WO2018008500A1 - 固体電解質および電池 - Google Patents

固体電解質および電池 Download PDF

Info

Publication number
WO2018008500A1
WO2018008500A1 PCT/JP2017/023844 JP2017023844W WO2018008500A1 WO 2018008500 A1 WO2018008500 A1 WO 2018008500A1 JP 2017023844 W JP2017023844 W JP 2017023844W WO 2018008500 A1 WO2018008500 A1 WO 2018008500A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
polymer
metal salt
present
mol
Prior art date
Application number
PCT/JP2017/023844
Other languages
English (en)
French (fr)
Inventor
孝至 森岡
富永 洋一
Original Assignee
リンテック株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社, 国立大学法人東京農工大学 filed Critical リンテック株式会社
Priority to JP2018526321A priority Critical patent/JPWO2018008500A1/ja
Publication of WO2018008500A1 publication Critical patent/WO2018008500A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte and a battery.
  • Non-Patent Document 1 describes adding a metal oxide such as alumina to a polyethylene oxide electrolyte.
  • Patent Document 1 describes a method for producing an ionic conductor composition containing a polyether polymer and a metal oxide filler.
  • Patent Document 1 describes a method of kneading an ion-conducting polymer and a metal oxide filler in the presence of a boron-containing compound or the like.
  • the strength of the solid electrolyte membrane can be improved by adding a metal oxide filler, the self-supporting property of the solid electrolyte membrane is still not sufficient.
  • An object of the present invention is to provide a solid electrolyte in which the self-supporting property of the film is improved, and a battery using the solid electrolyte.
  • the solid electrolyte according to one embodiment of the present invention includes a polymer, cellulose nanofibers, and a metal salt.
  • the metal salt is preferably an alkali metal salt.
  • the metal salt is preferably a lithium salt.
  • the solid electrolyte which concerns on 1 aspect of this invention, it is preferable that at least 1 type of lithium bis (trifluoromethanesulfonyl) imide and lithium bis (fluoro sulfonyl) imide is included as said lithium salt.
  • the polymer is preferably an aliphatic polycarbonate.
  • the battery according to one embodiment of the present invention includes the solid electrolyte according to one embodiment of the present invention described above.
  • Solid electrolyte Hereinafter, the present invention will be described with reference to embodiments. The present invention is not limited to the contents of the embodiment.
  • the solid electrolyte which concerns on this embodiment contains the polymer demonstrated below, the cellulose nanofiber demonstrated below, and the metal salt demonstrated below.
  • polymer examples include aliphatic polycarbonate, polyalkylene oxide, polyacrylonitrile, polyvinylidene fluoride, and polymethacrylate. These polymers may be used individually by 1 type, and may use 2 or more types together. Further, these polymers may be copolymers having a plurality of types of repeating units. In the case of a copolymer, it may be a random copolymer or a block copolymer. Among these polymers, from the viewpoint of performance as a solid electrolyte, aliphatic polycarbonate or polyalkylene oxide is preferable, and aliphatic polycarbonate is more preferable.
  • Examples of the aliphatic polycarbonate include an aliphatic polycarbonate having a repeating unit represented by the following general formula (1).
  • m is 2 or 3
  • R 1 is independently a hydrogen atom, an alkyl group (such as a methyl group or an ethyl group), or an alkoxy group.
  • the alkyl group and the alkoxy group may have a substituent.
  • R ⁇ 1 > may mutually be same or different.
  • m is preferably 2 from the viewpoint of improving ionic conductivity. From the viewpoint of improving ionic conductivity, R 1 is preferably a hydrogen atom.
  • polyalkylene oxide examples include polyalkylene oxide having a repeating unit represented by the following general formula (2).
  • n is 2 or 3
  • R 2 is independently a hydrogen atom, an alkyl group (such as a methyl group or an ethyl group), or an alkoxy group.
  • the alkyl group and the alkoxy group may have a substituent.
  • R ⁇ 2 > may mutually be same or different.
  • n is preferably 2 from the viewpoint of improving ionic conductivity. From the viewpoint of improving ionic conductivity, R 2 is preferably a hydrogen atom.
  • the molecular weight of the polymer according to the present embodiment when expressed by weight average molecular weight (Mw), is 5,000 or more and 5,000,000 or less in terms of standard polystyrene measured by gel permeation chromatography (GPC) method. Is preferably 10,000 or more and 1,000,000 or less. Moreover, when represented by a number average molecular weight (Mn), it is preferably 3,000 or more and 3,000,000 or less, and more preferably 5,000 or more and 500,000 or less.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1 or more and 10 or less, and more preferably 1.1 or more and 5 or less.
  • the cellulose nanofiber according to the present embodiment is a defibrated cellulose fiber.
  • Cellulose fibers include fibers separated from plant fibers (plant-derived pulp, wood, cotton, hemp, bamboo, cotton, kenaf, hemp, jute, banana, coconut, seaweed, tea leaves, etc.), fibers separated from animal fibers (Fibers separated from animal fibers produced by sea squirts, which are marine animals), and bacterial cellulose (such as bacterial cellulose produced from acetic acid bacteria).
  • plant fibers plant-derived pulp, wood, cotton, hemp, bamboo, cotton, kenaf, hemp, jute, banana, coconut, seaweed, tea leaves, etc.
  • fibers separated from animal fibers Fibers separated from animal fibers produced by sea squirts, which are marine animals
  • bacterial cellulose such as bacterial cellulose produced from acetic acid bacteria.
  • natural cellulose fibers separated from plant fibers are preferable, and natural cellulose fibers separated from pulp or cotton are more preferable.
  • a commercially available cellulose nanofiber can be appropriately used.
  • commercially available cellulose nanofibers include cellulose nanofiber aqueous solution “BiNFi-s” manufactured by Sugino Machine.
  • the average fiber diameter (short axis) of the cellulose nanofiber according to the present embodiment is preferably 10 nm or more and 100 nm or less, preferably 10 nm or more and 40 nm or less, and particularly preferably 15 nm or more and 25 nm or less.
  • the fiber length of the cellulose nanofiber according to this embodiment is preferably 5 ⁇ m or more.
  • the content of cellulose nanofibers in the solid electrolyte is not particularly limited.
  • the content of cellulose nanofibers is preferably more than 0% by mass and 4.5% by mass or less, and 0.1% by mass or more with respect to the total amount of the solid electrolyte. It is more preferably 4% by mass or less, still more preferably 1% by mass or more and 3.5% by mass or less, and particularly preferably 2% by mass or more and 3% by mass or less.
  • content is more than the said minimum, the self-supporting property of a film
  • the content is not more than the above upper limit, the self-supporting property of the membrane can be sufficiently improved, and the ionic conductivity can be improved.
  • Metal salt Although the metal salt which concerns on this embodiment is not specifically limited, For example, at least 1 sort (s) of alkali metal salts can be used. Examples of the alkali metal salt include a lithium salt, a sodium salt, and a potassium salt. These may be used alone or in combination of two or more.
  • the metal salt is more preferably a lithium salt.
  • the metal salt can exist as a cation such as an alkali metal and a counter ion of the cation. If the metal salt is a lithium salt, the energy density is higher.
  • the lithium salt LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiCF 3 COO, LiNO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, Examples include LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) N, and Li (FSO 2 ) 2 N.
  • Li (CF 3 SO 2 ) 2 N lithium bis (trifluoromethanesulfonyl) imide: LiTFSI
  • Li (FSO 2 ) 2 N lithium bis (fluorosulfonyl) imide: LiFSI It is more preferable that at least one of the above is included. Multiple types of metal salts may be included in the solid electrolyte.
  • the content of the metal salt in the solid electrolyte is not particularly limited.
  • the condition indicated by (F1) is satisfied.
  • the value of (z / x) is more preferably 0.8 or more and 2 or less, further preferably 1 or more and 1.6 or less, from the viewpoint of improving ionic conductivity. It is especially preferable that it is 1.3 or less.
  • (z / x) is a metal (a metal derived from a metal salt) with respect to a repeating unit in the polymer of the solid electrolyte.
  • a metal not dissociated from the metal salt The molar ratio is a concept including the Further, (z / x) ⁇ 100 (unit: mol%) is also sometimes referred to as a salt concentration of the solid electrolyte (Salt Concentration).
  • the solid electrolyte according to the present embodiment may contain components other than the polymer, the cellulose nanofiber, and the metal salt according to the present embodiment as long as the object of the present invention is not impaired.
  • the solid electrolyte according to the present embodiment may be a solid that does not include a solvent (a solvent-free solid electrolyte), or may be a gel that includes a solvent (a polymer gel electrolyte).
  • a solvent-free solid electrolyte a solid that does not include a solvent
  • a polymer gel electrolyte a gel that includes a solvent
  • the content of the solvent in the polymer gel electrolyte is usually 30% by mass or more and 99% by mass or less of the entire solid electrolyte.
  • the solid electrolyte according to the present embodiment may contain a filler or other additives.
  • the blending amount is preferably 5% by mass or less based on the total amount of the solid electrolyte.
  • the filler include talc, kaolin, clay, calcium silicate, alumina, zirconia, zinc oxide, antimony oxide, indium oxide, tin oxide, titanium oxide, iron oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, Examples thereof include silica, calcium carbonate, potassium titanate, barium titanate, mica, montmorillonite, and glass fiber. These may be used alone or in combination of two or more.
  • the blending amount is preferably 5% by mass or less, more preferably 1% by mass or less, and more preferably 0.1% by mass or less, based on the total amount of the solid electrolyte. Particularly preferred.
  • the cellulose nanofiber has a higher effect of improving the self-supporting property of the film than these fillers, it is preferable not to contain these fillers in the present embodiment.
  • the blending amount is preferably 5% by mass or less based on the total amount of the solid electrolyte.
  • the method for producing the solid electrolyte according to the present embodiment is not particularly limited.
  • a polymer is obtained by polymerizing a monomer, and then a composite of the polymer and cellulose nanofiber is formed.
  • a method in which a monomer is polymerized in the presence of a metal salt to form a polymer, and a cellulose nanofiber is contained in the polymer for example, a solid electrolyte can be obtained by adding a metal salt and a solvent to the composite of the polymer and cellulose nanofiber according to the present embodiment and dissolving the mixture, and then removing the solvent.
  • the form and configuration of the solid electrolyte according to the present embodiment are not particularly limited. According to the solid electrolyte of this embodiment, since the self-supporting property of the film can be improved, a solid electrolyte film having self-supporting property can be formed.
  • a solid electrolyte membrane having self-supporting properties is excellent in handling.
  • the self-supporting membrane is a membrane that can be handled by being able to peel off the solid electrolyte membrane while maintaining its shape from the support.
  • the solid electrolyte membrane can be manufactured as follows. For example, a mixed solution containing the polymer, cellulose nanofiber, metal salt, and solvent according to this embodiment is applied to the surface of the support to form a coating film, and the solvent in the coating film is removed to form a film. The solid electrolyte membrane can be obtained. At this time, when it is necessary to peel the solid electrolyte membrane from the support, it is preferable that the surface of the support is subjected to a peeling treatment.
  • the solid electrolyte according to the present embodiment can be suitably used for, for example, a battery.
  • Examples of the battery including the solid electrolyte according to this embodiment include a primary battery and a secondary battery.
  • solid electrolyte As a more specific example of the solid electrolyte according to the present embodiment, for example, the following solid electrolyte is given, but the present invention is not limited to such an example.
  • a solid electrolyte containing a polymer, cellulose nanofibers, and a metal salt the polymer is polyethylene carbonate
  • the metal salt is lithium bis (fluorosulfonyl) imide.
  • a polymer, cellulose nanofibers, and a metal salt are included, the polymer is polyethylene carbonate, the metal salt is lithium bis (fluorosulfonyl) imide, and the polymer
  • the number of moles of the repeating unit is x (mol) and the number of moles of the metal in the metal salt is z (mol)
  • the value of (z / x) is 0.8 or more and 1.6 or less.
  • a solid electrolyte may be mentioned.
  • a polymer, cellulose nanofibers, and a metal salt are included, the polymer is polyethylene carbonate, the metal salt is lithium bis (fluorosulfonyl) imide, and the polymer
  • the number of moles of the repeating unit is x (mol) and the number of moles of the metal in the metal salt is z (mol)
  • the value of (z / x) is 0.1 or more and 0.6 or less.
  • the battery according to the present embodiment includes the solid electrolyte according to the present embodiment.
  • the solid electrolyte according to the present embodiment is preferably included as a constituent material of the electrolyte layer of the battery.
  • the battery includes an anode, a cathode, and an electrolyte layer disposed between the anode and the cathode. By setting it as such a structure, the battery excellent in the characteristic can be obtained.
  • a battery it is preferable that it is a secondary battery, and it is more preferable that it is a lithium ion secondary battery.
  • the solid electrolyte membrane may be formed directly on the electrode by applying a mixed solution containing the aforementioned polymer, cellulose nanofiber, metal salt, and solvent to the electrode and removing the solvent.
  • Various members included in the lithium ion secondary battery according to the present embodiment are not particularly limited, and for example, materials generally used for batteries can be used. And even if the solid electrolyte which concerns on this embodiment does not contain a solvent, it has ion conductivity. Therefore, if the battery according to the present embodiment is a battery that includes the solid electrolyte according to the present embodiment and does not include a solvent, the battery can be safely used without leakage.
  • L / (R ⁇ S) (F2)
  • ionic conductivity (unit: S ⁇ cm ⁇ 1 )
  • R resistance (unit: ⁇ )
  • S is a cross-sectional area (unit: cm 2 ) when measuring the solid electrolyte membrane
  • L is The distance between electrodes (unit: cm) is shown.
  • the measurement temperature is 60 ° C.
  • the ion conductivity ( ⁇ ) was calculated from the measurement result of the complex impedance.
  • a solid electrolyte solution was cast on a fluororesin mold, and the dried solid electrolyte having a thickness of 100 ⁇ m was peeled from the fluororesin mold. Those that maintained the independence even after peeling were determined as “A”, and those that could not maintain independence or those that could not be peeled due to the film shape were determined as “B”.
  • Example 1 (Example 1-1 to Example 1-8) (Preparation of cellulose nanofiber / polyethylene carbonate composite) Acetonitrile was added to commercially available polyethylene carbonate (trade name “QPAC-25”, manufactured by EMPOWER MATERIALS) to adjust the polyethylene carbonate to 2% by mass to obtain a polyethylene carbonate solution.
  • an aqueous solution of cellulose nanofiber (trade name “BiNFi-s BMa-120002”, manufactured by Sugino Machine Co., Ltd.) is 90% by mass: 10% by mass.
  • the ratio of the number z of moles of lithium salt to the number of moles x of polyethylene carbonate repeating units (unit: mol%, (z / x) ⁇ 100) is determined for the cellulose nanofiber / polyethylene carbonate composite and LiFSI. , 10 mol%, 20 mol%, 40 mol%, 60 mol%, 80 mol%, 100 mol%, 120 mol%, and 160 mol%, respectively, and after mixing, acetonitrile is added and stirred well to obtain a solid electrolyte solution. Obtained. Thereafter, the solid electrolyte solution was cast on a fluororesin mold, dried at 60 ° C.
  • the solid electrolyte containing cellulose nanofibers has improved membrane independence compared to the solid electrolyte containing no cellulose nanofibers (Comparative Example 1). It was confirmed that FIG. 1 shows the relationship between the salt concentration and the common logarithm of ionic conductivity in Examples 1-5 to 1-8 and Comparative Examples 1-1 to 1-4. As is clear from the results shown in FIG. 1, the solid electrolyte containing cellulose nanofibers (Example 1) was compared with the solid electrolyte containing no cellulose nanofibers (Comparative Example 1) at the same salt concentration. It was confirmed that the ionic conductivity was improved.
  • Example 2 (Example 2-1 to Example 2-4)
  • Cellulose nanofiber / polyethylene carbonate composite commercially available polyethylene carbonate (trade name “QPAC-25”, manufactured by EMPOWER MATERIALS), LiFSI, and a content of cellulose nanofiber in the solid electrolyte of 2.5 mass%
  • the ratio of mole number z of lithium salt to mole number x of repeating units of polyethylene carbonate (unit: mol%, (z / x) ⁇ 100) is 10 mol%, 20 mol%, 40 mol%, and 60 mol, respectively.
  • acetonitrile was added and stirred well to obtain a solid electrolyte solution.
  • the solid electrolyte solution was cast on a fluororesin mold, dried at 60 ° C. for 6 hours under a dry nitrogen atmosphere, and further dried at 60 ° C. for 24 hours under reduced pressure.
  • the salt concentration in the solid electrolyte (unit: mol) %, (Z / x) ⁇ 100) and the content of cellulose nanofiber (unit: mass%, content relative to the total amount of the solid electrolyte) were obtained as shown in Table 3 below.
  • ion conductivity ((sigma)) was measured and the film
  • FIG. 2 shows the relationship between salt concentration and common logarithm of ion conductivity in Examples 1-1 to 1-4 and Examples 2-1 to 2-4.
  • the solid electrolyte (Example 2) in which the content of cellulose nanofibers is small compared to Example 1 is higher than that of Example 1 in the same salt concentration. It was confirmed that the conductivity was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

ポリマーと、セルロースナノファイバーと、金属塩と、を含むことを特徴とする固体電解質。

Description

固体電解質および電池
 本発明は、固体電解質および電池に関する。
 固体電解質は、液体電解質とは異なり、液漏れの心配がなく、軽量かつフレキシブルな電解質膜である。そのため、固体電解質は、リチウムイオンなどを用いた二次電池などへの応用が期待される。
 例えば、非特許文献1には、ポリエチレンオキシド電解質にアルミナなどの金属酸化物を添加することが記載されている。
 また、例えば、特許文献1には、ポリエーテル重合体と、金属酸化物フィラーを含有するイオン伝導体組成物を製造する方法が記載されている。特許文献1には、イオン伝導性高分子と金属酸化物フィラーとを混練する際に、ホウ素含有化合物などを共存させて、混練する方法が記載されている。
特開2006-252878号公報
F. Croce et al., Electrochimica Acta, 46, 2457 (2001)
 金属酸化物フィラーを添加することにより固体電解質膜の強度を向上させることができるものの、固体電解質膜の自立性は未だ十分ではない。
 本発明の目的は、膜の自立性を向上させた固体電解質、およびその固体電解質を用いた電池を提供することである。
 本発明の一態様に係る固体電解質は、ポリマーと、セルロースナノファイバーと、金属塩と、を含む。
 本発明の一態様に係る固体電解質においては、前記ポリマーの繰り返し単位のモル数をx(mol)とし、前記金属塩中における金属のモル数をz(mol)とした場合に、下記数式(F1)で示される条件を満たすことが好ましい。
  0.7≦(z/x)・・・(F1)
 本発明の一態様に係る固体電解質においては、前記セルロースナノファイバーの含有量が、4.5質量%以下であることが好ましい。
 本発明の一態様に係る固体電解質においては、前記金属塩は、アルカリ金属塩であることが好ましい。
 本発明の一態様に係る固体電解質においては、前記金属塩は、リチウム塩であることが好ましい。
 本発明の一態様に係る固体電解質においては、前記リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)イミドおよびリチウムビス(フルオロスルホニル)イミドの少なくとも一種を含むことが好ましい。
 本発明の一態様に係る固体電解質においては、前記ポリマーは、脂肪族ポリカーボネートであることが好ましい。
 本発明の一態様に係る電池は、前述の本発明の一態様に係る固体電解質を含む。
 本発明によれば、膜の自立性を向上させた固体電解質、およびその固体電解質を用いた電池を提供できる。
実施例1および比較例1における塩濃度とイオン伝導度の常用対数との関係を示すグラフである。 実施例1および実施例2における塩濃度とイオン伝導度の常用対数との関係を示すグラフである。
 [固体電解質]
 以下、本発明について実施形態を例に挙げて説明する。本発明は実施形態の内容に限定されない。
 本実施形態に係る固体電解質は、以下説明するポリマーと、以下説明するセルロースナノファイバーと、以下説明する金属塩と、を含む。
 (ポリマー)
 本実施形態に係るポリマーとしては、脂肪族ポリカーボネート、ポリアルキレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、およびポリメタクリレートなどが挙げられる。これらのポリマーは1種を単独で用いてもよく、2種以上を併用してもよい。さらに、これらのポリマーは、複数種の繰り返し単位を有する共重合体であってもよい。共重合体の場合には、ランダム共重合体であっても、ブロック共重合体であってもよい。
 これらのポリマーの中でも、固体電解質としての性能の観点から、脂肪族ポリカーボネート、またはポリアルキレンオキシドが好ましく、脂肪族ポリカーボネートがより好ましい。
 脂肪族ポリカーボネートとしては、例えば、下記一般式(1)で表される繰り返し単位を有する脂肪族ポリカーボネートが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 前記一般式(1)において、mは2または3であり、Rは、それぞれ独立に、水素原子、アルキル基(メチル基、およびエチル基など)、または、アルコキシ基である。ここで、アルキル基およびアルコキシ基は、置換基を有していてもよい。また、複数のRは、互いに同一でも異なっていてもよい。
 本実施形態において、イオン伝導度向上の観点から、mは2であることが好ましい。また、イオン伝導度向上の観点から、Rは水素原子であることが好ましい。
 ポリアルキレンオキシドとしては、例えば、下記一般式(2)で表される繰り返し単位を有するポリアルキレンオキシドが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 前記一般式(2)において、nは2または3であり、Rは、それぞれ独立に、水素原子、アルキル基(メチル基、およびエチル基など)、または、アルコキシ基である。ここで、アルキル基およびアルコキシ基は、置換基を有していてもよい。また、複数のRは、互いに同一でも異なっていてもよい。
 本実施形態において、イオン伝導度向上の観点から、nは2であることが好ましい。また、イオン伝導度向上の観点から、Rは水素原子であることが好ましい。
 本実施形態に係るポリマーの分子量は、重量平均分子量(Mw)で表す場合、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算で、5,000以上5,000,000以下であることが好ましく、10,000以上1,000,000以下であることがより好ましい。
 また、数平均分子量(Mn)で表す場合、3,000以上3,000,000以下であることが好ましく、5,000以上500,000以下であることがより好ましい。
 また、重量平均分子量(Mw)の数平均分子量(Mn)に対する比(Mw/Mn)は、1以上10以下であることが好ましく、1.1以上5以下であることがより好ましい。
 (セルロースナノファイバー)
 本実施形態に係るセルロースナノファイバーは、セルロース繊維を解繊したものである。セルロース繊維としては、植物繊維から分離した繊維(植物由来のパルプ、木材、コットン、麻、竹、綿、ケナフ、ヘンプ、ジュート、バナナ、ココナツ、海草、および茶葉など)、動物繊維から分離した繊維(海産動物であるホヤが産生する動物繊維から分離した繊維など)、バクテリアセルロース(酢酸菌より産生させたバクテリアセルロースなど)が挙げられる。これらの中でも、植物繊維から分離した天然セルロース繊維が好ましく、パルプまたはコットンから分離した天然セルロース繊維がより好ましい。
 本実施形態に係るセルロースナノファイバーとしては、市販されているセルロースナノファイバーを適宜使用できる。市販されているセルロースナノファイバーとしては、例えば、スギノマシン社製のセルロースナノファイバー水溶液「BiNFi-s」などが挙げられる。
 本実施形態に係るセルロースナノファイバーの平均繊維径(短径)は、10nm以上100nm以下であることが好ましく、10nm以上40nm以下であることが好ましく、15nm以上25nm以下であることが特に好ましい。
 本実施形態に係るセルロースナノファイバーの繊維長は、5μm以上であることが好ましい。
 本実施形態において、固体電解質中のセルロースナノファイバーの含有量は、特に制限されない。しかし、イオン伝導度を向上させるという観点からは、セルロースナノファイバーの含有量は、固体電解質全量に対して、0質量%超4.5質量%以下であることが好ましく、0.1質量%以上4質量%以下であることがより好ましく、1質量%以上3.5質量%以下であることが更により好ましく、2質量%以上3質量%以下であることが特に好ましい。なお、含有量が前記下限以上であれば、膜の自立性を十分に向上できる。他方、含有量が前記上限以下であれば、膜の自立性を十分に向上でき、しかもイオン伝導度を向上できる。
 (金属塩)
 本実施形態に係る金属塩は、特に限定されないが、例えば、アルカリ金属塩のうちの少なくとも1種を用いることができる。アルカリ金属塩としては、リチウム塩、ナトリウム塩、およびカリウム塩などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態において、金属塩は、リチウム塩であることがより好ましい。固体電解質中で金属塩は、アルカリ金属などの陽イオンおよび当該陽イオンの対イオンとして存在し得る。金属塩がリチウム塩であれば、エネルギー密度がより高くなる。
 リチウム塩としては、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCOO、LiNO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li(CSO)N、およびLi(FSONなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、イオン伝導性の観点から、Li(CFSON(リチウムビス(トリフルオロメタンスルホニル)イミド:LiTFSI)およびLi(FSON(リチウムビス(フルオロスルホニル)イミド:LiFSI)の少なくとも一種を含むことがより好ましい。複数種類の金属塩が固体電解質に含まれていてもよい。
 本実施形態において、固体電解質中の金属塩の含有量は、特に制限されない。しかし、イオン伝導度を向上させるという観点からは、前記ポリマー中における繰り返し単位のモル数をx(mol)とし、前記金属塩中における金属のモル数をz(mol)とした場合に、下記数式(F1)で示される条件を満たすことが好ましい。
  0.7≦(z/x) ・・・(F1)
 また、(z/x)の値は、イオン伝導度を向上させるという観点から、0.8以上2以下であることがより好ましく、1以上1.6以下であることがさらに好ましく、1.1以上1.3以下であることが特に好ましい。なお、(z/x)の値が前記下限以上であれば、イオン伝導度を十分に発現させることができる。他方、(z/x)の値が前記上限以下であれば、塩を十分に溶解できるため、塩の析出を抑制できることによるイオン伝導度の低下を抑制でき、また、ポリマーの割合が低下し過ぎることがないため、固体電解質が固体の形状を保つことができる。
 また、前記ポリマーが脂肪族ポリカーボネートの場合には、(z/x)の値が0.7以上であると、膜の自立性が不足する傾向にある。しかし、脂肪族ポリカーボネートと、セルロースナノファイバーとを組み合わせれば、膜の自立性を確保できる。
 なお、(z/x)は、前記固体電解質のポリマー中における繰り返し単位に対する金属(金属塩に由来する金属のことであり、金属塩から解離した金属イオンの他、金属塩から解離していない金属をも含む概念とする)のモル比を示している。また、(z/x)×100(単位:mol%)を、場合により固体電解質の塩濃度(Salt Concentration)ともいう。
 本実施形態に係る固体電解質は、本発明の目的を損なわない限りにおいて、本実施形態に係るポリマー、セルロースナノファイバーおよび金属塩以外の成分を含んでいてもよい。
 例えば、本実施形態に係る固体電解質は、溶媒を含まない固体状(溶媒非含有固体電解質)であってもよいが、溶媒を含むゲル状(高分子ゲル電解質)であってもよい。固体電解質が高分子ゲル電解質である場合、高分子ゲル電解質中の溶媒の含有量は、通常、固体電解質全体の30質量%以上99質量%以下である。
 また、例えば、本実施形態に係る固体電解質は、フィラーまたはその他添加剤を含んでいてもよい。フィラーまたはその他添加剤を用いる場合、その配合量は、固体電解質全量に対して、5質量%以下であることが好ましい。また、フィラーとしては、例えば、タルク、カオリン、クレー、珪酸カルシウム、アルミナ、ジルコニア、酸化亜鉛、酸化アンチモン、酸化インジウム、酸化スズ、酸化チタン、酸化鉄、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、シリカ、炭酸カルシウム、チタン酸カリウム、チタン酸バリウム、マイカ、モンモリロナイト、およびガラス繊維などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、アルミナ、ジルコニア、酸化マグネシウム、およびチタン酸バリウムのうち少なくとも一種を含むことが好ましい。
 これらのフィラーを用いる場合、その配合量は、固体電解質全量に対して、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることが特に好ましい。また、これらのフィラーよりもセルロースナノファイバーの方が膜の自立性の向上効果が高いことから、本実施形態においては、これらのフィラーを含有しないことが好ましい。
 その他添加剤を用いる場合、その配合量は、固体電解質全量に対して、5質量%以下であることが好ましい。
 本実施形態に係る固体電解質を製造する方法は、特に限定されないが、例えば、(i)モノマーを重合させてポリマーを得てから、ポリマーおよびセルロースナノファイバーの複合体を形成させ、これに金属塩を含有させる方法、或いは、(ii)金属塩の存在下でモノマーを重合させてポリマーを形成させ、これにセルロースナノファイバーを含有させる方法が挙げられる。前記(i)の方法の場合、例えば、本実施形態に係るポリマーおよびセルロースナノファイバーの複合体に、金属塩および溶媒を加えて溶解させ、溶媒を除去することで固体電解質を得ることができる。
 本実施形態に係る固体電解質の形態および構成などは、特に限定されない。本実施形態の固体電解質によれば、膜の自立性を向上できるので、自立性を有する固体電解質膜を形成できる。自立性を有する固体電解質膜は、取り扱い性に優れる。自立性を有する膜とは、固体電解質膜を支持体から形状を保ったまま剥がすことができ、取り扱うことのできる膜である。
 固体電解質膜は、次のようにして製造することができる。例えば、本実施形態に係るポリマー、セルロースナノファイバー、金属塩、および溶媒を含む混合溶液を支持体の表面に塗布して塗膜を形成し、塗膜中の溶媒を除去することにより、膜状の固体電解質膜を得ることができる。このとき、支持体から固体電解質膜を剥離する必要がある場合には、支持体の表面に剥離処理が施されていることが好ましい。
 本実施形態に係る固体電解質は、例えば電池などに好適に用いることができる。本実施形態に係る固体電解質を含む電池としては、一次電池および二次電池などが挙げられる。
 本実施形態に係る固体電解質のより具体的な例としては、例えば、以下のような固体電解質の例が挙げられるが、本発明は、このような例に限定されない。
 本実施形態に係る固体電解質の一例として、ポリマーと、セルロースナノファイバーと、金属塩と、を含み、前記ポリマーがポリエチレンカーボネートであり、前記金属塩がリチウムビス(フルオロスルホニル)イミドである固体電解質が挙げられる。
 本実施形態に係る固体電解質の一例として、ポリマーと、セルロースナノファイバーと、金属塩と、を含み、前記ポリマーがポリエチレンカーボネートであり、前記金属塩がリチウムビス(フルオロスルホニル)イミドであり、前記ポリマーの繰り返し単位のモル数をx(mol)とし、前記金属塩中における金属のモル数をz(mol)とした場合に、(z/x)の値が0.8以上1.6以下である固体電解質が挙げられる。
 本実施形態に係る固体電解質の一例として、ポリマーと、セルロースナノファイバーと、金属塩と、を含み、前記ポリマーがポリエチレンカーボネートであり、前記金属塩がリチウムビス(フルオロスルホニル)イミドであり、前記ポリマーの繰り返し単位のモル数をx(mol)とし、前記金属塩中における金属のモル数をz(mol)とした場合に、(z/x)の値が0.1以上0.6以下であり、前記セルロースナノファイバーの含有量が、4.5質量%以下である固体電解質が挙げられる。
 [電池]
 本実施形態に係る電池は、本実施形態に係る固体電解質を含む。本実施形態において、電池の電解質層の構成材料として本実施形態に係る固体電解質を含むことが好ましい。電池は、陽極と、陰極と、陽極および陰極の間に配置される電解質層とで構成される。このような構成とすることで、特性に優れた電池を得ることができる。また、電池としては、二次電池であることが好ましく、リチウムイオン二次電池であることがより好ましい。
 なお、前述のポリマー、セルロースナノファイバー、金属塩、および溶媒を含有する混合溶液を電極に塗布し、溶媒を除去することで、固体電解質膜を電極上に直接形成してもよい。本実施形態に係るリチウムイオン二次電池が備える各種部材は、特に限定されないが、例えば電池に一般的に使用される材料を用いることができる。
 そして、本実施形態に係る固体電解質は、溶媒を含んでいなくとも、イオン伝導性を有する。そのため、本実施形態に係る電池を、本実施形態に係る固体電解質を含み、かつ溶媒を含まない電池とすれば、液漏れがなく安全に使用することができる。
 なお、本発明は前記実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明は、これらの実施例に何ら限定されない。なお、以下の実施例および比較例における測定は、以下に示す方法により行った。
 [イオン伝導度測定]
 得られた固体電解質膜を直径6mmの円形に切り抜き、電極として2枚のステンレス板で挟み、ステンレス板間のインピーダンスを測定した。測定には電極間に交流(印加電圧は10mV)を印加して抵抗成分を測定する交流インピーダンス法を用いて、得られたコール・コールプロットの実数インピーダンス切片よりイオン伝導度を算出した。なお、測定にはポテンショスタット/ガルバノスタット(製品名「SP-150」、biologic社製)を用いた。
 イオン伝導度(σ)は、下記数式(F2)により求めた。
σ = L/(R×S) ・・・(F2)
 式(F2)中、σはイオン伝導度(単位:S・cm-1)、Rは抵抗(単位:Ω)、Sは固体電解質膜の測定時の断面積(単位:cm)、Lは電極間距離(単位:cm)を示す。
 測定温度は、60℃である。また、複素インピーダンスの測定結果からイオン伝導度(σ)を算出した。
 [膜形状観察]
 フッ素樹脂製モールド上に固体電解質溶液をキャストし、乾燥させた100μm厚の固体電解質をフッ素樹脂製モールドから剥離した。剥離後においても自立性を保っていたものを「A」と判定し、自立性を保てなかったもの、または、膜形状で剥離できなかったものを「B」と判定した。
 [実施例1(実施例1-1~実施例1-8)]
 (セルロースナノファイバー/ポリエチレンカーボネート複合体の調製)
 市販のポリエチレンカーボネート(商品名「QPAC-25」、EMPOWER MATERIALS社製)にアセトニトリルを加えて、ポリエチレンカーボネートが2質量%となるように調整して、ポリエチレンカーボネート溶液を得た。このポリエチレンカーボネート溶液に、セルロースナノファイバー水溶液(商品名「BiNFi-s BMa-10002」、スギノマシン社製)を、溶液比率(ポリエチレンカーボネート溶液:セルロースナノファイバー水溶液)が90質量%:10質量%となるように添加して、撹拌した。その後、60℃で48時間乾燥させ、さらに減圧下、60℃で72時間乾燥させ、セルロースナノファイバーが10質量%含まれるセルロースナノファイバー/ポリエチレンカーボネート複合体を調製した。
 (固体電解質膜の作製)
 次に、セルロースナノファイバー/ポリエチレンカーボネート複合体と、LiFSIとを、ポリエチレンカーボネートの繰り返し単位のモル数xに対するリチウム塩のモル数zの比率(単位:mol%、(z/x)×100)が、それぞれ10mol%、20mol%、40mol%、60mol%、80mol%、100mol%、120mol%、および160mol%となるように秤量し、混合した後に、アセトニトリルを加えてよく撹拌して、固体電解質溶液を得た。その後、フッ素樹脂製モールド上に固体電解質溶液をキャストし、乾燥窒素雰囲気下、60℃で6時間乾燥させ、さらに減圧下、60℃で24時間乾燥させ、固体電解質中の塩濃度(単位:mol%、(z/x)×100)およびセルロースナノファイバーの含有量(単位:質量%、固体電解質全量に対する含有量)が下記表1の通りの固体電解質膜を得た。
 また、得られた固体電解質膜について、イオン伝導度(σ)を測定し、膜形状を観察した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 [比較例1(比較例1-1~比較例1-4)]
 市販のポリエチレンカーボネート(商品名「QPAC-25」、EMPOWER MATERIALS社製)と、LiFSIとを、ポリエチレンカーボネートの繰り返し単位のモル数xに対するリチウム塩のモル数zの比率(単位:mol%、(z/x)×100)が、それぞれ80mol%、100mol%、120mol%、および160mol%となるように秤量し、混合した後に、アセトニトリルを加えてよく撹拌して、固体電解質溶液を得た。その後、フッ素樹脂製モールド上に固体電解質溶液をキャストし、乾燥窒素雰囲気下、60℃で6時間乾燥させ、さらに減圧下、60℃で24時間乾燥させ、固体電解質中の塩濃度(単位:mol%、(z/x)×100)およびセルロースナノファイバーの含有量(単位:質量%、固体電解質全量に対する含有量)が下記表2の通りの固体電解質膜を得た。
 また、得られた固体電解質膜について、イオン伝導度(σ)を測定し、膜形状を観察した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表1および表2に示すように、セルロースナノファイバーを含有する固体電解質(実施例1)は、セルロースナノファイバーを含有しない固体電解質(比較例1)と比較して、膜の自立性が向上していることが確認された。
 また、図1に、実施例1-5~実施例1-8、および、比較例1-1~比較例1-4における塩濃度とイオン伝導度の常用対数との関係を示す。この図1に示す結果からも明らかなように、セルロースナノファイバーを含有する固体電解質(実施例1)は、セルロースナノファイバーを含有しない固体電解質(比較例1)と比較して、同一塩濃度におけるイオン伝導度が向上していることが確認された。
 [実施例2(実施例2-1~実施例2-4)]
 セルロースナノファイバー/ポリエチレンカーボネート複合体と、市販のポリエチレンカーボネート(商品名「QPAC-25」、EMPOWER MATERIALS社製)と、LiFSIとを、固体電解質中のセルロースナノファイバーの含有量が2.5質量%となり、かつ、ポリエチレンカーボネートの繰り返し単位のモル数xに対するリチウム塩のモル数zの比率(単位:mol%、(z/x)×100)が、それぞれ10mol%、20mol%、40mol%、および60mol%となるように秤量し、混合した後に、アセトニトリルを加えてよく撹拌して、固体電解質溶液を得た。その後、フッ素樹脂製モールド上に固体電解質溶液をキャストし、乾燥窒素雰囲気下、60℃で6時間乾燥させ、さらに減圧下、60℃で24時間乾燥させ、固体電解質中の塩濃度(単位:mol%、(z/x)×100)およびセルロースナノファイバーの含有量(単位:質量%、固体電解質全量に対する含有量)が下記表3の通りの固体電解質膜を得た。
 また、得られた固体電解質膜について、イオン伝導度(σ)を測定し、膜形状を観察した。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、セルロースナノファイバーを含有する固体電解質(実施例2)は、膜の自立性が向上していることが確認された。
 また、図2に、実施例1-1~実施例1-4、および、実施例2-1~実施例2-4における塩濃度とイオン伝導度の常用対数との関係を示す。この図2に示す結果からも明らかなように、セルロースナノファイバーの含有量が実施例1と比較して少ない固体電解質(実施例2)は、実施例1と比較して、同一塩濃度におけるイオン伝導度が向上していることが確認された。

Claims (8)

  1.  ポリマーと、セルロースナノファイバーと、金属塩と、を含む
     ことを特徴とする固体電解質。
  2.  請求項1に記載の固体電解質において、
     前記ポリマーの繰り返し単位のモル数をx(mol)とし、
     前記金属塩中における金属のモル数をz(mol)とした場合に、
     下記数式(F1)で示される条件を満たす
     ことを特徴とする固体電解質。
      0.7≦(z/x)・・・(F1)
  3.  請求項1又は請求項2に記載の固体電解質において、
     前記セルロースナノファイバーの含有量が、4.5質量%以下である
     ことを特徴とする固体電解質。
  4.  請求項1から請求項3のいずれか一項に記載の固体電解質において、
     前記金属塩は、アルカリ金属塩である
     ことを特徴とする固体電解質。
  5.  請求項1から請求項3のいずれか一項に記載の固体電解質において、
     前記金属塩は、リチウム塩である
     ことを特徴とする固体電解質。
  6.  請求項5に記載の固体電解質において、
     前記リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)イミドおよびリチウムビス(フルオロスルホニル)イミドの少なくとも一種を含む
     ことを特徴とする固体電解質。
  7.  請求項1から請求項6のいずれか一項に記載の固体電解質において、
     前記ポリマーは、脂肪族ポリカーボネートである
     ことを特徴とする固体電解質。
  8.  請求項1から請求項7のいずれか一項に記載の固体電解質を含むことを特徴とする電池。
PCT/JP2017/023844 2016-07-07 2017-06-29 固体電解質および電池 WO2018008500A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526321A JPWO2018008500A1 (ja) 2016-07-07 2017-06-29 固体電解質および電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-134858 2016-07-07
JP2016134858 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018008500A1 true WO2018008500A1 (ja) 2018-01-11

Family

ID=60912711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023844 WO2018008500A1 (ja) 2016-07-07 2017-06-29 固体電解質および電池

Country Status (3)

Country Link
JP (1) JPWO2018008500A1 (ja)
TW (1) TW201822396A (ja)
WO (1) WO2018008500A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013027A1 (ja) * 2017-07-11 2019-01-17 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2019172058A1 (ja) * 2018-03-05 2019-09-12 東亞合成株式会社 セルロースナノファイバー含有ポリウレタンの製造方法
WO2019180845A1 (ja) * 2018-03-20 2019-09-26 日立化成株式会社 電解質組成物、電解質シート及び二次電池
WO2022102767A1 (ja) * 2020-11-16 2022-05-19 株式会社Gsユアサ 固体高分子電解質、固体高分子電解質を用いた蓄電素子及び蓄電装置
JP7448998B2 (ja) 2020-02-20 2024-03-13 漢陽大学校エリカ産学協力団 複合繊維、これを含む固体電解質、及びこれを含む金属空気電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530882A (ja) * 2002-06-21 2005-10-13 アンスティテュ ナシオナル ポリテクニク ド グルノーブル イオン伝導をもつ強化物質、電極および電解質におけるその使用
JP2013514625A (ja) * 2009-12-18 2013-04-25 エルジー・ケム・リミテッド 燃料電池のための高分子電解質膜、並びにそれを含む膜電極結合材料および燃料電池
JP2014185195A (ja) * 2013-03-21 2014-10-02 Tokyo Univ Of Agriculture & Technology 高分子電解質材料
WO2016199805A1 (ja) * 2015-06-08 2016-12-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530882A (ja) * 2002-06-21 2005-10-13 アンスティテュ ナシオナル ポリテクニク ド グルノーブル イオン伝導をもつ強化物質、電極および電解質におけるその使用
JP2013514625A (ja) * 2009-12-18 2013-04-25 エルジー・ケム・リミテッド 燃料電池のための高分子電解質膜、並びにそれを含む膜電極結合材料および燃料電池
JP2014185195A (ja) * 2013-03-21 2014-10-02 Tokyo Univ Of Agriculture & Technology 高分子電解質材料
WO2016199805A1 (ja) * 2015-06-08 2016-12-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013027A1 (ja) * 2017-07-11 2019-01-17 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2019172058A1 (ja) * 2018-03-05 2019-09-12 東亞合成株式会社 セルロースナノファイバー含有ポリウレタンの製造方法
JPWO2019172058A1 (ja) * 2018-03-05 2021-02-18 東亞合成株式会社 セルロースナノファイバー含有ポリウレタンの製造方法
JP7302590B2 (ja) 2018-03-05 2023-07-04 東亞合成株式会社 セルロースナノファイバー含有ポリウレタンの製造方法
WO2019180845A1 (ja) * 2018-03-20 2019-09-26 日立化成株式会社 電解質組成物、電解質シート及び二次電池
JP7448998B2 (ja) 2020-02-20 2024-03-13 漢陽大学校エリカ産学協力団 複合繊維、これを含む固体電解質、及びこれを含む金属空気電池
WO2022102767A1 (ja) * 2020-11-16 2022-05-19 株式会社Gsユアサ 固体高分子電解質、固体高分子電解質を用いた蓄電素子及び蓄電装置

Also Published As

Publication number Publication date
JPWO2018008500A1 (ja) 2019-04-18
TW201822396A (zh) 2018-06-16

Similar Documents

Publication Publication Date Title
WO2018008500A1 (ja) 固体電解質および電池
KR102249254B1 (ko) 고체 전해질 조성물
KR100246713B1 (ko) 플루오르화 비닐리덴 중합체계 바인더용액 및 전극형성 조성물
JP7189122B2 (ja) 電気化学発電装置用のイオン伝導性材料及び製造方法
EP2509137B1 (en) Binder for separator of non-aquaous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
JP6145693B2 (ja) 電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子
JP6481120B2 (ja) 固体電解質および電池
KR20010030873A (ko) 전기화학 전지용 고상 전해질 또는 격리판으로 적합한특정 연화제 함유 혼합물
KR20190117275A (ko) 수명 성능이 향상된 리튬 금속 이차전지
Kassenova et al. Photo and thermal crosslinked poly (vinyl alcohol)-based nanofiber membrane for flexible gel polymer electrolyte
US11453835B2 (en) Polymers and the use thereof as lubricating agents in the production of alkali metal films
Xin et al. A cross-linked poly (ethylene oxide)-based electrolyte for all-solid-state lithium metal batteries with long cycling stability
JP4563668B2 (ja) 電気化学デバイス用含ホウ素化合物、イオン伝導性高分子及び高分子電解質
CN109705274B (zh) 一种全固态聚合物电解质膜及其制备方法
Chen et al. Hybrid solid state electrolytes blending NASICON-type Li1+ xAlxTi2–x (PO4) 3 with poly (vinylidene fluoride-co-hexafluoropropene) for lithium metal batteries
KR102445690B1 (ko) 용해성 중합체, 리튬 염, 및 선택된 할로겐화된 중합체를 포함하는 고체 중합체 전해질, 및 이를 포함하는 배터리
CN110729514A (zh) 生物聚合物壳聚糖基复合聚合物固态电解质及其制备方法
JP2008130529A (ja) 高イオン伝導性高分子固体電解質
CN115428219A (zh) 用于电解质的交联剂、包含其的电解质组合物及锂离子电池
RU2386195C1 (ru) Пастообразные электролиты и перезаряжаемые литиевые батареи, их содержащие
JP5083146B2 (ja) リチウム二次電池用電解質及びそれを用いたリチウム二次電池
WO2018030091A1 (ja) 固体電解質および電池
KR102534585B1 (ko) 고분자 전해질 조성물, 고분자 전해질 및 이를 포함하는 하이브리드 커패시터
JP2003187870A (ja) ポリマー電解質、および非水電解質二次電池
Ratri et al. Performance Study of Libob/litfsi Electrolyte Salt in the All-solid-state Lithium-ion Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018526321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824105

Country of ref document: EP

Kind code of ref document: A1