WO2020230886A1 - 細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器 - Google Patents

細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器 Download PDF

Info

Publication number
WO2020230886A1
WO2020230886A1 PCT/JP2020/019416 JP2020019416W WO2020230886A1 WO 2020230886 A1 WO2020230886 A1 WO 2020230886A1 JP 2020019416 W JP2020019416 W JP 2020019416W WO 2020230886 A1 WO2020230886 A1 WO 2020230886A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
resin film
cell culture
resin
less
Prior art date
Application number
PCT/JP2020/019416
Other languages
English (en)
French (fr)
Inventor
博貴 井口
悠平 新井
延彦 乾
麻由美 湯川
大悟 小林
雄太 中村
健太 ▲高▼倉
聡 羽根田
亮馬 石井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020217012216A priority Critical patent/KR20220009367A/ko
Priority to CN202080006412.XA priority patent/CN113166580B/zh
Priority to SG11202110132QA priority patent/SG11202110132QA/en
Priority to JP2020531791A priority patent/JPWO2020230886A1/ja
Priority to CN202211113076.6A priority patent/CN115926568A/zh
Priority to EP20805342.1A priority patent/EP3971202A4/en
Priority to AU2020274457A priority patent/AU2020274457A1/en
Priority to CN202310871473.8A priority patent/CN116904079A/zh
Priority to US17/608,044 priority patent/US20220227898A1/en
Publication of WO2020230886A1 publication Critical patent/WO2020230886A1/ja
Priority to JP2024015798A priority patent/JP2024033003A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/12Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated acetals or ketals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • C12M25/04Membranes; Filters in combination with well or multiwell plates, i.e. culture inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1019Tetrapeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/20Small organic molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins

Definitions

  • the present invention relates to a resin film formed of a scaffold material for cell culture.
  • the present invention also relates to a cell culture carrier and a cell culture container provided with the above resin film.
  • hPSC human pluripotent stem cells
  • hESC regenerative medicine human embryonic stem cells
  • hiPSC human induced pluripotent stem cells
  • Patent Document 1 describes a molded product made of a polyvinyl acetal compound or a molded product made of the polyvinyl acetal compound and a water-soluble polysaccharide, and the degree of acetalization of the polyvinyl acetal compound is 20 to 60 mol%.
  • a carrier for cell culture is disclosed.
  • Patent Document 2 discloses a composition containing the first fibrous polymer scaffolding material, wherein the fibers of the first fibrous polymer scaffolding material are aligned. It is described that the fibers constituting the first fibrous polymer scaffold material are composed of an aliphatic polyester such as polyglycolic acid or polylactic acid.
  • Patent Document 3 describes a cell culture method for maintaining the undifferentiated state of pluripotent stem cells, which is pluripotent on an incubator having a surface coated with a polyrotaxan block copolymer. A method including the step of culturing stem cells is disclosed.
  • the cell colonization after seeding can be enhanced.
  • an adhesive protein such as laminin or vitronectin or a mouse sarcoma-derived matrigel
  • the cell colonization after seeding is extremely high.
  • natural polymer materials are expensive, have large variations between lots because they are naturally derived substances, and have safety concerns due to animal-derived components.
  • scaffolding materials using synthetic resins have better operability, lower cost, less variation between lots, and excellent safety than scaffolding materials using natural polymer materials. ..
  • the synthetic resin swells excessively because the synthetic resin having high hydrophilicity is used.
  • cell clumps may exfoliate during culturing.
  • the scaffolding material using the synthetic resin has low colonization after seeding of the cells, and the cells may not proliferate sufficiently.
  • An object of the present invention is to provide a resin membrane formed of a cell culture scaffold material, a cell culture carrier, and a cell culture container, which are excellent in colonization after seeding of cells and can increase the cell growth rate. There is.
  • the resin film formed of the cell culture scaffold material according to the present invention has a phase-separated structure in which the cell culture scaffold material contains a synthetic resin and the resin film contains at least a first phase and a second phase.
  • the ratio of the surface area of one of the first phase and the second phase to the entire surface is 0.01 or more and 0.95 or less.
  • the ratio of the peripheral length to the area of the second phase (peripheral length / area) is 0.001 (1 / nm) or more and 0.40 (1 / nm). ) It is as follows.
  • the phase-separated structure is a sea-island structure, the first phase is a sea part, and the second phase is an island part.
  • the number of the second phase, which is the island portion is 1 piece / ⁇ m 2 or more and 5000 pieces / ⁇ m 2 or less.
  • the phase-separated structure is composed of an intramolecular phase-separated structure of the synthetic resin.
  • the dispersion term component of the surface free energy is 25.0 mJ / m 2 or more and 50.0 mJ / m 2 or less
  • the polar term component is 1.0 mJ / m. 2 or more and 20.0 mJ / m 2 or less.
  • the synthetic resin has a cationic functional group, and the content of the cationic functional group contained in the structural unit of the synthetic resin is 0. It is 2 mol% or more and 50 mol% or less.
  • the second phase has a peptide portion.
  • the peptide portion has a cell-adherent amino acid sequence.
  • the water swelling ratio is 50% or less.
  • the storage elastic modulus at 100 ° C. is 1.0 ⁇ 10 4 Pa or more and 1.0 ⁇ 10 8 Pa or less
  • the storage elastic modulus at 25 ° C. the ratio of the storage modulus at 100 ° C. ((storage modulus at 25 ° C.) / (storage modulus at 100 ° C.)) is, 1.0 ⁇ 10 1 or more and 1.0 ⁇ 10 5 or less.
  • the cell culture scaffold material is substantially free of animal-derived materials.
  • the synthetic resin comprises a vinyl polymer.
  • the synthetic resin comprises at least a polyvinyl alcohol derivative or a poly (meth) acrylic acid ester.
  • the carrier for cell culture according to the present invention includes a carrier and a resin film formed according to the present invention, and the resin film is arranged on the surface of the carrier.
  • the cell culture container according to the present invention includes a container body and a resin film configured according to the present invention, and the resin film is arranged on the surface of the container body.
  • a resin membrane formed of a cell culture scaffold material, a cell culture carrier, and a cell culture container which are excellent in colonization after seeding of cells and can increase the cell growth rate. be able to.
  • the present invention relates to a resin film formed of a scaffold material for cell culture.
  • the scaffold material for cell culture contains a synthetic resin.
  • the resin film of the present invention has a phase-separated structure including at least a first phase and a second phase.
  • the ratio of the surface area of one of the first phase and the second phase to the entire surface is 0.01 or more and 0.95 or less.
  • the resin film of the present invention has the above-mentioned structure, it has excellent fixability after seeding of cells and can increase the proliferation rate of cells.
  • Scaffolding materials for cell culture using conventional natural polymer materials can improve the colonization of cells after seeding, but they are expensive, and because they are naturally derived substances, there is a large variation between lots, and animals. There are safety concerns due to the ingredients of origin.
  • the synthetic resin swells excessively or has a low affinity with cells, so that the cell mass may exfoliate during culturing. Therefore, conventional scaffolding materials using synthetic resins have low colonization after seeding of cells, and cells may not proliferate sufficiently.
  • the present inventors have focused on the phase-separated structure of the resin film formed of the cell culture scaffold material, and the ratio of the surface area of one of the first phase and the second phase to the entire surface is specific to the above. It has been found that the phase-separated structure having a range can enhance the affinity with cells, thereby enhancing the adhesiveness after seeding, and thus the proliferation rate of cells. The reason for this is not clear, but when having such a phase-separated structure, the energy distribution proceeds smoothly, and the positions and ratios of the first phase and the second phase having different affinities and intensities are determined. Since it can be adjusted, it is considered that the affinity can be enhanced regardless of the type of cell, and the accumulation and adsorption effect of the cell or cell surface protein can be realized.
  • the adhesiveness to the cells after seeding can be enhanced, and the proliferation rate of the cells can be enhanced.
  • the synthetic resin can be used as described above, the operability is good, the cost is low, the variation between lots is small, and the variation between lots is small as compared with the scaffolding material using the natural polymer material. It has excellent safety.
  • a synthetic resin having a peptide portion may be used as the synthetic resin. Details of the synthetic resin having a peptide portion will be described later.
  • the ratio of the surface area (surface area integration rate) of one of the first phase and the second phase to the entire surface is 0.01 or more, preferably 0.10 or more, 0.95 or less, and more. It is preferably 0.90 or less.
  • the surface integration rate is within the above range, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • examples of the phase-separated structure include microphase-separated structures such as a sea-island structure, a cylinder structure, a gyroid structure, and a lamellar structure.
  • the first phase can be the sea part and the second phase can be the island part.
  • the phase having the largest surface area can be the first phase, and the phase having the second largest surface area can be the second phase.
  • the sea-island structure is preferable as the phase-separated structure. In this way, by having a continuous phase and a discontinuous phase, it is possible to enhance the affinity with the cells and further enhance the adhesiveness with the cells after seeding, thereby further increasing the proliferation rate of the cells. Can be enhanced.
  • the surface integration ratio of the second phase with respect to the entire surface is 0.01 or more, preferably 0.1 or more, more preferably 0.2 or more, and 0. It is 95 or less, preferably 0.9 or less, and more preferably 0.8 or less.
  • the surface integration rate is within the above range, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the ratio of the peripheral length to the area of the second phase is preferably 0.001 (1 / nm) or more, more preferably 0.0015 (1 / nm) or more, still more preferably 0.008. It is (1 / nm) or more.
  • the ratio of the peripheral length to the area of the second phase (peripheral length / area) is preferably 0.40 (1 / nm) or less, more preferably 0.20 (1 / nm) or less, still more preferably 0.08. It is (1 / nm) or less, particularly preferably 0.013 (1 / nm) or less.
  • the ratio of the peripheral length to the area of the second phase is preferably 0.001 (1 / nm) or more, more preferably 0.0015 (). It is 1 / nm) or more, preferably 0.08 (1 / nm) or less, and more preferably 0.013 (1 / nm) or less.
  • the ratio (peripheral length / area) is within the above range, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the ratio of the peripheral length to the area of the second phase is preferably 0.008 (1 / nm) or more, more preferably 0.013 (1 /). nm) or more, preferably 0.40 (1 / nm) or less, more preferably 0.20 (1 / nm) or less, still more preferably 0.10 (1 / nm) or less.
  • the ratio (peripheral length / area) is within the above range, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the number of the second phase is preferably 1 piece / ⁇ m 2 or more, more preferably 2 pieces / ⁇ m 2 or more, further preferably 10 pieces / ⁇ m 2 or more, preferably 5000 pieces / ⁇ m 2 or less. It is more preferably 1000 pieces / ⁇ m 2 or less, further preferably 500 pieces / ⁇ m 2 or less, and particularly preferably 300 pieces / ⁇ m 2 or less.
  • the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the average diameter of the second phase of the island is preferably 20 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, particularly preferably 80 nm or more, preferably 3.5 ⁇ m or less, more preferably 3.0 ⁇ m. Below, it is more preferably 1.5 ⁇ m or less.
  • the average diameter of the second phase is within the above range, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the average diameter of the second phase is preferably 50 nm or more, more preferably 100 nm or more, still more preferably 120 nm or more, and particularly preferably 200 nm or more. Is 1 ⁇ m or less, more preferably 300 nm or less, still more preferably 250 nm or less.
  • the average diameter of the second phase is within the above range, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the average diameter of the second phase is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 40 nm or more, preferably 1 ⁇ m or less, more preferably 300 nm. Below, it is more preferably 100 nm or less.
  • the average diameter of the second phase is within the above range, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • phase-separated structure and the parameters indicating the phase-separated structure as described above can be confirmed by, for example, an atomic force microscope (AFM), a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like. can do.
  • AFM atomic force microscope
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the ratio of the surface area of one of the first phase and the second phase to the entire surface (surface integration rate), the ratio of the peripheral length to the area of the second phase (peripheral length / area),
  • the number of the second phases, which are islands, and the average diameter size thereof can be obtained from the above-mentioned microscopic observation image using image analysis software such as ImageJ.
  • the ratio of the surface area of one of the first phase and the second phase to the entire surface is one of the first phase and the second phase within the observation region (30 ⁇ m ⁇ 30 ⁇ m). It is obtained by dividing the surface area occupied by the phase by the area of the observation area.
  • the ratio of the peripheral length to the area of the second phase is obtained by dividing the total peripheral length of the second phase by the total area of the second phase within the observation area (30 ⁇ m ⁇ 30 ⁇ m). It is required by doing.
  • the number of second phases that are islands can be obtained by dividing the number of second phases in the observation region (30 ⁇ m ⁇ 30 ⁇ m) by the area of the observation region. .. Further, the average diameter of the second phase, which is an island portion, is obtained as the average diameter of a circle having the same area.
  • phase-separated structure as described above can be obtained by, for example, blending, copolymerizing, graft-copolymerizing at least two different kinds of polymers, or using a synthetic resin having a peptide portion. It can be obtained by forming a phase-separated structure between or within the polymers of. Above all, from the viewpoint of further enhancing the adhesiveness of cells, it is preferable that the phase separation structure is formed by an intramolecular phase separation structure. That is, the synthetic resin is preferably a copolymer of at least two different polymers or a synthetic resin having a peptide portion, and is a graft copolymer or a synthetic resin having a peptide portion. Is more preferable.
  • phase-separated structure as described above is obtained by copolymerizing two or more kinds of polymers (monomers) having a solubility parameter (SP value) of 0.1 or more, preferably 0.5 or more, more preferably 1 or more. Is preferable. In this case, the sea-island structure can be formed more easily.
  • SP value solubility parameter
  • the SP value is a measure of the intermolecular force acting between a solvent and a solute, and is a measure of the affinity between substances.
  • the SP value can be determined based on Hidebrand's theory of regular solutions.
  • the unit of the SP value is (cal / cm 3 ) 0.5 .
  • the Fedors method is described in the Journal of the Japan Adhesive Society, Vol. 22, 1986, p. 566.
  • phase separation parameter indicating the phase separation structure such as the surface integration rate is adjusted by, for example, controlling the compounding ratio of the two types of polymers, the structure of the polymer, or controlling the content of the peptide portion. Can be done.
  • first phase and another phase different from the second phase there may be a first phase and another phase different from the second phase.
  • the other phase may be one phase or a plurality of phases.
  • Such a phase can be obtained, for example, by copolymerizing another polymer (monomer) having a different SP value by grafting or the like.
  • the two phases occupying the surface of the resin film are designated as the first phase and the second phase.
  • the dispersion term component of the surface free energy in the resin film formed of the scaffold material for cell culture is preferably 25.0 mJ / m 2 or more and 50.0 mJ / m 2 or less. Is.
  • the hydrophilicity of the scaffold material for cell culture can be appropriately adjusted, and the synergistic effect with the phase-separated structure can further enhance the interfacial adhesiveness with the cells after seeding, and the cell proliferation rate. Can be further enhanced.
  • the dispersion term component is more preferably 30.0 mJ / m 2 or more, further preferably 35.0 mJ / m 2 or more, more preferably 47.0 mJ / m 2 or less, still more preferably 45.5 mJ / m 2 or less. is there.
  • the polar term component of the surface free energy in the resin film formed of the scaffold material for cell culture is preferably 1.0 mJ / m 2 or more and 20.0 mJ / m 2 or less. Is. In this case, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the polar term component is more preferably 2.0 mJ / m 2 or more, more preferably 3.0 mJ / m 2 or more, more preferably 10.0 mJ / m 2 or less, more preferably 5.0mJ / m 2 or less is there.
  • the dispersion term component ⁇ d of the surface free energy and the dipole component ⁇ p which is a polar term component, are calculated using the theoretical formula of Kaelble-Uy.
  • the Kaelble-Uy theoretical formula is a theoretical formula based on the assumption that the total surface free energy ⁇ is the sum of the dispersion term component ⁇ d and the dipole component ⁇ p , as shown by the following formula (1). ..
  • the surface free energy of the liquid is ⁇ l (mJ / m 2 )
  • the surface free energy of the solid is ⁇ s (mJ / m 2 )
  • the contact angle is ⁇ (°).
  • the liquid surface free energy gamma l of liquid is known using two, measuring the respective contact angle ⁇ with respect to the resin film formed by scaffolding material for cell culture, coalition gamma s d and gamma s p
  • the dispersion term component ⁇ d and the dipole component ⁇ p of the surface free energy of the resin film formed from the cell culture scaffold material can be obtained.
  • the contact angle ⁇ is measured as follows using a contact angle meter (for example, “DMo-701” manufactured by Kyowa Interface Science Co., Ltd.).
  • 1 ⁇ L of pure water or diiodomethane is added dropwise to the surface of the resin film formed of the scaffold material for cell culture.
  • the angle formed by the pure water 30 seconds after the dropping and the resin film is defined as the contact angle ⁇ with respect to the pure water.
  • the angle formed by the diiodomethane 30 seconds after the dropping and the resin film is defined as the contact angle ⁇ with respect to the diiodomethane.
  • the dispersion term component of the surface free energy is described. ⁇ d can be reduced. Further, by increasing the content of hydrophilic functional groups in the synthetic resin or increasing the content of butyl groups, the dipole component ⁇ p of the surface free energy can be reduced.
  • the storage elastic modulus at 100 ° C. is preferably 0.6 ⁇ 10 4 Pa or more, more preferably 0.8 ⁇ 10 4 Pa or more, still more preferable. Is 1.0 ⁇ 10 4 Pa or more, preferably 1.0 ⁇ 10 8 Pa or less, more preferably 0.8 ⁇ 10 8 Pa or less, and further preferably 1.0 ⁇ 10 7 Pa or less.
  • the resin film formed of the scaffold material for cell culture of the present invention has a ratio of the storage elastic modulus at 25 ° C. to the storage elastic modulus at 100 ° C. ((storage elastic modulus at 25 ° C.) / (storage elastic modulus at 100 ° C.). rate)) is preferably 1.0 ⁇ 10 1 or more, more preferably 5.0 ⁇ 10 1 or more, more preferably 8.0 ⁇ 10 2 or more, preferably 1.0 ⁇ 10 5 or less, more preferably 0.75 ⁇ 10 5 or less, more preferably 0.5 ⁇ 10 5 or less.
  • the storage elastic modulus at 25 ° C. and 100 ° C. is, for example, measured by a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., DVA-200) under tensile conditions at a frequency of 10 Hz and a temperature range of ⁇ 150 ° C. to 150 ° C. Is measured at a heating rate of 5 ° C./min. From the obtained graph of tensile storage elastic modulus, the storage elastic modulus at 25 ° C. and 100 ° C. is obtained, and the 25 ° C. storage elastic modulus / 100 ° C. storage elastic modulus is calculated.
  • a dynamic viscoelasticity measuring device manufactured by IT Measurement Control Co., Ltd., DVA-200
  • the storage elastic moduli at 25 ° C. and 100 ° C. can be increased, for example, by increasing the degree of cross-linking in the synthetic resin, stretching the synthetic resin, and the like. Further, the storage elastic moduli at 25 ° C. and 100 ° C. can be lowered by lowering the number average molecular weight of the synthetic resin, lowering the glass transition temperature, and the like.
  • the resin film formed from the scaffold material for cell culture of the present invention has a water swelling ratio of preferably 50% or less, more preferably 40% or less. In this case, the colonization of the cells after seeding can be further enhanced.
  • the lower limit of the water swelling ratio is not particularly limited, but may be, for example, 0.5%.
  • the water swelling ratio can be reduced, for example, by increasing the hydrophobic functional groups of the synthetic resin, lowering the number average molecular weight, and the like.
  • the scaffold material for cell culture contains a synthetic resin (hereinafter, may be referred to as synthetic resin X).
  • the main chain of the synthetic resin X is preferably a carbon chain.
  • a "structural unit” means a repeating unit of a monomer constituting a synthetic resin.
  • the synthetic resin has a graft chain, it contains a repeating unit of the monomers constituting the graft chain.
  • the synthetic resin X When the synthetic resin X does not have a peptide portion, the synthetic resin X preferably has a cationic functional group.
  • the synthetic resin X having a peptide portion may or may not have a cationic functional group in a structural portion other than the peptide portion.
  • the cationic functional group include substituents having a structure such as an amino group, an imino group, and an amide group.
  • conjugated amine functional groups such as hydroxyamino group, urea group, guanidine, biguanide, piperazine, piperidine, pyrrolidine, 1,4-diazabicyclo [2.2.2] octane, hexamethylenetetraamine, Morpholine, pyridine, pyridazine, pyrimidine, pyrazine, pyrrole, azatropylidene, pyridone, imidazole, benzoimidazole, benzotriazole, pyrazole, oxazole, imidazoline, triazole, thiazole, thiazine, tetrazole, indol, isoindole, purine, quinoline, isoquinoline, quinazoline , Kinoxalin, Synnoline, Pteridine, Carbazole, Acrydin, Adenine, Guanine, Citocin, Timine, Ulacyl,
  • the content of the cationic functional group contained in the structural unit of the synthetic resin X is preferably 0.2 mol% or more, preferably 2 mol% or more, more preferably 3 mol% or more, 50 mol%. Hereinafter, it is preferably 10 mol% or less, more preferably 7 mol% or less.
  • the content of the cationic functional group can be measured by, for example, 1 H-NMR (nuclear magnetic resonance spectrum).
  • the synthetic resin X preferably contains a vinyl polymer, and more preferably a vinyl polymer.
  • the vinyl polymer is a polymer of a compound having a vinyl group or a vinylidene group.
  • the synthetic resin X is a vinyl polymer, it is possible to more easily suppress the swelling of the scaffold material for cell culture in water.
  • the vinyl polymer include polyvinyl alcohol derivatives, poly (meth) acrylic acid esters, polyvinylpyrrolidone, polystyrene, ethylene-vinyl acetate copolymers and the like.
  • the vinyl polymer is preferably a polyvinyl alcohol derivative or a poly (meth) acrylic acid ester from the viewpoint of easily enhancing the adhesiveness with cells.
  • the scaffold material for cell culture preferably contains a synthetic resin X having a polyvinyl acetal skeleton.
  • the synthetic resin X having a polyvinyl acetal skeleton is preferably a copolymer of a structural unit of the polyvinyl acetal resin and a vinyl compound and / or a vinylidene compound.
  • the vinyl compound or vinylidene compound may be a vinyl polymer which is a polymer thereof.
  • the vinyl compound, vinylidene compound, and vinyl polymer copolymerized with the polyvinyl acetal resin may be generically referred to as "vinyl compound A".
  • the copolymer may be a block copolymer of a polyvinyl acetal resin and vinyl compound A, or may be a graft copolymer obtained by grafting vinyl compound A on a polyvinyl acetal resin.
  • the copolymer is preferably a graft copolymer. In this case, the phase-separated structure can be formed more easily.
  • vinyl compound and vinylidene compound examples include ethylene, allylamine, vinylpyrrolidone, maleic anhydride, maleimide, itaconic acid, (meth) acrylic acid, vinylamine, and (meth) acrylic acid ester. Only one kind of these vinyl compounds may be used, or two or more kinds may be used in combination. Therefore, it may be a vinyl polymer in which these vinyl compounds are copolymerized.
  • the difference in SP value between the polyvinyl acetal resin and the vinyl compound A is preferably 0.5 or more. In this case, the phase-separated structure can be formed more easily.
  • the difference in SP value between the polyvinyl acetal resin and the vinyl compound A is more preferably 1.0 or more.
  • the upper limit of the difference between the SP values is not particularly limited, but may be 10.0, for example.
  • the first phase of the above copolymer is a polyvinyl acetal resin and the second phase is a vinyl compound A. It is preferable that the first phase is formed by the polyvinyl acetal resin portion of the copolymer and the second phase is formed by the vinyl compound A portion. In this case, it is preferable that the first phase of the polyvinyl acetal resin is the sea part and the second phase of the vinyl compound A is the island part.
  • the first phase of the vinyl compound A may be the sea part
  • the second phase of the polyvinyl acetal resin may be the island part.
  • the content (molar / mol) of the vinyl compound A in the copolymer is preferably 0.015 or more, more preferably 0.3 or more, preferably 0.95 or less, and more preferably 0.90 or less. More preferably, it is 0.70 or less.
  • the content is above the lower limit, the phase-separated structure can be formed more easily.
  • the cell proliferation rate can be further increased.
  • the polyvinyl acetal resin has an acetal group, an acetyl group, and a hydroxyl group in the side chain.
  • the method for synthesizing a polyvinyl acetal resin includes at least a step of acetalizing polyvinyl alcohol with an aldehyde.
  • the aldehyde used for acetalizing polyvinyl alcohol to obtain a polyvinyl acetal resin is not particularly limited.
  • Examples of the aldehyde include aldehydes having 1 to 10 carbon atoms.
  • the aldehyde may have a chain aliphatic group, a cyclic aliphatic group or an aromatic group.
  • the aldehyde may be a chain aldehyde or a cyclic aldehyde.
  • aldehydes examples include formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde, pentanal, hexanal, heptanal, octanal, nonanal, decanal, achlorine, benzaldehyde, cinnamaldehyde, perylaldehyde, formylpyridine, formylimidazole, formylpyrrole, formylpiperidin, formyl.
  • Triazole formyltetrazole, formylindole, formylisoindole, formylpurine, formylbenzoimidazole, formylbenzotriazole, formylquinoline, formylisoquinolin, formylquinoxalin, formylcinnoline, formylpteridine, formylfuran, formyloxolane, formyloxane, Examples thereof include formylthiophene, formylthiolan, formyltian, formyladenine, formylguanine, formylcitosine, formyltimine, formyluracil and the like. Only one of these aldehydes may be used, or two or more of these aldehydes may be used in combination.
  • the aldehyde is preferably formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, or pentanal, and more preferably butyraldehyde. Therefore, the polyvinyl acetal skeleton is preferably a polyvinyl butyral skeleton.
  • the polyvinyl acetal resin is preferably a polyvinyl butyral resin.
  • the polyvinyl acetal resin preferably has a Bronsted basic group or a Bronsted acidic group, and more preferably has a Bronsted basic group. That is, it is preferable that a part of the polyvinyl acetal resin is modified with a Bronsted basic group or a Bronsted acidic group, and more preferably a part of the polyvinyl acetal resin is modified with a Bronsted basic group.
  • Bronsted basic group is a general term for functional groups that can receive hydrogen ion H + from other substances.
  • the blended basic group include amine-based basic groups such as a substituent having an imine structure, a substituent having an imide structure, a substituent having an amine structure, and a substituent having an amide structure.
  • the blended basic group is not particularly limited, but is, for example, a conjugated amine-based functional group such as a hydroxyamino group, a urea group, guanidine, or biguanide, piperazine, piperidine, pyrrolidine, 1,4-diazabicyclo [2.2.2].
  • Examples of the blended acidic group include a carboxyl group, a sulfonic acid group, a maleic acid group, a sulfinic acid group, a sulfenic acid group, a phosphoric acid group, a phosphonic acid group, and salts thereof.
  • the Bronsted acidic group is preferably a carboxyl group.
  • the polyvinyl acetal resin preferably has a structural unit having an imine structure, a structural unit having an imide structure, a structural unit having an amine structure, or a structural unit having an amide structure. In this case, it may have only one kind of these structural units, or may have two or more kinds.
  • the polyvinyl acetal resin may have a structural unit having an imine structure.
  • the polyvinyl acetal resin preferably has an imine structure in the side chain.
  • the polyvinyl acetal resin may have a structural unit having an imide structure.
  • the polyvinyl acetal resin preferably has an imino group in the side chain.
  • the imino group may be directly bonded to the carbon atom constituting the main chain of the polyvinyl acetal resin, or may be bonded to the main chain via a linking group such as an alkylene group.
  • the polyvinyl acetal resin may have a structural unit having an amine structure.
  • the amine group in the above amine structure may be a primary amine group, a secondary amine group, a tertiary amine group, or a quaternary amine group. Good.
  • the structural unit having an amine structure may be a structural unit having an amide structure.
  • the polyvinyl acetal resin preferably has an amine structure or an amide structure in the side chain.
  • the amine structure or the amide structure may be directly bonded to the carbon atom constituting the main chain of the polyvinyl acetal resin, or may be bonded to the main chain via a linking group such as an alkylene group.
  • the content of structural units having an imine structure, the content of structural units having an imide structure, the content of structural units having an amine structure, and the content of structural units having an amide structure are 1 H-NMR (nuclear magnetism). It can be measured by the resonance spectrum).
  • the vinyl compound A is preferably a (meth) acrylic acid ester or a poly (meth) acrylic acid ester resin.
  • the synthetic resin X is a copolymer in which a (meth) acrylic acid ester or a poly (meth) acrylic acid ester resin, which is a polymer thereof, is graft-copolymerized with a polyvinyl acetal resin.
  • the poly (meth) acrylic acid ester resin can be obtained by polymerizing the (meth) acrylic acid ester or by polymerizing the (meth) acrylic acid ester with the above-mentioned other monomers.
  • (meth) acrylic acid ester examples include (meth) acrylic acid alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylamide, (meth) acrylic acid polyethylene glycol, and ( Meta) Phosphorylcholine acrylate and the like can be mentioned.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • t-butyl (meth) acrylate n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl ( Examples thereof include meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isotetradecyl (meth) acrylate.
  • the (meth) acrylic acid alkyl ester may be substituted with a substituent such as an alkoxy group having 1 to 3 carbon atoms and a tetrahydrofurfuryl group.
  • a substituent such as an alkoxy group having 1 to 3 carbon atoms and a tetrahydrofurfuryl group.
  • examples of such (meth) acrylic acid alkyl esters include methoxyethyl acrylate and tetrahydrofurfuryl acrylate.
  • Examples of the (meth) acrylic acid cyclic alkyl ester include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and the like.
  • Examples of the (meth) acrylic acid aryl ester include phenyl (meth) acrylate, benzyl (meth) acrylate and the like.
  • Examples of (meth) acrylamides include (meth) acrylamide, N-isopropyl (meth) acrylamide, N-tert-butyl (meth) acrylamide, N, N'-dimethyl (meth) acrylamide, and (3- (meth) acrylamide propyl).
  • Trimethylammonium chloride 4- (meth) acryloylmorpholine, 3- (meth) acryloyl-2-oxazolidinone, N- [3- (dimethylamino) propyl] (meth) acrylamide, N- (2-hydroxyethyl) (meth) ) Acrylamide, N-methylol (meth) acrylamide, 6- (meth) acrylamide hexane acid and the like.
  • polyethylene glycols (meth) acrylate examples include methoxy-polyethylene glycol (meth) acrylate, ethoxy-polyethylene glycol (meth) acrylate, hydroxy-polyethylene glycol (meth) acrylate, methoxy-diethylene glycol (meth) acrylate, and ethoxy-.
  • examples thereof include diethylene glycol (meth) acrylate, hydroxy-diethylene glycol (meth) acrylate, methoxy-triethylene glycol (meth) acrylate, ethoxy-triethylene glycol (meth) acrylate, and hydroxy-triethylene glycol (meth) acrylate.
  • Examples of phosphorylcholine (meth) acrylate include 2- (meth) acryloyloxyethyl phosphorylcholine.
  • a vinyl compound is preferably used as another monomer copolymerized with the (meth) acrylic acid ester.
  • the vinyl compound include ethylene, allylamine, vinylpyrrolidone, vinylimidazole, maleic anhydride, maleimide, itaconic acid, (meth) acrylic acid, vinylamine, and (meth) acrylic acid ester. Only one kind of vinyl compound may be used, or two or more kinds may be used in combination.
  • (meth) acrylic means “acrylic” or “methacryl”
  • (meth) acrylate means “acrylate” or “methacrylate”.
  • the synthetic resin X may be a copolymer of a resin having a poly (meth) acrylic acid ester skeleton and another vinyl compound as long as the phase-separated structure of the present invention can be formed.
  • ethylene, allylamine, vinylpyrrolidone, maleic anhydride, maleimide, itaconic acid, (meth) acrylic acid, vinylamine, or another (meth) acrylic acid ester having a different SP value shall be used. Can be done.
  • the scaffold material for cell culture preferably contains a synthetic resin X having a peptide portion.
  • the synthetic resin X having a peptide portion can be obtained by reacting the synthetic resin X with a linker and a peptide.
  • the synthetic resin X having a peptide portion is preferably a peptide-containing polyvinyl acetal resin having a polyvinyl acetal resin portion, a linker portion, and a peptide portion, and has a polyvinyl butyral resin portion, a linker portion, and a peptide portion.
  • a peptide-containing polyvinyl butyral resin is more preferable.
  • the synthetic resin X having a peptide portion only one kind may be used, or two or more kinds may be used in combination.
  • the peptide portion is preferably composed of 3 or more amino acids, more preferably composed of 4 or more amino acids, further preferably composed of 5 or more amino acids, and 10 or less. It is preferably composed of amino acids, and more preferably composed of 6 or less amino acids.
  • the number of amino acids constituting the peptide portion is not less than the above lower limit and not more than the above upper limit, the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • the peptide portion preferably has a cell-adhesive amino acid sequence.
  • the cell adhesion amino acid sequence refers to an amino acid sequence whose cell adhesion activity has been confirmed by the phage display method, the Sepharose beads method, or the plate coating method.
  • the phage display method for example, the method described in "The Journal of Cell Biology, Volume 130, Number 5, September 1995 1189-1196" can be used.
  • the Sepharose beads method for example, the method described in "Protein Nucleic Acid Enzyme Vol.45 No.15 (2000) 2477” can be used.
  • the plate coating method for example, the method described in "Protein Nucleic Acid Enzyme Vol. 45 No. 15 (2000) 2477” can be used.
  • cell-adhesive amino acid sequence examples include an RGD sequence (Arg-Gly-Asp), a YIGSR sequence (Tyr-Ile-Gly-Ser-Arg), and a PDSGR sequence (Pro-Asp-Ser-Gly-Arg).
  • HAV sequence His-Ala-Val
  • ADT sequence Alignment sequence
  • QAV sequence Gln-Ala-Val
  • LDV sequence Leu-Asp-Val
  • IDS sequence Ile-Asp-Ser
  • REDV sequence Arg-Glu-Asp-Val
  • IDAPS sequence Ile-Asp-Ala-Pro-Ser
  • KQAGDV sequence Lys-Gln-Ala-Gly-Asp-Val
  • TDE sequence Thr-Asp- Glu
  • the peptide portion may have only one type of the cell-adhesive amino acid sequence, or may have two or more types.
  • the cell-adherent amino acid sequence preferably has at least one of the cell-adherent amino acid sequences described above, and more preferably has at least an RGD sequence, a YIGSR sequence, or a PDSGR sequence, and the following formula (1) It is more preferable to have at least the RGD sequence represented by).
  • the adhesiveness to the cells after seeding can be further enhanced, and the cell proliferation rate can be further enhanced.
  • X represents Gly, Ala, Val, Ser, Thr, Phe, Met, Pro, or Asn.
  • the peptide portion may be linear or may have a cyclic peptide skeleton.
  • the cyclic peptide skeleton is a cyclic skeleton composed of a plurality of amino acids. From the viewpoint of more effectively exerting the effects of the present invention, the cyclic peptide skeleton is preferably composed of 4 or more amino acids, preferably 5 or more amino acids, and 10 or less. It is preferably composed of the amino acids of.
  • the content of the peptide portion is preferably 0.1 mol% or more, more preferably 1 mol% or more, still more preferably 5 mol% or more, and particularly preferably 10 mol% or more. is there.
  • the content of the peptide portion is preferably 60 mol% or less, more preferably 50 mol% or less, still more preferably 35 mol% or less, and particularly preferably 25 mol% or less.
  • the content rate (mol%) of the peptide portion is the amount of substance of the peptide portion with respect to the total amount of substances of each structural unit constituting the synthetic resin X having the peptide portion.
  • the content of the peptide portion can be measured by FT-IR or LC-MS.
  • the second phase has a peptide portion, and the peptide portion More preferably has the cell-adhesive amino acid sequence. It is preferable that the second phase is formed by the peptide portion portion of the synthetic resin X having the peptide portion. In this case, it is preferable that the second phase having the peptide portion is the island portion. However, the first phase may have a peptide portion, and the second phase having a peptide portion may be a sea portion.
  • the synthetic resin X having a peptide portion it is preferable that the synthetic resin X portion and the peptide portion are bonded via a linker. That is, the synthetic resin X having a peptide portion is preferably a synthetic resin X having a peptide portion and a linker portion. Only one type of the linker may be used, or two or more types may be used in combination.
  • the linker is preferably a compound having a functional group capable of condensing with the carboxyl group or amino group of the peptide.
  • the functional group capable of condensing with the carboxyl group or amino group of the peptide include a carboxyl group, a thiol group and an amino group.
  • the linker is preferably a compound having a carboxyl group.
  • the vinyl compound A described above can also be used.
  • Examples of the linker having a carboxyl group include (meth) acrylic acid and acrylamide containing a carboxyl group.
  • a carboxylic acid (carboxylic acid monomer) having a polymerizable unsaturated group as the linker having a carboxyl group, the carboxylic acid monomer can be polymerized by graft polymerization when the linker and the synthetic resin X are reacted. Therefore, the number of carboxyl groups that can be reacted with the peptide can be increased.
  • the scaffold material for cell culture contains the above synthetic resin X.
  • the content of the synthetic resin X in 100% by weight of the scaffold material for cell culture is preferably 90% by weight or more, more preferably 90% by weight or more. It is 95% by weight or more, more preferably 97.5% by weight or more, particularly preferably 99% by weight or more, and most preferably 100% by weight (total amount). Therefore, it is most preferable that the scaffold material for cell culture is the synthetic resin X.
  • the content of the synthetic resin X is at least the above lower limit, the effect of the present invention can be exhibited even more effectively.
  • the cell culture scaffold material may contain components other than the synthetic resin X.
  • the components other than the synthetic resin X include polyolefin resins, polyether resins, polyvinyl alcohol resins, polyesters, epoxy resins, polyamide resins, polyimide resins, polyurethane resins, polycarbonate resins, polysaccharides, celluloses, polypeptides, synthetic peptides and the like. Can be mentioned.
  • the content of the component in 100% by weight of the scaffold material for cell culture is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 2.5% by weight or less, and particularly preferably 1% by weight or less. , Most preferably 0% by weight (not contained). Therefore, it is most preferable that the scaffold material for cell culture does not contain any component other than the synthetic resin X.
  • the scaffold material for cell culture does not substantially contain animal-derived raw materials.
  • the animal-derived raw materials in the cell culture scaffold material are 3% by weight or less.
  • the animal-derived raw material in the cell culture scaffold material is preferably 1% by weight or less, and more preferably 0% by weight. That is, it is more preferable that the scaffold material for cell culture does not contain any animal-derived raw materials.
  • the above-mentioned scaffold material for cell culture is used for culturing cells.
  • the above-mentioned scaffold material for cell culture is used as a scaffold for the cells when culturing the cells. Therefore, the resin film formed from the cell culture scaffold material of the present invention is used for culturing cells, and is also used as a scaffold for the cells when culturing the cells.
  • Examples of the above cells include animal cells such as humans, mice, rats, pigs, cows and monkeys.
  • Examples of the cells include somatic cells and the like, and examples thereof include stem cells, progenitor cells and mature cells.
  • the somatic cells may be cancer cells.
  • Examples of the mature cells include nerve cells, cardiomyocytes, retinal cells, hepatocytes and the like.
  • stem cells examples include mesenchymal stem cells (MSCs), iPS cells, ES cells, Muse cells, embryonic cancer cells, embryonic reproductive stem cells, and mGS cells.
  • the resin film of the present invention is formed of a scaffold material for cell culture.
  • the resin film is formed by using a scaffold material for cell culture.
  • the resin film is preferably a film-like scaffold material for cell culture.
  • the resin film is preferably a film-like material for a scaffold material for cell culture.
  • the present specification also provides particles, fibers, porous bodies, or films containing the above-mentioned scaffold material for cell culture.
  • the shape of the scaffold material for cell culture is not particularly limited, and may be particles, fibers, porous bodies, or films.
  • the particles, fibers, porous body, or film may contain components other than the scaffold material for cell culture.
  • the film containing the scaffold material for cell culture is preferably used for plane culture (two-dimensional culture) of cells.
  • particles, fibers, or porous bodies containing the above-mentioned scaffold material for cell culture are preferably used for three-dimensional culture of cells.
  • the present invention also relates to a carrier for cell culture in which the resin film is arranged on the surface of the carrier.
  • the carrier for cell culture of the present invention can be obtained, for example, by arranging the resin film on the surface of the carrier by coating or the like.
  • the shape of the carrier may be particles, fibers, porous material, or film. That is, the cell culture carrier of the present invention may be in the form of particles, fibers, porous bodies, or films.
  • the cell culture carrier of the present invention may contain components other than the carrier and the resin film.
  • FIG. 1 is a cross-sectional view schematically showing a cell culture container according to an embodiment of the present invention.
  • the cell culture container 1 includes a container body 2 and a resin film 3 formed of a scaffold material for cell culture.
  • the resin film 3 is arranged on the surface 2a of the container body 2.
  • the resin film 3 is arranged on the bottom surface of the container body 2.
  • the container body may include a first container body and a second container body such as a cover glass on the bottom surface of the first container body.
  • the first container body and the second container body may be separable.
  • a resin film formed of the cell culture scaffold material may be arranged on the surface of the second container body.
  • a conventionally known container body can be used as the container body.
  • the shape and size of the container body are not particularly limited.
  • Examples of the container body include a cell culture plate having one or more wells (holes), a cell culture flask, and the like.
  • the number of wells in the plate is not particularly limited.
  • the number of wells is not particularly limited, and examples thereof include 2, 4, 6, 12, 24, 48, 96, and 384.
  • the shape of the well is not particularly limited, and examples thereof include a perfect circle, an ellipse, a triangle, a square, a rectangle, and a pentagon.
  • the shape of the bottom surface of the well is not particularly limited, and examples thereof include a flat bottom, a round bottom, and unevenness.
  • the material of the container body is not particularly limited, and examples thereof include resin, metal, and inorganic materials.
  • the resin include polystyrene, polyethylene, polypropylene, polycarbonate, polyester, polyisoprene, cycloolefin polymer, polyimide, polyamide, polyamideimide, (meth) acrylic resin, epoxy resin, silicone and the like.
  • the metal include stainless steel, copper, iron, nickel, aluminum, titanium, gold, silver, platinum and the like.
  • the inorganic material include silicon oxide (glass), aluminum oxide, titanium oxide, zirconium oxide, iron oxide, silicon nitride and the like.
  • the following synthetic resins were synthesized as raw materials for scaffolding materials for cell culture.
  • Example 1 To a reactor equipped with a stirrer, 300 parts by weight of polyvinyl alcohol having 2700 mL of ion-exchanged water, an average degree of polymerization of 1700 and a saponification degree of 98 mol% was added and dissolved by heating while stirring to obtain a solution. To the obtained solution, 35% by weight hydrochloric acid was added as a catalyst so that the hydrochloric acid concentration was 0.2% by weight. Then, the temperature was adjusted to 15 ° C., and 22 parts by weight of n-butyraldehyde was added with stirring. Next, 148 parts by weight of n-butyraldehyde was added to precipitate a white particulate polyvinyl butyral resin.
  • the obtained polyvinyl butyral resin was dissolved in tetrahydrofuran so as to be a 1% by weight solution, and 5 parts by weight of Irgacure184 as an initiator, 2 parts by weight of N-vinylpyrrolidone (SP value: 11.7) and A synthetic resin was obtained by adding 8 parts by weight of n-lauryl methacrylate (SP value: 8.2) and performing graft polymerization.
  • the obtained synthetic resin had an acetalization degree (butyralization degree) of 69 mol%, a hydroxyl group content of 27.5 mol%, an acetylation degree of 2.0 mol%, a vinylpyrrolidone group content of 0.3 mol%, and n-.
  • the content of the lauryl methacrylate part was 1.2 mol%.
  • Example 2 to 11 and Comparative Example 1 A synthetic resin was obtained in the same manner as in Example 1 except that the weight ratios of the polyvinyl butyral resin, N-vinylpyrrolidone, and n-lauryl methacrylate were changed.
  • Table 1 shows the acetalization degree (butyralization degree), the amount of hydroxyl groups, the degree of acetylation, the content of vinylpyrrolidone groups, and the content of the n-lauryl methacrylate portion of the synthetic resins obtained in Examples 2 to 11 and Comparative Example 1. , Table 2 and Table 4.
  • Example 12 To a reactor equipped with a stirrer, 300 parts by weight of polyvinyl alcohol having 2700 mL of ion-exchanged water, an average degree of polymerization of 1700 and a saponification degree of 99 mol% was added and dissolved by heating while stirring to obtain a solution. To the obtained solution, 35% by weight hydrochloric acid was added as a catalyst so that the hydrochloric acid concentration was 0.2% by weight. Then, the temperature was adjusted to 15 ° C., and 22 parts by weight of n-butyraldehyde was added with stirring.
  • n-butyraldehyde was added to precipitate a white particulate polyvinyl acetal resin (polyvinyl butyral resin).
  • 35% by weight hydrochloric acid was added so that the hydrochloric acid concentration became 1.8% by weight, and then the mixture was heated to 50 ° C. and maintained at 50 ° C. for 2 hours.
  • polyvinyl butyral resin was washed with water and dried to obtain a polyvinyl acetal resin (polyvinyl butyral resin, average degree of polymerization 1700, degree of acetalization (degree of butyralization) 70 mol%, amount of hydroxyl groups). 27 mol%, degree of acetylation 3 mol%) was obtained.
  • linker 99 parts by weight of the obtained polyvinyl acetal resin and 1 part by weight of acrylic acid (linker) are dissolved in 300 parts by weight of THF and reacted in the presence of a photoradical polymerization initiator for 20 minutes under ultraviolet irradiation to obtain a polyvinyl acetal resin.
  • a linker was introduced by graft-copolymerizing with acrylic acid.
  • 1 part by weight of the polyvinyl acetal resin into which the linker was introduced was dissolved in 19 parts by weight of butanol.
  • 150 ⁇ L of the obtained solution was discharged onto the surface of a ⁇ 22 mm cover glass (“22 Maru No.
  • Peptide formation A linear peptide having an amino acid sequence of Gly-Arg-Gly-Asp-Ser (five amino acid residues, described as GRGDS in the table) was prepared. 10 parts by weight of this peptide and 1 part by weight of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (condensant) were added to the peptide in phosphate buffered saline containing neither calcium nor magnesium. Was added to a final concentration of 1 mM to prepare a peptide-containing solution.
  • this peptide-containing liquid 1 part by weight of this peptide-containing liquid was added to a spin-coated resin film (polyvinyl acetal resin forming a linker) and reacted to dehydrate and condense the carboxyl group of the linker and the amino group of Gly of the peptide.
  • a peptide-containing polyvinyl acetal resin having a polyvinyl acetal resin portion, a linker portion, and a peptide portion was produced.
  • the obtained peptide-containing polyvinyl acetal resin has an acetalization degree (butyralization degree) of 69 mol%, a hydroxyl group amount of 27 mol%, an acetylation degree of 3 mol%, a carboxyl group content of 0.1 mol%, and a peptide portion.
  • the rate was 1.0 mol%.
  • Example 13 Examples except that 85 parts by weight of polyvinyl acetal resin and 15 parts by weight of acrylic acid (linker) were used in the introduction of the linker, and the amount of the peptide added was changed to 15 parts by weight in the formation of the peptide.
  • a peptide-containing polyvinyl acetal resin was prepared in the same manner as in 12.
  • Example 14 Examples except that 70 parts by weight of polyvinyl acetal resin and 30 parts by weight of acrylic acid (linker) were used in the introduction of the linker, and the amount of the peptide added was changed to 30 parts by weight in the formation of the peptide.
  • a peptide-containing polyvinyl acetal resin was prepared in the same manner as in 12.
  • Example 15 Examples except that 67 parts by weight of polyvinyl acetal resin and 33 parts by weight of acrylic acid (linker) were used in the introduction of the linker, and the amount of the peptide added was changed to 33 parts by weight in the formation of the peptide.
  • a peptide-containing polyvinyl acetal resin was prepared in the same manner as in 12.
  • Example 16 Examples except that 63 parts by weight of polyvinyl acetal resin and 37 parts by weight of acrylic acid (linker) were used in the introduction of the linker, and the amount of the peptide added was changed to 37 parts by weight in the formation of the peptide.
  • a peptide-containing polyvinyl acetal resin was prepared in the same manner as in 12.
  • Example 17 Examples except that 30 parts by weight of polyvinyl acetal resin and 70 parts by weight of acrylic acid (linker) were used in the introduction of the linker, and the amount of the peptide added was changed to 70 parts by weight in the formation of the peptide.
  • a peptide-containing polyvinyl acetal resin was prepared in the same manner as in 12.
  • a container for cell culture was obtained by arranging a laminate of Vitronectin and a cover glass on a polystyrene dish having a diameter of 22 mm.
  • Vitronectin is denatured when dried and the adhesive performance is significantly deteriorated, it was immersed in a PBS solution immediately after the preparation of the cell culture container.
  • the storage elastic modulus of each scaffold material at 25 ° C. and 100 ° C. is measured by a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., DVA-200) under tensile conditions at a frequency of 10 Hz and a temperature range of ⁇ 150 ° C. to 150 ° C. Was measured at a heating rate of 5 ° C./min. From the obtained graph of tensile storage elastic modulus, the storage elastic modulus at 25 ° C. and 100 ° C. was obtained, and the 25 ° C. storage elastic modulus / 100 ° C. storage elastic modulus was calculated.
  • a resin solution was obtained by dissolving 1 g of the obtained synthetic resin in 19 g of butanol. 150 ⁇ L of the obtained resin solution is discharged onto a cover glass of ⁇ 22 mm (manufactured by Matsunami Co., Ltd., 22 circle No. 1 is used after removing dust with an air duster), and rotated at 2000 rpm for 20 seconds using a spin coater to make a smooth resin. A film was obtained.
  • a container for cell culture was obtained by arranging the obtained resin film together with the cover 26 glass on a polystyrene dish having a diameter of 22 mm.
  • a container for cell culture was obtained by arranging the obtained laminate of the peptide-containing polyvinyl acetal resin and the cover glass on a polystyrene dish having a diameter of 22 mm.
  • the surface free energy of the resin film obtained in the column of preparation of the cell culture container was measured using a contact angle meter (DMo-701 manufactured by Kyowa Surface Chemical Co., Ltd.). 1 ⁇ L of pure water was dropped onto the resin film, and a droplet image was taken 30 seconds later to obtain a contact angle of pure water. Further, 1 ⁇ L of diiodomethane was dropped onto the resin film, and a droplet image was taken 30 seconds later to obtain a contact angle of diiodomethane. From the obtained contact angle, the dispersion term component ⁇ d (dSFE) of the surface free energy and the dipole component ⁇ p (psFE), which is the polar term component, were calculated using the theoretical formula of Kaelble-Uy.
  • the polyvinyl butyral resin portion as the first phase forms a sea portion
  • the resin portion having the (meth) acrylic acid ester and the vinyl compound as the second phase The sea-island structure in which (copolymer part of N-vinylpyrrolidone and n-lauryl methacrylate) forms an island part was observed.
  • a sea-island structure was observed in which the polyvinyl butyral resin portion as the first phase formed a sea portion and the peptide portion as the second phase formed an island portion.
  • Comparative Examples 1 to 4 no phase-separated structure was observed.
  • the ratio of the surface area to the entire surface of the second phase (surface integration rate of the phase-separated structure) of the second phase, the second The ratio of the peripheral length of the phase to the area (peripheral length / area), the number of second phases that are islands (number of islands), and the average diameter of the islands (average island size) were determined.
  • Cell proliferation rate 1 mL of phosphate buffered saline was added to the obtained cell culture vessel and allowed to stand in an incubator at 37 ° C. for 1 hour, and then the phosphate buffered saline in the culture vessel was removed. Colonies of h-iPS cells 253G1 in a confluent state were added to a 35 mm dish, then 1 mL of 0.5 mM ethylenediamine / phosphate buffer solution was added, and the mixture was allowed to stand at room temperature for 2 minutes.
  • cell mass was broken into 50 ⁇ 200 [mu] m to (0.5 ⁇ 10 5 cells) in the culture vessel by pipetting TeSRE8 medium 1 mL.
  • Medium TeSR E8 (STEM CELL Co.) 1.7 mL, and, in the presence of a ROCK-Inhibitor (Y27632) 10 ⁇ M, were cultured at 37 ° C. and 5% CO 2 in an incubator. The medium was replaced by removing 1 mL of the medium every 24 hours and adding 1 mL of new TeSR E8.
  • the colonized cell mass after 5 days was exfoliated with 1.0 mL of TryPLE Express exfoliant solution, and the number of cells was counted using a cell counter (Nucleocounter NC-3000, manufactured by Chemometec).
  • the cell proliferation rate with respect to Reference Example A was determined using the following formula.
  • the cell proliferation rate was evaluated according to the following criteria.
  • AAA ... Cell growth rate for Reference Example A is 70% or more AA ... Cell growth rate for Reference Example A is 60% or more and less than 70% A ... Cell growth rate for Reference Example A is 50% or more and less than 60% B ... Cell growth rate for Reference Example A is 40% or more and less than 50% C ... Cell growth rate for Reference Example A is 30% or more and less than 40% D ... Cell growth rate for Reference Example A is less than 30%

Abstract

細胞の播種後の定着性に優れ、細胞の増殖率を高めることができる、細胞培養用足場材料により形成された樹脂膜を提供する。 細胞培養用足場材料により形成された樹脂膜であって、細胞培養用足場材料は、合成樹脂を含み、樹脂膜が、少なくとも第1の相及び第2の相を含む、相分離構造を有し、第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比が、0.01以上、0.95以下である、樹脂膜。

Description

細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器
 本発明は、細胞培養用足場材料により形成された樹脂膜に関する。また、本発明は、上記樹脂膜を備える細胞培養用担体及び細胞培養用容器にも関する。
 近年、細胞医薬や幹細胞を用いた次世代医療が注目を集めている。なかでも、再生医療ヒト胚性幹細胞(hESC)や、ヒト人工多能性幹細胞(hiPSC)などのヒト多能性幹細胞(hPSC)、あるいはそれらから誘導される分化細胞は、創薬や再生医療への応用が期待されている。このような応用を果たすには、多能性幹細胞や、分化細胞を安全に、かつ再現性よく培養し、増殖させることが必要となる。
 特に、再生医療の産業利用上においては、幹細胞を多量に扱う必要があることから、天然高分子材料や合成高分子材料、あるいはフィーダー細胞を用いて多能性幹細胞の増殖を支持することが必要となる。そのため、天然高分子材料や合成高分子材料等の足場材料を用いた培養方法について種々検討されている。
 例えば、下記の特許文献1には、ポリビニルアセタール化合物からなる成形物又は該ポリビニルアセタール化合物と水溶性多糖類とからなる成形物からなり、該ポリビニルアセタール化合物のアセタール化度が20~60モル%である細胞培養用担体が開示されている。
 下記の特許文献2には、第1の繊維ポリマー足場材を含む組成物であって、第1の繊維ポリマー足場材の繊維が整列されている、組成物が開示されている。上記第1の繊維ポリマー足場材を構成する繊維は、ポリグリコール酸やポリ乳酸などの脂肪族ポリエステルにより構成されることが記載されている。
 また、下記の特許文献3には、多能性幹細胞の未分化性を維持するための細胞培養方法であって、ポリロタキサンブロック共重合体で被覆された表面を有する培養器上で該多能性幹細胞を培養する工程を含む方法が開示されている。
特開2006-314285号公報 特表2009-524507号公報 特開2017-23008号公報
 ところで、足場材料として天然高分子材料を用いた場合、播種後の細胞の定着性を高めることができる。特に、天然高分子材料としてラミニン、ヴィトロネクチンなどの接着タンパク質やマウス肉腫由来のマトリゲルを使用すると、播種後の細胞の定着性が非常に高いことが知られている。一方、天然高分子材料は、高価であったり、天然由来物質であるためロット間のばらつきが大きかったり、動物由来の成分による安全上の懸念があったりする。
 これに対して、合成樹脂を用いた足場材料は、天然高分子材料を用いた足場材料と比べて、操作性がよく、安価であり、ロット間のばらつきが小さく、かつ安全性に優れている。しかしながら、特許文献1~3のような合成樹脂を用いた足場材料では、親水性が高い合成樹脂が用いられているために合成樹脂が過度に膨潤したりする。また、合成樹脂は、天然高分子材料に比べて、細胞との親和性が低いことから、培養中に細胞塊が剥離してしまうことがある。このように合成樹脂を用いた足場材料は、細胞の播種後の定着性が低く、細胞が十分に増殖しないことがある。
 本発明の目的は、細胞の播種後の定着性に優れ、細胞の増殖率を高めることができる、細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器を提供することにある。
 本発明に係る細胞培養用足場材料により形成された樹脂膜は、前記細胞培養用足場材料が合成樹脂を含み、前記樹脂膜が、少なくとも第1の相及び第2の相を含む、相分離構造を有し、前記第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比が、0.01以上、0.95以下である。
 本発明に係る樹脂膜のある特定の局面では、前記第2の相の面積に対する周囲長の比(周囲長/面積)が、0.001(1/nm)以上、0.40(1/nm)以下である。
 本発明に係る樹脂膜の他の特定の局面では、前記相分離構造が、海島構造であり、前記第1の相が海部であり、前記第2の相が島部である。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記島部である前記第2の相の個数が、1個/μm以上、5000個/μm以下である。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記相分離構造が、前記合成樹脂の分子内における相分離構造により構成されている。
 本発明に係る樹脂膜のさらに他の特定の局面では、表面自由エネルギーの分散項成分が25.0mJ/m以上、50.0mJ/m以下、かつ、極性項成分が1.0mJ/m以上、20.0mJ/m以下である。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記合成樹脂が、カチオン性官能基を有し、前記合成樹脂の構造単位中に含まれる前記カチオン性官能基の含有量が、0.2モル%以上、50モル%以下である。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記第2の相が、ペプチド部を有する。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記ペプチド部が、細胞接着性のアミノ酸配列を有する。
 本発明に係る樹脂膜のさらに他の特定の局面では、水膨潤倍率が50%以下である。
 本発明に係る樹脂膜のさらに他の特定の局面では、100℃における貯蔵弾性率が、1.0×10Pa以上、1.0×10Pa以下であり、25℃における貯蔵弾性率と100℃における貯蔵弾性率との比((25℃における貯蔵弾性率)/(100℃における貯蔵弾性率))が、1.0×10以上、1.0×10以下である。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記細胞培養用足場材料は、動物由来の原料を実質的に含まない。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記合成樹脂がビニル重合体を含む。
 本発明に係る樹脂膜のさらに他の特定の局面では、前記合成樹脂が、少なくともポリビニルアルコール誘導体又はポリ(メタ)アクリル酸エステルを含む。
 本発明に係る細胞培養用担体は、担体と、本発明に従って構成される樹脂膜と、を備え、前記担体の表面上に、前記樹脂膜が配置されている。
 本発明に係る細胞培養用容器は、容器本体と、本発明に従って構成される樹脂膜とを備え、前記容器本体の表面上に、前記樹脂膜が配置されている。
 本発明によれば、細胞の播種後の定着性に優れ、細胞の増殖率を高めることができる、細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器を提供することができる。
本発明の一実施形態に係る細胞培養用容器を示す模式的正面断面図である。 実施例3で得られた樹脂膜の原子間力顕微鏡写真である。 実施例14で得られた樹脂膜の原子間力顕微鏡写真である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 本発明は、細胞培養用足場材料により形成された樹脂膜に関する。上記細胞培養用足場材料は、合成樹脂を含む。本発明の樹脂膜は、少なくとも第1の相及び第2の相を含む、相分離構造を有する。本発明の樹脂膜では、第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比が、0.01以上、0.95以下である。
 本発明の樹脂膜は、上記の構成を備えるので、細胞の播種後の定着性に優れ、細胞の増殖率を高めることができる。
 従来の天然高分子材料を用いた細胞培養用足場材料は、播種後の細胞の定着性を高めることができるものの、高価であったり、天然由来物質であるためロット間のばらつきが大きかったり、動物由来の成分による安全上の懸念があったりする。一方で、合成樹脂を用いた従来の足場材料では、合成樹脂が過度に膨潤したり、細胞との親和性が低かったりするので、培養中に細胞塊が剥離してしまうことがある。従って、合成樹脂を用いた従来の足場材料は、細胞の播種後の定着性が低く、細胞が十分に増殖しないことがある。
 本発明者らは、細胞培養用足場材料により形成された樹脂膜の相分離構造に着目し、第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比が上記特定の範囲となるような相分離構造とすることにより、細胞との親和性を高め、それによって播種後の接着性を高めることができ、ひいては細胞の増殖率を高め得ることを見出した。この理由については定かではないが、このような相分離構造を有する場合、エネルギー分配が円滑に進むことや、親和性や強度の異なる第1の相及び第2の相の存在位置や存在比率を調整できるため、細胞の種類に関わらず親和性を高め、細胞もしくは細胞表面たんぱく質の集積及び吸着効果が実現できるものと考えられる。
 従って、本発明の樹脂膜によれば、播種後の細胞との接着性を高めることができ、細胞の増殖率を高めることができる。
 また、本発明においては、上記のように合成樹脂を用いることができるので、天然高分子材料を用いた足場材料と比べて、操作性がよく、安価であり、ロット間のばらつきが小さく、かつ安全性に優れている。
 なお、本発明においては、上記合成樹脂として、ペプチド部を有する合成樹脂を用いてもよい。ペプチド部を有する合成樹脂の詳細については、後述する。
 本発明において、第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比(表面積分率)は、0.01以上、好ましくは0.10以上、0.95以下、より好ましくは0.90以下である。表面積分率が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 本発明において、相分離構造としては、例えば、海島構造、シリンダー構造、ジャイロイド構造、又はラメラ構造等のミクロ相分離構造が挙げられる。海島構造では、例えば、第1の相を海部とし、第2の相を島部とすることができる。シリンダー構造、ジャイロイド構造、又はラメラ構造では、例えば、表面積が最も大きい相を第1の相とし、表面積が2番目に大きい相を第2の相とすることができる。これらの中でも、相分離構造としては海島構造が好ましい。このように、連続相と、不連続相とを有することで、細胞との親和性を高め、播種後の細胞との接着性をより一層高めることができ、それによって細胞の増殖率をより一層高めることができる。
 上記相分離構造が海島構造である場合、第2の相の表面全体に対する表面積分率は、0.01以上、好ましくは0.1以上、より好ましくは0.2以上であり、また、0.95以下、好ましくは0.9以下、より好ましくは0.8以下である。表面積分率が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 第2の相の面積に対する周囲長の比(周囲長/面積)は、好ましくは0.001(1/nm)以上、より好ましくは0.0015(1/nm)以上、さらに好ましくは0.008(1/nm)以上である。第2の相の面積に対する周囲長の比(周囲長/面積)は、好ましくは0.40(1/nm)以下、より好ましくは0.20(1/nm)以下、さらに好ましくは0.08(1/nm)以下、特に好ましくは0.013(1/nm)以下である。比(周囲長/面積)が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 合成樹脂がペプチド部を有さない場合に、第2の相の面積に対する周囲長の比(周囲長/面積)は、好ましくは0.001(1/nm)以上、より好ましくは0.0015(1/nm)以上、好ましくは0.08(1/nm)以下、より好ましくは0.013(1/nm)以下である。比(周囲長/面積)が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 合成樹脂がペプチド部を有する場合に、第2の相の面積に対する周囲長の比(周囲長/面積)は、好ましくは0.008(1/nm)以上、より好ましくは0.013(1/nm)以上、好ましくは0.40(1/nm)以下、より好ましくは0.20(1/nm)以下、さらに好ましくは0.10(1/nm)以下である。比(周囲長/面積)が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 島部である第2の相の個数は、好ましくは1個/μm以上、より好ましくは2個/μm以上、さらに好ましくは10個/μm以上、好ましくは5000個/μm以下、より好ましくは1000個/μm以下、さらに好ましくは500個以下/μm、特に好ましくは300個/μm以下である。この場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 島部である第2の相の径の平均は、好ましくは20nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上、特に好ましくは80nm以上、好ましくは3.5μm以下、より好ましくは3.0μm以下、さらに好ましくは1.5μm以下である。第2の相の径の平均が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 合成樹脂がペプチド部を有さない場合に、島部である第2の相の径の平均は、好ましくは50nm以上、より好ましくは100nm以上、さらに好ましくは120nm以上、特に好ましくは200nm以上、好ましくは1μm以下、より好ましくは300nm以下、さらに好ましくは250nm以下である。第2の相の径の平均が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 合成樹脂がペプチド部を有する場合に、島部である第2の相の径の平均は、好ましくは10nm以上、より好ましくは20nm以上、さらに好ましくは40nm以上、好ましくは1μm以下、より好ましくは300nm以下、さらに好ましくは100nm以下である。第2の相の径の平均が上記範囲内にある場合、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 なお、相分離構造の有無や、上記のような相分離構造を示すパラメータは、例えば、原子間力顕微鏡(AFM)や、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)等により確認することができる。
 具体的に、第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比(表面積分率)、第2の相の周囲長と面積との比(周囲長/面積)、島部である第2の相の個数、及びその平均径サイズは、前述の顕微鏡観察画像から例えばImageJなどの画像解析ソフトを用いて求めることができる。
 第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比(表面積分率)は、観察領域(30μm×30μm)内において、第1の相及び第2の相のうち一方の相が占める表面積を、観察領域の面積で除することにより求められる。
 第2の相の面積に対する周囲長の比(周囲長/面積)は、観察領域(30μm×30μm)内において、第2の相の周囲長の合計を、第2の相の面積の合計で除することにより求められる。
 相分離構造が海島構造である場合、島部である第2の相の個数は、観察領域(30μm×30μm)内における第2の相の個数を、観察領域の面積で除することにより求められる。また、島部である第2の相の平均径は、同面積の円の平均直径として求められる。
 また、上記のような相分離構造は、例えば、異なる少なくとも2種類のポリマーをブレンドしたり、共重合したり、グラフト共重合したり、ペプチド部を有する合成樹脂を用いたりすることにより、合成樹脂の分子間又は分子内に相分離構造を形成することによって得ることができる。なかでも、細胞の接着性をより一層高めることができる観点から、上記相分離構造が分子内の相分離構造により形成されていることが好ましい。すなわち、上記合成樹脂は、異なる少なくとも2種類のポリマーの共重合体であるか又はペプチド部を有する合成樹脂であることが好ましく、グラフト共重合体であるか又はペプチド部を有する合成樹脂であることがより好ましい。
 上記のような相分離構造は、溶解度パラメータ(SP値)が0.1以上、好ましくは0.5以上、より好ましくは1以上で異なる2種類以上のポリマー(モノマー)を共重合することにより得ることが好ましい。この場合、海島構造をより一層容易に形成することができる。
 SP値は、溶媒-溶質間に作用する分子間力を表す尺度であり、物質間の親和性の尺度である。SP値は、Hidebrandの正則溶液の理論に基づき求めることができる。また、SP値は、文献情報から得ることができるほか、HansenやHoyの計算方法、Fedorsの推算法等により得ることができる。本明細書では、Fedorsの式δ=ΣE/ΣV(δはSP値、Eは蒸発エネルギー、Vはモル体積を意味する。)により算出される計算値を意味する。なお、SP値の単位は(cal/cm0.5である。Fedorsの方法については、日本接着協会誌、1986年22巻566ページに記載されている。
 なお、表面積分率などの相分離構造を示す相分離パラメータは、例えば、2種類のポリマーの配合比率やポリマーの構造を制御したり、ペプチド部の含有率を制御したりすることにより調整することができる。
 なお、本発明においては、第1の相及び第2の相とは異なる他の相が存在していてもよい。他の相は、1つの相であってもよく、複数の相であってもよい。このような相は、例えば、SP値の異なるさらに他のポリマー(モノマー)をグラフトなどの共重合をすることにより得ることができる。この場合は、樹脂膜の表面を占める面積が大きい2つの相を上記第1の相及び上記第2の相とする。
 合成樹脂がペプチド部を有さない場合に、細胞培養用足場材料により形成された樹脂膜における表面自由エネルギーの分散項成分は、好ましくは25.0mJ/m以上、50.0mJ/m以下である。この場合、細胞培養用足場材料の親水性を適度に調整することができ、相分離構造との相乗効果により、播種後の細胞との界面接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。上記分散項成分は、より好ましくは30.0mJ/m以上、さらに好ましくは35.0mJ/m以上、より好ましくは47.0mJ/m以下、さらに好ましくは45.5mJ/m以下である。
 合成樹脂がペプチド部を有さない場合に、細胞培養用足場材料により形成された樹脂膜における表面自由エネルギーの極性項成分は、好ましくは1.0mJ/m以上、20.0mJ/m以下である。この場合、播種後の細胞との接着性をより一層高め、細胞の増殖率をより一層高めることができる。上記極性項成分は、より好ましくは2.0mJ/m以上、さらに好ましくは3.0mJ/m以上、より好ましくは10.0mJ/m以下、さらに好ましくは5.0mJ/m以下である。
 なお、表面自由エネルギーの分散項成分γ及び極性項成分である双極子成分γは、Kaelble-Uyの理論式を用いて算出される。Kaelble-Uyの理論式は、下記式(1)で示されるように、トータル表面自由エネルギーγが、分散項成分γと双極子成分γとの和になるとの仮定に基づく理論式である。
Figure JPOXMLDOC01-appb-M000001
 また、Kaelble-Uyの理論式では、液体の表面自由エネルギーをγ(mJ/m)とし、固体の表面自由エネルギーをγ(mJ/m)とし、接触角をθ(°)とすると、下記式(2)が成立する。
Figure JPOXMLDOC01-appb-M000002
 従って、液体の表面自由エネルギーγが既知である液体を2種類用いて、細胞培養用足場材料により形成された樹脂膜に対するそれぞれの接触角θを測定し、γ 及びγ の連立方程式を解くことにより、細胞培養用足場材料により形成された樹脂膜の表面自由エネルギーの分散項成分γ及び双極子成分γを求めることができる。
 なお、本明細書においては、上記表面自由エネルギーγが既知である2種類の上記液体として、純水及びジヨードメタンが用いられている。
 接触角θは、接触角計(例えば、協和界面化学社製「DMo-701」)を用いて、以下のようにして測定される。
 細胞培養用足場材料により形成された樹脂膜の表面に、純水又はジヨードメタンを1μL滴下する。滴下してから30秒後の純水と、樹脂膜とのなす角度を、純水に対する接触角θとする。また、同様に、滴下してから30秒後のジヨードメタンと、樹脂膜とのなす角度を、ジヨードメタンに対する接触角θとする。
 合成樹脂における疎水性官能基の含有率を高くしたり、環状構造を有する官能基の含有率を高くしたり、ブチル基の含有率を少なくしたりすることにより、上記表面自由エネルギーの分散項成分γを小さくすることができる。また、合成樹脂における親水性官能基の含有率を高くしたり、ブチル基の含有率を高くしたりすることにより、上記表面自由エネルギーの双極子成分γを小さくすることができる。
 本発明の細胞培養用足場材料により形成された樹脂膜においては、100℃における貯蔵弾性率が、好ましくは0.6×10Pa以上、より好ましくは0.8×10Pa以上、さらに好ましくは1.0×10Pa以上、好ましくは1.0×10Pa以下、より好ましくは0.8×10Pa以下、さらに好ましくは1.0×10Pa以下である。
 特に、本発明の細胞培養用足場材料により形成された樹脂膜は、25℃における貯蔵弾性率と100℃における貯蔵弾性率との比((25℃における貯蔵弾性率)/(100℃における貯蔵弾性率))が、好ましくは1.0×10以上、より好ましくは5.0×10以上、さらに好ましくは8.0×10以上、好ましくは1.0×10以下、より好ましくは0.75×10以下、さらに好ましくは0.5×10以下である。貯蔵弾性率を上記範囲内とすることにより、播種後の細胞の定着性をより一層高めることができる。
 なお、25℃及び100℃の貯蔵弾性率は、例えば、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)により引張条件下、周波数10Hz、-150℃から150℃の温度範囲を昇温速度5℃/分にて測定する。得られた引張貯蔵弾性率のグラフから25℃及び100℃における貯蔵弾性率を求め、25℃貯蔵弾性率/100℃貯蔵弾性率を算出する。長さ50mm、幅5~20mm、厚み0.1~1.0mmの測定サンプルを用いて、10Hz、ひずみ0.1%、温度-150℃~150℃、及び昇温速度5℃/minの条件で行う。
 上記25℃及び100℃の貯蔵弾性率は、例えば、上記合成樹脂における架橋度を高めること、上記合成樹脂を延伸すること等により、高めることができる。また、上記25℃及び100℃の貯蔵弾性率は、上記合成樹脂において数平均分子量を下げること、ガラス転移温度を下げること等により、低くすることができる。
 本発明の細胞培養用足場材料により形成された樹脂膜は、水膨潤倍率が、好ましくは50%以下、より好ましくは40%以下である。この場合、播種後の細胞の定着性をより一層高めることができる。なお、水膨潤倍率の下限値は特に限定されないが、例えば、0.5%とすることができる。水膨潤倍率は、以下のようにして測定することができる。例えば、長さ50mm、幅10mm、厚み0.05mm~0.15mmの細胞培養用足場材料により形成された樹脂膜(測定サンプル)を、25℃の水に24時間浸漬する。浸漬前と後のサンプルの重さを測定し、水膨潤倍率=(浸漬後のサンプル重量-浸漬前のサンプル重量)/(浸漬前のサンプル重量)×100(%)を算出する。
 上記水膨潤倍率は、例えば、上記合成樹脂の疎水性官能基を増やすこと、数平均分子量を下げること等により、小さくすることができる。
 (合成樹脂)
 細胞培養用足場材料は、合成樹脂(以下、合成樹脂Xと記載することがある)を含む。合成樹脂Xの主鎖は、炭素鎖であることが好ましい。なお、本明細書において、「構造単位」とは、合成樹脂を構成するモノマーの繰り返し単位をいう。なお、合成樹脂がグラフト鎖を有する場合は、そのグラフト鎖を構成するモノマーの繰り返し単位を含む。
 合成樹脂Xがペプチド部を有さない場合に、合成樹脂Xは、カチオン性官能基を有することが好ましい。合成樹脂Xがペプチド部を有する場合に、ペプチド部を有する合成樹脂Xは、該ペプチド部以外の構造部分において、カチオン性官能基を有していてもよく、有していなくてもよい。カチオン性官能基としては、アミノ基、イミノ基、アミド基などの構造を有する置換基が挙げられる。例えば、特に限定されないが、ヒドロキシアミノ基、ウレア基、グアニジン、ビグアニド等の共役アミン系官能基、ピペラジン、ピペリジン、ピロリジン、1,4-ジアザビシクロ[2.2.2]オクタン、ヘキサメチレンテトラアミン、モルホリン、ピリジン、ピリダジン、ピリミジン、ピラジン、ピロール、アザトロピリデン、ピリドン、イミダゾール、ベンゾイミダゾール、ベンゾトリアゾール、ピラゾール、オキサゾール、イミダゾリン、トリアゾール、チアゾール、チアジン、テトラゾール、インドール、イソインドール、プリン、キノリン、イソキノリン、キナゾリン、キノキサリン、シンノリン、プテリジン、カルバゾール、アクリジン、アデニン、グアニン、シトシン、チミン、ウラシル、メラミン等のヘテロ環アミノ系官能基、ポルフィリン、クロリン、コリン等の環状ピロール系官能基およびそれらの誘導体等が挙げられる。これらのカチオン性官能基は、1種を単独で用いてもよく、複数種を併用してもよい。
 本発明において、合成樹脂Xの構造単位中に含まれるカチオン性官能基の含有量は、好ましくは0.2モル%以上、好ましくは2モル%以上、より好ましくは3モル%以上、50モル%以下、好ましくは10モル%以下、より好ましくは7モル%以下である。このような範囲内でカチオン性官能基を含有する合成樹脂Xを用いることにより、播種後の細胞の定着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。なお、カチオン性官能基の含有量は、例えば、H-NMR(核磁気共鳴スペクトル)により測定することができる。
 (ビニル重合体)
 合成樹脂Xは、ビニル重合体を含むことが好ましく、ビニル重合体であることがより好ましい。なお、ビニル重合体とは、ビニル基又はビニリデン基を有する化合物の重合体である。上記合成樹脂Xがビニル重合体である場合、水中における細胞培養用足場材料の膨潤をより抑制しやすくすることができる。ビニル重合体としては、例えば、ポリビニルアルコール誘導体、ポリ(メタ)アクリル酸エステル、ポリビニルピロリドン、ポリスチレン、エチレン・酢酸ビニル共重合体等が挙げられる。さらに、ビニル重合体としては、細胞との接着性をより高めやすい観点から、ポリビニルアルコール誘導体又はポリ(メタ)アクリル酸エステルであることが好ましい。
 (ポリビニルアセタール骨格を有する合成樹脂X)
 細胞培養用足場材料は、ポリビニルアセタール骨格を有する合成樹脂Xを含むことが好ましい。本発明において、ポリビニルアセタール骨格を有する合成樹脂Xは、ポリビニルアセタール樹脂の構造単位とビニル化合物及び/又はビニリデン化合物との共重合体であることが好ましい。ビニル化合物は、ビニル基(HC=CH-)を有する化合物である。ビニリデン化合物は、ビニリデン基(HC=CR-)を有する化合物である。ビニル化合物又はビニリデン化合物は、その重合体であるビニル重合体であってもよい。なお、以下の説明では、ポリビニルアセタール樹脂に共重合されるビニル化合物、ビニリデン化合物、及びビニル重合体を総称して「ビニル化合物A」とすることがある。
 本発明において、上記共重合体は、ポリビニルアセタール樹脂とビニル化合物Aとのブロック共重合体であってもよく、ポリビニルアセタール樹脂にビニル化合物Aがグラフトしたグラフト共重合体であってもよい。上記共重合体は、グラフト共重合体であることが好ましい。この場合、相分離構造をより一層容易に形成することができる。
 上記ビニル化合物及びビニリデン化合物としては、エチレン、アリルアミン、ビニルピロリドン、無水マレイン酸、マレイミド、イタコン酸、(メタ)アクリル酸、ビニルアミン、及び(メタ)アクリル酸エステル等が挙げられる。これらのビニル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。従って、これらのビニル化合物が共重合したビニル重合体であってもよい。
 上記共重合体においては、ポリビニルアセタール樹脂と、ビニル化合物AとのSP値の差が0.5以上であることが好ましい。この場合、相分離構造をより一層容易に形成することができる。ポリビニルアセタール樹脂と、ビニル化合物AとのSP値の差は、より好ましくは1.0以上である。なお、SP値の差の上限値は、特に限定されないが、例えば、10.0とすることができる。
 上記共重合体は、第1の相がポリビニルアセタール樹脂であり、第2の相がビニル化合物Aであることが好ましい。上記共重合体のポリビニルアセタール樹脂部分により第1の相が形成されており、ビニル化合物A部分により第2の相が形成されていることが好ましい。この場合、ポリビニルアセタール樹脂の第1の相が海部であり、ビニル化合物Aの第2の相が島部であることが好ましい。もっとも、ビニル化合物Aの第1の相が海部であり、ポリビニルアセタール樹脂の第2の相が島部であってもよい。
 共重合体中における、ビニル化合物Aの含有分率(モル/モル)は、好ましくは0.015以上、より好ましくは0.3以上、好ましくは0.95以下、より好ましくは0.90以下、さらに好ましくは0.70以下である。上記含有分率が上記下限以上にある場合、相分離構造をより一層容易に形成することができる。上記含有分率が上記上限以下にある場合、細胞の増殖率をより一層高めることができる。
 <ポリビニルアセタール樹脂>
 以下、ポリビニルアセタール樹脂(共重合体のポリビニルアセタール樹脂部分)についてより詳細に説明する。
 ポリビニルアセタール樹脂は、側鎖にアセタール基と、アセチル基と、水酸基とを有する。
 ポリビニルアセタール樹脂の合成方法は、ポリビニルアルコールをアルデヒドによりアセタール化する工程を少なくとも備える。
 ポリビニルアセタール樹脂を得るためのポリビニルアルコールのアセタール化に用いられるアルデヒドは、特に限定されない。アルデヒドとしては、例えば、炭素数が1~10のアルデヒドが挙げられる。アルデヒドは、鎖状脂肪族基、環状脂肪族基又は芳香族基を有していてもよい。アルデヒドは、鎖状アルデヒドであってもよく、環状アルデヒドであってもよい。
 上記アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンタナール、ヘキサナール、ヘプタナール、オクタナール、ノナナール、デカナール、アクロレイン、ベンズアルデヒド、シンナムアルデヒド、ペリルアルデヒド、ホルミルピリジン、ホルミルイミダゾール、ホルミルピロール、ホルミルピペリジン、ホルミルトリアゾール、ホルミルテトラゾール、ホルミルインドール、ホルミルイソインドール、ホルミルプリン、ホルミルベンゾイミダゾール、ホルミルベンゾトリアゾール、ホルミルキノリン、ホルミルイソキノリン、ホルミルキノキサリン、ホルミルシンノリン、ホルミルプテリジン、ホルミルフラン、ホルミルオキソラン、ホルミルオキサン、ホルミルチオフェン、ホルミルチオラン、ホルミルチアン、ホルミルアデニン、ホルミルグアニン、ホルミルシトシン、ホルミルチミン、又はホルミルウラシル等が挙げられる。これらのアルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 アルデヒドは、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、又はペンタナールであることが好ましく、ブチルアルデヒドであることがより好ましい。したがって、ポリビニルアセタール骨格は、ポリビニルブチラール骨格であることが好ましい。ポリビニルアセタール樹脂は、ポリビニルブチラール樹脂であることが好ましい。
 細胞の接着性をより一層高める観点からは、ポリビニルアセタール樹脂は、ブレンステッド塩基性基又はブレンステッド酸性基を有することが好ましく、ブレンステッド塩基性基を有することがより好ましい。すなわち、ポリビニルアセタール樹脂の一部がブレンステッド塩基性基又はブレンステッド酸性基により変性されていることが好ましく、ポリビニルアセタール樹脂の一部がブレンステッド塩基性基で変性されていることがより好ましい。
 ブレンステッド塩基性基は、水素イオンHを他の物質から受け取ることができる官能基の総称である。ブレンステッド塩基性基としては、イミン構造を有する置換基、イミド構造を有する置換基、アミン構造を有する置換基、又はアミド構造を有する置換基等のアミン系塩基性基が挙げられる。ブレンステッド塩基性基は、特に限定されないが、例えば、ヒドロキシアミノ基、ウレア基、グアニジン、ビグアニド等の共役アミン系官能基、ピペラジン、ピペリジン、ピロリジン、1,4-ジアザビシクロ[2.2.2]オクタン、ヘキサメチレンテトラアミン、モルホリン、ピリジン、ピリダジン、ピリミジン、ピラジン、ピロール、アザトロピリデン、ピリドン、イミダゾール、ベンゾイミダゾール、ベンゾトリアゾール、ピラゾール、オキサゾール、イミダゾリン、トリアゾール、チアゾール、チアジン、テトラゾール、インドール、イソインドール、プリン、キノリン、イソキノリン、キナゾリン、キノキサリン、シンノリン、プテリジン、カルバゾール、アクリジン、アデニン、グアニン、シトシン、チミン、ウラシル、メラミン等のヘテロ環アミノ系官能基、ポルフィリン、クロリン、コリン等の環状ピロール系官能基、又はそれらの誘導体等が挙げられる。
 ブレンステッド酸性基としては、カルボキシル基、スルホン酸基、マレイン酸基、スルフィン酸基、スルフェン酸基、リン酸基、ホスホン酸基、又はこれらの塩等が挙げられる。ブレンステッド酸性基は、カルボキシル基であることが好ましい。
 ポリビニルアセタール樹脂は、イミン構造を有する構造単位、イミド構造を有する構造単位、アミン構造を有する構造単位、又はアミド構造を有する構造単位を有することが好ましい。この場合、これらの構造単位のうちの1種のみを有していてもよく、2種以上を有していてもよい。
 ポリビニルアセタール樹脂は、イミン構造を有する構造単位を有していてもよい。イミン構造とは、C=N結合を有する構造をいう。特に、ポリビニルアセタール樹脂は、イミン構造を側鎖に有することが好ましい。
 ポリビニルアセタール樹脂は、イミド構造を有する構造単位を有していてもよい。イミド構造を有する構造単位は、イミノ基(=NH)を有する構造単位であることが好ましい。
 ポリビニルアセタール樹脂は、イミノ基を側鎖に有することが好ましい。この場合、イミノ基は、ポリビニルアセタール樹脂の主鎖を構成する炭素原子に直接結合していてもよく、アルキレン基等の連結基を介して主鎖に結合していてもよい。
 ポリビニルアセタール樹脂は、アミン構造を有する構造単位を有していてもよい。上記アミン構造におけるアミン基は、第一級アミン基であってもよく、第二級アミン基であってもよく、第三級アミン基であってもよく、第四級アミン基であってもよい。
 アミン構造を有する構造単位は、アミド構造を有する構造単位であってもよい。上記アミド構造とは、-C(=O)-NH-を有する構造をいう。
 ポリビニルアセタール樹脂は、アミン構造又はアミド構造を側鎖に有することが好ましい。この場合、アミン構造又はアミド構造は、ポリビニルアセタール樹脂の主鎖を構成する炭素原子に直接結合していてもよく、アルキレン基等の連結基を介して主鎖に結合していてもよい。
 なお、イミン構造を有する構造単位の含有率、イミド構造を有する構造単位の含有率、アミン構造を有する構造単位の含有率、アミド構造を有する構造単位の含有率は、H-NMR(核磁気共鳴スペクトル)により測定することができる。
 <ビニル化合物A>
 以下、ビニル化合物Aについてより詳細に説明する。
 ビニル化合物Aは、(メタ)アクリル酸エステル又はポリ(メタ)アクリル酸エステル樹脂であることが好ましい。特に、合成樹脂Xが、ポリビニルアセタール樹脂に、(メタ)アクリル酸エステル又はその重合体であるポリ(メタ)アクリル酸エステル樹脂がグラフト共重合した共重合体であることが好ましい。
 ポリ(メタ)アクリル酸エステル樹脂は、(メタ)アクリル酸エステルの重合により、あるいは(メタ)アクリル酸エステルと、上記他のモノマーとの重合により得られる。
 (メタ)アクリル酸エステルとしては、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリルアミド類、(メタ)アクリル酸ポリエチレングリコール類、(メタ)アクリル酸ホスホリルコリン等が挙げられる。
 (メタ)アクリル酸アルキルエステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、又はステアリル(メタ)アクリレート、イソテトラデシル(メタ)アクリレート等が挙げられる。
 なお、(メタ)アクリル酸アルキルエステルは、炭素数1~3のアルコキシ基及びテトラヒドロフルフリル基等の置換基で置換されていてもよい。このような(メタ)アクリル酸アルキルエステルの例としては、メトキシエチルアクリレート、テトラヒドロフルフリルアクリレート等が挙げられる。
 (メタ)アクリル酸環状アルキルエステルとしては、シクロヘキシル(メタ)アクリレート、又はイソボルニル(メタ)アクリレート等が挙げられる。
 (メタ)アクリル酸アリールエステルとしては、フェニル(メタ)アクリレート、又はベンジル(メタ)アクリレート等が挙げられる。
 (メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-tert-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、(3-(メタ)アクリルアミドプロピル)トリメチルアンモニウムクロリド、4-(メタ)アクリロイルモルホリン、3-(メタ)アクリロイル-2-オキサゾリジノン、N-[3-(ジメチルアミノ)プロピル](メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、又は6-(メタ)アクリルアミドヘキサン酸等が挙げられる。
 (メタ)アクリル酸ポリエチレングリコール類としては、例えば、メトキシ-ポリエチレングリコール(メタ)アクリレート、エトキシ-ポリエチレングリコール(メタ)アクリレート、ヒドロキシ-ポリエチレングリコール(メタ)アクリレート、メトキシ-ジエチレングリコール(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、ヒドロキシ-ジエチレングリコール(メタ)アクリレート、メトキシ-トリエチレングリコール(メタ)アクリレート、エトキシ-トリエチレングリコール(メタ)アクリレート、又はヒドロキシ-トリエチレングリコール(メタ)アクリレート等が挙げられる。
 (メタ)アクリル酸ホスホリルコリンとしては、2-(メタ)アクリロイルオキシエチルホスホリルコリン等が挙げられる。
 (メタ)アクリル酸エステルと共重合される他のモノマーとしては、ビニル化合物が好適に用いられる。ビニル化合物としては、エチレン、アリルアミン、ビニルピロリドン、ビニルイミダゾール、無水マレイン酸、マレイミド、イタコン酸、(メタ)アクリル酸、ビニルアミン、又は(メタ)アクリル酸エステル等が挙げられる。ビニル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 なお、本明細書において、「(メタ)アクリル」とは、「アクリル」又は「メタクリル」を意味し、「(メタ)アクリレート」とは、「アクリレート」又は「メタクリレート」を意味する。
 なお、本発明において、合成樹脂Xは、本発明の相分離構造を形成できる限りにおいて、ポリ(メタ)アクリル酸エステル骨格を有する樹脂と他のビニル化合物との共重合体であってもよい。
 この場合の他のビニル化合物は、エチレン、アリルアミン、ビニルピロリドン、無水マレイン酸、マレイミド、イタコン酸、(メタ)アクリル酸、ビニルアミン、又はSP値の異なる他の(メタ)アクリル酸エステル等を用いることができる。
 (ペプチド部を有する合成樹脂X)
 細胞培養用足場材料は、ペプチド部を有する合成樹脂Xを含むことが好ましい。ペプチド部を有する合成樹脂Xは、合成樹脂Xと、リンカーと、ペプチドとを反応させて得ることができる。ペプチド部を有する合成樹脂Xは、ポリビニルアセタール樹脂部と、リンカー部と、ペプチド部とを有するペプチド含有ポリビニルアセタール樹脂であることが好ましく、ポリビニルブチラール樹脂部と、リンカー部と、ペプチド部とを有するペプチド含有ポリビニルブチラール樹脂であることがより好ましい。ペプチド部を有する合成樹脂Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ペプチド部は、3個以上のアミノ酸により構成されることが好ましく、4個以上のアミノ酸により構成されることがより好ましく、5個以上のアミノ酸により構成されることが更に好ましく、10個以下のアミノ酸により構成されることが好ましく、6個以下のアミノ酸により構成されることがより好ましい。上記ペプチド部を構成するアミノ酸の個数が上記下限以上及び上記上限以下であると、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。
 上記ペプチド部は、細胞接着性のアミノ酸配列を有することが好ましい。なお、細胞接着性のアミノ酸配列とは、ファージディスプレイ法、セファローズビーズ法、又はプレートコート法によって細胞接着活性が確認されているアミノ酸配列をいう。上記ファージディスプレイ法としては、例えば、「The Journal of Cell Biology, Volume 130, Number 5, September 1995 1189-1196」に記載の方法を用いることができる。上記セファローズビーズ法としては、例えば「蛋白質 核酸 酵素 Vol.45 No.15 (2000) 2477」に記載の方法を用いることができる。上記プレートコート法としては、例えば「蛋白質 核酸 酵素 Vol.45 No.15 (2000) 2477」に記載の方法を用いることができる。
 上記細胞接着性のアミノ酸配列としては、例えば、RGD配列(Arg-Gly-Asp)、YIGSR配列(Tyr-Ile-Gly-Ser-Arg)、PDSGR配列(Pro-Asp-Ser-Gly-Arg)、HAV配列(His-Ala-Val)、ADT配列(Ala-Asp-Thr)、QAV配列(Gln-Ala-Val)、LDV配列(Leu-Asp-Val)、IDS配列(Ile-Asp-Ser)、REDV配列(Arg-Glu-Asp-Val)、IDAPS配列(Ile-Asp-Ala-Pro-Ser)、KQAGDV配列(Lys-Gln-Ala-Gly-Asp-Val)、及びTDE配列(Thr-Asp-Glu)等が挙げられる。また、上記細胞接着性のアミノ酸配列としては、「病態生理、第9巻 第7号、527~535頁、1990年」、及び「大阪府立母子医療センター雑誌、第8巻 第1号、58~66頁、1992年」に記載されている配列等も挙げられる。上記ペプチド部は、上記細胞接着性のアミノ酸配列を1種のみ有していてもよく、2種以上を有してもよい。
 上記細胞接着性のアミノ酸配列は、上述した細胞接着性のアミノ酸配列の内の少なくともいずれかを有することが好ましく、RGD配列、YIGSR配列、又はPDSGR配列を少なくとも有することがより好ましく、下記式(1)で表されるRGD配列を少なくとも有することが更に好ましい。この場合には、播種後の細胞との接着性をより一層高め、細胞の増殖率をより一層高めることができる。
 Arg-Gly-Asp-X   ・・・式(1)
 上記式(1)中、Xは、Gly、Ala、Val、Ser、Thr、Phe、Met、Pro、又はAsnを表す。
 上記ペプチド部は、直鎖状であってもよく、環状ペプチド骨格を有していてもよい。上記環状ペプチド骨格とは、複数個のアミノ酸より構成された環状骨格である。本発明の効果を一層効果的に発揮させる観点からは、上記環状ペプチド骨格は、4個以上のアミノ酸により構成されることが好ましく、5個以上のアミノ酸により構成されることが好ましく、10個以下のアミノ酸により構成されることが好ましい。
 ペプチド部を有する合成樹脂Xにおいて、上記ペプチド部の含有率は、好ましくは0.1モル%以上、より好ましくは1モル%以上、さらに好ましくは5モル%以上、特に好ましくは10モル%以上である。ペプチド部を有する合成樹脂Xにおいて、上記ペプチド部の含有率は、好ましくは60モル%以下、より好ましくは50モル%以下、さらに好ましくは35モル%以下、特に好ましくは25モル%以下である。上記ペプチド部の含有率が上記下限以上であると、相分離構造をより一層容易に形成することができる。上記ペプチド部の含有率が上記下限以上であると、播種後の細胞との接着性をより一層高めることができ、細胞の増殖率をより一層高めることができる。また、上記ペプチド部の含有率が上記上限以下であると、製造コストを抑えることができる。なお、上記ペプチド部の含有率(モル%)は、ペプチド部を有する合成樹脂Xを構成する各構造単位の物質量の総和に対する上記ペプチド部の物質量である。
 上記ペプチド部の含有率は、FT-IR又はLC-MSにより測定することができる。
 播種後の細胞との接着性をより一層高める観点及び細胞の増殖率をより一層高める観点から、ペプチド部を有する合成樹脂Xでは、第2の相がペプチド部を有することが好ましく、該ペプチド部が上記細胞接着性のアミノ酸配列を有することがより好ましい。ペプチド部を有する合成樹脂Xのペプチド部部分により第2の相が形成されていることが好ましい。この場合、ペプチド部を有する第2の相が島部であることが好ましい。もっとも、第1の相がペプチド部を有していてもよく、ペプチド部を有する第2の相が海部であってもよい。
 ペプチド部を有する合成樹脂Xにおいて、合成樹脂X部分とペプチド部とは、リンカーを介して結合していることが好ましい。すなわち、ペプチド部を有する合成樹脂Xは、ペプチド部とリンカー部とを有する合成樹脂Xであることが好ましい。上記リンカーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記リンカーは、上記ペプチドのカルボキシル基又はアミノ基と縮合可能な官能基を有する化合物であることが好ましい。上記ペプチドのカルボキシル基又はアミノ基と縮合可能な官能基としては、カルボキシル基、チオール基及びアミノ基等が挙げられる。ペプチドと良好に反応させる観点からは、上記リンカーは、カルボキシル基を有する化合物であることが好ましい。上記リンカーとして、上述したビニル化合物Aを用いることもできる。
 上記カルボキシル基を有するリンカーとしては、(メタ)アクリル酸及びカルボキシル基含有アクリルアミド等が挙げられる。上記カルボキシル基を有するリンカーとして重合性不飽和基を有するカルボン酸(カルボン酸モノマー)を用いることにより、リンカーと合成樹脂Xとを反応させる際に、グラフト重合により該カルボン酸モノマーを重合させることができるため、ペプチドと反応させることができるカルボキシル基の個数を増やすことができる。
 [細胞培養用足場材料]
 細胞培養用足場材料は、上記合成樹脂Xを含む。本発明の効果を効果的に発揮させる観点及び生産性を高める観点からは、上記細胞培養用足場材料100重量%中、上記合成樹脂Xの含有量は、好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは97.5重量%以上、特に好ましくは99重量%以上、最も好ましくは100重量%(全量)である。したがって、上記細胞培養用足場材料は、上記合成樹脂Xであることが最も好ましい。上記合成樹脂Xの含有量が上記下限以上であると、本発明の効果をより一層効果的に発揮させることができる。
 上記細胞培養用足場材料は、上記合成樹脂X以外の成分を含んでいてもよい。上記合成樹脂X以外の成分としては、ポリオレフィン樹脂、ポリエーテル樹脂、ポリビニルアルコール樹脂、ポリエステル、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、多糖類、セルロース、ポリペプチド、合成ペプチド等が挙げられる。
 本発明の効果を効果的に発揮させる観点から、上記合成樹脂X以外の成分の含有量は少ないほどよい。上記細胞培養用足場材料100重量%中、該成分の含有量は、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは2.5重量%以下、特に好ましくは1重量%以下、最も好ましくは0重量%(未含有)である。したがって、細胞培養用足場材料は、合成樹脂X以外の成分を含まないことが最も好ましい。
 上記細胞培養用足場材料は、動物由来の原料を実質的に含まないことが好ましい。動物由来の原料を含まないことにより、安全性が高く、かつ、製造時に品質のばらつきが少ない細胞培養用足場材料を提供することができる。なお、「動物由来の原料を実質的に含まない」とは、細胞培養用足場材料中における動物由来の原料が、3重量%以下であることを意味する。上記細胞培養用足場材料は、細胞培養用足場材料中における動物由来の原料が、1重量%以下であることが好ましく、0重量%であることがより好ましい。すなわち、上記細胞培養用足場材料は、動物由来の原料を全く含まないことがより好ましい。
 (細胞培養用足場材料を用いた細胞培養)
 上記細胞培養用足場材料は、細胞を培養するために用いられる。上記細胞培養用足場材料は、細胞を培養する際の該細胞の足場として用いられる。したがって、本発明の細胞培養用足場材料により形成された樹脂膜は、細胞を培養するために用いられ、また、細胞を培養する際の該細胞の足場として用いられる。
 上記細胞としては、ヒト、マウス、ラット、ブタ、ウシ及びサル等の動物細胞が挙げられる。また、上記細胞としては、体細胞等が挙げられ、例えば、幹細胞、前駆細胞及び成熟細胞等が挙げられる。上記体細胞は、癌細胞であってもよい。
 上記成熟細胞としては、神経細胞、心筋細胞、網膜細胞及び肝細胞等が挙げられる。
 上記幹細胞としては、間葉系幹細胞(MSC)、iPS細胞、ES細胞、Muse細胞、胚性がん細胞、胚性生殖幹細胞、及びmGS細胞等が挙げられる。
 (細胞培養用足場材料の形状)
 本発明の樹脂膜は、細胞培養用足場材料により形成される。上記樹脂膜は、細胞培養用足場材料を用いて形成される。上記樹脂膜は、膜状の細胞培養用足場材料であることが好ましい。上記樹脂膜は、細胞培養用足場材料の膜状物であることが好ましい。
 本明細書では、上記細胞培養用足場材料を含む、粒子、繊維、多孔体、又はフィルムも提供する。この場合、上記細胞培養用足場材料の形状は特に限定されず、粒子であっても、繊維であっても、多孔体であっても、フィルムであってもよい。なお、上記粒子、繊維、多孔体、又はフィルムは、上記細胞培養用足場材料以外の構成要素を含んでいてもよい。
 上記細胞培養用足場材料を含むフィルムは、細胞を平面培養(二次元培養)するために用いられることが好ましい。また、上記細胞培養用足場材料を含む、粒子、繊維、又は多孔体は、細胞を三次元培養するために用いられることが好ましい。
 (細胞培養用担体)
 本発明は、担体の表面上に上記樹脂膜が配置されている、細胞培養用担体にも関する。本発明の細胞培養用担体は、例えば、担体の表面上に上記樹脂膜をコーティング等によって配置することによって得ることができる。上記担体の形状は、粒子、繊維、多孔体、又はフィルムであってもよい。すなわち、本発明の細胞培養用担体は、粒子、繊維、多孔体、又はフィルムの形状であってもよい。なお、本発明の細胞培養用担体は、上記担体及び上記樹脂膜以外の構成要素を含んでいてもよい。
 (細胞培養用容器)
 本発明は、細胞の培養領域の少なくとも一部に上記樹脂膜を備える、細胞培養用容器にも関する。図1は、本発明の一実施形態に係る細胞培養用容器を模式的に示す断面図である。
 細胞培養用容器1は、容器本体2と、細胞培養用足場材料により形成された樹脂膜3とを備える。容器本体2の表面2a上に樹脂膜3が配置されている。容器本体2の底面上に樹脂膜3が配置されている。細胞培養用容器1に液体培地を添加し、また、細胞を樹脂膜3の表面に播種することで、細胞を平面培養することができる。
 なお、容器本体は、第1の容器本体と、該第1の容器本体の底面上にカバーガラス等の第2の容器本体とを備えていてもよい。第1の容器本体と第2の容器本体とは分離可能であってもよい。この場合、第2の容器本体の表面上に、該細胞培養用足場材料により形成された樹脂膜が配置されていてもよい。
 上記容器本体として、従来公知の容器本体(容器)を用いることができる。上記容器本体の形状および大きさは特に限定されない。
 上記容器本体としては、1個又は複数個のウェル(穴)を備える細胞培養用プレート、及び細胞培養用フラスコ等が挙げられる。上記プレートのウェル数は特に限定されない。該ウェル数としては、特に限定されないが、例えば、2、4、6、12、24、48、96、384等が挙げられる。上記ウェルの形状としては、特に限定されないが、真円、楕円、三角形、正方形、長方形、五角形等が挙げられる。上記ウェル底面の形状としては、特に限定されないが、平底、丸底、凹凸等が挙げられる。
 上記容器本体の材質は特に限定されないが、樹脂、金属及び無機材料が挙げられる。上記樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエステル、ポリイソプレン、シクロオレフィンポリマー、ポリイミド、ポリアミド、ポリアミドイミド、(メタ)アクリル樹脂、エポキシ樹脂、シリコーン等が挙げられる。上記金属としては、ステンレス、銅、鉄、ニッケル、アルミ、チタン、金、銀、白金等が挙げられる。上記無機材料としては、酸化ケイ素(ガラス)、酸化アルミ、酸化チタン、酸化ジルコニウム、酸化鉄、窒化ケイ素等が挙げられる。
 次に、本発明の具体的な実施例及び比較例を挙げることにより本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
 細胞培養用足場材料の原料として、以下の合成樹脂を合成した。
 (実施例1)
 攪拌装置を備えた反応機に、イオン交換水2700mL、平均重合度1700、鹸化度98モル%のポリビニルアルコールを300重量部投入し、攪拌しながら加熱溶解し、溶液を得た。得られた溶液に、触媒として、塩酸濃度が0.2重量%となるように35重量%塩酸を添加した。次いで、温度を15℃に調整し、攪拌しながらn-ブチルアルデヒド22重量部を添加した。次いで、n-ブチルアルデヒド148重量部を添加し、白色粒子状のポリビニルブチラール樹脂を析出させた。析出してから15分後に、塩酸濃度が1.8重量%となるように35重量%塩酸を添加した後、50℃に加熱し、50℃で2時間保持した。次いで、溶液を冷却し、中和した後、水洗し、乾燥させることにより、ポリビニルアセタール樹脂としてのポリビニルブチラール樹脂(PVB、SP値:9.9)を得た。得られたポリビニルブチラール樹脂90重量部を、1重量%の溶液となるようにテトラヒドロフランに溶解させ、開始剤としてIrgacure184を5重量部、N-ビニルピロリドン(SP値:11.7)2重量部及びn-ラウリルメタクリレート(SP値:8.2)8重量部を添加し、グラフト重合を行うことで、合成樹脂を得た。得られた合成樹脂は、アセタール化度(ブチラール化度)69モル%、水酸基量27.5モル%、アセチル化度2.0モル%、ビニルピロリドン基の含有率0.3モル%、n-ラウリルメタクリレート部の含有率1.2モル%であった。
 (実施例2~11及び比較例1)
 ポリビニルブチラール樹脂、N-ビニルピロリドン、及びn-ラウリルメタクリレートの重量比率を変更したこと以外は、実施例1と同様にして合成樹脂を得た。実施例2~11及び比較例1で得られた合成樹脂のアセタール化度(ブチラール化度)、水酸基量、アセチル化度、ビニルピロリドン基の含有率、n-ラウリルメタクリレート部の含有率を表1、表2、及び表4に示す。
 (実施例12)
 攪拌装置を備えた反応機に、イオン交換水2700mL、平均重合度1700、鹸化度99モル%のポリビニルアルコールを300重量部投入し、攪拌しながら加熱溶解し、溶液を得た。得られた溶液に、触媒として、塩酸濃度が0.2重量%となるように35重量%塩酸を添加した。次いで、温度を15℃に調整し、攪拌しながらn-ブチルアルデヒド22重量部を添加した。次いで、n-ブチルアルデヒド148重量部を添加し、白色粒子状のポリビニルアセタール樹脂(ポリビニルブチラール樹脂)を析出させた。析出してから15分後に、塩酸濃度が1.8重量%になるように35重量%塩酸を添加した後、50℃に加熱し、50℃で2時間保持した。次いで、溶液を冷却し、中和した後、ポリビニルブチラール樹脂を水洗し、乾燥させて、ポリビニルアセタール樹脂(ポリビニルブチラール樹脂、平均重合度1700、アセタール化度(ブチラール化度)70モル%、水酸基量27モル%、アセチル化度3モル%)を得た。
 リンカーの導入:
 得られたポリビニルアセタール樹脂99重量部と、アクリル酸(リンカー)1重量部とをTHF300重量部に溶解し、光ラジカル重合開始剤の存在下で、紫外線照射下で20分間反応させ、ポリビニルアセタール樹脂とアクリル酸とをグラフト共重合させることにより、リンカーを導入した。リンカーを導入したポリビニルアセタール樹脂1重量部をブタノール19重量部に溶解させた。得られた溶液150μLを、エアダスターで除塵したφ22mmのカバーガラス(松浪社製「22丸No.1」)の表面上に吐出し、スピンコーターを用いて2000rpm、20秒回転させた後、60℃で60分間加熱して、表面が平滑な樹脂膜を得た。
 ペプチド部の形成:
 Gly-Arg-Gly-Asp-Serのアミノ酸配列を有する直鎖状のペプチド(アミノ酸残基数5個、表ではGRGDSと記載)を用意した。このペプチド10重量部と、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(縮合剤)1重量部とを、カルシウム及びマグネシウムの双方を含まないリン酸緩衝生理食塩水に該ペプチドの終濃度が1mMとなるよう添加し、ペプチド含有液を作製した。このペプチド含有液1重量部を、スピンコートした樹脂膜(リンカーを形成したポリビニルアセタール樹脂)に添加し、反応させて、リンカーのカルボキシル基と、ペプチドのGlyのアミノ基とを脱水縮合した。このようにして、ポリビニルアセタール樹脂部と、リンカー部と、ペプチド部とを有するペプチド含有ポリビニルアセタール樹脂を作製した。
 得られたペプチド含有ポリビニルアセタール樹脂は、アセタール化度(ブチラール化度)69モル%、水酸基量27モル%、アセチル化度3モル%、カルボキシル基の含有率0.1モル%、ペプチド部の含有率1.0モル%であった。
 (実施例13)
 リンカーの導入において、85重量部のポリビニルアセタール樹脂と15重量部のアクリル酸(リンカー)とを用いたこと、ペプチドの形成において、ペプチドの添加量を15重量部に変更したこと以外は、実施例12と同様にして、ペプチド含有ポリビニルアセタール樹脂を作製した。
 (実施例14)
 リンカーの導入において、70重量部のポリビニルアセタール樹脂と30重量部のアクリル酸(リンカー)とを用いたこと、ペプチドの形成において、ペプチドの添加量を30重量部に変更したこと以外は、実施例12と同様にして、ペプチド含有ポリビニルアセタール樹脂を作製した。
 (実施例15)
 リンカーの導入において、67重量部のポリビニルアセタール樹脂と33重量部のアクリル酸(リンカー)とを用いたこと、ペプチドの形成において、ペプチドの添加量を33重量部に変更したこと以外は、実施例12と同様にして、ペプチド含有ポリビニルアセタール樹脂を作製した。
 (実施例16)
 リンカーの導入において、63重量部のポリビニルアセタール樹脂と37重量部のアクリル酸(リンカー)とを用いたこと、ペプチドの形成において、ペプチドの添加量を37重量部に変更したこと以外は、実施例12と同様にして、ペプチド含有ポリビニルアセタール樹脂を作製した。
 (実施例17)
 リンカーの導入において、30重量部のポリビニルアセタール樹脂と70重量部のアクリル酸(リンカー)とを用いたこと、ペプチドの形成において、ペプチドの添加量を70重量部に変更したこと以外は、実施例12と同様にして、ペプチド含有ポリビニルアセタール樹脂を作製した。
 (比較例2)
 合成樹脂として、ポリスチレン樹脂をそのまま用いた。
 (比較例3)
 攪拌装置を備えた反応機に、イオン交換水2700mL、平均重合度1700、鹸化度98モル%のポリビニルアルコールを300重量部投入し、攪拌しながら加熱溶解し、溶液を得た。得られた溶液に、触媒として、塩酸濃度が0.2重量%となるように35重量%塩酸を添加した。次いで、温度を15℃に調整し、攪拌しながらn-ブチルアルデヒド22重量部を添加した。次いで、n-ブチルアルデヒド148重量部を添加し、白色粒子状のポリビニルブチラール樹脂を析出させた。析出してから15分後に、塩酸濃度が1.8重量%となるように35重量%塩酸を添加した後、50℃に加熱し、50℃で2時間保持した。次いで、溶液を冷却し、中和した後、水洗し、乾燥させることによりポリビニルブチラール樹脂(SP値:9.9)を得た。すなわち、ビニル化合物が共重合していないポリビニルブチラール樹脂(合成樹脂)を得た。
 (比較例4)
 N-ビニルピロリドン17重量部及びn-ラウリルメタクリレート83重量部を混合し、(メタ)アクリルモノマー溶液を得た。得られた(メタ)アクリルモノマー溶液にIrgacure184(BASF社製)1重量部を溶解させ、PETフィルム上に塗布した。塗布物を25℃にてアイグラフィックス社製、UVコンベア装置「ECS301G1」を用い、365nmの波長の光を積算光量2000mJ/cmで照射することでポリ(メタ)アクリル酸エステル樹脂溶液を得た。得られたポリ(メタ)アクリル酸エステル樹脂溶液を80℃、3時間真空乾燥させることでポリ(メタ)アクリル酸エステル樹脂としての合成樹脂を得た。
 (参考例A)
 天然物由来の足場材の作製:
 リン酸バッファー(PBS)中に5μg/mlに調整したVitronectin(コーニング社製)溶液をφ35mmディッシュに1ml添加した。そこにφ22mmのカバーガラス(松浪社製「22丸No.1」)を浸漬させ、37℃で1時間養生することでVitronectinが表面に平滑に吸着した天然物由来の足場材(表中ではVTNと記載)を得た。
 細胞培養用容器の作製:
 Vitronectinとカバーガラスとの積層体を、φ22mmのポリスチレンディッシュに配置することにより細胞培養用容器を得た。なお、Vitronectinは乾燥すると変性し、接着性能が大きく低下してしまうため、細胞培養用容器の作製後すぐにPBS溶液で浸漬した。
 [評価]
 (アセタール化度及びカチオン性基変性度)
 実施例及び比較例で得られた合成樹脂のアセタール化度及びカチオン性基変性度は、合成樹脂をDMSO-d6(ジメチルスルホキサイド)に溶解した後、H-NMR(核磁気共鳴スペクトル)により測定した。
 (貯蔵弾性率)
 各足場材料の25℃及び100℃の貯蔵弾性率は、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)により引張条件下、周波数10Hz、-150℃から150℃の温度範囲を昇温速度5℃/分にて測定した。得られた引張貯蔵弾性率のグラフから25℃及び100℃における貯蔵弾性率を求め、25℃貯蔵弾性率/100℃貯蔵弾性率を算出した。長さ50mm、幅5~20mm、厚み0.1~1.0mmの測定サンプルを用いて、10Hz、ひずみ0.1%、温度-150℃~150℃、および昇温速度5℃/minの条件で行った。
 (水膨潤倍率)
 長さ50mm、幅10mm、厚み0.05mm~0.15mmの各足場材料からなる樹脂膜(測定サンプル)を、25℃の水に24時間浸漬した。浸漬前と後のサンプルの重さを測定し、水膨潤倍率=(浸漬後のサンプル重量-浸漬前のサンプル重量)/(浸漬前のサンプル重量)×100(%)を算出した。
 (細胞培養用容器の作製)
 実施例1~11及び比較例1~4では、得られた合成樹脂1gをブタノール19gに溶解させることで、樹脂溶液を得た。得られた樹脂溶液150μLをφ22mmのカバーガラス(松浪社製、22丸No.1をエアダスターで除塵して使用)上に吐出し、スピンコーターを用いて2000rpm、20秒回転させて平滑な樹脂膜を得た。得られた上記樹脂膜をカバー26ガラスごとφ22mmのポリスチレンディッシュに配置することにより細胞培養用容器を得た。実施例12~17では、得られたペプチド含有ポリビニルアセタール樹脂とカバーガラスとの積層体を、φ22mmのポリスチレンディッシュに配置することにより細胞培養用容器を得た。
 (表面自由エネルギー)
 細胞培養用容器の調製の欄で得られた樹脂膜の表面自由エネルギーについて接触角計(協和界面化学社製、DMo-701)を用いて測定した。樹脂膜上に純水1μLを滴下し、30秒後の液滴像を撮影することで純水の接触角を得た。また、上記樹脂膜上にジヨードメタン1μLを滴下し、30秒後の液滴像を撮影することでジヨードメタンの接触角を得た。得られた接触角から、Kaelble-Uyの理論式を用いて表面自由エネルギーの分散項成分γ(dSFE)及び極性項成分である双極子成分γ(pSFE)を算出した。
 (相分離パラメータ)
 細胞培養用容器の調製の欄で得られた樹脂膜を原子間力顕微鏡(AFM、ブルカー社製、品番「Dimension XR」)により観察した。カンチレバーはSCAN ASYST AIRを使用した。その結果、図2に示すように、実施例3の樹脂膜では、第1の相としてのポリビニルブチラール樹脂部が海部を形成し、第2の相としての(メタ)アクリル酸エステル及びビニル化合物を有する樹脂部(N-ビニルピロリドン及びn-ラウリルメタクリレートの共重合体部)が島部を形成する海島構造が観察された。同様に、実施例1~2,4~11においても、第1の相としてのポリビニルブチラール樹脂部が海部を形成し、第2の相としての(メタ)アクリル酸エステル及びビニル化合物を有する樹脂部(N-ビニルピロリドン及びn-ラウリルメタクリレートの共重合体部)が島部を形成する海島構造が観察された。また、実施例12~17においても、第1の相としてのポリビニルブチラール樹脂部が海部を形成し、第2の相としてのペプチド部が島部を形成する海島構造が観察された。他方、比較例1~4では、相分離構造が観察されなかった。
 また、原子間力顕微鏡により得られた画像から画像解析ソフト(ImageJ)を用いて、上述した方法により第2の相の表面全体に対する表面積の比(相分離構造の表面積分率)、第2の相の周囲長と面積との比(周囲長/面積)、島部である第2の相の個数(島個数)、及び島部の径の平均(平均島サイズ)を求めた。
 (細胞増殖率)
 得られた細胞培養用容器にリン酸緩衝生理食塩水1mLを加えて37℃のインキュベーター内で1時間静置後、培養容器内のリン酸緩衝生理食塩水を除いた。35mmディッシュにコンフルエント状態になったh-iPS細胞253G1のコロニーを加え、次に1mLの0.5mMエチレンジアミン/リン酸緩衝溶液を加え、室温で2分静置した。その後、エチレンジアミン/リン酸緩衝溶液を除き、1mLのTeSRE8培地でピペッティングにより50~200μmに砕かれた細胞塊(0.5×10cells)を培養容器に播種した。培地TeSR E8(STEM CELL社製)1.7mL、及び、ROCK-Inhibitor(Y27632)10μMの存在下で、37℃及びCO濃度5%のインキュベーター内で培養を行った。24時間毎に培地を1mL除き、新たなTeSR E8を1mL加えることで培地交換を行った。5日後における定着細胞塊を、TryPLE Express剥離液 1.0mLを用いて剥離し、セルカウンター(Nucleocounter NC-3000、Chemometec社製)を用いて細胞数をカウントした。
 下記式を用いて参考例Aに対する細胞増殖率を求めた。
 参考例Aに対する細胞増殖率(%)=(実施例・比較例における細胞数)/(参考例Aにおける細胞数)×100
 細胞増殖率について、以下の基準に従って評価した。
 [評価基準]
 AAA…参考例Aに対する細胞増殖率が、70%以上
 AA…参考例Aに対する細胞増殖率が、60%以上、70%未満
 A…参考例Aに対する細胞増殖率が、50%以上、60%未満
 B…参考例Aに対する細胞増殖率が、40%以上、50%未満
 C…参考例Aに対する細胞増殖率が、30%以上、40%未満
 D…参考例Aに対する細胞増殖率が、30%未満
 結果を下記の表1~4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1…細胞培養用容器
 2…容器本体
 2a…表面
 3…樹脂膜

Claims (16)

  1.  細胞培養用足場材料により形成された樹脂膜であって、
     前記細胞培養用足場材料は、合成樹脂を含み、
     前記樹脂膜が、少なくとも第1の相及び第2の相を含む、相分離構造を有し、
     前記第1の相及び第2の相のうち一方の相の表面全体に対する表面積の比が、0.01以上、0.95以下である、樹脂膜。
  2.  前記第2の相の面積に対する周囲長の比(周囲長/面積)が、0.001(1/nm)以上、0.40(1/nm)以下である、請求項1に記載の樹脂膜。
  3.  前記相分離構造が、海島構造であり、
     前記第1の相が海部であり、前記第2の相が島部である、請求項1又は2に記載の樹脂膜。
  4.  前記島部である前記第2の相の個数が、1個/μm以上、5000個/μm以下である、請求項3に記載の樹脂膜。
  5.  前記相分離構造が、前記合成樹脂の分子内における相分離構造により構成されている、請求項1~4のいずれか1項に記載の樹脂膜。
  6.  表面自由エネルギーの分散項成分が25.0mJ/m以上、50.0mJ/m以下、かつ、極性項成分が1.0mJ/m以上、20.0mJ/m以下である、請求項1~5のいずれか1項に記載の樹脂膜。
  7.  前記合成樹脂が、カチオン性官能基を有し、
     前記合成樹脂の構造単位中に含まれる前記カチオン性官能基の含有量が、0.2モル%以上、50モル%以下である、請求項1~6のいずれか1項に記載の樹脂膜。
  8.  前記第2の相が、ペプチド部を有する、請求項1~5のいずれか1項に記載の樹脂膜。
  9.  前記ペプチド部が、細胞接着性のアミノ酸配列を有する、請求項8に記載の樹脂膜。
  10.  水膨潤倍率が50%以下である、請求項1~9のいずれか1項に記載の樹脂膜。
  11.  100℃における貯蔵弾性率が、1.0×10Pa以上、1.0×10Pa以下であり、
     25℃における貯蔵弾性率と100℃における貯蔵弾性率との比((25℃における貯蔵弾性率)/(100℃における貯蔵弾性率))が、1.0×10以上、1.0×10以下である、請求項1~10のいずれか1項に記載の樹脂膜。
  12.  前記細胞培養用足場材料は、動物由来の原料を実質的に含まない、請求項1~11のいずれか1項に記載の樹脂膜。
  13.  前記合成樹脂がビニル重合体を含む、請求項1~12のいずれか1項に記載の樹脂膜。
  14.  前記合成樹脂が、少なくともポリビニルアルコール誘導体又はポリ(メタ)アクリル酸エステルを含む、請求項1~13のいずれか1項に記載の樹脂膜。
  15.  担体と、
     請求項1~14のいずれか1項に記載の樹脂膜と、を備え、
     前記担体の表面上に、前記樹脂膜が配置されている、細胞培養用担体。
  16.  容器本体と、
     請求項1~14のいずれか1項に記載の樹脂膜と、を備え、
     前記容器本体の表面上に、前記樹脂膜が配置されている、細胞培養用容器。
PCT/JP2020/019416 2019-05-15 2020-05-15 細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器 WO2020230886A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020217012216A KR20220009367A (ko) 2019-05-15 2020-05-15 세포배양용 스캐폴드 재료에 의해 형성된 수지막, 세포배양용 담체 및 세포배양용 용기
CN202080006412.XA CN113166580B (zh) 2019-05-15 2020-05-15 由细胞培养用支架材料形成的树脂膜、细胞培养用载体和细胞培养用容器
SG11202110132QA SG11202110132QA (en) 2019-05-15 2020-05-15 Resin film formed of scaffold material for cell culture, carrier for cell culture and container for cell culture
JP2020531791A JPWO2020230886A1 (ja) 2019-05-15 2020-05-15
CN202211113076.6A CN115926568A (zh) 2019-05-15 2020-05-15 由细胞培养用支架材料形成的树脂膜、细胞培养用载体和细胞培养用容器
EP20805342.1A EP3971202A4 (en) 2019-05-15 2020-05-15 RESIN FILM FORMED OF CELL CULTURE SCAFFOLDING MATERIAL, CELL CULTURE SUPPORT AND CELL CULTURE CONTAINER
AU2020274457A AU2020274457A1 (en) 2019-05-15 2020-05-15 Resin film formed of scaffold material for cell culture, carrier for cell culture and container for cell culture
CN202310871473.8A CN116904079A (zh) 2019-05-15 2020-05-15 由细胞培养用支架材料形成的树脂膜、细胞培养用载体和细胞培养用容器
US17/608,044 US20220227898A1 (en) 2019-05-15 2020-05-15 Resin film formed of scaffold material for cell culture, carrier for cell culture and container for cell culture
JP2024015798A JP2024033003A (ja) 2019-05-15 2024-02-05 細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019092083 2019-05-15
JP2019-092083 2019-05-15
JP2019-119079 2019-06-26
JP2019119079 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020230886A1 true WO2020230886A1 (ja) 2020-11-19

Family

ID=73289784

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2020/019414 WO2020230884A1 (ja) 2019-05-15 2020-05-15 細胞培養用足場材料及び細胞培養用容器
PCT/JP2020/019415 WO2020230885A1 (ja) 2019-05-15 2020-05-15 細胞培養用足場材料及び細胞培養用容器
PCT/JP2020/019416 WO2020230886A1 (ja) 2019-05-15 2020-05-15 細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/019414 WO2020230884A1 (ja) 2019-05-15 2020-05-15 細胞培養用足場材料及び細胞培養用容器
PCT/JP2020/019415 WO2020230885A1 (ja) 2019-05-15 2020-05-15 細胞培養用足場材料及び細胞培養用容器

Country Status (9)

Country Link
US (3) US20220325221A1 (ja)
EP (3) EP3971201A4 (ja)
JP (4) JPWO2020230884A1 (ja)
KR (2) KR20220009367A (ja)
CN (5) CN113166719A (ja)
AU (2) AU2020274933A1 (ja)
SG (2) SG11202110132QA (ja)
TW (2) TW202104577A (ja)
WO (3) WO2020230884A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127780A1 (ja) * 2021-12-27 2023-07-06 積水化学工業株式会社 細胞培養用足場材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4289931A1 (en) * 2021-02-03 2023-12-13 Sekisui Chemical Co., Ltd. Microcarrier for cell culture and cell culture method
JP2023064377A (ja) * 2021-10-26 2023-05-11 住友化学株式会社 細胞培養基材
WO2024058198A1 (ja) * 2022-09-14 2024-03-21 積水化学工業株式会社 人工多能性幹細胞の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089574A (ja) * 1999-07-15 2001-04-03 Kuraray Co Ltd ポリビニルアルコール系含水ゲル、その製造方法及び排水処理装置
JP2006314285A (ja) 2005-05-13 2006-11-24 Kuraray Co Ltd 細胞培養用担体及び該細胞培養用担体を用いた細胞培養方法
JP2009519042A (ja) * 2005-12-13 2009-05-14 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 細胞移植のための足場
JP2017023008A (ja) 2015-07-16 2017-02-02 国立大学法人 東京医科歯科大学 ポリロタキサンブロック共重合体表面を有する培養器を用いた幹細胞の培養方法
WO2018181758A1 (ja) * 2017-03-31 2018-10-04 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2019131982A1 (ja) * 2017-12-27 2019-07-04 積水化学工業株式会社 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法
JP2019118345A (ja) * 2017-12-27 2019-07-22 積水化学工業株式会社 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2400063A1 (fr) * 1977-08-08 1979-03-09 Pasteur Institut Procede d'obtention de supports pour cultures cellulaires et supports obtenus
JP2817934B2 (ja) * 1989-02-28 1998-10-30 旭光学工業株式会社 細胞分離材及び分離器
EP0529751A1 (en) * 1991-08-09 1993-03-03 W.R. Grace & Co.-Conn. Cell culture substrate, test material for cell culture and preparations thereof
JP2003174869A (ja) * 2001-09-20 2003-06-24 Sanyo Chem Ind Ltd 多機能性臓器細胞の接着培養用基材
US7041506B2 (en) * 2001-11-19 2006-05-09 Becton Dickinson And Company Peptides promoting cell adherence, growth and secretion
JP2004033136A (ja) * 2002-07-05 2004-02-05 Fuji Photo Film Co Ltd 細胞培養担体
JP4219361B2 (ja) * 2003-04-25 2009-02-04 積水化学工業株式会社 血液凝固促進剤及び採血管
US7074615B2 (en) * 2003-08-15 2006-07-11 Becton, Dickinson And Company Peptides for enhanced cell attachment and cell growth
JP2006042794A (ja) * 2004-06-28 2006-02-16 Sanyo Chem Ind Ltd 細胞培養用樹脂ビーズ
JP4944449B2 (ja) * 2006-01-18 2012-05-30 日東電工株式会社 多孔質構造体の製造方法および多孔質構造体並びに多孔質構造体からなる細胞培養用足場基材
KR20080091827A (ko) 2006-01-27 2008-10-14 더 리전트 오브 더 유니버시티 오브 캘리포니아 생물유사 스캐폴드
KR101557796B1 (ko) * 2007-07-05 2015-10-06 닛산 가가쿠 고교 가부시키 가이샤 신규 지질 펩티드 및 히드로겔
JP5000439B2 (ja) * 2007-09-19 2012-08-15 三洋化成工業株式会社 細胞培養用担体
WO2010148346A2 (en) * 2009-06-19 2010-12-23 The Regents Of The University Of California Three-dimensional cell adhesion matrix
GB2473814B (en) * 2009-09-16 2014-06-11 Spheritech Ltd Hollow particulate support
EP2612902B1 (en) * 2010-08-31 2016-10-26 Tokyo Women's Medical University Temperature-responsive substrate for cell culture and method for producing same
CN104395457B (zh) * 2012-02-02 2018-02-27 康宁股份有限公司 用于细胞培养的合成粘附培养基
CN202643702U (zh) * 2012-06-07 2013-01-02 江阴瑞康健生物医学科技有限公司 双相多孔三维细胞培养支架
CN102719391A (zh) * 2012-06-07 2012-10-10 江阴瑞康健生物医学科技有限公司 双相多孔三维细胞培养支架
JP2014117268A (ja) * 2012-12-19 2014-06-30 Kyoto Institute Of Technology 修飾ポリペプチドを用いた培養面のコーティング
JP6143163B2 (ja) * 2013-03-22 2017-06-07 国立大学法人三重大学 弾性組織様構造体の製造方法
TWI601817B (zh) 2013-10-02 2017-10-11 國立中央大學 細胞培養製品及其製造方法
JP5874859B1 (ja) * 2014-12-12 2016-03-02 東洋インキScホールディングス株式会社 体液接触用医療用具および生体適合性重合体
JP2016202172A (ja) * 2015-04-16 2016-12-08 国立大学法人京都大学 疑似膵島の製造方法
EP3392225B1 (en) * 2015-12-18 2020-02-19 Sekisui Chemical Co., Ltd. Binder for production of inorganic sintered body
JP2018064542A (ja) 2016-10-21 2018-04-26 味の素株式会社 フィブロイン様タンパク質改変体および細胞培養方法
JP7039308B2 (ja) * 2017-02-08 2022-03-22 三洋化成工業株式会社 細胞培養用担体
EP3950924A4 (en) * 2019-03-29 2023-04-19 Sekisui Chemical Co., Ltd. SCAFFOLDING MATERIAL FOR CELL CULTURES AND CELL CULTURE CONTAINERS
EP3950918A4 (en) * 2019-03-29 2022-12-28 Sekisui Chemical Co., Ltd. CELL CULTURE SCAFFOLD MATERIAL, CELL CULTURE VESSEL, CELL CULTURE FIBER AND METHODS FOR CELL CULTIVATION
CN113366100A (zh) * 2019-03-29 2021-09-07 积水化学工业株式会社 细胞培养用支架材料、细胞培养用容器、细胞培养用载体、细胞培养用纤维和细胞的培养方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089574A (ja) * 1999-07-15 2001-04-03 Kuraray Co Ltd ポリビニルアルコール系含水ゲル、その製造方法及び排水処理装置
JP2006314285A (ja) 2005-05-13 2006-11-24 Kuraray Co Ltd 細胞培養用担体及び該細胞培養用担体を用いた細胞培養方法
JP2009519042A (ja) * 2005-12-13 2009-05-14 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 細胞移植のための足場
JP2017023008A (ja) 2015-07-16 2017-02-02 国立大学法人 東京医科歯科大学 ポリロタキサンブロック共重合体表面を有する培養器を用いた幹細胞の培養方法
WO2018181758A1 (ja) * 2017-03-31 2018-10-04 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2019131982A1 (ja) * 2017-12-27 2019-07-04 積水化学工業株式会社 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法
WO2019131978A1 (ja) * 2017-12-27 2019-07-04 積水化学工業株式会社 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法
JP2019118345A (ja) * 2017-12-27 2019-07-22 積水化学工業株式会社 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HIRAGUCHI YUKARI: "Control of adsorbed proteins by nanoscale phase-separated polymer structures and subsequent induction of cell adhesion", THESIS OF THE UNIVERSITY OF TOKYO, 22 March 2018 (2018-03-22), pages 1 - 5, XP055760546 *
JOURNAL OF OSAKA WOMEN'S AND CHILDREN'S HOSPITAL, vol. 8, no. 1, 1992, pages 58 - 66
JOURNAL OF THE ADHESION SOCIETY OF JAPAN, vol. 22, 1986, pages 566
MEDICINA PHILOSOPHICA, vol. 9, no. 7, 1990, pages 527 - 535
PROTEIN, NUCLEIC ACID AND ENZYME, vol. 45, no. 15, 2000, pages 2477
See also references of EP3971202A4
THE JOURNAL OF CELL BIOLOGY, vol. 130, no. 5, September 1995 (1995-09-01), pages 1189 - 1196

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127780A1 (ja) * 2021-12-27 2023-07-06 積水化学工業株式会社 細胞培養用足場材料

Also Published As

Publication number Publication date
CN113166719A (zh) 2021-07-23
TW202108754A (zh) 2021-03-01
AU2020274457A1 (en) 2021-09-30
EP3971201A4 (en) 2023-11-22
TW202104577A (zh) 2021-02-01
CN115926568A (zh) 2023-04-07
EP3971202A4 (en) 2023-11-22
JPWO2020230886A1 (ja) 2020-11-19
CN116904079A (zh) 2023-10-20
EP3971200A1 (en) 2022-03-23
CN113166580B (zh) 2023-07-07
US20220227898A1 (en) 2022-07-21
EP3971200A4 (en) 2023-08-02
SG11202110132QA (en) 2021-12-30
KR20220009367A (ko) 2022-01-24
JPWO2020230884A1 (ja) 2020-11-19
SG11202110134UA (en) 2021-12-30
JPWO2020230885A1 (ja) 2020-11-19
CN113166580A (zh) 2021-07-23
US20220325221A1 (en) 2022-10-13
JP2024033003A (ja) 2024-03-12
WO2020230885A1 (ja) 2020-11-19
US20220348858A1 (en) 2022-11-03
EP3971202A1 (en) 2022-03-23
KR20220009366A (ko) 2022-01-24
TW202104311A (zh) 2021-02-01
AU2020274933A1 (en) 2021-09-30
CN113166201A (zh) 2021-07-23
EP3971201A1 (en) 2022-03-23
WO2020230884A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2020230886A1 (ja) 細胞培養用足場材料により形成された樹脂膜、細胞培養用担体及び細胞培養用容器
JP6748313B2 (ja) 幹細胞培養用足場材料から形成された樹脂膜及び幹細胞培養用容器
JP7480037B2 (ja) 細胞培養用足場材料及び細胞培養用容器
WO2020203769A1 (ja) 細胞培養用足場材料、細胞培養用容器、細胞培養用繊維及び細胞の培養方法
WO2020203770A1 (ja) 細胞培養用足場材料、細胞培養用容器、細胞培養用担体、細胞培養用繊維及び細胞の培養方法
JP2021023287A (ja) 細胞培養用足場材及び細胞培養用容器
WO2021024943A1 (ja) 細胞培養用足場材及び細胞培養用容器
WO2022168871A1 (ja) 細胞培養用マイクロキャリア及び細胞の培養方法
TW202246483A (zh) 細胞培養用微載體及細胞之培養方法
TWI839518B (zh) 藉由細胞培養用支架材料所形成之樹脂膜、細胞培養用載體、及細胞培養用容器
WO2020241675A1 (ja) 細胞培養用足場材料により形成された樹脂膜及び細胞培養用容器
JP2021003061A (ja) 細胞培養用足場材料及び細胞培養用容器
JP2021003102A (ja) 樹脂膜及び細胞培養用容器
JP2021003103A (ja) 樹脂膜及び細胞培養用容器
JP2021003099A (ja) 細胞接着用樹脂繊維及び細胞接着構造体
JP2019118345A (ja) 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法
JP2021003062A (ja) 細胞培養用足場材料及び細胞培養用容器
JP2022077840A (ja) 細胞培養用足場材料、樹脂膜、細胞培養用容器及び細胞の培養方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020531791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020274457

Country of ref document: AU

Date of ref document: 20200515

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020805342

Country of ref document: EP

Effective date: 20211215