WO2018030092A1 - 電解質および電池 - Google Patents

電解質および電池 Download PDF

Info

Publication number
WO2018030092A1
WO2018030092A1 PCT/JP2017/026131 JP2017026131W WO2018030092A1 WO 2018030092 A1 WO2018030092 A1 WO 2018030092A1 JP 2017026131 W JP2017026131 W JP 2017026131W WO 2018030092 A1 WO2018030092 A1 WO 2018030092A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
mol
general formula
carbonate compound
salt
Prior art date
Application number
PCT/JP2017/026131
Other languages
English (en)
French (fr)
Inventor
孝至 森岡
富永 洋一
Original Assignee
リンテック株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社, 国立大学法人東京農工大学 filed Critical リンテック株式会社
Publication of WO2018030092A1 publication Critical patent/WO2018030092A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/40Vinylene carbonate; Substituted vinylene carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte and a battery.
  • Patent Document 1 proposes a gel electrolyte containing a lithium salt and a non-aqueous solvent in polyvinyl acetal.
  • Patent Document 2 describes a polymer solid electrolyte containing an organic polymer having a polyalkylene carbonate unit in the main chain and a metal salt.
  • JP 2014-175203 A Japanese Patent Application Laid-Open No. 08-217869
  • the gel electrolyte disclosed in Patent Document 1 contains a non-aqueous solvent having volatility and may be ignited by a volatile component. Therefore, electrolytes are required to have excellent safety without the possibility of ignition due to volatile components. Moreover, although the polymer solid electrolyte of patent document 2 is excellent in safety compared with the gel electrolyte of patent document 1, it is not necessarily sufficient.
  • An object of the present invention is to provide an electrolyte and a battery excellent in safety.
  • the electrolyte according to one embodiment of the present invention includes a compound represented by the following general formula (1) and a metal salt.
  • n is an integer of 0 to 6
  • R is any one of the following general formulas (2) and (3).
  • the metal salt is preferably an alkali metal salt.
  • the alkali metal salt is preferably a lithium salt.
  • the lithium salt preferably includes at least one of lithium bis (trifluoromethanesulfonyl) imide and lithium bis (fluorosulfonyl) imide.
  • n in the said General formula (1) is an integer of 0-4.
  • the battery according to one embodiment of the present invention preferably includes the electrolyte according to one embodiment of the present invention described above.
  • an electrolyte and a battery excellent in safety can be provided.
  • Example 3 is a graph showing the relationship between the weight loss rate and temperature in the simultaneous differential thermal-thermogravimetric measurement (TG-DTA) of the carbonate compound and polyethylene carbonate used in Example 1. It is a graph which shows the relationship between the salt concentration in Example 1, Example 2, the comparative example 1, and the comparative example 2, and the common logarithm of the ionic conductivity in 30 degreeC.
  • TG-DTA simultaneous differential thermal-thermogravimetric measurement
  • the electrolyte according to the present embodiment includes a carbonate compound described below and a metal salt described below. First, the carbonate compound according to this embodiment will be described.
  • the carbonate compound according to this embodiment is a carbonate compound represented by the following general formula (1).
  • n is an integer of 0 to 6.
  • n is preferably an integer of 0 or more, 4 or less, more preferably an integer of 0 or more and 2 or less, and particularly preferably 1.
  • R is any one of the following general formulas (2) and (3).
  • n is the same as n in the general formula (1), and is preferably an integer of 0 or more and 4 or less, and is an integer of 0 or more and 2 or less. More preferably, 1 is particularly preferable.
  • the 5% weight reduction temperature of the carbonate compound according to this embodiment is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, and particularly preferably 250 ° C. or higher. If the 5% weight reduction temperature of the carbonate compound is 180 ° C. or higher, the effect of suppressing the possibility of ignition due to thermal runaway can be obtained when the battery is configured.
  • the content of the carbonate compound in the electrolyte is preferably 5% by mass or more and 99% by mass or less, and more preferably 5% by mass or more and 95% by mass or less with respect to the total amount of the electrolyte.
  • the method for producing the carbonate compound according to this embodiment is not particularly limited.
  • the carbonate compound represented by the general formula (4) in the electrolyte of the present embodiment can be produced as follows.
  • the carbonate compound represented by the general formula (4) can be produced by reacting a diglycidyl ether compound and carbon dioxide in the presence of a catalyst under high pressure. it can. Specifically, a carbonic acid CO bond is inserted into the epoxy portion of the diglycidyl ether compound to form a five-membered ring, whereby a cyclic carbonate compound is obtained.
  • the diglycidyl ether compound include ethylene glycol diglycidyl ether.
  • the carbonate compound shown by the said General formula (5) among the electrolytes of this embodiment can be manufactured as follows.
  • a carbonate compound represented by the general formula (5) is obtained by reacting a glycol compound (for example, triethylene glycol) with methyl chloroformate at room temperature in the presence of a catalyst.
  • a glycol compound for example, triethylene glycol
  • methyl chloroformate at room temperature in the presence of a catalyst.
  • hydrogen in the hydroxyl portion of the glycol compound and chlorine of methyl chloroformate are combined by causing a dehydrochlorination reaction to obtain an aliphatic carbonate compound.
  • the metal salt according to the present embodiment is not particularly limited.
  • the metal salt according to the present embodiment for example, at least one of alkali metal salts can be used.
  • the alkali metal salt include a lithium salt, a sodium salt, and a potassium salt. These may be used alone or in combination of two or more.
  • the metal salt is more preferably a lithium salt.
  • the metal salt can exist as a cation such as an alkali metal and a counter ion of the cation. If the metal salt is a lithium salt, the energy density is higher.
  • lithium salt LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiCF 3 COO, LiNO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, Examples include LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) N, and Li (FSO 2 ) 2 N. These may be used alone or in combination of two or more.
  • electrolytes include Li (CF 3 SO 2 ) 2 N (lithium bis (trifluoromethanesulfonyl) imide: LiTFSI) and Li (FSO 2 ) 2 N (lithium bis (fluoro) from the viewpoint of ion conductivity. More preferably, it contains at least one of (sulfonyl) imide: LiFSI).
  • the electrolyte may contain a plurality of types of metal salts.
  • the number of moles of carbonate units represented by carbonate groups (—O— (C ⁇ O) —O—) in the carbonate compound is x (mol), and oxyalkylene groups
  • the number of moles of the ether unit represented by —O— (CH 2 ) 2 —) is y (mol) and the number of moles of the metal in the metal salt is z (mol)
  • the following formula (F1) It is preferable that the conditions indicated by 0.01 ⁇ [z / (x + y)] ⁇ 2 (F1)
  • the value of [z / (x + y)] is more preferably 0.01 or more and 1.8 or less, and more preferably 0.025 or more and 1.6 or less, from the viewpoint of improving ionic conductivity.
  • the ionic conductivity can be sufficiently developed. If the value of [z / (x + y)] is not more than the above upper limit, the salt can be sufficiently dissolved in the electrolyte. If the value of [z / (x + y)] is less than or equal to the above upper limit, the salt can be sufficiently dissolved in the electrolyte, so that precipitation of the salt can be suppressed and a decrease in ionic conductivity can be suppressed.
  • [Z / (x + y)] is a metal (a metal derived from a metal salt) with respect to the total of carbonate units and ether units in the electrolyte.
  • the molar ratio is assumed to include a non-consumable metal.
  • [Z / (x + y)] ⁇ 100 (unit: mol%) is also sometimes referred to as a salt concentration of the electrolyte.
  • the electrolyte according to this embodiment may contain components other than the metal salt according to this embodiment as long as the object of the present invention is not impaired.
  • the electrolyte according to this embodiment may contain a filler or other additives.
  • a filler or other additives it is preferable that these compounding quantities are 5 mass% or less with respect to the electrolyte whole quantity, respectively.
  • the filler include talc, kaolin, clay, calcium silicate, alumina, zirconia, zinc oxide, antimony oxide, indium oxide, tin oxide, titanium oxide, iron oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, silica
  • Examples include calcium carbonate, potassium titanate, barium titanate, mica, montmorillonite, and glass fiber. These may be used alone or in combination of two or more. Among these, it is preferable to contain at least one of alumina, zirconia, magnesium oxide, and barium titanate.
  • the electrolyte according to the present embodiment may include a known resin as a resin used for the electrolyte.
  • the blending amount is preferably 5% by mass or more and 15% by mass or less, and more preferably 7% by mass or more and 12% by mass or less with respect to the total amount of the electrolyte.
  • the resin used for the electrolyte include polyethylene oxide resin (PEO), polyacrylonitrile resin (acrylonitrile), polyvinylidene fluoride resin (fluorine), polymethyl methacrylate resin (acrylic), and aliphatic polycarbonate resin. Is mentioned.
  • the method for producing the electrolyte according to the present embodiment is not particularly limited.
  • an electrolyte can be obtained by adding a metal salt and a solvent to the carbonate compound according to the present embodiment to dissolve the carbonate compound and removing the solvent.
  • the form and configuration of the electrolyte according to the present embodiment are not particularly limited.
  • an electrolyte containing only the carbonate compound represented by the general formula (1) and a metal salt can be given.
  • the electrolyte according to the present embodiment may be, for example, a membrane electrolyte membrane.
  • the electrolyte membrane preferably has a self-supporting property.
  • the electrolyte membrane having self-supporting properties is excellent in handleability.
  • the film having self-supporting property is a film that can be peeled off while maintaining the shape of the electrolyte membrane from the support and can be handled.
  • the electrolyte membrane can be manufactured as follows.
  • a mixed electrolyte solution containing a carbonate compound, a metal salt, and a solvent according to the present embodiment is applied to the surface of a support to form a coating film, and the solvent in the coating film is removed, whereby a membrane-like electrolyte membrane is formed. Can be obtained.
  • the surface of the support is subjected to a peeling treatment.
  • the support is made of a material having peelability.
  • the electrolyte according to the present embodiment may be a gel electrolyte or a solid electrolyte.
  • electrolyte according to the present embodiment include the following electrolyte examples, but the present invention is not limited to such examples.
  • An example of the electrolyte according to the present embodiment includes a compound represented by the general formula (4) and a metal salt, wherein n in the general formula (4) is 1, and the metal salt is Li (FSO 2) the electrolyte is 2 N and the like.
  • An example of the electrolyte according to the present embodiment includes a compound represented by the general formula (4) and a metal salt, wherein n in the general formula (4) is 1, and the metal salt is Li (FSO 2 ) 2 N, and an electrolyte having a [z / (x + y)] value of 0.025 or more and 1.6 or less.
  • An example of the electrolyte according to the present embodiment includes a compound represented by the general formula (5) and a metal salt, wherein n in the general formula (5) is 1, and the metal salt is Li (FSO 2) the electrolyte is 2 N and the like.
  • An example of the electrolyte according to the present embodiment includes a compound represented by the general formula (5) and a metal salt, wherein n in the general formula (5) is 1, and the metal salt is Li (FSO 2 ) 2 N, and an electrolyte having a [z / (x + y)] value of 0.025 or more and 1.6 or less.
  • the electrolyte which does not contain resin other than the carbonate compound which concerns on this embodiment as an example of the electrolyte which concerns on this embodiment may be sufficient.
  • the electrolyte according to the present embodiment can be suitably used for, for example, a battery.
  • Examples of the battery including the electrolyte according to this embodiment include a primary battery and a secondary battery.
  • the battery according to the present embodiment includes the electrolyte according to the present embodiment.
  • the electrolyte according to this embodiment is preferably included as a constituent material of the electrolyte layer of the battery.
  • the battery includes an anode, a cathode, and an electrolyte layer disposed between the anode and the cathode. By setting it as such a structure, the battery excellent in the characteristic can be obtained.
  • a battery it is preferable that it is a secondary battery, and it is more preferable that it is a lithium ion secondary battery.
  • the electrolyte membrane may be formed directly on the electrode by applying a mixed solution containing the above-described carbonate compound, metal salt, and solvent to the electrode and removing the solvent.
  • Various members included in the battery according to the present embodiment are not particularly limited, and for example, materials generally used for batteries can be used. And when the electrolyte which concerns on this embodiment is a solid electrolyte, even if it does not contain a solvent, it has ion conductivity. Therefore, if the battery according to the present embodiment is a battery that includes the electrolyte according to the present embodiment and does not include a solvent, the battery can be used safely without leakage.
  • TG-DTA measurement The 5% weight loss temperature was measured using a differential thermal analyzer (manufactured by Shimadzu Corporation, TG / DTA analyzer DTG-60). The measurement sample was heated from 40 ° C. to 500 ° C. at a temperature increase rate of 10 ° C./min in a dry nitrogen atmosphere, and the 5% weight loss temperature of the measurement sample was measured.
  • the ionic conductivity ( ⁇ ) was determined by the following mathematical formula (F2).
  • L / (R ⁇ S) (F2)
  • ionic conductivity (unit: S ⁇ cm ⁇ 1 )
  • R resistance (unit: ⁇ )
  • S is a cross-sectional area (unit: cm 2 ) when measuring the solid electrolyte membrane
  • L is The distance between electrodes (unit: cm) is shown.
  • the measurement temperature of ion conductivity is 30 ° C.
  • the ionic conductivity ( ⁇ ) was calculated from the measurement result of the complex impedance.
  • Lithium ion transport number (Li + transport number) measurement The obtained electrolyte membrane was cut out into a circle with a diameter of 6 mm, and sandwiched between two lithium plates as electrodes to produce a cell. And the cell was connected to the complex alternating current impedance measuring apparatus (Solartron 1280C), and the measurement was started after 24 hours or more passed at 30 ° C. In the measurement, first, complex impedance measurement was performed to calculate a resistance value (R 0 ), and then a voltage of 10 mV was applied to perform DC polarization measurement. The initial current value (I 0 ) and the steady current value (I S ) when the current value became constant were measured.
  • the lithium ion transport number (t + ) was determined by the following formula (F3) (Evans formula).
  • t + I s ( ⁇ V ⁇ I 0 ⁇ R 0 ) / I 0 ( ⁇ V ⁇ I S ⁇ R S ) (F3)
  • ⁇ V represents an applied voltage
  • R 0 , R S , I 0 and I S are the same as described above.
  • carbonate compound A was obtained after purification by a column.
  • FIG. 1 shows the weight loss in TG-DTA measurement of carbonate compound A (sample 1), carbonate compound B (sample 2), and polyethylene carbonate (trade name “QPAC-25”, sample 3 manufactured by EMPOWER MATERIALS).
  • T d5 5% weight loss temperature
  • T d5 of carbonate compound A was 272 ° C
  • T d5 of carbonate compound B was 203 ° C.
  • LiFSI as a lithium salt weighed so that the salt concentration [z / (x + y)] ⁇ 100 (unit: mol%) in the electrolyte is as follows is mixed with the obtained carbonate compound A.
  • Acetonitrile was added as a solvent and stirred well to obtain an electrolyte solution.
  • the electrolyte solution was cast on a fluororesin mold and dried at 60 ° C. for 6 hours in a dry nitrogen atmosphere.
  • acetonitrile was removed by drying at 60 ° C. for 24 hours under reduced pressure, and an electrolyte membrane having a salt concentration in the electrolyte as shown below was obtained.
  • Example 1-1 2.5 mol%
  • Example 1-2 10 mol%
  • Example 1-3 40 mol%
  • Example 1-4 80 mol%
  • Example 1-5 160 mol%
  • Comparative Example 1-1 40 mol%
  • Comparative Example 1-2 80 mol%
  • Comparative Example 1-3 160 mol%
  • the ionic conductivities of Examples 1 and 2 are high when the salt concentration is 2.5 mol%, 10 mol%, and 40 mol%. It is shown. It was also found that the ionic conductivity of Examples 1 and 2 tended to be higher than the ionic conductivity of Comparative Example 2 even at lower salt concentrations.
  • the electrolyte constituted by adding LiFSI to the carbonate compound A and the electrolyte constituted by adding LiFSI to B have low volatility and high ionic conductivity. From this, it was confirmed that the electrolyte of the present invention is excellent in safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Primary Cells (AREA)

Abstract

下記一般式(1)で表される化合物と、金属塩と、を含むことを特徴とする電解質。(前記一般式(1)中、nは0以上6以下の整数であり、Rは下記一般式(2)および(3)のいずれかである。)

Description

電解質および電池
 本発明は、電解質および電池に関する。
 従来、電池の電解質として、ポリマーに非水電解質を保持させたゲル状の高分子電解質が提案されている。例えば、特許文献1には、ポリビニルアセタールにリチウム塩および非水系溶媒を含むゲル状電解質が提案されている。
 また、近年、ポリカーボネート系電解質に関する研究が進められている。例えば、特許文献2には、ポリアルキレンカーボネートユニットを主鎖に有する有機高分子と、金属塩とを含有してなる高分子固体電解質が記載されている。
特開2014-175203号公報 特開平08-217869号公報
 しかしながら、特許文献1のゲル状電解質は、揮発性を有する非水系溶媒を含んでおり、揮発成分による発火の可能性がある。そこで、電解質においては、揮発成分による発火の可能性がなく、安全性に優れることが求められている。また、特許文献2の高分子固体電解質は、特許文献1のゲル状電解質と比較して安全性が優れているものの、必ずしも充分ではない。
 本発明は、安全性に優れる電解質および電池を提供することを目的とする。
 本発明の一態様に係る電解質は、下記一般式(1)で表される化合物と、金属塩と、を含む。
Figure JPOXMLDOC01-appb-C000004
(前記一般式(1)中、nは0以上6以下の整数であり、Rは下記一般式(2)および(3)のいずれかである。)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明の一態様に係る電解質においては、前記金属塩はアルカリ金属塩であることが好ましい。
 本発明の一態様に係る電解質においては、前記アルカリ金属塩はリチウム塩であることが好ましい。
 本発明の一態様に係る電解質においては、前記リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)イミドおよびリチウムビス(フルオロスルホニル)イミドの少なくとも一種を含むことが好ましい。
 本発明の一態様に係る電解質においては、前記一般式(1)中のnは0以上4以下の整数であることが好ましい。
 本発明の一態様に係る電池は、前述の本発明の一態様に係る電解質を含むことが好ましい。
 本発明によれば、安全性に優れる電解質および電池を提供できる。
実施例1で用いたカーボネート化合物およびポリエチレンカーボネートの示差熱-熱重量同時測定(TG-DTA)において、重量減少率と温度との関係を示すグラフである。 実施例1、実施例2、比較例1、および比較例2における塩濃度と30℃におけるイオン伝導度の常用対数との関係を示すグラフである。
 [電解質]
 以下、本発明について実施形態を例に挙げて説明する。本発明は実施形態の内容に限定されない。
 本実施形態に係る電解質は、以下説明するカーボネート化合物と、以下説明する金属塩と、を含む。まず、本実施形態に係るカーボネート化合物について説明する。
 (カーボネート化合物)
 本実施形態に係るカーボネート化合物は、下記一般式(1)で表されるカーボネート化合物である。
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)において、nは0以上6以下の整数である。nが6より大きい場合には、カチオン輸率の低いポリエチレンオキシドの性能が発現しやすいために、カチオン輸率を向上させるという効果が低下する。また、イオン伝導度とカチオン輸率を両立する観点から、nは、0以上4以下の整数であることが好ましく、0以上2以下の整数であることがより好ましく、1であることが特に好ましい。また、Rは、下記一般式(2)および(3)のいずれかである。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 前記一般式(1)において、Rが前記一般式(2)である場合には、具体的には、下記一般式(4)で示されるカーボネート化合物となる。
 また、前記一般式(1)において、Rが前記一般式(3)である場合には、具体的には、下記一般式(5)で示されるカーボネート化合物となる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 前記一般式(4)および前記一般式(5)において、nは、前記一般式(1)におけるnと同様であり、0以上4以下の整数であることが好ましく、0以上2以下の整数であることがより好ましく、1であることが特に好ましい。
 本実施形態に係るカーボネート化合物の5%重量減少温度は、180℃以上であることが好ましく、200℃以上であることがより好ましく、250℃以上であることが特に好ましい。カーボネート化合物の5%重量減少温度が180℃以上であれば、電池を構成した際、熱暴走によって発火に至る可能性を抑制できるという効果が得られる。
 電解質中のカーボネート化合物の含有量は、電解質全量に対して、5質量%以上99質量%以下であることが好ましく、5質量%以上95質量%以下であることがより好ましい。
 (カーボネート化合物の製造方法)
 本実施形態に係るカーボネート化合物の製造方法は、特に限定されない。例えば、本実施形態の電解質のうち前記一般式(4)で示されるカーボネート化合物は、次のようにして製造できる。後述の実施例に記載のように、触媒の存在下、ジグリシジルエーテル化合物と、二酸化炭素とを、高圧化で反応させることにより、前記一般式(4)で示されるカーボネート化合物を製造することができる。具体的には、ジグリシジルエーテル化合物のエポキシ部分に、二酸化炭素のCO結合が挿入され、五員環が形成されることにより、環状カーボネート化合物が得られる。ジグリシジルエーテル化合物としては、例えば、エチレングリコールジグリシジルエーテルが挙げられる。
 また、本実施形態の電解質のうち前記一般式(5)で示されるカーボネート化合物は、次のようにして製造できる。後述の実施例に記載のように、触媒の存在下、グリコール化合物(例えば、トリエチレングリコール)と、クロロギ酸メチルとを、常温で反応させることにより、前記一般式(5)で示されるカーボネート化合物を製造することができる。具体的には、グリコール化合物の水酸基部分の水素とクロロギ酸メチルの塩素が脱塩酸反応を起こすことによって結合し、脂肪族カーボネート化合物が得られる。
 (金属塩)
 本実施形態に係る金属塩は、特に限定されない。本実施形態に係る金属塩としては、例えば、アルカリ金属塩のうちの少なくとも1種を用いることができる。アルカリ金属塩としては、リチウム塩、ナトリウム塩、およびカリウム塩などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態において、金属塩は、リチウム塩であることがより好ましい。電解質中で金属塩は、アルカリ金属などの陽イオンおよび当該陽イオンの対イオンとして存在し得る。金属塩がリチウム塩であれば、エネルギー密度がより高くなる。
 リチウム塩としては、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCOO、LiNO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li(CSO)N、およびLi(FSONなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。電解質は、これらリチウム塩の中でも、イオン伝導性の観点から、Li(CFSON(リチウムビス(トリフルオロメタンスルホニル)イミド:LiTFSI)およびLi(FSON(リチウムビス(フルオロスルホニル)イミド:LiFSI)の少なくとも一種を含むことがより好ましい。電解質は、複数種類の金属塩を含有していてもよい。
 本実施形態に係る電解質においては、前記カーボネート化合物中における、カーボネート基(-O-(C=O)-O-)で表されるカーボネート単位のモル数をx(mol)とし、オキシアルキレン基(-O-(CH-)で表されるエーテル単位のモル数をy(mol)とし、前記金属塩中における金属のモル数をz(mol)とした場合に、下記数式(F1)で示される条件を満たすことが好ましい。
   0.01≦[z/(x+y)]≦2 ・・・(F1)
 また、[z/(x+y)]の値は、イオン伝導度を向上させるという観点から、0.01以上1.8以下であることがより好ましく、0.025以上1.6以下であることがさらにより好ましい。なお、[z/(x+y)]の値が前記下限以上であれば、イオン伝導度を十分に発現させることができる。[z/(x+y)]の値が前記上限以下であれば、塩を電解質中に十分に溶解できる。[z/(x+y)]の値が前記上限以下であれば、塩を電解質中に十分に溶解できるため、塩の析出を抑制でき、イオン伝導度の低下を抑制できる。また、[z/(x+y)]の値が前記上限以下であれば、電解質中のカーボネート化合物の割合が低下し過ぎることがない。
 なお、[z/(x+y)]は、電解質中のカーボネート単位およびエーテル単位の合計に対する金属(金属塩に由来する金属のことであり、金属塩から解離した金属イオンの他、金属塩から解離していない金属をも含む概念とする)のモル比を示している。また、[z/(x+y)]×100(単位:mol%)を、場合により電解質の塩濃度(Salt Concentration)ともいう。
 本実施形態に係る電解質は、本発明の目的を損なわない限りにおいて、本実施形態に係る金属塩以外の成分を含んでいてもよい。
 例えば、本実施形態に係る電解質は、フィラーまたはその他添加剤を含んでいてもよい。フィラーまたはその他添加剤を用いる場合、これらの配合量は、電解質全量に対して、それぞれ5質量%以下であることが好ましい。
 フィラーとしては、例えば、タルク、カオリン、クレー、珪酸カルシウム、アルミナ、ジルコニア、酸化亜鉛、酸化アンチモン、酸化インジウム、酸化スズ、酸化チタン、酸化鉄、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、シリカ、炭酸カルシウム、チタン酸カリウム、チタン酸バリウム、マイカ、モンモリロナイト、およびガラス繊維等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、アルミナ、ジルコニア、酸化マグネシウム、およびチタン酸バリウムのうち少なくとも一種を含むことが好ましい。
 また、例えば、本実施形態に係る電解質は、電解質に用いられる樹脂として公知の樹脂を含んでいてもよい。このような樹脂を用いる場合、その配合量は、電解質全量に対して、5質量%以上15質量%以下であることが好ましく、7質量%以上12質量%以下であることがより好ましい。電解質に用いられる樹脂としては、例えば、ポリエチレンオキシド樹脂(PEO系)、ポリアクリロニトリル樹脂(アクリロニトリル系)、ポリフッ化ビニリデン樹脂(フッ素系)、ポリメチルメタクリレート樹脂(アクリル系)、および脂肪族ポリカーボネート樹脂などが挙げられる。
(電解質の製造方法)
 本実施形態に係る電解質を製造する方法は、特に限定されない。本実施形態に係る電解質を製造する方法は、例えば、本実施形態に係るカーボネート化合物に、金属塩および溶媒を加えて溶解させ、溶媒を除去することで電解質を得ることができる。
 本実施形態に係る電解質の形態や構成などは、特に限定されない。本実施形態に係る電解質の一例として、前記一般式(1)で示されるカーボネート化合物、および金属塩のみを含有している電解質が挙げられる。
 また、本実施形態に係る電解質は、例えば、膜状の電解質膜であってもよい。電解質膜は、自立性を有することが好ましい。自立性を有する電解質膜は、取り扱い性に優れる。自立性を有する膜とは、電解質膜を支持体から形状を保ったまま剥がすことができ、取り扱うことのできる膜である。
 電解質膜は、次のようにして製造することができる。例えば、本実施形態に係るカーボネート化合物、金属塩、および溶媒を含む混合溶液を支持体の表面に塗布して塗膜を形成し、塗膜中の溶媒を除去することにより、膜状の電解質膜を得ることができる。このとき、支持体から電解質膜を剥離する必要がある場合には、支持体の表面に剥離処理が施されていることが好ましい。または、支持体が剥離性を有する材質で形成されていることも好ましい。
 本実施形態に係る電解質は、ゲル状電解質または固体電解質であってよい。
 本実施形態に係る電解質のより具体的な例としては、例えば、以下のような電解質の例が挙げられるが、本発明は、このような例に限定されない。
 本実施形態に係る電解質の一例として、前記一般式(4)で表される化合物と、金属塩と、を含み、前記一般式(4)におけるnが1であり、前記金属塩がLi(FSONである電解質が挙げられる。
 本実施形態に係る電解質の一例として、前記一般式(4)で表される化合物と、金属塩と、を含み、前記一般式(4)におけるnが1であり、前記金属塩がLi(FSONであり、[z/(x+y)]の値が0.025以上1.6以下である電解質が挙げられる。
 本実施形態に係る電解質の一例として、前記一般式(5)で表される化合物と、金属塩と、を含み、前記一般式(5)におけるnが1であり、前記金属塩がLi(FSONである電解質が挙げられる。
 本実施形態に係る電解質の一例として、前記一般式(5)で表される化合物と、金属塩と、を含み、前記一般式(5)におけるnが1であり、前記金属塩がLi(FSONであり、[z/(x+y)]の値が0.025以上1.6以下である電解質が挙げられる。
 また、本実施形態に係る電解質の一例として、本実施形態に係るカーボネート化合物以外の樹脂を含まない電解質であってもよい。
 本実施形態に係る電解質は、例えば電池などに好適に用いることができる。本実施形態に係る電解質を含む電池としては、一次電池および二次電池などが挙げられる。
 [電池]
 本実施形態に係る電池は、本実施形態に係る電解質を含む。本実施形態において、電池の電解質層の構成材料として本実施形態に係る電解質を含むことが好ましい。電池は、陽極と、陰極と、陽極および陰極の間に配置される電解質層とで構成される。このような構成とすることで、特性に優れた電池を得ることができる。また、電池としては、二次電池であることが好ましく、リチウムイオン二次電池であることがより好ましい。
 なお、前述のカーボネート化合物、金属塩、および溶媒を含有する混合溶液を電極に塗布し、溶媒を除去することで、電解質膜を電極上に直接形成してもよい。本実施形態に係る電池が備える各種部材は、特に限定されず、例えば電池に一般的に使用される材料を用いることができる。
 そして、本実施形態に係る電解質が固体電解質である場合には、溶媒を含んでいなくとも、イオン伝導性を有する。そのため、本実施形態に係る電池を、本実施形態に係る電解質を含み、かつ溶媒を含まない電池とすれば、液漏れがなく安全に使用することができる。
 なお、本発明は前記実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。
 以下に、実施例を挙げて本発明をさらに詳細に説明する。本発明は、これらの実施例に何ら限定されない。なお、以下の実施例および比較例における測定は、以下に示す方法により行った。
 [TG-DTA測定]
 5%重量減少温度の測定は、示差熱分析装置(島津製作所社製、TG/DTA分析器DTG-60)を用いて行った。測定試料を、乾燥窒素雰囲気下で、昇温速度10℃/分にて40℃から500℃まで昇温し、測定試料の5%重量減少温度を測定した。
 [イオン伝導度測定]
 得られた電解質膜を直径6mmの円形に切り抜き、電極として2枚のステンレス板で挟み、ステンレス板間のインピーダンスを測定した。測定には電極間に交流(印加電圧は10mV)を印加して抵抗成分を測定する交流インピーダンス法を用いて、得られたコール・コールプロットの実数インピーダンス切片よりイオン伝導度を算出した。なお、測定にはポテンショスタット/ガルバノスタット(SP-150 biologic社製)を用いた。
 イオン伝導度(σ)は、下記数式(F2)により求めた。
   σ = L/(R×S) ・・・(F2)
 式(F2)中、σはイオン伝導度(単位:S・cm-1)、Rは抵抗(単位:Ω)、Sは固体電解質膜の測定時の断面積(単位:cm)、Lは電極間距離(単位:cm)を示す。
 イオン伝導度の測定温度は、30℃である。複素インピーダンスの測定結果からイオン伝導度(σ)を算出した。
 [リチウムイオン輸率(Li輸率)測定]
 得られた電解質膜を直径6mmの円形に切り抜き、電極として2枚のリチウム板で挟み、セルを作製した。そして、セルを複素交流インピーダンス測定装置(Solartron 1280C)に接続し、30℃で24時間以上経過した後に測定を開始した。測定はまず、複素インピーダンス測定を行い、抵抗値(R)を算出した後に、10mVの電圧を印加し直流分極測定を行った。初期電流値(I)と電流値が一定になった際の定常電流値(I)を測定した。定常電流を確認した後、再び、複素インピーダンス測定を行い、抵抗値(R)を算出した。リチウムイオン輸率(t)は、下記数式(F3)により求めた(Evansの式)。
  t = I(ΔV-I×R)/I(ΔV-I×R) ・・・(F3)
 式(F3)中、ΔVは印加電圧を示し、R、R、IおよびIは上記と同様である。
 [カーボネート化合物Aの合成]
 エチレングリコールジグリシジルエーテル10gとテトラブチルアンモニウムブロミド0.4gを秤量し、圧力容器内に導入した。その後、送液ポンプによりCOを圧力容器内に導入し、圧力容器内の圧力を13.0MPaにし、100℃で3時間、反応を行った。以下に、合成スキームを示す。
Figure JPOXMLDOC01-appb-C000012
 その後、カラムによる精製を行った後にカーボネート化合物Aを得た。
 [カーボネート化合物Bの合成]
 トリエチレングリコール20g(0.133mol)と触媒としてトリエチルアミン32.34g(0.319mol)と溶媒としてジエチルエーテル50gとを秤量し、ナスフラスコ内に導入し、氷浴中で撹拌した。その後、クロロギ酸メチル30.2g(0.319mol)をゆっくり滴下し、室温で1晩撹拌した。以下に、合成スキームを示す。
Figure JPOXMLDOC01-appb-C000013
 その後、水:ジエチルエーテル=2:8(体積比)で分液操作を3回行った後に有機層をエバポレータで濃縮した。得られた反応物をカラムによる精製を行った後にカーボネート化合物Bを得た。
 [揮発性の評価]
 また、カーボネート化合物のTG-DTA測定を行った。図1には、カーボネート化合物A(試料1)、カーボネート化合物B(試料2)、およびポリエチレンカーボネート(商品名「QPAC-25」、EMPOWER MATERIALS社製、試料3)のTG-DTA測定における、重量減少率と温度との関係を示すグラフを示した。
 カーボネート化合物A(試料1)のTd5(5%重量減少温度)が272℃であった。
 カーボネート化合物B(試料2)のTd5が、203℃であった。
 固体電解質であるポリエチレンカーボネート(試料3)のTd5が、205℃であった。
 このことから、カーボネート化合物Aの揮発性が極めて低いことが確認された。また、カーボネート化合物Bの揮発性は、ポリエチレンカーボネートの揮発性と同程度であり、カーボネート化合物Bの揮発性が低いことが確認された。
 [実施例1]
 次に、得られたカーボネート化合物Aに、電解質中の塩濃度[z/(x+y)]×100(単位:mol%)が下記の通りとなるように秤量したリチウム塩としてのLiFSIを混合して、溶媒としてアセトニトリルを加えてよく撹拌して、電解質溶液を得た。その後、フッ素樹脂製モールド上に電解質溶液をキャストし、乾燥窒素雰囲気下、60℃で6時間乾燥させた。さらに減圧下、60℃で24時間乾燥させることでアセトニトリルを取り除き、電解質中の塩濃度が下記の通りの電解質膜を得た。電解質中の塩濃度[z/(x+y)]×100は、カーボネート単位のモル数とエーテル単位のモル数との和に対してリチウムのモル数が同じ、すなわち、[z/(x+y)]=1であれば、100mol%となる。
  実施例1-1:2.5mol%
  実施例1-2:10mol%
  実施例1-3:40mol%
  実施例1-4:80mol%
  実施例1-5:160mol%
 [実施例2]
 次に、得られたカーボネート化合物Bに、電解質中の塩濃度[z/(x+y)]×100(単位:mol%)が下記の通りとなるように秤量したリチウム塩としてのLiFSIを混合して、溶媒としてアセトニトリルを加えてよく撹拌して、電解質溶液を得た。その後、フッ素樹脂製モールド上に電解質溶液をキャストし、乾燥窒素雰囲気下、60℃で6時間乾燥させた。さらに減圧下、60℃で24時間乾燥させることでアセトニトリルを取り除き、電解質中の塩濃度が下記の通りの電解質膜を得た。電解質中の塩濃度[z/(x+y)]×100は、カーボネート単位のモル数とエーテル単位のモル数との和に対してリチウムのモル数が同じ、すなわち、[z/(x+y)]=1であれば、100mol%となる。
  実施例2-1:2.5mol%
  実施例2-2:10mol%
  実施例2-3:40mol%
  実施例2-4:80mol%
  実施例2-5:120mol%
  実施例2-6:160mol%
 [比較例1]
 市販のポリエチレンカーボネート(商品名「QPAC-25」、EMPOWER MATERIALS社製)に、固体電解質中の塩濃度[z/x](単位:mol%)が下記の通りとなるように秤量したリチウム塩としてのLiFSIを混合し、溶媒としてアセトニトリルを加えてよく撹拌して、電解質溶液を得た。その後、フッ素樹脂製モールド上に固体電解質溶液をキャストし、乾燥窒素雰囲気下、60℃で6時間乾燥させた。さらに減圧下、60℃で24時間乾燥させることでアセトニトリルを取り除き、固体電解質中の塩濃度が下記の通りの固体電解質膜を得た。電解質中の塩濃度[z/x]×100は、カーボネート単位のモル数に対してリチウムのモル数が同じ、すなわち、[z/x]=1であれば、100mol%となる。
  比較例1-1:40mol%
  比較例1-2:80mol%
  比較例1-3:160mol%
 [比較例2]
 市販のポリエチレンオキシド(シグマアルドリッチ社製)に、固体電解質中の塩濃度[z/y]×100が下記の通りとなるように秤量したリチウム塩としてのLiFSIを混合し、溶媒としてアセトニトリルを加えてよく撹拌して、電解質溶液を得た。その後、フッ素樹脂製モールド上に固体電解質溶液をキャストし、乾燥窒素雰囲気下、60℃で6時間乾燥させた。さらに減圧下、60℃で24時間乾燥させることでアセトニトリルを取り除き、固体電解質中の塩濃度が下記の通りの固体電解質膜を得た。電解質中の塩濃度[z/y]×100は、エーテル単位のモル数に対してリチウムのモル数が同じであればすなわち、[z/y]=1であれば、100mol%となる。
  比較例2-1:2.5mol%
  比較例2-2:5mol%
  比較例2-3:10mol%
  比較例2-4:40mol%
 [電解質膜の評価]
 実施例1、実施例2、比較例1および比較例2について、電解質中の塩濃度と、30℃におけるイオン伝導度の常用対数(log(σ))との関係をグラフに纏めた(図2)。
 図2に示す結果から、実施例1および2と比較例1の電解質のイオン伝導度においては、40mol%および80mol%の塩濃度で比較すると、実施例1および2のイオン伝導度が比較例1のイオン伝導度よりも上回っている。
 また、実施例1および2と比較例2の電解質のイオン伝導度を比較すると、塩濃度が2.5mol%、10mol%および40mol%のときには、実施例1および2のイオン伝導度が高いことが示されている。また、より低い塩濃度の場合も、実施例1および2のイオン伝導度が比較例2のイオン電導度よりも高い傾向にあることが分かった。
 したがって、カーボネート化合物AにLiFSIを加えることによって構成された電解質、およびBにLiFSIを加えることによって構成された電解質が、低い揮発性と高いイオン伝導度を備えることが示された。このことから、本発明の電解質は安全性に優れることが確認された。
 また、実施例1-4、実施例1-5、実施例2-4および実施例2-6について、固体電解質中の塩濃度([z/(x+y)]×100)、リチウムイオン輸率(t)、30℃におけるイオン伝導度(σ)、および、リチウムイオン伝導度(t×σ)を下記表1に示す。なお、比較例1および2については、イオン伝導度(σ)が低すぎるため、リチウムイオン輸率(t)の測定は出来なかった。
Figure JPOXMLDOC01-appb-T000014

Claims (6)

  1.  下記一般式(1)で表される化合物と、金属塩と、を含む
     ことを特徴とする電解質。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(1)中、nは0以上6以下の整数であり、Rは下記一般式(2)および(3)のいずれかである。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  2.  請求項1に記載の電解質において、
     前記金属塩はアルカリ金属塩である
     ことを特徴とする電解質。
  3.  請求項2に記載の電解質において、
     前記アルカリ金属塩はリチウム塩である
     ことを特徴とする電解質。
  4.  請求項3に記載の電解質において、
     前記リチウム塩として、リチウムビス(トリフルオロメタンスルホニル)イミドおよびリチウムビス(フルオロスルホニル)イミドの少なくとも一種を含む
     ことを特徴とする電解質。
  5.  請求項1から請求項4のいずれか1項に記載の電解質において、
     前記一般式(1)中のnは0以上4以下の整数である
     ことを特徴とする電解質。
  6.  請求項1から請求項5のいずれか1項に記載の電解質を含むことを特徴とする電池。
PCT/JP2017/026131 2016-08-09 2017-07-19 電解質および電池 WO2018030092A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-156643 2016-08-09
JP2016156643A JP2019169235A (ja) 2016-08-09 2016-08-09 電解質および電池

Publications (1)

Publication Number Publication Date
WO2018030092A1 true WO2018030092A1 (ja) 2018-02-15

Family

ID=61163387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026131 WO2018030092A1 (ja) 2016-08-09 2017-07-19 電解質および電池

Country Status (3)

Country Link
JP (1) JP2019169235A (ja)
TW (1) TW201817705A (ja)
WO (1) WO2018030092A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165751A (ja) * 1993-03-31 1995-06-27 Nippon Oil Co Ltd 有機溶媒及び電解液
JPH10512390A (ja) * 1995-01-13 1998-11-24 エス・アール・アイ・インターナシヨナル 有機液体電解質と可塑剤
JP2002175837A (ja) * 2000-12-06 2002-06-21 Nisshinbo Ind Inc 高分子ゲル電解質及び二次電池並びに電気二重層キャパシタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165751A (ja) * 1993-03-31 1995-06-27 Nippon Oil Co Ltd 有機溶媒及び電解液
JPH10512390A (ja) * 1995-01-13 1998-11-24 エス・アール・アイ・インターナシヨナル 有機液体電解質と可塑剤
JP2002175837A (ja) * 2000-12-06 2002-06-21 Nisshinbo Ind Inc 高分子ゲル電解質及び二次電池並びに電気二重層キャパシタ

Also Published As

Publication number Publication date
JP2019169235A (ja) 2019-10-03
TW201817705A (zh) 2018-05-16

Similar Documents

Publication Publication Date Title
KR100605075B1 (ko) 술포닐이미드 및 전도성 염으로서의 그의 용도
US5548055A (en) Single-ion conducting solid polymer electrolytes
US6727024B2 (en) Polyalkylene oxide polymer composition for solid polymer electrolytes
US11450884B2 (en) Electrolyte, anode-free rechargeable battery, method of forming anode-free rechargeable battery, battery, and method of forming battery
WO2015046175A1 (ja) 二次電池用非水電解液及びリチウムイオン二次電池
WO2006088009A1 (ja) 電解液
JP2004349240A (ja) 含フッ素エーテル鎖を含む含フッ素ポリマーからなる固体電解質
US10497974B2 (en) Fluorinated carbonates comprising two oxygen bearing functional groups
JP6481120B2 (ja) 固体電解質および電池
CN1333933A (zh) 电化学电池的无水电解质
WO2018008500A1 (ja) 固体電解質および電池
CN109755646B (zh) 一种有机材料及其制备方法、有机固体电解质及其制备方法和应用
US6893774B2 (en) Fluoroalkylphosphate salts, and process for the preparation of these substances
JP2003068358A (ja) 電気化学ディバイス用電解液またはゲル電解質並びに電池
JP2004182982A (ja) 電気化学デバイス用含ホウ素化合物、イオン伝導性高分子及び高分子電解質
JPWO2005123656A1 (ja) 新規なメチルカーボネート類、およびその製造方法、非水系電解液
WO2018030092A1 (ja) 電解質および電池
WO2018030091A1 (ja) 固体電解質および電池
JPH1131529A (ja) リチウムイオン2次電池用溶媒
EP3605704B1 (en) Gel-like electrolyte
JP4023337B2 (ja) ポリマー、並びに、これを用いた電解質および電気化学デバイス
WO2022107450A1 (ja) 固体電解質、電池および固体電解質の製造方法
JP2015528807A (ja) リチウム電池用の電解質溶媒として使用可能な特定のスルホネート化合物
CN113169380A (zh) 含有碱金属磺酰亚胺盐的共晶混合物和利用该混合物的电化学装置
WO2023047996A1 (ja) 固体電解質、固体電解質の製造方法、および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17839165

Country of ref document: EP

Kind code of ref document: A1