WO2020207450A1 - 一种固态电解质及聚合物锂离子电池 - Google Patents

一种固态电解质及聚合物锂离子电池 Download PDF

Info

Publication number
WO2020207450A1
WO2020207450A1 PCT/CN2020/084077 CN2020084077W WO2020207450A1 WO 2020207450 A1 WO2020207450 A1 WO 2020207450A1 CN 2020084077 W CN2020084077 W CN 2020084077W WO 2020207450 A1 WO2020207450 A1 WO 2020207450A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
halogenated
polymer
lithium salt
additive
Prior art date
Application number
PCT/CN2020/084077
Other languages
English (en)
French (fr)
Inventor
刘中波
康媛媛
郑富仁
邓永红
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to US17/434,016 priority Critical patent/US20220140389A1/en
Publication of WO2020207450A1 publication Critical patent/WO2020207450A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and specifically relates to a solid electrolyte and polymer lithium ion batteries.
  • lithium-ion batteries Compared with traditional electrochemical energy devices such as lead-acid batteries, nickel-metal hydride batteries, and nickel-chromium batteries, lithium-ion batteries have the advantages of high energy density, high working voltage, no memory effect, long cycle life, and environmental friendliness. Computers and other electronic and electrical fields have been widely used. Traditional lithium-ion batteries use low-flash point carbonate solvents and liquid electrolytes composed of lithium salts and additives, which poses great safety hazards when the temperature rises due to battery abuse. On the other hand, as electronic digital products, electric vehicles, large-scale energy storage devices put forward higher requirements for energy density, lithium-ion batteries are gradually adopting high nickel, high voltage ternary cathode materials and anode materials such as silicon, silicon carbon, and lithium metal. , These materials have a series of problems such as large volume expansion and easy decomposition in applications, which pose a greater challenge to the safety design of batteries.
  • solid electrolyte instead of low flash point electrolyte can fundamentally improve the safety performance of the battery.
  • polymer solid electrolyte Compared with inorganic oxide solid electrolyte and sulfide solid electrolyte, polymer solid electrolyte has the advantages of low raw material cost, simple processing technology, and good electrode-electrolyte interface contact.
  • solid electrolytes, especially polymer solid electrolytes have poor ion conductivity, which greatly limits their applications. It is generally believed that the lithium ion transport in polymer electrolytes realizes position migration through segment swing, and its migration rate is limited by the swing speed of polymer segments.
  • the room temperature ion conductivity of polymer electrolytes can only reach 1*10 -6 About Scm -2 , it cannot meet the requirements.
  • its use temperature In order to achieve the high ionic conductivity of the polymer electrolyte, its use temperature must be increased. Taking PEO-LiTFSI as an example, when the temperature rises to 80°C, the ionic conductivity reaches 1*10 -3 Scm -2 (H.Zhang et al./Electrochimica Acta 133(2014)529–538).
  • increasing the operating temperature of the battery requires an additional heating system. On the one hand, it will increase the cost and reduce the energy density of the entire system.
  • high-temperature operation will accelerate the attenuation of the battery, which is detrimental to the practical application of the battery.
  • plasticizers added to solid electrolytes is a common method to improve the ionic conductivity of solid electrolytes.
  • the amount of plasticizers is greater than 10% by weight. Adding plasticizers will increase the flammability of the battery. On the other hand, plasticizers can cause a decrease in the mechanical strength of the electrolyte.
  • lithium salt anions when the concentration of lithium salt is higher than a certain threshold, lithium salt anions will form anion clusters and agglomerate Anion clusters increase the activation energy of lithium ion transport, thereby reducing the ionic conductivity of the high-concentration lithium salt organic electrolyte system.
  • the present invention provides a solid electrolyte and a polymer lithium ion battery.
  • the present invention provides a solid electrolyte comprising a polymer, a lithium salt and an additive, the additive being selected from aprotic organic solvents with a carbon number of less than 10 and a relative dielectric constant of more than 3.6;
  • the weight content of the lithium salt is 30% to 90%, and the weight content of the additive is 0.01% to 2%.
  • the weight content of the lithium salt is 50% to 80%.
  • the additives are selected from nitriles, sulfones, sulfoxides, sulfates, sulfites, sulfonates, ketones, ethers, carboxylates, carbonates, and phosphates.
  • the additives are selected from dimethyl sulfoxide, sulfolane, 1,3 propane sultone, ⁇ -butyrolactone, ethyl acetate, trimethyl borate, trimethyl phosphate, dimethyl oxalate, carbonic acid
  • dimethyl ester ethylene carbonate, propylene carbonate, N-methylpyrrolidone, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, ethylene glycol dimethyl ether, acetonitrile and succinonitrile or Many kinds.
  • the dielectric constant of the polymer is greater than 2.
  • the polymer is selected from one or more of homopolymers or copolymers containing halogenated or non-halogenated repeating units; wherein, the repeating unit is selected from halogenated or non-halogenated Alkylene oxide compounds, halogenated or non-halogenated siloxane compounds, halogenated or non-halogenated olefin compounds, halogenated or non-halogenated acrylate compounds, halogenated or non-halogenated carboxylic acid One or more of acid ester compounds, halogenated or non-halogenated carbonate compounds, halogenated or non-halogenated amide compounds, and halogenated or non-halogenated cyano group-containing compounds.
  • the repeating unit is selected from halogenated or non-halogenated Alkylene oxide compounds, halogenated or non-halogenated siloxane compounds, halogenated or non-halogenated olefin compounds, halogenated or non-halogenated acrylate compounds, hal
  • the weight average molecular weight of the polymer is 1,000-10,000,000.
  • the lithium salt includes LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiSCN, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiBF 2 C 2 O 4 , LiB(C 2 O 4 ) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 F)(SO 2 CF 3 ), LiC(SO 2 CF 3 ) 3 and LiPF 2 (C 2 O 4 ) One or more of them.
  • the solid electrolyte further includes an inorganic filler and a porous structure support layer;
  • the weight content of the inorganic filler is less than or equal to 40%, and the inorganic filler includes LiF, LiCl, Li 2 CO 3 , SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , MgO, Li 7 La 3 Zr 2 O 12 , Li x La 3 Zr y A 2-y O 12 , sulfide electrolyte, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 ( PO 4 ) 3 , Li 2.88 PO 3.73 N 0.14 , one or more of montmorillonite, kaolin and diatomaceous earth, wherein in Li x La 3 Zr y A 2-y O 12 , A is selected from Ta, One of Al and Nb, 6 ⁇ x ⁇ 7, 0.5 ⁇ y ⁇ 2;
  • the porous structure support layer includes one or more of PVDF, PVDF-HFP, polyimide, cellulose and its modified products, nylon, polyethylene, polypropylene, glass fiber and carbon fiber.
  • the present invention provides a polymer lithium ion battery, including a positive electrode, a negative electrode, and the solid electrolyte as described above.
  • a high molecular polymer is used as an electrolyte, a lithium salt with a weight content of 30% to 90% is added, and an aprotic organic solvent with a small molecule and a high dielectric constant is introduced as an additive.
  • Its main function is It complexes with lithium ions and cooperates with the anion cluster network to form a large number of lithium ion transport channels that do not depend on the movement of the chain segment, which can effectively inhibit the crystallization phenomenon in the solid electrolyte and promote the transport of lithium ions in the electrolyte to achieve the solid electrolyte at room temperature Increase in ion conductivity.
  • the present invention discloses a solid electrolyte, which comprises a polymer, a lithium salt and an additive, and the additive is selected from aprotic organic solvents with a number of carbon atoms less than 10 and a relative dielectric constant higher than 3.6;
  • the weight content of the lithium salt is 30% to 90%, and the weight content of the additive is 0.01% to 2%.
  • the weight content of the lithium salt in the solid electrolyte is 30% to 90%, and the weight content of the additive is 0.01% to 2%, on the one hand, due to the increase in the concentration of the lithium salt, the anions after the dissociation of the lithium salt agglomerate to form anion clusters , which greatly improves the migration number of lithium ions in the polymer; on the other hand, the lithium salt can be dissolved by the polymer and does not separate out or form a co-crystal with the polymer to precipitate out, inhibiting the agglomeration of anionic clusters and further improving the ion conductivity.
  • the weight content of the lithium salt may be 30%, 31%, 33%, 38%, 40%, 43%, 51%, 54%. %, 60%, 64%, 67%, 72%, 75%, 81%, 84%, 88% or 90%; the weight content of the additive can be 0.01%, 0.05%, 0.1%, 0.3%, 0.6 %, 1%, 1.2%, 1.5%, 1.8% or 2.0%.
  • the weight content of the lithium salt is 50% to 80%.
  • the lithium salt dissolves in the polymer, and the polar functional groups in the polymer (such as -CH 2 -CH 2 O- in polyethylene oxide) form complexes with lithium ions.
  • Anions are distributed between polymer segments. Lithium ions realize ion migration through the movement of polymer segments, which is limited by the efficiency of lithium ion migration.
  • the ion migration number of electrolyte at room temperature is generally less than 10 -5 S ⁇ cm -2 ;
  • the weight content of the lithium salt is too high, the lithium salt cannot be completely dissociated by the polymer, and the lithium salt or the eutectic between the lithium salt and the polymer will precipitate in the form of crystals, and the conductivity of the electrolyte will decrease.
  • the weight content of the additive is 0.01% to 1%, and more preferably, the weight content of the additive is 0.1% to 1%.
  • the amount of plasticizer needs to be greater than 10% by weight, which will increase the safety risk of battery flammability.
  • the increase of plasticizer will cause the decrease of the mechanical strength of the electrolyte.
  • the additive provided by the invention can obviously improve the ionic conductivity of the solid electrolyte with a small addition amount, and at the same time, the impact on the safety of the battery and the impact on the mechanical strength of the battery can be ignored.
  • the additive used in the present invention is different from the traditional liquid plasticizer. Its main function is to complex with lithium ions, cooperate with the anion cluster network, and form many lithium ion transport channels that do not depend on the movement of chain segments, thereby greatly improving the polymer electrolyte Ionic conductivity at room temperature.
  • the additives used in the present invention are selected from aprotic organic solvents with carbon numbers lower than 10 and relative dielectric constant higher than 3.6.
  • the formation of solvated ions reduces the activation energy of lithium ions.
  • the relative dielectric constant of the additive is too low, the dissociation ability of the lithium salt is insufficient; when the carbon number of the additive is too high, the viscosity of the additive increases or becomes solid, which is not conducive to the solvation process of lithium ions.
  • the additives are selected from nitriles, sulfones, sulfoxides, sulfates, sulfites, sulfonates, ketones, ethers, carboxylates, carbonates, One or more of phosphate, borate, silicate, and amide.
  • the additive is selected from dimethyl sulfoxide, sulfolane, 1,3-propane sultone, ⁇ -butyrolactone, ethyl acetate, trimethyl borate, trimethyl phosphate, and oxalic acid Dimethyl, dimethyl carbonate, ethylene carbonate, propylene carbonate, N-methylpyrrolidone, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, ethylene glycol dimethyl ether, acetonitrile and succinonitrile One or more of.
  • the dielectric constant of the polymer is greater than 2, preferably greater than 2.8.
  • the relative dielectric constant of the polymer electrolyte of the present invention is greater than 2, which is due to the dissociation ability of the polymer to the lithium salt when the weight content of the lithium salt is 30% to 90% when the polarity of the polymer is small Not enough, the lithium salt cannot be uniformly dispersed in the polymer, and the insoluble lithium salt will greatly reduce the lithium ion migration speed.
  • the polymer is selected from one or more of homopolymers or copolymers containing halogenated or non-halogenated repeating units; wherein, the repeating unit is selected from halogenated or non-halogenated Of alkylene oxide compounds, halogenated or non-halogenated siloxane compounds, halogenated or non-halogenated olefin compounds, halogenated or non-halogenated acrylate compounds, halogenated or non-halogenated One or more of carboxylic acid ester compounds, halogenated or non-halogenated carbonate compounds, halogenated or non-halogenated amide compounds, and halogenated or non-halogenated cyano group-containing compounds.
  • the repeating unit is selected from halogenated or non-halogenated Of alkylene oxide compounds, halogenated or non-halogenated siloxane compounds, halogenated or non-halogenated olefin compounds, halogenated or non-halogenated acrylate compounds,
  • the weight average molecular weight of the polymer is 1,000-10,000,000.
  • the weight-average molecular weight of the polymer is within the above range, the degree of polymerization of the polymer is controlled within an appropriate range, so that not only a higher ion conductivity and lithium cation transference number can be obtained, but also A solid polymer electrolyte with excellent mechanical strength and electrochemical stability.
  • the weight average molecular weight of the polymer is too low, the mechanical properties of the electrolyte are insufficient and present in the form of liquid or semi-solid. After being prepared into a solid electrolyte, the growth of lithium dendrites during battery cycling cannot be inhibited, which may cause battery short circuit.
  • weight average molecular weight (Mw) can mean the conversion value of a standard polyethylene oxide measured by gel permeation chromatography (GPC), which means that the polymer solution is passed through a separation column composed of a porous carrier. , The position of the macromolecules with different molecular volumes inside the column is different, and the residence time is different, so as to obtain the separation method test.
  • GPC gel permeation chromatography
  • the lithium salt includes LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiSCN, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiBF 2 C 2 O 4 , LiB ( C 2 O 4 ) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 F)(SO 2 CF 3 ), LiC(SO 2 CF 3 ) 3 and LiPF 2 (C 2 O 4 ) one or more of them.
  • the lithium salt is easily dissociated in the selected polymer. When the content of the lithium salt is increased, it will not separate or form a co-crystal precipitation of the lithium salt and the polymer.
  • the lithium salt is selected from LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 F)(SO 2 CF 3 ), LiC(SO 2 CF 3 ) 3 , LiPF 2 (C 2 O 4 ) one or more of them, or Complex with other salts.
  • the solid electrolyte further includes an inorganic filler.
  • the inorganic filler inhibits polymer crystallization, and at the same time the inorganic particles interact with the electrolyte interface, which can provide higher conductivity of the electrolyte; on the other hand, the addition of inorganic filler will also increase the mechanical strength of the electrolyte.
  • the weight content of the inorganic filler is less than or equal to 40%.
  • the weight content of the inorganic filler is higher than 40%, the mechanical strength of the solid electrolyte is affected, and the film-forming properties become poor.
  • the median particle size d 50 of the inorganic filler is 5 nanometers to 5 microns.
  • the inorganic fillers include LiF, LiCl, Li 2 CO 3 , SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , MgO, Li 7 La 3 Zr 2 O 12 , Li x La 3 Zr y A 2-y O 12.
  • Sulfide electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 2.88 PO 3.73 N 0.14 , one of montmorillonite, kaolin and diatomite Or more, wherein in Li x La 3 Zr y A 2-y O 12 , A is selected from one of Ta, Al and Nb, 6 ⁇ x ⁇ 7, 0.5 ⁇ y ⁇ 2.
  • the sulfide electrolyte is selected from Li 10 GeP 2 S 12 .
  • the solid electrolyte further includes a porous structure support layer, the porous structure support layer includes PVDF, PVDF-HFP, polyimide, cellulose and its modifications, nylon, polyethylene, polypropylene One or more of glass fiber and carbon fiber.
  • the introduction of the porous structure support layer into the above solid electrolyte can support the electrolyte and further improve the mechanical properties of the solid electrolyte.
  • Another embodiment of the present invention discloses a polymer lithium ion battery, including a positive electrode, a negative electrode, and the solid electrolyte as described above.
  • the positive electrode includes a positive active material, a conductive agent and a binder, the cathode active material of LiNi x Co y Mn z L ( 1-xyz) O 2, LiCo x 'L (1-x') O 2, LiNi x "L 'y' Mn ( 2-x" -y ') O 4, Li z' at least one MPO 4; wherein, L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si , or At least one of Fe; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x+y+z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2;L'is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe; 0.5 ⁇ z' ⁇ 1, M is Fe, Mn, Co At least one.
  • the positive electrode active material may be selected from one or more of lithium cobalt oxide, nickel cobalt aluminum, nickel cobalt manganese, lithium iron manganese phosphate, lithium manganate, and lithium iron phosphate.
  • the negative active material of the negative electrode may be a conventional negative electrode material of a lithium ion battery, and the example is not particularly limited.
  • the negative electrode active material that can be used it can be selected from lithium titanate (LTO); carbon, such as non-graphitized carbon and graphitized carbon; LiXFe 2 O 3 (0 ⁇ x ⁇ 1), Li X WO 2 (0 ⁇ x ⁇ 1); lithium metal; lithium alloy; silicon-based alloy; tin-based alloy; metal oxides, such as SnO, SnO 2 , PbO, Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 and Bi 2 O 5 ; conductive polymers such as polyacetylene; Li-Co-Ni-based materials; titanium oxide; and Its analogues.
  • LTO lithium titanate
  • carbon such as non-graphitized carbon and graphitized carbon
  • This embodiment is used to illustrate the solid electrolyte, polymer lithium ion battery and preparation method thereof disclosed in the present invention, including the following operation steps:
  • Film thickness test Use a thickness gauge to test the thickness of 5 points on the solid electrolyte membrane and calculate the average value.
  • Ionic conductivity select platinum sheet as the working electrode, and assemble 2032 button cell.
  • the ohm of the obtained solid electrolyte is expressed as the value of the first intersection of the Nernst curve and the X axis, and S is the area of the solid electrolyte.
  • Preparation of positive electrode sheet Dissolve polyvinylidene fluoride (PVDF) in N-methylpyrrolidone (NMP), and mix LiFePO 4 positive electrode active material, PVDF, conductive carbon black, and the above solid electrolyte in a ratio of 83:4:3:10 Mix by mass ratio, add NMP and grind until the mixture is uniform.
  • the slurry obtained above is uniformly coated on the aluminum foil, with a thickness of 70-100 ⁇ m, first dried at 80°C until there is no obvious liquid, and then vacuum dried at 120°C for 12 hours.
  • a lithium sheet with a thickness of about 35 ⁇ m is used for the negative electrode. Assemble the 2032 button battery in the order of negative case-shrapnel-gasket-lithium sheet-solid electrolyte-positive electrode-gasket-positive case.
  • Battery charging and discharging performance test Blue power tester is used to test the rate and cycle performance of polymer battery charging and discharging.
  • the rate performance test adopts the following methods: charge at a constant current of 0.1C to 3.65V, then charge at a constant voltage until the current drops to 0.20mA, and then use a constant current of 0.1C, 0.2C, 0.5C, 1.0C, and 2.0C. The current is discharged to 2.5V. At each rate, the discharge capacity at different rate discharges was recorded by cycling for 5 weeks.
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • the lithium salt in the solid electrolyte is replaced from LiN(SFO 2 ) 2 to LiPF 2 (C 2 O 4 ).
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • the additive in the solid electrolyte was replaced with adiponitrile from dimethyl sulfoxide.
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • LLZTO powder lithium lanthanum zirconium oxide powder
  • d 50 8 ⁇ m
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • the solid electrolyte solution is infiltrated into the bacterial cellulose membrane.
  • the porosity of the bacterial cellulose membrane is calculated as 85vol% by Archimedes' method.
  • the solid electrolyte solution is then infiltrated. Repeat After this operation until the pores are completely filled with the solid electrolyte, the solid electrolyte membrane is dried under vacuum at 60° C. for 6 hours, and the average thickness of the solid electrolyte membrane is 52 ⁇ m.
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • the solid electrolyte solution After the configuration of the solid electrolyte solution is completed, the solid electrolyte solution is infiltrated into the glass fiber, and the porosity of the glass fiber is calculated as 55vol% by Archimedes method. After the solvent is volatilized at room temperature, the solid electrolyte solution is infiltrated, and the operation is repeated to the pores. After being completely filled with solid electrolyte and vacuum drying at 60°C for 6 hours, the average thickness of the solid electrolyte membrane is 60 ⁇ m.
  • This embodiment is used to illustrate the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 5, and the difference lies in:
  • the thickness of the solid electrolyte membrane was tested to be 53 um, and the positive electrode active material was changed from LiFePO 4 to LiMn 0.5 Fe 0.5 PO 4 .
  • Battery charging and discharging performance test Blue power tester is used to test the rate and cycle performance of polymer battery charging and discharging.
  • the rate performance test adopts the following methods: charge at a constant current of 0.1C to 4.2V, then charge at a constant voltage until the current drops to 0.20mA, and then use a constant current of 0.1C, 0.2C, 0.5C, 1.0C, and 2.0C. Current discharge to 3.0V. At each rate, the discharge capacity at different rate discharges was recorded by cycling for 5 weeks.
  • This embodiment is used to illustrate the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 5, and the difference lies in:
  • the thickness of the solid electrolyte membrane was tested to be 52 ⁇ m, and the positive electrode active material was changed from LiFePO 4 to LiNi 0.6 Mn 0.2 Co 0.2 O 2 .
  • Battery charging and discharging performance test Blue power tester is used to test the rate and cycle performance of polymer battery charging and discharging.
  • the rate performance test adopts the following methods: charge at a constant current of 0.1C to 4.2V, then charge at a constant voltage until the current drops to 0.20mA, and then use a constant current of 0.1C, 0.2C, 0.5C, 1.0C, and 2.0C. Current discharge to 3.0V. At each rate, the discharge capacity at different rate discharges was recorded by cycling for 5 weeks.
  • This embodiment is used to illustrate the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 5, and the difference lies in:
  • the thickness of the solid electrolyte membrane was 54 um after testing, and the positive electrode active material was changed from LiFePO 4 to LiCoO 2 .
  • Battery charging and discharging performance test Blue power tester is used to test the rate and cycle performance of polymer battery charging and discharging.
  • the rate performance test adopts the following methods: charge at a constant current of 0.1C to 4.35V, then charge at a constant voltage until the current drops to 0.20mA, and then use a constant current of 0.1C, 0.2C, 0.5C, 1.0C, and 2.0C. Current discharge to 3.0V. At each rate, the discharge capacity at different rate discharges was recorded by cycling for 5 weeks.
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • LLZTO powder lithium lanthanum zirconium oxide powder
  • d 50 2 ⁇ m
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • the content of lithium salt in the solid electrolyte is 41.2 wt%.
  • This embodiment is used to describe the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of embodiment 1, and the difference lies in:
  • the content of lithium salt in the solid electrolyte is 81.3 wt%.
  • This comparative example is used to compare and illustrate the solid electrolyte, polymer lithium ion battery and preparation method thereof disclosed in the present invention, including most of the operation steps of Example 1, and the difference lies in:
  • Dimethyl sulfoxide is not added to the solid electrolyte.
  • This comparative example is used to compare and illustrate the solid electrolyte, polymer lithium ion battery and preparation method thereof disclosed in the present invention, including most of the operation steps of Example 1, and the difference lies in:
  • the content of lithium salt in the solid electrolyte is 19% by weight.
  • This comparative example is used to compare and illustrate the solid electrolyte, polymer lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps of Example 4, and the difference lies in:
  • the content of adiponitrile in the solid electrolyte is 15 wt%.
  • This comparative example is used to compare and illustrate the solid electrolyte, polymer lithium ion battery and preparation method thereof disclosed in the present invention, including most of the operation steps of Example 1, and the difference lies in:
  • the content of lithium salt in the solid electrolyte is 19 wt%, and dimethyl sulfoxide is not added to the solid electrolyte.
  • Example 1 and Comparative Example 1, Comparative Example 2, and Comparative Example 4 it can be seen that when the lithium salt content in the solid electrolyte is low (19wt%), the ionic conductivity of the solid electrolyte is only 4.7 ⁇ 10 ⁇ 6 S cm -1 , the same small amount of additives added has almost no contribution to the conductivity. This is because when the lithium salt content is low, ion migration is achieved through the migration of polymer chain segments, and a small amount of additives affects the polymer chain. The movement of the segment has no effect, and when the lithium salt content is high (67.7wt%), the lithium ion is complexed by the polymer segment, and the anion will form an ion cluster.
  • Example 2 When a small amount of dimethyl sulfoxide is added, it will assist the lithium ion Migration in the anion cluster, the ion conductivity is greatly improved, from 1.2 ⁇ 10 -5 S cm -1 in Comparative Example 1 to 5.6 ⁇ 10 -4 S cm -1 in Example 1.
  • the room temperature ionic conductivity of the solid electrolytes of Example 2, Example 3, and Example 4 are all greater than 3 ⁇ 10 -4 S cm -1 , indicating that a small amount of functional additives at high lithium salt concentration is beneficial to the migration of lithium ions in the electrolyte. This transmission mechanism is universal.
  • Example 1 and Example 5 Comparing the test results of Example 1 and Example 5, it can be seen that the addition of 5wt% nano-alumina increases the ionic conductivity of the electrolyte from 5.6 ⁇ 10 -4 S cm -1 to 9.8 ⁇ 10 -4 S cm -1 ; Comparing the test results of Example 1 and Example 6, it can be seen that the addition of 20wt% kaolin increases the ionic conductivity of the electrolyte from 5.6 ⁇ 10 -4 S cm -1 to 2.3 ⁇ 10 -3 S cm -1 ; comparative example It can be seen from the test results of 1 and Example 7 that with the addition of 30wt% LLZTO, the ionic conductivity of the electrolyte increases from 5.6 ⁇ 10 -4 S cm -1 to 1.2 ⁇ 10 -3 S cm -1 .
  • Example 1 Through the comparison between Example 1 and Example 5, Example 6, and Example 7, it can be found that the addition of inorganic particles can effectively improve the room temperature ionic conductivity of the solid electrolyte of the present invention.
  • the ion conductivity can reach 1 ⁇ 10 -3 S cm -1 .
  • Example 1 Comparing Example 1 and Example 8, the introduction of bacterial cellulose membrane reduces the ionic conductivity of the electrolyte from 5.6 ⁇ 10 -4 S cm -1 to 2.6 ⁇ 10 -4 S cm -1 , but the electrolyte membrane is mechanically stretched The strength is increased from 60 MPa to 120 MPa; in comparison with Example 1 and Example 9, the introduction of the glass fiber membrane reduces the ionic conductivity of the electrolyte from 5.6 ⁇ 10 -4 S cm -1 to 1.5 ⁇ 10 -4 S cm -1 , However, the mechanical tensile strength of the electrolyte membrane increased from 60 MPa to 150 MPa.
  • Example 1 Through the comparison of Example 1 with Example 8, and Example 9, it can be found that the addition of porous framework can effectively improve the mechanical tensile strength of the electrolyte, while the ionic conductivity of the electrolyte can also be maintained at 1 ⁇ 10 -4 S cm -1 the above.
  • Example 1 to Example 17 in Table 2 From the battery performance results of Example 1 to Example 17 in Table 2, it can be seen that the battery prepared with the solid electrolyte of the present invention has a 0.1C discharge capacity of more than 85% of the theoretical capacity at 45°C, and LFP is used as the positive electrode.
  • the battery has a capacity retention rate of more than 90% at 0.2C cycles for 100 weeks, indicating that increasing the ionic conductivity of the electrolyte can effectively reduce the operating temperature of the solid-state lithium-ion battery.
  • Example 10 From the results of Example 10, Example 11, and Example 12, it can be seen that when different cathode materials, such as LFMP, NMC, and LiCoO 2 are used as cathode materials, the battery charge and discharge voltage ranges are 2.7V-4.3V, 2.75V- At 4.2V, 3.0V-4.4V, the battery can also be charged and discharged, but the capacity retention rate of 100 cycles is reduced, indicating that the solid electrolyte provided by the present invention has better coordination with the positive electrode active material with low charge and discharge voltage The effect is conducive to maintaining the capacity of the battery for a long time. Comparing Example 1 with Example 8, and Example 9, it can be found that when the porous framework is introduced into the electrolyte, the capacity retention rate of the battery during 100 cycles is improved. This is because the introduction of the porous framework improves the mechanical strength of the electrolyte and inhibits the metal Dendritic growth of lithium negative electrode.
  • cathode materials such as LFMP, NMC, and LiCoO 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有聚合物固态电解质存在离子电导率低的问题,本发明提供了一种固态电解质,包括聚合物、锂盐和添加剂,所述添加剂选自碳原子数低于10、相对介电常数高于3.6的非质子有机溶剂;以所述固态电解质的总重量为100%计,所述锂盐的重量含量为30%~90%,所述添加剂的重量含量为0.01%~2%。同时,本发明还公开了包括上述固态电解质的制聚合物锂离子电池。本发明提供的固态电解质引入微量小分子高介电常数的非质子有机溶剂作为添加剂,能够有效抑制固态电解质中的结晶现象,并促进锂离子在电解质中的传输,实现固态电解质室温下离子电导率的提升。

Description

一种固态电解质及聚合物锂离子电池 技术领域
本发明属于锂离子电池技术领域,具体涉及一种固态电解质及聚合物锂离子电池。
背景技术
相比于铅酸电池、镍氢电池、镍铬电池等传统电化学能源器件,锂离子电池具有能量密度高、工作电压高、无记忆效应、循环寿命长和环境友好等优点,在手机、笔记本电脑等电子电器领域得到了广泛的应用。传统锂离子电池采用低闪点的碳酸酯类溶剂和锂盐、添加剂组成的液态电解液,在电池滥用造成温度升高时,存在极大的安全隐患。另一方面伴随电子数码产品、电动车、大型储能装置等对能量密度提出更高的要求,锂离子电池逐渐采用高镍、高电压三元正极材料及硅、硅碳、金属锂等负极材料,这些材料在应用中存在体积膨胀大、易分解等一系列难题,对电池的安全设计是更大的挑战。
采用固态电解质替代低闪点电解液,可以从根本上提高电池的安全性能。相较于无机氧化物固态电解质和硫化物固态电解质,聚合物固态电解质具有原料成本低、加工工艺简单、电极电解质界面接触良好等优点。但与液态电解质相比,固态电解质尤其是聚合物固态电解质离子导电性差,极大的限制了其应用。一般认为,聚合物电解质中锂离子传输是通过链段摆动实现位置迁移的,其迁移速率受限于聚合物链段的摆动速度,通常聚合物电解质室温离子电导率仅能达到1*10 -6Scm -2左右,不能满足要求。为了实现聚合物电解质的高离子电导率,必须提高其使用温度,以PEO-LiTFSI为例,当温度升高到80℃时,离子电导率才达到1*10 -3Scm -2(H.Zhang et al./Electrochimica Acta 133(2014)529–538)。但提高电池的运行温度需要额外的加热系统,一方面会增加成本、降低全系统的能量密度,另一方面也高温运行会加速电池的衰减,对电池的实际应用不利。
为了解决聚合物电解质的离子电导率,学者们做了很多努力,但目前室温离子电导率并没有得到显著改善,并被认为是聚合物固态电解质的局限而被指 出。
在目前的一些研究中,在固态电解质中添加增塑剂是提高固态电解质离子电导率的常用手段,通常增塑剂的用量大于10重量%,添加增塑剂的方式一方面会增加电池易燃的安全风险,另一方面增塑剂会引起电解质机械强度的下降。
在另一些研究中,提高锂离子浓度来提升电导率是本领域的常规思路,但是在有机电解液体系中,当锂盐浓度高于某一阈值后,锂盐阴离子会形成阴离子簇,团聚的阴离子簇会增加锂离子传输活化能,从而降低高浓度锂盐有机电解液体系的离子电导率。
另外,提升聚合物电解质中锂盐浓度,当锂盐与聚合物匹配性不好且锂盐浓度高于一定阈值时,无法在聚合物中完全解离,发生相分离,锂盐或聚合物与锂盐复合物结晶会析出,极大的降低电解质的离子电导率。如在PEO-LiTFSI体系中,增加LiTFSI浓度时,会有PEO/LiTFSI摩尔比为3/1、6/1的共晶体以及LiTFSI的晶体析出,使得整体电解质离子电导率急剧下降(M.Marzantowicz et al/Solid State Ionics,179(2008)1670-1678)。
发明内容
针对现有聚合物固态电解质存在离子电导率低的问题,本发明提供了一种固态电解质及聚合物锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种固态电解质,包括聚合物、锂盐和添加剂,所述添加剂选自碳原子数低于10、相对介电常数高于3.6的非质子有机溶剂;
以所述固态电解质的总重量为100%计,所述锂盐的重量含量为30%~90%,所述添加剂的重量含量为0.01%~2%。
可选的,以所述固态电解质的总重量为100%计,所述锂盐的重量含量为50%~80%。
可选的,所述添加剂选自腈类、砜类、亚砜类、硫酸酯类、亚硫酸酯类、磺酸酯类、酮类、醚类、羧酸酯类、碳酸酯类、磷酸酯类、硼酸酯类、硅酸酯类和酰胺类中的一种或多种。
可选的,所述添加剂选自二甲亚砜、环丁砜、1,3丙烷磺内酯、γ-丁内酯、乙酸乙酯、硼酸三甲酯、磷酸三甲酯、草酸二甲酯、碳酸二甲酯、碳酸乙烯酯、碳酸丙烯酯、N-甲基吡咯烷酮、丙酮、甲乙酮、四氢呋喃、1,3-二氧戊环、乙二 醇二甲醚、乙腈和丁二腈中的一种或多种。
可选的,所述聚合物的介电常数大于2。
可选的,所述聚合物选自含有卤代或未卤代的重复单元的均聚物或共聚物中的一种或多种;其中,所述重复单元选自卤代或未卤代的环氧烷烃类化合物、卤代或未卤代的硅氧烷类化合物、卤代或未卤代的烯烃类化合物、卤代或未卤代的丙烯酸酯类化合物、卤代或未卤代的羧酸酯类化合物、卤代或未卤代的碳酸酯类化合物、卤代或未卤代的酰胺类化合物、卤代或未卤代的含氰基化合物中的一种或多种。
可选的,所述聚合物的重均分子量为1,000~10,000,000。
可选的,所述锂盐包括LiBr、LiI、LiClO 4、LiBF 4、LiPF 6、LiSCN、LiB 10Cl 10、LiCF 3SO 3、LiCF 3CO 2、LiBF 2C 2O 4、LiB(C 2O 4) 2、LiN(SO 2CF 3) 2、LiN(SO 2F) 2、LiN(SO 2F)(SO 2CF 3)、LiC(SO 2CF 3) 3和LiPF 2(C 2O 4)中的一种或多种。
可选的,所述固态电解质还包括无机填料和多孔结构支撑层;
以所述固态电解质的总重量为100%计,所述无机填料的重量含量小于等于40%,所述无机填料包括LiF、LiCl、Li 2CO 3、SiO 2、Al 2O 3、TiO 2、ZrO 2、MgO、Li 7La 3Zr 2O 12、Li xLa 3Zr yA 2-yO 12、硫化物电解质、Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 1.5Al 0.5Ge 1.5(PO 4) 3、Li 2.88PO 3.73N 0.14、蒙脱土、高岭土和硅藻土中的一种或多种,其中,Li xLa 3Zr yA 2-yO 12中,A选自Ta,Al,Nb中的一种,6≤x≤7,0.5≤y≤2;
所述多孔结构支撑层包括PVDF、PVDF-HFP、聚酰亚胺、纤维素及其改性物、尼龙、聚乙烯、聚丙烯、玻璃纤维和碳纤维中的一种或多种。
另一方面,本发明提供了一种聚合物锂离子电池,包括正极、负极和如上所述的固态电解质。
根据本发明提供的固态电解质,以高分子聚合物作为电解质,加入重量含量为30%~90%的锂盐,同时引入微量小分子高介电常数的非质子有机溶剂作为添加剂,其主要作用是与锂离子络合,协同阴离子簇网络,形成大量不依赖于链段运动的锂离子传输通道,能够有效抑制固态电解质中的结晶现象,并促进锂离子在电解质中的传输,实现固态电解质室温下离子电导率的提升。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。
本发明公开了一种固态电解质,包括聚合物、锂盐和添加剂,所述添加剂选自碳原子数低于10、相对介电常数高于3.6的非质子有机溶剂;
以所述固态电解质的总重量为100%计,所述锂盐的重量含量为30%~90%,所述添加剂的重量含量为0.01%~2%。
当固态电解质中锂盐的重量含量为30%~90%,且所述添加剂的重量含量为0.01%~2%时,一方面由于锂盐浓度提升,锂盐解离后的阴离子团聚形成阴离子簇,极大提升了聚合物中锂离子迁移数;另一方面锂盐可以被聚合物溶解并不单独析出或与聚合物形成共晶体析出,抑制阴离子簇的团聚,进一步提高离子电导率。
在一些实施例中,以所述固态电解质的总重量为100%计,所述锂盐的重量含量可以为30%、31%、33%、38%、40%、43%、51%、54%、60%、64%、67%、72%、75%、81%、84%、88%或90%;所述添加剂的重量含量可以为0.01%、0.05%、0.1%、0.3%、0.6%、1%、1.2%、1.5%、1.8%或2.0%。
在一些实施例中,以所述固态电解质的总重量为100%计,所述锂盐的重量含量为50%~80%。
当锂盐重量含量过低时,锂盐溶解在聚合物中,聚合物中的极性官能团(如聚环氧乙烷中的-CH 2-CH 2O-)与锂离子形成络合物,阴离子分布于聚合物链段间,锂离子通过聚合物链段的运动实现离子迁移,受限于锂离子迁移方式的效率,室温下电解质的离子迁移数一般低于10 -5S·cm -2;当锂盐重量含量过高时,锂盐无法被聚合物完全解离,锂盐或锂盐与聚合物的共晶体会以晶体形式析出,电解质的电导率降低。
在一些实施例中,以所述固态电解质的总重量为100%计,所述添加剂的重量含量为0.01%~1%,更优选的,所述添加剂的重量含量为0.1%~1%。
目前,现有技术中存在向固态电解质中添加增塑剂的技术方案。但是,增塑剂的用量需大于10重量%,这一方面会增加电池易燃的安全风险,另一方面增塑剂增加会引起电解质机械强度的下降。本发明提供的添加剂可在较小的添加量下明显改善固态电解质的离子电导率,同时对电池安全性的影响和电池机械强度的影响均可忽略不计。本发明所使用的添加剂区别于传统液态增塑剂,其主要作用是与锂离子络合,协同阴离子簇网络,形成许多不依赖于链段运动的锂离子传输通道,从而大幅度提高聚合物电解质的室温时离子电导率。
本发明采用的添加剂选自碳数低于10,相对介电常数高于3.6的非质子有机溶剂。所述添加剂的相对介电常数越高,其具有极性越高,对锂盐的溶解度越高,可以协助聚合物中锂盐的解离,添加剂与锂盐解离后的锂离子络合,形成溶剂化离子,降低锂离子活化能。当添加剂的相对介电常数过低时,对锂盐的解离能力不足;当添加剂的碳数过高时,添加剂粘度增加或呈固态,不利于锂离子的溶剂化过程。
在一些实施例中,所述添加剂选自腈类、砜类、亚砜类、硫酸酯类、亚硫酸酯类、磺酸酯类、酮类、醚类、羧酸酯类、碳酸酯类、磷酸酯类、硼酸酯类、硅酸酯类和酰胺类中的一种或多种。
在更优选的实施例中,所述添加剂选自二甲亚砜、环丁砜、1,3-丙烷磺内酯、γ-丁内酯、乙酸乙酯、硼酸三甲酯、磷酸三甲酯、草酸二甲酯、碳酸二甲酯、碳酸乙烯酯、碳酸丙烯酯、N-甲基吡咯烷酮、丙酮、甲乙酮、四氢呋喃、1,3-二氧戊环、乙二醇二甲醚、乙腈和丁二腈中的一种或多种。
在一些实施例中,所述聚合物的介电常数大于2,优选大于2.8。本发明所述聚合物电解质相对介电常数大于2,这是由于当聚合物极性较小时,在锂盐的重量含量为30%~90%的情况下,聚合物对锂盐的解离能力不够,锂盐无法均匀分散在聚合物中,无法溶解的锂盐会极大的降低锂离子迁移速度。
进一步优选情况下,所述聚合物选自含有卤代或未卤代的重复单元的均聚物或共聚物中的一种或多种;其中,所述重复单元选自卤代或未卤代的环氧烷烃类化合物、卤代或未卤代的硅氧烷类化合物、卤代或未卤代的烯烃类化合物、卤代或未卤代的丙烯酸酯类化合物、卤代或未卤代的羧酸酯类化合物、卤代或未卤代的碳酸酯类化合物、卤代或未卤代的酰胺类化合物、卤代或未卤代的含氰基化合物中的一种或多种。
优选情况下,所述聚合物的重均分子量为1,000~10,000,000。
当聚合物的重均分子量在上述范围内时,聚合物的聚合度被控制在适当的范围内,因而可以获得不仅具有较高的离子电导率和锂阳离子迁移数(Lithum cation transference number),而且具有优异的机械强度和电化学稳定性的固态聚合物电解质。当聚合物重均分子量过低时,电解质的机械性能不足,呈现液态或半固态等形态,制备成固态电解质后,无法抑制电池循环过程中的锂枝晶的生长,会引起电池短路。当聚合物重均分子量过高时,聚合物加工困难,不易实现薄层聚合物固态电解质制备。在此,本说明书中,术语“重均分子量(Mw)” 可表示由凝胶渗透色谱仪(GPC)测定的标准聚氧化乙烯的转化值,是将聚合物溶液过由多孔载体组成的分离柱,在柱子内部分子体积不同的大分子所处的位置不同,停留时间不同,从而得到分离的方法测试得到的。
在一些实施例中,所述锂盐包括LiBr、LiI、LiClO 4、LiBF 4、LiPF 6、LiSCN、LiB 10Cl 10、LiCF 3SO 3、LiCF 3CO 2、LiBF 2C 2O 4、LiB(C 2O 4) 2、LiN(SO 2CF 3) 2、LiN(SO 2F) 2、LiN(SO 2F)(SO 2CF 3)、LiC(SO 2CF 3) 3和LiPF 2(C 2O 4)中的一种或多种。
锂盐在选定聚合物中易解离,提高锂盐含量时,也不会单独析出或形成锂盐与聚合物的共晶体析出,优选的,所述锂盐选自LiN(SO 2CF 3) 2、LiN(SO 2F) 2、LiN(SO 2F)(SO 2CF 3)、LiC(SO 2CF 3) 3、LiPF 2(C 2O 4)中一种或多种,或其与其他盐的复合物。
在一些实施例中,所述固态电解质还包括无机填料。
一方面,无机填料的抑制聚合物结晶,同时无机粒子与电解质界面相互作用,可以提供电解质更高的电导率;另一方面,无机填料的加入还会增加电解质的机械强度。
以所述固态电解质的总重量为100%计,所述无机填料的重量含量小于等于40%。
所述无机填料的重量含量高于40%时,固态电解质的机械强度受到影响,成膜性变差。
所述无机填料的中值粒径d 50为5纳米-5微米。
所述无机填料包括LiF、LiCl、Li 2CO 3、SiO 2、Al 2O 3、TiO 2、ZrO 2、MgO、Li 7La 3Zr 2O 12、Li xLa 3Zr yA 2-yO 12、硫化物电解质、Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 1.5Al 0.5Ge 1.5(PO 4) 3、Li 2.88PO 3.73N 0.14、蒙脱土、高岭土和硅藻土中的一种或多种,其中,Li xLa 3Zr yA 2-yO 12中,A选自Ta,Al,Nb中的一种,6≤x≤7,0.5≤y≤2。
在一实施例中,所述硫化物电解质选自Li 10GeP 2S 12
在一些实施例中,所述固态电解质还包括多孔结构支撑层,所述多孔结构支撑层包括PVDF、PVDF-HFP、聚酰亚胺、纤维素及其改性物、尼龙、聚乙烯、聚丙烯、玻璃纤维和碳纤维中的一种或多种。
在上述的固态电解质中引入多孔结构支撑层可以对电解质形成支撑作用,进一步改善固态电解质的机械性能。
本发明的另一实施例公开了一种聚合物锂离子电池,包括正极、负极和如上所述的固态电解质。
所述正极包括正极活性材料、粘结剂和导电剂,所述正极活性材料为LiNi xCo yMn zL (1-x-y-z)O 2、LiCo x’L (1-x’)O 2、LiNi x”L’ y’Mn (2-x-y’)O 4、Li z’MPO 4中的至少一种;其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2;L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
具体的,所述正极活性材料可选自钴酸锂、镍钴铝、镍钴锰、磷酸铁锰锂、锰酸锂、磷酸铁锂中的一种或多种。
所述负极的负极活性材料可以采用锂离子电池的常规负极材料,其实例没有特别限制。作为可使用的负极活性材料的代表性实例,可选自钛酸锂(LTO);碳,诸如非石墨化碳和石墨化碳;LiXFe 2O 3(0≤x≤1)、Li XWO 2(0≤x≤1);锂金属;锂合金;硅系合金;锡系合金;金属氧化物,诸如SnO、SnO 2、PbO、Pb 2O 3、Pb 3O 4、Sb 2O 3、Sb 2O 4、Sb 2O 5、GeO、GeO 2、Bi 2O 3、Bi 2O 4和Bi 2O 5;导电聚合物,诸如聚乙炔;Li-Co-Ni基材料;钛氧化物;及其类似物。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括以下操作步骤:
(1)固态电解质的制备
首先将1.0g二甲亚砜溶解于99g乙腈中配置成1wt%二甲亚砜溶液;再将1.0g分子量为1,000,000的聚环氧乙烷(PEO)和2.13g的LiN(SFO 2) 2溶解于30g乙腈中,搅拌至完全溶解配置成溶液后,再加入1.57g的上述的1wt%的二甲亚砜溶液,得到固态电解质溶液。将上述固态电解质溶液浇铸到聚四氟乙烯的模板中,常温挥发4h,再60℃真空干燥6h,得到固态电解质,电解质膜厚度约为50um。其中锂盐含量67.7wt%,二甲亚砜含量0.5wt%。
(2)固态电解质性能表征:
膜厚度测试:采用厚度计测试固态电解质膜上5个点的厚度,并计算平均值。
离子电导率:选用铂片作为工作电极,组装2032型扣式电池。采用电化学交流阻抗谱来测量固态电解质的阻抗,频率范围为0.01Hz~7000kHz,采用公式 σ=D/RS计算固态电解质的离子电导率,其中,D为固态电解质的厚度,R为交流阻抗测试得到的固态电解质的欧姆,表现为能斯特曲线与X轴的第一个交点的数值,S为固态电解质的面积。
(3)聚合物电池性能测试方法如下:
正极片的制备:将聚偏氟乙烯(PVDF)溶于N-甲基吡咯烷酮(NMP)中,将LiFePO 4正极活性材料、PVDF、导电炭黑、上述固态电解质以83:4:3:10的质量比混合,加入NMP研磨至混合均匀。将上述所得的浆料均匀地涂敷在铝箔上,厚度为70~100μm,先在80℃下烘干至无明显液体,再120℃真空干燥12h。
电池的组装:负极选用厚度约为35μm的锂片。按照负极壳-弹片-垫片-锂片-固态电解质-正极-垫片-正极壳的顺序组装2032扣式电池。
电池充放电性能测试:采用蓝电测试仪测试聚合物电池充放电的倍率和循环性能。循环性能测试采用以下方法:以0.2C的电流恒流充电至3.65V,再恒压充电至电流下降至0.20mA,再以0.2C的电流恒流放电至2.5V。如此循环100周,记录第1周的放电容量和第100周的放电容量,然后根据公式:容量保持率=第100周的放电容量/第1周的放电容量×100%,计算出电池循环的容量保持率。倍率性能测试采用以下方法:以0.1C的电流恒流充电至3.65V,再恒压充电至电流下降至0.20mA,再分别以0.1C、0.2C、0.5C、1.0C、2.0C的电流恒流放电至2.5V。每一个倍率下循环5周记录不同倍率放电时的放电容量。
实施例2
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
将固态电解质中聚合物由聚环氧乙烷替换成环氧乙烷-环氧丙烷共聚物(EO/PO=1:1mol)。
实施例3
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
将固态电解质中锂盐由LiN(SFO 2) 2替换成LiPF 2(C 2O 4)。
实施例4
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
将固态电解质中添加剂由二甲亚砜替换成己二腈。
实施例5
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
在固态电解质溶液配置完成后,加入0.1656g纳米氧化铝粉末,氧化铝粉末颗粒尺寸为8-12nm,d 50=10nm,超声分散后,固态电解质溶液置于聚四氟乙烯模板中干燥,常温挥发4h,再60℃真空干燥6h,得到固态电解质。
实施例6
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
在固态电解质溶液配置完成后,加入0.7864g高岭土粉末,高岭土粉末颗粒尺寸d 50=3μm,超声分散后,固态电解质溶液置于聚四氟乙烯模板中干燥,常温挥发4h,再60℃真空干燥6h,得到固态电解质。
实施例7
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
将固态电解质中添加剂由二甲亚砜替换成邻苯二甲酸二丁酯;
在固态电解质溶液配置完成后,加入1.348g LLZTO粉末(锂镧锆氧粉末),LLZTO粉末颗粒尺寸d 50=8μm,超声分散后,固态电解质溶液置于聚四氟乙烯模板中干燥,常温挥发4h,再60℃真空干燥6h,得到固态电解质。
实施例8
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
在固态电解质溶液配置完成后,固态电解质溶液浸润到细菌纤维素膜中,该细菌纤维素膜的孔隙率通过阿基米德法计算为85vol%,常温挥发溶剂后再浸润该固态电解质溶液,重复该操作至孔隙完全被固态电解质填充后,60℃真空 干燥6h,固态电解质膜的平均厚度为52μm。
实施例9
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
在固态电解质溶液配置完成后,固态电解质溶液浸润到玻璃纤维中,该玻璃纤维的孔隙率通过阿基米德法计算为55vol%,常温挥发溶剂后再浸润该固态电解质溶液,重复该操作至孔隙完全被固态电解质填充后,60℃真空干燥6h,固态电解质膜的平均厚度为60μm。
实施例10
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例5的大部分操作步骤,其不同之处在于:
该固态电解质膜的厚度经测试后的厚度为53um,将正极活性物质材料由LiFePO 4换成LiMn 0.5Fe 0.5PO 4
电池充放电性能测试:采用蓝电测试仪测试聚合物电池充放电的倍率和循环性能。循环性能测试采用以下方法:以0.2C的电流恒流充电至4.2V,再恒压充电至电流下降至0.20mA,再以0.2C的电流恒流放电至3.0V。如此循环100周,记录第1周的放电容量和第100周的放电容量,然后根据公式:容量保持率=第100周的放电容量/第1周的放电容量×100%,计算出电池循环的容量保持率。倍率性能测试采用以下方法:以0.1C的电流恒流充电至4.2V,再恒压充电至电流下降至0.20mA,再分别以0.1C、0.2C、0.5C、1.0C、2.0C的电流恒流放电至3.0V。每一个倍率下循环5周记录不同倍率放电时的放电容量。
实施例11
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例5的大部分操作步骤,其不同之处在于:
该固态电解质膜的厚度经测试后的厚度为52um,将正极活性物质材料由LiFePO 4换成LiNi 0.6Mn 0.2Co 0.2O 2
电池充放电性能测试:采用蓝电测试仪测试聚合物电池充放电的倍率和循环性能。循环性能测试采用以下方法:以0.2C的电流恒流充电至4.2V,再恒压 充电至电流下降至0.20mA,再以0.2C的电流恒流放电至3.0V。如此循环100周,记录第1周的放电容量和第100周的放电容量,然后根据公式:容量保持率=第100周的放电容量/第1周的放电容量×100%,计算出电池循环的容量保持率。倍率性能测试采用以下方法:以0.1C的电流恒流充电至4.2V,再恒压充电至电流下降至0.20mA,再分别以0.1C、0.2C、0.5C、1.0C、2.0C的电流恒流放电至3.0V。每一个倍率下循环5周记录不同倍率放电时的放电容量。
实施例12
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例5的大部分操作步骤,其不同之处在于:
该固态电解质膜的厚度经测试后的厚度为54um,将正极活性物质材料由LiFePO 4换成LiCoO 2
电池充放电性能测试:采用蓝电测试仪测试聚合物电池充放电的倍率和循环性能。循环性能测试采用以下方法:以0.2C的电流恒流充电至4.35V,再恒压充电至电流下降至0.20mA,再以0.2C的电流恒流放电至3.0V。如此循环100周,记录第1周的放电容量和第100周的放电容量,然后根据公式:容量保持率=第100周的放电容量/第1周的放电容量×100%,计算出电池循环的容量保持率。倍率性能测试采用以下方法:以0.1C的电流恒流充电至4.35V,再恒压充电至电流下降至0.20mA,再分别以0.1C、0.2C、0.5C、1.0C、2.0C的电流恒流放电至3.0V。每一个倍率下循环5周记录不同倍率放电时的放电容量。
实施例13
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
将固态电解质中添加剂由二甲亚砜替换成乙二醇二甲醚;
在固态电解质溶液配置完成后,加入1.348g LLZTO粉末(锂镧锆氧粉末),LLZTO粉末颗粒尺寸d 50=2μm,超声分散后,将混合溶液浸润到PVDF-HFP多孔纤维中,该PVDF-HFP多孔纤维通过静电纺丝方法得到,孔隙率通过阿基米德法计算为70vol%,常温挥发溶剂后再浸润该溶液,重复该操作至孔隙完全被固态电解质填充后,60℃真空干燥6h,得到固态电解质。
实施例14
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
将2g二甲亚砜溶解于98.2g乙腈中配置成2wt%二甲亚砜溶液。
实施例15
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
将0.2g二甲亚砜溶解于99.9g乙腈中配置成0.2wt%二甲亚砜溶液。
实施例16
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
固态电解质中锂盐的含量为41.2wt%。
实施例17
本实施例用于说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
固态电解质中锂盐的含量为81.3wt%。
对比例1
本对比例用于对比说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
固态电解质中未加入二甲亚砜。
对比例2
本对比例用于对比说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
固态电解质中锂盐的含量为19wt%。
对比例3
本对比例用于对比说明本发明公开的固态电解质、聚合物锂离子电池及其 制备方法,包括实施例4的大部分操作步骤,其不同之处在于:
固态电解质中己二腈的含量为15wt%。
对比例4
本对比例用于对比说明本发明公开的固态电解质、聚合物锂离子电池及其制备方法,包括实施例1的大部分操作步骤,其不同之处在于:
固态电解质中锂盐的含量为19wt%,且所述固态电解质中未加入二甲亚砜。性能测试
得到的离子电导率测试结果填入表1。
表1
实施例/比较例 25℃离子电导率/S cm -1
实施例1 5.6×10 -4
实施例2 5.2×10 -4
实施例3 3.1×10 -4
实施例4 6.5×10 -4
实施例5 9.8×10 -4
实施例6 2.3×10 -3
实施例7 1.2×10 -3
实施例8 2.6×10 -4
实施例9 1.5×10 -4
实施例13 2.3×10 -4
实施例14 6.3×10 -4
实施例15 3.5×10 -4
实施例16 2.1×10 -4
实施例17 3.1×10 -4
对比例1 1.2×10 -5
对比例2 4.7×10 -6
对比例3 2.5×10 -4
对比例4 1.7×10 -5
对比表1中对比例2和实施例1测试结果可以看出,当固态电解质中添加0.5wt%的二甲亚砜后,电解质的离子电导率从4.7×10 -6S cm -1提升到5.6×10 -4S cm -1,说明少量添加剂的加入在高锂盐含量(67.7wt%)时可以有效的提高电解质的离子电导率。根据实施例1和对比例1、对比例2、对比例4的测试结果可 以看出,当固态电解质中锂盐含量较低(19wt%)时,固态电解质的离子电导率仅有4.7×10 -6S cm -1,同样加入的少量添加剂几乎对电导率不存在什么贡献,这是由于当锂盐含量较低时,离子迁移是通过聚合物链段的迁移实现的,少量添加剂对聚合物链段的移动没有什么作用,而当锂盐含量较高(67.7wt%)时,锂离子被聚合物链段络合,阴离子会形成离子簇,当少量二甲亚砜添加时其会辅助锂离子在阴离子簇中的迁移,离子电导率得到极大提升,从对比例1的1.2×10 -5S cm -1提升到实施例1的5.6×10 -4S cm -1。实施例2、实施例3、实施例4的固态电解质室温离子电导率均大于3×10 -4S cm -1,说明了高锂盐浓度下少量功能添加剂有利于锂离子在电解质中的迁移,该传输机理具有普适性。
对比实施例1和实施例5测试结果可以看出,5wt%纳米氧化铝的加入,使得电解质的离子电导率从5.6×10 -4S cm -1提升到9.8×10 -4S cm -1;对比实施例1和实施例6测试结果可以看出,20wt%高岭土的加入,电解质的离子电导率从5.6×10 -4S cm -1提升到2.3×10 -3S cm -1;对比实施例1和实施例7测试结果可以看出,30wt%LLZTO的加入,电解质的离子电导率从5.6×10 -4S cm -1提升到1.2×10 -3S cm -1。通过实施例1和实施例5、实施例6、实施例7的对比,可以发现无机粒子的加入,可以有效的提高本发明所述固态电解质的室温离子电导率,最优化条件下,25℃的离子电导率可以达到1×10 -3S cm -1
对比实施例1和实施例8,细菌纤维素膜的引入,使得电解质的离子电导率从5.6×10 -4S cm -1降低到2.6×10 -4S cm -1,但电解质膜机械拉伸强度从60MPa提升到120MPa;对比实施例1和实施例9,玻璃纤维膜的引入,使得电解质的离子电导率从5.6×10 -4S cm -1降低到1.5×10 -4S cm -1,但电解质膜机械拉伸强度从60MPa提升到150MPa。通过实施例1和实施例8、实施例9的对比,可以发现多孔骨架的加入可以有效提高电解质的机械拉伸强度,同时电解质的离子电导率也能保持在1×10 -4S cm -1以上。
得到的电池性能测试结果填入表2。
表2
Figure PCTCN2020084077-appb-000001
Figure PCTCN2020084077-appb-000002
从表2的实施例1到实施例17的电池性能结果可以看出,采用本发明所述的固态电解质制备的电池在45℃时0.1C放电容量达到理论容量的85%以上,以LFP为正极的电池,100周0.2C循环的容量保持率在90%以上,说明提高电解质的离子电导率可以有效降低固态锂离子电池的运行温度。从实施例10、实施例11、实施例12结果可以看出,采用不同正极材料,如LFMP、NMC、LiCoO 2作为正极材料时,电池充放电电压范围分别为2.7V-4.3V、2.75V-4.2V、3.0V-4.4V时,电池同样可以实现充放电,但100周循环的容量保持率有所降低,说明本发明提供的固态电解质与低充放电电压的正极活性材料具有更好的配合效果,有利于电池长时间使用的容量保持。对比实施例1和实施例8、实施例9可以发现电解质中引入多孔骨架时,电池循环100周的容量保持率有所提升,这是由于多孔骨架的引入提升了电解质的机械强度,抑制了金属锂负极的枝晶生长。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种固态电解质,其特征在于,包括聚合物、锂盐和添加剂,所述添加剂选自碳原子数低于10、相对介电常数高于3.6的非质子有机溶剂;
    以所述固态电解质的总重量为100%计,所述锂盐的重量含量为30%~90%,所述添加剂的重量含量为0.01%~2%。
  2. 根据权利要求1所述的固态电解质,其特征在于,以所述固态电解质的总重量为100%计,所述锂盐的重量含量为50%~80%。
  3. 根据权利要求1所述的固态电解质,其特征在于,所述添加剂选自腈类、砜类、亚砜类、硫酸酯类、亚硫酸酯类、磺酸酯类、酮类、醚类、羧酸酯类、碳酸酯类、磷酸酯类、硼酸酯类、硅酸酯类和酰胺类中的一种或多种。
  4. 根据权利要求1或3所述的固态电解质,其特征在于,所述添加剂选自二甲亚砜、环丁砜、1,3丙烷磺内酯、γ-丁内酯、乙酸乙酯、硼酸三甲酯、磷酸三甲酯、草酸二甲酯、碳酸二甲酯、碳酸乙烯酯、碳酸丙烯酯、N-甲基吡咯烷酮、丙酮、甲乙酮、四氢呋喃、1,3-二氧戊环、乙二醇二甲醚、乙腈和丁二腈中的一种或多种。
  5. 根据权利要求1所述的固态电解质,其特征在于,所述聚合物的介电常数大于2。
  6. 根据权利要求1所述的固态电解质,其特征在于,所述聚合物选自含有卤代或未卤代的重复单元的均聚物或共聚物中的一种或多种;其中,所述重复单元选自卤代或未卤代的环氧烷烃类化合物、卤代或未卤代的硅氧烷类化合物、卤代或未卤代的烯烃类化合物、卤代或未卤代的丙烯酸酯类化合物、卤代或未卤代的羧酸酯类化合物、卤代或未卤代的碳酸酯类化合物、卤代或未卤代的酰胺类化合物、卤代或未卤代的含氰基化合物中的一种或多种。
  7. 根据权利要求1所述的固态电解质,其特征在于,所述聚合物的重均分子量为1,000~10,000,000。
  8. 根据权利要求1所述的固态电解质,其特征在于,所述锂盐包括LiBr、LiI、LiClO 4、LiBF 4、LiPF 6、LiSCN、LiB 10Cl 10、LiCF 3SO 3、LiCF 3CO 2、LiBF 2C 2O 4、LiB(C 2O 4) 2、LiN(SO 2CF 3) 2、LiN(SO 2F) 2、LiN(SO 2F)(SO 2CF 3)、LiC(SO 2CF 3) 3和LiPF 2(C 2O 4)中的一种或多种。
  9. 根据权利要求1所述的固态电解质,其特征在于,所述固态电解质还包括无机填料和多孔结构支撑层;
    以所述固态电解质的总重量为100%计,所述无机填料的重量含量小于等于40%,所述无机填料包括LiF、LiCl、Li 2CO 3、SiO 2、Al 2O 3、TiO 2、ZrO 2、MgO、Li 7La 3Zr 2O 12、Li xLa 3Zr yA 2-yO 12、硫化物电解质、Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 1.5Al 0.5Ge 1.5(PO 4) 3、Li 2.88PO 3.73N 0.14、蒙脱土、高岭土和硅藻土中的一种或多种,其中,Li xLa 3Zr yA 2-yO 12中,A选自Ta,Al,Nb中的一种,6≤x≤7,0.5≤y≤2;
    所述多孔结构支撑层包括PVDF、PVDF-HFP、聚酰亚胺、纤维素及其改性物、尼龙、聚乙烯、聚丙烯、玻璃纤维和碳纤维中的一种或多种。
  10. 一种聚合物锂离子电池,其特征在于,包括正极、负极和如权利要求1~9任意一项所述的固态电解质。
PCT/CN2020/084077 2019-04-10 2020-04-10 一种固态电解质及聚合物锂离子电池 WO2020207450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/434,016 US20220140389A1 (en) 2019-04-10 2020-04-10 Solid Electrolyte and Polymer Lithium Ion Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910284872.8 2019-04-10
CN201910284872.8A CN110071327A (zh) 2019-04-10 2019-04-10 一种固态电解质及聚合物锂离子电池

Publications (1)

Publication Number Publication Date
WO2020207450A1 true WO2020207450A1 (zh) 2020-10-15

Family

ID=67367374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084077 WO2020207450A1 (zh) 2019-04-10 2020-04-10 一种固态电解质及聚合物锂离子电池

Country Status (3)

Country Link
US (1) US20220140389A1 (zh)
CN (1) CN110071327A (zh)
WO (1) WO2020207450A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512713A (zh) * 2021-09-30 2022-05-17 中国科学院苏州纳米技术与纳米仿生研究所 一种单离子导体聚合物固态电解质及其制备方法和应用

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071327A (zh) * 2019-04-10 2019-07-30 深圳新宙邦科技股份有限公司 一种固态电解质及聚合物锂离子电池
US11916231B2 (en) * 2019-06-18 2024-02-27 Massachusetts Institute Of Technology Electrochemical materials including solid and liquid phases
CN110504481A (zh) * 2019-09-12 2019-11-26 深圳大学 盐掺聚合物型复合固态电解质及其制备方法、锂电池
CN110828890B (zh) * 2019-09-26 2022-12-27 湖南工业大学 一种具有室温高离子电导率的聚合物基固态电解质的制备方法
CN113130977B (zh) * 2019-12-31 2022-10-21 财团法人工业技术研究院 前驱物结构与使用其的离子导电层的制造方法
TWI727587B (zh) 2019-12-31 2021-05-11 財團法人工業技術研究院 前驅物結構、其疊層膜與使用其之離子導電層的製造方法
CN113130984A (zh) * 2019-12-31 2021-07-16 深圳新宙邦科技股份有限公司 一种固态电解质及固态锂离子电池
WO2021166975A1 (ja) * 2020-02-20 2021-08-26 国立大学法人静岡大学 固体電解質、二次電池及びキャパシタ
CN111244532A (zh) * 2020-03-23 2020-06-05 上海汽车集团股份有限公司 一种三维无机聚合物复合固体电解质及三元固态锂电池
CN111446496B (zh) * 2020-03-31 2021-08-03 珠海冠宇电池股份有限公司 一种聚合物固态电解质及其制备方法和应用
CN111463478B (zh) * 2020-03-31 2021-08-17 珠海冠宇电池股份有限公司 一种包括界面缓冲层的固态电池及其制备方法
CN111600067B (zh) * 2020-04-10 2022-01-11 北京理工大学 一种高温型固态电解质及其制备方法和应用
CN113555600B (zh) * 2020-04-26 2023-01-17 深圳新宙邦科技股份有限公司 一种固态电池
US20210336290A1 (en) * 2020-04-27 2021-10-28 The Hong Kong University Of Science And Technology Framework supported solid-state electrolyte composites for all-solid-state batteries
EP4143913A1 (en) * 2020-04-30 2023-03-08 Piersica Inc. Solid-state polymer separator for lithium-ion batteries
CN111883823B (zh) * 2020-06-10 2021-10-26 华南理工大学 一种复合聚合物固态电解质材料及其制备方法和应用
CN111816915A (zh) * 2020-06-10 2020-10-23 天津空间电源科技有限公司 一种高电压聚合物电解质及其固态电池的制备方法
CN111752061B (zh) * 2020-06-22 2023-04-25 中国乐凯集团有限公司 用于柔性电致变色薄膜的准固态电解质及其制备方法
CN111816917B (zh) * 2020-07-23 2022-03-01 浙江大学山东工业技术研究院 一种复合聚合物固态电解质及其制备方法
CN111900468B (zh) * 2020-08-11 2022-08-30 珠海冠宇电池股份有限公司 一种固态电解质及其制备方法和锂离子电池
US11967723B2 (en) * 2020-12-14 2024-04-23 Illinois Institute Of Technology Solid-state electrolyte for lithium air batteries
CN114759256A (zh) * 2021-01-12 2022-07-15 南京博驰新能源股份有限公司 一种固态电解质及其制备方法和应用
CN113346052A (zh) * 2021-06-04 2021-09-03 天津中电新能源研究院有限公司 一种金属锂表面保护方法
CN114497715B (zh) * 2022-04-13 2022-11-15 北京卫蓝新能源科技有限公司 电池用无机氧化物固态电解质分散液及其制备方法和应用
CN117154224A (zh) * 2023-09-15 2023-12-01 常州千沐新能源有限公司 一种能够增溶锂盐的深共晶电解液添加剂、电解液以及锂电池
CN117673644A (zh) * 2023-12-29 2024-03-08 盐山万路达科技有限公司 一种凝胶聚合物电解质隔膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925283A (en) * 1996-08-07 1999-07-20 Mitsui Chemicals, Inc. Ionically conductive polymeric gel electrolyte and solid battery containing the same
JP2000090730A (ja) * 1998-07-15 2000-03-31 Mitsubishi Rayon Co Ltd 高分子ゲル電解質
CN1302309A (zh) * 1999-03-23 2001-07-04 日清纺织株式会社 聚合物、粘结剂树脂、离子导电聚合物电解质组合物和蓄电池
CN103855423A (zh) * 2012-11-29 2014-06-11 沈阳工业大学 液晶离聚物peo/pmma固体电解质及其制备方法
CN105591154A (zh) * 2015-02-13 2016-05-18 中国科学院青岛生物能源与过程研究所 聚碳酸酯类全固态聚合物电解质及其构成的全固态二次锂电池及其制备和应用
CN110071327A (zh) * 2019-04-10 2019-07-30 深圳新宙邦科技股份有限公司 一种固态电解质及聚合物锂离子电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108179A (en) * 1979-02-14 1980-08-19 Seiko Instr & Electronics Ltd Battery
CA2235166C (en) * 1996-08-20 2008-11-25 Daiso Co., Ltd. Polymer solid electrolyte
CN1210332C (zh) * 2002-06-12 2005-07-13 中国科学院化学研究所 一种梳状聚硅氧烷和由其制备的固体电解质及制备方法
JP2004079327A (ja) * 2002-08-16 2004-03-11 Hitachi Maxell Ltd 非水二次電池および非水二次電池用正極とその製造方法
JP4198524B2 (ja) * 2003-05-19 2008-12-17 三井化学株式会社 高分子固体電解質フィルム
US9059448B2 (en) * 2009-01-19 2015-06-16 Toray Industries, Inc. Process for producing polymeric electrolyte membrane
KR101851564B1 (ko) * 2011-10-27 2018-04-25 삼성전자주식회사 리튬 공기 전지용 전해질 및 이를 포함한 리튬 공기전지
CN103113558B (zh) * 2013-01-31 2015-07-01 深圳新宙邦科技股份有限公司 导电性高分子、其合成用氧化剂及固体电容器
CN105981217A (zh) * 2014-01-24 2016-09-28 安提纳国际有限公司 天线模块、天线以及包括该天线模块的移动设备
CN105098234A (zh) * 2015-09-22 2015-11-25 中国科学院物理研究所 固体电解质材料以及包括该固体电解质材料的电解质层、锂离子电池
CN106876725A (zh) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 一种降低固体氧化物燃料电池阴极煅烧温度的方法
KR102134458B1 (ko) * 2016-12-28 2020-07-15 주식회사 엘지화학 전고체 전지 및 이를 위한 고분자 전해질
CN109065945A (zh) * 2018-08-17 2018-12-21 西安交通大学 一种固态电解质膜及其制备方法和应用
CN109256583A (zh) * 2018-08-27 2019-01-22 长沙矿冶研究院有限责任公司 一种有机无机复合全固态电解质及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925283A (en) * 1996-08-07 1999-07-20 Mitsui Chemicals, Inc. Ionically conductive polymeric gel electrolyte and solid battery containing the same
JP2000090730A (ja) * 1998-07-15 2000-03-31 Mitsubishi Rayon Co Ltd 高分子ゲル電解質
CN1302309A (zh) * 1999-03-23 2001-07-04 日清纺织株式会社 聚合物、粘结剂树脂、离子导电聚合物电解质组合物和蓄电池
CN103855423A (zh) * 2012-11-29 2014-06-11 沈阳工业大学 液晶离聚物peo/pmma固体电解质及其制备方法
CN105591154A (zh) * 2015-02-13 2016-05-18 中国科学院青岛生物能源与过程研究所 聚碳酸酯类全固态聚合物电解质及其构成的全固态二次锂电池及其制备和应用
CN110071327A (zh) * 2019-04-10 2019-07-30 深圳新宙邦科技股份有限公司 一种固态电解质及聚合物锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512713A (zh) * 2021-09-30 2022-05-17 中国科学院苏州纳米技术与纳米仿生研究所 一种单离子导体聚合物固态电解质及其制备方法和应用
CN114512713B (zh) * 2021-09-30 2024-01-30 中国科学院苏州纳米技术与纳米仿生研究所 一种单离子导体聚合物固态电解质及其制备方法和应用

Also Published As

Publication number Publication date
US20220140389A1 (en) 2022-05-05
CN110071327A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2020207450A1 (zh) 一种固态电解质及聚合物锂离子电池
US10205190B2 (en) Composite electrolyte including polymeric ionic liquid and inorganic particles and lithium battery including the same
Lu et al. A novel solid composite polymer electrolyte based on poly (ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries
CN103238243B (zh) 电极用粘结剂组合物、电极用浆料、电极、电化学设备以及电极用粘结剂组合物的制造方法及保管方法
KR101794264B1 (ko) 세퍼레이터, 이를 채용한 리튬전지 및 상기 세퍼레이터 제조방법
CN103259039A (zh) 锂电池
CN103500845B (zh) 一种交联聚合物基全固态电解质材料及交联聚氧乙烯醚的应用
US20220200097A1 (en) Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same
US20050170257A1 (en) Organic electrolytic solution and lithium battery using the same
JP4149815B2 (ja) 非イオン性界面活性剤含有電解液とこれを用いるリチウムイオン電池
CN108886149A (zh) 电化学元件用粘接剂
CN113130984A (zh) 一种固态电解质及固态锂离子电池
CN103804892A (zh) 一种聚合物多孔膜及其制备方法和在凝胶聚合物电解质中的应用
CN103855401A (zh) 一种锂离子电池正极极片及其制备方法和含有该极片的锂离子电池
US20110127462A1 (en) Electrode composition for inkjet print, electrode prepared using the electrode composition, and lithium battery comprising the electrode
JP7047181B1 (ja) 非水電解液およびリチウムイオン二次電池
CN112615049B (zh) 固态电解质及包含它的电池
CN113130983B (zh) 一种固态电解质及固态锂离子电池
KR20190088333A (ko) 고체 전해질 전지용 전극 및 그를 포함하는 고체 전해질 전지
JP2015144073A (ja) 非水電解液二次電池
CN110289446B (zh) 一种用于锂离子电池的聚合物电解质及聚合物电池
CN110289392B (zh) 一种用于锂离子电池的聚合物电解质及聚合物电池
EP4147291A1 (en) Advanced solid electrolyte membranes and batteries made therefrom
KR20180007544A (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
CA3167843A1 (en) In-situ polymerized hybrid polymer electrolyte for high voltage lithium batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787048

Country of ref document: EP

Kind code of ref document: A1