WO2021059436A1 - 交流回転機装置 - Google Patents

交流回転機装置 Download PDF

Info

Publication number
WO2021059436A1
WO2021059436A1 PCT/JP2019/037889 JP2019037889W WO2021059436A1 WO 2021059436 A1 WO2021059436 A1 WO 2021059436A1 JP 2019037889 W JP2019037889 W JP 2019037889W WO 2021059436 A1 WO2021059436 A1 WO 2021059436A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
control circuit
period
cycle
component
Prior art date
Application number
PCT/JP2019/037889
Other languages
English (en)
French (fr)
Inventor
辰也 森
紘子 池田
俊宏 松永
憲司 池田
建太 久保
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/037889 priority Critical patent/WO2021059436A1/ja
Priority to US17/629,919 priority patent/US11750134B2/en
Priority to CN201980100580.2A priority patent/CN114450885B/zh
Priority to JP2021548082A priority patent/JP7101902B2/ja
Priority to EP19947178.0A priority patent/EP4037181A4/en
Publication of WO2021059436A1 publication Critical patent/WO2021059436A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • H02P25/026Synchronous motors controlled by supply frequency thereby detecting the rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault

Definitions

  • This application relates to an AC rotating machine device.
  • the dq-axis currents Id1 and Iq1 output from the master-side dq-axis current calculations 142 and 143 are transmitted from the master side to the slave side, and in the slave-side abnormality monitoring 290.
  • the abnormality on the master side is monitored, and the dq-axis currents Id2 and Iq2 output from the dq-axis current calculation 242 and 243 on the slave side are transmitted from the slave side to the master side, and the abnormality monitoring 190 on the master side is used.
  • the slave side is being monitored for abnormalities.
  • the AC rotating machine device is An AC rotating machine having a multi-phase winding of the first system and a multi-phase winding of the second system, An inverter of the first system having a plurality of switching elements for applying a voltage to the windings of the plurality of phases of the first system, and an inverter of the first system.
  • a second system inverter having a plurality of switching elements for applying a voltage to the multi-phase windings of the second system, and an inverter of the second system.
  • a resolver that has windings and causes magnetic interference between the first and second systems, An AC voltage of the first cycle is applied to the exciting winding of the first system, the output signal of the first system output from the two output windings of the first system is detected, and the plurality of phases of the first system are detected.
  • the voltage command of the first system applied to the winding of the first system is calculated, and the plurality of switching elements of the inverter of the first system are turned on and off based on the voltage command of the first system, and the plurality of phases of the first system are turned on and off.
  • the control circuit of the first system that applies voltage to the winding of An AC voltage of a second cycle different from the first cycle is applied to the exciting winding of the second system, and the output signal of the second system output from the two output windings of the second system is detected.
  • the angle of the second system of the AC rotary machine is detected based on the component of the second cycle included in the output signal of the second system, and a plurality of the second systems are detected based on the angle of the second system.
  • the voltage command of the second system applied to the windings of the phase is calculated, and based on the voltage command of the second system, the plurality of switching elements of the inverter of the second system are turned on and off, and the plurality of the second system It is equipped with a second system control circuit that applies a voltage to the phase windings.
  • the control circuit of the first system extracts the component of the second cycle from the output signal of the first system, and the operation of the control circuit of the second system is stopped based on the extracted component of the second cycle. It determines whether or not it is done.
  • the first system is caused by magnetic interference.
  • the component of the second period generated in the output signal of is reduced.
  • the control circuit of the second system cannot detect the angle of the second system of the AC rotating machine based on the component of the second cycle included in the output signal of the second system, and is based on the angle of the second system.
  • the voltage command of the second system applied to the multi-phase windings of the second system cannot be calculated, and the voltage cannot be applied to the multi-phase windings of the second system. Therefore, it is possible to accurately determine whether or not the control circuit of the second system has stopped operating based on the components of the second period extracted from the output signal of the first system by using the magnetic interference of the resolver. it can.
  • FIG. 1 It is a schematic block diagram of the AC rotary machine device which concerns on Embodiment 1.
  • FIG. It is a schematic diagram of the three-phase winding of the first system and the three-phase winding of the second system which concerns on Embodiment 1.
  • FIG. It is a schematic diagram of the resolver which concerns on Embodiment 1.
  • FIG. It is a side view which looked at the resolver which concerns on Embodiment 1 in the axial direction. It is a time chart for demonstrating the detection timing of the 1st system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the control circuit of the 1st system which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the control circuit of the 1st system which concerns on Embodiment 1.
  • FIG. 1 It is a time chart for demonstrating the processing of the 1st system which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the process of the 1st system which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the process of the 1st system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the removal processing part of the 1st system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the 2nd period extraction processing part which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating the process of the 2nd system abnormality determination part which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating the processing of the current command value calculation unit of the 1st system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the control circuit of the 2nd system which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the control circuit of the 2nd system which concerns on Embodiment 1.
  • FIG. It is a time chart for demonstrating the processing of the 2nd system which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the process of the 2nd system which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the process of the 2nd system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the removal processing part of the 2nd system which concerns on Embodiment 1.
  • FIG. 1st period extraction processing part It is a block diagram of the 1st period extraction processing part which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating the process of the 1st system abnormality determination part which concerns on Embodiment 1.
  • FIG. It is a flowchart for demonstrating the processing of the current command value calculation unit of the 2nd system which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram of the electric power steering apparatus which concerns on Embodiment 2.
  • FIG. It is the schematic perspective view of the resolver which concerns on other embodiment.
  • FIG. 1 is a schematic configuration diagram of an AC rotating machine device according to the present embodiment.
  • the AC rotating machine device includes an AC rotating machine 1, a resolver 2, a first system inverter 4A, a second system inverter 4B, a first system control circuit 6A, a second system control circuit 6B, and the like.
  • the AC rotating machine 1 has a multi-phase (three-phase in this example) winding N1 of the first system and a multi-phase (three-phase) winding N2 of the second system.
  • the three-phase winding N1 of the first system is the U1 phase winding Cu1, the V1 phase winding Cv1, and the W1 phase winding Cw1.
  • the three-phase windings N1 and N2 of the first system and the second system are Y-connected, but may be ⁇ -connected.
  • the three-phase windings N1 and N2 of the first system and the second system are wound around one stator.
  • a phase difference (for example, 30 + 60 ⁇ H degrees (H is an integer) in terms of electrical angle) may be provided between the three-phase winding N1 of the first system and the three-phase winding N2 of the second system.
  • the resolver 2 is a sensor for detecting the rotational position of the rotor of the AC rotating machine 1. As shown in FIG. 3, the resolver 2 includes an exciting winding 10A of the first system, two output windings 111A and 112A of the first system (also referred to as a first output winding 111A and a second output winding 112A). It has an exciting winding 10B of the second system and two output windings 111B and 112B of the second system (also referred to as a third output winding 111B and a fourth output winding 112B).
  • the 112B is wound around the same resolver stator 13.
  • the resolver stator 13 includes twelve teeth TE1 to TE12 evenly arranged in the circumferential direction.
  • the resolver rotor 14 is arranged inside the resolver stator 13 in the radial direction.
  • the resolver rotor 14 is attached to the rotating shaft of the rotor so as to rotate integrally with the rotor of the AC rotating machine 1.
  • the resolver rotor 14 includes a plurality of protrusions evenly arranged in the circumferential direction on the outer peripheral portion.
  • the radial outward protrusion height of the protrusion is formed so that the gap permeance between the resolver stator 13 and the resolver rotor 14 changes in a sinusoidal shape in accordance with rotation. That is, the resolver 2 is a variable reluctance (VR) type resolver.
  • VR variable reluctance
  • five protrusions are provided, and the axial double angle is set to 5. Therefore, every time the rotor makes one rotation at the mechanical angle, it makes five rotations at the electric angle.
  • the third output winding 111B of the second system and the fourth output winding 112B of the second system have the resolver stator 13 so that the amplitudes of their induced AC voltages differ from each other by 90 degrees in terms of electrical angle. It is wound at a position in the circumferential direction.
  • the first system exciting winding 10A wound around a plurality of teeth is connected in series between the teeth, and the two terminals of the first system exciting winding 10A connected in series are described later. It is connected to one system of control circuits 6A. Similarly, the two terminals of the first output winding 111A of the first system connected in series between the teeth are connected to the control circuit 6A of the first system. The two terminals of the second output winding 112A of the first system connected in series between the teeth are connected to the control circuit 6A of the first system. The two terminals of the exciting winding 10B of the second system connected in series are connected to the control circuit 6B of the second system described later.
  • the two terminals of the third output winding 111B of the second system connected in series between the teeth are connected to the control circuit 6B of the second system.
  • the two terminals of the fourth output winding 112B of the second system connected in series between the teeth are connected to the control circuit 6B of the second system.
  • the number of protrusions (double axis angle) and the number of teeth may be set to any number.
  • the winding of the first system and the winding of the second system may not be divided into two in the circumferential direction and may be arranged in a dispersed manner in the circumferential direction.
  • the inverter 4A of the first system has a plurality of switching elements for applying a voltage to the three-phase winding N1 of the first system.
  • the inverter 4A of the first system converts the DC power of the DC power supply 3A of the first system and the AC power supplied to the three-phase winding N1 of the first system.
  • the inverter 4A of the first system includes a switching element Sp on the positive electrode side connected to the positive electrode terminal of the DC power supply 3A of the first system and a switching element Sn on the negative electrode side connected to the negative electrode terminal of the DC power supply 3A of the first system. And 3 sets of series circuits connected in series are provided corresponding to the windings of each of the three phases. Then, the connection points of the two switching elements in each series circuit are connected to the windings of the corresponding phases.
  • each switching element an IGBT (Insulated Gate Bipolar Transistor) in which diodes are connected in antiparallel, a bipolar transistor in which diodes are connected in antiparallel, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and the like are used.
  • the gate terminal of each switching element is connected to the control circuit 6A of the first system via a gate drive circuit or the like. Therefore, each switching element is turned on or off by the switching signal output from the control circuit 6A of the first system.
  • the inverter 4A of the first system includes a current sensor 5A of the first system for detecting the current flowing through the windings of each phase of the first system.
  • the current sensor 5A of the first system is a Hall element or the like provided on the electric wire connecting the series circuit of the switching element of each phase and the armature winding.
  • the current sensor 5A of the first system may be a shunt resistor connected in series to the series circuit of the switching elements of each phase.
  • the DC power supply 3A of the first system outputs a DC voltage to the inverter 4A of the first system.
  • any device that outputs a DC voltage such as a battery, a DC-DC converter, a diode rectifier, and a PWM rectifier, is used.
  • the inverter 4B of the second system has a plurality of switching elements for applying a voltage to the three-phase winding N2 of the second system.
  • the inverter 4B of the second system converts the DC power of the DC power supply 3B of the second system and the AC power supplied to the three-phase winding N2 of the second system.
  • the inverter 4B of the second system has a switching element Sp on the positive electrode side connected to the positive electrode terminal of the DC power supply 3B of the second system and a switching element Sn on the negative electrode side connected to the negative electrode terminal of the DC power supply 3B of the second system. And 3 sets of series circuits connected in series are provided corresponding to the windings of each of the three phases. Then, the connection points of the two switching elements in each series circuit are connected to the windings of the corresponding phases.
  • the gate terminal of each switching element is connected to the control circuit 6B of the second system via a gate drive circuit or the like. Therefore, each switching element is turned on or off by the switching signal output from the control circuit 6B of the second system.
  • the inverter 4B of the second system includes a current sensor 5B of the second system for detecting the current flowing through the windings of each phase of the second system.
  • the current sensor 5B of the second system is a Hall element or the like provided on the electric wire connecting the series circuit of the switching element of each phase and the armature winding.
  • the current sensor 5B of the second system may be a shunt resistor connected in series to the series circuit of the switching elements of each phase.
  • First system control circuit 6A As shown in FIG. 6, the control circuit 6A of the first system includes the first system excitation application unit 30, the first system output signal detection unit 31, the first system angle calculation unit 32, and the first system voltage command calculation unit 33. It includes functional units such as a first system voltage application unit 34 and a second system abnormality detection unit 35.
  • the functions of the functional units 30 to 35 of the control circuit 6A of the first system are realized by the processing circuit provided in the control circuit 6A of the first system.
  • the control circuit 6A of the first system exchanges data with an arithmetic processing unit 90 (computer) such as a CPU (Central Processing Unit) and an arithmetic processing unit 90 as a processing circuit.
  • arithmetic processing unit 90 computer
  • a storage device 91, an input circuit 92 for inputting an external signal to the arithmetic processing unit 90, an output circuit 93 for outputting a signal from the arithmetic processing unit 90 to the outside, a communication device 94 for data communication with the external device 50, and the like are provided. ing.
  • the input circuit 92 includes an A / D converter and the like that input the output voltage of each output winding and the output signal of the sensor to the arithmetic processing unit 90.
  • An exciting winding 10A of the first system is connected to the output circuit 93, and a drive circuit such as a switching element for applying an AC voltage VRA to the exciting winding is provided.
  • an electric load such as a gate drive circuit that drives a plurality of switching elements of the inverter 4A of the first system on / off is connected to the output circuit 93, and a drive circuit that outputs a control signal from the arithmetic processing unit 90 to these electric loads. Etc. are provided.
  • the communication device 94 communicates with the external device 50.
  • the arithmetic processing unit 90 executes software (program) stored in the storage device 91 such as ROM, and the storage device 91.
  • the input circuit 92, the output circuit 93, and the communication device 94, etc. which are realized by cooperating with other hardware of the control circuit 6A of the first system.
  • the setting data such as the first cycle, the first system removal processing interval, the second cycle extraction processing interval, and the judgment threshold used by each of the functional units 30 to 35 are stored in a ROM or the like as a part of the software (program). It is stored in the device 91.
  • the first system output signal detection unit 31 periodically sets the output signals V1A and V2A of the two output windings 111A and 112A of the first system at preset detection timings (hereinafter, also referred to as detection timings of the first system). To detect.
  • the AC voltage VRA of the first period TA applied to the exciting winding 10A of the first system is the maximum value or the minimum value (in this example, the maximum value). It is configured to detect the output signals V1A and V2A of the two output windings of the first system at the timing of. That is, the detection timing of the first system is set to the timing for each TA of the first cycle.
  • ⁇ 1st system angle calculation unit 32> As shown in FIG. 8 as an example of the output signal V1A of the first output winding 111A, the output signals V1A and V2A of the two output windings 111A and 112A of the first system are respectively caused by magnetic interference between the systems. The components V1A_TB and V2A_TB of the second period induced by the magnetic flux of the second period TB excited by the exciting winding 10B of the second system are superimposed.
  • the upper graph of FIG. 8 shows the output signal V1A of the first output winding 111A, and the middle graph shows the magnetic flux of the exciting winding 10A of the first system included in the output signal V1A of the first output winding 111A.
  • the component V1A_TA of the first cycle induced by the above is shown, and the lower graph shows the second cycle induced by the magnetic flux of the exciting winding 10B of the second system included in the output signal V1A of the first output winding 111A.
  • the component V1A_TB is shown.
  • the output signal V1A of the first output winding 111A is a signal obtained by summing the component V1A_TA of the first cycle and the component V1A_TB of the second cycle.
  • the first period TA is set to be smaller than the second period TB.
  • a detection error occurs when the angle is calculated based on the output signal V1A of the first output winding and the output signal V2A of the second output winding on which the components V1A_TB and V2A_TB of the second period are superimposed. Therefore, in order to suppress the angle detection error, it is necessary to remove the components V1A_TB and V2A_TB of the second period from the output signal V1A of the first output winding and the output signal V2A of the second output winding.
  • the first system angle calculation unit 32 includes a removal processing unit 321 of the first system and an angle calculation unit after removal processing of the first system.
  • the removal processing unit 321 of the first system removes (reduces) the components of the second period with respect to the detected values V1A_S and V2A_S of the output signals of the two output windings of the first system. I do.
  • the angle calculation unit after the removal process of the first system determines the angle ⁇ 1 of the first system based on the detected values V1A_F and V2A_F of the output signals of the two output windings of the first system after the removal process of the second period component. Is calculated.
  • the removal process of the second period component is performed based on the principle described below.
  • the component V1A_TB of the second period of the output signal of the first output winding is a period obtained by adding an integral multiple of the second period TB to the half period TB / 2 of the second period ( For example, in the half cycle TB / 2) of the second cycle, the phase is inverted and the plus and minus signs are inverted.
  • the removal processing unit 321 of the first system sets the detection values V1A_S and V2A_S of the output signals of the two output windings of the first system detected at the detection timing of this time as the removal processing of the second period component, and this time. It is configured to add the detection values V1A_Sold and V2A_Sold of the output signals of the two output windings of the first system detected at the detection timing before the detection timing of the first system removal processing interval ⁇ T1.
  • the first system removal processing interval ⁇ T1 is set as shown in the following equation.
  • M is an integer of 0 or more.
  • the first system removal processing interval ⁇ T1 is set to the half cycle TB / 2 of the second cycle.
  • ⁇ T1 TB / 2 + TB ⁇ M ⁇ ⁇ ⁇ (1)
  • the second period TB is set to an even multiple of the first period TA as shown in the following equation.
  • N is an integer of 1 or more.
  • N 1 is set, and the second cycle TB is set to twice the value of the first cycle TA.
  • TB TA x 2 x N ... (2)
  • the first system removal processing interval ⁇ T1 is an integral multiple of the first period TA, as shown in the following equation in which the equation (2) is substituted into the equation (1).
  • ⁇ T1 TA ⁇ (N + 2 ⁇ N ⁇ M) ⁇ ⁇ ⁇ (3) Therefore, among the detected values V1A_S and V2A_S of the output signals of the two output windings of the first system, values around an integral multiple of the first period TA are added. Therefore, as shown in FIG. 8, the components of the two first periods to be added have the same phase, and the plus and minus signs have the same equivalent values. Therefore, the two outputs of the first system after the addition are output.
  • the detected values V1A_F and V2A_F of the output signal of the winding correspond to twice the values of the components V1A_TA and V2A_TA of the first period included in the detected values, respectively.
  • the removal processing unit 321 of the first system is configured as shown in FIG. 11, for example.
  • the removal processing unit 321 of the first system includes a first delayer 3211 that outputs the detection value V1A_S of the output signal of the first output winding with a delay of the first system removal processing interval ⁇ T1.
  • the detection value V1A_S of the output signal of the line and the output V1A_Sold of the first delay device 3211 are added to calculate the detection value V1A_F of the output signal of the first output winding after the removal processing of the second period component.
  • the removal processing unit 321 of the first system includes a second delay device 3212 that outputs the detection value V2A_S of the output signal of the second output winding with a delay of the first system removal processing interval ⁇ T1.
  • the detection value V2A_S of the output signal of the two output windings and the output V2A_Sold of the second delay device 3212 are added to calculate the detection value V2A_F of the output signal of the second output winding after the removal processing of the second period component. To do.
  • the angle calculation unit after the removal processing of the first system is configured to calculate the angle ⁇ 1 of the first system based on the detected values V1A_F and V2A_F of the output signals of the two output windings of the first system after addition. Has been done.
  • the components of the two second periods whose plus and minus signs are inverted are added, and the components of the two second periods cancel each other out. Therefore, in the detected values V1A_F and V2A_F of the output signals of the two output windings of the first system after addition, the components of the second period are removed. Then, the angle ⁇ 1 of the first system can be calculated accurately based on the detected value after the components of the second period are removed.
  • the angle calculation unit after the removal processing of the first system has the detection value V1A_F of the output signal of the first output winding after the removal processing of the second period component and the second
  • the angle ⁇ 1 of the first system is calculated by calculating the arc tangent (inverse trigonometric function) of the ratio of the output signal of the output winding to the detected value V2A_F.
  • the angular velocity is also calculated based on the angle ⁇ 1 of the first system.
  • ⁇ 1 tan -1 (V1A_F / V2A_F) ... (5)
  • the voltage command calculation unit 33 of the first system applies the three-phase voltage commands Vu1_ref and Vv1_ref of the first system to the three-phase winding N1 of the first system based on the angle ⁇ 1 of the first system. , Vw1_ref is calculated. Then, the first system voltage application unit 34 turns on and off a plurality of switching elements of the inverter 4A of the first system based on the three-phase voltage commands Vu1_ref, Vv1_ref, and Vw1_ref of the first system, and the three phases of the first system. A voltage is applied to the winding N1.
  • the dq-axis rotating coordinate is a rotating coordinate consisting of the d-axis determined in the magnetic flux direction of the rotor and the q-axis determined in the direction ⁇ / 2 advanced by the electric angle from the d-axis.
  • the magnetic flux direction of the rotor is the direction of the north pole of the permanent magnet provided on the rotor.
  • the current coordinate conversion unit 333 sets the current detection values Iu1, Iv1, and Iw1 flowing in the windings of each phase of the first system detected by the current sensor 5A of the first system in three phases based on the angle ⁇ 1 of the first system. Two-phase conversion and rotating coordinate conversion are performed to convert the d-axis current detection value Id1 and the q-axis current detection value Iq1 of the first system represented by the dq-axis rotating coordinate system.
  • the voltage coordinate conversion unit 334 performs fixed coordinate conversion and two-phase three-phase conversion on the d-axis voltage command Vd1_ref and the q-axis voltage command Vq1_ref of the first system based on the angle ⁇ 1 of the first system, and performs the first system. Converts to the three-phase voltage commands Vu1_ref, Vv1_ref, and Vw1_ref. Various modulations may be applied to the three-phase voltage command.
  • the first system voltage application unit 34 turns on and off a plurality of switching elements of the first system inverter 4A by PWM (Pulse Width Modulation) control based on the three-phase voltage commands Vu1_ref, Vv1_ref, and Vw1_ref of the first system.
  • the first system voltage application unit 34 generates a switching signal for turning on / off the switching element of each phase by comparing each of the three-phase voltage commands with the carrier wave.
  • the carrier wave is a triangular wave having an amplitude of a DC voltage and oscillating at a carrier frequency.
  • the first system voltage application unit 34 turns on the switching signal when the voltage command exceeds the carrier wave, and turns off the switching signal when the voltage command falls below the carrier wave.
  • the switching signal is transmitted to the switching element Sp on the positive electrode side as it is, and the switching signal in which the switching signal is inverted is transmitted to the switching element Sn on the negative electrode side.
  • Each switching signal is input to the gate terminal of each switching element of the inverter 4A of the first system via the gate drive circuit, and each switching element is turned on or off.
  • an abnormality may occur in the abnormality detection circuit, and in that case, the control circuit 6B of the second system is connected to the control circuit 6B of the second system even though the voltage is normally applied to the three-phase winding. It may be determined that an abnormality has occurred in the voltage application operation. Therefore, in the present application, it is configured to accurately detect an abnormality in the voltage application operation of the control circuit 6B of the second system by utilizing the magnetic interference of the resolver 2 without providing a special circuit for detecting an abnormality. There is.
  • the second system abnormality detection unit 35 extracts the components V1A_TB and V2A_TB of the second cycle TB from the detection values V1A_S and V2A_S of the output signals of the two output windings of the first system, and extracts the components of the second cycle. Based on V1A_TB and V2A_TB, it is determined whether or not the operation of the control circuit 6B of the second system is stopped.
  • control circuit 6B of the second system cannot detect the angle ⁇ 2 of the second system of the AC rotating machine based on the component of the second cycle TB included in the output signal of the second system, and the angle of the second system Based on ⁇ 2, the voltage command of the second system applied to the three-phase winding N2 of the second system cannot be calculated, and the voltage cannot be applied to the three-phase winding N2 of the second system. Therefore, it is determined whether or not the voltage application operation is stopped in the control circuit 6B of the second system based on the component of the second period TB extracted from the output signal of the first system by utilizing the magnetic interference of the resolver 2. It can be judged accurately.
  • the extraction process of the second period component is performed based on the principle described below.
  • the first period TA is set to be smaller than the second period TB.
  • the component V1A_TA of the first period included in the output signal of the first output winding has a period that is an integral multiple of the first period TA (for example, the first period TA).
  • the phases are the same, and the plus and minus signs have the same equivalent value.
  • the components of the first period TA can be mutually canceled, and the components of the second period TB can be canceled. Can be extracted.
  • the second system abnormality detection unit 35 detects this time from the detection values V1A_S and V2A_S of the output signals of the two output windings of the first system detected at the current detection timing as the extraction process of the second period component.
  • the detection values V1A_Solde and V2A_Solde of the output signals of the two output windings of the first system detected at the detection timing before the second period extraction processing interval ⁇ Te1 are subtracted from the timing.
  • the second period extraction processing interval ⁇ Te1 is set to an integral multiple of the first period TA as shown in the following equation.
  • O is an integer of 1 or more.
  • the second period extraction processing interval ⁇ Te1 is set to the first period TA.
  • ⁇ Te1 TA ⁇ O ⁇ ⁇ ⁇ (6)
  • the second period TB is set to an even multiple of the first period TA, as shown in the equation (2). Therefore, as shown in the following equation in which the equation (2) is substituted into the equation (6), the second period extraction processing interval ⁇ Te1 is O / N times the half period TB / 2 of the second period. When the O / N is set to an odd number as in the present embodiment, the second cycle extraction processing interval ⁇ Te1 becomes an odd multiple of the half cycle TB / 2 of the second cycle.
  • the detected values V1A_Fe and V2A_Fe of the output signal of the winding correspond to twice the values of the components V1A_TB and V2A_TB of the second period included in the detected values, respectively.
  • the second system abnormality detection unit 35 includes a second period extraction processing unit 351 as shown in FIG.
  • the second period extraction processing unit 351 includes a first extraction delayer 3511 that outputs the detection value V1A_S of the output signal of the first output winding with a delay of the second period extraction processing interval ⁇ Te1.
  • the output V1A_Solde of the first extraction delayer 3511 is subtracted from the detected value V1A_S of the output signal of the line to calculate the detected value V1A_Fe of the output signal of the first output winding after the extraction processing of the second period component.
  • the second period extraction processing unit 351 includes a second extraction delayer 3512 that outputs the detection value V2A_S of the output signal of the second output winding with a delay of the second period extraction processing interval ⁇ Te1.
  • the output V2A_Solde of the second extraction delayer 3512 is subtracted from the detected value V2A_S of the output signal of the two output windings to calculate the detected value V2A_Fe of the output signal of the second output winding after the extraction processing of the second period component.
  • the second period extraction processing unit 351 calculates the amplitude of the component of the second period based on the detected values V1A_Fe and V2A_Fe of the output signals of the two output windings of the first system after the extraction process of the second period component. It is provided with a second period amplitude calculation unit 3513 for calculation.
  • the second period amplitude calculation unit 3513 sets the square value of the detected value V1A_Fe of the output signal of the first output winding after the extraction processing of the second period component and the second period component.
  • the amplitude value Amp2 (amplitude squared value) of the second period component is calculated by adding the detected value V2A_Fe squared value of the output signal of the second output winding after the extraction process.
  • Amp2 V1A_Fe 2 + V2A_Fe 2 ... (9)
  • the second system abnormality detection unit 35 includes a second system abnormality determination unit.
  • the second system abnormality determination unit determines whether or not the operation of the control circuit of the second system is stopped based on the amplitude of the component of the second cycle extracted from the output signal of the first system.
  • step S01 the second system abnormality determination unit determines whether or not the amplitude value Amp2 of the second period component is larger than the determination threshold value Vth2 for the second period component. If it is large, the process proceeds to step S02, and if it is not large, the process proceeds to step S03.
  • step S02 the second system abnormality determination unit sets the second system abnormality determination flag Stop2 to 0, and determines that the operation of the control circuit 6B of the second system has not stopped.
  • step S03 the second system abnormality determination unit sets the second system abnormality determination flag Stop2 to 1, and determines that the operation of the control circuit 6B of the second system is stopped.
  • the output torque of the entire AC rotating machine 1 decreases.
  • the three phases of the first system are compared with the normal time when the operation stop of the control circuit 6B of the second system is not determined. Since the output torque due to the winding N1 is increased, it is possible to suppress a decrease in the output torque of the entire AC rotating machine 1 even if the operation of the control circuit 6B of the second system is stopped.
  • the current command value calculation unit 331 multiplies the torque command Tall output to the AC rotating machine by the share ratio of the first system at the time of abnormality, and the first system. Torque command T1 is calculated.
  • the sharing rate of the first system at the time of abnormality is set to a value larger than the sharing rate of the first system at the normal time (for example, 1.0).
  • the current command value calculation unit 331 calculates the dq-axis current commands Id1_ref and Iq1_ref of the first system based on the torque command T1 of the first system, the power supply voltage, the angular velocity, and the like.
  • the current feedback control is performed based on the dq-axis current commands Id1_ref and Iq1_ref of the first system, and the three-phase voltage commands Vu1_ref, Vv1_ref and Vw1_ref of the first system are calculated.
  • the switching element is turned on and off.
  • step S11 the current command value calculation unit 331 determines whether or not the operation of the control circuit 6B of the second system is determined by the second system abnormality determination unit, and determines that the operation is stopped. If not, the process proceeds to step S12, and if it is determined that the system has stopped, the process proceeds to step S13.
  • step S12 the current command value calculation unit 331 sets the q-axis current command Iq_tr1 of the first system as it is to the q-axis current command Iq1_ref of the first system, and sets the d-axis current command Id1_ref of the first system as it is. Is set to 0.
  • step S13 the current command value calculation unit 331 sets the value obtained by multiplying the q-axis current command Iq_tr1 of the first system by the increase rate K1 at the time of abnormality in the q-axis current command Iq1_ref of the first system.
  • the d-axis current command Id1_ref of the first system is set to 0.
  • the rate of increase K1 at the time of abnormality is set to a value larger than 1 (for example, 2).
  • the rate of increase K1 at the time of abnormality or the share rate of the first system at the time of abnormality is set in consideration of the cooling performance of the AC rotating machine, the upper limit current of the winding and the switching element, the suppression of demagnetization of the permanent magnet, and the like.
  • 2nd system control circuit 6B As shown in FIG. 15, in the control circuit 6B of the second system, the second system excitation application unit 40, the second system output signal detection unit 41, the second system angle calculation unit 42, the second system voltage command calculation unit 43, It includes functional units such as a second system voltage application unit 44 and a first system abnormality detection unit 45.
  • the control circuit 6B of the second system includes an arithmetic processing unit 80 (computer) such as a CPU, a storage device 81 for exchanging data with the arithmetic processing unit 80, and arithmetic as a processing circuit.
  • the processing unit 80 includes an input circuit 82 for inputting an external signal, an output circuit 83 for outputting a signal from the arithmetic processing unit 80 to the outside, a communication device 84 for data communication with the external device 50, and the like.
  • the arithmetic processing unit 80 may be provided with an ASIC, an IC, a DSP, an FPGA, various logic circuits, various signal processing circuits, and the like. Further, as the arithmetic processing unit 80, a plurality of the same type or different types may be provided, and each processing may be shared and executed.
  • the storage device 81 is provided with a RAM, a ROM, and the like.
  • the input circuit 82 includes an A / D converter and the like that input the output voltage of each output winding and the output signal of the sensor to the arithmetic processing unit 80.
  • the second system exciting winding 10B is connected to the output circuit 83, and includes a driving circuit such as a switching element for applying an AC voltage VRB to the exciting winding.
  • an electric load such as a gate drive circuit that drives a plurality of switching elements of the inverter 4B of the second system on / off is connected to the output circuit 83, and a drive circuit that outputs a control signal from the arithmetic processing unit 80 to these electric loads. Etc. are provided.
  • the communication device 84 communicates with the external device 50.
  • the arithmetic processing unit 80 executes the software (program) stored in the storage device 81 such as the ROM, and the storage device 81.
  • the input circuit 82, the output circuit 83, and the communication device 84, etc. which are realized by cooperating with other hardware of the control circuit 6B of the second system.
  • the setting data such as the second cycle, the first cycle extraction processing interval, the second system removal processing interval, and the determination threshold value used by each of the functional units 40 to 45 are stored in a ROM or the like as a part of the software (program). It is stored in the device 81.
  • the second system output signal detection unit 41 periodically sets the output signals V1B and V2B of the two output windings 111B and 112B of the second system at preset detection timings (hereinafter, also referred to as detection timings of the second system). To detect.
  • the second system output signal detection unit 41 has a maximum value or a minimum value (in this example, the maximum value) of the AC voltage VRB of the second period TB applied to the excitation winding 10B of the second system. It is configured to detect the output signals V1B and V2B of the two output windings of the second system at the timing of. That is, the detection timing of the second system is set to the timing for each second cycle TB.
  • ⁇ Second system angle calculation unit 42> As shown in FIG. 17 as an example of the output signal V1B of the third output winding 111B, the output signals V1B and V2B of the two output windings 111B and 112B of the second system are respectively caused by magnetic interference between the systems. The components V1B_TA and V2B_TA of the first cycle induced by the magnetic flux of the first cycle TA excited by the exciting winding 10A of the first system are superimposed.
  • the upper graph of FIG. 17 shows the output signal V1B of the third output winding 111B, and the middle graph shows the magnetic flux of the exciting winding 10B of the second system included in the output signal V1B of the third output winding 111B.
  • the component V1B_TB of the second period induced by the above is shown, and the lower graph shows the first period induced by the magnetic flux of the exciting winding 10A of the first system included in the output signal V1B of the third output winding 111B.
  • the component V1B_TA is shown.
  • the output signal V1B of the third output winding 111B is a signal obtained by summing the component V1B_TB of the second cycle and the component V1B_TA of the first cycle.
  • the first period TA is set to be smaller than the second period TB.
  • FIGS. 18 and 19 show the frequency analysis results of the measured values of the output signal V1B of the third output winding.
  • the example of FIG. 18 is a case where the AC voltage VRA of the first period TA is applied to the exciting winding 10A of the first system
  • the example of FIG. 19 is the case where the first period is applied to the exciting winding 10A of the first system. This is the case where the AC voltage VRA of TA is not applied.
  • the horizontal axis of FIGS. 18 and 19 is the frequency, and the vertical axis shows the amplitude of the output signal.
  • the component V1B_TA of the first period caused by the AC voltage of the first period TA applied to the exciting winding 10A of the first system is superimposed as the interference voltage.
  • the component V1B_TB of the second period is superimposed on the output signal V1B of the third output winding, and the component V1B_TA of the first period is not superimposed. This also applies to the output signal V2B of the fourth output winding.
  • the second system angle calculation unit 42 includes a removal processing unit 421 of the second system and an angle calculation unit after removal processing of the second system.
  • the removal processing unit 421 of the second system removes (reduces) the components of the first period with respect to the detected values V1B_S and V2B_S of the output signals of the two output windings of the second system. I do.
  • the angle calculation unit after the removal process of the second system determines the angle ⁇ 2 of the second system based on the detected values V1B_F and V2B_F of the output signals of the two output windings of the second system after the removal process of the first period component. Is calculated.
  • the first period component is removed based on the principle described below.
  • the component V1B_TA of the first period of the output signal of the third output winding has a period that is an integral multiple of the first period TA (for example, the first period TA) and has the same phase.
  • the plus and minus signs have the same equivalent value.
  • the removal processing unit 421 of the second system uses the detection values V1B_S and V2B_S of the output signals of the two output windings of the second system detected at the detection timing of the present time as the removal processing of the first period component.
  • the detection values V1B_Sold and V2B_Sold of the output signals of the two output windings of the second system detected at the detection timing before the second system removal processing interval ⁇ T2 are subtracted from the detection timing.
  • the second system removal processing interval ⁇ T2 is set as shown in the following equation.
  • P is an integer of 1 or more.
  • the second system removal processing interval ⁇ T2 is set to the first period TA.
  • ⁇ T2 TA ⁇ P ⁇ ⁇ ⁇ (10)
  • the second period TB is set to an even multiple of the first period TA, as shown in the equation (2).
  • the second cycle TB is set to twice the value of the first cycle TA.
  • the second system removal processing interval ⁇ T2 is P / N times the half cycle TB / 2 of the second cycle. ..
  • the P / N is set to an odd number as in the present embodiment
  • the second system removal processing interval ⁇ T2 becomes an odd multiple of the half cycle TB / 2 of the second cycle.
  • ⁇ T2 TB / 2 ⁇ (P / N) ⁇ ⁇ ⁇ (11) Therefore, among the detected values V1B_S and V2B_S of the output signals of the two output windings of the second system, values around an odd multiple of the half-cycle TB / 2 of the second cycle are subtracted. Therefore, as shown in the lower graph of FIG.
  • the components of the two second periods to be subtracted have their phases inverted and the plus and minus signs inverted, so that the two outputs of the second system after the subtraction process are output.
  • the detected values V1B_F and V2B_F of the output signal of the winding correspond to twice the values of the components V1B_TB and V2B_TB of the second period included in the detected values, respectively.
  • V1B_F ⁇ 2 x V1B_TB V2B_F ⁇ 2 x V2B_TB ... (12)
  • the removal processing unit 421 of the second system is configured as shown in FIG. 20, for example.
  • the removal processing unit 421 of the second system includes a first delayer 4211 that outputs the detection value V1B_S of the output signal of the third output winding with a delay of the second system removal processing interval ⁇ T2, and is provided with a second output winding.
  • the output V1B_Sold of the first delay device 4211 is subtracted from the detected value V1B_S of the output signal of the line to calculate the detected value V1B_F of the output signal of the third output winding after the removal processing of the first period component.
  • the removal processing unit 421 of the second system includes a second delayer 4212 that outputs the detection value V2B_S of the output signal of the fourth output winding with a delay of the second system removal processing interval ⁇ T2.
  • the output V2A_Sold of the second delay device 4212 is subtracted from the detected value V2B_S of the output signal of the four output windings to calculate the detected value V2B_F of the output signal of the fourth output winding after the removal processing of the first period component. ..
  • the angle calculation unit after the removal processing of the second system is configured to calculate the angle ⁇ 2 of the second system based on the detected values V1B_F and V2B_F of the output signals of the two output windings of the second system after subtraction. Has been done.
  • the components of the two first periods whose plus and minus signs have the same equivalent value are subtracted, and the components of the two first periods cancel each other out. Therefore, in the detected values V1B_F and V2B_F of the output signals of the two output windings of the second system after subtraction, the components of the first period are removed. Then, the angle ⁇ 2 of the second system can be calculated accurately based on the detected value after the components of the first period are removed.
  • the angle calculation unit after the removal processing of the second system has the detection value V1B_F of the output signal of the third output winding after the removal processing of the first period component and the fourth
  • the angle ⁇ 2 of the second system is calculated by calculating the arc tangent (inverse trigonometric function) of the ratio of the output signal of the output winding to the detected value V2B_F.
  • the angular velocity is also calculated based on the angle ⁇ 2 of the second system.
  • ⁇ 2 tan -1 (V1B_F / V2B_F) ... (13)
  • the voltage command calculation unit 43 of the second system applies the three-phase voltage commands Vu2_ref and Vv2_ref of the second system to the three-phase winding N2 of the second system based on the angle ⁇ 2 of the second system. , Vw2_ref is calculated. Then, the second system voltage application unit 44 turns on and off a plurality of switching elements of the inverter 4B of the second system based on the three-phase voltage commands Vu2_ref, Vv2_ref, and Vw2_ref of the second system, and the three-phase of the second system. A voltage is applied to the winding N2.
  • the current coordinate conversion unit 433 determines the current detection values Iu2, Iv2, and Iw2 flowing in the windings of each phase of the second system detected by the current sensor 5B of the second system in three phases based on the angle ⁇ 2 of the second system. Two-phase conversion and rotating coordinate conversion are performed to convert the d-axis current detection value Id2 and the q-axis current detection value Iq2 of the second system represented by the dq-axis rotating coordinate system.
  • the current control unit 432 controls the second system by PI control or the like so that the d-axis current detection value Id2 and the q-axis current detection value Iq2 of the second system approach the d-axis current command Id2_ref and the q-axis current command Iq2_ref.
  • Feedback control is performed to change the d-axis voltage command Vd2_ref and the q-axis voltage command Vq2_ref.
  • the voltage coordinate conversion unit 434 performs fixed coordinate conversion and two-phase three-phase conversion on the d-axis voltage command Vd2_ref and the q-axis voltage command Vq2_ref of the second system based on the angle ⁇ 2 of the second system to perform the second system. Converts to the three-phase voltage commands Vu2_ref, Vv2_ref, and Vw2_ref. Various modulations may be applied to the three-phase voltage command.
  • the second system voltage application unit 44 turns on and off a plurality of switching elements of the second system inverter 4B by PWM control based on the three-phase voltage commands Vu2_ref, Vv2_ref, and Vw2_ref of the second system.
  • the second system voltage application unit 44 generates a switching signal for turning on / off the switching element of each phase by comparing each of the three-phase voltage commands with the carrier wave.
  • Each switching signal is input to the gate terminal of each switching element of the inverter 4B of the second system via the gate drive circuit, and each switching element is turned on or off.
  • the magnetic interference of the resolver 2 is used to apply the voltage of the control circuit 6A of the first system without providing a special circuit for abnormality detection. It is configured to accurately detect abnormalities in operation.
  • the first system abnormality detection unit 45 extracts the components V1B_TA and V2B_TA of the first period TA from the detection values V1B_S and V2B_S of the output signals of the two output windings of the second system, and the extracted components of the first period. Based on V1B_TA and V2B_TA, it is determined whether or not the operation of the control circuit 6A of the first system is stopped.
  • the AC voltage VRA of the first period TA is not applied to the exciting winding 10A of the first system.
  • the components V1B_TA and V2B_TA of the first period TA generated in the output signal of the second system due to magnetic interference decrease.
  • control circuit 6A of the first system cannot detect the angle ⁇ 1 of the first system of the AC rotating machine based on the component of the first period TA included in the output signal of the first system, and the angle of the first system Based on ⁇ 1, the voltage command of the first system applied to the three-phase winding N1 of the first system cannot be calculated, and the voltage cannot be applied to the three-phase winding N1 of the first system. Therefore, using the magnetic interference of the resolver 2, it is accurately determined whether or not the operation stop has occurred in the control circuit 6A of the first system based on the component of the first period TA extracted from the output signal of the second system. can do.
  • the extraction process of the first period component is performed based on the principle described below.
  • the first period TA is set to be smaller than the second period TB.
  • the component V1B_TB of the second period included in the output signal of the second output winding adds an integral multiple of the second period TB to the half period TB / 2 of the second period.
  • the cycle for example, half cycle TB / 2 of the second cycle
  • the phase is inverted and the plus and minus signs are inverted.
  • the components of the second cycle TB can be mutually added. It can be canceled and the components of the first period TA can be extracted.
  • the first system abnormality detection unit 45 detects the detection values V1B_S and V2B_S of the output signals of the two output windings of the second system detected at the current detection timing, and the current detection. It is configured to add the detection values V1B_Solde and V2B_Solde of the output signals of the two output windings of the second system detected at the detection timing before the first period extraction processing interval ⁇ Te2 than the timing.
  • the first period extraction processing interval ⁇ Te2 is set as shown in the following equation.
  • Q is an integer of 0 or more.
  • Q 0 is set, and the first cycle extraction processing interval ⁇ Te2 is set to the half cycle TB / 2 of the second cycle.
  • ⁇ Te2 TB / 2 + TB ⁇ Q ⁇ ⁇ ⁇ (14)
  • the second period TB is set to an even multiple of the first period TA, as shown in the equation (2). Therefore, as shown in the following equation in which the equation (2) is substituted into the equation (14), the first period extraction processing interval ⁇ Te2 is an integral multiple of the first period TA.
  • ⁇ T2e TA ⁇ (N + 2 ⁇ N ⁇ Q) ⁇ ⁇ ⁇ (15) Therefore, among the detected values V1B_S and V2B_S of the output signals of the two output windings of the second system, values around an integral multiple of the first period TA are added. Therefore, as shown in the lower graph of FIG. 17, the components of the two first periods to be added have the same phase, and the plus and minus signs have the same equivalent value.
  • the detected values V1B_Fe and V2B_Fe of the output signals of the two output windings of the system correspond to twice the values of the components V1B_TA and V2B_TA of the first period included in the detected values, respectively.
  • the first system abnormality detection unit 45 includes a first period extraction processing unit 451 as shown in FIG.
  • the first period extraction processing unit 451 includes a first extraction delayer 4511 that outputs the detection value V1B_S of the output signal of the third output winding with a delay of the first period extraction processing interval ⁇ Te2, and is provided with a third output winding.
  • the output V1B_Solde of the first extraction delayer 4511 is subtracted from the detected value V1B_S of the output signal of the line to calculate the detected value V1B_Fe of the output signal of the third output winding after the extraction processing of the first period component.
  • the first period extraction processing unit 451 includes a second extraction delayer 4512 that outputs the detection value V2B_S of the output signal of the fourth output winding with a delay of the first period extraction processing interval ⁇ Te2.
  • the detected value V2B_Fe of the output signal of the fourth output winding after the extraction processing of the first period component is calculated. To do.
  • the first period extraction processing unit 451 determines the amplitude of the components of the first period based on the detected values V1B_Fe and V2B_Fe of the output signals of the two output windings of the second system after the extraction processing of the first period components. It is provided with a first period amplitude calculation unit 4513 for calculation.
  • the phase of the output signal of the third output winding and the phase of the output signal of the fourth output winding are configured to differ by 90 degrees in terms of electrical angle. Therefore, the detected value V1B_Fe of the output signal of the third output winding after the extraction process of the first period component and the detected value V2B_Fe of the output signal of the fourth output winding after the extraction process of the first period component are sinusoidal.
  • the first period amplitude calculation unit 4513 sets the squared value of the detected value V1B_Fe of the output signal of the third output winding after the extraction processing of the first period component and the first period component.
  • the amplitude value Amp1 (amplitude squared value) of the first period component is calculated by adding the detected value V2B_Fe squared value of the output signal of the fourth output winding after the extraction process.
  • Amp1 V1B_Fe 2 + V2B_Fe 2 ... (17)
  • the first system abnormality detection unit 45 includes a first system abnormality determination unit.
  • the first system abnormality determination unit determines whether or not the operation of the control circuit of the first system is stopped based on the amplitude of the component of the first period extracted from the output signal of the second system.
  • step S31 the first system abnormality determination unit determines whether or not the amplitude value Amp1 of the first period component is larger than the determination threshold value Vth1 for the first period component. If it is large, the process proceeds to step S32, and if it is not large, the process proceeds to step S33.
  • step S32 the first system abnormality determination unit sets the first system abnormality determination flag Stop1 to 0, and determines that the operation of the control circuit 6A of the first system has not stopped.
  • step S33 the first system abnormality determination unit sets the first system abnormality determination flag Stop1 to 1, and determines that the operation of the control circuit 6A of the first system is stopped.
  • the output torque of the entire AC rotating machine 1 decreases.
  • the three phases of the second system are higher than those in the normal state where the operation stop of the control circuit 6A of the first system is not determined. Since the output torque due to the winding N2 is increased, it is possible to suppress a decrease in the output torque of the entire AC rotating machine 1 even if the operation of the control circuit 6A of the first system is stopped.
  • the current feedback control is performed based on the dq-axis current commands Id2_ref and Iq2_ref of the second system, and the three-phase voltage commands Vu2_ref, Vv2_ref and Vw2_ref of the second system are calculated.
  • the switching element is turned on and off.
  • step S41 the current command value calculation unit 431 determines whether or not the operation of the control circuit 6A of the first system is determined by the first system abnormality determination unit, and determines that the operation is stopped. If not, the process proceeds to step S42, and if it is determined that the system has stopped, the process proceeds to step S43.
  • step S42 the current command value calculation unit 431 sets the q-axis current command Iq_tr2 of the second system as it is to the q-axis current command Iq2_ref of the second system, and sets the d-axis current command Id2_ref of the second system as it is. Is set to 0.
  • step S43 the current command value calculation unit 431 sets the value obtained by multiplying the q-axis current command Iq_tr2 of the second system by the increase rate K2 at the time of abnormality in the q-axis current command Iq2_ref of the second system.
  • the d-axis current command Id2_ref of the second system is set to 0.
  • the rate of increase K2 at the time of abnormality is set to a value larger than 1 (for example, 2).
  • the rate of increase K2 at the time of abnormality or the share rate of the second system at the time of abnormality is set in consideration of the cooling performance of the AC rotating machine, the upper limit current of the winding and the switching element, and the suppression of demagnetization of the permanent magnet.
  • FIG. 24 shows a schematic configuration diagram of the electric power steering device.
  • the AC rotating machine device is incorporated in the electric power steering device.
  • the rotating shaft of the rotor of the AC rotating machine 1 is connected to the steering device 63 of the wheel 62 via the driving force transmission mechanism 61.
  • the electric power steering device is attached to a steering wheel 64 in which the driver rotates left and right, a shaft 65 which is connected to the steering wheel 64 and transmits steering torque by the steering wheel 64 to the steering device 63 of the wheel 62, and a shaft 65.
  • a torque sensor 66 that detects the steering torque Ts by the steering wheel 64, and a driving force transmission mechanism 61 such as a worm gear mechanism that connects the rotating shaft of the AC rotating machine 1 to the shaft 65 are provided.
  • the output signal of the torque sensor 66 is input to the control circuit 6A (input circuit 92) of the first system and the control circuit 6B (input circuit 82) of the second system.
  • the q-axis current command Iq1_ref of the first system is calculated by multiplying the coefficient Ka1 of the first system.
  • the d-axis current command Id1_ref of the first system is set to 0.
  • Id1_ref 0
  • Iq1_ref Ka1 ⁇ Ts ⁇ ⁇ ⁇ (18)
  • the control circuit 6B (current command value calculation unit 431) of the second system detects the steering torque Ts of the driver based on the output signal of the torque sensor 66. Then, the control circuit 6B of the second system calculates the electric steering torque of the second system for assisting the steering torque Ts based on the steering torque Ts.
  • the steering torque Ts is set to the normal state.
  • the coefficient Ka1 of the first system and the coefficient Ka2 of the second system in the normal state may be the same value or different values, and may be changed according to the traveling speed of the vehicle. Further, a known stabilization compensation control may be used for the calculation of the current command.
  • control circuit 6A of the first system determines that the operation of the control circuit 6B of the second system is stopped, it determines that the operation of the control circuit 6B of the second system is not stopped.
  • the voltage command of the first system is changed so that the share ratio of the electric steering torque shared by the three-phase winding N1 of the first system and output is increased as compared with the case.
  • control circuit 6B of the second system determines that the operation of the control circuit 6A of the first system is stopped, it determines that the operation of the control circuit 6A of the first system is not stopped.
  • the voltage command of the second system is changed so that the share ratio of the electric steering torque shared by the three-phase winding N2 of the second system and output is increased as compared with the case.
  • the equation (20) is used.
  • the steering torque Ts is multiplied by the coefficient Ka1 of the first system in the normal state and the increase rate K1 in the abnormal state to calculate the q-axis current command Iq1_ref of the first system.
  • the d-axis current command Id1_ref of the first system is set to 0.
  • the rate of increase K1 at the time of abnormality is set to a value larger than 1 (for example, 2).
  • Id1_ref 0
  • Iq1_ref K1 ⁇ Ka1 ⁇ Ts ⁇ ⁇ ⁇ (20)
  • control circuit 6B current command value calculation unit 431) of the second system determines that the operation of the control circuit 6A of the first system is stopped, as shown in the equation (21),
  • the steering torque Ts is multiplied by the coefficient Ka2 of the second system in the normal state and the increase rate K2 in the abnormal state to calculate the q-axis current command Iq2_ref of the second system.
  • the d-axis current command Id2_ref of the second system is set to 0.
  • the rate of increase K2 at the time of abnormality is set to a value larger than 1 (for example, 2).
  • Id2_ref 0
  • Iq2_ref K2 x Ka2 x Ts ... (21)
  • the current feedback control is performed based on the dq-axis current commands Id1_ref and Iq1_ref of the first system calculated by the equation (18) or the equation (20). Is performed, the three-phase voltage commands Vu1_ref, Vv1_ref, and Vw1_ref of the first system are calculated, and each switching element of the first system is turned on and off. Further, as in the first embodiment, in the control circuit 6B of the second system, the current feedback control is performed based on the dq-axis current commands Id2_ref and Iq2_ref of the second system calculated by the equation (19) or the equation (21). Is performed, the three-phase voltage commands Vu2_ref, Vv2_ref, and Vw2_ref of the second system are calculated, and each switching element of the second system is turned on and off.
  • the electric power steering device in which the AC rotating machine device is incorporated may be a device for automatic driving that automatically steers without operating the steering wheel of the driver.
  • the control circuit 6A of the first system detects the output signals of the two output windings of the first system detected at the current detection timing as the extraction process of the second period component.
  • An example is a case where the detection values V1A_Solde and V2A_Solde of the output signals of the two output windings of the first system detected at the detection timing before the second period extraction processing interval ⁇ Te1 are subtracted from the values V1A_S and V2A_S.
  • the embodiments of the present application are not limited to this.
  • what kind of processing is used by the control circuit 6A of the first system as long as it is a process of extracting the components V1A_TB and V2A_TB of the second period TB from the detected values V1A_S and V2A_S of the output signals of the two output windings of the first system. Processing may be performed.
  • the control circuit 6A of the first system reduces the components of the first cycle and passes through the components of the second cycle as the extraction process of the second cycle components, such as a high-pass filter process, a low-pass filter process, or a band-pass filter process.
  • Etc. may be configured to perform filtering processing such as.
  • the control circuit 6B of the second system detects the output signals of the two output windings of the second system detected at the current detection timing as the extraction process of the first period component.
  • the control circuit 6B of the second system detects the output signals of the two output windings of the second system detected at the current detection timing as the extraction process of the first period component.
  • what kind of processing is used by the control circuit 6B of the second system as long as it is a process of extracting the components V1B_TA and V2B_TA of the first period TA from the detected values V1B_S and V2B_S of the output signals of the two output windings of the second system. Processing may be performed.
  • the control circuit 6B of the second system reduces the components of the second period and passes through the components of the first period as the extraction process of the components of the first period, such as a high-pass filter process, a low-pass filter process, or a band-pass filter process.
  • Etc. may be configured to perform filtering processing such as.
  • the control circuit 6A of the first system has a detected value of the output signal of the first output winding after the extraction process of the second period component, as shown in the equation (9).
  • the square value of V1A_Fe and the square value of the output signal of the second output winding after the extraction process of the second period component are added to calculate the amplitude value Amp2 of the second period component.
  • the case where it is configured in is described as an example.
  • the embodiments of the present application are not limited to this. That is, the control circuit 6A of the first system performs any processing as long as it is a process of calculating the amplitude of the second period component extracted from the detected values of the output signals of the two output windings of the first system. May be good.
  • control circuit 6A of the first system detects the maximum value and the minimum value of a predetermined period from each of the two values V1A_Fe and V2A_Fe after the extraction process of the second period component, and the difference between the maximum value and the minimum value.
  • the amplitude may be calculated from.
  • control circuit 6A of the first system may calculate the amplitude from one of the two values V1A_Fe and V2A_Fe after the extraction process of the second period component, calculate the amplitude from both, and calculate the average value. You may.
  • the control circuit 6B of the second system has a detected value of the output signal of the third output winding after the extraction process of the first period component, as shown in the equation (17).
  • the square value of V1B_Fe and the square value of the output signal of the fourth output winding after the extraction process of the first period component are added to calculate the amplitude value Amp1 of the first period component.
  • the case where it is configured in is described as an example.
  • the embodiments of the present application are not limited to this. That is, the control circuit 6B of the second system performs any processing as long as it is a process of calculating the amplitude of the first period component extracted from the detected values of the output signals of the two output windings of the second system. May be good.
  • control circuit 6B of the second system detects the maximum value and the minimum value of a predetermined period from each of the two values V1B_Fe and V2B_Fe after the extraction process of the first period component, and the difference between the maximum value and the minimum value.
  • the amplitude may be calculated from.
  • control circuit 6B of the second system may calculate the amplitude from one of the two values V1B_Fe and V2B_Fe after the extraction process of the first period component, calculate the amplitude from both, and calculate the average value. You may.
  • the signal detection values V1A_S and V2A_S and the detection values V1A_Solde and V2A_Solde of the output signals of the two output windings of the first system detected at the detection timing before the second period extraction processing interval ⁇ Te1 from the current detection timing are added. Then, the component of the second period is extracted from the output signal of the first system.
  • the second period extraction processing interval ⁇ Te1 is set as shown in the following equation.
  • ⁇ Te1 TA / 2 + TA ⁇ Q ⁇ ⁇ ⁇ (22)
  • control circuit 6B (first system abnormality detection unit 45) of the second system detects the output signals of the two output windings of the second system detected at the current detection timing as the extraction process of the first period component.
  • the detection values V1B_Solde and V2B_Solde of the output signals of the two output windings of the second system detected at the detection timing before the first period extraction processing interval ⁇ Te2 from the current detection timing are subtracted from the values V1B_S and V2B_S. It is configured to extract the components of the first period from the output signals of the two systems.
  • the first period extraction processing interval ⁇ Te2 is set as shown in the following equation.
  • ⁇ T2e TB ⁇ O ⁇ ⁇ ⁇ (23)
  • the first period TA may be set to an even multiple of the second period TB as shown in the following equation.
  • TA TB x 2 x N ... (24)
  • the control circuit 6A of the first system determines whether the control circuit 6B of the second system has stopped operating based on the components of the second period extracted from the output signal of the first system.
  • the control circuit 6B of the second system is configured to determine the operation stop of the control circuit 6A of the first system based on the components of the first period extracted from the output signal of the second system.
  • the embodiments of the present application are not limited to this. That is, as in Patent Document 1, mutual operation confirmation may be additionally performed by mutual communication between the control circuit 6A of the first system and the control circuit 6B of the second system.
  • the control circuit 6B of the second system determines whether the control circuit 6A of the first system has stopped operating based on the components of the first period extracted from the output signal of the second system.
  • the case where it is configured to do so has been described as an example.
  • the embodiments of the present application are not limited to this. That is, the control circuit 6B of the second system may be configured so as not to extract the component of the first period from the output signal of the second system and not to determine the operation stop of the control circuit 6A of the first system.
  • the resolver 2 has the first exciting winding 10A and the first two output windings 111A and 112A wound around the first resolver stator 13A, and the second resolver 2.
  • the exciting winding 10B and the second two output windings 111B and 112B may be wound around the second resolver stator 13B.
  • the first resolver stator 13A and the second resolver stator 13B are arranged adjacent to each other in the axial direction, and magnetic interference occurs between the first winding and the second winding.
  • the rotor portion located radially inside the first resolver stator 13A and the rotor portion located radially inside the second resolver stator 13B have the same protruding portion shape.
  • the shape and number of protrusions may be different between the radially inner rotor portion of the first resolver stator 13A and the radially inner rotor portion of the second resolver stator 13B, and they rotate integrally. It may be a separate body connected so as to do so.
  • the control circuit 6A (first system voltage command calculation unit 33) of the first system rotates in synchronization with the angle ⁇ 1 of the first system, and the current on the dq-axis rotation coordinate system.
  • the three-phase voltage commands Vu1_ref, Vv1_ref, and Vw1_ref of the first system are calculated, and the control circuit 6B of the second system (second system voltage command calculation unit 43) synchronizes with the angle ⁇ 2 of the second system.
  • the case where the three-phase voltage commands Vu2_ref, Vv2_ref, and Vw2_ref of the second system are calculated by the current feedback control on the rotating dq-axis rotation coordinate system has been described as an example. However, the embodiments of the present application are not limited to this.
  • control circuit 6A of the first system calculates the three-phase voltage commands Vu1_ref, Vv1_ref, Vw1_ref of the first system based on the angle ⁇ 1 of the first system, which one Such a calculation method may be used.
  • the control circuit 6A of the first system may change the phase of a periodically changing AC signal such as a sine wave or a square wave according to the angle ⁇ 1 of the first system.
  • control circuit 6B of the second system calculates the three-phase voltage commands Vu2_ref, Vv2_ref, Vw2_ref of the second system based on the angle ⁇ 2 of the second system, which one Such a calculation method may be used.
  • the control circuit 6B of the second system may change the phase of a periodically changing AC signal such as a sine wave or a square wave according to the angle ⁇ 2 of the second system.
  • the AC rotating machine 1 is an AC rotating machine for an electric power steering device
  • the AC rotary machine 1 may be an AC rotary machine for a vehicle that is a driving force source for wheels, or an AC rotary machine for various purposes such as an AC rotary machine for driving an elevator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

他系統の制御回路の動作停止を精度よく判定できる交流回転機装置を提供する。第1系統の励磁巻線(10A)、第1系統の2つの出力巻線(111A、112A)、第2系統の励磁巻線(10B)、第2系統の2つの出力巻線(111B、112A)を有し、第1系統と第2系統との間で磁気干渉が生じるレゾルバ(2)と、第1系統の励磁巻線(10A)に第1周期(TA)の交流電圧を印加する第1系統の制御回路(6A)と、第2系統の励磁巻線(10B)に第2周期(TB)の交流電圧を印加する第2系統の制御回路(6B)と、を備え、第1系統の制御回路(6A)は、第1系統の出力信号から抽出した第2周期の成分に基づいて、第2系統の制御回路(6B)の動作が停止しているか否かを判定する交流回転機装置。

Description

交流回転機装置
 本願は、交流回転機装置に関するものである。
 エレベータ、電動パワーステアリング装置、電動車両等において、2系統の3相巻線を1つのステータに設けた2重3相モータを2台のインバータで駆動するシステムが普及している。そのシステムが普及する理由として、主に装置の大型化への対応、耐故障性(例えば、1系統が故障した場合におけるシステムの継続性)が挙げられる。
 特許文献1には、第1系統の3相巻線を駆動制御する第1系統の制御回路と、第2系統の3相巻線を駆動制御する第2系統の制御回路との間で、相互通信を行い、相手方の制御回路の動作異常を検出する技術が開示されている。
 例えば、特許文献1の図22を参照すると、マスター側のdq軸電流演算142、143から出力されたdq軸電流Id1、Iq1を、マスター側からスレーブ側へ送信し、スレーブ側の異常監視290において、マスター側の異常を監視すると共に、スレーブ側のdq軸電流演算242、243から出力されたdq軸電流Id2、Iq2を、スレーブ側からマスター側へ送信し、マスター側の異常監視190にて、スレーブ側の異常を監視している。
国際公開2018/088465号
 特許文献1(同文献における図22及び段落[0139])に記載の異常監視部190、290による異常の監視では、それらの監視部に入力される値が正常時と異なる場合に異常と判定する。しかしながら、正常時と異なる要因として「他系統の制御回路の動作異常」と「相互通信の通信異常」との2つの要因があり、どちらの要因で異常になっているかの切り分けができない。よって、異常要因が「相互通信の通信異常」であり、「他系統の制御回路の動作異常」でない場合において、異常と判定される可能性があり、異常時の制御に切り替えられる可能性がある。
 そこで、他系統の制御回路の動作停止を精度よく判定できる交流回転機装置が望まれる。
 本願に係る交流回転機装置は、
 第1系統の複数相の巻線と、第2系統の複数相の巻線を有する交流回転機と、
 前記第1系統の複数相の巻線に電圧を印加するための複数のスイッチング素子を有する第1系統のインバータと、
 前記第2系統の複数相の巻線に電圧を印加するための複数のスイッチング素子を有する第2系統のインバータと、
 前記交流回転機の回転位置を検出するためのセンサであって、第1系統の励磁巻線、第1系統の2つの出力巻線、第2系統の励磁巻線、第2系統の2つの出力巻線を有し、第1系統と第2系統との間で磁気干渉が生じるレゾルバと、
 前記第1系統の励磁巻線に第1周期の交流電圧を印加し、前記第1系統の2つの出力巻線から出力される第1系統の出力信号を検出し、前記第1系統の複数相の巻線に印加する第1系統の電圧指令を演算し、前記第1系統の電圧指令に基づいて、前記第1系統のインバータの複数のスイッチング素子をオンオフして、前記第1系統の複数相の巻線に電圧を印加する第1系統の制御回路と、
 前記第2系統の励磁巻線に、前記第1周期とは異なる第2周期の交流電圧を印加し、前記第2系統の2つの出力巻線から出力される第2系統の出力信号を検出し、前記第2系統の出力信号に含まれる前記第2周期の成分に基づいて前記交流回転機の第2系統の角度を検出し、前記第2系統の角度に基づいて、前記第2系統の複数相の巻線に印加する第2系統の電圧指令を演算し、前記第2系統の電圧指令に基づいて、前記第2系統のインバータの複数のスイッチング素子をオンオフして、前記第2系統の複数相の巻線に電圧を印加する第2系統の制御回路と、を備え、
 前記第1系統の制御回路は、前記第1系統の出力信号から前記第2周期の成分を抽出し、抽出した前記第2周期の成分に基づいて、前記第2系統の制御回路の動作が停止しているか否かを判定するものである。
 本願に係る交流回転機装置によれば、第2系統の制御回路に動作異常が発生し、第2系統の励磁巻線に第2周期の交流電圧が印加されなくなると、磁気干渉により第1系統の出力信号に生じる第2周期の成分が低下する。また、第2系統の制御回路は、第2系統の出力信号に含まれる第2周期の成分に基づいて、交流回転機の第2系統の角度を検出できなくなり、第2系統の角度に基づいて、第2系統の複数相の巻線に印加する第2系統の電圧指令を演算できなくなり、第2系統の複数相の巻線に電圧を印加できなくなる。よって、レゾルバの磁気干渉を利用し、第1系統の出力信号から抽出した第2周期の成分に基づいて、第2系統の制御回路に動作停止が発生したか否かを精度よく判定することができる。
実施の形態1に係る交流回転機装置の概略構成図である。 実施の形態1に係る第1系統の3相巻線及び第2系統の3相巻線の模式図である。 実施の形態1に係るレゾルバの模式図である。 実施の形態1に係るレゾルバを軸方向に見た側面図である。 実施の形態1に係る第1系統の検出タイミングを説明するためのタイムチャートである。 実施の形態1に係る第1系統の制御回路のブロック図である。 実施の形態1に係る第1系統の制御回路のハードウェア構成図である。 実施の形態1に係る第1系統の処理を説明するためのタイムチャートである。 実施の形態1に係る第1系統の処理を説明するための図である。 実施の形態1に係る第1系統の処理を説明するための図である。 実施の形態1に係る第1系統の除去処理部のブロック図である。 実施の形態1に係る第2周期抽出処理部のブロック図である。 実施の形態1に係る第2系統異常判定部の処理を説明するためのフローチャートである。 実施の形態1に係る第1系統の電流指令値演算部の処理を説明するためのフローチャートである。 実施の形態1に係る第2系統の制御回路のブロック図である。 実施の形態1に係る第2系統の制御回路のハードウェア構成図である。 実施の形態1に係る第2系統の処理を説明するためのタイムチャートである。 実施の形態1に係る第2系統の処理を説明するための図である。 実施の形態1に係る第2系統の処理を説明するための図である。 実施の形態1に係る第2系統の除去処理部のブロック図である。 実施の形態1に係る第1周期抽出処理部のブロック図である。 実施の形態1に係る第1系統異常判定部の処理を説明するためのフローチャートである。 実施の形態1に係る第2系統の電流指令値演算部の処理を説明するためのフローチャートである。 実施の形態2に係る電動パワーステアリング装置の概略構成図である。 その他の実施の形態に係るレゾルバの概略斜視図である。
1.実施の形態1
 実施の形態1に係る交流回転機装置について図面を参照して説明する。図1は、本実施の形態に係る交流回転機装置の概略構成図である。交流回転機装置は、交流回転機1、レゾルバ2、第1系統のインバータ4A、第2系統のインバータ4B、第1系統の制御回路6A、及び第2系統の制御回路6B等を備えている。
1-1.交流回転機1
 交流回転機1は、第1系統の複数相(本例では3相)の巻線N1と、第2系統の複数相(本例では3相)の巻線N2を有している。図2に示すように、第1系統の3相巻線N1は、U1相の巻線Cu1、V1相の巻線Cv1、W1相の巻線Cw1であり、第2系統の3相巻線N2は、U2相の巻線Cu2、V2相の巻線Cv2、W2相の巻線Cw2である。図2の例では、第1系統及び第2系統の3相巻線N1、N2は、Y結線とされているが、Δ結線とされてもよい。第1系統及び第2系統の3相巻線N1、N2は、1つのステータに巻装されている。第1系統の3相巻線N1と第2系統の3相巻線N2との間に位相差(例えば、電気角で、30+60×H度(Hは整数))が設けられてもよい。
 ステータの径方向内側にはロータが設けられている。交流回転機1は、ロータに永久磁石が設けられた永久磁石同期回転機とされてもよいし、ロータに電磁石が設けられた巻線界磁同期回転機とされてもよいし、ロータに磁石が設けられていない誘導回転機又は同期リラクタンス回転機とされてもよい。以下で説明する例では、ロータに永久磁石が設けられた場合について説明する。
1-2.レゾルバ2
 レゾルバ2は、交流回転機1のロータの回転位置を検出するためのセンサである。図3に示すように、レゾルバ2は、第1系統の励磁巻線10A、第1系統の2つの出力巻線111A、112A(第1出力巻線111A、第2出力巻線112Aとも称す)、第2系統の励磁巻線10B、第2系統の2つの出力巻線111B、112B(第3出力巻線111B、第4出力巻線112Bとも称す)を有している。第1系統の巻線10A、111A、112Aと第2系統の巻線10B、111B、112Bとの間で磁気干渉が生じる。すなわち、第1系統の励磁巻線10Aが発生した磁束により、第1系統の2つの出力巻線111A、112Aだけでなく、第2系統の2つの出力巻線111B、112Bにも、誘起電圧が生じ、第2系統の励磁巻線10Bが発生した磁束により、第2系統の2つの出力巻線111B、112Bだけでなく、第1系統の2つの出力巻線111A、112Aにも、誘起電圧が生じる。
 図4に示すように、第1系統の励磁巻線10A、第1系統の2つの出力巻線111A、112A、第2系統の励磁巻線10B、及び第2系統の2つの出力巻線111B、112Bは、同じ1つのレゾルバステータ13に巻装されている。レゾルバステータ13は、周方向に均等配置された12個のティースTE1からTE12を備えている。レゾルバステータ13の径方向内側にレゾルバロータ14が配置されている。レゾルバロータ14は、交流回転機1のロータと一体回転するように、ロータの回転軸に取り付けられている。レゾルバロータ14は、外周部に周方向に均等配置された複数の突出部を備えている。突出部の径方向外側への突出高さは、レゾルバステータ13及びレゾルバロータ14間のギャップパーミアンスが、回転に応じて、正弦波状に変化するように形成されている。すなわち、レゾルバ2は、可変リラクタンス(VR)型レゾルバとされている。本実施の形態は、5つの突出部が設けられており、軸倍角は5とされている。よって、ロータが機械角で1回転する毎に、電気角で5回転する。
 図5に系統間の磁気干渉がないと仮定した例を示すように、第1系統の励磁巻線10Aに交流電圧VRAが印加されている状態で、ロータが回転すると、ロータの電気角での回転角度(ギャップパーミンアンス)に応じて第1系統の第1出力巻線111Aに誘起される交流電圧V1Aの振幅、及び第1系統の第2出力巻線112Aに誘起される交流電圧V2Aの振幅が正弦波状(又は余弦波状)に変化する。第1系統の第1出力巻線111Aと第1系統の第2出力巻線112Aとは、それらの交流電圧の振幅が相互に電気角で90度異なるように、レゾルバステータ13の周方向の位置に巻装されている。同様に、第2系統の第3出力巻線111Bと第2系統の第4出力巻線112Bとは、それらの誘起交流電圧の振幅が相互に電気角で90度異なるように、レゾルバステータ13の周方向の位置に巻装されている。
 複数のティースに巻装された第1系統の励磁巻線10Aは、ティース間で直列に接続されており、直列に接続された第1系統の励磁巻線10Aの2つの端子が、後述する第1系統の制御回路6Aに接続されている。同様に、ティース間で直列に接続された第1系統の第1出力巻線111Aの2つの端子が、第1系統の制御回路6Aに接続されている。ティース間で直列に接続された第1系統の第2出力巻線112Aの2つの端子が、第1系統の制御回路6Aに接続されている。直列に接続された第2系統の励磁巻線10Bの2つの端子が、後述する第2系統の制御回路6Bに接続されている。同様に、ティース間で直列に接続された第2系統の第3出力巻線111Bの2つの端子が、第2系統の制御回路6Bに接続されている。ティース間で直列に接続された第2系統の第4出力巻線112Bの2つの端子が、第2系統の制御回路6Bに接続されている。
 なお、突出部の数(軸倍角)及びティース数は、任意の数に設定されてもよい。第1系統の巻線及び第2系統の巻線は、周方向に2つに分割されて配置されてなくてもよく、周方向に分散して配置されてもよい。
1-3.第1系統のインバータ4A
 第1系統のインバータ4Aは、第1系統の3相巻線N1に電圧を印加するための複数のスイッチング素子を有する。第1系統のインバータ4Aは、第1系統の直流電源3Aの直流電力と、第1系統の3相巻線N1に供給する交流電力とを変換する。
 第1系統のインバータ4Aは、第1系統の直流電源3Aの正極端子に接続される正極側のスイッチング素子Spと、第1系統の直流電源3Aの負極端子に接続される負極側のスイッチング素子Snと、が直列接続された直列回路を、3相各相の巻線に対応して3セット設けている。そして、各直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続される。スイッチング素子には、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、第1系統の制御回路6Aに接続されている。よって、各スイッチング素子は、第1系統の制御回路6Aから出力されるスイッチング信号によりオン又はオフされる。
 第1系統のインバータ4Aは、第1系統の各相の巻線に流れる電流を検出するための第1系統の電流センサ5Aを備えている。第1系統の電流センサ5Aは、各相のスイッチング素子の直列回路と電機子巻線とをつなぐ電線上に備えられたホール素子等とされている。なお、第1系統の電流センサ5Aは、各相のスイッチング素子の直列回路に直列接続されたシャント抵抗とされてもよい。
 第1系統の直流電源3Aは、第1系統のインバータ4Aに直流電圧を出力する。第1系統の直流電源3Aとして、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する任意の機器が用いられる。
1-4.第2系統のインバータ4B
 第2系統のインバータ4Bは、第2系統の3相巻線N2に電圧を印加するための複数のスイッチング素子を有する。第2系統のインバータ4Bは、第2系統の直流電源3Bの直流電力と、第2系統の3相巻線N2に供給する交流電力とを変換する。
 第2系統のインバータ4Bは、第2系統の直流電源3Bの正極端子に接続される正極側のスイッチング素子Spと、第2系統の直流電源3Bの負極端子に接続される負極側のスイッチング素子Snと、が直列接続された直列回路を、3相各相の巻線に対応して3セット設けている。そして、各直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続される。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、第2系統の制御回路6Bに接続されている。よって、各スイッチング素子は、第2系統の制御回路6Bから出力されるスイッチング信号によりオン又はオフされる。
 第2系統のインバータ4Bは、第2系統の各相の巻線に流れる電流を検出するための第2系統の電流センサ5Bを備えている。第2系統の電流センサ5Bは、各相のスイッチング素子の直列回路と電機子巻線とをつなぐ電線上に備えられたホール素子等とされている。なお、第2系統の電流センサ5Bは、各相のスイッチング素子の直列回路に直列接続されたシャント抵抗とされてもよい。
 第2系統の直流電源3Bは、第2系統のインバータ4Bに直流電圧を出力する。第2系統の直流電源3Bとして、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する任意の機器が用いられる。第1系統の直流電源3Aと第2系統の直流電源3Bとは、同じものとされてもよい。
1-5.第1系統の制御回路6A
 図6に示すように、第1系統の制御回路6Aは、第1系統励磁印加部30、第1系統出力信号検出部31、第1系統角度演算部32、第1系統電圧指令演算部33、第1系統電圧印加部34、及び第2系統異常検出部35等の機能部を備えている。
 第1系統の制御回路6Aの各機能部30~35等の機能は、第1系統の制御回路6Aが備えた処理回路により実現される。具体的には、第1系統の制御回路6Aは、図7に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93、及び外部装置50とデータ通信を行う通信装置94等を備えている。
 演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、RAM(Random Access Memory)及びROM(Read Only Memory)等が備えられている。
 入力回路92には、第1系統の第1出力巻線111A及び第2出力巻線112A、第1系統の電流センサ5A等の各種のセンサが接続されている。入力回路92は、各出力巻線の出力電圧、センサの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93には、第1系統の励磁巻線10Aが接続され、この励磁巻線に交流電圧VRAを印加するためのスイッチング素子等の駆動回路を備えている。また、出力回路93には、第1系統のインバータ4Aの複数のスイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。通信装置94は、外部装置50と通信を行う。
 そして、第1系統の制御回路6Aが備える各機能部30~35等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、出力回路93、及び通信装置94等の第1系統の制御回路6Aの他のハードウェアと協働することにより実現される。なお、各機能部30~35等が用いる第1周期、第1系統除去処理間隔、第2周期抽出処理間隔、判定閾値等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。
1-5-1.第1系統の角度検出処理
<第1系統励磁印加部30>
 第1系統励磁印加部30は、第1系統の励磁巻線10Aに第1周期TAの交流電圧VRAを印加する。ただし、第1系統励磁印加部30は、「”H”レベル(例えば5V)」と「”L”レベル(例えば0V)」の2値の電圧を交互に出力する第1周期TAの矩形波信号を駆動回路により生成し、その出力をローパスフィルタ回路に入力し、ローパスフィルタ回路の出力を交流電圧VRAとして第1系統の励磁巻線10Aに印加してもよい。
<第1系統出力信号検出部31>
 第1系統出力信号検出部31は、第1系統の2つの出力巻線111A、112Aの出力信号V1A、V2Aを予め設定された検出タイミング(以下、第1系統の検出タイミングとも称す)で周期的に検出する。
 本実施の形態では、第1系統出力信号検出部31は、第1系統の励磁巻線10Aに印加される第1周期TAの交流電圧VRAが最大値又は最小値(本例では、最大値)になるタイミングで、第1系統の2つの出力巻線の出力信号V1A、V2Aを検出するように構成されている。すなわち、第1系統の検出タイミングは、第1周期TA毎のタイミングに設定されている。
<第1系統角度演算部32>
 図8に第1出力巻線111Aの出力信号V1Aの例を示すように、第1系統の2つの出力巻線111A、112Aの出力信号V1A、V2Aには、それぞれ、系統間の磁気干渉により、第2系統の励磁巻線10Bに励磁された第2周期TBの磁束により誘起された第2周期の成分V1A_TB、V2A_TBが重畳する。図8の上段のグラフに、第1出力巻線111Aの出力信号V1Aを示し、中段のグラフに、第1出力巻線111Aの出力信号V1Aに含まれる、第1系統の励磁巻線10Aの磁束により誘起された第1周期の成分V1A_TAを示し、下段のグラフに、第1出力巻線111Aの出力信号V1Aに含まれる、第2系統の励磁巻線10Bの磁束により誘起された第2周期の成分V1A_TBを示す。第1出力巻線111Aの出力信号V1Aは、第1周期の成分V1A_TAと第2周期の成分V1A_TBとを合計した信号となる。本実施の形態では、第1周期TAは、第2周期TBよりも小さく設定されている。
 ここで、図9及び図10に、第1出力巻線の出力信号V1Aの実測値の周波数解析結果を示す。図9の例は、第2系統の励磁巻線10Bに第2周期TBの交流電圧VRBが印加されている場合であり、図10の例は、第2系統の励磁巻線10Bに第2周期TBの交流電圧VRBが印加されていない場合である。実測試験条件として、TA=50μs、TB=100μsとなっている。図9及び図10の横軸は周波数であり、縦軸は出力信号の振幅を示している。
 図9の例では、第1出力巻線の出力信号V1Aには、第1系統の励磁巻線10Aに印加された第1周期TAの交流電圧に起因する第1周期の成分V1A_TAの他に、第2系統の励磁巻線10Bに印加された第2周期TBの交流電圧に起因する第2周期の成分V1A_TBが干渉電圧として重畳している。図10の例では、第1出力巻線の出力信号V1Aには、第1周期の成分V1A_TAが重畳し、第2周期の成分V1A_TBが重畳しなくなる。このことは、第2出力巻線の出力信号V2Aについても同様である。
 よって、第2周期の成分V1A_TB、V2A_TBが重畳した第1出力巻線の出力信号V1A及び第2出力巻線の出力信号V2Aに基づいて、角度を算出すると検出誤差が生じる。そのため、角度の検出誤差を抑制するため、第1出力巻線の出力信号V1A及び第2出力巻線の出力信号V2Aから、第2周期の成分V1A_TB、V2A_TBを除去する必要がある。
 そこで、第1系統角度演算部32は、第1系統の除去処理部321と、第1系統の除去処理後角度演算部とを備えている。第1系統の除去処理部321は、第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sに対して、第2周期の成分を除去(低減)する第2周期成分の除去処理を行う。そして、第1系統の除去処理後角度演算部は、第2周期成分の除去処理後の第1系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_Fに基づいて第1系統の角度θ1を算出する。
 本実施の形態では、以下で説明する原理に基づいて、第2周期成分の除去処理を行うように構成されている。図8の下段のグラフに示すように、第1出力巻線の出力信号の第2周期の成分V1A_TBは、第2周期の半周期TB/2に第2周期TBの整数倍を加算した周期(例えば、第2周期の半周期TB/2)で、位相が反転し、プラスマイナスの符号が反転する。
 そこで、第1系統の除去処理部321は、第2周期成分の除去処理として、今回の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sと、今回の検出タイミングよりも第1系統除去処理間隔ΔT1前の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_Sold、V2A_Soldとを加算するように構成されている。第1系統除去処理間隔ΔT1は、次式に示すように設定されている。ここで、Mは、0以上の整数である。本実施の形態では、M=0に設定されており、第1系統除去処理間隔ΔT1は、第2周期の半周期TB/2に設定されている。
 ΔT1=TB/2+TB×M    ・・・(1)
 本実施の形態では、第2周期TBは、次式に示すように、第1周期TAの偶数倍に設定されている。ここで、Nは、1以上の整数である。本実施の形態では、N=1に設定されており、第2周期TBは、第1周期TAの2倍値に設定されている。
 TB=TA×2×N       ・・・(2)
 このように設定すると、式(2)を式(1)に代入した次式に示すように、第1系統除去処理間隔ΔT1は、第1周期TAの整数倍となる。
 ΔT1=TA×(N+2×N×M)    ・・・(3)
 よって、第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sの内、第1周期TAの整数倍前後の値が加算される。よって、図8に示すように、加算される2つの第1周期の成分は、位相が同じであり、プラスマイナスの符号が同じ同等の値になるため、加算後の第1系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_Fは、それぞれ、検出値に含まれる第1周期の成分V1A_TA、V2A_TAの2倍値に相当する。
 V1A_F≒2×V1A_TA
 V2A_F≒2×V2A_TA     ・・・(4)
 第1系統の除去処理部321は、例えば、図11に示すように構成される。第1系統の除去処理部321は、第1出力巻線の出力信号の検出値V1A_Sを第1系統除去処理間隔ΔT1だけ遅延して出力する第1遅延器3211を備えており、第1出力巻線の出力信号の検出値V1A_Sと、第1遅延器3211の出力V1A_Soldとを加算して、第2周期成分の除去処理後の第1出力巻線の出力信号の検出値V1A_Fを算出する。同様に、第1系統の除去処理部321は、第2出力巻線の出力信号の検出値V2A_Sを第1系統除去処理間隔ΔT1だけ遅延して出力する第2遅延器3212を備えており、第2出力巻線の出力信号の検出値V2A_Sと、第2遅延器3212の出力V2A_Soldとを加算して、第2周期成分の除去処理後の第2出力巻線の出力信号の検出値V2A_Fを算出する。
 そして、第1系統の除去処理後角度演算部は、加算後の第1系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_Fに基づいて第1系統の角度θ1を算出するように構成されている。
 この構成によれば、互いにプラスマイナスの符号が反転している2つの第2周期の成分が加算され、2つの第2周期の成分が互いに打ち消される。よって、加算後の第1系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_Fでは、第2周期の成分が除去される。そして、第2周期の成分を除去された後の検出値に基づいて、精度よく第1系統の角度θ1を算出することができる。
 本実施の形態では、第1系統の除去処理後角度演算部は、次式に示すように、第2周期成分の除去処理後の第1出力巻線の出力信号の検出値V1A_Fと、第2出力巻線の出力信号の検出値V2A_Fとの比の、アークタンジェント(逆正接関数)を算出することにより、第1系統の角度θ1を算出する。また、第1系統の角度θ1に基づいて、角速度も算出される。
 θ1=tan-1(V1A_F/V2A_F)   ・・・(5)
1-5-2.第1系統の電圧印加処理
 第1系統電圧指令演算部33は、第1系統の角度θ1に基づいて、第1系統の3相巻線N1に印加する第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refを演算する。そして、第1系統電圧印加部34は、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refに基づいて、第1系統のインバータ4Aの複数のスイッチング素子をオンオフして、第1系統の3相巻線N1に電圧を印加する。
 本実施の形態では、第1系統の角度θ1に同期して回転するdq軸回転座標系上の電流フィードバック制御により、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refを算出するように構成されている。第1系統電圧指令演算部33は、電流指令値演算部331、電流制御部332、電流座標変換部333、及び電圧座標変換部334を備えている。
 dq軸回転座標は、ロータの磁束方向に定めたd軸、及びd軸より電気角でπ/2進んだ方向に定めたq軸からなる回転座標とされている。本実施の形態では、ロータの磁束方向は、ロータに設けられた永久磁石のN極の向きとされている。
 図6に示すように、電流指令値演算部331は、d軸電流指令Id1_ref及びq軸電流指令Iq1_refを算出する。電流指令値演算部331は、後述する第2系統異常検出部35により第2系統の制御回路6Bの動作が停止していないと判定されている場合は、交流回転機に出力させるトルク指令Tallに、正常時の第1系統の分担率を乗算し、第1系統のトルク指令T1を算出する。正常時の第1系統の分担率は、1より小さい値(例えば、0.5)に設定される。電流指令値演算部331は、第1系統のトルク指令T1、電源電圧、及び角速度等に基づいて、最大トルク電流制御、弱め磁束制御、及びId=0制御などの電流ベクトル制御方法に従って、第1系統のdq軸電流指令Id1_ref、Iq1_refを算出する。本実施の形態では、トルク指令Tallは、外部装置50から伝達される。トルク指令Tallは、分担後の正常時の第1系統のトルク指令であってもよい。トルク指令Tallは、Id=0制御のq軸電流指令であってもよい。トルク指令Tallは、電流指令値演算部331内で演算されてもよい。
 電流座標変換部333は、第1系統の電流センサ5Aにより検出した第1系統の各相の巻線に流れる電流検出値Iu1、Iv1、Iw1を、第1系統の角度θ1に基づいて、3相2相変換及び回転座標変換を行って、dq軸回転座標系で表した第1系統のd軸電流検出値Id1及びq軸電流検出値Iq1に変換する。
 電流制御部332は、第1系統のd軸電流検出値Id1及びq軸電流検出値Iq1が、d軸電流指令Id1_ref及びq軸電流指令Iq1_refに近づくように、PI制御等により、第1系統のd軸電圧指令Vd1_ref及びq軸電圧指令Vq1_refを変化させるフィードバック制御を行う。
 電圧座標変換部334は、第1系統のd軸電圧指令Vd1_ref及びq軸電圧指令Vq1_refを、第1系統の角度θ1に基づいて、固定座標変換及び2相3相変換を行って、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refに変換する。3相電圧指令に対して、各種の変調が加えられてもよい。
 第1系統電圧印加部34は、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refに基づいて、PWM(Pulse Width Modulation)制御により第1系統のインバータ4Aが有する複数のスイッチング素子をオンオフする。第1系統電圧印加部34は、3相電圧指令のそれぞれとキャリア波とを比較することにより、各相のスイッチング素子をオンオフするスイッチング信号を生成する。キャリア波は、直流電圧の振幅を有し、キャリア周波数で振動する三角波とされている。第1系統電圧印加部34は、電圧指令がキャリア波を上回った場合は、スイッチング信号をオンし、電圧指令がキャリア波を下回った場合は、スイッチング信号をオフする。正極側のスイッチング素子Spには、スイッチング信号がそのまま伝達され、負極側のスイッチング素子Snには、スイッチング信号を反転させたスイッチング信号が伝達される。各スイッチング信号は、ゲート駆動回路を介して、第1系統のインバータ4Aの各スイッチング素子のゲート端子に入力され、各スイッチング素子をオン又はオフさせる。
1-5-3.第2系統の異常検出
 第2系統の制御回路6Bに動作異常が生じ、第2系統の3相巻線N2に電圧が印加されなくなると、交流回転機1の出力トルクが低下する。そのため、第1系統の制御回路6Aは、第2系統の制御回路6Bの動作異常を検知した場合に、何らかの対応を取ることが望ましい。一方、第2系統の制御回路6Bの動作異常を検知するために、特許文献1のように相互通信を行う通信回路等の、異常検知のための異常検知回路を設けることが考えられる。しかし、異常検知回路に異常が生じる場合があり、その場合は、第2系統の制御回路6Bが正常に3相巻線に電圧を印加しているに関わらず、第2系統の制御回路6Bに電圧印加動作の異常が生じたと判定される可能性がある。そこで、本願では、異常検知のための特別な回路を設けることなく、レゾルバ2の磁気干渉を利用し、第2系統の制御回路6Bの電圧印加動作の異常を精度よく検出するように構成されている。
 そこで、第2系統異常検出部35は、第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sから第2周期TBの成分V1A_TB、V2A_TBを抽出し、抽出した第2周期の成分V1A_TB、V2A_TBに基づいて、第2系統の制御回路6Bの動作が停止しているか否かを判定する。
 CPUの動作異常等により、第2系統の制御回路6Bに動作異常が生じると、第2系統の励磁巻線10Bに第2周期TBの交流電圧VRBが印加されなくなる。第2系統の励磁巻線10Bに第2周期TBの交流電圧VRBが印加されなくなると、磁気干渉により第1系統の出力信号に生じる第2周期TBの成分V1A_TB、V2A_TBが低下する。また、第2系統の制御回路6Bは、第2系統の出力信号に含まれる第2周期TBの成分に基づいて、交流回転機の第2系統の角度θ2を検出できなくなり、第2系統の角度θ2に基づいて、第2系統の3相巻線N2に印加する第2系統の電圧指令を演算できなくなり、第2系統の3相巻線N2に電圧を印加できなくなる。よって、レゾルバ2の磁気干渉を利用し、第1系統の出力信号から抽出した第2周期TBの成分に基づいて、第2系統の制御回路6Bに電圧印加の動作停止が発生したか否かを精度よく判定することができる。
<第2周期成分の抽出処理>
 本実施の形態では、以下で説明する原理に基づいて、第2周期成分の抽出処理を行うように構成されている。図8の例では、第1周期TAが第2周期TBよりも小さく設定されている。図8の中段のグラフに示すように、第1の出力巻線の出力信号に含まれる第1周期の成分V1A_TAは、第1周期TAの整数倍の周期(例えば、第1周期TA)で、位相が同じであり、プラスマイナスの符号が同じ同等の値になる。よって、第1周期TAの整数倍の周期だけ前後する2つの第1系統の出力信号を相互に減算すれば、第1周期TAの成分を相互に打ち消すことができ、第2周期TBの成分を抽出することができる。
 そこで、第2系統異常検出部35は、第2周期成分の抽出処理として、今回の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sから、今回の検出タイミングよりも第2周期抽出処理間隔ΔTe1前の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_Solde、V2A_Soldeを減算するように構成されている。第2周期抽出処理間隔ΔTe1は、次式に示すように、第1周期TAの整数倍に設定されている。ここで、Oは、1以上の整数である。本実施の形態では、O=1に設定されており、第2周期抽出処理間隔ΔTe1は、第1周期TAに設定されている。
 ΔTe1=TA×O    ・・・(6)
 本実施の形態では、第2周期TBは、式(2)に示すように、第1周期TAの偶数倍に設定されている。よって、式(2)を式(6)に代入した次式に示すように、第2周期抽出処理間隔ΔTe1は、第2周期の半周期TB/2のO/N倍となる。本実施の形態のようにO/Nを奇数に設定すると、第2周期抽出処理間隔ΔTe1は、第2周期の半周期TB/2の奇数倍になる。
 ΔTe1=TB/2×(O/N)    ・・・(7)
 よって、第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sの内、第2周期の半周期TB/2の奇数倍前後の値が減算される。よって、図8の下段のグラフに示すように、減算される2つの第2周期の成分は、位相が反転し、プラスマイナスの符号が反転するため、減算処理後の第1系統の2つの出力巻線の出力信号の検出値V1A_Fe、V2A_Feは、それぞれ、検出値に含まれる第2周期の成分V1A_TB、V2A_TBの2倍値に相当する。
 V1A_Fe≒2×V1A_TB
 V2A_Fe≒2×V2A_TB    ・・・(8)
 第2系統異常検出部35は、図12に示すような第2周期抽出処理部351を備えている。第2周期抽出処理部351は、第1出力巻線の出力信号の検出値V1A_Sを第2周期抽出処理間隔ΔTe1だけ遅延して出力する第1抽出遅延器3511を備えており、第1出力巻線の出力信号の検出値V1A_Sから、第1抽出遅延器3511の出力V1A_Soldeを減算して、第2周期成分の抽出処理後の第1出力巻線の出力信号の検出値V1A_Feを算出する。同様に、第2周期抽出処理部351は、第2出力巻線の出力信号の検出値V2A_Sを第2周期抽出処理間隔ΔTe1だけ遅延して出力する第2抽出遅延器3512を備えており、第2出力巻線の出力信号の検出値V2A_Sから、第2抽出遅延器3512の出力V2A_Soldeを減算して、第2周期成分の抽出処理後の第2出力巻線の出力信号の検出値V2A_Feを算出する。
 そして、第2周期抽出処理部351は、第2周期成分の抽出処理後の第1系統の2つの出力巻線の出力信号の検出値V1A_Fe、V2A_Feに基づいて、第2周期の成分の振幅を算出する第2周期振幅演算部3513を備えている。
 本実施の形態では、上述したように、第1出力巻線の出力信号の位相と第2出力巻線の出力信号の位相が、電気角で90度異なるように構成されている。よって、第2周期成分の抽出処理後の第1出力巻線の出力信号の検出値V1A_Feと、第2周期成分の抽出処理後の第2出力巻線の出力信号の検出値V2A_Feとは、正弦波(sinθ)と余弦波(cosθ)との関係になる。よって、正弦波の2乗値と余弦波の2乗値との和は1になるので(sinθ+cosθ=1)、正弦波の2乗値と余弦波の2乗値とを加算することで、第2周期成分の振幅の2乗値を算出することができる。
 そこで、第2周期振幅演算部3513は、次式に示すように、第2周期成分の抽出処理後の第1出力巻線の出力信号の検出値V1A_Feの2乗値と、第2周期成分の抽出処理後の第2出力巻線の出力信号の検出値V2A_Feの2乗値とを加算して、第2周期成分の振幅値Amp2(振幅の2乗値)を算出する。
 Amp2=V1A_Fe+V2A_Fe    ・・・(9)
<第2系統の制御回路の動作停止判定>
 第2系統異常検出部35は、第2系統異常判定部を備えている。第2系統異常判定部は、第1系統の出力信号から抽出した第2周期の成分の振幅に基づいて、第2系統の制御回路の動作が停止しているか否かを判定する。
 図13のフローチャートに示すように、ステップS01で、第2系統異常判定部は、第2周期成分の振幅値Amp2が、第2周期成分用の判定閾値Vth2よりも大きいか否かを判定し、大きい場合はステップS02に進み、大きくない場合はステップS03に進む。ステップS02で、第2系統異常判定部は、第2系統異常判定フラグStop2を0に設定し、第2系統の制御回路6Bの動作が停止していないと判定する。一方、ステップS03で、第2系統異常判定部は、第2系統異常判定フラグStop2を1に設定し、第2系統の制御回路6Bの動作が停止していると判定する。
1-5-4.第2系統の異常検出時の第1系統のトルク増加
 第1系統電圧印加部34は、第2系統異常検出部35により第2系統の制御回路6Bの動作が停止していると判定されている場合は、第2系統の制御回路6Bの動作が停止していないと判定されている場合よりも、第1系統の3相巻線N1による出力トルクが増加するように、第1系統の電圧指令を変化させる。
 第2系統の制御回路6Bの動作が停止し、第2系統の3相巻線N2がトルクを出力しなくなると、交流回転機1全体の出力トルクが低下する。上記の構成のように、第2系統の制御回路6Bの動作停止が判定された場合に、第2系統の制御回路6Bの動作停止が判定されていない正常時よりも、第1系統の3相巻線N1による出力トルクを増加させるので、第2系統の制御回路6Bの動作が停止したとしても、交流回転機1全体の出力トルクの低下を抑制することができる。
 第2系統の制御回路6Bの動作停止の判定時は、電流指令値演算部331は、交流回転機に出力させるトルク指令Tallに、異常時の第1系統の分担率を乗算し、第1系統のトルク指令T1を算出する。異常時の第1系統の分担率は、正常時の第1系統の分担率よりも大きい値(例えば、1.0)に設定される。上述したように、電流指令値演算部331は、第1系統のトルク指令T1、電源電圧、及び角速度等に基づいて、第1系統のdq軸電流指令Id1_ref、Iq1_refを算出する。そして、上述した正常時と同様に、第1系統のdq軸電流指令Id1_ref、Iq1_refに基づいて、電流フィードバック制御が行われ、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refが算出され、各スイッチング素子がオンオフされる。
 図14のフローチャートを用いて、トルク指令Tallが、正常時のId=0制御の第1系統のq軸電流指令Iq_tr1で与えられる場合の例を説明する。ステップS11で、電流指令値演算部331は、第2系統異常判定部により第2系統の制御回路6Bの動作が停止していると判定されているか否かを判定し、停止していると判定されていない場合は、ステップS12に進み、停止していると判定されている場合は、ステップS13に進む。第2系統異常判定フラグStop2が0である場合は、第2系統の制御回路6Bの動作が停止していないと判定され、第2系統異常判定フラグStop2が1である場合は、第2系統の制御回路6Bの動作が停止していると判定される。
 正常判定時は、ステップS12で、電流指令値演算部331は、第1系統のq軸電流指令Iq_tr1を第1系統のq軸電流指令Iq1_refにそのまま設定し、第1系統のd軸電流指令Id1_refを0に設定する。異常判定時は、ステップS13で、電流指令値演算部331は、第1系統のq軸電流指令Iq_tr1に異常時の増加率K1を乗算した値を第1系統のq軸電流指令Iq1_refに設定し、第1系統のd軸電流指令Id1_refを0に設定する。異常時の増加率K1は、1よりも大きい値(例えば、2)に設定されている。異常時の増加率K1又は異常時の第1系統の分担率は、交流回転機の冷却性能、巻線及びスイッチング素子の上限電流、永久磁石の減磁抑制等を考慮して設定される。
1-6.第2系統の制御回路6B
 図15に示すように、第2系統の制御回路6Bは、第2系統励磁印加部40、第2系統出力信号検出部41、第2系統角度演算部42、第2系統電圧指令演算部43、第2系統電圧印加部44、及び第1系統異常検出部45等の機能部を備えている。
 第2系統の制御回路6Bの各機能部40~45等の機能は、第2系統の制御回路6Bが備えた処理回路により実現される。具体的には、第2系統の制御回路6Bは、図16に示すように、処理回路として、CPU等の演算処理装置80(コンピュータ)、演算処理装置80とデータのやり取りする記憶装置81、演算処理装置80に外部の信号を入力する入力回路82、及び演算処理装置80から外部に信号を出力する出力回路83、及び外部装置50とデータ通信を行う通信装置84等を備えている。
 演算処理装置80として、ASIC、IC、DSP、FPGA、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置80として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置81として、RAM及びROM等が備えられている。
 入力回路82には、第2系統の第3出力巻線111B及び第4出力巻線112B、第2系統の電流センサ5B等の各種のセンサが接続されている。入力回路82は、各出力巻線の出力電圧、センサの出力信号を演算処理装置80に入力するA/D変換器等を備えている。出力回路83には、第2系統の励磁巻線10Bが接続され、この励磁巻線に交流電圧VRBを印加するためのスイッチング素子等の駆動回路を備えている。また、出力回路83には、第2系統のインバータ4Bの複数のスイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置80から制御信号を出力する駆動回路等を備えている。通信装置84は、外部装置50と通信を行う。
 そして、第2系統の制御回路6Bが備える各機能部40~45等の各機能は、演算処理装置80が、ROM等の記憶装置81に記憶されたソフトウェア(プログラム)を実行し、記憶装置81、入力回路82、出力回路83、及び通信装置84等の第2系統の制御回路6Bの他のハードウェアと協働することにより実現される。なお、各機能部40~45等が用いる第2周期、第1周期抽出処理間隔、第2系統除去処理間隔、判定閾値等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置81に記憶されている。
1-6-1.第2系統の角度検出処理
<第2系統励磁印加部40>
 第2系統励磁印加部40は、第2系統の励磁巻線10Bに第2周期TBの交流電圧VRBを印加する。ただし、第2系統励磁印加部40は、「”H”レベル(例えば5V)」と「”L”レベル(例えば0V)」の2値の電圧を交互に出力する第2周期TBの矩形波信号を駆動回路により生成し、その出力をローパスフィルタ回路に入力し、ローパスフィルタ回路の出力を交流電圧VRBとして第2系統の励磁巻線10Bに印加してもよい。
<第2系統出力信号検出部41>
 第2系統出力信号検出部41は、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bを予め設定された検出タイミング(以下、第2系統の検出タイミングとも称す)で周期的に検出する。
 本実施の形態では、第2系統出力信号検出部41は、第2系統の励磁巻線10Bに印加される第2周期TBの交流電圧VRBが最大値又は最小値(本例では、最大値)になるタイミングで、第2系統の2つの出力巻線の出力信号V1B、V2Bを検出するように構成されている。すなわち、第2系統の検出タイミングは、第2周期TB毎のタイミングに設定されている。
<第2系統角度演算部42>
 図17に第3出力巻線111Bの出力信号V1Bの例を示すように、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bには、それぞれ、系統間の磁気干渉により、第1系統の励磁巻線10Aに励磁された第1周期TAの磁束により誘起された第1周期の成分V1B_TA、V2B_TAが重畳する。図17の上段のグラフに、第3出力巻線111Bの出力信号V1Bを示し、中段のグラフに、第3出力巻線111Bの出力信号V1Bに含まれる、第2系統の励磁巻線10Bの磁束により誘起された第2周期の成分V1B_TBを示し、下段のグラフに、第3出力巻線111Bの出力信号V1Bに含まれる、第1系統の励磁巻線10Aの磁束により誘起された第1周期の成分V1B_TAを示す。第3出力巻線111Bの出力信号V1Bは、第2周期の成分V1B_TBと第1周期の成分V1B_TAとを合計した信号となる。本実施の形態では、第1周期TAは、第2周期TBよりも小さく設定されている。
 ここで、図18及び図19に、第3出力巻線の出力信号V1Bの実測値の周波数解析結果を示す。図18の例は、第1系統の励磁巻線10Aに第1周期TAの交流電圧VRAが印加されている場合であり、図19の例は、第1系統の励磁巻線10Aに第1周期TAの交流電圧VRAが印加されていない場合である。実測試験条件として、TA=50μs、TB=100μsとなっている。図18及び図19の横軸は周波数であり、縦軸は出力信号の振幅を示している。
 図18の例では、第3出力巻線の出力信号V1Bには、第2系統の励磁巻線10Bに印加された第2周期TBの交流電圧に起因する第2周期の成分V1B_TBの他に、第1系統の励磁巻線10Aに印加された第1周期TAの交流電圧に起因する第1周期の成分V1B_TAが干渉電圧として重畳している。図19の例では、第3出力巻線の出力信号V1Bには、第2周期の成分V1B_TBが重畳し、第1周期の成分V1B_TAが重畳しなくなる。このことは、第4出力巻線の出力信号V2Bについても同様である。
 よって、第1周期の成分V1B_TA、V2B_TAが重畳した第3出力巻線の出力信号V1B及び第4出力巻線の出力信号V2Bに基づいて、角度を算出すると検出誤差が生じる。そのため、角度の検出誤差を抑制するため、第3出力巻線の出力信号V1B及び第4出力巻線の出力信号V2Bから、第1周期の成分V1B_TA、V2B_TAを除去する必要がある。
 そこで、第2系統角度演算部42は、第2系統の除去処理部421と、第2系統の除去処理後角度演算部とを備えている。第2系統の除去処理部421は、第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sに対して、第1周期の成分を除去(低減)する第1周期成分の除去処理を行う。そして、第2系統の除去処理後角度演算部は、第1周期成分の除去処理後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fに基づいて第2系統の角度θ2を算出する。
 本実施の形態では、以下で説明する原理に基づいて、第1周期成分の除去処理を行うように構成されている。図17の下段のグラフに示すように、第3出力巻線の出力信号の第1周期の成分V1B_TAは、第1周期TAの整数倍の周期(例えば、第1周期TA)で、位相が同じであり、プラスマイナスの符号が同じ同等の値になる。
 そこで、第2系統の除去処理部421は、第1周期成分の除去処理として、今回の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sから、今回の検出タイミングよりも第2系統除去処理間隔ΔT2前の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_Sold、V2B_Soldを減算するように構成されている。第2系統除去処理間隔ΔT2は、次式に示すように設定されている。ここで、Pは、1以上の整数である。本実施の形態では、P=1に設定されており、第2系統除去処理間隔ΔT2は、第1周期TAに設定されている。
 ΔT2=TA×P    ・・・(10)
 本実施の形態では、第2周期TBは、式(2)に示したように、第1周期TAの偶数倍に設定されている。本実施の形態では、第2周期TBは、第1周期TAの2倍値に設定されている。
 このように設定すると、式(2)を式(10)に代入した次式に示すように、第2系統除去処理間隔ΔT2は、第2周期の半周期TB/2のP/N倍となる。本実施の形態のようにP/Nを奇数に設定すると、第2系統除去処理間隔ΔT2は、第2周期の半周期TB/2の奇数倍になる。
 ΔT2=TB/2×(P/N)    ・・・(11)
 よって、第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sの内、第2周期の半周期TB/2の奇数倍前後の値が減算される。よって、図17の下段のグラフに示すように、減算される2つの第2周期の成分は、位相が反転し、プラスマイナスの符号が反転するため、減算処理後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fは、それぞれ、検出値に含まれる第2周期の成分V1B_TB、V2B_TBの2倍値に相当する。
 V1B_F≒2×V1B_TB
 V2B_F≒2×V2B_TB     ・・・(12)
 第2系統の除去処理部421は、例えば、図20に示すように構成される。第2系統の除去処理部421は、第3出力巻線の出力信号の検出値V1B_Sを第2系統除去処理間隔ΔT2だけ遅延して出力する第1遅延器4211を備えており、第2出力巻線の出力信号の検出値V1B_Sから、第1遅延器4211の出力V1B_Soldを減算して、第1周期成分の除去処理後の第3出力巻線の出力信号の検出値V1B_Fを算出する。同様に、第2系統の除去処理部421は、第4出力巻線の出力信号の検出値V2B_Sを第2系統除去処理間隔ΔT2だけ遅延して出力する第2遅延器4212を備えており、第4出力巻線の出力信号の検出値V2B_Sから、第2遅延器4212の出力V2A_Soldを減算して、第1周期成分の除去処理後の第4出力巻線の出力信号の検出値V2B_Fを算出する。
 そして、第2系統の除去処理後角度演算部は、減算後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fに基づいて第2系統の角度θ2を算出するように構成されている。
 この構成によれば、互いにプラスマイナスの符号が同じ同等の値となっている2つの第1周期の成分が減算処理され、2つの第1周期の成分が互いに打ち消される。よって、減算後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fでは、第1周期の成分が除去される。そして、第1周期の成分を除去された後の検出値に基づいて、精度よく第2系統の角度θ2を算出することができる。
 本実施の形態では、第2系統の除去処理後角度演算部は、次式に示すように、第1周期成分の除去処理後の第3出力巻線の出力信号の検出値V1B_Fと、第4出力巻線の出力信号の検出値V2B_Fとの比の、アークタンジェント(逆正接関数)を算出することにより、第2系統の角度θ2を算出する。また、第2系統の角度θ2に基づいて、角速度も算出される。
 θ2=tan-1(V1B_F/V2B_F)   ・・・(13)
1-6-2.第2系統の電圧印加処理
 第2系統電圧指令演算部43は、第2系統の角度θ2に基づいて、第2系統の3相巻線N2に印加する第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refを演算する。そして、第2系統電圧印加部44は、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refに基づいて、第2系統のインバータ4Bの複数のスイッチング素子をオンオフして、第2系統の3相巻線N2に電圧を印加する。
 本実施の形態では、第2系統の角度θ2に同期して回転するdq軸回転座標系上の電流フィードバック制御により、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refを算出するように構成されている。第2系統電圧指令演算部43は、電流指令値演算部431、電流制御部432、電流座標変換部433、及び電圧座標変換部434を備えている。
 電流指令値演算部431は、d軸電流指令Id2_ref及びq軸電流指令Iq2_refを算出する。電流指令値演算部431は、後述する第1系統異常検出部45により第1系統の制御回路6Aの動作が停止していないと判定されている場合は、交流回転機に出力させるトルク指令Tallに、正常時の第2系統の分担率を乗算し、第2系統のトルク指令T2を算出する。正常時の第2系統の分担率は、1より小さい値(例えば、0.5)に設定される。電流指令値演算部431は、第2系統のトルク指令T2、電源電圧、及び角速度等に基づいて、電流ベクトル制御方法に従って、第2系統のdq軸電流指令Id2_ref、Iq2_refを算出する。本実施の形態では、トルク指令Tallは、外部装置50から伝達される。トルク指令Tallは、分担後の正常時の第2系統のトルク指令であってもよい。トルク指令Tallは、Id=0制御のq軸電流指令であってもよい。トルク指令Tallは、電流指令値演算部431内で演算されてもよい。
 電流座標変換部433は、第2系統の電流センサ5Bにより検出した第2系統の各相の巻線に流れる電流検出値Iu2、Iv2、Iw2を、第2系統の角度θ2に基づいて、3相2相変換及び回転座標変換を行って、dq軸回転座標系で表した第2系統のd軸電流検出値Id2及びq軸電流検出値Iq2に変換する。
 電流制御部432は、第2系統のd軸電流検出値Id2及びq軸電流検出値Iq2が、d軸電流指令Id2_ref及びq軸電流指令Iq2_refに近づくように、PI制御等により、第2系統のd軸電圧指令Vd2_ref及びq軸電圧指令Vq2_refを変化させるフィードバック制御を行う。
 電圧座標変換部434は、第2系統のd軸電圧指令Vd2_ref及びq軸電圧指令Vq2_refを、第2系統の角度θ2に基づいて、固定座標変換及び2相3相変換を行って、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refに変換する。3相電圧指令に対して、各種の変調が加えられてもよい。
 第2系統電圧印加部44は、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refに基づいて、PWM制御により第2系統のインバータ4Bが有する複数のスイッチング素子をオンオフする。第2系統電圧印加部44は、3相電圧指令のそれぞれとキャリア波とを比較することにより、各相のスイッチング素子をオンオフするスイッチング信号を生成する。各スイッチング信号は、ゲート駆動回路を介して、第2系統のインバータ4Bの各スイッチング素子のゲート端子に入力され、各スイッチング素子をオン又はオフさせる。
1-6-3.第1系統の異常検出
 上述した第2系統の異常検出と同様に、異常検知のための特別な回路を設けることなく、レゾルバ2の磁気干渉を利用し、第1系統の制御回路6Aの電圧印加動作の異常を精度よく検出するように構成されている。
 そこで、第1系統異常検出部45は、第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sから第1周期TAの成分V1B_TA、V2B_TAを抽出し、抽出した第1周期の成分V1B_TA、V2B_TAに基づいて、第1系統の制御回路6Aの動作が停止しているか否かを判定する。
 CPUの動作異常等により、第1系統の制御回路6Aに動作異常が生じると、第1系統の励磁巻線10Aに第1周期TAの交流電圧VRAが印加されなくなる。第1系統の励磁巻線10Aに第1周期TAの交流電圧VRAが印加されなくなると、磁気干渉により第2系統の出力信号に生じる第1周期TAの成分V1B_TA、V2B_TAが低下する。また、第1系統の制御回路6Aは、第1系統の出力信号に含まれる第1周期TAの成分に基づいて、交流回転機の第1系統の角度θ1を検出できなくなり、第1系統の角度θ1に基づいて、第1系統の3相巻線N1に印加する第1系統の電圧指令を演算できなくなり、第1系統の3相巻線N1に電圧を印加できなくなる。よって、レゾルバ2の磁気干渉を利用し、第2系統の出力信号から抽出した第1周期TAの成分に基づいて、第1系統の制御回路6Aに動作停止が発生したか否かを精度よく判定することができる。
<第1周期成分の抽出処理>
 本実施の形態では、以下で説明する原理に基づいて、第1周期成分の抽出処理を行うように構成されている。図17の例では、第1周期TAが第2周期TBよりも小さく設定されている。図17の中段のグラフに示すように、第2の出力巻線の出力信号に含まれる第2周期の成分V1B_TBは、第2周期の半周期TB/2に第2周期TBの整数倍を加算した周期(例えば、第2周期の半周期TB/2)で、位相が反転し、プラスマイナスの符号が反転する。よって、第2周期の半周期TB/2に第2周期TBの整数倍を加算した周期だけ前後する2つの第2系統の出力信号を相互に加算すれば、第2周期TBの成分を相互に打ち消すことができ、第1周期TAの成分を抽出することができる。
 そこで、第1系統異常検出部45は、第1周期成分の抽出処理として、今回の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sと、今回の検出タイミングよりも第1周期抽出処理間隔ΔTe2前の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_Solde、V2B_Soldeとを加算するように構成されている。第1周期抽出処理間隔ΔTe2は、次式に示すように設定されている。ここで、Qは、0以上の整数である。本実施の形態では、Q=0に設定されており、第1周期抽出処理間隔ΔTe2は、第2周期の半周期TB/2に設定されている。
 ΔTe2=TB/2+TB×Q    ・・・(14)
 本実施の形態では、第2周期TBは、式(2)に示したように、第1周期TAの偶数倍に設定されている。よって、式(2)を式(14)に代入した次式に示すように、第1周期抽出処理間隔ΔTe2は、第1周期TAの整数倍となる。
 ΔT2e=TA×(N+2×N×Q)    ・・・(15)
 よって、第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sの内、第1周期TAの整数倍前後の値が加算される。よって、図17の下段のグラフに示すように、加算される2つの第1周期の成分は、位相が同じであり、プラスマイナスの符号が同じ同等の値になるため、加算処理後の第2系統の2つの出力巻線の出力信号の検出値V1B_Fe、V2B_Feは、それぞれ、検出値に含まれる第1周期の成分V1B_TA、V2B_TAの2倍値に相当する。
 V1B_Fe≒2×V1B_TA
 V2B_Fe≒2×V2B_TA    ・・・(16)
 第1系統異常検出部45は、図21に示すような第1周期抽出処理部451を備えている。第1周期抽出処理部451は、第3出力巻線の出力信号の検出値V1B_Sを第1周期抽出処理間隔ΔTe2だけ遅延して出力する第1抽出遅延器4511を備えており、第3出力巻線の出力信号の検出値V1B_Sから、第1抽出遅延器4511の出力V1B_Soldeを減算して、第1周期成分の抽出処理後の第3出力巻線の出力信号の検出値V1B_Feを算出する。同様に、第1周期抽出処理部451は、第4出力巻線の出力信号の検出値V2B_Sを第1周期抽出処理間隔ΔTe2だけ遅延して出力する第2抽出遅延器4512を備えており、第4出力巻線の出力信号の検出値V2B_Sから、第2抽出遅延器4512の出力V2B_Soldeを減算して、第1周期成分の抽出処理後の第4出力巻線の出力信号の検出値V2B_Feを算出する。
 そして、第1周期抽出処理部451は、第1周期成分の抽出処理後の第2系統の2つの出力巻線の出力信号の検出値V1B_Fe、V2B_Feに基づいて、第1周期の成分の振幅を算出する第1周期振幅演算部4513を備えている。
 本実施の形態では、上述したように、第3出力巻線の出力信号の位相と第4出力巻線の出力信号の位相が、電気角で90度異なるように構成されている。よって、第1周期成分の抽出処理後の第3出力巻線の出力信号の検出値V1B_Feと、第1周期成分の抽出処理後の第4出力巻線の出力信号の検出値V2B_Feとは、正弦波(sinθ)と余弦波(cosθ)との関係になる。よって、正弦波の2乗値と余弦波の2乗値との和は1になるので(sinθ+cosθ=1)、正弦波の2乗値と余弦波の2乗値とを加算することで、第1周期成分の振幅の2乗値を算出することができる。
 そこで、第1周期振幅演算部4513は、次式に示すように、第1周期成分の抽出処理後の第3出力巻線の出力信号の検出値V1B_Feの2乗値と、第1周期成分の抽出処理後の第4出力巻線の出力信号の検出値V2B_Feの2乗値とを加算して、第1周期成分の振幅値Amp1(振幅の2乗値)を算出する。
 Amp1=V1B_Fe+V2B_Fe  ・・・(17)
<第1系統の制御回路の動作停止判定>
 第1系統異常検出部45は、第1系統異常判定部を備えている。第1系統異常判定部は、第2系統の出力信号から抽出した第1周期の成分の振幅に基づいて、第1系統の制御回路の動作が停止しているか否かを判定する。
 図22のフローチャートに示すように、ステップS31で、第1系統異常判定部は、第1周期成分の振幅値Amp1が、第1周期成分用の判定閾値Vth1よりも大きいか否かを判定し、大きい場合はステップS32に進み、大きくない場合はステップS33に進む。ステップS32で、第1系統異常判定部は、第1系統異常判定フラグStop1を0に設定し、第1系統の制御回路6Aの動作が停止していないと判定する。一方、ステップS33で、第1系統異常判定部は、第1系統異常判定フラグStop1を1に設定し、第1系統の制御回路6Aの動作が停止していると判定する。
1-6-4.第1系統の異常検出時の第2系統のトルク増加
 第2系統電圧印加部44は、第1系統異常検出部45により第1系統の制御回路6Aの動作が停止していると判定されている場合は、第1系統の制御回路6Aの動作が停止していないと判定されている場合よりも、第2系統の3相巻線N2による出力トルクが増加するように、第2系統の電圧指令を変化させる。
 第1系統の制御回路6Aの動作が停止し、第1系統の3相巻線N1がトルクを出力しなくなると、交流回転機1全体の出力トルクが低下する。上記の構成のように、第1系統の制御回路6Aの動作停止が判定された場合に、第1系統の制御回路6Aの動作停止が判定されていない正常時よりも、第2系統の3相巻線N2による出力トルクを増加させるので、第1系統の制御回路6Aの動作が停止したとしても、交流回転機1全体の出力トルクの低下を抑制することができる。
 第1系統の制御回路6Aの動作停止の判定時は、電流指令値演算部431は、交流回転機に出力させるトルク指令Tallに、異常時の第2系統の分担率を乗算し、第2系統のトルク指令T2を算出する。異常時の第2系統の分担率は、正常時の第2系統の分担率よりも大きい値(例えば、1.0)に設定される。上述したように、電流指令値演算部431は、第2系統のトルク指令T2、電源電圧、及び角速度等に基づいて、第2系統のdq軸電流指令Id2_ref、Iq2_refを算出する。そして、上述した正常時と同様に、第2系統のdq軸電流指令Id2_ref、Iq2_refに基づいて、電流フィードバック制御が行われ、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refが算出され、各スイッチング素子がオンオフされる。
 図23のフローチャートを用いて、トルク指令Tallが、正常時のId=0制御の第2系統のq軸電流指令Iq_tr2で与えられる場合の例を説明する。ステップS41で、電流指令値演算部431は、第1系統異常判定部により第1系統の制御回路6Aの動作が停止していると判定されているか否かを判定し、停止していると判定されていない場合は、ステップS42に進み、停止していると判定されている場合は、ステップS43に進む。第1系統異常判定フラグStop1が0である場合は、第1系統の制御回路6Aの動作が停止していないと判定され、第1系統異常判定フラグStop1が1である場合は、第1系統の制御回路6Aの動作が停止していると判定される。
 正常判定時は、ステップS42で、電流指令値演算部431は、第2系統のq軸電流指令Iq_tr2を第2系統のq軸電流指令Iq2_refにそのまま設定し、第2系統のd軸電流指令Id2_refを0に設定する。異常判定時は、ステップS43で、電流指令値演算部431は、第2系統のq軸電流指令Iq_tr2に異常時の増加率K2を乗算した値を第2系統のq軸電流指令Iq2_refに設定し、第2系統のd軸電流指令Id2_refを0に設定する。異常時の増加率K2は、1よりも大きい値(例えば、2)に設定されている。異常時の増加率K2又は異常時の第2系統の分担率は、交流回転機の冷却性能、巻線及びスイッチング素子の上限電流、永久磁石の減磁抑制を考慮して設定される。
2.実施の形態2
 次に、実施の形態2に係る交流回転機装置について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転機装置の基本的な構成及び処理は実施の形態1と同様であるが、交流回転機1が、車両の操舵装置を駆動する電動操舵トルクを出力する電動パワーステアリング装置用の交流回転機とされている点が実施の形態1と異なる。
 図24に、電動パワーステアリング装置の概略構成図を示す。交流回転機装置が電動パワーステアリング装置に組み込まれている。交流回転機1のロータの回転軸は、駆動力伝達機構61を介して車輪62の操舵装置63に連結される。例えば、電動パワーステアリング装置は、運転者が左右に回転するハンドル64と、ハンドル64に連結されて、ハンドル64による操舵トルクを車輪62の操舵装置63に伝達するシャフト65と、シャフト65に取り付けられ、ハンドル64による操舵トルクTsを検出するトルクセンサ66と、交流回転機1の回転軸をシャフト65に連結するウォームギヤ機構等の駆動力伝達機構61と、を備えている。トルクセンサ66の出力信号は、第1系統の制御回路6A(入力回路92)及び第2系統の制御回路6B(入力回路82)に入力される。
<正常時の制御>
 第1系統の制御回路6A及び第2系統の制御回路6Bは、第1系統の制御回路6A及び第2系統の制御回路6Bの動作が停止していないと判定している場合は、電動操舵トルクを、第1系統の3相巻線N1及び第2系統の3相巻線N2に分担させて出力させる。
 本実施の形態では、第1系統の制御回路6A(電流指令値演算部331)は、トルクセンサ66の出力信号に基づいて、運転者の操舵トルクTsを検出する。そして、第1系統の制御回路6Aは、操舵トルクTsに基づいて、操舵トルクTsを補助するための第1系統の電動操舵トルクを算出する。本実施の形態では、電動操舵トルクとしてId=0制御のq軸電流指令が算出される。例えば、第1系統の制御回路6Aは、第2系統の制御回路6Bの動作が停止していないと判定している場合は、式(18)に示すように、操舵トルクTsに、正常時の第1系統の係数Ka1を乗算して、第1系統のq軸電流指令Iq1_refを算出する。なお、第1系統のd軸電流指令Id1_refは、0に設定される。
 Id1_ref=0
 Iq1_ref=Ka1×Ts    ・・・(18)
 また、第2系統の制御回路6B(電流指令値演算部431)は、トルクセンサ66の出力信号に基づいて、運転者の操舵トルクTsを検出する。そして、第2系統の制御回路6Bは、操舵トルクTsに基づいて、操舵トルクTsを補助するための第2系統の電動操舵トルクを算出する。本実施の形態では、電動操舵トルクとしてId=0制御のq軸電流指令が算出される。例えば、第2系統の制御回路6Bは、第1系統の制御回路6Aの動作が停止していないと判定している場合は、式(19)に示すように、操舵トルクTsに、正常時の第2系統の係数Ka2を乗算して、第2系統のq軸電流指令Iq2_refを算出する。なお、第2系統のd軸電流指令Id2_refは、0に設定される。
 Id2_ref=0
 Iq2_ref=Ka2×Ts    ・・・(19)
 正常時の第1系統の係数Ka1及び第2系統の係数Ka2は、同じ値でも異なる値でもよく、車両の走行速度に応じて変化されてもよい。また、電流指令の演算に、公知の安定化補償制御が用いられてもよい。
<異常時の制御>
 第1系統の制御回路6Aは、第2系統の制御回路6Bの動作が停止していると判定している場合は、第2系統の制御回路6Bの動作が停止していないと判定している場合よりも、電動操舵トルクを第1系統の3相巻線N1に分担させて出力させる分担率が増加するように、第1系統の電圧指令を変化させる。第2系統の制御回路6Bは、第1系統の制御回路6Aの動作が停止していると判定している場合は、第1系統の制御回路6Aの動作が停止していないと判定している場合よりも、電動操舵トルクを第2系統の3相巻線N2に分担させて出力させる分担率が増加するように、第2系統の電圧指令を変化させる。
 本実施の形態では、第1系統の制御回路6A(電流指令値演算部331)は、第2系統の制御回路6Bの動作が停止していると判定している場合は、式(20)に示すように、操舵トルクTsに、正常時の第1系統の係数Ka1及び異常時の増加率K1を乗算して、第1系統のq軸電流指令Iq1_refを算出する。なお、第1系統のd軸電流指令Id1_refは、0に設定される。異常時の増加率K1は、1より大きい値(例えば、2)に設定される。
 Id1_ref=0
 Iq1_ref=K1×Ka1×Ts    ・・・(20)
 また、第2系統の制御回路6B(電流指令値演算部431)は、第1系統の制御回路6Aの動作が停止していると判定している場合は、式(21)に示すように、操舵トルクTsに、正常時の第2系統の係数Ka2及び異常時の増加率K2を乗算して、第2系統のq軸電流指令Iq2_refを算出する。なお、第2系統のd軸電流指令Id2_refは、0に設定される。異常時の増加率K2は、1より大きい値(例えば、2)に設定される。
 Id2_ref=0
 Iq2_ref=K2×Ka2×Ts    ・・・(21)
 そして、実施の形態1と同様に、第1系統の制御回路6Aにおいて、式(18)又は式(20)により算出された第1系統のdq軸電流指令Id1_ref、Iq1_refに基づいて、電流フィードバック制御が行われ、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refが算出され、第1系統の各スイッチング素子がオンオフされる。また、実施の形態1と同様に、第2系統の制御回路6Bにおいて、式(19)又は式(21)により算出された第2系統のdq軸電流指令Id2_ref、Iq2_refに基づいて、電流フィードバック制御が行われ、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refが算出され、第2系統の各スイッチング素子がオンオフされる。
 この構成によれば、第1系統又は第2系統の制御回路の異常時も、電動操舵トルクの低下を抑制でき、車輪の操舵性能が悪化することを抑制できる。
 なお、交流回転機装置が組み込まれる電動パワーステアリング装置は、運転者のハンドル操作なしに、自動的に操舵を行う自動運転用の装置であってもよい。
〔その他の実施の形態〕
 最後に、本願のその他の実施の形態について説明する。なお、以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)上記の各実施の形態では、第1系統の制御回路6Aは、第2周期成分の抽出処理として、今回の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sから、今回の検出タイミングよりも第2周期抽出処理間隔ΔTe1前の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_Solde、V2A_Soldeを減算する場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第1系統の制御回路6Aは、第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sから第2周期TBの成分V1A_TB、V2A_TBを抽出する処理であれば、どのような処理が行われてもよい。例えば、第1系統の制御回路6Aは、第2周期成分の抽出処理として、第1周期の成分を低減し、第2周期の成分を通過するハイパスフィルタ処理、ローパスフィルタ処理、又はバンドパスフィルタ処理等のフィルタ処理を行うように構成されてもよい。
(2)上記の各実施の形態では、第2系統の制御回路6Bは、第1周期成分の抽出処理として、今回の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sと、今回の検出タイミングよりも第1周期抽出処理間隔ΔTe2前の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_Solde、V2B_Soldeとを加算する場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第2系統の制御回路6Bは、第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sから第1周期TAの成分V1B_TA、V2B_TAを抽出する処理であれば、どのような処理が行われてもよい。例えば、第2系統の制御回路6Bは、第1周期成分の抽出処理として、第2周期の成分を低減し、第1周期の成分を通過するハイパスフィルタ処理、ローパスフィルタ処理、又はバンドパスフィルタ処理等のフィルタ処理を行うように構成されてもよい。
(3)上記の各実施の形態では、第1系統の制御回路6Aは、式(9)に示したように、第2周期成分の抽出処理後の第1出力巻線の出力信号の検出値V1A_Feの2乗値と、第2周期成分の抽出処理後の第2出力巻線の出力信号の検出値V2A_Feの2乗値とを加算して、第2周期成分の振幅値Amp2を算出するように構成されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第1系統の制御回路6Aは、第1系統の2つの出力巻線の出力信号の検出値から抽出した第2周期成分の振幅を算出する処理であれば、どのような処理を行ってもよい。例えば、第1系統の制御回路6Aは、第2周期成分の抽出処理後の2つの値V1A_Fe、V2A_Feのそれぞれから、所定期間の最大値及び最小値を検出し、最大値と最小値との差から振幅を算出してもよい。また、第1系統の制御回路6Aは、第2周期成分の抽出処理後の2つの値V1A_Fe、V2A_Feの一方から振幅を算出してもよく、双方から振幅を算出し、その平均値を算出してもよい。
(4)上記の各実施の形態では、第2系統の制御回路6Bは、式(17)に示したように、第1周期成分の抽出処理後の第3出力巻線の出力信号の検出値V1B_Feの2乗値と、第1周期成分の抽出処理後の第4出力巻線の出力信号の検出値V2B_Feの2乗値とを加算して、第1周期成分の振幅値Amp1を算出するように構成されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第2系統の制御回路6Bは、第2系統の2つの出力巻線の出力信号の検出値から抽出した第1周期成分の振幅を算出する処理であれば、どのような処理を行ってもよい。例えば、第2系統の制御回路6Bは、第1周期成分の抽出処理後の2つの値V1B_Fe、V2B_Feのそれぞれから、所定期間の最大値及び最小値を検出し、最大値と最小値との差から振幅を算出してもよい。また、第2系統の制御回路6Bは、第1周期成分の抽出処理後の2つの値V1B_Fe、V2B_Feの一方から振幅を算出してもよく、双方から振幅を算出し、その平均値を算出してもよい。
(5)上記の各実施の形態では、第1周期TAが、第2周期TBよりも小さく設定されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第1周期TAが、第2周期TBよりも大きく設定されてもよい。この場合は、レゾルバに係る第1系統の信号処理と第2系統の信号処理とが上記の実施の形態1と入れ替わる。具体的には、第1系統の制御回路6A(第2系統異常検出部35)は、第2周期成分の抽出処理として、今回の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sと、今回の検出タイミングよりも第2周期抽出処理間隔ΔTe1前の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_Solde、V2A_Soldeとを加算して、第1系統の出力信号から第2周期の成分を抽出するように構成される。第2周期抽出処理間隔ΔTe1は、次式に示すように設定される。ここで、Qは、0以上の整数であり、例えば、Q=0に設定される。
 ΔTe1=TA/2+TA×Q    ・・・(22)
 また、第2系統の制御回路6B(第1系統異常検出部45)は、第1周期成分の抽出処理として、今回の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sから、今回の検出タイミングよりも第1周期抽出処理間隔ΔTe2前の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_Solde、V2B_Soldeを減算して、第2系統の出力信号から第1周期の成分を抽出するように構成される。第1周期抽出処理間隔ΔTe2は、次式に示すように設定される。ここで、Oは、1以上の整数であり、例えば、O=1に設定される。
 ΔT2e=TB×O    ・・・(23)
 また、この場合は、第1周期TAは、次式に示すように、第2周期TBの偶数倍に設定されてもよい。ここで、Nは、1以上の整数であり、例えば、N=1に設定される。
 TA=TB×2×N       ・・・(24)
(6)上記の各実施の形態では、第1系統の制御回路6Aは、第1系統の出力信号から抽出した第2周期の成分に基づいて、第2系統の制御回路6Bの動作停止を判定し、第2系統の制御回路6Bは、第2系統の出力信号から抽出した第1周期の成分に基づいて、第1系統の制御回路6Aの動作停止を判定するように構成されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、特許文献1のように、第1系統の制御回路6Aと第2系統の制御回路6Bとの間の相互通信により、相互の動作確認も追加的に行ってもよい。この場合は、相互通信により、相手方の制御回路の動作異常を検出した場合であっても、上記の実施の形態のように第1周期の成分又は第2周期の成分から相手方の制御回路の動作停止を判定できない場合は、相互通信を行う通信装置に異常があると判定できる。
(7)上記の各実施の形態では、第2系統の制御回路6Bは、第2系統の出力信号から抽出した第1周期の成分に基づいて、第1系統の制御回路6Aの動作停止を判定するように構成されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第2系統の制御回路6Bは、第2系統の出力信号から第1周期の成分を抽出せず、第1系統の制御回路6Aの動作停止を判定しないように構成されてもよい。
(8)上記の各実施の形態では、レゾルバ2は、図4に示すように構成されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、レゾルバ2は、図25に模式図を示すように、第1の励磁巻線10A及び第1の2つの出力巻線111A、112Aは、第1のレゾルバステータ13Aに巻装され、第2の励磁巻線10B及び第2の2つの出力巻線111B、112Bは、第2のレゾルバステータ13Bに巻装されているものでもよい。同図において、第1のレゾルバステータ13Aと第2のレゾルバステータ13Bとは、互いに軸方向に隣接して配置され、第1の巻線と第2の巻線との間で磁気干渉が生じる。なお、図25において、第1系統のレゾルバステータ13Aのティース及び巻線、第2系統のレゾルバステータ13Bのティース及び巻線は、図示を省略している。第1のレゾルバステータ13A及び第2のレゾルバステータ13Bは同軸上に、軸方向に隣接して配置され、第1のレゾルバステータ13A及び第2のレゾルバステータ13Bの径方向内側には、一体的に形成されたレゾルバロータ14が配置されている。レゾルバロータ14は、外周部に周方向に均等配置された複数の突出部を備えている。第1のレゾルバステータ13Aの径方向内側に位置するロータの部分と、第2のレゾルバステータ13Bの径方向内側に位置するロータの部分とは、同じ突出部の形状を有している。なお、第1のレゾルバステータ13Aの径方向内側のロータの部分と、第2のレゾルバステータ13Bの径方向内側のロータの部分とは、突出部の形状及び数が異なっていてもよく、一体回転するように連結された別体であってもよい。
(9)上記の各実施の形態では、第1系統の制御回路6A(第1系統電圧指令演算部33)は、第1系統の角度θ1に同期して回転するdq軸回転座標系上の電流フィードバック制御により、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refを算出し、第2系統の制御回路6B(第2系統電圧指令演算部43)は、第2系統の角度θ2に同期して回転するdq軸回転座標系上の電流フィードバック制御により、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refを算出するように構成されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。
 すなわち、第1系統の制御回路6A(第1系統電圧指令演算部33)は、第1系統の角度θ1に基づいて、第1系統の3相電圧指令Vu1_ref、Vv1_ref、Vw1_refを演算すれば、どのような演算方法を用いてもよい。例えば、第1系統の制御回路6Aは、正弦波、矩形波等の周期的に変化する交流信号の位相を、第1系統の角度θ1に応じて変化させてもよい。
 また、第2系統の制御回路6B(第2系統電圧指令演算部43)は、第2系統の角度θ2に基づいて、第2系統の3相電圧指令Vu2_ref、Vv2_ref、Vw2_refを演算すれば、どのような演算方法を用いてもよい。例えば、第2系統の制御回路6Bは、正弦波、矩形波等の周期的に変化する交流信号の位相を、第2系統の角度θ2に応じて変化させてもよい。
(10)上記の実施の形態2では、交流回転機1は、電動パワーステアリング装置用の交流回転機である場合を例に説明した。しかし、交流回転機1は、車輪の駆動力源となる車両用の交流回転機、又はエレベータの駆動用の交流回転機等の各種の用途の交流回転機とされてもよい。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 交流回転機、2 レゾルバ、4A 第1系統のインバータ、4B 第2系統のインバータ、6A 第1系統の制御回路、6B 第1系統の制御回路、10A 第1系統の励磁巻線、10B 第2系統の励磁巻線、111A 第1出力巻線、112A 第2出力巻線、111B 第3出力巻線、112B 第4出力巻線、Amp1 第1周期成分の振幅値、Amp2 第2周期成分の振幅値、N1 第1系統の3相巻線、N2 第2系統の3相巻線、TA 第1周期、TB 第2周期、ΔTe1 第2周期抽出処理間隔、ΔTe2 第1周期抽出処理間隔、θ1 第1系統の角度、θ2 第2系統の角度

Claims (8)

  1.  第1系統の複数相の巻線と、第2系統の複数相の巻線を有する交流回転機と、
     前記第1系統の複数相の巻線に電圧を印加するための複数のスイッチング素子を有する第1系統のインバータと、
     前記第2系統の複数相の巻線に電圧を印加するための複数のスイッチング素子を有する第2系統のインバータと、
     前記交流回転機の回転位置を検出するためのセンサであって、第1系統の励磁巻線、第1系統の2つの出力巻線、第2系統の励磁巻線、第2系統の2つの出力巻線を有し、第1系統と第2系統との間で磁気干渉が生じるレゾルバと、
     前記第1系統の励磁巻線に第1周期の交流電圧を印加し、前記第1系統の2つの出力巻線から出力される第1系統の出力信号を検出し、前記第1系統の複数相の巻線に印加する第1系統の電圧指令を演算し、前記第1系統の電圧指令に基づいて、前記第1系統のインバータの複数のスイッチング素子をオンオフして、前記第1系統の複数相の巻線に電圧を印加する第1系統の制御回路と、
     前記第2系統の励磁巻線に、前記第1周期とは異なる第2周期の交流電圧を印加し、前記第2系統の2つの出力巻線から出力される第2系統の出力信号を検出し、前記第2系統の出力信号に含まれる前記第2周期の成分に基づいて前記交流回転機の第2系統の角度を検出し、前記第2系統の角度に基づいて、前記第2系統の複数相の巻線に印加する第2系統の電圧指令を演算し、前記第2系統の電圧指令に基づいて、前記第2系統のインバータの複数のスイッチング素子をオンオフして、前記第2系統の複数相の巻線に電圧を印加する第2系統の制御回路と、を備え、
     前記第1系統の制御回路は、前記第1系統の出力信号から前記第2周期の成分を抽出し、抽出した前記第2周期の成分に基づいて、前記第2系統の制御回路の動作が停止しているか否かを判定する交流回転機装置。
  2.  前記第1系統の制御回路は、前記第1系統の出力信号に含まれる前記第1周期の成分に基づいて前記交流回転機の第1系統の角度を検出し、前記第1系統の角度に基づいて、前記第1系統の電圧指令を演算し、
     前記第2系統の制御回路は、前記第1系統の出力信号から前記第2周期の成分を抽出し、抽出した前記第2周期の成分に基づいて、前記第1系統の制御回路の動作が停止しているか否かを判定する請求項1に記載の交流回転機装置。
  3.  前記第1系統の制御回路は、前記第2系統の制御回路の動作が停止していると判定している場合は、前記第2系統の制御回路の動作が停止していないと判定している場合よりも、前記第1系統の複数相の巻線による出力トルクが増加するように、前記第1系統の電圧指令を変化させ、
     前記第2系統の制御回路は、前記第1系統の制御回路の動作が停止していると判定している場合は、前記第1系統の制御回路の動作が停止していないと判定している場合よりも、前記第2系統の複数相の巻線による出力トルクが増加するように、前記第2系統の電圧指令を変化させる請求項2に記載の交流回転機装置。
  4.  前記交流回転機は、車両の操舵装置を駆動する電動操舵トルクを出力する電動パワーステアリング装置用の交流回転機であり、
     前記第1系統の制御回路及び前記第2系統の制御回路は、前記第1系統の制御回路及び前記第2系統の制御回路の動作が停止していないと判定している場合は、前記電動操舵トルクを、前記第1系統の複数相の巻線及び第2系統の複数相の巻線に分担させて出力させ、
     前記第1系統の制御回路は、前記第2系統の制御回路の動作が停止していると判定している場合は、前記第2系統の制御回路の動作が停止していないと判定している場合よりも、前記電動操舵トルクを前記第1系統の複数相の巻線に分担させて出力させる分担率が増加するように、前記第1系統の電圧指令を変化させ、
     前記第2系統の制御回路は、前記第1系統の制御回路の動作が停止していると判定している場合は、前記第1系統の制御回路の動作が停止していないと判定している場合よりも、前記電動操舵トルクを前記第2系統の複数相の巻線に分担させて出力させる分担率が増加するように、前記第2系統の電圧指令を変化させる請求項2に記載の交流回転機装置。
  5.  前記第1系統の制御回路は、抽出した前記第2周期の成分の振幅が、第2周期成分用の判定閾値よりも大きい場合に、前記第2系統の制御回路の動作が停止していると判定し、抽出した前記第2周期の成分の振幅が、前記第2周期成分用の判定閾値よりも大きくない場合に、前記第2系統の制御回路の動作が停止していないと判定し、
     前記第2系統の制御回路は、抽出した前記第1周期の成分の振幅が、第1周期成分用の判定閾値よりも大きい場合に、前記第1系統の制御回路の動作が停止していると判定し、抽出した前記第1周期の成分の振幅が、前記第1周期成分用の判定閾値よりも大きくない場合に、前記第1系統の制御回路の動作が停止していないと判定する請求項2から4のいずれか一項に記載の交流回転機装置。
  6.  前記第1系統の2つの出力巻線である第1出力巻線及び第2出力巻線は、出力信号の位相が電気角で相互に90度異なるように設けられ、
     前記第2系統の2つの出力巻線である第3出力巻線及び第4出力巻線は、出力信号の位相が電気角で相互に90度異なるように設けられ、
     前記第1系統の制御回路は、前記第1出力巻線の出力信号から前記第2周期の成分を抽出すると共に、前記第2出力巻線の出力信号から前記第2周期の成分を抽出し、抽出した前記第1出力巻線の前記第2周期の成分の2乗値と、抽出した前記第2出力巻線の前記第2周期の成分の2乗値と、を加算して、第2周期成分の振幅値を算出し、前記第2周期成分の振幅値が、第2周期成分用の判定閾値よりも大きい場合に、前記第2系統の制御回路の動作が停止していると判定し、前記第2周期成分の振幅値が、前記第2周期成分用の判定閾値よりも大きくない場合に、前記第2系統の制御回路の動作が停止していないと判定し、
     前記第2系統の制御回路は、前記第3出力巻線の出力信号から前記第1周期の成分を抽出すると共に、前記第4出力巻線の出力信号から前記第1周期の成分を抽出し、抽出した前記第3出力巻線の前記第1周期の成分の2乗値と、抽出した前記第4出力巻線の前記第1周期の成分の2乗値と、を加算して、第1周期成分の振幅値を算出し、前記第1周期成分の振幅値が、第1周期成分用の判定閾値よりも大きい場合に、前記第1系統の制御回路の動作が停止していると判定し、前記第1周期成分の振幅値が、前記第1周期成分用の判定閾値よりも大きくない場合に、前記第1系統の制御回路の動作が停止していないと判定する請求項2から5のいずれか一項に記載の交流回転機装置。
  7.  前記第1周期が前記第2周期よりも小さく設定されている場合は、
     前記第1系統の制御回路は、今回の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値から、今回の検出タイミングよりも第2周期抽出処理間隔前の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値を減算して、前記第1系統の出力信号から前記第2周期の成分を抽出し、前記第2周期抽出処理間隔は、前記第1周期をTAとして、TA×O(Oは、1以上の整数)に設定されており、
     前記第2系統の制御回路は、今回の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号の検出値と、今回の検出タイミングよりも第1周期抽出処理間隔前の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号の検出値とを加算して、前記第2系統の出力信号から前記第1周期の成分を抽出し、前記第1周期抽出処理間隔は、前記第2周期をTBとして、TB/2+TB×Q(Qは、0以上の整数)に設定されており、
     前記第1周期が前記第2周期よりも大きく設定されている場合は、
     前記第1系統の制御回路は、今回の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値と、今回の検出タイミングよりも第2周期抽出処理間隔前の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値とを加算して、前記第1系統の出力信号から前記第2周期の成分を抽出し、前記第2周期抽出処理間隔は、前記第1周期をTAとして、TA/2+TA×Q(Qは、0以上の整数)に設定されており、
     前記第2系統の制御回路は、今回の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号の検出値から、今回の検出タイミングよりも第1周期抽出処理間隔前の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号の検出値を減算して、前記第2系統の出力信号から前記第1周期の成分を抽出し、前記第1周期抽出処理間隔は、前記第2周期をTBとして、TB×O(Oは、1以上の整数)に設定されている請求項2から6のいずれか一項に記載の交流回転機装置。
  8.  前記第1周期が前記第2周期よりも小さく設定されている場合は、
     前記第2周期は、前記第1周期をTAとして、TA×2×N(Nは、1以上の整数)に設定されており、
     前記第1周期が前記第2周期よりも大きく設定されている場合は、
     前記第1周期は、前記第2周期をTBとして、TB×2×N(Nは、1以上の整数)に設定されている請求項7に記載の交流回転機装置。
PCT/JP2019/037889 2019-09-26 2019-09-26 交流回転機装置 WO2021059436A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/037889 WO2021059436A1 (ja) 2019-09-26 2019-09-26 交流回転機装置
US17/629,919 US11750134B2 (en) 2019-09-26 2019-09-26 AC rotary machine apparatus
CN201980100580.2A CN114450885B (zh) 2019-09-26 2019-09-26 交流旋转电机装置
JP2021548082A JP7101902B2 (ja) 2019-09-26 2019-09-26 交流回転機装置
EP19947178.0A EP4037181A4 (en) 2019-09-26 2019-09-26 DEVICE WITH AN AC LATHE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037889 WO2021059436A1 (ja) 2019-09-26 2019-09-26 交流回転機装置

Publications (1)

Publication Number Publication Date
WO2021059436A1 true WO2021059436A1 (ja) 2021-04-01

Family

ID=75164903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037889 WO2021059436A1 (ja) 2019-09-26 2019-09-26 交流回転機装置

Country Status (5)

Country Link
US (1) US11750134B2 (ja)
EP (1) EP4037181A4 (ja)
JP (1) JP7101902B2 (ja)
CN (1) CN114450885B (ja)
WO (1) WO2021059436A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022219794A1 (ja) * 2021-04-16 2022-10-20
JPWO2022219795A1 (ja) * 2021-04-16 2022-10-20

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035783A1 (ja) * 2014-09-04 2016-03-10 日本精工株式会社 モータ制御装置、故障検出方法並びにそれらを搭載した電動パワーステアリング装置及び車両
WO2017175466A1 (ja) * 2016-04-06 2017-10-12 日立オートモティブシステムズ株式会社 モータ駆動装置、モータ駆動装置の診断方法、及びこのモータ駆動装置を用いた電動パワーステアリング装置
WO2018173469A1 (ja) * 2017-03-23 2018-09-27 日立オートモティブシステムズ株式会社 モータシステム
WO2019049731A1 (ja) * 2017-09-11 2019-03-14 日立オートモティブシステムズ株式会社 パワーステアリング装置の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210281A (ja) * 2008-02-29 2009-09-17 Toyota Motor Corp 冗長型回転角検出装置
JP5502126B2 (ja) * 2012-03-26 2014-05-28 三菱電機株式会社 多重巻線回転機の駆動装置
WO2018088432A1 (ja) * 2016-11-10 2018-05-17 日本精工株式会社 電動パワーステアリング装置
JP7027808B2 (ja) 2016-11-11 2022-03-02 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6756243B2 (ja) * 2016-11-11 2020-09-16 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
WO2018088465A1 (ja) 2016-11-11 2018-05-17 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
WO2019123634A1 (ja) * 2017-12-22 2019-06-27 三菱電機株式会社 回転電機の制御装置及び制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035783A1 (ja) * 2014-09-04 2016-03-10 日本精工株式会社 モータ制御装置、故障検出方法並びにそれらを搭載した電動パワーステアリング装置及び車両
WO2017175466A1 (ja) * 2016-04-06 2017-10-12 日立オートモティブシステムズ株式会社 モータ駆動装置、モータ駆動装置の診断方法、及びこのモータ駆動装置を用いた電動パワーステアリング装置
WO2018173469A1 (ja) * 2017-03-23 2018-09-27 日立オートモティブシステムズ株式会社 モータシステム
WO2019049731A1 (ja) * 2017-09-11 2019-03-14 日立オートモティブシステムズ株式会社 パワーステアリング装置の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022219794A1 (ja) * 2021-04-16 2022-10-20
WO2022219794A1 (ja) * 2021-04-16 2022-10-20 三菱電機株式会社 回転機制御装置、及び電動パワーステアリング装置
JPWO2022219795A1 (ja) * 2021-04-16 2022-10-20
WO2022219795A1 (ja) * 2021-04-16 2022-10-20 三菱電機株式会社 回転機制御装置、及び電動パワーステアリング装置
JP7378669B2 (ja) 2021-04-16 2023-11-13 三菱電機株式会社 回転機制御装置、及び電動パワーステアリング装置
JP7412637B2 (ja) 2021-04-16 2024-01-12 三菱電機株式会社 回転機制御装置、及び電動パワーステアリング装置

Also Published As

Publication number Publication date
JP7101902B2 (ja) 2022-07-15
JPWO2021059436A1 (ja) 2021-11-25
CN114450885A (zh) 2022-05-06
US20220376641A1 (en) 2022-11-24
CN114450885B (zh) 2024-02-06
EP4037181A1 (en) 2022-08-03
EP4037181A4 (en) 2022-08-24
US11750134B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US9214886B2 (en) Control apparatus for three-phase rotary machine
JP4847060B2 (ja) 交流モータ駆動装置及びその制御方法
CN108778896B (zh) 电动机控制系统及具备电动机控制系统的电动助力转向装置
JP5826292B2 (ja) モータ制御装置および電動パワーステアリング装置
CN105379106B (zh) 用于控制用于对电机进行驱动的多相变频器的方法
JP7101902B2 (ja) 交流回転機装置
JP6625225B2 (ja) 回転機の制御装置及び電動パワーステアリングの制御装置
CA2744634A1 (en) Electric device comprising an alternating current electric motor and a control inverter and a method for measuring the electromotive force of this device
JP6685427B2 (ja) 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置
JP6488923B2 (ja) モータ制御装置
JP6827560B2 (ja) 回転電機制御装置及び電動車両
JP7101904B2 (ja) モータ制御装置
JP4670044B2 (ja) 電動機の磁極位置推定方法及び装置
JP6750364B2 (ja) 回転電機の回転角推定装置
JP2021044954A (ja) 交流回転機の制御装置
JP6758460B1 (ja) 回転電機装置および電動パワーステアリング装置
JP6854849B2 (ja) 電流検出装置および電流検出装置の製造方法
JP6839896B2 (ja) モータ制御装置および電動車両
JP5473071B2 (ja) 負荷制御装置
JP2020178446A (ja) 変調方式切替装置
JP6435993B2 (ja) 回転電機の制御装置
WO2023067797A1 (ja) 交流回転機の制御装置、車両用駆動装置、及び電動パワーステアリング装置
WO2021234802A1 (ja) 電動機制御装置
JP7105942B1 (ja) 制御装置
JP6659189B1 (ja) 交流回転機の制御装置、車両用交流回転機装置、及び電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947178

Country of ref document: EP

Effective date: 20220426