WO2022219795A1 - 回転機制御装置、及び電動パワーステアリング装置 - Google Patents

回転機制御装置、及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2022219795A1
WO2022219795A1 PCT/JP2021/015678 JP2021015678W WO2022219795A1 WO 2022219795 A1 WO2022219795 A1 WO 2022219795A1 JP 2021015678 W JP2021015678 W JP 2021015678W WO 2022219795 A1 WO2022219795 A1 WO 2022219795A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
command value
voltage
value
axis current
Prior art date
Application number
PCT/JP2021/015678
Other languages
English (en)
French (fr)
Inventor
祐也 土本
辰也 森
千明 藤本
建太 久保
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023514290A priority Critical patent/JP7378669B2/ja
Priority to US18/269,381 priority patent/US20240051598A1/en
Priority to CN202180093258.9A priority patent/CN117044101A/zh
Priority to EP21936990.7A priority patent/EP4325714A4/en
Priority to PCT/JP2021/015678 priority patent/WO2022219795A1/ja
Publication of WO2022219795A1 publication Critical patent/WO2022219795A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures

Definitions

  • the present disclosure relates to a rotary machine control device and an electric power steering device.
  • Patent Document 1 Conventionally, in an electric power steering device that assists steering using the driving force of a rotating machine, there is known a rotating machine control device that controls the steering assist amount with two independent systems (see Patent Document 1, for example).
  • Patent Document 2 In such a rotating machine control device, in Patent Literature 1, when the assist amount is calculated independently for each system and the current control is performed independently, a mismatch may occur between the systems. Therefore, for example, in the technique described in Patent Document 2, a master control unit and a slave control unit are provided, and a command value calculated by the master control unit is transmitted to the slave control unit, thereby correcting mismatch between systems. is decreasing.
  • the current supplied to the rotating machine is determined according to the difference between the induced voltage generated in proportion to the rotation speed and the voltage applied to the power converter (eg, inverter) that drives the rotating machine. Therefore, when the rotating machine rotates at high speed, the induced voltage increases, and the voltage required to supply current to the rotating machine according to the command value may exceed the upper limit of the voltage applied to the inverter. be. That is, since the electric current supplied to the rotating machine is based on the difference between the upper limit value of the applied voltage and the induced voltage, the electric current different from the command value may be supplied to the rotating machine. In this case, if the inverters of each system receive the DC voltage from the same DC power supply, no mismatch occurs between the systems.
  • the power converter eg, inverter
  • the present disclosure has been made to solve the above problems, and its object is to eliminate the inconsistency between the systems even if there is a difference in the DC voltages output by the DC power supplies of the multiple systems that control the rotating machine.
  • An object of the present invention is to provide a rotating machine control device and an electric power steering device capable of reducing matching.
  • one aspect of the present disclosure provides a first DC voltage that is applied to a three-phase winding of a first system of a rotating machine based on a first DC voltage output by a first DC power supply.
  • an inverter a second inverter that applies an AC voltage to a three-phase winding of a second system of the rotating machine based on a second DC voltage output by a second DC power supply, the first DC voltage and the first DC voltage.
  • generating a command value for the d-axis current of the first system based on a minimum DC voltage value, which is the lower one of the two DC voltages, and the command value for the rotating machine; and the command value of the d-axis current of the first system, the command value of the d-axis current of the first system is generated, and the generated command value of the d-axis current of the first system and the command value of the d-axis current of the first system are generated.
  • a first control unit for outputting a first control signal for causing the first inverter to apply the AC voltage to the three-phase winding of the first system based on a command value of the q-axis current of one system;
  • a command value for the d-axis current of the second system is generated based on the minimum voltage value and the command value for the rotating machine, and the minimum DC voltage value and the command value for the d-axis current of the second system are generated.
  • the rotating machine control device includes a second control section that outputs a second control signal for applying the AC voltage to the three-phase windings of the second system to the second inverter.
  • one aspect of the present disclosure includes the rotating machine control device described above, the rotating machine that assists steering, and a torque sensor that detects steering torque of the steering, wherein the rotating machine control device and an electric power steering apparatus for controlling the rotary machine using the steering assist command corresponding to the steering torque detected by the torque sensor as a command value for the rotary machine.
  • FIG. 1 is a block diagram showing an example of a rotating machine control device according to a first embodiment
  • FIG. 3 is a block diagram showing an example of two-system control units of the rotating machine control device according to the first embodiment
  • FIG. 4 is a block diagram showing an example of a current controller that generates a d-axis voltage command value in the first embodiment
  • FIG. 4 is a block diagram showing an example of a current controller that generates a q-axis voltage command value in the first embodiment
  • FIG. 4 is a block diagram showing an example of a control signal generator in the first embodiment
  • FIG. FIG. 4 is a diagram showing an example of processing of a carrier comparison unit in the first embodiment
  • FIG. 4 is a flow chart showing an example of processing of a current command calculator in the first embodiment; It is a block diagram which shows an example of the control part of two systems of the rotary machine control apparatus by 2nd Embodiment.
  • FIG. 11 is a block diagram showing an example of two-system control units of a rotating machine control device according to a third embodiment;
  • FIG. 11 is a block diagram showing an example of an electric power steering device according to a fourth embodiment;
  • FIG. 1 is a block diagram showing an example of a rotating machine control device 1 according to the first embodiment.
  • a rotating machine control device 1 according to the first embodiment is a control device that controls a rotating machine 10 .
  • the rotating machine control device 1 includes a position detection unit 2, a DC power supply 3-1, a DC power supply 3-2, a capacitor 4-1, a capacitor 4-2, an inverter 5-1, and a , an inverter 5-2, a current detection unit 6-1, a current detection unit 6-2, a control unit 7-1, and a control unit 7-2.
  • the rotating machine control device 1 controls the rotating machine 10 using two systems, a first system and a second system.
  • the first system includes a DC power supply 3-1, a capacitor 4-1, an inverter 5-1, a current detector 6-1, and a controller 7-1.
  • the second system includes a DC power supply 3-2, a capacitor 4-2, an inverter 5-2, a current detector 6-2, and a controller 7-2.
  • the rotating machine 10 is a rotating machine having a first system of three-phase windings (u1, v1, w1) and a second system of three-phase windings (u2, v2, w2).
  • the rotating machine 10 is, for example, a permanent magnet synchronous motor, an induction motor, a synchronous reluctance motor, or the like, and any motor having two three-phase windings can be applied to the present disclosure.
  • a non-salient pole permanent magnet synchronous motor will be described.
  • the position detection unit 2 outputs the rotational position ⁇ 1 of the first system to the control unit 7-1, which will be described later. Further, the position detection unit 2 outputs the rotational position ⁇ 2 of the second system to the control unit 7-2, which will be described later.
  • the position detection unit 2 here is described as being of a redundant type that outputs two rotational position signals, it is not limited to the redundant type, and a rotational position sensorless control system may be used. to obtain the rotational position ⁇ 1 of the first system and the rotational position ⁇ 2 of the second system.
  • the DC power supply 3-1 is a first system DC power supply having two outputs, a high potential side and a low potential side, and is an example of a first DC power supply.
  • the DC power supply 3-1 outputs a first DC voltage Vdc1 to an inverter 5-1, which will be described later, as voltages across two outputs, a high potential side and a low potential side.
  • the DC power supply 3-1 includes all devices that output a DC voltage, such as a battery, DC-DC converter, diode rectifier, and PWM rectifier.
  • the DC power supply 3-2 is a second system DC power supply having two outputs, a high potential side and a low potential side, and is an example of a second DC power supply.
  • the DC power supply 3-2 outputs a second DC voltage Vdc2 to an inverter 5-2, which will be described later, as a voltage across two outputs, a high potential side and a low potential side.
  • the DC power supply 3-2 includes all devices that output a DC voltage, such as a battery, DC-DC converter, diode rectifier, and PWM rectifier.
  • the capacitor 4-1 is a capacitor having a predetermined capacitance.
  • the capacitor 4-1 is connected between two output signal lines of the DC power supply 3-1 and electrically connected in parallel with the DC power supply 3-1.
  • Capacitor 4-1 functions as a smoothing capacitor that suppresses variations in first DC voltage Vdc1 supplied to inverter 5-1, which will be described later, to realize a stable DC voltage.
  • the DC voltage Vdc1 across the capacitor 4-1 is detected by, for example, a voltage detection section (not shown) and output as a detected DC voltage Vdc1s to the control section 7-1, which will be described later.
  • a capacitor 4-2 is a capacitor having a predetermined capacitance.
  • the capacitor 4-2 is connected between two output signal lines of the DC power supply 3-2 and electrically connected in parallel with the DC power supply 3-2.
  • Capacitor 4-2 functions as a smoothing capacitor that suppresses variations in second DC voltage Vdc2 supplied to inverter 5-2, which will be described later, to realize a stable DC voltage.
  • the DC voltage Vdc2 across the capacitor 4-2 is detected by, for example, a voltage detection section (not shown) and output as a detected DC voltage Vdc2s to the control section 7-2, which will be described later.
  • Inverter 5-1 (an example of a first inverter) generates three-phase windings (u1, v1, w1) of the first system of rotary machine 10 based on first DC voltage Vdc1 output by DC power supply 3-1. AC voltage is applied to The inverter 5-1 switches three switching elements on the high potential side of the DC power supply 3-1 based on control signals GS11 to GS16 (an example of a first control signal) output from the control unit 7-1, which will be described later. (51-1, 53-1, 55-1), and the three switching elements (52-1, 54-1, 56-1) on the low potential side of the DC power supply 3-1 are turned on and off.
  • the first DC voltage Vdc1 output from the power supply 3-1 is converted into power to apply an AC voltage to the three-phase windings (u1, v1, w1) of the first system.
  • the inverter 5-1 energizes the three-phase windings (u1, v1, w1) of the first system with the current Iu1, the current Iv1, and the current Iw1.
  • control signal GS11, the control signal GS13, and the control signal GS15 turn on and off the switching element 51-1, the switching element 53-1, and the switching element 55-1 on the high potential side, respectively, in the inverter 5-1 ( It is a control signal for making a conducting state or a non-conducting state). Further, the control signal GS12, the control signal GS14, and the control signal GS16 turn on/off the switching element 52-1, the switching element 54-1, and the switching element 56-1 on the low potential side in the inverter 5-1, respectively. state or non-conducting state).
  • control signals GS11 to GS16 are in the logic state of "1" (or High), the switching elements are turned on, and when in the logic state of "0" (or Low), the switching elements are turned on. shall be turned off.
  • Each of the switching element 51-1, switching element 52-1, switching element 53-1, switching element 54-1, switching element 55-1, and switching element 56-1 is, for example, an IGBT (Insulated Gate Bipolar Transistor), Semiconductor switches such as bipolar transistors and MOS (Metal Oxide Semiconductor) power transistors. Also, each of the switching element 51-1, the switching element 52-1, the switching element 53-1, the switching element 54-1, the switching element 55-1, and the switching element 56-1 has a diode (or a body diode). , are connected in anti-parallel.
  • Inverter 5-2 (an example of a second inverter) operates on the basis of second DC voltage Vdc2 output from DC power supply 3-2. AC voltage is applied to The inverter 5-2 switches three switching elements on the high potential side of the DC power supply 3-2 based on control signals GS21 to GS26 (an example of a second control signal) output from the control unit 7-2, which will be described later. (51-2, 53-2, 55-2), and the three switching elements (52-2, 54-2, 56-2) on the low potential side of the DC power supply 3-2 are turned on and off.
  • the second DC voltage Vdc2 output by the power supply 3-2 is power-converted to apply an AC voltage to the three-phase windings (u2, v2, w2) of the second system.
  • the inverter 5-2 supplies currents Iu2, Iv2, and Iw2 to the three-phase windings (u2, v2, w2) of the second system.
  • control signal GS21, the control signal GS23, and the control signal GS25 turn on and off the switching elements 51-2, 53-2, and 55-2 on the high potential side, respectively, in the inverter 5-2 ( It is a control signal for making a conducting state or a non-conducting state).
  • control signal GS22, the control signal GS24, and the control signal GS26 turn on/off the switching element 52-2, the switching element 54-2, and the switching element 56-2 on the low potential side in the inverter 5-2, respectively. state or non-conducting state).
  • control signals GS21 to GS26 for example, turn on the switching elements when in the logic state of "1" (or High), and turn off the switching elements when in the logic state of "0" (or Low). shall be in condition.
  • Each of the switching element 51-2, switching element 52-2, switching element 53-2, switching element 54-2, switching element 55-2, and switching element 56-2 is, for example, an IGBT, a bipolar transistor, and a MOS power It is a semiconductor switch such as a transistor. Further, each of the switching element 51-2, the switching element 52-2, the switching element 53-2, the switching element 54-2, the switching element 55-2, and the switching element 56-2 has a diode (or a body diode). , are connected in anti-parallel.
  • a current detection unit 6-1 detects a current Iu1, a current Iv1, and a current Iw1 flowing through the three-phase windings (u1, v1, w1) of the first system of the rotating machine 10, respectively. It is detected as a current value I us1 , a current value I vs1 , and a current value I ws1 .
  • the current detection unit 6-1 detects current by providing current detection resistors (shunt resistors) in series with the switching element 52-1, switching element 54-1, and switching element 56-1 of the inverter 5-1 (so-called Lower arm 3 shunt system) may be used.
  • the current detection unit 6-1 detects a DC current by providing a current detection resistor between the inverter 5-1 and the capacitor 4-1, and detects the three-phase winding (u1, v1, w1), the current Iu1, the current Iv1, and the current Iw1 flowing through (bus 1 shunt method) may be used.
  • a current detection unit 6-2 detects a current Iu2, a current Iv2, and a current Iw2 flowing through the three-phase windings (u2, v2, w2) of the second system of the rotating machine 10, respectively. It is detected as a current value Ius2 , a current value Ivs2 , and a current value Iws2 .
  • the current detection unit 6-2 detects current by providing current detection resistors (shunt resistors) in series with the switching element 52-2, switching element 54-2, and switching element 56-2 of the inverter 5-2 (so-called Lower arm 3 shunt system) may be used.
  • the current detection unit 6-2 detects a DC current by providing a current detection resistor between the inverter 5-2 and the capacitor 4-2, and detects the three-phase winding (u2, v2, w2), the current Iu2, the current Iv2, and the current Iw2 may be reproduced (bus line 1-shunt method).
  • a control unit 7-1 (an example of a first control unit) includes, for example, a CPU (Central Processing Unit), and controls the rotating machine 10 by the first system. Based on the DC voltage minimum value Vdcm , which is the lower one of the first DC voltage Vdc1 and the second DC voltage Vdc2, and the command value (T * ) for the rotating machine 10, the control unit 7-1 , to generate the first d-axis current command value Id_target1. In the following description, variables superscripted with "*" indicate target values. Further, the control unit 7-1 generates the first q-axis current command value Iq_target1 based on the DC voltage minimum value Vdcm and the first d-axis current command value Id_target1.
  • the detected DC voltage Vdc1s is used as the first DC voltage Vdc1
  • the detected DC voltage Vdc2s is used as the second DC voltage Vdc2. That is, the DC voltage minimum value Vdcm is the smaller one of the detected DC voltage Vdc1s of the first DC voltage Vdc1 and the detected DC voltage Vdc2s of the second DC voltage Vdc2.
  • the first d-axis current command value Id_target1 is a current command value obtained by converting the current command value into a d-axis rotational coordinate, and indicates the command value of the d-axis current of the first system.
  • the first q-axis current command value Iq_target1 is a current command value obtained by converting the current command value into a q-axis rotational coordinate, and indicates the command value of the q-axis current of the first system.
  • the control unit 7-1 controls the inverter 5-1 and the three-phase windings (u1, v1, w1) of the first system. It outputs control signals GS11 to GS16 for applying an AC voltage.
  • the control unit 7-1 controls the internally generated first d-axis current command value Id_target1 and first q-axis current command value Iq_target1, the rotational position ⁇ 1 detected by the position detection unit 2 , and the current detection unit 6-1.
  • the control unit 7-2 (an example of the second control unit) includes, for example, a CPU, and controls the rotating machine 10 by the second system. Based on the DC voltage minimum value Vdcm , which is the lower one of the first DC voltage Vdc1 and the second DC voltage Vdc2, and the command value (T * ) for the rotating machine 10, the control unit 7-2 , to generate the second d-axis current command value Id_target2. The control unit 7-2 also generates a second q-axis current command value Iq_target2 based on the DC voltage minimum value Vdcm and the second d-axis current command value Id_target2.
  • the detected DC voltage Vdc1s is used as the first DC voltage Vdc1
  • the detected DC voltage Vdc2s is used as the second DC voltage Vdc2.
  • the second d-axis current command value Id_target2 is a current command value obtained by converting the current command value into a d-axis rotational coordinate, and indicates the command value of the d-axis current of the second system.
  • a second q-axis current command value Iq_target2 is a current command value obtained by converting the current command value into a q-axis rotational coordinate, and indicates a command value of the q-axis current of the second system.
  • the control unit 7-2 controls the inverter 5-2 and the three-phase windings (u2, v2, w2) of the second system. It outputs control signals GS21 to GS26 for applying an AC voltage.
  • the control unit 7-2 controls the internally generated second d-axis current command value Id_target2 and second q-axis current command value Iq_target2, the rotational position ⁇ 2 detected by the position detection unit 2 , and the current detection unit 6-2.
  • FIG. 2 is a block diagram showing an example of the two-system control section 7 of the rotary machine control device 1 according to the present embodiment.
  • the control unit 7-1 includes a current command calculator 70-1, a subtractor 71-1, a current controller 72-1, a subtractor 73-1, and a current controller 74- 1, a coordinate converter 75-1, and a control signal generator 76-1.
  • a current command calculator 70-1 calculates a first d-axis current command value Id_target1 and a first q-axis current command value Id_target1 based on the command value (T * ) of the rotating machine, the first DC voltage Vdc1s, and the second DC voltage Vdc2s. Generate the value Iq_target1. Details of the processing of the current command calculator 70-1 will be described later.
  • the subtractor 71-1 subtracts the current Id1 on the rotating two axes from the first d-axis current command value Id_target1 , and outputs the result to the current controller 72-1.
  • Current Id1 is output from coordinate converter 75-1.
  • the subtractor 73-1 subtracts the current Iq1 on the rotating two axes from the first q-axis current command value Iq_target1 , and outputs the result to the current controller 74-1.
  • Current Iq1 is output from coordinate converter 75-1.
  • the current controller 72-1 performs proportional and integral control on the output value of the subtractor 71-1 so that the output value of the subtractor 71-1 becomes "0" (zero). output the voltage Vd1 above.
  • a detailed configuration of the current controller 72-1 will be described with reference to FIG.
  • FIG. 3 is a block diagram showing an example of the current controller 72-1 that generates the d-axis voltage command value in this embodiment.
  • current controller 72-1 includes amplifier 721-1, adder 722-1, amplifier 723-1, integrator 724-1, and limiter 725-1.
  • Amplifier 721-1 multiplies (first d-axis current command value Id_target1-I d1 ) by Kpd and outputs the result to adder 722-1 as output value Vd1_p.
  • the amplification coefficient Kpd is, for example, a value obtained by multiplying the desired current control response ⁇ cc ([rad/s (radian/second)]) by the d-axis inductance Ld of the rotating machine 10 ( ⁇ cc ⁇ Ld). .
  • the amplifier 723-1 multiplies (the first d-axis current command value Id_target1-I d1 ) by Kid and outputs it.
  • the amplification coefficient Kid is, for example, a value obtained by multiplying the desired current control response ⁇ cc by the winding resistance R of the rotary machine 10 ( ⁇ cc ⁇ R).
  • the integrator 724-1 integrates the output (Kid ⁇ (Id1_target1 ⁇ I d1 )) of the amplifier 723-1 and outputs it as an output value Vd1_i. That is, the value Vd1_i is (Kid/s ⁇ (Id1_target1 ⁇ I d1 )). "s" here is the Laplacian operator.
  • the adder 722-1 adds the output value Vd1_p of the amplifier 721-1 and the output value Vd1_i of the integrator 724-1, and outputs the result as the output value Vd1' to the limiter 725-1.
  • the limiter 725-1 limits the output value Vd1' of the adder 722-1 based on the DC voltage minimum value Vdcm. Specifically, the limiter 725-1 limits the output value Vd1′ of the adder 722-1 according to the following equation (1) to generate the voltage Vd1 on the two axes of rotation, which is the output value.
  • limiter 725-1 generates voltage V d1 such that the absolute value of output value Vd1′ of adder 722-1 is (V dcm /2 0.5 ) or less.
  • the limiter 725-1 may use known anti-windup control when, for example, it is desired to positively reset the output value Vd1_i of the integrator 724-1, which is the integral term.
  • the current controller 74-1 performs proportional and integral control on the output value of the subtractor 73-1 so that the output value of the subtractor 73-1 becomes "0" (zero). By doing so, the voltage V q1 on the two axes of rotation is output.
  • a detailed configuration of the current controller 74-1 will be described with reference to FIG.
  • FIG. 4 is a block diagram showing an example of the current controller 74-1 that generates the q-axis voltage command value in this embodiment.
  • current controller 74-1 includes amplifier 741-1, adder 742-1, amplifier 743-1, integrator 744-1, and limiter 745-1.
  • Amplifier 741-1 multiplies (first q-axis current command value Iq_target1-I q1 ) by Kpq and outputs the result to adder 742-1 as output value Vq1_p.
  • the amplification coefficient Kpq is, for example, a value ( ⁇ cc ⁇ Lq) obtained by multiplying the desired current control response ⁇ cc ([rad/s (radian/second)]) by the q-axis inductance Lq of the rotating machine 10. .
  • the amplifier 743-1 multiplies (the first q-axis current command value Iq_target1-I q1 ) by Kiq and outputs it.
  • the amplification coefficient Kiq is, for example, a value obtained by multiplying the desired current control response ⁇ cc by the winding resistance R of the rotating machine 10 ( ⁇ cc ⁇ R).
  • the integrator 744-1 integrates the output (Kiq ⁇ (Iq_target1 ⁇ I q1 )) of the amplifier 743-1 and outputs it as an output value Vq1_i. That is, the value Vq1_i is (Kiq/s ⁇ (Iq_target1 ⁇ I q1 )). "s" here is the Laplacian operator.
  • the adder 742-1 adds the output value Vq1_p of the amplifier 741-1 and the output value Vq1_i of the integrator 744-1, and outputs the result as the output value Vq1' to the limiter 745-1.
  • Limiter 745-1 limits output value Vq1' of adder 742-1 based on DC voltage minimum value V dcm and voltage V d1 . Specifically, the limiter 745-1 limits the voltage Vq1' of the adder 742-1 according to the following equation (2) to generate the voltage Vq1 on the two axes of rotation, which is the output value.
  • limiter 745-1 is a value (V dcm ⁇ V d1 ) obtained by subtracting voltage V d1 from output value Vq1′ of adder 742-1 and DC voltage minimum value V dcm .
  • the voltage V q1 is generated as follows.
  • limiter 745-1 generates voltage V q1 such that the absolute value of output value V q1′ of adder 742-1 is ((V dcm ⁇ V d1 )/2 0.5 ) or less. do.
  • the limiter 745-1 may use known anti-windup control when, for example, it is desired to positively reset the output value Vq1_i of the integrator 744-1, which is the integral term.
  • the voltage Vd1 and the voltage Vq1 described above are voltage command values on two rotation axes.
  • the coordinate converter 75-1 converts the current value I us1 , the current value I vs1 , and the current value I ws1 detected by the current detection unit 6-1 to Convert to current I d1 and current I q1 on two axes of rotation. Specifically, the coordinate converter 75-1 converts the current values I us1 , I vs1 , and I ws1 from the current values I us1 , I vs1 , and I ws1 and the rotational position ⁇ 1 according to the following equation (3). Generate I d1 and current I q1 .
  • the coordinate converter 75-1 outputs the generated current Id1 to the subtractor 71-1.
  • the coordinate converter 75-1 also outputs the generated current Iq1 to the subtractor 73-1.
  • the coordinate converter 75-1 converts the voltage Vd1 and the voltage Vq1, which are voltage commands on the two rotating axes, to the voltage Vu1 , which is the voltage command on the three- phase axes, based on the rotational position ⁇ 1.
  • voltage V v1 , and voltage V w1 Specifically, the coordinate converter 75-1 converts the voltage V d1 , the voltage V q1 , and the rotational position ⁇ 1 from the voltage V d1 , the voltage V q1 , and the rotational position ⁇ 1 according to the following equation (4).
  • a voltage V v1 and a voltage V w1 are generated.
  • the coordinate converter 75-1 outputs the generated voltage V u1 , voltage V v1 , and voltage V w1 to the control signal generator 76-1.
  • the control signal generator 76-1 generates a control signal for the inverter 5-1 based on the first DC voltage Vdc1s and the voltage V u1 , voltage V v1 , and voltage V w1 which are the voltage command values on the three-phase axis. GS11 to control signal GS16 are output.
  • GS11 to control signal GS16 are output.
  • FIG. 5 is a block diagram showing an example of the control signal generator 76-1 in this embodiment. As shown in FIG. 5, the control signal generator 76-1 includes a duty calculator 761-1 and a carrier comparator 762-1.
  • the duty calculator 761-1 outputs a first duty (du1, dv1, dw1), which is a value normalized by the first DC voltage Vdc1s, based on the voltage V u1 , the voltage V v1 , and the voltage V w1 .
  • the duty calculation unit 761-1 generates the first duty (du1, dv1, dw1), for example, according to Equation (5) below.
  • the duty calculation unit 761-1 includes a multiplier 81-1, an adder 82-1, a multiplier 83-1, an adder 84-1, a multiplier 85-1, and an adder 86-1.
  • the multiplier 81-1 multiplies the voltage Vu1 by (1/Vdc1s) and outputs the multiplication result to the adder 82-1.
  • the adder 82-1 adds the constant "0.5" to the output value of the multiplier 81-1, and outputs the result as the first duty du1 to the carrier comparison section 762-1.
  • the multiplier 83-1 multiplies the voltage Vv1 by (1/ Vdc1s ) and outputs the multiplication result to the adder 84-1.
  • the adder 84-1 adds the constant "0.5" to the output value of the multiplier 83-1, and outputs the result as the first duty dv1 to the carrier comparison section 762-1.
  • the multiplier 85-1 multiplies the voltage Vw1 by (1/ Vdc1s ) and outputs the multiplication result to the adder 86-1.
  • the adder 86-1 adds the constant "0.5" to the output value of the multiplier 85-1 and outputs the result as the first duty dw1 to the carrier comparison section 762-1.
  • the carrier comparison section 762-1 outputs control signals GS11 to GS16 for the inverter 5-1 based on the first duty (du1, dv1, dw1). Now, referring to FIG. 6, the processing of carrier comparison section 762-1 will be described.
  • FIG. 6 is a diagram showing an example of processing of the carrier comparison section 762-1 in this embodiment.
  • waveforms W1 to W3 represent waveforms of the first duty (du1, dv1, dw1).
  • a waveform W4 represents the waveform of the triangular carrier wave CA whose crest level is "1" and whose trough level is "0".
  • Waveforms W5 to W10 indicate waveforms of the control signal GS11, the control signal GS13, the control signal GS15, the control signal GS12, the control signal GS14, and the control signal GS16 in order.
  • the carrier comparison unit 762-1 compares the first duty (du1, dv1, dw1) of the waveforms W1 to W3 with the carrier wave CA of the waveform W4. is high, the control signals (GS11, GS13, GS15) corresponding to the switching elements (51-1, 53-1, 55-1) on the high potential side of the inverter 5-1 are turned on (the value is "1"). ). Further, in each phase, when the first duty is low, the carrier comparison unit 762-1 controls the switching elements (51-1, 53-1, 55-1) on the high potential side of the inverter 5-1. The signals (GS11, GS13, GS15) are turned off (the value is "0").
  • the carrier comparison unit 762-1 compares the first duty (du1, dv1, dw1) of the waveforms W1 to W3 with the carrier wave CA of the waveform W4, and if the first duty is low in each phase,
  • the control signals (GS12, GS14, GS16) corresponding to the switching elements (52-1, 54-1, 56-1) on the low potential side of the inverter 5-1 are turned on (the value is "1").
  • the carrier comparison unit 762-1 controls the switching elements (52-1, 54-1, 56-1) on the high potential side of the inverter 5-1.
  • the signals (GS12, GS14, GS16) are turned off (the value is "0").
  • the carrier comparison unit 762-1 By such processing of the carrier comparison unit 762-1, if any one phase (X phase) among the phases is set to the first duty dx1, the control signal on the high potential side in the period Tc of the carrier wave CA is switched. The rate at which the element is turned on is dx1, and the control signal on the low potential side turns the switching element on is (1-dx1). Therefore, the X-phase potential of the inverter 5-1 is the first DC voltage Vdc1 when the high potential side is ON, and the X-phase potential of the inverter 5-1 is "0" (when the low potential side is ON). GND). Therefore, the X-phase output voltage Vx1_PWM is expressed by the following equation (6).
  • the X-phase duty is represented by the following formula (7) from the above formula (5).
  • the inverter 5-1 can output the voltage according to the command value.
  • control unit 7-2 includes a current command calculator 70-2, a subtractor 71-2, a current controller 72-2, a subtractor 73-2, and a current controller. 74-2, a coordinate converter 75-2, and a control signal generator 76-2.
  • a current command calculator 70-2 calculates a second d-axis current command value Id_target2 and a second q-axis current command value based on the command value (T * ) of the rotary machine, the second DC voltage Vdc2s, and the first DC voltage Vdc1s. Generate the value Iq_target2.
  • Current command calculator 70-2 has the same configuration as current command calculator 70-1.
  • the subtractor 71-2 subtracts the current Id2 on the rotating two axes from the second d-axis current command value Id_target2 , and outputs the result to the current controller 72-2.
  • Current Id2 is output from coordinate converter 75-2 .
  • the subtractor 73-2 subtracts the rotation two-axis current Iq2 from the second q-axis current command value Iq_target2, and outputs the result to the current controller 74-2.
  • Current Iq2 is output from coordinate converter 75-2 .
  • the current controller 72-2 performs proportional and integral control on the output value of the subtractor 71-2 so that the output value of the subtractor 71-2 becomes "0" (zero). output the voltage Vd2 above. Since the configuration of the current controller 72-2 is the same as that of the current controller 72-1 described above, the description thereof will be omitted here.
  • the current controller 74-2 performs proportional and integral control on the output value of the subtractor 73-2 so that the output value of the subtractor 73-2 becomes "0" (zero). output the voltage V q2 above. Since the configuration of the current controller 74-2 is the same as that of the current controller 74-1 described above, the description thereof will be omitted here.
  • the coordinate converter 75-2 converts the current value I us2 , the current value I vs2 , and the current value I ws2 detected by the current detection unit 6-2 to the current I d2 on the two rotating axes based on the rotational position ⁇ 2 . and current I q2 . Further, the coordinate converter 75-2 converts the voltage Vd2, which is the voltage command on the two rotating axes, and the voltage Vq2 , based on the rotational position ⁇ 2, to the voltage Vu2 , which is the voltage command on the three- phase axis. , voltage V v2 , and voltage V w2 . Since the configuration of the coordinate converter 75-2 is the same as that of the coordinate converter 75-1 described above, the description thereof will be omitted here.
  • the control signal generator 76-2 generates a control signal for the inverter 5-2 based on the second DC voltage Vdc2s and the voltage V u2 , the voltage V v2 , and the voltage V w2 which are the voltage command values on the three-phase axis. GS21 to control signal GS26 are output. Since the configuration of the control signal generator 76-2 is the same as that of the control signal generator 76-1 described above, the description thereof will be omitted here.
  • the current command computing unit 70-1 computes a first d-axis current command value Id_target1 and a first q-axis current command value Iq_target1 for energizing the rotating machine 10 as control target values for the rotating machine 10.
  • FIG. A current command calculator 70-1 calculates a target d-axis current I d01 * and It is set based on the target q-axis current I q01 * .
  • the current command calculator 70-2 calculates a second d-axis current command value Id_target2 and a second q-axis current command value Iq_target2 for energizing the rotating machine 10 as control target values for the rotating machine 10.
  • FIG. A current command calculator 70-2 calculates a target d-axis current Id02 * and a second d-axis current command value Id_target2 and a second q-axis current command value Iq_target2 based on the command value (T * ) of the rotating machine 10. It is set based on the target q-axis current I q02 * .
  • the command value for the rotating machine 10 is the torque command (T * )
  • the current command calculator 70-1 calculates the target q-axis current I q01 * based on the torque command (T * ).
  • the method of calculating the target q-axis current I q01 * is not particularly limited, for example, the target q-axis current I q01 * is calculated by multiplying the torque command (T * ) by a proportionality constant.
  • the current command calculator 70-2 calculates I q02 * by the same method as for I q01 * .
  • the q-axis currents of the two systems are made the same.
  • the current command calculator 70-1 calculates the target d-axis current based on the DC voltage minimum value Vdcm , which is the lower one of the first DC voltage Vdc1 and the second DC voltage Vdc2. to make the d-axis currents of the two systems the same.
  • Vdcm DC voltage minimum value
  • the target d-axis current and the target q-axis current of the two systems are set to be the same, if the d-axis current is large enough to avoid voltage saturation, the two systems are energized. Currents match.
  • the calculation method of the target d-axis current is not limited to the method described below as long as the calculation is performed based on the DC voltage minimum value Vdcm and the target d-axis currents of the two systems are the same.
  • the current command calculator 70-1 calculates the target d-axis current based on the dq-axis voltage equation using the electrical constants of the rotating machine 10.
  • FIG. A dq-axis voltage equation of the d-axis voltage vd1 and the q -axis voltage vq1 is represented by the following equation (9).
  • a resistance value R As the electrical constants of the rotary machine 10, a resistance value R, an inductance L, and an induced voltage constant ⁇ are used. Also, "p" is a differential operator.
  • the rotational speed ⁇ is calculated by, for example, differentiating the rotational position ⁇ . Note that the rotational speed ⁇ corresponds to the rotational speed of the rotating machine 10 .
  • the current command calculator 70-1 limits the maximum absolute value of the target d-axis current I d01 * so that the current flowing through the rotating machine 10 does not exceed the rated current I r .
  • the current command calculator 70-1 limits the maximum absolute value of the target d-axis current I d01 * to a value 0.8 times the rated current I r .
  • the current command calculator 70-1 calculates by the following formula (13) when the sum of the square of I d01 * and the square of I q01 * exceeds the square of the rated current I r is set as the target q-axis current I q1 * .
  • the current command calculator 70-2 has the same configuration as the current command calculator 70-1, and calculates the command value (T * ) of the rotating machine 10 by the same method as the current command calculator 70-1 described above. , the target d-axis current I d2 * and the target q-axis current I q2 * are set.
  • the current command calculator 70-1 and the current command calculator 70-2 supply a desired current to the rotating machine 10 if the d-axis current is large enough to avoid voltage saturation.
  • the target currents of the two systems By making the target currents of the two systems the same, the currents energized in the two systems can be matched.
  • FIG. 7 is a flow chart showing an example of processing of the current command calculator 70-1 in this embodiment. It should be noted that the current command calculator 70-1 is assumed to generate the target d-axis current I d1 * and the target q-axis current I q1 * from the command value (T * ) of the rotating machine 10 by the method described above. do.
  • the variable n is a variable indicating the number of times of processing, and its value is an integer.
  • current command calculator 70-1 sets d-axis current I dt1 based on target d-axis current I d1 * (step S102).
  • the current command calculator 70-1 generates the voltages (V dt1 , V qt1 ) required to supply the currents (I dt1 , I qt1 ) based on the q-axis current I qt1 [n-1]. (step S103).
  • Current command calculator 70-1 generates voltage V dt1 and voltage V qt1 using equation (14) below.
  • the d-axis voltage V dt1 and the q-axis voltage V qt1 correspond to a first voltage command value that is a command value for the voltage applied to the three-phase windings (u1, v1, w1) of the first system.
  • the d-axis current Idt1 and the q-axis current Iqt1 are values that finally become the first d-axis current command value Id_target1 and the first q-axis current command value Iq_target1. Note that in equation (14), instead of the d-axis current I dt1 and the q-axis current I qt1 , for example, the detected currents (I d1 , I q1 ) calculated by the above equation (3) may be used.
  • current command calculator 70-1 generates voltage excess amount ⁇ V 1 based on voltages (V dt1 , V qt1 ) and DC voltage minimum value V dcm (step S104).
  • the current command calculator 70-1 calculates the voltage excess amount ⁇ V1 by the following equation (15). As a result, it can be expected that even in the system with a lower DC voltage, it will be possible to prevent a desired current from flowing due to voltage saturation.
  • the current command calculator 70-1 limits the voltage excess amount ⁇ V 1 by the limit value V x1 , and sets the value after the limit as the voltage excess amount ⁇ V LM1 (step S105).
  • the current command calculator 70-1 limits the voltage excess amount ⁇ V 1 to the range between the upper limit value V x1 and the lower limit value ( ⁇ V x1 ) using the limit value V x1 calculated by the following equation (16). The resulting value is generated as the voltage excess amount ⁇ V LM1 .
  • the current command calculator 70-1 adds the voltage excess amount ⁇ V LM1 to the previous adjustment amount ⁇ I qt1 [n ⁇ 1] to generate the first adjustment amount ⁇ I qt1 [n] (step S106).
  • the current command calculator 70-1 calculates the first adjustment amount ⁇ I qt1 [n] by the following equation (17).
  • the voltage excess amount ⁇ V LM1 is smaller than "0" ( ⁇ V LM1 ⁇ 0)
  • the required voltage exceeds the power supply voltage of the system with the lower DC voltage, and the desired current cannot be supplied.
  • the current command calculator 70-1 performs adjustment so that the absolute value of the first q-axis current command value becomes smaller than the absolute value of the target q-axis current I q1 * .
  • current command calculator 70-1 generates q-axis current command value I qt1 [n] based on first adjustment amount ⁇ I qt1 [n] and target q-axis current I q1 * (step S107 ).
  • the current command calculator 70-1 adds the first adjustment amount ⁇ I qt1 [n] calculated above to the target q-axis current I q1 * according to the following equation (18) to obtain the q-axis current command value I qt1 Generate [n].
  • the current command calculator 70-1 makes the absolute value of the q-axis current command value I qt1 [n] smaller than the absolute value of the target q-axis current I q1 * according to the following equation (18). Avoid overvoltages caused by DC voltage limitations according to equations (14) and (15).
  • the current command calculator 70-1 calculates the first voltage command value ( V dt1 2 +V qt1 2 ) is large, the first adjustment amount ⁇ I qt1 [n] changes in the negative direction, and the absolute value of the first q-axis current command value I qt1 [n] is corrected to decrease.
  • the current command calculator 70-1 operates when the first voltage command value (V dt1 2 +V qt1 2 ) is smaller than the value (V dcm 2 /2) determined by the DC voltage minimum value V dcm (that is, when the power supply voltage is sufficient magnitude), the first adjustment amount ⁇ I qt1 [n] changes in the positive direction, and the absolute value of the first q-axis current command value I qt1 [n] is corrected to increase.
  • the value (V dcm 2 /2) is an example of a comparison value based on the DC voltage minimum value V dcm .
  • Current command calculator 70-1 returns the process to step S102 after the process of step S109.
  • the current command calculator 70-2 of the second system calculates the target d-axis current I d2 * and the target q-axis current I d2 * from the command value (T * ) of the rotating machine 10.
  • I q2 * is generated, and the same processing as the processing in FIG. 7 described above is executed to generate the second d-axis current command value Id_target2 and the second q-axis current command value Iq_target2.
  • the rotating machine control device 1 includes the inverter 5-1 (first inverter), the inverter 5-2 (second inverter), and the control section 7-1 (first control section). and a control unit 7-2 (second control unit).
  • Inverter 5-1 supplies three-phase windings (u1, v1, w1) of the first system of rotating machine 10 based on first DC voltage Vdc1 output by DC power supply 3-1 (first DC power supply). Apply AC voltage.
  • Inverter 5-2 supplies three-phase windings (u2, v2, w2) of the second system of rotating machine 10 based on second DC voltage Vdc2 output by DC power supply 3-2 (second DC power supply). Apply AC voltage.
  • the control unit 7-1 controls the first d-axis based on the DC voltage minimum value Vdcm , which is the lower one of the first DC voltage Vdc1 and the second DC voltage Vdc2, and the command value for the rotating machine 10.
  • a current command value Id_target1 (command value of the d-axis current of the first system) is generated. Further, the control unit 7-1 generates a first q-axis current command value Iq_target1 (q-axis current command value of the first system) based on the DC voltage minimum value V dcm and the first d-axis current command value Id_target1. do.
  • the control unit 7-1 controls the inverter 5-1 and the three-phase windings (u1, v1, w1) of the first system. It outputs first control signals GS11 to GS16 for applying an AC voltage. Further, the control unit 7-2 generates a second d-axis current command value Id_target2 (a second system d-axis current command value) based on the DC voltage minimum value V dcm and the command value for the rotating machine 10. .
  • control unit 7-2 generates a second q-axis current command value Iq_target2 (a second system q-axis current command value) based on the DC voltage minimum value V dcm and the second d-axis current command value Id_target2. do. Based on the generated second d-axis current command value Id_target2 and second q-axis current command value Iq_target2, the control unit 7-2 controls the inverter 5-2 and the three-phase windings (u2, v2, w2) of the second system. It outputs second control signals GS21 to GS26 for applying an AC voltage.
  • Iq_target2 a second system q-axis current command value
  • the rotating machine control device 1 uses the same generation method for the first system and the second system, and based on the value on the lower DC voltage side (DC voltage minimum value V dcm ), the current command value (First d-axis current command value Id_target1 and first q-axis current command value Iq_target1, second d-axis current command value Id_target2 and second q-axis current command value Iq_target2) are generated. Therefore, since the rotating machine control device 1 according to the present embodiment can make the current command values of the two systems the same, it is possible to prevent the desired current from being supplied to the two systems due to the restriction by the DC voltage. The current can be the same. Therefore, the rotating machine control device 1 according to the present embodiment, even when there is a difference in the DC voltages output from the DC power sources (3-1, 3-2) of the plurality of systems that control the rotating machine 10, Mismatches between systems can be reduced.
  • the rotating machine control device 1 for example, even when the rotating machine 10 rotates at a high speed, the currents supplied to the two systems can match, so that mismatch between the systems can be avoided.
  • the rotary machine 10 can be stably controlled while appropriately coordinating a plurality of systems.
  • the control unit 7-1 has a first voltage command value ( V dt1 2 +V qt1 2 ) is greater than the comparison value (V dcm 2 /2) based on the DC voltage minimum value V dcm , the first q-axis current command value Iq_target1 is corrected to be reduced.
  • the control unit 7-1 corrects the first q-axis current command value Iq_target1 to increase.
  • control unit 7-2 sets the second voltage command value (V dt2 2 +V qt2 2 ), which is the command value for the voltage applied to the three-phase windings (u2, v2, w2) of the second system, to the DC voltage If it is larger than the comparison value (V dcm 2 /2) based on the minimum value V dcm , the second q-axis current command value Iq_target2 is corrected to be reduced.
  • the control unit 7-2 corrects the second q-axis current command value Iq_target2 to increase.
  • the rotating machine control device 1 appropriately sets the first q-axis current command value Iq_target1 according to the relationship between the DC voltage minimum value V dcm and the first voltage command value (V dt1 2 +V qt1 2 ).
  • the second q-axis current command value Iq_target2 can be appropriately adjusted according to the relationship between the DC voltage minimum value V dcm and the second voltage command value (V dt2 2 +V qt2 2 ). Therefore, the rotating machine control device 1 according to the present embodiment can supply a desired current while avoiding the influence of voltage saturation.
  • the rotary machine control device 1 generates the q-axis current command value in the same manner for the first system and the second system using the DC voltage minimum value V dcm , so that the DC power supply 3- 1 and the DC power supply 3-2, the current can be set according to the system with the lower DC voltage, and the currents of the two systems can be made the same.
  • control unit 7-1 controls the d-axis current I dt1 of the first system and the q-axis current I qt1 of the first system, the rotation speed (for example, the rotation speed ⁇ ) of the rotating machine 10,
  • a first voltage command value eg, d-axis voltage V dt1 and q-axis voltage V qt1
  • electrical constants eg, resistance value R, inductance L, induced voltage constant ⁇ , etc.
  • control unit 7-2 controls the d-axis current I dt2 of the second system and the q-axis current I qt2 of the second system, the rotation speed (for example, the rotation speed ⁇ ) of the rotating machine 10, and the electric power of the rotating machine 10.
  • second voltage command values eg, d-axis voltage V dt2 and q-axis voltage V qt2 ) based on the constants such as resistance value R, inductance L, induced voltage constant ⁇ , etc.).
  • the rotating machine control device 1 generates the first voltage command value (for example, the d-axis voltage V dt1 and the q-axis voltage V qt1 ) and the second voltage command value (for example, the d-axis voltage V dt2 and the q-axis voltage V qt2 ), an appropriate current can be applied to the rotating machine 10 .
  • the first voltage command value for example, the d-axis voltage V dt1 and the q-axis voltage V qt1
  • the second voltage command value for example, the d-axis voltage V dt2 and the q-axis voltage V qt2
  • control unit 7-1 has a first CPU
  • control unit 7-2 has a second CPU.
  • the rotating machine control device 1 can control the rotating machine 10 with the other system even if one of the systems fails, for example, by executing processing using two independent CPUs. can be continued.
  • control unit 7-1 current command calculator 70-1) and the control unit 7-2 (current command calculator 70-2) perform the processing of FIG. may be executed.
  • the system with the lower DC voltage is set to the d-axis current command value.
  • the target d-axis current value is set as it is, and the target q-axis current value is set as it is as the q-axis current command value. That is, for example, when the DC voltage of the first system is low, the control unit 7-1 (current command calculator 70-1) sets the target d-axis current Id1 * to the first d -axis current command value Id_target1.
  • the first q-axis current command value Iq_target1 is set to the target q-axis current I q1 * .
  • FIG. 8 is a block diagram showing an example of the two-system control units 7a of the rotating machine control device 1a according to the second embodiment.
  • the rotating machine control device 1a includes a control section 7a-1 and a control section 7a-2. Note that the overall configuration of the rotating machine control device 1a is shown in FIG. Since it is the same as the first embodiment shown, the description thereof is omitted here. Moreover, in FIG. 8, the same components as those of the first embodiment shown in FIG.
  • a control unit 7a-1 (an example of a first control unit) includes a current command calculator 70a-1, a subtractor 71-1, a current controller 72-1, a subtractor 73-1, and a current controller 74. -1, a coordinate converter 75-1, and a control signal generator 76-1.
  • the control unit 7a- 1 controls the first d-axis current command value Id_target1 or the first q-axis current command Limit the value Iq_target1.
  • the current command calculator 70a-1 in the present embodiment considers the heat generation of the rotating machine 10, and when a large current is continuously applied, the first d-axis current command value Limit Id_target1 or the first q-axis current command value Iq_target1.
  • a current command calculator 70a-1 calculates a first d-axis current command value Id_target1 or a first q-axis Limit the current command value Iq_target1.
  • Current command calculator 70a-1 calculates current value IL1, which is the first current, based on the detected currents (current value I us1 , current value I vs1 , and current value I ws1 ) detected by current detection unit 6-1. An integrated value is calculated, and the first d-axis current command value Id_target1 or the first q-axis current command value Iq_target1 is limited based on the calculated integrated value of the current value IL1.
  • the current command calculator 70a-1 has a current limit map, which is a reference table that associates the integrated value of the current value It1 with the limit value IL1.
  • the current value It1 is, for example, the square root of the sum of the squares of the detected currents (current value I us1 , current value I vs1 , and current value I ws1 ).
  • the current limit map is set such that the limit value IL1 decreases as the integrated value of the current value It1 increases.
  • the current command calculator 70a-1 receives the integrated value of the current value It1 and calculates the limit value IL1 from a preset current limit map.
  • the current command calculator 70a-1 limits the absolute values of the first d-axis current command value Id_target1 and the first q-axis current command value Iq_target1 so that the current value It1 becomes smaller than the limit value IL1.
  • Other functions of the current command calculator 70a-1 are the same as those of the current command calculator 70-1 of the first embodiment described above.
  • a control unit 7a-2 (an example of a second control unit) includes a current command calculator 70a-2, a subtractor 71-2, a current controller 72-2, a subtractor 73-2, and a current controller 74. -2, a coordinate converter 75-2, and a control signal generator 76-2. Similar to the control unit 7a-1 described above, the control unit 7a-2 sets the second d-axis current command value Id_target2 based on the second detected current (current value I us2 , current value I vs2 , and current value I ws2 ). Or limit the second q-axis current command value Iq_target2.
  • a current command calculator 70a-2 calculates a second d-axis current command value Id_target2 or a second q-axis Limit the current command value Iq_target2.
  • Current command calculator 70a-2 calculates current value IL2, which is the second current, based on the detected currents (current value I us2 , current value I vs2 , and current value I ws2 ) detected by current detection unit 6-2. An integrated value is calculated, and the second d-axis current command value Id_target2 or the second q-axis current command value Iq_target2 is limited based on the calculated integrated value of the current value IL2.
  • the current command calculator 70a-2 has a current limit map, which is a reference table that associates the integrated value of the current value It2 with the limit value IL2.
  • the current value It2 is, for example, the square root of the sum of the squares of the detected currents (current value I us2 , current value I vs2 , and current value I ws2 ).
  • the current limit map is set so that the limit value IL2 decreases as the integrated value of the current value It2 increases.
  • the current command calculator 70a-2 receives the integrated value of the current value It2 and calculates the limit value IL2 from a preset current limit map.
  • the current command calculator 70a-2 limits the absolute values of the second d-axis current command value Id_target2 and the second q-axis current command value Iq_target2 so that the current value It2 becomes smaller than the limit value IL2.
  • Other functions of the current command calculator 70a-2 are the same as those of the current command calculator 70-1 of the first embodiment described above.
  • the rotating machine control device 1a includes the control section 7a-1 and the control section 7a-2.
  • the control unit 7a-1 calculates the first d-axis current based on the integrated value (value obtained by integrating the current value It1) of the first current, which is the current flowing through the three-phase windings (u1, v1, w1) of the first system. Limit the command value Id_target1 or the first q-axis current command value Iq_target1.
  • the control unit 7a-2 calculates the second d-th current based on the integrated value of the second current (value obtained by integrating the current value It2), which is the current flowing through the three-phase windings (u2, v2, w2) of the second system. Limit the axis current command value Id_target2 or the second q-axis current command value Iq_target2.
  • the rotating machine control device 1a can limit the current of the rotating machine 10 to be small, thereby reducing the amount of heat generated.
  • the rotary machine control device 1a includes a current detection section 6-1 (first current detection section) and a current detection section 6-2 (second current detection section).
  • the current detection unit 6-1 detects the current flowing through the three-phase windings (u1, v1, w1) of the first system.
  • the current detector 6-2 detects the current flowing through the three-phase windings (u2, v2, w2) of the second system.
  • the control unit 7a-1 calculates the integrated value of the first current based on the detected current detected by the current detection unit 6-1, and calculates the first d-axis current command value based on the calculated integrated value of the first current. Limit Id_target1 or the first q-axis current command value Iq_target1.
  • the control unit 7a-2 calculates the integrated value of the second current based on the detected current detected by the current detection unit 6-2, and calculates the second d-axis current command value based on the calculated integrated value of the second current. Limit Id_target2 or second q-axis current command value Iq_target2.
  • the rotating machine control device 1a uses the current detecting section 6-1 and the current detecting section 6-2 to reduce the current of the rotating machine 10 when the detected current continues to increase. It is possible to limit the heat generation to a small value.
  • the current command computing unit 70a -1 outputs , for example, the first d-axis current command
  • the limit value IL1 may be determined using the value Id_target1 and the first q-axis current command value Iq_target1.
  • the current command calculator 70a-1 calculates the current value It1 by the square root of the sum of the square of the first d-axis current command value Id_target1 and the square of the first q-axis current command value Iq_target1. is input, and a limit value IL1 is calculated from a preset current limit map.
  • the current command calculator 70a-2 instead of the current detected by the current detection unit 6-2 (current value I us2 , current value I vs2 , and current value I ws2 ), for example, the second d-axis current command
  • the limit value IL2 may be determined using the value Id_target2 and the second q-axis current command value Iq_target2.
  • the current command calculator 70a-2 calculates the current value It2 by the square root of the sum of the square of the second d-axis current command value Id_target2 and the square of the second q-axis current command value Iq_target2. is input, and a limit value IL2 is calculated from a preset current limit map.
  • the control unit 7a-1 calculates the integrated value of the first current It1 based on the first d-axis current command value Id_target1 and the first q-axis current command value Iq_target1, and the calculated first current It1
  • the first d-axis current command value Id_target1 or the first q-axis current command value Iq_target1 may be limited based on the integrated value of the current It1.
  • control unit 7a-2 calculates the integrated value of the second current It2 based on the second d-axis current command value Id_target2 and the second q-axis current command value Iq_target2, and based on the calculated integrated value of the second current It2 Therefore, the second d-axis current command value Id_target2 or the second q-axis current command value Iq_target2 may be limited.
  • the rotating machine control device 1a uses the first d-axis current command value Id_target1 and the first q-axis current command value Iq_target1, and the second d-axis current command value Id_target2 and the second q-axis current command value Iq_target2.
  • the amount of heat generated can be reduced by restricting the current of the rotating machine 10 to be small.
  • FIG. 9 is a block diagram showing an example of the two-system control section 7b of the rotary machine control device 1b according to the third embodiment.
  • the rotating machine control device 1b includes a control section 7b-1, a control section 7b-2, a DC section current detection section 91-1, a DC section current detection section 92-1, a DC section It has a current detection section 91-2 and a DC section current detection section 92-2.
  • a control unit 7b-1, a control unit 7b-2, a DC unit current detection unit 91-1 instead of the control units 7-1 and 7-2, a control unit 7b-1, a control unit 7b-2, a DC unit current detection unit 91-1, Since it is the same as the first embodiment shown in FIG. We omit the explanation.
  • FIG. 9 the same components as those of the first embodiment shown in FIG.
  • a DC current detection unit 91-1 detects a first DC current Idc1s, which is a current output from the DC power supply 3-1 to the inverter 5-1.
  • the first DC section current Idc1s can also be estimated by the calculation of Equation (19) below.
  • the DC current detection unit 91-1 or the control unit 7b-1 may estimate the first DC current Idc1s using equation (19).
  • a DC current detection unit 92-1 detects a first DC current Idc1s, a first DC voltage Vdc1s, and a second DC voltage Vdc1s detected by the DC current detection unit 91-1.
  • the second DC section current Idc2s is detected based on the voltage Vdc2s.
  • the DC section current detection section 92-1 detects the second DC section current Idc2s using the following equation (20).
  • a control unit 7b-1 (an example of a first control unit) outputs a first DC unit current Idc1s, which is a current output from the DC power supply 3-1 to the inverter 5-1, and a current Idc1s from the DC power supply 3-2 to the inverter 5-2.
  • the first d-axis current command value Id_target1 or the first q-axis current command value Iq_target1 is limited based on the second DC part current Idc2s, which is the current to be output.
  • the control unit 7b-1 includes a current command calculator 70b-1, a subtractor 71-1, a current controller 72-1, a subtractor 73-1, a current controller 74-1, and a coordinate converter 75. -1 and a control signal generator 76-1.
  • the current command calculator 70b-1 takes into account the amount of heat generated by the rotating machine 10, and sets the first d-axis current command value Id_target1 or the first d-axis current command value Id_target1 or the second 1 Limit the q-axis current command value Iq_target1.
  • the current command calculator 70b-1 determines the limit value IL1 based on the integrated value of the larger value of the first DC part current Idc1s and the second DC part current Idc2s.
  • the current command calculator 70b-1 is a reference table that associates the integrated value of the larger one of the first DC section current Idc1s and the second DC section current Idc2s with the limit value IL1.
  • the current limit map is set such that the limit value IL1 decreases as the integrated value increases.
  • the current command calculator 70b-1 selects, for example, the first DC current Idc1s detected by the DC current detector 91-1 and the second DC current Idc2s detected by the DC current detector 92-1. Calculate the integrated value of the DC part current of the larger one.
  • Current command calculator 70b-1 receives the calculated integrated value and calculates limit value IL1 from a preset current limit map.
  • the current command calculator 70b-1 calculates the absolute value of the first d-axis current command value Id_target1 so that the current value It1 flowing through the three-phase windings (u1, v1, w1) of the first system is smaller than the limit value IL1. and the absolute value of the first q-axis current command value Iq_target1 are limited.
  • Other functions of the current command calculator 70b-1 are the same as those of the current command calculator 70-1 of the first embodiment or the current command calculator 70a-1 of the second embodiment.
  • a DC current detection unit 91-2 detects a second DC current Idc2s, which is a current output from the DC power supply 3-2 to the inverter 5-2.
  • the second DC section current Idc2s can also be estimated by the calculation of the following equation (21).
  • the DC current detection unit 91-2 or the control unit 7b-2 may estimate the second DC current Idc2s using equation (21).
  • a DC current detection unit 92-2 detects a second DC current Idc2s detected by the DC current detection unit 91-2, a first DC voltage Vdc1s, and a second DC voltage Vdc1s.
  • the first DC section current Idc1s is detected based on the voltage Vdc2s.
  • the DC section current detection section 92-2 detects the first DC section current Idc1s using the following equation (22).
  • a control unit 7b-2 (an example of a second control unit) outputs a first DC unit current Idc1s, which is a current output from the DC power supply 3-1 to the inverter 5-1, and a current Idc1s from the DC power supply 3-2 to the inverter 5-2.
  • the second d-axis current command value Id_target2 or the second q-axis current command value Iq_target2 is limited based on the second DC part current Idc2s, which is the current to be output.
  • the control unit 7b-2 includes a current command calculator 70b-2, a subtractor 71-2, a current controller 72-2, a subtractor 73-2, a current controller 74-2, and a coordinate converter 75. -2 and a control signal generator 76-2.
  • the current command calculator 70b-2 considers the amount of heat generated by the rotating machine 10, and sets the second d-axis current command value Id_target2 or the second 2 Limit the q-axis current command value Iq_target2.
  • the current command calculator 70b-2 determines the limit value IL2 based on the integrated value of the larger value of the first DC part current Idc1s and the second DC part current Idc2s.
  • the current command calculator 70b-2 is a reference table that associates the integrated value of the larger one of the first DC section current Idc1s and the second DC section current Idc2s with the limit value IL2.
  • the current limit map is set so that the limit value IL2 decreases as the integrated value increases.
  • the current command calculator 70b-2 selects, for example, the second DC current Idc2s detected by the DC current detector 91-2 and the first DC current Idc1s detected by the DC current detector 92-2. Calculate the integrated value of the DC part current of the larger one.
  • Current command calculator 70b-2 receives the calculated integrated value and calculates limit value IL2 from a preset current limit map.
  • the current command calculator 70b-2 calculates the absolute value of the second d-axis current command value Id_target2 so that the current value It2 flowing through the three-phase windings (u2, v2, w2) of the second system is smaller than the limit value IL2. and the absolute value of the second q-axis current command value Iq_target2 are limited.
  • Other functions of the current command calculator 70b-2 are the same as those of the current command calculator 70-2 of the first embodiment or the current command calculator 70a-2 of the second embodiment.
  • the rotating machine control device 1b includes the control section 7b-1 and the control section 7b-2.
  • the control unit 7b-1 controls a first DC unit current Idc1s, which is the current output from the DC power supply 3-1 to the inverter 5-1, and a second DC current, which is the current output from the DC power supply 3-2 to the inverter 5-2.
  • the first d-axis current command value Id_target1 or the first q-axis current command value Iq_target1 is limited based on the integrated value of the larger one of the DC current Idc2s and the DC current Idc2s.
  • the control unit 7b-2 generates a second d-axis current command value Id_target2 or a second q-axis current command based on the integrated value of the larger one of the first DC current Idc1s and the second DC current Idc2s. Limit the value Iq_target2.
  • the rotating machine control device 1b limits the current command value of each system based on the first DC part current Idc1s and the second DC part current Idc2s. Even if the absolute value continues to be a large value, the current supplied to rotating machine 10 can be reduced, and the amount of heat generated by rotating machine 10 can be reduced.
  • the current command value in each system is equally restricted due to the first DC part current Idc1s and the second DC part current Idc2s. Therefore, in the rotating machine control device 1b according to the present embodiment, the first d-axis current command value Id_target1 and the second d-axis current command value Id_target2 match, and the first q-axis current command value Iq_target1 and the second q-axis current command value Iq_target2 By matching, it is possible to suppress inconsistency between systems.
  • control unit 7b-1 determines a large Determine the DC part current of the The control unit 7b-2 determines the larger DC current based on the first DC current Idc1s estimated based on the first DC voltage Vdc1s, the second DC voltage Vdc2s, and the second DC current Idc2s. do.
  • the rotating machine control device 1b has the effect of estimating the DC part current of the other system, thereby eliminating the need for a new sensor and wiring for current detection in its own system.
  • the rotating machine control device 1b includes the DC current detection unit 91-1, the DC current detection unit 92-1, the DC current detection unit 91-2, and the DC current detection unit 92. -2 has been described, but these functions may be provided in the control section 7b-1 and the control section 7b-2. Also, the first DC section current Idc1s and the second DC section current Idc2s may be detected using a current detection resistor (shunt resistor) or the like.
  • FIG. 10 is a block diagram showing an example of an electric power steering device 100 according to the fourth embodiment.
  • the electric power steering device 100 includes a rotating machine 10, a steering wheel 101, a torque sensor 102, a steering shaft 103, wheels 104, a rack and pinion gear 105, and a control device 106.
  • the control device 106 includes the rotary machine control device 1 (1a, 1b) described above.
  • a torque sensor 102 detects a steering torque of a driver (not shown).
  • the wheels 104 are, for example, wheels to be steered of a vehicle such as an automobile.
  • the steering torque applied by the driver to the steering wheel 101 passes through the torsion bar of the torque sensor 102 and the steering shaft 103, and is transmitted to the rack via the rack and pinion gear 105. Thereby, the electric power steering device 100 steers the wheels 104 .
  • the rotating machine 10 is driven by the rotating machine control device 1 (1a, 1b) of the control device 106, and generates an assist force as an output.
  • the assist force is transmitted to the steering shaft 103 and reduces the steering torque applied by the driver during steering.
  • the control device 106 calculates an assist command for adjusting the assist force based on the driver's steering torque detected by the torque sensor 102 .
  • the control device 106 calculates the assist command as a value proportional to the driver's steering torque.
  • the control device 106 sets an assist command as a torque command that is a command value for the rotating machine 10 .
  • the electric power steering device 100 includes the rotary machine control device 1 (1a, 1b) described above, the rotary machine 10 for assisting the steering, and the torque for detecting the steering torque of the steering. and a sensor 102 .
  • the rotary machine control device 1 (1a, 1b) controls the rotary machine 10 using a steering assist command corresponding to the steering torque detected by the torque sensor 102 as a command value for the rotary machine 10.
  • the electric power steering apparatus 100 according to the present embodiment has the same effect as the rotating machine control apparatus 1 (1a, 1b) described above, and the plurality of systems of DC power sources (3-1, 1b) for controlling the rotating machine 10. Even if there is a difference in the DC voltage output from 3-2), the mismatch between systems can be reduced. Further, the electric power steering apparatus 100 according to the present embodiment can obtain an assist torque from the rotating machine 10 according to steering by the driver, and can stably control the rotating machine by using two current systems. Therefore, an electric power steering device that can be steered comfortably can be realized.
  • the present disclosure is not limited to the above-described embodiments, and can be modified without departing from the gist of the present disclosure.
  • the command value for the rotating machine 10 has been described as a torque command, but it is not limited to this.
  • the command value for the rotating machine 10 may be used as the speed command.
  • the current command computing unit 70 constitutes a feedback control system that causes the rotational speed of the rotating machine 10 to follow the target speed, and the target d-axis current I d01 * , the target d-axis current I d02 * , A target q-axis current I q01 * and a target q-axis current I q02 * are calculated.
  • the rotating machine control device 1 (1a, 1b) can control the rotation speed of the rotating machine 10 to a desired value.
  • the command value for the rotating machine 10 may be the position command.
  • the current command calculator 70 (70a, 70b) configures a feedback control system that causes the rotational position of the rotating machine 10 to follow the target position, and the target d-axis current I d01 * , the target d-axis current I d02 * , A target q-axis current I q01 * and a target q-axis current I q02 * are calculated.
  • the rotating machine control device 1 (1a, 1b) can control the rotation speed of the rotating machine 10 to a desired value.
  • the rotating machine control device 1 (1a, 1b) can control the rotation speed of the rotating machine 10 to a desired value.
  • each of the control units 7-1 (7a-1, 7b-1) and the control units 7-2 (7a-2, 7b-2) includes a CPU will be described.
  • Both the control units 7-1 (7a-1, 7b-1) and the control units 7-2 (7a-2, 7b-2) may be controlled by one CPU.
  • one CPU takes in the first DC voltage Vdc1s and the second DC voltage Vdc2s, and -2) is performed.
  • each configuration included in the rotating machine control device 1 (1a, 1b) described above has a computer system therein. Then, a program for realizing the function of each configuration included in the rotating machine control device 1 (1a, 1b) described above is recorded on a computer-readable recording medium, and the program recorded on this recording medium is transferred to the computer system. By reading and executing, the processing in each configuration included in the rotating machine control device 1 (1a, 1b) described above may be performed.
  • “loading and executing the program recorded on the recording medium into the computer system” includes installing the program in the computer system.
  • the "computer system” here includes hardware such as an OS and peripheral devices.
  • the "computer system” may include a plurality of computer devices connected via a network including communication lines such as the Internet, WAN, LAN, and dedicated lines.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM.
  • Recording media also include internal or external recording media that can be accessed from the distribution server in order to distribute the program.
  • a program is divided into a plurality of programs, each of which is downloaded at different timings and then combined in each configuration provided in the rotating machine control device 1 (1a, 1b), and a distribution server that distributes each of the divided programs is different.
  • “computer-readable recording medium” is a volatile memory (RAM) inside a computer system that acts as a server or client when the program is transmitted via a network, and retains the program for a certain period of time. It shall also include things.
  • the program may be for realizing part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above functions by combining with a program already recorded in the computer system.
  • part or all of the functions described above may be realized as an integrated circuit such as LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each function mentioned above may be processor-ized individually, and may integrate
  • the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on this technology may be used.
  • Rotary machine control device 2... Position detector, 3-1, 3-2... DC power supply, 4-1, 4-2... Capacitor, 5-1, 5-2... Inverter, 6- 1, 6-2... Current detector, 7, 7-1, 7-2, 7a, 7a-1, 7a-2, 7b, 7b-1, 7b-2... Control part, 10... Rotating machine, 51- 1, 51-2, 52-1, 52-2, 53-1, 53-2, 54-1, 54-2, 55-1, 56-2 ... switching elements, 70-1, 70-2, 70a -1, 70a-2, 70b-1, 70b-2 ... current command calculator, 71-1, 71-2, 73-1, 73-2 ... subtractor, 72-1, 72-2, 74-1 , 74-2...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

回転機制御装置は、第1直流電圧に基づいて、回転機が有する第1系統の3相巻線に交流電圧を印加する第1インバータと、回転機が有する第2系統の3相巻線に交流電圧を印加する第2インバータと、第1直流電圧と第2直流電圧とのうちの低い方の直流電圧最小値と、回転機の指令値とに基づいて、第1系統のd軸電流の指令値を生成し、直流電圧最小値と、第1系統のd軸電流の指令値とに基づいて、第1系統のq軸電流の指令値を生成し、第1系統のd軸電流の指令値及び第1系統のq軸電流の指令値に基づいて、第1インバータを制御する第1制御部と、直流電圧最小値と、回転機の指令値とに基づいて、第2系統のd軸電流の指令値を生成し、直流電圧最小値と、第2系統のd軸電流の指令値とに基づいて、第2系統のq軸電流の指令値を生成し、第2系統のd軸電流の指令値及び第2系統のq軸電流の指令値に基づいて、第2インバータを制御する第2制御部とを備える。

Description

回転機制御装置、及び電動パワーステアリング装置
 本開示は、回転機制御装置、及び電動パワーステアリング装置に関する。
 従来、回転機の駆動力により操舵を補助する電動パワーステアリング装置において、独立した2系統で操舵のアシスト量を制御する回転機制御装置が知られている(例えば、特許文献1を参照)。このような回転機制御装置では、特許文献1では、各系統で独立にアシスト量を演算し、独立に電流制御を行うと、系統間にて不整合が生じることがある。そのため、例えば、特許文献2に記載の技術では、マスター制御部と、スレーブ制御部とを備え、マスター制御部で演算される指令値をスレーブ制御部に送信することにより、系統間の不整合を低減している。
特開2011-195089号公報 国際公開第2018/088465号
 ところで、回転機は、回転速度に比例して生じる誘起電圧と、回転機を駆動する電力変換器(例えば、インバータ)の印加電圧との差に応じて回転機に通電される電流が決まる。そのため、回転機が高速で回転する場合には、誘起電圧が大きくなり、回転機に指令値通りの電流を通電するのに必要な電圧が、インバータの印加電圧の上限値よりも大きくなることがある。すなわち、回転機に通電される電流は、印加電圧の上限値と誘起電圧との差に基づいて通電されるため、回転機には、指令値と異なる電流が通電されることがある。この場合、各系統のインバータが、同一の直流電源から直流電圧の供給を受けるのであれば、系統間で不整合は発生しない。しかしながら、各系統のインバータが、異なる直流電源から直流電圧の供給を受ける場合に、複数の直流電源間の直流電圧の差が、複数のインバータから回転機に印加される印加電圧の差となって表れることにより、系統間で不整合が生じることがある。
 このように、従来の回転機制御装置では、例えば、回転機を制御する複数の系統の直流電源が出力する直流電圧に差が生じた場合には、依然として、系統間で不整合が生じる可能性があった。
 本開示は、上記問題を解決すべくなされたもので、その目的は、回転機を制御する複数の系統の直流電源が出力する直流電圧に差が生じた場合であっても、系統間の不整合を低減することができる回転機制御装置、及び電動パワーステアリング装置を提供することにある。
 上記問題を解決するために、本開示の一態様は、第1直流電源が出力した第1直流電圧に基づいて、回転機が有する第1系統の3相巻線に交流電圧を印加する第1インバータと、第2直流電源が出力した第2直流電圧に基づいて、前記回転機が有する第2系統の3相巻線に交流電圧を印加する第2インバータと、前記第1直流電圧と前記第2直流電圧とのうちの低い方の電圧である直流電圧最小値と、前記回転機の指令値とに基づいて、前記第1系統のd軸電流の指令値を生成するとともに、前記直流電圧最小値と、前記第1系統のd軸電流の指令値とに基づいて、前記第1系統のq軸電流の指令値を生成し、生成した前記第1系統のd軸電流の指令値及び前記第1系統のq軸電流の指令値に基づいて、前記第1インバータに、前記第1系統の3相巻線に前記交流電圧を印加させる第1制御信号を出力する第1制御部と、前記直流電圧最小値と、前記回転機の指令値とに基づいて、前記第2系統のd軸電流の指令値を生成するとともに、前記直流電圧最小値と、前記第2系統のd軸電流の指令値とに基づいて、前記第2系統のq軸電流の指令値を生成し、生成した前記第2系統のd軸電流の指令値及び前記第2系統のq軸電流の指令値に基づいて、前記第2インバータに、前記第2系統の3相巻線に前記交流電圧を印加させる第2制御信号を出力する第2制御部とを備える回転機制御装置である。
 また、本開示の一態様は、上記に記載の回転機制御装置と、ステアリングの操舵をアシストする前記回転機と、前記ステアリングの操舵トルクを検出するトルクセンサとを備え、前記回転機制御装置は、前記トルクセンサが検出した前記操舵トルクに応じた前記ステアリングのアシスト指令を、前記回転機の指令値として、前記回転機を制御する電動パワーステアリング装置である。
 本開示によれば、回転機を制御する複数の系統の直流電源が出力する直流電圧に差が生じた場合であっても、系統間の不整合を低減することができる。
第1の実施形態による回転機制御装置の一例を示すブロック図である。 第1の実施形態による回転機制御装置の2系統の制御部の一例を示すブロック図である。 第1の実施形態におけるd軸電圧指令値を生成する電流制御器の一例を示すブロック図である。 第1の実施形態におけるq軸電圧指令値を生成する電流制御器の一例を示すブロック図である。 第1の実施形態における制御信号生成器の一例を示すブロック図である。 第1の実施形態におけるキャリア比較部の処理の一例を示す図である。 第1の実施形態における電流指令演算器の処理の一例を示すフローチャートである。 第2の実施形態による回転機制御装置の2系統の制御部の一例を示すブロック図である。 第3の実施形態による回転機制御装置の2系統の制御部の一例を示すブロック図である。 第4の実施形態による電動パワーステアリング装置の一例を示すブロック図である。
 以下、本開示の実施形態による回転機制御装置、及び電動パワーステアリング装置について、図面を参照して説明する。
 [第1の実施形態]
 図1は、第1の実施形態による回転機制御装置1の一例を示すブロック図である。
 第1の実施形態による回転機制御装置1は、回転機10を制御する制御装置である。図1に示すように、回転機制御装置1は、位置検出部2と、直流電源3-1と、直流電源3-2と、コンデンサ4-1と、コンデンサ4-2と、インバータ5-1と、インバータ5-2と、電流検出部6-1と、電流検出部6-2と、制御部7-1と、制御部7-2とを備える。
 回転機制御装置1は、第1系統と第2系統との2つの系統により、回転機10を制御する。第1系統には、直流電源3-1と、コンデンサ4-1と、インバータ5-1と、電流検出部6-1と、制御部7-1とが含まれる。また、第2系統には、直流電源3-2と、コンデンサ4-2と、インバータ5-2と、電流検出部6-2と、制御部7-2とが含まれる。
 なお、本実施形態において、第1系統に含まれる構成には、符号に「-1」を付与し、第2系統に含まれる構成には、符号に「-2」を付与している。第1系統の各構成、及び第2系統の各構成は、回転機制御装置1が備える任意の構成を示す場合、又は特に系統を区別しない場合には、符号から系統を示す「-1」又は「-2」を削除して表記する。
 回転機10は、第1系統の3相巻線(u1、v1、w1)、及び第2系統の3相巻線(u2、v2、w2)を有する回転機である。回転機10は、例えば、永久磁石同期モータ、誘導モータ、同期リラクタンスモータ等であり、2つの3相巻線を有するモータであれば本開示に適用可能である。本実施形態の以下の説明では、回転機10として非突極形の永久磁石同期モータである例について説明する。
 位置検出部2は、回転機10の回転位置θを、第1系統の回転位置θ(=θ)、及び第2系統の回転位置θ(=θ)として検出する。位置検出部2は、第1系統の回転位置θを後述する制御部7-1に出力する。また、位置検出部2は、第2系統の回転位置θを後述する制御部7-2に出力する。
 なお、ここでの位置検出部2は、2つの回転位置信号を出力する冗長形の場合で記載しているが、冗長形に限定されるものではなく、さらには、回転位置センサレス制御方式を用いて第1系統の回転位置θ、及び第2系統の回転位置θを得るようにしてもよい。
 直流電源3-1は、高電位側と低電位側と2つの出力を有する第1系統の直流電源であり、第1直流電源の一例である。直流電源3-1は、高電位側と低電位側と2つの出力の両端電圧として、第1直流電圧Vdc1を、後述するインバータ5-1に出力する。直流電源3-1には、例えば、バッテリ、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する全ての機器が含まれる。
 直流電源3-2は、高電位側と低電位側と2つの出力を有する第2系統の直流電源であり、第2直流電源の一例である。直流電源3-2は、高電位側と低電位側と2つの出力の両端電圧として、第2直流電圧Vdc2を、後述するインバータ5-2に出力する。直流電源3-2には、例えば、バッテリ、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する全ての機器が含まれる。
 コンデンサ4-1は、所定の静電容量を有するコンデンサである。コンデンサ4-1は、直流電源3-1の2つの出力の信号線の間に接続され、直流電源3-1と電気的に並列に接続されている。コンデンサ4-1は、後述するインバータ5-1に供給される第1直流電圧Vdc1の変動を抑制して安定した直流電圧を実現する平滑コンデンサとして機能する。なお、コンデンサ4-1における直流電圧Vdc1は、例えば、不図示の電圧検出部により検出され、検出直流電圧Vdc1sとして、後述する制御部7-1に出力される。
 コンデンサ4-2は、所定の静電容量を有するコンデンサである。コンデンサ4-2は、直流電源3-2の2つの出力の信号線の間に接続され、直流電源3-2と電気的に並列に接続されている。コンデンサ4-2は、後述するインバータ5-2に供給される第2直流電圧Vdc2変動を抑制して安定した直流電圧を実現する平滑コンデンサとして機能する。なお、コンデンサ4-2における直流電圧Vdc2は、例えば、不図示の電圧検出部により検出され、検出直流電圧Vdc2sとして、後述する制御部7-2に出力される。
 インバータ5-1(第1インバータの一例)は、直流電源3-1が出力した第1直流電圧Vdc1に基づいて、回転機10が有する第1系統の3相巻線(u1、v1、w1)に交流電圧を印加する。インバータ5-1は、後述する制御部7-1から出力される制御信号GS11~制御信号GS16(第1制御信号の一例)に基づいて、直流電源3-1の高電位側の3つのスイッチング素子(51-1、53-1、55-1)、及び直流電源3-1の低電位側の3つのスイッチング素子(52-1、54-1、56-1)がオンオフされることによって、直流電源3-1が出力する第1直流電圧Vdc1を電力変換して第1系統の3相巻線(u1、v1、w1)に交流電圧を印加する。これにより、インバータ5-1は、第1系統の3相巻線(u1、v1、w1)に、電流Iu1、電流Iv1、及び電流Iw1を通電する。
 ここで、制御信号GS11、制御信号GS13、及び制御信号GS15は、インバータ5-1において、それぞれ高電位側のスイッチング素子51-1、スイッチング素子53-1、及びスイッチング素子55-1をオンオフする(導通状態又は非導通状態にする)ための制御信号である。また、制御信号GS12、制御信号GS14、及び制御信号GS16は、インバータ5-1において、それぞれ低電位側のスイッチング素子52-1、スイッチング素子54-1、及びスイッチング素子56-1をオンオフする(導通状態又は非導通状態にする)ための制御信号である。
 制御信号GS11~制御信号GS16は、例えば、“1”(又はHigh)の論理状態である場合に、スイッチング素子をオン状態にし、“0”(又はLow)の論理状態である場合に、スイッチング素子をオフ状態にするものとする。
 スイッチング素子51-1、スイッチング素子52-1、スイッチング素子53-1、スイッチング素子54-1、スイッチング素子55-1、及びスイッチング素子56-1のそれぞれは、例えば、IGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタ、及びMOS(Metal Oxide Semiconductor)パワートランジスタ、等の半導体スイッチである。また、スイッチング素子51-1、スイッチング素子52-1、スイッチング素子53-1、スイッチング素子54-1、スイッチング素子55-1、及びスイッチング素子56-1のそれぞれには、ダイオード(又はボディダイオード)が、逆並列に接続されているものとする。
 インバータ5-2(第2インバータの一例)は、直流電源3-2が出力した第2直流電圧Vdc2に基づいて、回転機10が有する第2系統の3相巻線(u2、v2、w2)に交流電圧を印加する。インバータ5-2は、後述する制御部7-2から出力される制御信号GS21~制御信号GS26(第2制御信号の一例)に基づいて、直流電源3-2の高電位側の3つのスイッチング素子(51-2、53-2、55-2)、及び直流電源3-2の低電位側の3つのスイッチング素子(52-2、54-2、56-2)がオンオフされることによって、直流電源3-2が出力する第2直流電圧Vdc2を電力変換して第2系統の3相巻線(u2、v2、w2)に交流電圧を印加する。これにより、インバータ5-2は、第2系統の3相巻線(u2、v2、w2)に、電流Iu2、電流Iv2、及び電流Iw2を通電する。
 ここで、制御信号GS21、制御信号GS23、及び制御信号GS25は、インバータ5-2において、それぞれ高電位側のスイッチング素子51-2、スイッチング素子53-2、及びスイッチング素子55-2をオンオフする(導通状態又は非導通状態にする)ための制御信号である。また、制御信号GS22、制御信号GS24、及び制御信号GS26は、インバータ5-2において、それぞれ低電位側のスイッチング素子52-2、スイッチング素子54-2、及びスイッチング素子56-2をオンオフする(導通状態又は非導通状態にする)ための制御信号である。
 制御信号GS21~GS26は、例えば、“1”(又はHigh)の論理状態である場合に、スイッチング素子をオン状態にし、“0”(又はLow)の論理状態である場合に、スイッチング素子をオフ状態にするものとする。
 スイッチング素子51-2、スイッチング素子52-2、スイッチング素子53-2、スイッチング素子54-2、スイッチング素子55-2、及びスイッチング素子56-2のそれぞれは、例えば、IGBT、バイポーラトランジスタ、及びMOSパワートランジスタ、等の半導体スイッチである。また、スイッチング素子51-2、スイッチング素子52-2、スイッチング素子53-2、スイッチング素子54-2、スイッチング素子55-2、及びスイッチング素子56-2のそれぞれには、ダイオード(又はボディダイオード)が、逆並列に接続されているものとする。
 電流検出部6-1(第1電流検出部の一例)は、回転機10の第1系統の3相巻線(u1、v1、w1)を流れる電流Iu1、電流Iv1、及び電流Iw1を、それぞれ電流値Ius1、電流値Ivs1、及び電流値Iws1として検出する。電流検出部6-1は、インバータ5-1のスイッチング素子52-1、スイッチング素子54-1、及びスイッチング素子56-1に直列に電流検出用抵抗(シャント抵抗)を設けて検出する方式(いわゆる下アーム3シャント方式)としてもよい。また、電流検出部6-1は、インバータ5-1とコンデンサ4-1の間に電流検出用抵抗を設けて直流電流を検出し、回転機10の第1系統の3相巻線(u1、v1、w1)に流れる電流Iu1、電流Iv1、及び電流Iw1を再生する方式(母線1シャント方式)を用いてもよい。
 電流検出部6-2(第2電流検出部の一例)は、回転機10の第2系統の3相巻線(u2、v2、w2)を流れる電流Iu2、電流Iv2、及び電流Iw2を、それぞれ電流値Ius2、電流値Ivs2、及び電流値Iws2として検出する。電流検出部6-2は、インバータ5-2のスイッチング素子52-2、スイッチング素子54-2、及びスイッチング素子56-2に直列に電流検出用抵抗(シャント抵抗)を設けて検出する方式(いわゆる下アーム3シャント方式)としてもよい。また、電流検出部6-2は、インバータ5-2とコンデンサ4-2の間に電流検出用抵抗を設けて直流電流を検出し、回転機10の第1系統の3相巻線(u2、v2、w2)に流れる電流Iu2、電流Iv2、及び電流Iw2を再生する方式(母線1シャント方式)を用いてもよい。
 制御部7-1(第1制御部の一例)は、例えば、CPU(Central Processing Unit)を含み、第1系統による回転機10の制御を行う。制御部7-1は、第1直流電圧Vdc1と第2直流電圧Vdc2とのうちの低い方の電圧である直流電圧最小値Vdcmと、回転機10の指令値(T)とに基づいて、第1d軸電流指令値Id_target1を生成する。なお、以下の説明において、上付き文字の「*」が付与された変数は、目標値を示す。
 また、制御部7-1は、直流電圧最小値Vdcmと、第1d軸電流指令値Id_target1とに基づいて、第1q軸電流指令値Iq_target1を生成する。
 なお、本実施形態では、第1直流電圧Vdc1として、検出直流電圧Vdc1sを用いるとともに、第2直流電圧Vdc2として、検出直流電圧Vdc2sを用いる。すなわち、直流電圧最小値Vdcmは、第1直流電圧Vdc1の検出直流電圧Vdc1sと、第2直流電圧Vdc2の検出直流電圧Vdc2sとのうちの小さい方の電圧値である。また、第1d軸電流指令値Id_target1は、電流指令値をd軸の回転座標変換した電流指令値であり、第1系統のd軸電流の指令値を示している。また、第1q軸電流指令値Iq_target1は、電流指令値をq軸の回転座標変換した電流指令値であり、第1系統のq軸電流の指令値を示している。
 制御部7-1は、生成した第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1に基づいて、インバータ5-1に、第1系統の3相巻線(u1、v1、w1)に交流電圧を印加させる制御信号GS11~制御信号GS16を出力する。制御部7-1は、内部で生成した第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1と、位置検出部2が検出した回転位置θと、電流検出部6-1が検出した電流検出値(電流値Ius1、電流値Ivs1、及び電流値Iws1)と、直流電源3-1から検出された第1直流電圧Vdc1s(=Vdc1)と、直流電源3-2から検出された第2直流電圧Vdc2s(=Vdc2)とに基づいて、制御信号GS11~制御信号GS16を出力する。
 なお、制御部7-1の構成の詳細については、図2を参照して後述する。
 制御部7-2(第2制御部の一例)は、例えば、CPUを含み、第2系統による回転機10の制御を行う。制御部7-2は、第1直流電圧Vdc1と第2直流電圧Vdc2とのうちの低い方の電圧である直流電圧最小値Vdcmと、回転機10の指令値(T)とに基づいて、第2d軸電流指令値Id_target2を生成する。また、制御部7-2は、直流電圧最小値Vdcmと、第2d軸電流指令値Id_target2とに基づいて、第2q軸電流指令値Iq_target2を生成する。
 なお、本実施形態では、第1直流電圧Vdc1として、検出直流電圧Vdc1sを用いるとともに、第2直流電圧Vdc2として、検出直流電圧Vdc2sを用いる。また、第2d軸電流指令値Id_target2は、電流指令値をd軸の回転座標変換した電流指令値であり、第2系統のd軸電流の指令値を示している。また、第2q軸電流指令値Iq_target2は、電流指令値をq軸の回転座標変換した電流指令値であり、第2系統のq軸電流の指令値を示している。
 制御部7-2は、生成した第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2に基づいて、インバータ5-2に、第2系統の3相巻線(u2、v2、w2)に交流電圧を印加させる制御信号GS21~制御信号GS26を出力する。制御部7-2は、内部で生成した第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2と、位置検出部2が検出した回転位置θと、電流検出部6-2が検出した電流検出値(電流値Ius2、電流値Ivs2、及び電流値Iws2)と、直流電源3-2から検出された第2直流電圧Vdc2s(=Vdc2)と、直流電源3-1から検出された第1直流電圧Vdc1s(=Vdc1)とに基づいて、制御信号GS21~GS26を出力する。
 なお、制御部7-2の構成の詳細については、図2を参照して後述する。
 次に、図2を参照して、制御部7-1及び制御部7-2の構成の詳細について説明する。
 図2は、本実施形態による回転機制御装置1の2系統の制御部7の一例を示すブロック図である。
 図2に示すように、制御部7-1は、電流指令演算器70-1と、減算器71-1と、電流制御器72-1と、減算器73-1と、電流制御器74-1と、座標変換器75-1と、制御信号生成器76-1とを備える。
 電流指令演算器70-1は、回転機の指令値(T)と、第1直流電圧Vdc1sと、第2直流電圧Vdc2sとに基づいて、第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1を生成する。電流指令演算器70-1の処理の詳細については後述する。
 減算器71-1は、第1d軸電流指令値Id_target1から回転二軸上の電流Id1を減算し、その結果を、電流制御器72-1に出力する。電流Id1は、座標変換器75-1から出力される。
 減算器73-1は、第1q軸電流指令値Iq_target1から回転二軸上の電流Iq1を減算し、その結果を、電流制御器74-1に出力する。電流Iq1は、座標変換器75-1から出力される。
 電流制御器72-1は、減算器71-1の出力値が“0”(ゼロ)になるように、減算器71-1の出力値に、比例及び積分制御を行うことによって、回転二軸上の電圧Vd1を出力する。ここで、図3を参照して、電流制御器72-1の詳細な構成について説明する。
 図3は、本実施形態におけるd軸電圧指令値を生成する電流制御器72-1の一例を示すブロック図である。
 図3に示すように、電流制御器72-1は、増幅器721-1と、加算器722-1と、増幅器723-1と、積分器724-1と、制限器725-1とを備える。
 増幅器721-1は、(第1d軸電流指令値Id_target1-Id1)を、Kpd倍して、その結果を出力値Vd1_pとして、加算器722-1に出力する。ここで、増幅の係数Kpdは、例えば、所望の電流制御応答ωcc([rad/s(ラディアン/秒)])に、回転機10のd軸インダクタンスLdを乗算した値(ωcc×Ld)である。
 増幅器723-1は、(第1d軸電流指令値Id_target1-Id1)をKid倍して出力する。ここで、増幅の係数Kidは、例えば、所望の電流制御応答ωccに、回転機10の巻線抵抗Rを乗算した値(ωcc×R)とする。
 積分器724-1は、増幅器723-1の出力(Kid×(Id1_target1-Id1))を積分して、出力値Vd1_iとして出力する。すなわち、値Vd1_iは、(Kid/s×(Id1_target1-Id1))となる。ここでの「s」は、ラプラス演算子である。
 加算器722-1は、増幅器721-1の出力値Vd1_pと、積分器724-1の出力値Vd1_iとを加算して、出力値Vd1’として、制限器725-1に出力する。
 制限器725-1は、加算器722-1の出力値Vd1’を、直流電圧最小値Vdcmに基づいて制限する。具体的に、制限器725-1は、下記の式(1)により加算器722-1の出力値Vd1’を制限し、出力値である回転二軸上の電圧Vd1を生成する。
Figure JPOXMLDOC01-appb-M000001
 制限器725-1は、式(1)に示すように、加算器722-1の出力値Vd1’と直流電圧最小値Vdcmとの関係に応じて、以下のように回転二軸上の電圧Vd1を生成する。
 (a)制限器725-1は、加算器722-1の出力値Vd1’が、(-Vdcm/20.5)より小さい場合に、(-Vdcm/20.5)を電圧Vd1として生成する(Vd1=-Vdcm/20.5)。
 (b)制限器725-1は、加算器722-1の出力値Vd1’が、(-Vdcm/20.5)と、(Vdcm/20.5)との間である場合に、加算器722-1の出力値Vd1’を電圧Vd1として生成する(Vd1=Vd1’)。
 (c)制限器725-1は、加算器722-1の出力値Vd1’が、(Vdcm/20.5)より大きい場合に、(Vdcm/20.5)を電圧Vd1として生成する(Vd1=Vdcm/20.5)。
 このように、制限器725-1は、加算器722-1の出力値Vd1’の絶対値が(Vdcm/20.5)以下になるように、電圧Vd1を生成する。なお、制限器725-1は、例えば、積分項である積分器724-1の出力値Vd1_iのリセットを積極的に行いたい場合には、公知技術のアンチワインドアップ制御を用いてもよい。
 図2の説明に戻り、電流制御器74-1は、減算器73-1の出力値が“0”(ゼロ)になるように、減算器73-1の出力値に、比例及び積分制御を行うことによって、回転二軸上の電圧Vq1を出力する。ここで、図4を参照して、電流制御器74-1の詳細な構成について説明する。
 図4は、本実施形態におけるq軸電圧指令値を生成する電流制御器74-1の一例を示すブロック図である。
 図4に示すように、電流制御器74-1は、増幅器741-1と、加算器742-1と、増幅器743-1と、積分器744-1と、制限器745-1とを備える。
 増幅器741-1は、(第1q軸電流指令値Iq_target1-Iq1)を、Kpq倍して、その結果を出力値Vq1_pとして、加算器742-1に出力する。ここで、増幅の係数Kpqは、例えば、所望の電流制御応答ωcc([rad/s(ラディアン/秒)])に、回転機10のq軸インダクタンスLqを乗算した値(ωcc×Lq)である。
 増幅器743-1は、(第1q軸電流指令値Iq_target1-Iq1)をKiq倍して出力する。ここで、増幅の係数Kiqは、例えば、所望の電流制御応答ωccに、回転機10の巻線抵抗Rを乗算した値(ωcc×R)とする。
 積分器744-1は、増幅器743-1の出力(Kiq×(Iq_target1-Iq1))を積分して、出力値Vq1_iとして出力する。すなわち、値Vq1_iは、(Kiq/s×(Iq_target1-Iq1))となる。ここでの「s」は、ラプラス演算子である。
 加算器742-1は、増幅器741-1の出力値Vq1_pと、積分器744-1の出力値Vq1_iとを加算して、出力値Vq1’として、制限器745-1に出力する。
 制限器745-1は、加算器742-1の出力値Vq1’を、直流電圧最小値Vdcmと、電圧Vd1とに基づいて制限する。具体的に、制限器745-1は、下記の式(2)により加算器742-1の電圧Vq1’を制限し、出力値である回転二軸上の電圧Vq1を生成する。
Figure JPOXMLDOC01-appb-M000002
 制限器745-1は、式(2)に示すように、加算器742-1の出力値Vq1’と直流電圧最小値Vdcmから電圧Vd1を減算した値(Vdcm-Vd1)との関係に応じて、以下のように電圧Vq1を生成する。
 (d)制限器745-1は、加算器742-1の出力値Vq1’が、(-(Vdcm-Vd1)/20.5)より小さい場合に、(-(Vdcm-Vd1)/20.5)を電圧Vd1として生成する(Vq1=-(Vdcm-Vd1)/20.5)。
 (e)制限器745-1は、加算器742-1の出力値Vq1’が、(-(Vdcm-Vd1)/20.5)と、((Vdcm-Vd1)/20.5)との間である場合に、加算器742-1の出力値Vq1’を電圧Vq1として生成する(Vq1=Vq1’)。
 (f)制限器745-1は、加算器742-1の出力値Vq1’が、((Vdcm-Vd1)/20.5)より大きい場合に、((Vdcm-Vd1)/20.5)を電圧Vq1として生成する(Vq1=(Vdcm-Vd1)/20.5)。
 このように、制限器745-1は、加算器742-1の出力値Vq1’の絶対値が((Vdcm-Vd1)/20.5)以下になるように、電圧Vq1を生成する。なお、制限器745-1は、例えば、積分項である積分器744-1の出力値Vq1_iのリセットを積極的に行いたい場合には、公知技術のアンチワインドアップ制御を用いてもよい。
 なお、上述した電圧Vd1及び電圧Vq1は、回転二軸上の電圧指令値である。
 再び図2の説明に戻り、座標変換器75-1は、電流検出部6-1が検出した電流値Ius1、電流値Ivs1、及び電流値Iws1を、回転位置θに基づいて、回転二軸上の電流Id1及び電流Iq1に変換する。具体的に、座標変換器75-1は、下記の式(3)により、電流値Ius1、電流値Ivs1、及び電流値Iws1と、回転位置θとから、回転二軸上の電流Id1及び電流Iq1を生成する。
Figure JPOXMLDOC01-appb-M000003
 座標変換器75-1は、生成した電流Id1を減算器71-1に出力する。また、座標変換器75-1は、生成した電流Iq1を減算器73-1に出力する。
 また、座標変換器75-1は、回転二軸上の電圧指令である電圧Vd1と、電圧Vq1とを、回転位置θに基づいて、3相軸上の電圧指令である電圧Vu1、電圧Vv1、及び電圧Vw1に変換する。具体的に、座標変換器75-1は、下記の式(4)により、電圧Vd1と、電圧Vq1と、回転位置θとから、3相軸上の電圧指令である電圧Vu1、電圧Vv1、及び電圧Vw1を生成する。
Figure JPOXMLDOC01-appb-M000004
 座標変換器75-1は、生成した電圧Vu1、電圧Vv1、及び電圧Vw1を制御信号生成器76-1に出力する。
 制御信号生成器76-1は、第1直流電圧Vdc1sと、3相軸上の電圧指令値である電圧Vu1、電圧Vv1、及び電圧Vw1とに基づいて、インバータ5-1の制御信号GS11~制御信号GS16を出力する。ここで、図5を参照して、制御信号生成器76-1の詳細な構成について説明する。
 図5は、本実施形態における制御信号生成器76-1の一例を示すブロック図である。
 図5に示すように、制御信号生成器76-1は、デューティ演算部761-1と、キャリア比較部762-1とを備える。
 デューティ演算部761-1は、電圧Vu1、電圧Vv1、及び電圧Vw1に基づいて、第1直流電圧Vdc1sで規格化した値である第1デューティ(du1、dv1、dw1)を出力する。デューティ演算部761-1は、例えば、下記の式(5)により、第1デューティ(du1、dv1、dw1)を生成する。
Figure JPOXMLDOC01-appb-M000005
 また、デューティ演算部761-1は、乗算器81-1と、加算器82-1と、乗算器83-1と、加算器84-1と、乗算器85-1と、加算器86-1とを備える。
 乗算器81-1は、電圧Vu1に、(1/Vdc1s)を乗算し、当該乗算結果を加算器82-1に出力する。
 加算器82-1は、乗算器81-1の出力値に、定数である“0.5”を加算して、第1デューティdu1として、キャリア比較部762-1に出力する。
 乗算器83-1は、電圧Vv1に、(1/Vdc1s)を乗算し、当該乗算結果を加算器84-1に出力する。
 加算器84-1は、乗算器83-1の出力値に、定数である“0.5”を加算して、第1デューティdv1として、キャリア比較部762-1に出力する。
 乗算器85-1は、電圧Vw1に、(1/Vdc1s)を乗算し、当該乗算結果を加算器86-1に出力する。
 加算器86-1は、乗算器85-1の出力値に、定数である“0.5”を加算して、第1デューティdw1として、キャリア比較部762-1に出力する。
 キャリア比較部762-1は、第1デューティ(du1、dv1、dw1)に基づいて、インバータ5-1の制御信号GS11~制御信号GS16を出力する。ここで、図6を参照して、キャリア比較部762-1の処理について説明する。
 図6は、本実施形態におけるキャリア比較部762-1の処理の一例を示す図である。
 図6において、波形W1~波形W3は、第1デューティ(du1、dv1、dw1)の波形を示している。また、波形W4は、山のレベルが“1”であり、谷のレベルが“0”である三角波の搬送波CAの波形を示している。また、波形W5~波形W10は、順番に、制御信号GS11、制御信号GS13、制御信号GS15、制御信号GS12、制御信号GS14、及び制御信号GS16の波形を示している。また、図6に示すグラフの横軸は、時間であり、周期Tc(=1/fc、fcは、周波数を示す。)は、搬送波CAの周期を示している。
 図6に示すように、キャリア比較部762-1は、波形W1~波形W3の第1デューティ(du1、dv1、dw1)と、波形W4の搬送波CAとを比較し、各相において、第1デューティが高い場合に、インバータ5-1の高電位側のスイッチング素子(51-1、53-1、55-1)に対応する制御信号(GS11、GS13、GS15)をオン状態(値が“1”)にする。また、キャリア比較部762-1は、各相において、第1デューティが低い場合に、インバータ5-1の高電位側のスイッチング素子(51-1、53-1、55-1)に対応する制御信号(GS11、GS13、GS15)をオフ状態(値が“0”)にする。
 また、キャリア比較部762-1は、波形W1~波形W3の第1デューティ(du1、dv1、dw1)と、波形W4の搬送波CAとを比較し、各相において、第1デューティが低い場合に、インバータ5-1の低電位側のスイッチング素子(52-1、54-1、56-1)に対応する制御信号(GS12、GS14、GS16)をオン状態(値が“1”)にする。また、キャリア比較部762-1は、各相において、第1デューティが高い場合に、インバータ5-1の高電位側のスイッチング素子(52-1、54-1、56-1)に対応する制御信号(GS12、GS14、GS16)をオフ状態(値が“0”)にする。
 このようなキャリア比較部762-1の処理により、各相のうち任意の1相(X相)について、第1デューティdx1とすると、搬送波CAの周期Tcのうち、高電位側の制御信号がスイッチング素子をオン状態にする割合がdx1であり、低電位側の制御信号がスイッチング素子をオン状態にするが(1-dx1)である。よって、高電位側のオン状態時にインバータ5-1のX相の電位は、第1直流電圧Vdc1であり、低電位側のオン状態時にインバータ5-1のX相の電位は、“0”(GND)である。このことから、X相の出力電圧Vx1_PWMは、下記の式(6)により表される。
Figure JPOXMLDOC01-appb-M000006
 ここでX相のデューティは、上述した式(5)から下記の式(7)として表される。
Figure JPOXMLDOC01-appb-M000007
 式(7)を、式(6)に代入すると、X相の出力電圧Vx1_PWMは、下記の式(8)により表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、実際に出力されるX相の出力電圧Vx1_PWMは、検出された第1直流電圧Vdc1sと第1直流電圧Vdc1(真の値)とが等しければ、右辺の第1項は、Vx1のみとなる。結果として、出力電圧Vx1_PWMは、右辺の第2項の(0.5×Vdc1)を中心として、第1項がその指令値Vx1に一致した電圧となる。よって、インバータ5-1が、指令値通りの電圧を出力することが可能となる。
 再び、図2の説明に戻り、制御部7-2は、電流指令演算器70-2と、減算器71-2と、電流制御器72-2と、減算器73-2と、電流制御器74-2と、座標変換器75-2と、制御信号生成器76-2とを備える。
 電流指令演算器70-2は、回転機の指令値(T)と、第2直流電圧Vdc2sと、第1直流電圧Vdc1sとに基づいて、第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2を生成する。電流指令演算器70-2は、電流指令演算器70-1と同様の構成である。
 減算器71-2は、第2d軸電流指令値Id_target2から回転二軸上の電流Id2を減算し、その結果を、電流制御器72-2に出力する。電流Id2は、座標変換器75-2から出力される。
 減算器73-2は、第2q軸電流指令値Iq_target2から回転二軸上の電流Iq2を減算し、その結果を、電流制御器74-2に出力する。電流Iq2は、座標変換器75-2から出力される。
 電流制御器72-2は、減算器71-2の出力値が“0”(ゼロ)になるように、減算器71-2の出力値に、比例及び積分制御を行うことによって、回転二軸上の電圧Vd2を出力する。電流制御器72-2の構成は、上述した電流制御器72-1と同様であるため、ここではその説明を省略する。
 電流制御器74-2は、減算器73-2の出力値が“0”(ゼロ)になるように、減算器73-2の出力値に、比例及び積分制御を行うことによって、回転二軸上の電圧Vq2を出力する。電流制御器74-2の構成は、上述した電流制御器74-1と同様であるため、ここではその説明を省略する。
 座標変換器75-2は、電流検出部6-2が検出した電流値Ius2、電流値Ivs2、及び電流値Iws2を、回転位置θに基づいて、回転二軸上の電流Id2及び電流Iq2に変換する。また、座標変換器75-2は、回転二軸上の電圧指令である電圧Vd2と、電圧Vq2とを、回転位置θに基づいて、3相軸上の電圧指令である電圧Vu2、電圧Vv2、及び電圧Vw2に変換する。座標変換器75-2の構成は、上述した座標変換器75-1と同様であるため、ここではその説明を省略する。
 制御信号生成器76-2は、第2直流電圧Vdc2sと、3相軸上の電圧指令値である電圧Vu2、電圧Vv2、及び電圧Vw2とに基づいて、インバータ5-2の制御信号GS21~制御信号GS26を出力する。制御信号生成器76-2の構成は、上述した制御信号生成器76-1と同様であるため、ここではその説明を省略する。
 次に、本実施形態における電流指令演算器70-1の処理の詳細について説明する。
 電流指令演算器70-1は、回転機10の制御目標値として、回転機10に通電する第1d軸電流指令値Id_target1、及び第1q軸電流指令値Iq_target1を演算する。電流指令演算器70-1は、第1d軸電流指令値Id_target1、及び第1q軸電流指令値Iq_target1を、回転機10の指令値(T)に基づいて演算した目標d軸電流Id01 及び目標q軸電流Iq01 に基づいて設定する。
 また、電流指令演算器70-2は、回転機10の制御目標値として、回転機10に通電する第2d軸電流指令値Id_target2、及び第2q軸電流指令値Iq_target2を演算する。電流指令演算器70-2は、第2d軸電流指令値Id_target2、及び第2q軸電流指令値Iq_target2を、回転機10の指令値(T)に基づいて演算した目標d軸電流Id02 及び目標q軸電流Iq02 に基づいて設定する。
 ここで、まず、目標q軸電流Iq01 の演算について説明する。本実施形態では、回転機10の指令値をトルク指令(T)とし、電流指令演算器70-1は、トルク指令(T)に基づいて目標q軸電流Iq01 を演算する。なお、目標q軸電流Iq01 の演算方法は特に限定しないが、例えば、トルク指令(T)に比例定数を乗算して算出する。
 また、電流指令演算器70-2は、Iq02 をIq01 と同様の手法により演算する。ここで、第1系統と第2系統の目標q軸電流の演算方法を同一にすることで、2つの系統のq軸電流を同一にする。
 次に、本実施形態では、電流指令演算器70-1は、第1直流電圧Vdc1と第2直流電圧Vdc2のうちの低い方の電圧である直流電圧最小値Vdcmに基づいて目標d軸電流を演算することにより、2つの系統のd軸電流を同一にする。これにより、2つの系統の目標d軸電流、及び目標q軸電流を同一にしたことにより、d軸電流が電圧飽和を回避するために十分な大きさであれば、2つの系統に通電される電流が一致する。
 目標d軸電流の演算方法は、直流電圧最小値Vdcmに基づいて演算し、且つ、2つの系統の目標d軸電流が同一となればよく、以下で説明する方法に限定されない。本実施形態では、電流指令演算器70-1は、回転機10の電気的定数を用いたdq軸電圧方程式に基づいて目標d軸電流を演算する。
 d軸電圧vd1及びq軸電圧vq1のdq軸電圧方程式は、下記の式(9)により表される。
Figure JPOXMLDOC01-appb-M000009
 なお、回転機10の電気的定数としては、抵抗値R、インダクタンスL、誘起電圧定数φを用いる。また、「p」は、微分演算子である。回転数ωは、例えば、回転位置θを微分して算出される。なお、回転数ωは、回転機10の回転速度に対応する。
 ここで、簡易化のために(R×Id01)の項を無視する。さらに、微分演算子p=0とすると、定常状態における第1系統のdq軸電圧方程式は、下記の式(10)として表される。
Figure JPOXMLDOC01-appb-M000010
 また、dq軸電圧が直流電圧最小値Vdcmの範囲で出力可能な値の関係は、下記の式(11)により表される。ここで、Kvは、電源電圧に対する係数である。
Figure JPOXMLDOC01-appb-M000011
 また、式(10)と式(11)との関係から目標d軸電流Id01 を算出すると、下記の式(12)が得られる。電流指令演算器70-1は、式(12)を用いて、目標d軸電流Id01 を算出する。なお、(Id01 ≦0)とするため、式(12)の演算結果が(Id01 >0)となる場合には、電流指令演算器70-1は、(Id01 =0)としてよい。
Figure JPOXMLDOC01-appb-M000012
 ここで、電流指令演算器70-1は、目標d軸電流Id01 の絶対値の最大が、回転機10に通電する電流が定格電流Iを超えないように制限する。電流指令演算器70-1は、例えば、目標d軸電流Id01 の絶対値の最大を、定格電流Iの0.8倍の値で制限する。
 電流指令演算器70-1は、演算したId01 から、目標d軸電流Id1 =Id01 として、目標d軸電流Id1 を設定する。なお、目標d軸電流Id01 は、“0”であっても、2つの系統のd軸電流を揃えることができる。
 また、電流指令演算器70-1は、回転機10に流れる電流が定格電流Iを超えないように制限して、目標q軸電流Iq1 を設定する。電流指令演算器70-1は、Id01 の2乗とIq01 の2乗との和が定格電流Iの2乗を超えない場合に、目標q軸電流Iq1 =Iq01 として、目標q軸電流Iq1 を設定する。また、電流指令演算器70-1は、Id01 の2乗とIq01 の2乗との和が、定格電流Iの2乗を超える場合に、下記の式(13)により演算した値を、目標q軸電流Iq1 として設定する。
Figure JPOXMLDOC01-appb-M000013
 なお、電流指令演算器70-2は、電流指令演算器70-1と同様の構成であり、上述した電流指令演算器70-1と同様の手法により、回転機10の指令値(T)から、目標d軸電流Id2 及び目標q軸電流Iq2 を設定する。
 以上により、電流指令演算器70-1及び電流指令演算器70-2は、d軸電流が電圧飽和を回避するために十分な大きさであれば、回転機10に所望の電流を通電することができ、2つの系統の目標電流を同一にしたことで、2つの系統に通電される電流を一致させることができる。
 次に、回転機10が高速で回転して、誘起電圧が大きくなり、目標d軸電流の絶対値の制限によって、d軸電流が電圧飽和を回避するために十分な大きさに設定できない場合における系統間で不整合に対する本実施形態による対策処理について説明する。ここで、図7を参照して、本実施形態における電流指令演算器70-1の処理について説明する。
 図7は、本実施形態における電流指令演算器70-1の処理の一例を示すフローチャートである。なお、電流指令演算器70-1は、上述した手法により、回転機10の指令値(T)から、目標d軸電流Id1 及び目標q軸電流Iq1 を生成しているものとする。
 図7に示すように、電流指令演算器70-1は、まず、変数nに“1”を設定する(n=1)とともに、初期値として、d軸電流指令値Iqt1[0]に、目標q軸電流Iq1 を設定する(ステップS101)。ここで、変数nは、処理回数を示す変数であり、値は整数である。
 次に、電流指令演算器70-1は、目標d軸電流Id1 に基づいて、d軸電流Idt1を設定する(ステップS102)。電流指令演算器70-1は、d軸電流Idt1に目標d軸電流Id1 を代入して(Idt1=Id1 )、d軸電流Idt1を設定する。すなわち、電流指令演算器70-1は、目標d軸電流Id1 をd軸電流Idt1として設定する。
 次に、電流指令演算器70-1は、電流(Idt1、Iqt1)を通電するために必要な電圧(Vdt1、Vqt1)をq軸電流Iqt1[n-1]に基づいて生成する(ステップS103)。電流指令演算器70-1は、下記の式(14)を用いて、電圧Vdt1及び電圧Vqt1を生成する。ここで、d軸電圧Vdt1及びq軸電圧Vqt1は、第1系統の3相巻線(u1、v1、w1)に印加する電圧に対する指令値である第1電圧指令値に相当する。
Figure JPOXMLDOC01-appb-M000014
 電流指令演算器70-1は、式(14)に示すように、回転機10の回転数ωと、回転機10の電気的定数として、抵抗値R、インダクタンスL、誘起電圧定数φとを用いて、d軸電圧Vdt1及びq軸電圧Vqt1を算出する。
 また、q軸電流Iqt1[n-1]は、1回前である前回(n-1回目)のq軸電流Iqt1であり、後述する式(18)により算出される。なお、制御演算の初回(n=1)においては、上述したIqt1[0]=Iq1 である。
 d軸電流Idt1及びq軸電流Iqt1は、最終的に、第1d軸電流指令値Id_target1、第1q軸電流指令値Iq_target1となる値である。なお、式(14)において、d軸電流Idt1及びq軸電流Iqt1の代わりに、例えば、上述した式(3)により算出される検出電流(Id1、Iq1)を用いてもよい。
 次に、電流指令演算器70-1は、電圧(Vdt1、Vqt1)、及び直流電圧最小値Vdcmに基づいて、電圧超過量ΔVを生成する(ステップS104)。電流指令演算器70-1は、下記の式(15)により、電圧超過量ΔV1を算出する。これにより、直流電圧が小さい側の系統でも電圧飽和によって所望の電流が通電できなくなることを回避することが期待できる。
Figure JPOXMLDOC01-appb-M000015
 次に、電流指令演算器70-1は、制限値Vx1により電圧超過量ΔVを制限し、制限後の値を電圧超過量ΔVLM1とする(ステップS105)。電流指令演算器70-1は、下記の式(16)により算出した制限値Vx1を用いて、電圧超過量ΔVを上限値Vx1と、下限値(-Vx1)との範囲に制限した値を電圧超過量ΔVLM1として生成する。
Figure JPOXMLDOC01-appb-M000016
 次に、電流指令演算器70-1は、1つ前の調整量ΔIqt1[n-1]に、電圧超過量ΔVLM1とを加算して第1調整量ΔIqt1[n]を生成する(ステップS106)。電流指令演算器70-1は、下記の式(17)により、第1調整量ΔIqt1[n]を算出する。電圧超過量ΔVLM1が“0”より小さい場合(ΔVLM1<0)に、必要電圧が直流電圧の低い側の系統の電源電圧を超過するため、所望の電流が通電できなくなる。これを避けるために、電流指令演算器70-1は、第1q軸電流指令値の絶対値が、目標q軸電流Iq1 の絶対値より小さくなるように調整を行う。なお、第1調整量ΔIqt1[n]の初期値は、“0”(ΔIqt1[0]=0)とし、上限値は、“0”に制限する(ΔIqt1[n]≦0)。
Figure JPOXMLDOC01-appb-M000017
 次に、電流指令演算器70-1は、第1調整量ΔIqt1[n]と目標q軸電流Iq1 とに基づいて、q軸電流指令値Iqt1[n]を生成する(ステップS107)。電流指令演算器70-1は、上記で演算した第1調整量ΔIqt1[n]を下記の式(18)によって、目標q軸電流Iq1 に加算して、q軸電流指令値Iqt1[n]を生成する。電流指令演算器70-1は、下記の式(18)によって、q軸電流指令値Iqt1[n]の絶対値を目標q軸電流Iq1 の絶対値よりも小さくすることにより、上述した式(14)、及び式(15)による直流電圧による制限によって生じる電圧超過を回避する。
Figure JPOXMLDOC01-appb-M000018
 具体的には、電流指令演算器70-1は、式(15)、及び式(17)から、直流電圧最小値Vdcmによって定まる値(Vdcm /2)より第1電圧指令値(Vdt1 +Vqt1 )が大きい場合に、第1調整量ΔIqt1[n]が負の方向に変化し、第1q軸電流指令値Iqt1[n]の絶対値が小さくなるよう補正する。また、電流指令演算器70-1は、直流電圧最小値Vdcmによって定まる値(Vdcm /2)より第1電圧指令値(Vdt1 +Vqt1 )が小さい場合(すなわち、電源電圧が十分な大きさである場合)に、第1調整量ΔIqt1[n]が正の方向に変化し、第1q軸電流指令値Iqt1[n]の絶対値が大きくなるよう補正する。ここで、値(Vdcm /2)は、直流電圧最小値Vdcmに基づく比較値の一例である。
 次に、電流指令演算器70-1は、d軸電流指令値Idt1を第1d軸電流指令値Id_target1とし、q軸電流指令値Iqt1[n]を第1q軸電流指令値Iq_target1として出力する(ステップS108)。すなわち、電流指令演算器70-1は、第1d軸電流指令値Id_target1=Idt1と設定するとともに、第1q軸電流指令値Iq_target1=Iqt1[n]と設定する。
 次に、電流指令演算器70-1は、変数nに“1”を加算して(n=n+1)、変数んを更新する(ステップS109)。電流指令演算器70-1は、ステップS109の処理後に、処理をステップS102に戻す。
 また、第2系統の電流指令演算器70-2は、電流指令演算器70-1と同様に、回転機10の指令値(T)から、目標d軸電流Id2 及び目標q軸電流Iq2 を生成し、上述した図7の処理と同様の処理を実行して、第2d軸電流指令値Id_target2と、第2q軸電流指令値Iq_target2とを生成する。
 以上説明したように、本実施形態による回転機制御装置1は、インバータ5-1(第1インバータ)と、インバータ5-2(第2インバータ)と、制御部7-1(第1制御部)と、制御部7-2(第2制御部)とを備える。インバータ5-1は、直流電源3-1(第1直流電源)が出力した第1直流電圧Vdc1に基づいて、回転機10が有する第1系統の3相巻線(u1、v1、w1)に交流電圧を印加する。インバータ5-2は、直流電源3-2(第2直流電源)が出力した第2直流電圧Vdc2に基づいて、回転機10が有する第2系統の3相巻線(u2、v2、w2)に交流電圧を印加する。制御部7-1は、第1直流電圧Vdc1と第2直流電圧Vdc2とのうちの低い方の電圧である直流電圧最小値Vdcmと、回転機10の指令値とに基づいて、第1d軸電流指令値Id_target1(第1系統のd軸電流の指令値)を生成する。また、制御部7-1は、直流電圧最小値Vdcmと、第1d軸電流指令値Id_target1とに基づいて、第1q軸電流指令値Iq_target1(第1系統のq軸電流の指令値)を生成する。制御部7-1は、生成した第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1に基づいて、インバータ5-1に、第1系統の3相巻線(u1、v1、w1)に交流電圧を印加させる第1制御信号GS11~GS16を出力する。また、制御部7-2は、直流電圧最小値Vdcmと、回転機10の指令値とに基づいて、第2d軸電流指令値Id_target2(第2系統のd軸電流の指令値)を生成する。また、制御部7-2は、直流電圧最小値Vdcmと、第2d軸電流指令値Id_target2とに基づいて、第2q軸電流指令値Iq_target2(第2系統のq軸電流の指令値)を生成する。制御部7-2は、生成した第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2に基づいて、インバータ5-2に、第2系統の3相巻線(u2、v2、w2)に交流電圧を印加させる第2制御信号GS21~GS26を出力する。
 これにより、本実施形態による回転機制御装置1は、第1系統と第2系統を同じ生成方法により、且つ、直流電圧が低い側の値(直流電圧最小値Vdcm)に基づいて電流指令値(第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1と、第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2)を生成する。そのため、本実施形態による回転機制御装置1は、2つの系統の電流指令値を同一することができるため、直流電圧による制限によって所望の電流が通電できなくなることを回避しつつ、2つの系統の電流を同一にすることができる。よって、本実施形態による回転機制御装置1は、回転機10を制御する複数の系統の直流電源(3-1、3-2)が出力する直流電圧に差が生じた場合であっても、系統間の不整合を低減することができる。
 また、本実施形態による回転機制御装置1は、例えば、回転機10が高速に回転する場合においても2系統に通電される電流が一致することができるため、系統間での不整合を回避しつつ、複数の系統を適切に協調させながら回転機10を安定して制御できる。
 また、本実施形態による回転機制御装置1は、制御部7-1は、第1系統の3相巻線(u1、v1、w1)に印加する電圧に対する指令値である第1電圧指令値(Vdt1 +Vqt1 )が、直流電圧最小値Vdcmに基づく比較値(Vdcm /2)より大きい場合に、第1q軸電流指令値Iq_target1を低減するように補正する。制御部7-1は、第1電圧指令値(Vdt1 +Vqt1 )が比較値(Vdcm /2)より小さい場合に、第1q軸電流指令値Iq_target1を増大するように補正する。また、制御部7-2は、第2系統の3相巻線(u2、v2、w2)に印加する電圧に対する指令値である第2電圧指令値(Vdt2 +Vqt2 )が、直流電圧最小値Vdcmに基づく比較値(Vdcm /2)より大きい場合に、第2q軸電流指令値Iq_target2を低減するように補正する。制御部7-2は、第2電圧指令値(Vdt2 +Vqt2 )が比較値(Vdcm /2)より小さい場合に、第2q軸電流指令値Iq_target2を増大するように補正する。
 これにより、本実施形態による回転機制御装置1は、直流電圧最小値Vdcmと第1電圧指令値(Vdt1 +Vqt1 )との関係に応じて第1q軸電流指令値Iq_target1を適切に調整することができるとともに、直流電圧最小値Vdcmと第2電圧指令値(Vdt2 +Vqt2 )との関係に応じて第2q軸電流指令値Iq_target2を適切に調整することができる。そのため、本実施形態による回転機制御装置1は、電圧飽和の影響を回避して所望の電流を通電できる。また、本実施形態による回転機制御装置1は、直流電圧最小値Vdcmを用いて第1系統と第2系統とで同一の方式でq軸電流指令値を生成することで、直流電源3-1と直流電源3-2のうちの、直流電圧の低い側の系統に合わせた電流を設定するこができ、2つの系統の電流を同一にすることができる。
 また、本実施形態では、制御部7-1は、第1系統のd軸電流Idt1及び第1系統のq軸電流Iqt1と、回転機10の回転速度(例えば、回転数ω)と、回転機10の電気的定数(例えば、抵抗値R、インダクタンスL、誘起電圧定数φなど)とに基づいて、第1電圧指令値(例えば、d軸電圧Vdt1及びq軸電圧Vqt1)を生成する(上述した式(14)を参照)。また、制御部7-2は、第2系統のd軸電流Idt2及び第2系統のq軸電流Iqt2と、回転機10の回転速度(例えば、回転数ω)と、回転機10の電気的定数例えば、抵抗値R、インダクタンスL、誘起電圧定数φなど)とに基づいて、第2電圧指令値(例えば、d軸電圧Vdt2及びq軸電圧Vqt2)を生成する。
 これにより、本実施形態による回転機制御装置1は、生成した第1電圧指令値(例えば、d軸電圧Vdt1及びq軸電圧Vqt1)、及び第2電圧指令値(例えば、d軸電圧Vdt2及びq軸電圧Vqt2)に応じて適切な電流を回転機10に通電させることができる。
 また、本実施形態では、制御部7-1は、第1のCPUを備え、制御部7-2は、第2のCPUを備える。第1のCPUは、第1直流電圧Vdc1(=Vdc1s)を第2のCPUに送信し、第2のCPUは、第2直流電圧Vdc2(=Vdc2s)を第1のCPUに送信する。
 これにより、本実施形態による回転機制御装置1は、独立した2つのCPUにより処理を実行することによって、例えば、片方の系統が故障した場合であっても、残りの一方で回転機10の制御を継続することができる。
 なお、制御部7-1(電流指令演算器70-1)及び制御部7-2(電流指令演算器70-2)は、上述した図7の処理を、直流電圧が高い側の系統のみで実行するようにしてもよい。この場合、制御部7-1(電流指令演算器70-1)及び制御部7-2(電流指令演算器70-2)のうちの直流電圧が低い側の系統は、d軸電流指令値に目標d軸電流値をそのまま設定し、q軸電流指令値に目標q軸電流値をそのまま設定する。すなわち、例えば、第1系統の直流電圧が低い場合には、制御部7-1(電流指令演算器70-1)は、第1d軸電流指令値Id_target1に目標d軸電流Id1 を設定し、第1q軸電流指令値Iq_target1に目標q軸電流Iq1 を設定する。
 [第2の実施形態]
 次に、図面を参照して、第2の実施形態による回転機制御装置1aについて説明する。本実施形態では、回転機制御装置1aが、各系統の3相巻線を流れる電流の積算値に基づいて、d軸電流指令値又はq軸電流指令値を制限する変形例について説明する。
 図8は、第2の実施形態による回転機制御装置1aの2系統の制御部7aの一例を示すブロック図である。
 図8に示すように、回転機制御装置1aは、制御部7a-1と、制御部7a-2とを備える。なお、回転機制御装置1aの全体の構成については、制御部7-1及び制御部7-2の代わりに、制御部7a-1及び制御部7a-2を備える点を除いて、図1に示す第1の実施形態と同様であるため、ここではその説明を省略する。
 また、図8において、上述した図2に示す第1の実施形態と同一の構成には、同一の符号を付与してその説明を省略する。
 制御部7a-1(第1制御部の一例)は、電流指令演算器70a-1と、減算器71-1と、電流制御器72-1と、減算器73-1と、電流制御器74-1と、座標変換器75-1と、制御信号生成器76-1とを備える。本実施形態では、制御部7a-1は、第1検出電流(電流値Ius1、電流値Ivs1、及び電流値Iws1)に基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。
 第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1の絶対値が大きい場合に、回転機10の電流が大きくなるため、発熱量が大きくなる。そのため、本実施形態における電流指令演算器70a-1は、回転機10の発熱を考慮して、大きな電流が継続して通電される場合に、発熱量を小さくするように第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。
 電流指令演算器70a-1は、第1系統の3相巻線(u1、v1、w1)を流れる電流である第1電流の積算値に基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。電流指令演算器70a-1は、電流検出部6-1が検出した検出電流(電流値Ius1、電流値Ivs1、及び電流値Iws1)に基づいて、第1電流である電流値IL1の積算値を算出し、算出した電流値IL1の積算値に基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。
 なお、電流指令演算器70a-1は、電流値It1を積算した値と、制限値IL1とを対応付けた参照テーブルである電流制限マップを有している。ここで、電流値It1は、例えば、検出電流(電流値Ius1、電流値Ivs1、及び電流値Iws1)のそれぞれの2乗の和の平方根である。また、電流制限マップは、電流値It1を積算した値が大きくなる程、制限値IL1が小さくなるよう設定されている。
 電流指令演算器70a-1は、電流値It1を積算した値を入力として、予め設定された電流制限マップから、制限値IL1を算出する。電流指令演算器70a-1は、電流値It1が制限値IL1よりも小さくなるように、第1d軸電流指令値Id_target1の絶対値と第1q軸電流指令値Iq_target1の絶対値とを小さく制限する。電流指令演算器70a-1のその他の機能は、上述した第1の実施形態の電流指令演算器70-1と同様である。
 制御部7a-2(第2制御部の一例)は、電流指令演算器70a-2と、減算器71-2と、電流制御器72-2と、減算器73-2と、電流制御器74-2と、座標変換器75-2と、制御信号生成器76-2とを備える。制御部7a-2は、上述した制御部7a-1と同様に、第2検出電流(電流値Ius2、電流値Ivs2、及び電流値Iws2)に基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。
 電流指令演算器70a-2は、第2系統の3相巻線(u2、v2、w2)を流れる電流である第2電流の積算値に基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。電流指令演算器70a-2は、電流検出部6-2が検出した検出電流(電流値Ius2、電流値Ivs2、及び電流値Iws2)に基づいて、第2電流である電流値IL2の積算値を算出し、算出した電流値IL2の積算値に基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。
 なお、電流指令演算器70a-2は、電流値It2を積算した値と、制限値IL2とを対応付けた参照テーブルである電流制限マップを有している。ここで、電流値It2は、例えば、検出電流(電流値Ius2、電流値Ivs2、及び電流値Iws2)のそれぞれの2乗の和の平方根である。また、電流制限マップは、電流値It2を積算した値が大きくなる程、制限値IL2が小さくなるよう設定されている。
 電流指令演算器70a-2は、電流値It2を積算した値を入力として、予め設定された電流制限マップから、制限値IL2を算出する。電流指令演算器70a-2は、電流値It2が制限値IL2よりも小さくなるように、第2d軸電流指令値Id_target2の絶対値と第2q軸電流指令値Iq_target2の絶対値とを小さく制限する。電流指令演算器70a-2のその他の機能は、上述した第1の実施形態の電流指令演算器70-1と同様である。
 以上説明したように、本実施形態による回転機制御装置1aは、制御部7a-1と、制御部7a-2とを備える。制御部7a-1は、第1系統の3相巻線(u1、v1、w1)を流れる電流である第1電流の積算値(電流値It1を積算した値)に基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。また、制御部7a-2は、第2系統の3相巻線(u2、v2、w2)を流れる電流である第2電流の積算値(電流値It2を積算した値)に基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。
 これにより、本実施形態による回転機制御装置1aは、検出電流が継続して大きくなる場合に、回転機10の電流を小さくするように制限して、発熱量を小さくすることができる。
 また、本実施形態による回転機制御装置1aは、電流検出部6-1(第1電流検出部)と、電流検出部6-2(第2電流検出部)とを備える。電流検出部6-1は、第1系統の3相巻線(u1、v1、w1)を流れる電流を検出する。電流検出部6-2は、第2系統の3相巻線(u2、v2、w2)を流れる電流を検出する。制御部7a-1は、電流検出部6-1が検出した検出電流に基づいて、第1電流の積算値を算出し、算出した第1電流の積算値に基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。制御部7a-2は、電流検出部6-2が検出した検出電流に基づいて、第2電流の積算値を算出し、算出した第2電流の積算値に基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。
 これにより、本実施形態による回転機制御装置1aは、電流検出部6-1及び電流検出部6-2を利用することにより、検出電流が継続して大きくなる場合に、回転機10の電流を小さくするように制限して、発熱量を小さくすることができる。
 なお、電流指令演算器70a-1は、電流検出部6-1が検出した検出電流(電流値Ius1、電流値Ivs1、及び電流値Iws1)の代わりに、例えば、第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1を用いて制限値IL1を決定するようにしてもよい。この場合、電流指令演算器70a-1は、第1d軸電流指令値Id_target1の2乗と、第1q軸電流指令値Iq_target1の2乗との和の平方根により電流値It1を算出し、電流値It1を積算した値を入力とし、予め設定された電流制限マップから、制限値IL1を算出する。
 また、電流指令演算器70a-2は、電流検出部6-2が検出した検出電流(電流値Ius2、電流値Ivs2、及び電流値Iws2)の代わりに、例えば、第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2を用いて制限値IL2を決定するようにしてもよい。この場合、電流指令演算器70a-2は、第2d軸電流指令値Id_target2の2乗と、第2q軸電流指令値Iq_target2の2乗との和の平方根により電流値It2を算出し、電流値It2を積算した値を入力とし、予め設定された電流制限マップから、制限値IL2を算出する。
 このように、本実施形態では、制御部7a-1は、第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1に基づいて、第1電流It1の積算値を算出し、算出した第1電流It1の積算値に基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限してもよい。また、制御部7a-2は、第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2に基づいて、第2電流It2の積算値を算出し、算出した第2電流It2の積算値に基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限するようにしてもよい。
 これにより、本実施形態による回転機制御装置1aは、第1d軸電流指令値Id_target1及び第1q軸電流指令値Iq_target1と、第2d軸電流指令値Id_target2及び第2q軸電流指令値Iq_target2とを利用して、通電する電流が継続して大きくなる場合に、回転機10の電流を小さくするように制限して、発熱量を小さくすることができる。
 [第3の実施形態]
 次に、図面を参照して、第3の実施形態による回転機制御装置1bについて説明する。本実施形態では、回転機制御装置1bが、各系統の直流部の電流に基づいて、d軸電流指令値又はq軸電流指令値を制限する変形例について説明する。
 図9は、第3の実施形態による回転機制御装置1bの2系統の制御部7bの一例を示すブロック図である。
 図9に示すように、回転機制御装置1bは、制御部7b-1と、制御部7b-2と、直流部電流検出部91-1と、直流部電流検出部92-1と、直流部電流検出部91-2と、直流部電流検出部92-2とを備える。なお、回転機制御装置1bの全体の構成については、制御部7-1及び制御部7-2の代わりに、制御部7b-1、制御部7b-2、直流部電流検出部91-1、直流部電流検出部92-1、直流部電流検出部91-2、及び直流部電流検出部92-2を備える点を除いて、図1に示す第1の実施形態と同様であるため、ここではその説明を省略する。
 また、図9において、上述した図2に示す第1の実施形態と同一の構成には、同一の符号を付与してその説明を省略する。
 直流部電流検出部91-1(第1直流部電流検出部の一例)は、直流電源3-1からインバータ5-1に出力する電流である第1直流部電流Idc1sを検出する。ここで、第1直流部電流Idc1sは、下記の式(19)の演算によっても推定することができる。
Figure JPOXMLDOC01-appb-M000019
 なお、式(19)を用いて、直流部電流検出部91-1、又は制御部7b-1が、第1直流部電流Idc1sを推定してもよい。
 直流部電流検出部92-1(第2直流部電流検出部の一例)は、直流部電流検出部91-1が検出した第1直流部電流Idc1sと、第1直流電圧Vdc1sと、第2直流電圧Vdc2sとに基づいて、第2直流部電流Idc2sを検出する。直流部電流検出部92-1は、下記の式(20)を用いて、第2直流部電流Idc2sを検出する。
Figure JPOXMLDOC01-appb-M000020
 制御部7b-1(第1制御部の一例)は、直流電源3-1からインバータ5-1に出力する電流である第1直流部電流Idc1sと、直流電源3-2からインバータ5-2に出力する電流である第2直流部電流Idc2sとに基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。制御部7b-1は、電流指令演算器70b-1と、減算器71-1と、電流制御器72-1と、減算器73-1と、電流制御器74-1と、座標変換器75-1と、制御信号生成器76-1とを備える。
 第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1の絶対値が大きい場合に、上述した第1直流部電流Idc1sが大きくなる。これにより、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1の絶対値が大きい場合に、回転機10に通電される電流が大きくなるため、発熱量が大きくなる。そのため、電流指令演算器70b-1は、回転機10の発熱量を考慮して、大きい電流が継続して通電される場合に発熱量が小さくなるように、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。
 電流指令演算器70b-1は、例えば、第1直流部電流Idc1sと第2直流部電流Idc2sとのうちの大きい方の値の積算値に基づいて、制限値IL1を決定する。なお、電流指令演算器70b-1は、第1直流部電流Idc1sと第2直流部電流Idc2sとのうちの大きい方の値の積算値と、制限値IL1とを対応付けた参照テーブルである電流制限マップを有している。ここで、電流制限マップは、上述の積算値が大きくなる程、制限値IL1が小さくなるよう設定されている。
 電流指令演算器70b-1は、例えば、直流部電流検出部91-1が検出した第1直流部電流Idc1sと、直流部電流検出部92-1が検出した第2直流部電流Idc2sとのうちの大きい方の直流部電流の積算値を算出する。電流指令演算器70b-1は、算出した積算値を入力として、予め設定された電流制限マップから、制限値IL1を算出する。電流指令演算器70b-1は、第1系統の3相巻線(u1、v1、w1)を流れる電流値It1が制限値IL1よりも小さくなるように、第1d軸電流指令値Id_target1の絶対値と第1q軸電流指令値Iq_target1の絶対値とを小さく制限する。電流指令演算器70b-1のその他の機能は、上述した第1の実施形態の電流指令演算器70-1、又は第2の実施形態の電流指令演算器70a-1と同様である。
 直流部電流検出部91-2(第2直流部電流検出部の一例)は、直流電源3-2からインバータ5-2に出力する電流である第2直流部電流Idc2sを検出する。ここで、第2直流部電流Idc2sは、下記の式(21)の演算によっても推定することができる。
Figure JPOXMLDOC01-appb-M000021
 なお、式(21)を用いて、直流部電流検出部91-2、又は制御部7b-2が、第2直流部電流Idc2sを推定してもよい。
 直流部電流検出部92-2(第1直流部電流検出部の一例)は、直流部電流検出部91-2が検出した第2直流部電流Idc2sと、第1直流電圧Vdc1sと、第2直流電圧Vdc2sとに基づいて、第1直流部電流Idc1sを検出する。直流部電流検出部92-2は、下記の式(22)を用いて、第1直流部電流Idc1sを検出する。
Figure JPOXMLDOC01-appb-M000022
 制御部7b-2(第2制御部の一例)は、直流電源3-1からインバータ5-1に出力する電流である第1直流部電流Idc1sと、直流電源3-2からインバータ5-2に出力する電流である第2直流部電流Idc2sとに基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。制御部7b-2は、電流指令演算器70b-2と、減算器71-2と、電流制御器72-2と、減算器73-2と、電流制御器74-2と、座標変換器75-2と、制御信号生成器76-2とを備える。
 第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2の絶対値が大きい場合に、上述した第2直流部電流Idc2sが大きくなる。これにより、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2の絶対値が大きい場合に、回転機10に通電される電流が大きくなるため、発熱量が大きくなる。そのため、電流指令演算器70b-2は、回転機10の発熱量を考慮して、大きい電流が継続して通電される場合に発熱量が小さくなるように、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。
 電流指令演算器70b-2は、例えば、第1直流部電流Idc1sと第2直流部電流Idc2sとのうちの大きい方の値の積算値に基づいて、制限値IL2を決定する。なお、電流指令演算器70b-2は、第1直流部電流Idc1sと第2直流部電流Idc2sとのうちの大きい方の値の積算値と、制限値IL2とを対応付けた参照テーブルである電流制限マップを有している。ここで、電流制限マップは、上述の積算値が大きくなる程、制限値IL2が小さくなるよう設定されている。
 電流指令演算器70b-2は、例えば、直流部電流検出部91-2が検出した第2直流部電流Idc2sと、直流部電流検出部92-2が検出した第1直流部電流Idc1sとのうちの大きい方の直流部電流の積算値を算出する。電流指令演算器70b-2は、算出した積算値を入力として、予め設定された電流制限マップから、制限値IL2を算出する。電流指令演算器70b-2は、第2系統の3相巻線(u2、v2、w2)を流れる電流値It2が制限値IL2よりも小さくなるように、第2d軸電流指令値Id_target2の絶対値と第2q軸電流指令値Iq_target2の絶対値とを小さく制限する。電流指令演算器70b-2のその他の機能は、上述した第1の実施形態の電流指令演算器70-2、又は第2の実施形態の電流指令演算器70a-2と同様である。
 以上説明したように、本実施形態による回転機制御装置1bは、制御部7b-1と、制御部7b-2とを備える。制御部7b-1は、直流電源3-1からインバータ5-1に出力する電流である第1直流部電流Idc1sと、直流電源3-2からインバータ5-2に出力する電流である第2直流部電流Idc2sとのうちの大きい方の直流部電流の積算値に基づいて、第1d軸電流指令値Id_target1又は第1q軸電流指令値Iq_target1を制限する。制御部7b-2は、第1直流部電流Idc1sと第2直流部電流Idc2sとのうちの大きい方の直流部電流の積算値に基づいて、第2d軸電流指令値Id_target2又は第2q軸電流指令値Iq_target2を制限する。
 これにより、本実施形態による回転機制御装置1bは、第1直流部電流Idc1sと第2直流部電流Idc2sとに基づいて、各系統の電流指令値の制限するため、各系統の電流指令値の絶対値が継続して大きな値になる場合であっても、回転機10に通電される電流を小さくでき、回転機10の発熱量を小さくすることができる。
 また、本実施形態による回転機制御装置1bは、第1直流部電流Idc1sと第2直流部電流Idc2sとに起因する各系統における電流指令値の制限が等しくかかる。そのため、本実施形態による回転機制御装置1bは、第1d軸電流指令値Id_target1と第2d軸電流指令値Id_target2とが一致し、且つ、第1q軸電流指令値Iq_target1と第2q軸電流指令値Iq_target2とが一致しすることで、系統間の不整合を抑制することができる。
 また、本実施形態では、制御部7b-1は、第1直流電圧Vdc1s、第2直流電圧Vdc2s、及び第1直流部電流Idc1sに基づいて推定された第2直流部電流Idc2sに基づいて、大きい方の直流部電流を決定する。制御部7b-2は、第1直流電圧Vdc1s、第2直流電圧Vdc2s、及び第2直流部電流Idc2sに基づいて推定された第1直流部電流Idc1sに基づいて、大きい方の直流部電流を決定する。
 これにより、本実施形態による回転機制御装置1bは、他系統の直流部電流を推定することで、自系統に新たな電流検出のためのセンサや配線が不要となるという効果がある。
 なお、上述した本実施形態では、回転機制御装置1bが、直流部電流検出部91-1、直流部電流検出部92-1、直流部電流検出部91-2、及び直流部電流検出部92-2を備える一例を説明したが、これらの機能を制御部7b-1及び制御部7b-2が備えるようにしてもよい。また、第1直流部電流Idc1s及び第2直流部電流Idc2sは、電流検出用抵抗(シャント抵抗)などを用いて検出されてもよい。
 [第4の実施形態]
 次に、図面を参照して、第4の実施形態による電動パワーステアリング装置100について説明する。
 図10は、第4の実施形態による電動パワーステアリング装置100の一例を示すブロック図である。
 図10に示すように、電動パワーステアリング装置100は、回転機10と、ステアリングホイール101と、トルクセンサ102と、ステアリングシャフト103と、車輪104と、ラック・ピニオンギヤ105と、制御装置106とを備える。また、制御装置106は、上述した回転機制御装置1(1a、1b)を備えている。
 トルクセンサ102は、運転者(不図示)の操舵トルクを検出する。
 車輪104は、例えば、自動車などの車両の操舵対象の車輪である。
 電動パワーステアリング装置100において、運転者からステアリングホイール101に加えられた操舵トルクは、トルクセンサ102のトーションバー、及びステアリングシャフト103を通り、ラック・ピニオンギヤ105を介してラックに伝達される。これにより、電動パワーステアリング装置100は、車輪104を転舵させる。
 また、回転機10は、制御装置106の回転機制御装置1(1a、1b)によって駆動され、出力としてアシスト力を発生する。アシスト力は、ステアリングシャフト103に伝達され、操舵時に運転者が加える操舵トルクを軽減する。制御装置106は、アシスト力を調整するためのアシスト指令を、トルクセンサ102によって検出した運転者の操舵トルクに基づいて算出する。制御装置106は、例えば、アシスト指令を、運転者の操舵トルクに比例する値として算出する。さらに、制御装置106は、回転機10の指令値となるトルク指令として、アシスト指令を設定する。
 以上説明したように、本実施形態による電動パワーステアリング装置100は、上述した回転機制御装置1(1a、1b)と、ステアリングの操舵をアシストする回転機10と、ステアリングの操舵トルクを検出するトルクセンサ102とを備える。回転機制御装置1(1a、1b)は、トルクセンサ102が検出した操舵トルクに応じたステアリングのアシスト指令を、回転機10の指令値として、回転機10を制御する。
 これにより、本実施形態による電動パワーステアリング装置100は、上述した回転機制御装置1(1a、1b)と同様の効果を奏し、回転機10を制御する複数の系統の直流電源(3-1、3-2)が出力する直流電圧に差が生じた場合であっても、系統間の不整合を低減することができる。また、本実施形態による電動パワーステアリング装置100は、運転者の操舵に応じたアシストトルクを回転機10から得ることができ、かつ、2系統の電流としたことで安定した回転機の制御ができるので、快適に操舵できる電動パワーステアリング装置が実現できる。
 なお、本開示は、上記の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で変更可能である。
 例えば、上記の各実施形態において、回転機10の指令値をトルク指令として説明したが、これに限定されるものではない。例えば、回転機10の指令値を速度指令としてもよい。その場合、電流指令演算器70(70a、70b)は、回転機10の回転速度を目標速度に追従させるフィードバック制御系を構成し、目標d軸電流Id01 、目標d軸電流Id02 、目標q軸電流Iq01 、目標q軸電流Iq02 を演算する。これにより、回転機制御装置1(1a、1b)は、回転機10の回転速度を所望の値に制御することができる。
 また、上記の各実施形態において、回転機10の指令値を位置指令としてもよい。この場合、電流指令演算器70(70a、70b)は、回転機10の回転位置を目標位置に追従させるフィードバック制御系を構成し、目標d軸電流Id01 、目標d軸電流Id02 、目標q軸電流Iq01 、目標q軸電流Iq02 を演算する。これにより、回転機制御装置1(1a、1b)は、回転機10の回転速度を所望の値に制御することができる。
 また、上記の各実施形態において、回転機10の指令値をあらかじめ設定した目標d軸電流Id01 、目標q軸電流Iq01 、目標d軸電流Id02 (=Id01 )、目標q軸電流Iq02 (=Iq01 )としてもよい。これにより、回転機制御装置1(1a、1b)は、回転機10の回転速度を所望の値に制御することができる。
 また、上記の各実施形態において、制御部7-1(7a-1、7b-1)と、制御部7-2(7a-2、7b-2)とのそれぞれが、CPUを備える例を説明したが、これに限定されるものではない。制御部7-1(7a-1、7b-1)と制御部7-2(7a-2、7b-2)との両方が、1つのCPUにより制御されてもよい。この場合、1つのCPUが、第1直流電圧Vdc1s及び第2直流電圧Vdc2sの取り込みを行い、制御部7-1(7a-1、7b-1)及び制御部7-2(7a-2、7b-2)の演算を実行する。
 なお、上述した回転機制御装置1(1a、1b)が備える各構成は、内部に、コンピュータシステムを有している。そして、上述した回転機制御装置1(1a、1b)が備える各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述した回転機制御装置1(1a、1b)が備える各構成における処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。
 また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部又は外部に設けられた記録媒体も含まれる。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に回転機制御装置1(1a、1b)が備える各構成で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 また、上述した機能の一部又は全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
 1,1a,1b…回転機制御装置、2…位置検出部、3-1,3-2…直流電源、4-1,4-2…コンデンサ、5-1,5-2…インバータ、6-1,6-2…電流検出部、7,7-1,7-2,7a,7a-1,7a-2,7b,7b-1,7b-2…制御部、10…回転機、51-1,51-2,52-1,52-2,53-1,53-2,54-1,54-2,55-1,56-2…スイッチング素子、70-1,70-2,70a-1,70a-2,70b-1,70b-2…電流指令演算器、71-1,71-2,73-1,73-2…減算器、72-1,72-2,74-1,74-2…電流制御器、75-1,75-2…座標変換器、76-1,76-2…制御信号生成器、81-1,83-1,85-2…乗算器、82-1,84-1,86-1,722-1,742-1…加算器、91-1,91-2,92-1,92-2…直流部電流検出部、100…電動パワーステアリング装置、101…ステアリングホイール、102…トルクセンサ、103…ステアリングシャフト、104…車輪、105…ラック・ピニオンギヤ、106…制御装置、721-1,723-1,741-1,743-1…増幅器、724-1,744-1…積分器、725-1,745-1…制限器、761-1…デューティ演算部、762-1…キャリア比較部

Claims (10)

  1.  第1直流電源が出力した第1直流電圧に基づいて、回転機が有する第1系統の3相巻線に交流電圧を印加する第1インバータと、
     第2直流電源が出力した第2直流電圧に基づいて、前記回転機が有する第2系統の3相巻線に交流電圧を印加する第2インバータと、
     前記第1直流電圧と前記第2直流電圧とのうちの低い方の電圧である直流電圧最小値と、前記回転機の指令値とに基づいて、前記第1系統のd軸電流の指令値を生成するとともに、前記直流電圧最小値と、前記第1系統のd軸電流の指令値とに基づいて、前記第1系統のq軸電流の指令値を生成し、生成した前記第1系統のd軸電流の指令値及び前記第1系統のq軸電流の指令値に基づいて、前記第1インバータに、前記第1系統の3相巻線に前記交流電圧を印加させる第1制御信号を出力する第1制御部と、
     前記直流電圧最小値と、前記回転機の指令値とに基づいて、前記第2系統のd軸電流の指令値を生成するとともに、前記直流電圧最小値と、前記第2系統のd軸電流の指令値とに基づいて、前記第2系統のq軸電流の指令値を生成し、生成した前記第2系統のd軸電流の指令値及び前記第2系統のq軸電流の指令値に基づいて、前記第2インバータに、前記第2系統の3相巻線に前記交流電圧を印加させる第2制御信号を出力する第2制御部と
     を備える回転機制御装置。
  2.  前記第1制御部は、
     前記第1系統の3相巻線を流れる電流である第1電流の積算値に基づいて、前記第1系統のd軸電流の指令値又は前記第1系統のq軸電流の指令値を制限し、
     前記第2制御部は、
     前記第2系統の3相巻線を流れる電流である第2電流の積算値に基づいて、前記第2系統のd軸電流の指令値又は前記第2系統のq軸電流の指令値を制限する
     請求項1に記載の回転機制御装置。
  3.  前記第1制御部は、
     前記第1系統のd軸電流の指令値及び前記第1系統のq軸電流の指令値に基づいて、前記第1電流の積算値を算出し、算出した前記第1電流の積算値に基づいて、前記第1系統のd軸電流の指令値又は前記第1系統のq軸電流の指令値を制限し、 
     前記第2制御部は、
     前記第2系統のd軸電流の指令値及び前記第2系統のq軸電流の指令値に基づいて、前記第2電流の積算値を算出し、算出した前記第2電流の積算値に基づいて、前記第2系統のd軸電流の指令値又は前記第2系統のq軸電流の指令値を制限する
     請求項2に記載の回転機制御装置。
  4.  前記第1系統の3相巻線を流れる電流を検出する第1電流検出部と、
     前記第2系統の3相巻線を流れる電流を検出する第2電流検出部と
     を備え、
     前記第1制御部は、
     前記第1電流検出部が検出した検出電流に基づいて、前記第1電流の積算値を算出し、算出した前記第1電流の積算値に基づいて、前記第1系統のd軸電流の指令値又は前記第1系統のq軸電流の指令値を制限し、 
     前記第2制御部は、
     前記第2電流検出部が検出した検出電流に基づいて、前記第2電流の積算値を算出し、算出した前記第2電流の積算値に基づいて、前記第2系統のd軸電流の指令値又は前記第2系統のq軸電流の指令値を制限する
     請求項2に記載の回転機制御装置。
  5.  前記第1制御部は、
     前記第1直流電源から前記第1インバータに出力する電流である第1直流部電流と前記第2直流電源から前記第2インバータに出力する電流である第2直流部電流のうちの大きい方の直流部電流の積算値に基づいて、前記第1系統のd軸電流の指令値又は前記第1系統のq軸電流の指令値を制限し、
     前記第2制御部は、
     前記大きい方の直流部電流の積算値に基づいて、前記第2系統のd軸電流の指令値又は前記第2系統のq軸電流の指令値を制限する
     請求項1から請求項4のいずれか一項に記載の回転機制御装置。
  6.  前記第1制御部は、
     前記第1直流電圧、前記第2直流電圧、及び前記第1直流部電流に基づいて推定された前記第2直流部電流に基づいて、前記大きい方の直流部電流を決定し、
     前記第2制御部は、
     前記第2直流電圧、前記第1直流電圧、及び前記第2直流部電流に基づいて推定された前記第1直流部電流に基づいて、前記大きい方の直流部電流を決定する
     請求項5に記載の回転機制御装置。
  7.  前記第1制御部は、
     前記第1系統の3相巻線に印加する電圧に対する指令値である第1電圧指令値が、前記直流電圧最小値に基づく比較値より大きい場合に、前記第1系統のq軸電流の指令値を低減するように補正し、前記第1電圧指令値が前記比較値より小さい場合に、前記第1系統のq軸電流の指令値を増大するように補正し、
     前記第2制御部は、
     前記第2系統の3相巻線に印加する電圧に対する指令値である第2電圧指令値が、前記直流電圧最小値に基づく比較値より大きい場合に、前記第2系統のq軸電流の指令値を低減するように補正し、前記第2電圧指令値が前記比較値より小さい場合に、前記第2系統のq軸電流の指令値を増大するように補正する
     請求項1から請求項6のいずれか一項に記載の回転機制御装置。
  8.  前記第1制御部は、
     前記第1系統のd軸電流及び前記第1系統のq軸電流と、前記回転機の回転速度と、前記回転機の電気的定数とに基づいて、前記第1電圧指令値を生成し、
     前記第2制御部は、
     前記第2系統のd軸電流及び前記第2系統のq軸電流と、前記回転機の回転速度と、前記回転機の電気的定数とに基づいて、前記第2電圧指令値を生成する
     請求項7に記載の回転機制御装置。
  9.  前記第1制御部は、第1のCPU(Central Processing Unit)を備え、
     前記第2制御部は、第2のCPUを備え、
     前記第1のCPUは、前記第1直流電圧を前記第2のCPUに送信し、
     前記第2のCPUは、前記第2直流電圧を前記第1のCPUに送信する
     請求項1から請求項8のいずれか一項に記載の回転機制御装置。
  10.  請求項1から請求項9のいずれか一項に記載の回転機制御装置と、
     ステアリングの操舵をアシストする前記回転機と、
     前記ステアリングの操舵トルクを検出するトルクセンサと
     を備え、
     前記回転機制御装置は、前記トルクセンサが検出した前記操舵トルクに応じた前記ステアリングのアシスト指令を、前記回転機の指令値として、前記回転機を制御する
     電動パワーステアリング装置。
PCT/JP2021/015678 2021-04-16 2021-04-16 回転機制御装置、及び電動パワーステアリング装置 WO2022219795A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023514290A JP7378669B2 (ja) 2021-04-16 2021-04-16 回転機制御装置、及び電動パワーステアリング装置
US18/269,381 US20240051598A1 (en) 2021-04-16 2021-04-16 Rotary machine control device and electric power steering device
CN202180093258.9A CN117044101A (zh) 2021-04-16 2021-04-16 旋转电机控制装置以及电动助力转向装置
EP21936990.7A EP4325714A4 (en) 2021-04-16 2021-04-16 ROTARY MACHINE CONTROL DEVICE AND ELECTRIC POWER STEERING DEVICE
PCT/JP2021/015678 WO2022219795A1 (ja) 2021-04-16 2021-04-16 回転機制御装置、及び電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015678 WO2022219795A1 (ja) 2021-04-16 2021-04-16 回転機制御装置、及び電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2022219795A1 true WO2022219795A1 (ja) 2022-10-20

Family

ID=83640277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015678 WO2022219795A1 (ja) 2021-04-16 2021-04-16 回転機制御装置、及び電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20240051598A1 (ja)
EP (1) EP4325714A4 (ja)
JP (1) JP7378669B2 (ja)
CN (1) CN117044101A (ja)
WO (1) WO2022219795A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195089A (ja) 2010-03-23 2011-10-06 Jtekt Corp 電動パワーステアリング装置
WO2018088465A1 (ja) 2016-11-11 2018-05-17 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP2020108327A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 制御装置
JP2021027728A (ja) * 2019-08-06 2021-02-22 日立オートモティブシステムズ株式会社 電子制御装置及びその故障検知方法
JP2021035182A (ja) * 2019-08-26 2021-03-01 株式会社デンソー モータ制御装置
WO2021059436A1 (ja) * 2019-09-26 2021-04-01 三菱電機株式会社 交流回転機装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088463A1 (ja) * 2016-11-11 2018-05-17 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6852522B2 (ja) * 2017-04-03 2021-03-31 株式会社デンソー 多相回転機の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195089A (ja) 2010-03-23 2011-10-06 Jtekt Corp 電動パワーステアリング装置
WO2018088465A1 (ja) 2016-11-11 2018-05-17 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP2020108327A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 制御装置
JP2021027728A (ja) * 2019-08-06 2021-02-22 日立オートモティブシステムズ株式会社 電子制御装置及びその故障検知方法
JP2021035182A (ja) * 2019-08-26 2021-03-01 株式会社デンソー モータ制御装置
WO2021059436A1 (ja) * 2019-09-26 2021-04-01 三菱電機株式会社 交流回転機装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325714A4

Also Published As

Publication number Publication date
JPWO2022219795A1 (ja) 2022-10-20
US20240051598A1 (en) 2024-02-15
CN117044101A (zh) 2023-11-10
EP4325714A1 (en) 2024-02-21
JP7378669B2 (ja) 2023-11-13
EP4325714A4 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
US10008970B2 (en) Control apparatus for AC motor
JP3480843B2 (ja) 電動パワーステアリング制御装置及び制御方法
JP5824918B2 (ja) インバータ制御装置及びインバータ制御方法
KR102285041B1 (ko) 인버터 제어 장치 및 모터 구동 시스템
JP6644172B2 (ja) モータ制御装置
CN109952701B (zh) 电动机控制装置及具备该电动机控制装置的电动助力转向控制装置
US9548688B2 (en) Motor control apparatus
JPWO2008047438A1 (ja) 永久磁石同期電動機のベクトル制御装置
JP7183322B2 (ja) 交流回転機の制御装置
JP7552291B2 (ja) モータ制御方法及びモータ制御システム
JP5397664B2 (ja) モータ制御装置
WO2022219795A1 (ja) 回転機制御装置、及び電動パワーステアリング装置
WO2022219794A1 (ja) 回転機制御装置、及び電動パワーステアリング装置
KR20190012265A (ko) 모터의 제어 장치 및 제어 방법
JP6680104B2 (ja) モータの制御装置、及び、制御方法
JP7209656B2 (ja) モータ制御装置
JP2019213309A (ja) 巻線界磁型同期モータの制御方法、及び、制御装置
WO2024084639A1 (ja) モータ制御装置、及び電動パワーステアリング装置
WO2024095475A1 (ja) モータ制御方法及びモータ制御装置
JP7412106B2 (ja) モータ制御装置及びモータ制御方法
JP7225561B2 (ja) モータ制御方法、及び、モータ制御装置
JP4572582B2 (ja) 誘導電動機の制御装置
JP2013236420A (ja) コンバータのコントローラ、それを用いた電力変換装置
WO2020152785A1 (ja) モータ制御方法、及び、モータ制御装置
JP2023158899A (ja) 電動機の制御方法、及び電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514290

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18269381

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180093258.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021936990

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021936990

Country of ref document: EP

Effective date: 20231116