50 measured by the laser diffraction method. is there.
  • the average particle size can be determined using a measuring device by a laser diffraction method (for example, Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd.).
  • the above-mentioned filler may be surface-treated in order to enhance the dispersibility in the photosensitive resin composition. Aggregation can be suppressed by using a filler that has been surface-treated.
  • the surface treatment method is not particularly limited, and a known and commonly used method may be used.
  • the surface of the inorganic filler may be treated with a surface treatment agent having a curable reactive group, for example, a coupling agent having a curable reactive group as an organic group. It is preferable to treat it.
  • silane-based, titanate-based, aluminate-based, zircoaluminate-based coupling agent, or the like can be used.
  • a silane coupling agent is preferable.
  • examples of such silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminomethyl) -3-aminopropylmethyldimethoxysilane, and N- (2-aminoethyl) -3-amino.
  • silane-based coupling agents are preferably immobilized on the surface of the filler in advance by adsorption or reaction.
  • the treatment amount of the coupling agent with respect to 100 parts by mass of spherical silica is preferably 0.5 to 10 parts by mass.
  • the photosensitive resin composition may contain a colorant, if necessary.
  • a colorant known colorants such as red, blue, green, and yellow can be used, and any of pigments, dyes, and pigments may be used, but halogens are used from the viewpoint of reducing the environmental load and having little effect on the human body. It is preferable that the colorant does not contain.
  • red colorants examples include monoazo, disazo, azolake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, quinacridone, etc.
  • -Index CI; The Society of Dyers and Colorists (issued by The Society of Dyersand Colorists)) numbered ones can be mentioned.
  • Examples of monoazo red colorants include Pigment Red 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114, 146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269 and the like can be mentioned.
  • Examples of the disazo-based red colorant include Pigment Red 37, 38, 41 and the like.
  • Examples of the benzimidazolone-based red colorant include Pigment Red 171, 175, 176, 185, 208 and the like.
  • Examples of the perylene-based red colorant include Solvent Red 135,179, Pigment Red 123,149,166,178,179,190,194,224 and the like.
  • Examples of the diketopyrrolopyrrole red colorant include Pigment Red 254, 255, 264, 270, 272 and the like.
  • Examples of the condensed azo red colorant include Pigment Red 220, 144, 166, 214, 220, 211, 242 and the like.
  • Examples of the anthraquinone-based red colorant include Pigment Red 168, 177, 216 and Solvent Red 149, 150, 52, 207.
  • Examples of the quinacridone-based red colorant include Pigment Red 122, 202, 206, 207, 209 and the like.
  • blue colorant examples include phthalocyanine-based and anthraquinone-based compounds, and pigment-based compounds include compounds classified as Pigment.
  • Solvent Blue 35, 63, 68, 70, 83, 87, 94, 97, 122, 136, 67, 70 and the like can be used.
  • metal-substituted or unsubstituted phthalocyanine compounds can also be used.
  • yellow colorant examples include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, etc.
  • examples of the anthraquinone yellow colorant include Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, 202 and the like can be mentioned.
  • examples of the isoindolinone-based yellow colorant include Pigment Yellow 110, 109, 139, 179, 185 and the like.
  • condensed azo-based yellow colorant examples include Pigment Yellow 93, 94, 95, 128, 155, 166, 180 and the like.
  • Examples of the benzimidazolone-based yellow colorant include Pigment Yellow 120, 151, 154, 156, 175, 181 and the like.
  • a monoazo yellow colorant Pigment Yellow 1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100, 104, 105, 111, 116, 167, 168, 169, 182, 183 and the like can be mentioned.
  • Examples of the disazo-based yellow colorant include Pigment Yellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188, 198 and the like. Can be mentioned.
  • colorants such as purple, orange, brown, black, and white may be added.
  • the blending amount of the colorant in the photosensitive resin composition is not particularly limited, but it is preferably 0.1 to 5% by mass of the total amount of the photosensitive resin composition.
  • the photosensitive resin composition of the present invention may contain an organic solvent from the viewpoint of ease of preparation and coatability.
  • the organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethyl benzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol and propylene glycol monomethyl ether.
  • Dipropylene glycol monomethyl ether Dipropylene glycol diethyl ether, Diethylene glycol monomethyl ether acetate, Tripropylene glycol monomethyl ether and other glycol ethers; Ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, and propylene carbonate; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha are known. Conventional organic solvents can be used. These organic solvents may be used alone or in combination of two or more.
  • the blending amount of the organic solvent in the photosensitive resin composition can be appropriately changed according to the components constituting the photosensitive resin composition.
  • the components constituting the photosensitive resin composition For example, in terms of solid content, with respect to 100 parts by mass of the (A) carboxyl group-containing resin. It can be 30 to 300 parts by mass.
  • the photosensitive resin composition of the present invention further contains an elastomer, a mercapto compound, a urethanization catalyst, a thixotropic agent, an adhesion accelerator, a block copolymer, a chain transfer agent, a polymerization inhibitor, and a copper damage inhibitor, if necessary.
  • Antioxidants, rust preventives, thickeners such as organic bentonite and montmorillonite, at least one of silicone-based, fluorine-based, polymer-based defoaming agents and leveling agents, phosphinates, phosphoric acid ester derivatives.
  • a component such as a flame retardant such as a phosphorus compound such as a phosphazene compound can be blended. As these, those known in the field of electronic materials can be used.
  • the photosensitive resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
  • the photosensitive resin composition may be in the form of a dry film including a support film and a resin layer composed of the photosensitive resin composition formed on the support film.
  • the support film in the present invention means a film that is adhered to at least a curable resin layer when laminated so that the resin layer side of the dry film is in contact with the base material.
  • the support film may be peeled off from the curable resin layer in the step after laminating.
  • the photosensitive resin composition of the present invention is diluted with an organic solvent to adjust the viscosity to an appropriate level, and a comma coater, a blade coater, a lip coater, a rod coater, a squeeze coater, a reverse coater, a transfer coater, etc.
  • a film can be obtained by applying a uniform thickness on a support film with a gravure coater, a spray coater or the like, and usually drying at a temperature of 50 to 130 ° C. for 1 to 30 minutes.
  • the coating film thickness is not particularly limited, but is generally selected as appropriate in the range of 1 to 150 ⁇ m, preferably 10 to 60 ⁇ m after drying.
  • any known one can be used without particular limitation.
  • a polyester film such as polyethylene terephthalate or polyethylene naphthalate, a polyimide film, a polyamideimide film, a polypropylene film, a thermoplastic resin such as a polystyrene film or the like can be used.
  • a film made of the above can be preferably used.
  • a polyester film is preferable from the viewpoint of heat resistance, mechanical strength, handleability and the like.
  • a laminate of these films can also be used as a support film.
  • thermoplastic resin film as described above is preferably a film stretched in the uniaxial direction or the biaxial direction from the viewpoint of improving the mechanical strength.
  • the thickness of the support film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the protective (cover) that can be peeled off from the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer.
  • the protective film in the present invention refers to a protective film that is peeled off from the resin layer before laminating when the dry film is laminated on the base material so that the resin layer side is in contact with each other and integrally molded.
  • the peelable protective film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper or the like can be used, and when the protective film is peeled off, the adhesive strength between the resin layer and the support film is increased. However, the adhesive strength between the resin layer and the protective film may be smaller.
  • the thickness of the protective film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the above-mentioned photosensitive resin composition is adjusted to a viscosity suitable for the coating method using the above-mentioned organic solvent, and a dip coating method, a flow coating method, a roll coating method, a bar coater method, and a screen printing method are applied onto the substrate.
  • a tack-free resin layer is formed by volatilizing and drying (temporarily drying) the organic solvent contained in the composition at a temperature of 60 to 100 ° C.
  • the photosensitive resin composition contains an organic solvent, it is preferable to apply the photosensitive resin composition and then volatilize and dry it.
  • Volatile drying is performed by using a hot air circulation type drying oven, IR furnace, hot plate, convection oven, etc. (using a steam-based air heating type heat source to bring the hot air in the dryer into countercurrent contact, and using a nozzle to support the support. It can be done by using the spraying method).
  • the dry film when a dry film is used, the dry film is attached onto the base material so that the resin layer comes into contact with the base material using a laminator or the like, and then the support film is peeled off either before or after the exposure step described later. As a result, a resin layer is formed on the base material.
  • the protective film is peeled off from the dry film and then bonded to the base material. It is preferable that the dry film is attached to the substrate under pressure and heating using a vacuum laminator or the like.
  • the pressurizing condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120 ° C.
  • a dry coating film of the photosensitive resin composition is formed on the substrate, or a resin layer is formed using a dry film, and then selectively exposed to active energy rays through a photomask having a predetermined pattern formed, and not yet exposed.
  • the exposed part is developed with a dilute alkaline aqueous solution (for example, 0.3 to 3 mass% sodium carbonate aqueous solution) to form a pattern of the cured product.
  • a dilute alkaline aqueous solution for example, 0.3 to 3 mass% sodium carbonate aqueous solution
  • the support film is peeled off from the dry film and developed to form a patterned cured product on the substrate.
  • the exposed resin layer may be exposed and developed by peeling the support film from the dry film before exposure as long as the characteristics are not impaired.
  • At least one of heating and ultraviolet irradiation may be performed on the developed resin layer after the above-mentioned exposure and development and before irradiation with the active energy rays described later.
  • the resin layer formed by exposure and development is heat-cured (100 to 220 ° C.) or irradiated with light, or the final finish curing (main curing) is performed by combining heat curing and light irradiation to achieve adhesion and hardness.
  • a cured film having excellent various properties such as is formed. According to the method of the present invention, even such a cured film having increased adhesion to the substrate can be easily removed with a solvent.
  • the exposure machine used for the above-mentioned active energy ray irradiation may be a device equipped with a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiates ultraviolet rays in the range of 350 to 450 nm.
  • a direct drawing device for example, a laser direct imaging device that directly draws an image with a laser based on CAD data from a computer
  • the lamp light source or the laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the amount of exposure for image formation varies depending on the film thickness and the like, but is generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
  • the active energy ray here is at least one of an active energy ray capable of generating active oxygen in the presence of oxygen and an active energy ray capable of cleaving the CC carbon bond, which will be described later, from the viewpoint of wavelength. Can be distinguished.
  • the presence of oxygen means that the oxygen flow rate in the atmosphere is at least 0.2 sccm or more, and is generally 0.5 sccm or more.
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, etc.
  • the developing solution includes potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, and ammonia.
  • Alkaline aqueous solutions such as amines can be used.
  • the thickness of the cured coating formed may be appropriately set according to the application of the wiring board, but is preferably in the range of 1 to 1000 ⁇ m. If the cured film is too thick, it may take time to remove the cured film described later. Further, the method of confirming whether or not the cured film is formed can be confirmed by the following method. That is, in an environment of 25 ° C. and 50% RH, a waste cloth containing isopropyl alcohol (IPA) is placed on the surface of the cured film, and a weight of 500 g is placed on the waste cloth and allowed to stand for 1 minute, and then the waste cloth is placed. The state in which all or part of the resin layer is not attached to the surface of the waste cloth that has been in contact with the cured film is judged to be the "cured state".
  • IPA isopropyl alcohol
  • the cured film formed on the base material as described above is in close contact with the base material.
  • the degree of adhesion between the base material and the cured film depends on the surface condition of the base material on which the cured film is provided, the composition of the photosensitive resin composition, and the curing conditions.
  • the peel strength measured according to the method and the method for measuring the peel strength is preferably 3 N / cm or more, and preferably 5 N / cm or more. Is more preferable.
  • the upper limit is preferably 10 N / cm or less. According to the method of the present invention, the cured film can be easily removed by the solvent even when the adhesion between the base material and the cured film is high.
  • the cured film obtained as described above may have a defect.
  • a defect For example, printing defects when a photosensitive resin composition such as solder resist ink is applied to a substrate, misalignment during exposure, color unevenness (color unevenness), pinholes in a dry coating film, contamination with foreign substances, marking ink. Problems such as printing defects may occur.
  • the cured coating can be peeled off from the base material only at the defective portion, and the base material can be reused.
  • the active energy ray used in the present invention is at least one of an active energy ray capable of generating active oxygen in the presence of oxygen and an active energy ray capable of cleaving a CC carbon bond, and has a wavelength of 100 to 255 nm.
  • Ionizing radiation can be preferably used.
  • ionizing radiation having a wavelength of 100 to 255 nm is irradiated in the presence of oxygen, some of the oxygen molecules in the atmosphere become active oxygen (including ozone).
  • the active oxygen cleaves the CC carbon bonds of the polymer chains that make up the cured product. As a result, some of the cleaved hydrocarbon radicals combine with oxygen to become carbon dioxide and the like and vaporize.
  • hydrocarbon radicals may be recombined to form low molecular weight compounds, and some of these low molecular weight compounds are vaporized.
  • the ionizing radiation having a wavelength of 100 to 255 nm is an ionizing radiation having an energy higher than the CC carbon binding energy, the polymer chain constituting the cured film can be cut to reduce the molecular weight. As a result, the residue remaining on the base material (hydrocarbon remaining without vaporization, etc.) can be easily removed with a solvent or the like.
  • UV ozone cleaner distance from UV lamp light source to irradiation surface is 1 cm
  • type low pressure mercury lamp (molten quartz)
  • shape high density high output grid type
  • Devices such as lamps and ultraviolet intensity: 28 mW / cm 2
  • the intensity thereof is preferably 3 to 50 mW / cm 2.
  • the base material on which the cured film is formed is washed with a solvent to remove the cured film on the portion irradiated with the active energy ray from the base material.
  • a method for cleaning the cured film on the base material a dipping method, a spraying method, a method using a single-wafer method, or the like can be used.
  • a spray method or the like is suitable.
  • an aprotic polar solvent can be preferably used in consideration of the influence on the manufactured wiring board.
  • the aprotic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, and dimethylpropylene.
  • Urea dimethyl sulfoxide, ⁇ -butyrolactone, ⁇ -propiolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone and the like can be mentioned, and one of these can be used alone or in combination of two or more. .. Among these, N-methylpyrrolidone can be preferably used.
  • the wiring board from which the cured film has been removed is heated. It is preferable to do so.
  • the heating temperature is preferably in the range of 80 to 200 ° C, more preferably in the range of 100 to 150 ° C.
  • the method of the present invention can be used when manufacturing electronic components such as printed wiring boards. Since the cured film can be removed from the base material regardless of the composition of the photosensitive resin composition, it is particularly useful when a high value-added base material is used. In addition, since the active energy rays can be irradiated only to the defective part of the cured film, if a defect is found in a part of the cured film during manufacturing of the wiring board, only the defective part is the cured film. Can be removed from the base material, and production efficiency (yield) can be improved.
  • the photosensitive resin composition contains 13 parts (value as solid content) of the following carboxyl group-containing resin varnish 1 and 30 parts (value as solid content) of the following carboxyl group-containing resin varnish 2 as a photopolymerization initiator. 4 parts of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO H, manufactured by IGM Resins), tricyclodecanedimethanol diacrylate (A-DCP, manufactured by Shin-Nakamura Kogyo Co., Ltd.) as a photopolymerizable monomer.
  • Omnirad TPO H 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • A-DCP tricyclodecanedimethanol diacrylate
  • thermosetting component 11 parts, bisphenol A type epoxy resin (jER 828, manufactured by Mitsubishi Chemical Co., Ltd.) as a thermosetting component, and imidazole epoxy resin curing agent (Curesol 1B2PZ, manufactured by Shikoku Kasei Co., Ltd.) as a thermosetting catalyst. 0.3 parts were mixed, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a photosensitive resin composition.
  • jER 828 manufactured by Mitsubishi Chemical Co., Ltd.
  • imidazole epoxy resin curing agent Curesol 1B2PZ, manufactured by Shikoku Kasei Co., Ltd.
  • ⁇ Carboxyl group-containing resin varnish 1> In an autoclave equipped with a thermometer, a nitrogen introduction device and an alkylene oxide introduction device, and a stirring device, 119.4 g of novolak type cresol resin (manufactured by Aika Kogyo Co., Ltd., trade name "Shonol CRG951", OH equivalent: 119.4), 1.19 g of potassium hydroxide and 119.4 g of toluene were charged, the inside of the system was replaced with nitrogen while stirring, and the temperature was raised by heating. Next, 63.8 g of propylene oxide was gradually added dropwise, and the mixture was reacted at 125 to 132 ° C.
  • ⁇ Carboxyl group-containing resin varnish 2> In a flask equipped with a stirrer, a thermometer and a condenser, 848.8 g of ⁇ -butyrolactone, 57.5 g (0.23 mol) of MDI (diphenylmethane diisocyanate), and DMBPDI (4,4'-diisocyanate-3,3'-dimethyl).
  • MDI diphenylmethane diisocyanate
  • DMBPDI 4,4'-diisocyanate-3,3'-dimethyl
  • FR-4 copper-clad laminate (100 mm x 150 mm x 0.8 mmt, double-sided copper foil, copper foil thickness is 18 ⁇ m on both sides)
  • Arithmetic mean surface roughness (Ra) is 400 nm by CZ8101 manufactured by MEC COMPANY Ltd.
  • the photosensitive resin composition obtained as described above was coated on the chemically polished surface of the substrate by screen printing so that the film thickness after drying was 20 to 25 ⁇ m. It was dried at 80 ° C. for 30 minutes and allowed to cool to room temperature.
  • L / S 100/100, 80/80, 60/60, 40/40, 20/20, 10/10, 7/7, 5/5, 4/4, 3/3
  • An ultraviolet ray having an exposure of 1,000 mJ / cm 2 and a wavelength of 365 nm is emitted under an atmospheric atmosphere using a metal halide lamp through a photomask in which a line pattern of 2/2 and 1/1 (both units are ⁇ m) is formed.
  • development was carried out for 180 seconds using a 1 wt% Na 2 CO 3 aqueous solution at 30 ° C. to form a cured film.
  • Whether or not the cured film was formed is determined by placing a waste cloth containing isopropyl alcohol (IPA) on the surface of the cured film in an environment of 25 ° C. and 50% RH, and further placing a 500 g weight on the waste cloth for 1 minute. After allowing to stand, the waste cloth was peeled off, and it was judged that all or part of the resin layer did not adhere to the surface of the waste cloth that was in contact with the cured film. Further, in the formed cured film, the peel strength measured in accordance with the JIS-C-6481 copper-clad laminate test method and the peel strength measuring method (test piece width 10 mm, 90 ° direction, speed 50 mm / min). was confirmed to be 3 N / cm or more and 10 N / cm or less.
  • IPA isopropyl alcohol
  • Example 1 Two substrates on which the cured coating obtained as described above was formed were prepared. On the other hand, for the cured film-forming substrate, the entire surface of the cured film-forming surface is covered with a UV ozone cleaner (the distance from the UV lamp light source to the irradiation surface is 1 cm, type: low-pressure mercury lamp (molten quartz), shape: high-density and high output. Using a grid lamp, ultraviolet intensity: 28 mW / cm 2 ), an active energy ray with a wavelength of 185 nm (10%) + 254 nm (90%) is emitted in the presence of oxygen (oxygen flow rate is 0) at an exposure rate of 25.2 J / cm 2.
  • a UV ozone cleaner the distance from the UV lamp light source to the irradiation surface is 1 cm, type: low-pressure mercury lamp (molten quartz), shape: high-density and high output.
  • a grid lamp ultraviolet intensity: 28 mW / cm 2
  • the cured film-forming substrate was irradiated with active energy rays under the same conditions as described above through a light-shielding mask so that only the portion where the line pattern was formed by the photomask was irradiated. Subsequently, with respect to the cured film-forming substrate that was completely irradiated, the substrate was immersed in an N-methylpyrrolidone solvent, left at 55 ° C. for 20 minutes, and then the solvent was removed.
  • an N-methylpyrrolidone solvent was added dropwise to the active energy ray-irradiated portion of the substrate and left at 55 ° C. for 20 minutes, and then the solvent was removed.
  • the cured film at the portion irradiated with the active energy ray was completely removed from all the substrates.
  • Example 2 N-methyl was applied to each of the two cured film-forming substrates in the same manner as in Example 1 except that the irradiation of the active energy rays by the low-pressure mercury lamp was changed from the presence of oxygen (atmosphere) to the atmosphere of nitrogen. The treatment was carried out using a pyrrolidone solvent.
  • the cured coating on the portion irradiated with the active energy ray was partially peeled off from the substrate, but was not completely peeled off from the substrate, and the cured coating was not completely peeled off. Remained. From the experimental results of Example 1 and Comparative Examples 1 and 2, it can be seen that the cured film can be effectively peeled off by irradiating with active energy rays in the presence of oxygen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

[課題]基材上に硬化被膜を設けた配線基板を製造する際に硬化被膜の一部に不具合が発見された場合に、不具合部分のみ硬化被膜を基材から除去できるとともに、感光性樹脂組成物の組成によらず、その硬化被膜を基材から除去できる方法を提供する。 [解決手段]基材表面に形成された硬化被膜を備えた配線基板から硬化被膜の一部または全部を除去して前記基材を再利用する方法であって、前記硬化被膜は、感光性樹脂組成物の硬化物からなり、前記硬化被膜の一部または全部に、酸素雰囲気下において活性酸素を発生し得る活性エネルギー線およびC-C炭素結合を切断し得る活性エネルギー線の少なくともいずれか1種を照射する工程と、前記配線基板を溶剤で洗浄して、活性エネルギー線照射された部分の硬化被膜を除去する工程と、を含むことを特徴とする。

Description

配線基板用基材の再利用方法
 本発明は、配線基板用基材の再利用方法に関し、より詳細には、基材表面に形成された硬化被膜を備えた配線基板から硬化被膜の一部または全部を除去して基材を再利用する方法に関する。
 導体回路の保護やはんだ付けが必要な箇所以外へのはんだ付着の防止等を目的に、プリント配線用基板の表面の所望部分にのみ硬化被膜を形成した回路板を製造することが行われている。硬化被膜を形成するための方法として、基材上に感光性樹脂組成物を塗布し、乾燥させた後に露光、現像し、基板表面の所望部分にのみ硬化被膜を形成する手法や、いわゆるドライフィルムと呼ばれる感光性樹脂層を備えたフィルムを基材に貼り合わせ、露光・現像により基材表面の所望部分にのみ硬化被膜を形成する手法が主流となっている。
 ところで、基材上に硬化被膜を形成する工程において、製品の品質低下につながる何らかの不具合が発生する場合がある。例えば、ソルダーレジストインキと呼ばれる感光性樹脂組成物を基材に塗布する際の印刷不良、露光時の位置ずれ、色わかれ(色むら)、乾燥塗膜のピンホール、異物の混入、マーキングインキの印刷不良等の不具合が発生する場合がある。このような硬化被膜形成工程における不具合において、露光前であれば、現像液によって塗布を容易に除去することが可能である。また、露光、現像後であっても加熱処理による塗膜硬化を行う前であれば、現像後の塗膜を適当な溶剤を用いて剥離し、再び基材上に感光性樹脂組成物を塗布、乾燥させた後に露光、現像処理を行うことによって不具合を是正することができる。一方、現像後の塗膜を加熱処理して硬化被膜を形成してしまうと、溶剤によって基材から硬化被膜を完全に剥離することは容易ではない。その理由は、感光性樹脂組成物に含まれている光硬化性成分の架橋反応により架橋構造が形成されるからである。
 上記したような不具合が硬化被膜の形成工程中で生じた場合に、不具合のある製品を廃棄してしまうと基材が無駄になってしまい、製品の生産性(歩留まり)が低下する。最近では、付加価値の高い基材を使用した回路配線基板が製造されるようになってきているため、不具合が生じた場合に基材を再利用したいという潜在的な希求がある。
 そのため、硬化被膜の形成工程中に不具合が生じた場合に、基材を再利用する方法が提案されている。例えば特許文献1には、現像、露光後の塗膜(加熱処理による塗膜硬化前)に不具合が見つかった場合には、塗膜を設けた基材を特定のアルカリ水溶液からなる剥離液に浸漬し、基材から塗膜を剥離することで基材を再利用できることが提案されている。しかしながら、この手法では、露光、現像後の硬化処理を経た硬化塗膜に不具合が発見された場合には、基材から硬化塗膜を剥離することができない。そこで、現像後の塗膜を硬化させた後であっても、基材の再利用を可能とする剥離液も種々の検討がなされている。例えば、特許文献2にはアルカリ金属水酸化物と非プロトン性溶剤(例えば、N-メチルピロリドン)との混合液からなる剥離液を使用することで、現像後に塗膜を硬化させた後であっても、硬化塗膜を基材から剥離できる方法が提案されている。
 しかしながら、近年は、基材と硬化被膜との密着性などの硬化被膜特性の向上がより一層求められており、感光性樹脂組成物中にエポキシ系樹脂等の熱硬化性成分を配合したものが使用され始めている。そのため、不具合が見つかった硬化被膜を基材から剥離することが益々困難な状況になってきている。このような状況のもと、例えば特許文献3には、感光性樹脂組成物に特定のポリエステル由来の硬化性成分を配合することにより、アルカ
リ水溶液によっても硬化被膜を基材から剥離できることが提案されている。
特開平7-115048号公報 特開平11-145594号公報 特開2015-28646号公報
 上記した特許文献2において提案されている方法では、硬化被膜を形成した配線基板を剥離液に浸漬して硬化被膜を除去するため、硬化被膜のごく一部に不具合がある場合であっても硬化被膜全体を剥離することになり、材料の無駄が生じる。例えば、不具合のある箇所のみ硬化被膜を除去することができれば、効率的に基材を再利用することができるといえる。
 また特許文献3において提案されている基材の再利用方法は、感光性樹脂組成物の組成に着目して、特定の成分を配合することによって基材から硬化被膜を剥離し易くしたものである。しかしながら、近年使用され初めている一般的な感光性樹脂組成物(熱硬化性成分を含むソルダーレジストインキ等)によっては組成を変更することが難しく、特許文献3の手法を適用できない場合がある。
 したがって、本発明の目的は、基材上に硬化被膜を設けた配線基板を製造する際に硬化被膜の一部に不具合が発見された場合に、不具合部分のみ硬化被膜を基材から除去できるとともに、感光性樹脂組成物の組成によらず、その硬化被膜を基材から除去できる方法を提供することである。
 上記課題に対して、本発明者らは、露光、現像後の硬化処理を経て形成された硬化被膜であっても、硬化被膜に所定の活性エネルギー線を酸素存在下で照射することにより、汎用溶剤によって容易に硬化被膜を基材から剥離できる、との知見を得た。本発明は、かかる知見に基づいて完成されたものである。即ち、本発明の要旨は以下のとおりである。
[1] 基材表面に形成された硬化被膜を備えた配線基板から硬化被膜の一部または全部を除去して前記基材を再利用する方法であって、
 前記硬化被膜は、感光性樹脂組成物の硬化物からなり、
 前記硬化被膜の一部または全部に、酸素存在下において活性酸素を発生し得る活性エネルギー線およびC-C炭素結合を切断し得る活性エネルギー線の少なくともいずれか1種を照射する工程と、
 前記硬化被膜が形成された基材を溶剤で洗浄して、活性エネルギー線照射された部分の硬化被膜を前記基材から除去する工程と、
を含む、配線基板用基材の再利用方法。
[2] 前記硬化被膜は、前記基材上に、感光性樹脂組成物を塗布、乾燥して乾燥塗膜を形成するか、または感光性樹脂組成物を支持フィルムに塗布、乾燥して形成した樹脂層を有するドライフィルムを、前記基材と前記樹脂層とが接するように前記ドライフィルムを貼り合わせ、次いで、前記乾燥塗膜または前記ドライフィルムの樹脂層を露光、現像して、パターニングすることにより形成される、[1]に記載の方法。
[3] 前記活性エネルギー線は、波長100~255nmの電離放射線を含む、[1]または[2]に記載の方法。
[4] 前記硬化被膜が除去された配線基板を加熱する工程をさらに含む、[1]~[3]のいずれかに記載の方法。
[5] 前記溶剤が非プロトン性極性溶剤である、[1]~[4]のいずれかに記載の方法。
[6] 前記感光性樹脂組成物が、(A)カルボキシル基含有樹脂、(B)光重合性モノマー、(C)光重合開始剤、および(D)熱硬化性成分を含む、[1]~[5]のいずれかに記載の方法。
[7] 前記樹脂層の露光、現像の後、かつ、前記硬化被膜への活性エネルギー線照射の前に、加熱および紫外線照射の少なくともいずれかを行う、[1]~[6]のいずれかに記載の方法。
[8] 前記硬化被膜の厚さが1~1000μmである、[1]~[7]のいずれかに記載の方法。
 本発明によれば、感光性樹脂組成物の硬化物からなる硬化被膜であっても、酸素存在下において活性酸素を発生し得る活性エネルギー線およびC-C炭素結合を切断し得る活性エネルギー線の少なくともいずれか1種を硬化被膜に照射することにより、感光性樹脂組成物の組成によらず、その硬化被膜を基材から除去することができる。また、活性エネルギー線の照射を硬化被膜の不具合のある箇所にのみ照射することができるため、配線基板を製造する際に硬化被膜の一部に不具合が発見された場合に、不具合部分のみ硬化被膜を基材から除去できる。
 本発明による配線基板用基材の再利用方法は、基材表面に形成された硬化被膜を備えた配線基板から硬化被膜の一部または全部を除去して前記基材を再利用する方法であって、(1)前記硬化被膜の一部または全部に、酸素存在下において活性酸素を発生し得る活性エネルギー線およびC-C炭素結合を切断し得る活性エネルギー線の少なくともいずれか1種を照射する工程と、
(2)前記硬化被膜が形成された基材を溶剤で洗浄して、活性エネルギー線照射された部分の硬化被膜を前記基材から除去する工程と、
を含むものである。
 本発明においては、基材上に形成された感光性樹脂組成物の硬化物からなる硬化被膜の一部または全部に、上記した特定の活性エネルギー線を照射することによって、活性エネルギー線照射された部分のみ、硬化被膜を溶剤によって容易かつ簡便に除去することができる。すなわち、感光性樹脂組成物中に光重合性モノマー等の架橋成分が含まれていたり、エポキシ樹脂等の熱硬化性成分が含まれている場合であっても、当該感光性樹脂組成物を硬化させた硬化被膜に、酸素存在下において活性酸素を発生し得る活性エネルギー線やC-C炭素結合を切断し得る活性エネルギー線を照射することによって、硬化被膜(感光性樹脂組成物の重合物)を構成する高分子鎖のC-C炭素結合が切断され、あるいは活性エネルギー線の照射によって発生した活性酸素により硬化物を構成する高分子鎖のC-C炭素結合が切断される。その結果、切断された炭化水素ラジカルの一部は酸素存在下で酸素と結合し、二酸化炭素等となり気化する。また、炭化水素ラジカルどうしが再結合し低分子化合物が生成する場合もあり、これら低分子化合物の一部は気化する。さらに、高分子鎖中のC-C炭素結合が切断されると分子量が低下するため、硬化被膜自体も脆化する。さらに、硬化被膜中の架橋構造が形成されている高分子鎖であっても、活性エネルギー線の照射や活性酸素によって架橋部分のC-C炭素結合が切断されるため、溶剤に可溶な状態となる。従来技術においては、剥離し易い溶剤を調製するか、あるいは溶剤で剥離し易い硬化被膜が得られる感光性組成物を調製することに着目されていたが、本発明は、従来技術の何れとも異なる全く新しい手法を見出したものである。本発明によれば、感光性樹脂組成物の組成によらず、その硬化被膜を基材から除去することができるとともに、活性エネルギー線の照射を硬化被膜の不具合のある箇所にのみ照射することができるため、配線基板を製造する際に硬化被膜の一部に不具合が発見された場合に、不具合部分のみ硬化被膜を基材から除去できる。以下、本発明による配線基板用基材の再利用方法の各工程について説明する。
[配線基板]
 本発明は、上記したように、基材表面に形成された硬化被膜を備えた配線基板から硬化被膜の一部または全部を除去して前記基材を再利用する方法を提供するものである。すなわち、硬化被膜を形成する配線基板の製造工程において、硬化被膜の一部に不具合が発見された場合に、当該不具合のある硬化被膜のみを除去する方法を提供する。先ず、基材上に硬化被膜を形成して配線基板について説明する。
 基材上に硬化被膜を形成して配線基板を作製する工程としては、ソルダーレジスト層を形成したプリント配線板等、塗膜の露光、現像の後に塗膜を硬化させて硬化被膜を形成する方法を制限なく適用することができる。以下、基材上に硬化被膜を形成する一般的な手法を説明する。
 先ず、基材上に、感光性樹脂組成物を塗布、乾燥して乾燥塗膜を形成するか、または感光性樹脂組成物を支持フィルムに塗布、乾燥して形成した樹脂層を有するドライフィルムを、前記基材と前記樹脂層とが接するように前記ドライフィルムを貼り合わせる。次いで、乾燥塗膜またはドライフィルムの樹脂層を露光、現像して、基材上に硬化被膜を形成する。ドライフィルムを用いて硬化被膜を形成する場合、露光の前後のいずれかにおいて樹脂層から支持フィルムを剥離することが好ましい。
<基材>
 基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキサイド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、ウェハ基板、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウェハ板等を挙げることができる。このなかでも、特に銅張積層板が好ましい。
 また銅張積層板等を基材として用いる場合、基材と硬化被膜との密着性を向上させるため、銅箔の表面を研磨することが好ましい。研磨としてはバフ、スクラブ、ブラシ等の物理研磨、CZ8101等の化学研磨等が挙げられる。なお、研磨後の銅箔表面の算術平均表面粗さ(Ra)は50~1000nmが好ましい。本発明の方法によれば、このような基材への密着性が増した硬化被膜であっても、溶剤により容易に除去することができる。
<感光性樹脂組成物>
 感光性樹脂組成物は、露光、現像することによってパターニングされ、基材上に設けられた硬化被膜となるものである。このような感光性樹脂組成物としては、例えば、従来公知のソルダーレジストインキ等を制限なく使用できるが、以下、本発明において好ましく使用できる感光性樹脂組成物の一例を説明する。
 本発明においては、(A)カルボキシル基含有樹脂、(B)光重合性モノマー、(C)光重合開始剤、および(D)熱硬化性成分を含む感光性樹脂組成物を好適に使用することができる。
 (A)カルボキシル基含有樹脂としては、分子中にカルボキシル基を有している従来公知の各種感光性樹脂を使用できる。感光性樹脂組成物が、(A)カルボキシル基含有樹脂を含むことにより、感光性樹脂組成物に対しアルカリ現像性を付与することができる。特に、分子中に(メタ)アクリロイル基を有するカルボキシル基含有感光性樹脂が、光硬化性や耐現像性の面から好ましい。(メタ)アクリロイル基は、アクリル酸もしくはメタクリル酸またはそれらの誘導体由来であることが好ましい。(A)カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマーおよびポリマーのいずれでもよい)を挙げることができる。なお、本明細書において、(メタ)アクリロイル基とは、アクリロイル基、メタアクリロイル基およびそれらの混合物を総称する用語で他の類似の表現についても同様である。
(1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。
(2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキサイド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。
(3)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。
(4)前記(2)または(3)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子内に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
(5)前記(2)または(3)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
(6)2官能またはそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
(7)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
(8)2官能オキセタン樹脂にアジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。
(9)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(12)前記(1)~(11)の樹脂にさらに1分子内に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。
 本発明に使用できる(A)カルボキシル基含有樹脂は、上記列挙したものに限られない。また。上記列挙した(A)カルボキシル基含有樹脂は1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 (A)カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000の範囲であり、5,000~100,000の範囲にあるものが好ましい。重量平均分子量が2,000以上の(A)カルボキシル基含有樹脂を用いることにより、解像性やタックフリー性能を向上させることができる。また、重量平均分子量が150,000以下の(A)カルボキシル基含有樹脂を用いることにより現像性や貯蔵安定性を向上させることができる。
 (A)カルボキシル基含有樹脂の配合量は、固形分換算で、(A)カルボキシル基含有樹脂および(D)熱硬化性成分の合計量を100質量部としたときに、50~90質量部であることが好ましい。(A)カルボキシル基含有樹脂の配合量を上記範囲内とすることで、塗膜表面の経時による状態変化が適度なものとなり、基材との密着性をより改善することができる。本発明の方法によれば、このような基材への密着性が増した硬化被膜であっても、溶剤により容易に除去することができる。
 感光性樹脂組成物に含まれる(B)光重合性モノマーは、エチレン性不飽和二重結合を有するモノマーである。(B)光重合性モノマーとしては、例えば、公知慣用のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレートなどのヒドロキシアルキルアクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミドなどのアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレートなどのアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレートなどの多価アルコールまたはこれらのエチレオキサイド付加物、プロピレンオキサイド付加物、もしくはε-カプロラクトン付加物などの多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、およびこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの多価アクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオールなどのポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類のいずれか少なくとも1種から適宜選択して用いることができる。このような(B)光重合性モノマーは、反応性希釈剤としても用いることができる。
 クレゾールノボラック型エポキシ樹脂などの多官能エポキシ樹脂に、アクリル酸を反応させたエポキシアクリレート樹脂や、さらにそのエポキシアクリレート樹脂の水酸基に、ペンタエリスリトールトリアクリレートなどのヒドロキシアクリレートとイソホロンジイソシアネートなどのジイソシアネートのハーフウレタン化合物を反応させたエポキシウレタンアクリレート化合物などを(B)光重合性モノマーとして用いてもよい。このようなエポキシアクリレート系化合物は、指触乾燥性を低下させることなく、光硬化性を向上させることができる。
 (B)光重合性モノマーの配合量は、固形分換算で、(A)カルボキシ含有樹脂100質量部に対して10~50質量部であることが好ましく、15~45質量部であることがより好ましい。(B)光重合性モノマーの配合量を10質量部以上とすることにより、感光性樹脂組成物の光硬化性が向上する。また、配合量を50質量部以下とすることにより、硬化被膜の解像性を向上させることができる。
 (B)光重合性モノマーは、特にエチレン性不飽和二重結合を有さないカルボキシル基含有非感光性樹脂を使用した場合、組成物を光硬化性とするために(B)光重合性モノマーを併用する必要があるため、有効である。
 感光性樹脂組成物に含まれる(C)光重合開始剤は、上記した(A)カルボキシル基含有樹脂や(B)光重合性モノマーを露光により反応させるためのものである。(C)光重合開始剤としては、公知のものをいずれも用いることができる。(C)光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (C)光重合開始剤としては、具体的には例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のモノアシルフォスフィンオキサイド類;フェニル(2,4,6-トリメチルベンゾイル)フォスフィン酸エチル、1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。
 α-アミノアセトフェノン系光重合開始剤の市販品としては、IGM Resins社製のOmnirad 907、369、369E、 379等が挙げられる。また、アシルフォスフィンオキサイド系光重合開始剤の市販品としては、IGM Resins社製のOmnirad TPO H、819等が挙げられる。オキシムエステル系光重合開始剤の市販品としては、BASFジャパン株式会社製のIrgacure OXE01、OXE02、株式会社ADEKA製N-1919、アデカアークルズ NCI-831、NCI-831E、常州強力電子新材料社製TR-PBG-304などが挙げられる。
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。
 (C)光重合開始剤の配合量は、固形分換算で、(A)カルボキシル基含有樹脂100質量部に対して、1~20質量部であることが好ましい。1質量部以上の場合、感光性樹脂組成物の光硬化性が良好となり、耐薬品性等の被膜特性も良好となる。また、20質量部以下の場合、アウトガスの低減効果が得られ、さらに硬化被膜表面での光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは2~15質量部である。
 また、本発明においては、(C)光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、ベンゾイン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物などを挙げることができる。特に、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン化合物を用いることが好ましい。チオキサントン化合物が含まれることにより、深部硬化性を向上させることができる。これらの化合物は、(C)光重合開始剤として用いることができる場合もあるが、(C)光重合開始剤と併用して用いることが好ましい。また、光開始助剤または増感剤は1種類を単独で用いてもよく、2種以上を併用してもよい。
 これら(C)光重合開始剤、光開始助剤、および増感剤は、特定の波長を吸収するため、場合によっては感度が低くなり、紫外線吸収剤として機能することがある。しかしながら、これらは感光性樹脂組成物の感度を向上させることだけの目的に用いられるものではない。必要に応じて特定の波長の光を吸収させて、表面の光反応性を高め、レジストパターンのライン形状および開口を垂直、テーパー状、逆テーパー状に変化させるとともに、ライン幅や開口径の精度を向上させることができる。
 感光性樹脂組成物には(D)熱硬化性成分が含まれていることが好ましい。(D)熱硬化性成分を含むことにより、後工程での硬化被膜のバリアー性(例えば、エッチング耐性等)が向上するとともに、解像性と剥離性とを高次元で両立させることができる。(D)熱硬化性成分としては、公知のものをいずれも用いることができる。例えば、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、エポキシ化合物、オキセタン化合物、エピスルフィド樹脂、ビスマレイミド、カルボジイミド樹脂等の公知の化合物を使用できる。特に好ましくは、分子中に複数の環状エーテル基または環状チオエーテル基(以下、環状(チオ)エーテル基と略す)を有する化合物を使用することができる。これらの熱硬化性成分は、1種を単独または2種以上を組み合わせて用いることができる。
 上記の分子中に複数の環状(チオ)エーテル基を有する化合物は、分子中に3、4または5員環の環状(チオ)エーテル基を複数有する化合物であり、例えば、分子内に複数のエポキシ基を有する化合物、すなわち多官能エポキシ化合物、分子内に複数のオキセタニル基を有する化合物、すなわち多官能オキセタン化合物、分子内に複数のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂等が挙げられる。
 このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。
 市販されるエポキシ樹脂としては、例えば、三菱ケミカル株式会社製のjER 828、806、807、YX8000、YX8034、834、日鉄ケミカル&マテリアル株式会社製のYD-128、YDF-170、ZX-1059、ST-3000、DIC株式会社製のEPICLON 830、835、840、850、N-730A、N-695、および日本化薬株式会社製のRE-306等が挙げられる。
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。
 分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。
 イソシアネート化合物としては、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物を用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。
 (D)熱硬化性成分の配合量は、(A)カルボキシル基含有樹脂の含有するカルボキシル基1.0molあたりに対し、反応する(D)熱硬化性成分の官能基数が0.8~2.5molが好ましく、より好ましくは1.0~2.0molである。
 特に、(D)熱硬化性成分としてエポキシ樹脂を使用する場合は、エポキシ樹脂のエポキシ基は、(A)カルボキシル基含有樹脂のカルボキシル基1.0molあたり1.0~2.0molであることが好ましい。1mol以上とすることで、硬化被膜におけるカルボキシル基の残存を防止して、良好な耐熱性や耐アルカリ性、電気絶縁性等を得ることができる。また、上記配合量を2mol以下とすることで、低分子量の環状(チオ)エーテル基が乾燥塗膜に残存することを防止して、硬化被膜の強度等を良好に確保することができる。
 感光性樹脂組成物には、上記した(D)熱硬化性成分の硬化を促進するための(E)熱硬化触媒を含んでいてもよい。(E)熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルフォスフィン等のリン化合物等が挙げられる。また、市販されているものとしては、例えば四国化成工業株式会社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ株式会社製のU-CAT 3513N(ジメチルアミン系化合物の商品名)、DBU、DBN、U-CAT SA 102(いずれも二環式アミジン化合物およびその塩)などが挙げられる。
 上記した化合物に限られるものではなく、エポキシ樹脂やオキセタン化合物の(E)熱硬化触媒となるもの、もしくはエポキシ基およびオキセタニル基の少なくとも何れか1種とカルボキシル基との反応を促進するものであればよく、単独でまたは2種以上を混合して使用してもよい。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を(E)熱硬化触媒と併用する。
 上記した(E)熱硬化触媒は、1種を単独で、または2種以上を組み合わせて用いることができる。(E)熱硬化触媒の配合量は、感光性樹脂組成物の保存安定性や硬化被膜の耐熱性の観点から、固形分換算で、(A)カルボキシル基含有樹脂100質量部に対して0.01~5質量部であることが好ましく、0.05~1質量部であることがより好ましい。
 感光性樹脂組成物には、硬化被膜の物理的強度等を上げるために、必要に応じてフィラーを配合することができる。フィラーとしては、公知の無機または有機フィラーが使用できるが、特に、硫酸バリウム、球状シリカ、ハイドロタルサイトおよびタルクが好ましく用いられる。また、難燃性を得るために金属酸化物や水酸化アルミ等の金属水酸化物を体質顔料フィラーとして使用することができる。
 上記したフィラーのなかでも、球状シリカを好ましく使用することができる。球状シリカとしては、平均粒子径が1nm~100nmの球状シリカを用いることが好ましく、より好ましくは、平均粒径が2nm~50nmである。上記したような平均粒子径を有する球状シリカを配合することによっても、上記した硬化被膜の表面状態Ra1およびRa2を調整することができる。なお、平均粒子径とは、一次粒子の粒子径だけでなく、二次粒子(凝集体)の粒子径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置(例えば、マイクロトラック・ベル株式会社製のMicrotrac MT3300EXII)を用いて平均粒子径を求めることができる。
 また、上記したフィラーは、感光性樹脂組成物中での分散性を高めるために表面処理されたものであってもよい。表面処理がされているフィラーを使用することで、凝集を抑制することができる。表面処理方法は特に限定されず、公知慣用の方法を用いればよいが、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で無機フィラーの表面を処理することが好ましい。
 カップリング剤としては、シラン系、チタネート系、アルミネート系およびジルコアルミネート系等のカップリング剤が使用できる。中でもシラン系カップリング剤が好ましい。かかるシラン系カップリング剤の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アニリノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができ、これらは単独で、あるいは併用して使用することができる。これらのシラン系カップリング剤は、あらかじめフィラーの表面に吸着あるいは反応により固定化されていることが好ましい。ここで、球状シリカ100質量部に対するカップリング剤の処理量は、0.5~10質量部であることが好ましい。
 感光性樹脂組成物は、必要に応じて着色剤を含んでいてもよい。着色剤としては、赤、青、緑、黄等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよいが、環境負荷の低減や人体への影響が少ない観点からハロゲンを含有しない着色剤であることが好ましい。
 赤色着色剤としてはモノアゾ系、ジスアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系等があり、具体的には以下のようなカラ-インデックス(C.I.;ザ ソサイエティ オブ ダイヤーズ アンド カラリスツ(The Society of Dyersand Colourists)発行)番号が付されているものが挙げられる。
 モノアゾ系赤色着色剤としては、Pigment Red 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114,146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269等が挙げられる。また、ジスアゾ系赤色着色剤としては、Pigment Red 37,38,41等が挙げられる。また、モノアゾレーキ系赤色着色剤としては、Pigment Red 48:1,48:2,48:3,48:4,49:1,49:2,50:1,52:1,52:2,53:1,53:2,57:1,58:4,63:1,63:2,64:1,68等が挙げられる。また、ベンズイミダゾロン系赤色着色剤としては、Pigment Red 171,175,176、185、208等が挙げられる。また、ぺリレン系赤色着色剤としては、Solvent Red 135,179,Pigment Red 123,149,166,178,179,190,194,224等が挙げられる。また、ジケトピロロピロール系赤色着色剤としては、Pigment Red 254,255,264,270,272等が挙げられる。また、縮合アゾ系赤色着色剤としては、Pigment Red 220,144,166,214,220,221,242等が挙げられる。また、アントラキノン系赤色着色剤としては、Pigment Red 168,177,216、Solvent Red 149,150,52,207等が挙げられる。また、キナクリドン系赤色着色剤としては、Pigment Red 122,202,206,207,209等が挙げられる。
 青色着色剤としてはフタロシアニン系、アントラキノン系があり、顔料系はピグメント(Pigment)に分類されている化合物が挙げられ、例えば、Pigment Blue 15,15:1,15:2,15:3,15:4,15:6,16,60。染料系としては、Solvent Blue 35,63,68,70,83,87,94,97,122,136,67,70等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。
 黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系等が挙げられ、例えば、アントラキノン系黄色着色剤としては、Solvent Yellow 163,Pigment Yellow 24,108,193,147,199,202等が挙げられる。イソインドリノン系黄色着色剤としては、Pigment Yellow 110,109,139,179,185等が挙げられる。縮合アゾ系黄色着色剤としては、Pigment Yellow 93,94,95,128,155,166,180等が挙げられる。ベンズイミダゾロン系黄色着色剤としては、Pigment Yellow 120,151,154,156,175,181等が挙げられる。また、モノアゾ系黄色着色剤としては、Pigment Yellow 1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100,104,105,111,116,167,168,169,182,183等が挙げられる。また、ジスアゾ系黄色着色剤としては、Pigment Yellow 12,13,14,16,17,55,63,81,83,87,126,127,152,170,172,174,176,188,198等が挙げられる。
 その他、紫、オレンジ、茶色、黒、白等の着色剤を加えてもよい。具体的には、Pigment Black 1,6,7,8,9,10,11,12,13,18,20,25,26,28,29,30,31,32、Pigment Violet 19、23、29、32、36、38、42、Solvent Violet13,36、C.I.Pigment Orange 1,5,13,14,16,17,24,34,36,38,40,43,46,49,51,61,63,64,71,73、PigmentBrown 23,25,カーボンブラック、酸化チタン等が挙げられる。
 感光性樹脂組成物中の着色剤の配合量は特に限定されるものではないが、感光性樹脂組成物全体量の0.1~5質量%であることが好ましい。
 本発明の感光性樹脂組成物には、調製のし易さや塗布性の観点から有機溶剤を配合してもよい。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、1種を単独または2種以上を組み合わせて用いることができる。
 感光性樹脂組成物における有機溶剤の配合量は、感光性樹脂組成物を構成する成分に応じ適宜変更することができ、例えば、固形分換算で、(A)カルボキシル基含有樹脂100質量部に対して30~300質量部とすることができる。
 本発明の感光性樹脂組成物には、さらに必要に応じてエラストマー、メルカプト化合物、ウレタン化触媒、チキソ化剤、密着促進剤、ブロック共重合体、連鎖移動剤、重合禁止剤、銅害防止剤、酸化防止剤、防錆剤、有機ベントナイト、モンモリロナイト等の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤およびレベリング剤の少なくともいずれか1種、フォスフィン酸塩、燐酸エステル誘導体、フォスファゼン化合物等のリン化合物等の難燃剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。
 本発明の感光性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。また、液状として用いる場合は、1液性でも2液性以上でもよい。
<ドライフィルム>
 本発明においては、上記感光性樹脂組成物を、支持フィルムと、前記支持フィルム上に形成された上記感光性樹脂組成物からなる樹脂層とを備えたドライフィルムの形態とすることもできる。ここで本発明における支持フィルムとは、基材上にドライフィルムの樹脂層側が接するようにラミネートする際には少なくとも硬化性樹脂層に接着しているものをいう。支持フィルムはラミネート後の工程において、硬化性樹脂層から剥離しても良い。ドライフィルム化に際しては、本発明の感光性樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等で支持フィルム上に均一な厚さに塗布し、通常、50~130℃の温度で1~30分間乾燥して膜を得ることができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、1~150μm、好ましくは10~60μmの範囲で適宜選択される。
 支持フィルムとしては、公知のものであれば特に制限なく使用することができ、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルムを好適に使用することができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムが好ましい。また、これらフィルムの積層体を支持フィルムとして使用することもできる。
 また、上記したような熱可塑性樹脂フィルムは、機械的強度向上の観点から、一軸方向または二軸方向に延伸されたフィルムであることが好ましい。
 支持フィルムの厚さは、特に制限されるものではないが、例えば、10μm~150μmとすることができる。
 支持フィルム上に本発明の感光性樹脂組成物の樹脂層を形成した後、さらに、樹脂層の表面に塵が付着するのを防ぐなどの目的で、樹脂層の表面に剥離可能な保護(カバー)フィルムを積層することが好ましい。ここで本発明における保護フィルムとは、基材上にドライフィルムの樹脂層側が接するようにラミネートして一体成形する際、ラミネート前に樹脂層から剥離するものをいう。剥離可能な保護フィルムとしては、例えば、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができ、保護フィルムを剥離するときに樹脂層と支持フィルムとの接着力よりも樹脂層と保護フィルムとの接着力がより小さいものであればよい。
 保護フィルムの厚さは、特に限定されるものではないが、例えば、10μm~150μmとすることができる。
 上記した感光性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。なお、感光性樹脂組成物が有機溶剤を含む場合、感光性樹脂組成物を塗布した後、揮発乾燥を行うことが好ましい。揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。
 一方、ドライフィルムを使用する場合には、ラミネーター等により樹脂層が基材と接触するようにドライフィルムを基材上に貼り合わせた後、後述する露光工程の前後のいずれかにおいて支持フィルムを剥がすことにより、基材上に樹脂層を形成する。なお、保護フィルムを備えたドライフィルムを使用する場合は、保護フィルムをドライフィルムから剥離した後に、基材への貼合を行う。ドライフィルムの基材上への貼合は、真空ラミネーター等を用いて、加圧および加熱下で行うことが好ましい。このような真空ラミネーターを使用することにより、回路形成された基板を用いた場合に、回路基板表面に凹凸があっても、ドライフィルムが回路基板に密着するため、気泡の混入がなく、また、基板表面の凹部の穴埋め性も向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。
 基材上に感光性樹脂組成物の乾燥塗膜を形成するか、ドライフィルムを用いて樹脂層を形成した後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。ドライフィルムの場合には、露光後、ドライフィルムから支持フィルムを剥離して現像を行うことにより、基材上にパターニングされた硬化物を形成する。なお、特性を損なわない範囲であれば、露光前にドライフィルムから支持フィルムを剥離して、露出した樹脂層を露光および現像しても良い。
 さらに、本発明においては、上記した露光、現像の後、かつ、後記する活性エネルギー線の照射前に、現像後の樹脂層に加熱および紫外線照射の少なくともいずれかを行ってもよい。例えば、露光、現像により形成された樹脂層を加熱硬化(100~220℃)もしくは光照射するか、または加熱硬化および光照射の併用で最終仕上げ硬化(本硬化)することにより、密着性、硬度等の諸特性に優れた硬化被膜を形成する。本発明の方法によれば、このような基材への密着性が増した硬化被膜であっても、溶剤により容易に除去することができる。
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。なお、ここでの活性エネルギー線は、波長の観点から、後記する酸素存在下において活性酸素を発生し得る活性エネルギー線およびC-C炭素結合を切断し得る活性エネルギー線の少なくともいずれか1種とは区別され得るものである。なお、酸素存在下とは、雰囲気中の酸素流量が少なくとも0.2sccm以上であることを意味し、一般的には0.5sccm以上である。
 現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。
 形成される硬化被膜の厚さは、配線基板の用途に応じて適宜設定してよいが、1~1000μmの範囲であることが好ましい。硬化被膜が厚すぎると、後記する硬化被膜の除去に時間を要する場合がある。また硬化被膜が形成されたか否かの確認方法は、以下の方法で確認できる。すなわち、25℃50%RHの環境下で、硬化被膜の表面に、イソプロピルアルコール(IPA)を含ませたウエスを載せ、さらに、その上に500gのおもりを載せて1分間静置した後に、ウエスをはがし、ウエスの硬化被膜と接触していた面に樹脂層の全部または一部が付着していない状態を「硬化している状態」であると判断する。
 上記のようにして基材上に形成された硬化被膜は基材と密着している。基材と硬化被膜との密着性の程度は、硬化被膜が設けられる基材の表面状態や感光性樹脂組成物の組成、硬化条件にもよるが、JIS-C-6481の銅張積層版試験方法、ピール強度の測定方法(試験片幅10mm、90°方向、速度50mm/min)に準拠して測定されたピール強度が、3N/cm以上であることが好ましく、5N/cm以上であることがより好ましい。また上限としては、10N/cm以下であることが好ましい。本発明の方法によれば、基材と硬化被膜との密着性が高い場合であっても、溶剤により硬化被膜を容易に除去することができる。
[活性エネルギー線の照射工程]
 上記のようにして得られた硬化被膜は、場合によっては不具合が発生することがある。例えば、ソルダーレジストインキのような感光性樹脂組成物を基材に塗布する際の印刷不良、露光時の位置ずれ、色わかれ(色むら)、乾燥塗膜のピンホール、異物の混入、マーキングインキの印刷不良等の不具合が発生する場合がある。このような場合においても、本発明の方法によれば、不具合のある箇所のみ硬化被膜を基材から剥離して、基材を再利用することができる。
 本発明において使用する活性エネルギー線は、酸素存在下において活性酸素を発生し得る活性エネルギー線およびC-C炭素結合を切断し得る活性エネルギー線の少なくともいずれか1種であり、波長100~255nmの電離放射線を好ましく使用することができる。波長100~255nmの電離放射線は、酸素存在下で照射されると雰囲気中の酸素分子の一部は活性酸素(オゾンも含む)となる。活性酸素により硬化物を構成する高分子鎖のC-C炭素結合が切断される。その結果、切断された炭化水素ラジカルの一部は酸素と結合し、二酸化炭素等となり気化する。また、炭化水素ラジカルどうしが再結合し低分子化合物が生成する場合もあり、これら低分子化合物の一部は気化する。また、波長100~255nmの電離放射線は、C-C炭素結合エネルギーよりも高いエネルギーを有する電離放射線であるため、硬化被膜を構成する高分子鎖を切断し、低分子化することができる。その結果、基材上に残存する残渣(気化せずに残存した炭化水素等)を溶剤等によって容易に除去することができる。
 波長100~255nmの電離放射線を照射できる装置としては、例えば、UVオゾンクリーナー(UVランプ光源から照射面までの距離が1cm、種類:低圧水銀ランプ(溶融石英)、形状:高密度高出力グリッド型ランプ、紫外線強度:28mW/cm)等の装置が挙げられる。また、電離放射線が紫外線である場合、その強度としては、3~50mW/cmが好ましい。
[硬化被膜の除去工程]
 次いで、硬化被膜が形成された基材を溶剤で洗浄して、活性エネルギー線照射された部分の硬化被膜を基材から除去する。基材上の硬化被膜を洗浄する方法としては、浸漬法、噴霧法及び、枚葉方式を用いた方法等によることができる。特に、不具合のある箇所のみ硬化被膜を除去する場合は、噴霧法等が適している。
 溶剤としては、種々の有機溶剤を使用することができるが、なかでも製造した配線基板への影響を考慮すると、非プロトン性極性溶剤を好適に使用することができる。非プロトン性極性溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、テトラメチルウレア、1,3-ジメチル-2-イミダゾリジノン、ジメチルプロピレンウレア、ジメチルスルホキシド、γ-ブチロラクトン、β-プロピオラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトンなどが挙げられ、これらは1種を単独または2種以上を組み合わせて用いることができる。これらのなかでもN-メチルピロリドンを好適に使用することができる。
 基材上面の残渣を溶剤で洗浄した場合であっても、残渣が極微量、基材上に残存する場合もあることから、本発明の方法においては、硬化被膜が除去された配線基板を加熱することが好ましい。加熱温度は80~200℃の範囲内にあることが好ましく、100~150℃の範囲内にあることがより好ましい。
 本発明の方法は、プリント配線板等の電子部品を製造する際に使用され得る。感光性樹脂組成物の組成によらず、その硬化被膜を基材から除去することができるため、付加価値の高い基材を使用している場合等に特に有益である。また、活性エネルギー線の照射を硬化被膜の不具合のある箇所にのみ照射することができるため、配線基板を製造する際に硬化被膜の一部に不具合が発見された場合に、不具合部分のみ硬化被膜を基材から除去でき、生産効率(歩留まり)を改善することができる。
 以下に実施例および比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
[感光性樹脂組成物に調製]
 まず、感光性樹脂組成物の調製を行った。感光性樹脂組成物は、下記のカルボキシル基含有樹脂ワニス1を13部(固形分としての値)、下記のカルボキシル基含有樹脂ワニス2を30部(固形分としての値)、光重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(Omnirad TPO H、IGM Resins社製)を4部、光重合性モノマーとしてトリシクロデカンジメタノールジアクリレート(A-DCP、新中村工業株式会社製)を11部、熱硬化性成分としてビスフェノールA型エポキシ樹脂(jER 828、三菱ケミカル株式会社製)を27部、および熱硬化触媒としてイミダゾール系エポキシ樹脂硬化剤(キュアゾール 1B2PZ、四国化成株式会社製)を0.3部配合し、攪拌機にて予備混合した後、3本ロールミルで混練し、感光性樹脂組成物を調製した。
<カルボキシル基含有樹脂ワニス1>
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(アイカ工業株式会社製、商品名「ショーノールCRG951」、OH当量:119.4)119.4g、水酸化カリウム1.19gおよびトルエン119.4gを仕込み、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8gを徐々に滴下し、125~132℃、0~4.8kg/cmで16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56gを添加混合して水酸化カリウムを中和し、不揮発分62.1%、水酸基価が182.2g/eq.であるノボラック型クレゾール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りアルキレンオキシドが平均1.08モル付加しているものであった。次いで、得られたノボラック型クレゾール樹脂のアルキレンオキシド反応溶液293.0g、アクリル酸43.2g、メタンスルホン酸11.53g、メチルハイドロキノン0.18gおよびトルエン252.9gを、撹拌機、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。反応により生成した水は、トルエンとの共沸混合物として、12.6gの水が留出した。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35gで中和し、次いで水洗した。その後、エバポレーターにてトルエンをジエチレングリコールモノエチルエーテルアセテート118.1gで置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。次に、得られたノボラック型アクリレート樹脂溶液332.5gおよびトリフェニルフォスフィン1.22gを、撹拌器、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8gを徐々に加え、95~101℃で6時間反応させた。このようにして、固形分酸価88mgKOH/g、固形分71%、重量平均分子量2,000のカルボキシル基含有感光性樹脂の樹脂溶液を得た。これをカルボキシル基含有樹脂ワニス1とする。
<カルボキシル基含有樹脂ワニス2>
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、γ-ブチロラクトン848.8gとMDI(ジフェニルメタンジイソシアネート)57.5g(0.23モル)、DMBPDI(4,4’-ジイソシアネート-3,3’-ジメチル-1,1’-ビフェニル)59.4g(0.225モル)とTMA(無水トリメリット酸)67.2g(0.35モル)とTMA-H(シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物)29.7g(0.15モル)を仕込み、攪拌を行いながら発熱に注意して80℃に昇温し、この温度で1時間かけて溶解、反応させ、さらに2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。このようにして、25℃での粘度が7Pa・sの固形分17%で溶液酸価が5.3(KOHmg/g)のカルボキシル基含有アミドイミド樹脂の溶液(樹脂がγ-ブチロラクトンに溶解した樹脂組成物)を得た。なお、樹脂の固形分酸価は31.2(KOHmg/g)、重量平均分子量は34,000であった。これをカルボキシル基含有樹脂ワニス2とする。
 FR-4銅張積層板(100mm×150mm×0.8mmt、両面銅箔、銅箔の厚みは両面ともに18μm)表面をメック株式会社製のCZ8101により算術平均表面粗さ(Ra)が400nmになるように化学研磨し、基板の化学研磨された表面に、上記のようにして得られた感光性樹脂組成物を、スクリーン印刷により乾燥後の膜厚が20~25μmになるように全面塗布し、80℃で30分乾燥し、室温まで放冷した。
 次いで、塗膜に、L/S=100/100、80/80、60/60、40/40、20/20、10/10、7/7、5/5、4/4、3/3、2/2、1/1(単位はいずれもμm)のラインパターンが形成されたフォトマスクを介して、メタルハライドランプを用いて、露光量1,000mJ/cmで波長365nmの紫外線を大気雰囲気下で照射し、その後30℃、1wt%のNaCO水溶液を用いて180秒間の現像を行い、硬化被膜を形成した。硬化被膜が形成されたかは、25℃50%RHの環境下で、硬化被膜の表面に、イソプロピルアルコール(IPA)を含ませたウエスを載せ、さらに、その上に500gのおもりを載せて1分間静置した後に、ウエスをはがし、ウエスの硬化被膜と接触していた面に樹脂層の全部または一部が付着していない状態であることにより判断した。また、形成した硬化被膜において、JIS-C-6481の銅張積層版試験方法、ピール強度の測定方法(試験片幅10mm、90°方向、速度50mm/min)に準拠して測定されたピール強度が、3N/cm以上10N/cm以下であることを確認した。
[実施例1]
 上記のようにして得られた硬化被膜が形成された基板を2枚準備した。一方の硬化被膜形成基板については、硬化被膜の形成面の全面に、UVオゾンクリーナー(UVランプ光源から照射面までの距離が1cm、種類:低圧水銀ランプ(溶融石英)、形状:高密度高出力グリッド型ランプ、紫外線強度:28mW/cm)を用いて、25.2J/cmの露光量で波長185nm(10%)+254nm(90%)の活性エネルギー線を酸素存在下(酸素流量が0.5sccmの大気雰囲気下)で照射した。
 他方の硬化被膜形成基板については、フォトマスクによりラインパターンが形成された箇所のみに照射されるように遮光マスクを介して、上記と同様の条件にて活性エネルギー線を照射した。
 続いて、全面照射した硬化被膜形成基板については、当該基板をN-メチルピロリドン溶剤に浸漬し、55℃で20分間放置した後、溶剤を除去した。また、一部照射した硬化被膜形成基板については、当該基板の活性エネルギー線照射箇所にN-メチルピロリドン溶剤を滴下し、55℃で20分間放置した後、溶剤を除去した。
 得られた基板を目視にて確認したところ、いずれの基板においても、活性エネルギー線を照射した箇所の硬化被膜は完全に除去されていた。
[比較例1]
 低圧水銀ランプによる活性エネルギー線の照射を行わなかった以外は、実施例1と同様にして、2枚の硬化被膜形成基板のそれぞれについて、N-メチルピロリドン溶剤を用いて処理を行った。得られた基板を目視にて確認したところ、いずれの基板においても、硬化被膜は基板から剥離しなかった。
[比較例2]
 低圧水銀ランプによる活性エネルギー線の照射を酸素存在下(大気雰囲気下)から窒素雰囲気下に代えた以外は、実施例1と同様にして、2枚の硬化被膜形成基板のそれぞれについて、N-メチルピロリドン溶剤を用いて処理を行った。得られた基板を目視にて確認したところ、いずれの基板においても、活性エネルギー線を照射した部分の硬化被膜は部分的に基板から剥離したものの、完全には基材から剥離せず、硬化被膜が残存していた。
 実施例1ならびに比較例1および2の実験結果から、酸素存在下で活性エネルギー線を照射することによって硬化被膜が効果的に剥離できることがわかる。
[比較例3]
 低圧水銀ランプから高圧水銀ランプを用いたUVコンベア(株式会社オーク製作所 型式:QRM-2082、紫外線強度:80mW/cm)による活性エネルギー線(主波長365nm)の照射に代えた以外は、実施例1と同様にして、2枚の硬化被膜形成基板のそれぞれについて、N-メチルピロリドン溶剤を用いて処理を行った。得られた基板を目視にて確認したところ、いずれの基板においても、活性エネルギー線を照射した部分の硬化被膜は部分的に基板から剥離したものの、完全には基材から剥離せず、硬化被膜が残存していた。
 実施例1および比較例3の実験結果から、高圧水銀ランプを用いた紫外線照射では、活性酸素は発生せず、C-C炭素結合も切断していないことがわかる。

Claims (8)

  1.  基材表面に形成された硬化被膜を備えた配線基板から硬化被膜の一部または全部を除去して前記基材を再利用する方法であって、
     前記硬化被膜は、感光性樹脂組成物の硬化物からなり、
     前記硬化被膜の一部または全部に、酸素存在下において活性酸素を発生し得る活性エネルギー線およびC-C炭素結合を切断し得る活性エネルギー線の少なくともいずれか1種を照射する工程と、
     前記硬化被膜が形成された基材を溶剤で洗浄して、活性エネルギー線照射された部分の硬化被膜を前記基材から除去する工程と、
    を含む、配線基板用基材の再利用方法。
  2.  前記硬化被膜は、前記基材上に、感光性樹脂組成物を塗布、乾燥して乾燥塗膜を形成するか、または感光性樹脂組成物を支持フィルムに塗布、乾燥して形成した樹脂層を有するドライフィルムを、前記基材と前記樹脂層とが接するように前記ドライフィルムを貼り合わせ、次いで、前記乾燥塗膜または前記ドライフィルムの樹脂層を露光、現像して、パターニングすることにより形成される、請求項1に記載の方法。
  3.  前記活性エネルギー線は、波長100~255nmの電離放射線を含む、請求項1または2に記載の方法。
  4.  前記硬化被膜が除去された配線基板を加熱する工程をさらに含む、請求項1~3のいずれか1項に記載の方法。
  5.  前記溶剤が非プロトン性極性溶剤である、請求項1~4のいずれか一項に記載の方法。
  6.  前記感光性樹脂組成物が、(A)カルボキシル基含有樹脂、(B)光重合性モノマー、(C)光重合開始剤、および(D)熱硬化性成分を含む、請求項1~5のいずれか一項に記載の方法。
  7.  前記樹脂層の露光、現像の後、かつ、前記硬化被膜への活性エネルギー線照射の前に、加熱および紫外線照射の少なくともいずれかを行う、請求項6に記載の方法。
  8.  前記硬化被膜の厚さが1~1000μmである、請求項1~7のいずれか一項に記載の方法。
PCT/JP2020/037012 2019-09-30 2020-09-29 配線基板用基材の再利用方法 WO2021065951A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021520239A JP6983363B2 (ja) 2019-09-30 2020-09-29 配線基板用基材の再利用方法
CN202080068575.0A CN114467363A (zh) 2019-09-30 2020-09-29 布线基板用基材的再利用方法
KR1020217042968A KR102608843B1 (ko) 2019-09-30 2020-09-29 배선 기판용 기재의 재이용 방법
JP2021189380A JP2022022254A (ja) 2019-09-30 2021-11-22 配線基板用基材の再利用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181057 2019-09-30
JP2019181057 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065951A1 true WO2021065951A1 (ja) 2021-04-08

Family

ID=75336927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037012 WO2021065951A1 (ja) 2019-09-30 2020-09-29 配線基板用基材の再利用方法

Country Status (5)

Country Link
JP (2) JP6983363B2 (ja)
KR (1) KR102608843B1 (ja)
CN (1) CN114467363A (ja)
TW (1) TW202117470A (ja)
WO (1) WO2021065951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145974A1 (ja) * 2022-01-31 2023-08-03 太陽ホールディングス株式会社 フィルム積層体、硬化物、および該硬化物を備えるプリント配線板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117983574A (zh) * 2024-04-03 2024-05-07 山东金泰隆焊材有限公司 一种焊丝清洗系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033257A (ja) * 2000-07-17 2002-01-31 Fuji Photo Film Co Ltd シリコン含有2層レジストの剥離方法
WO2003077291A1 (fr) * 2002-03-12 2003-09-18 Olympus Corporation Procede de fabrication de semi-conducteurs et dispositif d'usinage associe
JP2008224872A (ja) * 2007-03-09 2008-09-25 Sekisui Chem Co Ltd 膜の剥離方法
JP2015028646A (ja) * 2014-09-12 2015-02-12 太陽インキ製造株式会社 光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
JP2016095388A (ja) * 2014-11-14 2016-05-26 野村マイクロ・サイエンス株式会社 レジスト剥離液及びレジスト剥離方法
WO2016208300A1 (ja) * 2015-06-24 2016-12-29 富士フイルム株式会社 パターン形成方法、積層体、及び、有機溶剤現像用レジスト組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115048A (ja) * 1993-10-15 1995-05-02 Sony Corp 剥離方法
JPH11145594A (ja) * 1997-11-07 1999-05-28 Goo Chem Ind Co Ltd ソルダーレジスト硬化膜の剥離液及びソルダーレジスト硬化膜の剥離方法
JP3842588B2 (ja) * 2001-06-29 2006-11-08 株式会社東芝 配線基板の製造方法および配線基板形成用部材
JP4308821B2 (ja) * 2003-07-28 2009-08-05 ダウ・コーニング・コーポレイション パターン形成されたシリコーン層をエッチングする方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033257A (ja) * 2000-07-17 2002-01-31 Fuji Photo Film Co Ltd シリコン含有2層レジストの剥離方法
WO2003077291A1 (fr) * 2002-03-12 2003-09-18 Olympus Corporation Procede de fabrication de semi-conducteurs et dispositif d'usinage associe
JP2008224872A (ja) * 2007-03-09 2008-09-25 Sekisui Chem Co Ltd 膜の剥離方法
JP2015028646A (ja) * 2014-09-12 2015-02-12 太陽インキ製造株式会社 光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
JP2016095388A (ja) * 2014-11-14 2016-05-26 野村マイクロ・サイエンス株式会社 レジスト剥離液及びレジスト剥離方法
WO2016208300A1 (ja) * 2015-06-24 2016-12-29 富士フイルム株式会社 パターン形成方法、積層体、及び、有機溶剤現像用レジスト組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145974A1 (ja) * 2022-01-31 2023-08-03 太陽ホールディングス株式会社 フィルム積層体、硬化物、および該硬化物を備えるプリント配線板

Also Published As

Publication number Publication date
CN114467363A (zh) 2022-05-10
KR20220016178A (ko) 2022-02-08
JP2022022254A (ja) 2022-02-03
TW202117470A (zh) 2021-05-01
JPWO2021065951A1 (ja) 2021-10-21
JP6983363B2 (ja) 2021-12-17
KR102608843B1 (ko) 2023-12-04

Similar Documents

Publication Publication Date Title
CN106662813B (zh) 固化性树脂组合物、干膜、固化物及印刷电路板
JP6723788B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP6258547B2 (ja) 感光性ドライフィルムおよびそれを用いたプリント配線板の製造方法
JP5941180B1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP6852234B2 (ja) フォトレジスト組成物およびその硬化物
JP2022022254A (ja) 配線基板用基材の再利用方法
JP2020166207A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP7066634B2 (ja) 硬化性組成物、主剤および硬化剤、ドライフィルム、硬化物、および、プリント配線板
JP2021056430A (ja) 感光性ドライフィルムおよびそれを用いた硬化被膜の形成方法
JP2020164749A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
JP6935615B1 (ja) 硬化被膜
JP2020166271A (ja) 感光性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
CN114945611A (zh) 固化性组合物、其干膜和固化物
WO2023054616A1 (ja) 感光性フィルム積層体、硬化物、およびプリント配線板
JP7339103B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
WO2023190455A1 (ja) 感光性樹脂組成物、硬化物、プリント配線板およびプリント配線板の製造方法
JP2024054101A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2023149638A (ja) ドライフィルム、硬化物、および該硬化物からなる被膜を備えたプリント配線板
JP2023083103A (ja) 感光性樹脂組成物、硬化物、プリント配線板、およびプリント配線板の製造方法
JP2020166211A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板、および電子部品
JP2023146928A (ja) 樹脂硬化膜を備えた基板の製造方法
WO2023190393A1 (ja) 硬化物およびプリント配線板
JP2023168087A (ja) ドライフィルムの製造方法
JP2020166212A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
JP2021044386A (ja) 積層硬化体、硬化性樹脂組成物、ドライフィルム、および、積層硬化体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021520239

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217042968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872248

Country of ref document: EP

Kind code of ref document: A1