WO2023047996A1 - 固体電解質、固体電解質の製造方法、および電池 - Google Patents
固体電解質、固体電解質の製造方法、および電池 Download PDFInfo
- Publication number
- WO2023047996A1 WO2023047996A1 PCT/JP2022/034001 JP2022034001W WO2023047996A1 WO 2023047996 A1 WO2023047996 A1 WO 2023047996A1 JP 2022034001 W JP2022034001 W JP 2022034001W WO 2023047996 A1 WO2023047996 A1 WO 2023047996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- mass
- ion
- electrolytic solution
- lithium
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 123
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000002245 particle Substances 0.000 claims abstract description 90
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 74
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 59
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 48
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 48
- 229920000570 polyether Polymers 0.000 claims abstract description 40
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 38
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 38
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 37
- 239000003660 carbonate based solvent Substances 0.000 claims abstract description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 39
- 229910052744 lithium Inorganic materials 0.000 claims description 32
- 150000002500 ions Chemical class 0.000 claims description 28
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 25
- 238000000465 moulding Methods 0.000 claims description 13
- 239000002322 conducting polymer Substances 0.000 claims description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 11
- 238000004438 BET method Methods 0.000 claims description 10
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 239000012528 membrane Substances 0.000 description 31
- 239000003792 electrolyte Substances 0.000 description 28
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 25
- 229910001416 lithium ion Inorganic materials 0.000 description 25
- 238000005259 measurement Methods 0.000 description 23
- 229910021485 fumed silica Inorganic materials 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 18
- -1 isocyanate compound Chemical class 0.000 description 15
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 12
- 239000004810 polytetrafluoroethylene Substances 0.000 description 12
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 12
- 239000003999 initiator Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 229910002012 Aerosil® Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 239000002608 ionic liquid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000037427 ion transport Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011245 gel electrolyte Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- ZXHDKGCWOIPNKR-UHFFFAOYSA-N (4-methoxy-2,3-dimethylphenyl)-phenylmethanone Chemical compound CC1=C(C)C(OC)=CC=C1C(=O)C1=CC=CC=C1 ZXHDKGCWOIPNKR-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- YIKSHDNOAYSSPX-UHFFFAOYSA-N 1-propan-2-ylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C(C)C YIKSHDNOAYSSPX-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- BRKORVYTKKLNKX-UHFFFAOYSA-N 2,4-di(propan-2-yl)thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC(C(C)C)=C3SC2=C1 BRKORVYTKKLNKX-UHFFFAOYSA-N 0.000 description 1
- UXCIJKOCUAQMKD-UHFFFAOYSA-N 2,4-dichlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC(Cl)=C3SC2=C1 UXCIJKOCUAQMKD-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- LZHUBCULTHIFNO-UHFFFAOYSA-N 2,4-dihydroxy-1,5-bis[4-(2-hydroxyethoxy)phenyl]-2,4-dimethylpentan-3-one Chemical compound C=1C=C(OCCO)C=CC=1CC(C)(O)C(=O)C(O)(C)CC1=CC=C(OCCO)C=C1 LZHUBCULTHIFNO-UHFFFAOYSA-N 0.000 description 1
- LCHAFMWSFCONOO-UHFFFAOYSA-N 2,4-dimethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC(C)=C3SC2=C1 LCHAFMWSFCONOO-UHFFFAOYSA-N 0.000 description 1
- FGTYTUFKXYPTML-UHFFFAOYSA-N 2-benzoylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 FGTYTUFKXYPTML-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- LRRQSCPPOIUNGX-UHFFFAOYSA-N 2-hydroxy-1,2-bis(4-methoxyphenyl)ethanone Chemical compound C1=CC(OC)=CC=C1C(O)C(=O)C1=CC=C(OC)C=C1 LRRQSCPPOIUNGX-UHFFFAOYSA-N 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical class OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- WLVPRARCUSRDNI-UHFFFAOYSA-N 2-hydroxy-1-phenyl-1-propanone Chemical compound CC(O)C(=O)C1=CC=CC=C1 WLVPRARCUSRDNI-UHFFFAOYSA-N 0.000 description 1
- YRNDGUSDBCARGC-UHFFFAOYSA-N 2-methoxyacetophenone Chemical compound COCC(=O)C1=CC=CC=C1 YRNDGUSDBCARGC-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- WUFQNPMBKMKEHN-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;diethyl-(2-methoxyethyl)-methylazanium Chemical compound CC[N+](C)(CC)CCOC.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F WUFQNPMBKMKEHN-UHFFFAOYSA-N 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- BSFLBLPKMFBUKI-UHFFFAOYSA-M lithium 4,5-dicyanotriazole-4-carboxylate Chemical compound C(#N)C1(N=NN=C1C#N)C(=O)[O-].[Li+] BSFLBLPKMFBUKI-UHFFFAOYSA-M 0.000 description 1
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- CVVIFWCYVZRQIY-UHFFFAOYSA-N lithium;2-(trifluoromethyl)imidazol-3-ide-4,5-dicarbonitrile Chemical compound [Li+].FC(F)(F)C1=NC(C#N)=C(C#N)[N-]1 CVVIFWCYVZRQIY-UHFFFAOYSA-N 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- DASJFYAPNPUBGG-UHFFFAOYSA-N naphthalene-1-sulfonyl chloride Chemical compound C1=CC=C2C(S(=O)(=O)Cl)=CC=CC2=C1 DASJFYAPNPUBGG-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a solid electrolyte, a method for producing a solid electrolyte, and a battery.
- Patent Literature 1 proposes a pseudo-solid electrolyte containing a metal oxide and an ion-conducting material, in which a specific ion-conducting material is supported on metal oxide particles.
- Patent Document 2 proposes a gel electrolyte obtained by impregnating a composition comprising a crosslinked polyalkylene oxide and an inorganic oxide with a non-aqueous electrolyte solution comprising an inorganic electrolyte and a non-aqueous organic solvent.
- This crosslinked polyalkylene oxide is a crosslinked polyalkylene oxide obtained by reacting a polyalkylene oxide having a mass average molecular weight of 1,000 to 1,000,000 with an isocyanate compound.
- the pseudo-solid electrolyte described in Patent Document 1 contains either glymes or N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide as an ion conductor. , using mixtures with lithium salts, including lithium bis(fluorosulfonyl)imide.
- This ion conductive material is an ionic liquid electrolyte.
- a solid electrolyte using an ionic liquid-based electrolyte has insufficient characteristics such as lithium ion transference.
- solid electrolytes using ionic liquid-based electrolytes do not have sufficient properties such as stability against lithium metal under more severe usage environments.
- An object of the present invention is to provide a solid electrolyte with high lithium ion transference number, ionic conductivity, and high stability to lithium metal, a method for producing this solid electrolyte, and a battery comprising this solid electrolyte.
- the molar ratio of the lithium salt to the carbonate-based solvent contained in the electrolytic solution is 1/4 or more and 1/1 or less. There is a solid electrolyte.
- the lithium salt is at least one selected from the group consisting of lithium bis(fluorosulfonyl)imide and lithium borofluoride. solid electrolyte.
- the metal oxide particles have a specific surface area measured by the BET method of 160 m 2 /g or more and 700 m 2 /g or less. Electrolytes.
- a battery comprising the solid electrolyte according to any one of [1] to [7].
- the solid electrolyte contains the electrolytic solution, the metal oxide particles, and the ion-conductive polymer, and the total content of the electrolytic solution and the ion-conductive polymer is 100% by mass
- a method for producing a solid electrolyte wherein the content of the electrolytic solution is 87% by mass or more and 93% by mass or less, and the content of the ion conductive polymer is 7% by mass or more and 13% by mass or less.
- a solid electrolyte with high lithium ion transference number, ionic conductivity, and high stability to lithium metal a method for producing this solid electrolyte, and a battery comprising this solid electrolyte are provided.
- the solid electrolyte according to the present embodiment contains an electrolytic solution containing a lithium salt and a carbonate-based solvent, metal oxide particles, and an ion-conducting polymer, and the ion-conducting polymer is a crosslinked polymer. Contains ether crosslinks.
- the content of the electrolyte according to the present embodiment when the total content of the electrolyte and the ion-conductive polymer is 100% by mass, the content of the electrolyte is 87% by mass or more and 93% by mass or less. , the content of the ion-conducting polymer is 7% by mass or more and 13% by mass or less.
- the solid electrolyte according to the present embodiment it is easy to form the solid electrolyte into a film, and a solid electrolyte having a high transference number of lithium ions, high ionic conductivity, and high stability to lithium metal can be obtained.
- the reason for this is presumed as follows.
- the thixotropic property (hereinafter sometimes referred to as thixotropic property) of the electrolytic solution is improved by containing the electrolytic solution, the metal oxide particles, and the ion-conductive polymer.
- the ion conductive polymer contains a crosslinked product of a crosslinked polyether, the effect of improving the thixotropy is further enhanced by containing it within a predetermined range. Therefore, it is possible to form a film from a mixture containing a metal oxide and an electrolytic solution. By enabling this film formation, leakage of the electrolyte can be suppressed while suppressing deterioration of the ionic conductivity of the electrolyte.
- the ion-conducting polymer contains a cross-linked product of cross-linked polyether
- the fluidity is high because the polyether is not cross-linked, and the lithium salt concentration of the electrolyte solution is increased. be able to. From the above, it is presumed that the solid electrolyte according to the present embodiment has a high transference number of lithium ions, high ionic conductivity, and high stability with respect to lithium metal.
- the electrolytic solution according to this embodiment is obtained by including a lithium salt and a carbonate-based solvent.
- Lithium salts include, for example, lithium hexafluorophosphate (LiPF 6 ), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), lithium 2-trifluoromethyl-4,5-dicyanoimidazolate (LiTDI), lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA), lithium bis(pentafluoroethylsulfonyl)imide (LiBETI), borofluoride Lithium (LiBF 4 ), lithium bis(oxalato)borate (LiBOB), lithium nitrate (LiNO 3 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium fluoride (LiF) and the like.
- LiPF 6 lithium hexafluorophosphate
- LiTFSI lithium bis(trifluoromethanesulf
- the lithium salt is selected from lithium bis(fluorosulfonyl)imide and lithium borofluoride in that a solid electrolyte with high lithium ion transference, ionic conductivity, and stability to lithium metal can be easily obtained.
- the lithium salt either one of lithium bis(fluorosulfonyl)imide (LiFSI) and lithium borofluoride (LiBF 4 ) may be used alone, or these two may be used in combination.
- Lithium salts can be present in solid electrolytes as cations of lithium metal and as counterions to the cations. By using these lithium salts, the stability to lithium metal is further improved.
- the carbonate-based solvent includes, for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), Ethyl propyl carbonate (EPC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like.
- the carbonate-based solvent is at least one selected from dimethyl carbonate and propylene carbonate in that a solid electrolyte having high lithium ion transference, ionic conductivity, and stability to lithium metal can be easily obtained.
- the carbonate-based solvent is preferably As the carbonate-based solvent, either one of dimethyl carbonate (DMC) and propylene carbonate (PC) may be used alone, or these two may be used in combination.
- the carbonate-based solvent in this embodiment represents a compound having a carbonate skeleton in its molecular structure.
- the molar ratio of the lithium salt to the carbonate-based solvent is preferably 1/4 or more and 1/1 or less.
- this molar ratio is 1/4 or more, the stability against lithium metal tends to be improved.
- the molar ratio is 1/1 or less, the lithium salt is easily dissolved in the carbonate solvent.
- This molar ratio may be 1/3 or more and 1/1 or less, and 1/2 It may be more than 1/1 or less.
- the electrolytic solution according to the present embodiment is selected from lithium bis(fluorosulfonyl)imide and at least one lithium salt selected from lithium borofluoride, dimethyl carbonate, and propylene carbonate.
- lithium bis(fluorosulfonyl)imide and at least one lithium salt selected from lithium borofluoride, dimethyl carbonate, and propylene carbonate.
- electrolysis using a lithium salt of at least one selected from lithium bis(fluorosulfonyl)imide and lithium borofluoride in combination with a carbonate-based solvent of at least one selected from dimethyl carbonate and propylene carbonate in the case of a liquid, when the content of the lithium salt and the carbonate-based solvent is in the range of 1/4 or more and 1/1 or less in terms of molar ratio, the stability to lithium metal is more excellent.
- the ion conductive polymer according to the present embodiment contains a crosslinked product of crosslinked polyether.
- the cross-linked product of the cross-linked polyether is a cross-linked product resulting from the reaction of the reactive groups in the side chains of the cross-linked polyether.
- the crosslinked polyether according to the present embodiment is a polyether having reactive groups in side chains.
- a polyether is a chain polymer having an ether bond in its main chain.
- Reactive groups include allyl groups, allryloyl groups, methacryloyl groups, and the like.
- Structural units of the crosslinked polyether include, for example, structural units represented by the following formulas (1) to (5).
- the crosslinked polyether may be a polyether consisting of a single structural unit or a polyether consisting of several types of structural units.
- the number of types of structural units is not limited as long as it is 1 or more.
- the crosslinked polyether preferably has at least one structural unit represented by the above formulas (3) to (5) in that it has a reactive group in its side chain.
- Examples of crosslinked polyethers include polyethers represented by the following general formula (6).
- n, m and l are not particularly limited.
- n is preferably 50 or more and 98 or less
- m is preferably 1 or more and 40 or less
- l is 1 or more and 40 or less. is preferred.
- the content of the electrolyte and the ion-conductive polymer when the total content of the electrolyte and the ion-conductive polymer is 100% by mass, the content of the electrolyte is 87% by mass or more and 93% by mass or less, and the ion-conductive polymer should be 7% by mass or more and 13% by mass or less. If the content of the ion conductive polymer is less than 7% by mass, it becomes difficult to form the solid electrolyte into a film. On the other hand, if the content of the ion conductive polymer exceeds 13% by mass, at least one of lithium ion transference number and ion conductivity becomes insufficient.
- the content of the ion conductive polymer is preferably 8% by mass or more, more preferably 9% by mass or more, from the viewpoint of facilitating film formation of the solid electrolyte.
- the content of the ion-conductive polymer is preferably 12% by mass or less, more preferably 11% by mass or less, from the viewpoint of improving the transference number and ionic conductivity of lithium ions.
- the solid electrolyte according to the present embodiment preferably uses a photopolymerization initiator to obtain a crosslinked polyether crosslinked product.
- the crosslinked product of the crosslinked polyether is obtained by the reaction of the reactive groups in the side chains of the crosslinked polyether to form crosslinks.
- the photopolymerization initiator is not particularly limited, and includes known compounds used for the purpose of reacting crosslinked polyethers and the like.
- the photopolymerization initiator is preferably a photopolymerization initiator sensitive to ultraviolet rays.
- a photoinitiator may be used individually by 1 type, and may use 2 or more types together.
- Photopolymerization initiators include, for example, specifically 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2 ⁇ -ketol compounds such as hydroxypropiophenone and 1-hydroxycyclohexylphenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1-[4 Acetophenone compounds such as -(methylthio)-phenyl]-2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether, and anisoin methyl ether; ketal compounds such as benzyl dimethyl ketal; aromatic sulfonyl chloride compounds such as naphthalenesulfonyl chloride; photoactive oxime compounds such as 1-phenone-1,
- the content of the photopolymerization initiator is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the ion conductive polymer.
- the solid electrolyte according to this embodiment contains metal oxide particles.
- the electrolytic solution is supported on the metal oxide particles.
- the supported state means a state in which at least part of the surface of the metal oxide particles is coated with the electrolytic solution.
- the metal oxide particles preferably have a specific surface area of 160 m 2 /g or more and 700 m 2 /g or less, as measured by the BET method, from the viewpoint of facilitating film formation of the solid electrolyte.
- the specific surface area (BET method) of the metal oxide particles is 160 m 2 /g or more, the thixotropy tends to be improved, and a film of a mixture (that is, a solid electrolyte) containing metal oxide particles and an electrolytic solution is formed. easier to form.
- the specific surface area (BET method) is 700 m 2 /g or less, the mixing property with the electrolytic solution is improved, and a solid electrolyte film is easily formed.
- the specific surface area (BET method) of the metal oxide particles is more preferably 165 m 2 /g or more, and even more preferably 170 m 2 /g or more, from the viewpoint of facilitating film formation of the solid electrolyte. In the same respect, it is more preferably 600 m 2 /g or less, and even more preferably 520 m 2 /g or less.
- the BET method is a method in which gas molecules (usually nitrogen gas) are adsorbed onto solid particles, and the specific surface area of the solid particles is measured from the amount of adsorbed gas molecules. The specific surface area can be measured using various BET measuring devices.
- metal oxide particles one type of metal oxide particles having the above specific surface area may be used alone, or two or more types of metal oxide particles having different specific surface areas may be used in combination.
- the types of metal oxide particles are not particularly limited, and examples include silica particles, alumina particles, zirconia particles, ceria particles, magnesium silicate particles, calcium silicate particles, zinc oxide particles, antimony oxide particles, indium oxide particles, and tin oxide particles. , titanium oxide particles, iron oxide particles, magnesium oxide particles, aluminum hydroxide particles, magnesium hydroxide particles, potassium titanate particles, barium titanate particles, and the like. These metal oxide particles may be used singly or in combination of two or more.
- the metal oxide particles are preferably at least one selected from silica particles, alumina particles, zirconia particles, magnesium oxide particles, and barium titanate particles in terms of improving thixotropy. More preferably, the metal oxide particles are silica particles because they are lightweight and have a small particle size.
- the silica particles may be wet silica particles or dry silica particles.
- wet silica particles include wet silica particles obtained by a precipitation method and a sol-gel method obtained by a neutralization reaction between sodium silicate and a mineral acid.
- Dry silica particles include combustion silica particles (fumed silica particles) obtained by burning a silane compound and deflagration silica particles obtained by explosively burning metal silicon powder.
- the silica particles are dry silica particles, it is possible to suppress the contamination of moisture derived from the silica particles, and thus the deterioration of the electrolyte is easily suppressed. For this reason, from the viewpoint of suppressing deterioration of the electrolyte, the silica particles are preferably dry silica particles, and more preferably fumed silica particles.
- the content of the metal oxide particles when the total content of the electrolytic solution and the ion conductive polymer is 100 parts by mass, the content of the metal oxide particles is preferably 3 parts by mass or more and 30 parts by mass or less. Moreover, the content of the metal oxide particles is preferably 4 parts by mass or more, more preferably 5 parts by mass or more, from the viewpoint of facilitating film formation of the solid electrolyte. The content of the metal oxide particles is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, from the viewpoint of improving the transference number and ionic conductivity of lithium ions.
- the solid electrolyte according to this embodiment contains an electrolytic solution containing the lithium salt according to this embodiment and a carbonate-based solvent, metal oxide particles, and an ion-conducting polymer.
- the solid electrolyte according to this embodiment may contain components other than these as long as the object of the present invention is not impaired.
- the method for producing a solid electrolyte according to this embodiment includes the following steps.
- a step of mixing an electrolytic solution, metal oxide particles, a crosslinked polyether, and a photopolymerization initiator to prepare a mixture (step 1) Molding the mixture to obtain a molding (Step 2);
- a step of obtaining a solid electrolyte containing an ion-conducting polymer crosslinked with a crosslinked polyether by irradiating the molded article with ultraviolet rays step 3).
- the electrolytic solution contains a lithium salt and a carbonate-based solvent
- the solid electrolyte contains the electrolytic solution, the metal oxide particles, and the ion-conductive polymer, and the electrolytic solution and the ion-conductive
- the total content with the polymer is 100% by mass
- the content of the electrolytic solution is 87% by mass or more and 93% by mass or less
- the content of the ion conductive polymer is 7% by mass or more and 13% by mass. % by mass or less.
- a solid electrolyte having high lithium ion transference, high ionic conductivity, and high stability to lithium metal can be obtained.
- the moldability for obtaining the solid electrolyte is improved.
- the reason why the moldability is improved is considered as follows.
- the method for producing a solid electrolyte according to the present embodiment makes it easy to obtain a solid electrolyte without applying a strong shearing force when mixing raw materials for obtaining the solid electrolyte. Therefore, in the method for producing a solid electrolyte according to this embodiment, moldability is improved.
- Step 1 is a step of mixing raw materials for obtaining a solid electrolyte to obtain a mixture.
- step 1 first, as raw materials for obtaining a solid electrolyte, an electrolytic solution containing the above-mentioned lithium salt and a carbonate-based solvent, the above-mentioned metal oxide particles, and the above-mentioned ion-conductive polymer. A polyether and a photoinitiator are prepared respectively. Next, the desired amounts of these prepared raw materials are weighed. A mixture is then prepared by mixing the weighed ingredients. The mixture may be prepared by stirring each raw material with a known stirring device or the like. The mixture prepared in step 1 is a mixture for solid electrolyte formation.
- step 1 when mixing the electrolytic solution, the metal oxide particles, the crosslinked polyether, and the photopolymerization initiator, they are mixed at the following ratios, for example.
- the total content of the electrolyte and the ion-conductive polymer (crosslinked polyether) is 100% by mass
- the content of the electrolyte is 87% by mass or more and 93% by mass or less
- the ion conductivity is high.
- the content of the molecule must be 7% by mass or more and 13% by mass or less.
- the content of the photopolymerization initiator is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the ion conductive polymer.
- the content of the metal oxide particles is preferably 3 parts by mass or more and 30 parts by mass or less.
- Step 2 is a step of obtaining a molding from the mixture prepared in Step 1.
- a molding is obtained by molding the mixture prepared in step 1.
- the molding of the mixture is not particularly limited, and for example, the mixture may be molded by coating the surface of the support to form a coating film. Further, the mixture may be molded by, for example, compression molding using a mold exhibiting releasability.
- the mold exhibiting releasability may be, for example, a release film obtained by subjecting the surface of the film to release treatment.
- Step 3 is a step of obtaining a solid electrolyte from the molding obtained in step 2.
- the molded article molded in step 2 is irradiated with ultraviolet rays to crosslink the crosslinkable polyether and form an ion-conductive polymer that is a crosslinked product of the crosslinkable polyether.
- a solid electrolyte containing the electrolytic solution described above, the metal oxide particles described above, and the ion-conductive polymer described above is obtained.
- the device for irradiating the molded article with ultraviolet rays is not particularly limited as long as the device crosslinks the crosslinkable polyether.
- an apparatus for irradiating ultraviolet rays may be an apparatus equipped with an ultraviolet LED lamp, an apparatus equipped with a high-pressure mercury lamp, or an apparatus equipped with a metal halide lamp.
- the conditions for irradiating the molded article with ultraviolet rays (UV) are not particularly limited as long as the crosslinkable polyether is crosslinked.
- the maximum illuminance and the integrated amount of light when irradiating ultraviolet rays are as follows.
- the maximum illuminance may be, for example, 5 mW/cm 2 or more, 10 mW/cm 2 or more, or 50 mW/cm 2 or more.
- the maximum illuminance may be 1000 mW/cm 2 or less, 700 mW/cm 2 or less, or 500 mW/cm 2 or less.
- the integrated amount of light may be, for example, 50 mJ/cm 2 or more, 100 mJ/cm 2 or more, or 500 mJ/cm 2 or more. Also, the integrated amount of light may be 5000 mJ/cm 2 or less, 3000 mJ/cm 2 or less, or 2000 mJ/cm 2 or less.
- the solid electrolyte according to the present embodiment is obtained through the above Steps 1, 2, and 3.
- the battery according to this embodiment includes the solid electrolyte according to this embodiment.
- the solid electrolyte according to this embodiment it is preferable to provide the solid electrolyte according to this embodiment as a constituent material of the electrolyte layer of the battery.
- a battery consists of an anode, a cathode, and an electrolyte layer disposed between the anode and the cathode. With such a configuration, a battery having excellent characteristics can be obtained.
- the battery is preferably a secondary battery, more preferably a lithium ion secondary battery.
- Various members included in the lithium-ion secondary battery according to the present embodiment are not particularly limited, and for example, materials commonly used in batteries can be used.
- ⁇ A LA /( RA ⁇ SA ) (F1)
- ⁇ A is the ionic conductivity (unit: S cm ⁇ 1 )
- RA is the resistance (unit: ⁇ )
- S A is the cross-sectional area of the solid electrolyte membrane when measured (unit: cm 2 ).
- LA indicates the inter-electrode distance (unit: cm).
- the measurement temperature is 25°C.
- the ionic conductivity ( ⁇ A ) was calculated from the measurement result of the complex impedance.
- a circular mesh cloth with a diameter of 19 mm ( ⁇ -UX SCREEN 150-035/380TW, manufactured by NBC Meshtec Co., Ltd.) was used as a separator. Then, the separator was impregnated with an electrolytic solution containing a predetermined formulation of the lithium salt and carbonate-based solvent used in Examples or Comparative Examples, sandwiched between two stainless steel plates with a diameter of 16 mm as electrodes, and the impedance between the stainless steel plates was measured. bottom.
- ⁇ B LB /( RB ⁇ SB ) (F2)
- ⁇ B is the ionic conductivity (unit: S cm ⁇ 1 )
- RB is the resistance (unit: ⁇ )
- S B is the cross-sectional area of the electrode (unit: cm 2 )
- LB is the electrode.
- the distance (unit: cm) is shown.
- the measurement temperature is 25°C.
- the ionic conductivity ( ⁇ B ) was calculated from the measurement result of the complex impedance.
- the lithium metal is stable when the voltage is constant and the dissolution and deposition are repeated without a short circuit or the like.
- the number of cycles operated at a potential within ⁇ 20 mV from the voltage of the initial cycle was defined as the number of stable operation cycles, and the stability of each example to lithium metal was compared.
- the lithium ion transference number (t + ) was determined by the following formula (F3) (Evans formula).
- t + Is( ⁇ V ⁇ I 0 ⁇ R 0 )/I 0 ( ⁇ V ⁇ I S ⁇ R S ) (F3)
- ⁇ V indicates the applied voltage
- R 0 , R s , I 0 and I s are the same as above.
- Lithium bis(fluorosulfonyl)imide (LiFSI) was prepared as a lithium salt.
- Dimethyl carbonate (DMC) was prepared as a carbonate-based solvent.
- fumed silica particles (AEROSIL (registered trademark) 380, Nippon Aerosil Co., Ltd., specific surface area 350 m 2 /g-410 m 2 /g by BET method) were prepared.
- Alkox CP-A2H (manufactured by Meisei Chemical Industry Co., Ltd.) was prepared as a cross-linked polyether that becomes an ion-conductive polymer.
- the specific surface area of 350 m 2 /g-410 m 2 /g means that the specific surface area is in the range of 350 m 2 /g to 410 m 2 /g.
- LiFSI Lithium bis(fluorosulfonyl)imide
- DMC dimethyl carbonate
- the prepared electrolytic solution and ion-conductive polymer Alkox CP-A2H were weighed so that the mass ratio was 90/10, and after mixing well while heating to 70 ° C., the ion-conductive polymer was added to 100 parts by mass.
- the mixture for forming a solid electrolyte membrane was compression-molded on a release film (manufactured by Lintec Corporation, product name “PET38AL-5”) to a thickness of 100 ⁇ m to obtain a molded product.
- This molding was irradiated with ultraviolet rays (UV) [maximum illuminance: 180 mW/cm 2 , integrated light intensity: 1000 mJ/cm 2 , illuminance photometer manufactured by Eye Graphics (control unit EYE UV METER UVPF-A2, light receiving unit Measurement using EYE UV METER PD-365A 2)] was performed, and the crosslinked polyether was crosslinked to obtain a solid electrolyte membrane containing an ion conductive polymer containing a crosslinked product of the crosslinked polyether.
- UV ultraviolet rays
- Lithium bis(fluorosulfonyl)imide (LiFSI) was prepared as a lithium salt.
- Tetraethylene glycol dimethyl ether (G4) was prepared as a solvent.
- fumed silica particles (AEROSIL (registered trademark) 380, Nippon Aerosil Co., Ltd., specific surface area 350 m 2 /g-410 m 2 /g by BET method) were prepared.
- Polytetrafluoroethylene (PTFE) was prepared as a binder.
- LiFSI Lithium bis(fluorosulfonyl)imide
- G4 tetraethylene glycol dimethyl ether
- PTFE polytetrafluoroethylene
- this mixture was compression-molded on a fluororesin mold to prepare a solid electrolyte membrane, but no membrane was obtained.
- the mass ratio of the electrolyte and the binder is 90/10, and the amount of filler added is 5 parts by mass with respect to 100 parts by mass of the mixture of the electrolyte and the binder.
- Lithium bis(fluorosulfonyl)imide (LiFSI) was prepared as a lithium salt.
- Tetraethylene glycol dimethyl ether (G4) was prepared as a solvent.
- fumed silica particles (AEROSIL (registered trademark) 380, Nippon Aerosil Co., Ltd., specific surface area 350 m 2 /g-410 m 2 /g by BET method) were prepared.
- Polytetrafluoroethylene (PTFE) was prepared as a binder.
- LiFSI Lithium bis(fluorosulfonyl)imide
- G4 tetraethylene glycol dimethyl ether
- PTFE polytetrafluoroethylene
- this mixture was compression-molded on a fluororesin mold to obtain a solid electrolyte membrane.
- the mass ratio of the electrolyte and the binder is 94/6, and the amount of filler added is 24 parts by mass with respect to 100 parts by mass of the mixture of the electrolyte and the binder.
- PTFE Polytetrafluoroethylene
- an electrolytic solution was prepared.
- 5 parts by mass of polytetrafluoroethylene (PTFE) was added to a total of 100 parts by mass of the electrolytic solution and the fumed silica particles, and mixed well using an agate mortar.
- a solid electrolyte membrane was obtained in the same manner as in Example 1, except that this mixture was compression molded on a fluororesin mold.
- the mass ratio of the electrolyte and the binder is 94/6
- the amount of filler added is 24 parts by mass with respect to 100 parts by mass of the mixture of the electrolyte and the binder.
- Example 1 and Comparative Examples 1, 3, 8 and 9 were subjected to the above-described dissolution deposition test, ion conductivity measurement, and lithium ion transport number measurement. Further, for Example 1 and Comparative Examples 1, 3, 8 and 9, the ionic conductivity measurement of the aforementioned electrolytic solution was performed.
- Table 1 shows the composition of the solid electrolyte membrane of each example, and Table 2 shows the measurement results of the dissolution deposition test, ion conductivity measurement, and lithium ion transport number measurement.
- Li salt indicates a lithium salt
- solvent indicates a carbonate-based solvent.
- Example 1 operates stably over 200 cycles. In contrast, Comparative Examples 8 and 9 are less than 200 cycles. In Comparative Examples 8 and 9, the voltage increased with the passage of cycles, and did not operate stably. In addition, regarding the results of ion conductivity, it can be seen that Example 1 has a higher ion conductivity than each of the comparative examples.
- the lithium ion transference number of Example 1 exceeds 0.5.
- an ionic liquid electrolyte tends to have a low lithium ion transference number.
- an ionic liquid electrolyte has a lithium ion transport number of 0.5 or less.
- the lithium ion transference number of Comparative Example 8 was 0.35.
- the solid electrolyte of Example 1 is superior.
- Example 1 the solid electrolyte membrane obtained in Example 1 was easily formed into a membrane.
- the lithium ion transference number, ionic conductivity, and stability to lithium metal were all higher. From this, it was confirmed that the solid electrolyte of the present invention can be easily formed into a film, and has a high transference number of lithium ions, high ionic conductivity, and high stability to lithium metal.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
- Primary Cells (AREA)
Abstract
Description
また、特許文献2には、架橋ポリアルキレンオキサイドと無機酸化物からなる組成物に、無機電解質および非水系有機溶剤からなる非水電解質溶液を含浸させてなるゲル状電解質が提案されている。また、この架橋ポリアルキレンオキサイドは、質量平均分子量が1000~100万のポリアルキレンオキサイドにイソシアネート化合物を反応させて得られる架橋ポリアルキレンオキサイドである。
また、特許文献2に記載のゲル状電解質の作製方法を、リチウム塩濃度が高い電解液に適用しようとすると、粘度が高いために架橋ポリアルキレンオキサイドと無機酸化物からなる組成物に、電解液を含浸することができない。すなわち、特許文献2に記載のゲル状電解質は、電解液のリチウム塩濃度を高めることができず、また、リチウム金属に対する安定性などの特性が十分ではなかった。
本実施形態に係る固体電解質について説明する。
本実施形態に係る電解液は、リチウム塩と、カーボネート系溶媒とを含ませることによって得られる。
本実施形態に係るリチウム塩は、例えば、具体的には、ヘキサフルオロリン酸リチウム(LiPF6)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウム2-トリフルオロメチル-4,5-ジシアノイミダゾレート(LiTDI)、リチウム4,5-ジシアノ-1,2,3-トリアゾレート(LiDCTA)、リチウムビス(ペンタフルオロエチルスルホニル)イミド(LiBETI)、ホウフッ化リチウム(LiBF4)、リチウムビス(オキサラト)ボレート(LiBOB)、硝酸リチウム(LiNO3)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、フッ化リチウム(LiF)などが挙げられる。
本実施形態に係るカーボネート系溶媒は、具体的には、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などが挙げられる。これらの中でも、リチウムイオンの輸率、イオン伝導度、およびリチウム金属に対する安定性が高い固体電解質が得られやすくなる点で、カーボネート系溶媒は、ジメチルカーボネート、およびプロピレンカーボネートから選択される少なくとも一つであることが好ましい。カーボネート系溶媒は、ジメチルカーボネート(DMC)、およびプロピレンカーボネート(PC)のいずれかを1種単独で用いてもよく、これら2種を併用してもよい。ここで、本実施形態におけるカーボネート系溶媒は、分子構造中にカーボネート骨格を有する化合物を表す。
本実施形態に係る電解液において、カーボネート系溶媒に対するリチウム塩のモル比(リチウム塩/カーボネート系溶媒)は、1/4以上1/1以下であることが好ましい。このモル比が、1/4以上であると、リチウム金属に対する安定性が向上しやすい。一方、このモル比が、1/1以下であると、カーボネート系溶媒に対してリチウム塩が溶解しやすくなる。リチウムイオンの輸率、イオン伝導度、およびリチウム金属に対する安定性が高い固体電解質が得られやすくなる点で、このモル比は、1/3以上1/1以下であってもよく、1/2以上1/1以下であってもよい。
本実施形態に係るイオン伝導性高分子は、架橋型ポリエーテルの架橋物を含有する。ここで、架橋型ポリエーテルの架橋物とは、架橋型ポリエーテルの側鎖にある反応性基が反応して架橋したものである。
本実施形態に係る架橋型ポリエーテルは、側鎖に反応性基を有するポリエーテルである。ポリエーテルとは、エーテル結合を主鎖に持つ鎖状高分子である。
反応性基としては、アリル基、アルリロイル基、およびメタクリロイル基等が挙げられる。
架橋型ポリエーテルの構成単位としては、例えば、下記式(1)~(5)で表される構成単位が挙げられる。
架橋型ポリエーテルとしては、例えば、下記一般式(6)で表されるポリエーテルが挙げられる。
イオン伝導性高分子の含有量が7質量%未満であると、固体電解質の膜化が困難となる。他方、イオン伝導性高分子の含有量が13質量%を超えると、リチウムイオンの輸率およびイオン伝導度の少なくともいずれかが不十分となる。また、固体電解質の膜化を容易にする点で、イオン伝導性高分子の含有量は、8質量%以上であることが好ましく、9質量%以上であることがより好ましい。リチウムイオンの輸率およびイオン伝導度の向上の点で、イオン伝導性高分子の含有量は、12質量%以下であることが好ましく、11質量%以下であることがより好ましい。
本実施形態に係る固体電解質は、架橋型ポリエーテルの架橋物を得るために、光重合開始剤を用いることが好ましい。本実施形態に係る固体電解質において、架橋型ポリエーテルの架橋物は、架橋型ポリエーテルの側鎖にある反応性基が反応して架橋することで得られる。
本実施形態に係る固体電解質は、金属酸化物粒子を含有する。本実施形態に係る固体電解質において、電解液と金属酸化物粒子とを含ませることで、電解液が金属酸化物粒子に担持された状態となる。ここで、本実施形態において、担持された状態とは、金属酸化物粒子の表面の少なくとも一部に、電解液が被覆した状態を表す。
次に、本実施形態に係る固体電解質の製造方法について説明する。
電解液、金属酸化物粒子、架橋型ポリエーテル、および光重合開始剤を混合して、混合物を調製する工程(工程1)
混合物を成形して、成形物を得る工程(工程2)、
成形物に対し、紫外線を照射することにより、架橋型ポリエーテルが架橋したイオン伝導性高分子を含む固体電解質を得る工程(工程3)
そして、電解液は、リチウム塩、およびカーボネート系溶媒を含み、固体電解質は、前記電解液、前記金属酸化物粒子、および前記イオン伝導性高分子を含有し、前記電解液と、前記イオン伝導性高分子との合計含有量を100質量%としたとき、前記電解液の含有量が、87質量%以上93質量%以下であり、前記イオン伝導性高分子の含有量が、7質量%以上13質量%以下である。
工程1は、固体電解質を得るための原材料を混合して、混合物を得る工程である。工程1では、まず、固体電解質を得るための原材料として、前述のリチウム塩、およびカーボネート系溶媒を含む電解液と、前述の金属酸化物粒子と、前述のイオン伝導性高分子で説明した架橋型ポリエーテルおよび光重合開始剤とをそれぞれ準備する。次に、これらの準備した原材料について、目的とする量を秤量する。その後、秤量した各原材料を混合することによって、混合物が調製される。混合物は、公知の撹拌装置などによって各原材料を撹拌することにより、調製してもよい。工程1で調整された混合物は、固体電解質形成用の混合物である。
電解液と、イオン伝導性高分子(架橋型ポリエーテル)との合計含有量を100質量%としたとき、電解液の含有量は、87質量%以上93質量%以下であり、イオン伝導性高分子の含有量は、7質量%以上13質量%以下であることが必要である。
光重合開始剤の含有量は、イオン伝導性高分子100質量部に対して、0.1質量部以上10質量部以下であることが好ましい。
電解液と、イオン伝導性高分子との合計含有量を100質量部としたとき、金属酸化物粒子の含有量は、3質量部以上30質量部以下であることが好ましい。
工程2は、工程1で調製した混合物から成形物を得る工程である。工程2では、工程1で調製した混合物を成形することにより、成形物が得られる。混合物の成形は、特に限定されず、例えば、混合物を支持体の表面に塗布して塗膜を形成することで成形してもよい。また、混合物の成形は、例えば、剥離性を示す金型で圧縮成形が施されることで成形してもよい。剥離性を示す金型は、例えば、フィルムの表面に離型処理を施した離型フィルムであってもよい。
工程3は、工程2で得た成形物から固体電解質を得る工程である。工程3では、工程2で成形した成形物に対し、紫外線を照射することにより、架橋型ポリエーテルが架橋して、架橋型ポリエーテルの架橋物であるイオン伝導性高分子が形成される。そして、前述の電解液と、前述の金属酸化物粒子と、前述のイオン伝導性高分子とを含む固体電解質が得られる。成形体に対して紫外線を照射する装置は、特に限定されず、架橋型ポリエーテルが架橋する装置であればよい。例えば、紫外線を照射する装置は、紫外線LEDランプを備えた装置でもよく、高圧水銀ランプを備えた装置でもよく、メタルハライドランプを備えた装置でもよい。
次に、本実施形態に係る電池について説明する。
固体電解質膜を直径6mmの円形に切り抜き、電極として2枚のステンレス板で挟み、ステンレス板間のインピーダンスを測定した。測定には、電極間に交流(印加電圧は10mV)を印加して抵抗成分を測定する交流インピーダンス法を用いて、得られたコール・コールプロットの実数インピーダンス切片よりイオン伝導度を算出した。なお、測定にはポテンショスタット/ガルバノスタット(VMP-300 biologic社製)を用いた。
イオン伝導度(σA)は、下記数式(F1)により求めた。
σA=LA/(RA×SA)・・・(F1)
数式(F1)中、σAはイオン伝導度(単位:S・cm-1)、RAは抵抗(単位:Ω)、SAは固体電解質膜の測定時の断面積(単位:cm2)、LAは電極間距離(単位:cm)を示す。
測定温度は、25℃である。また、複素インピーダンスの測定結果からイオン伝導度(σA)を算出した。
直径19mmの円形のメッシュクロス(α-UX SCREEN 150-035/380TW,株式会社NBCメッシュテック社製)をセパレーターとして使用した。そして、実施例又は比較例に使用するリチウム塩およびカーボネート系溶媒を所定処方で配合した電解液をセパレーターに含浸し、電極として2枚の直径16mmのステンレス板で挟み、ステンレス板間のインピーダンスを測定した。測定には、電極間に交流(印加電圧は10mV)を印加して抵抗成分を測定する交流インピーダンス法を用いて、得られたコール・コールプロットの実数インピーダンス切片よりイオン伝導度を算出した。なお、測定にはポテンショスタット/ガルバノスタット(VMP-300 biologic社製)を用いた。
イオン伝導度(σB)は、下記数式(F2)により求めた。
σB=LB/(RB×SB)・・・(F2)
数式(F2)中、σBはイオン伝導度(単位:S・cm-1)、RBは抵抗(単位:Ω)、SBは電極の断面積(単位:cm2)、LBは電極間距離(単位:cm)を示す。
測定温度は、25℃である。また、複素インピーダンスの測定結果からイオン伝導度(σB)を算出した。
固体電解質膜を直径19mmの円形に切り抜き、電極として2枚のリチウム金属で挟み、リチウム対称セルを作製した。リチウム金属電極は直径16mmとした。温度25℃において電流密度を3mA/cm2とし、酸化電流を3mAh/cm2まで流した後、続いて還元電流を3mAh/cm2まで流した。この一連の作業を200サイクル繰り返し、200サイクル経過後の電圧変化を測定した。この電圧測定によって、リチウム金属の溶解析出挙動を調べた。短絡等がなく電圧が一定で溶解・析出が繰り返されるときにリチウム金属に対し安定であると確認できる。初期サイクルの電圧から±20mV以内の電位で作動したサイクルの回数を安定作動サイクル数とし、各例のリチウム金属に対する安定性を比較した。
得られた固体電解質膜を直径6mmの円形に切り抜き、電極として2枚のリチウム板で挟み、セルを作製した。そして、セルをポテンショスタット/ガルバノスタット(VMP-300 biologic社製)に接続し、25℃で2時間以上経過した後に、測定を開始した。測定は、まず、複素インピーダンス測定を行い、抵抗値(R0)を算出した後に、30mVの電圧を印加し、直流分極測定を行った。初期電流値(I0)と電流値が一定になった際の定常電流値(IS)を測定した。定常電流を確認した後、再び、複素インピーダンス測定を行い、抵抗値(RS)を算出した。リチウムイオン輸率(t+)は、下記数式(F3)により求めた(Evansの式)。
t+=Is(ΔV-I0×R0)/I0(ΔV-IS×RS)・・・(F3)
数式(F3)中、ΔVは印加電圧を示し、R0、RS、I0およびISは上記と同様である。
リチウム塩として、リチウムビス(フルオロスルホニル)イミド(LiFSI)を準備した。カーボネート系溶媒として、ジメチルカーボネート(DMC)を準備した。金属酸化物粒子として、ヒュームドシリカ粒子(AEROSIL(登録商標)380、日本アエロジル株式会社、BET法による比表面積350m2/g-410m2/g)を準備した。イオン伝導性高分子となる架橋型ポリエーテルとして、Alkox CP-A2H(明成化学工業株式会社製)を準備した。
なお、比表面積350m2/g-410m2/gは、比表面積が、350m2/gから410m2/gの範囲であることを表す。以下、他の類似の表記についても同様である。
リチウムビス(フルオロスルホニル)イミド(LiFSI)と、ジメチルカーボネート(DMC)を、モル比で、LiFSI/DMC=1/2になるように秤量し、よく撹拌して電解液を調製した。調製した電解液とイオン伝導性高分子(Alkox CP-A2H)を質量比で90/10になるよう秤量し、70℃に加温しながらよく混合した後、イオン伝導性高分子100質量部に対し、2.5質量部の1-ヒドロキシシクロヘキシルフェニルケトンを添加し、よく混合して液状混合物を得た。さらに、得られた液状混合物100質量部に対し、ヒュームドシリカ粒子を5質量部添加し、よく混合して、固体電解質膜形成用の混合物を得た。
調製した電解液とイオン伝導性高分子(Alkox CP-A2H)を質量比で94/6になるよう秤量し、液状混合物100質量部に対し、ヒュームドシリカ粒子を24質量部添加した以外は、実施例1と同様にして固体電解質膜を作製したが、膜が得られなかった。
調製した電解液とイオン伝導性高分子(Alkox CP-A2H)を質量比で95/5になるよう秤量し、液状混合物100質量部に対し、ヒュームドシリカ粒子を5質量部添加した以外は、実施例1と同様にして固体電解質膜を作製したが、膜が得られなかった。
調製した電解液とイオン伝導性高分子(Alkox CP-A2H)を質量比で86/14になるよう秤量し、液状混合物100質量部に対し、ヒュームドシリカ粒子を5質量部添加した以外は、実施例1と同様にして固体電解質膜を得た。
調製した電解液とイオン伝導性高分子(Alkox CP-A2H)を質量比で91/9になるよう秤量し、液状混合物100質量部に対し、ヒュームドシリカ粒子を添加しなかった以外は、実施例1と同様にして固体電解質膜を作製したが、膜が得られなかった。
調製した電解液とイオン伝導性高分子(Alkox CP-A2H)を質量比で95/5になるよう秤量し、液状混合物100質量部に対し、ヒュームドシリカ粒子を13質量部添加した以外は、実施例1と同様にして固体電解質膜を作製したが、膜が得られなかった。
調製した電解液とイオン伝導性高分子(Alkox CP-A2H)を質量比で97/3になるよう秤量し、液状混合物100質量部に対し、ヒュームドシリカ粒子を18質量部添加した以外は、実施例1と同様にして固体電解質膜を作製したが、膜が得られなかった。
リチウム塩として、リチウムビス(フルオロスルホニル)イミド(LiFSI)を準備した。溶媒として、テトラエチレングリコールジメチルエーテル(G4)を準備した。金属酸化物粒子として、ヒュームドシリカ粒子(AEROSIL(登録商標)380、日本アエロジル株式会社、BET法による比表面積350m2/g-410m2/g)を準備した。結着剤として、ポリテトラフルオロエチレン(PTFE)を準備した。
リチウムビス(フルオロスルホニル)イミド(LiFSI)とテトラエチレングリコールジメチルエーテル(G4)を、モル比で、LiFSI/G4=1/1になるように秤量し、よく撹拌して電解液を調製した。次に、電解液と、ヒュームドシリカ粒子とを、質量比で、電解液/ヒュームドシリカ粒子=95/5になるように秤量し、よく混合した。さらに、電解液とヒュームドシリカ粒子との合計100質量部に対し、ポリテトラフルオロエチレン(PTFE)を10質量部添加して、メノウ乳鉢を用いてよく混合した。その後、この混合物に対し、フッ素樹脂製モールド上で圧縮成形し、固体電解質膜を作製したが、膜が得られなかった。なお、この固体電解質膜において、電解液と結着剤との質量比は90/10であり、電解液と結着剤との混合物100質量部に対し、フィラー添加量は5質量部となる。
リチウム塩として、リチウムビス(フルオロスルホニル)イミド(LiFSI)を準備した。溶媒として、テトラエチレングリコールジメチルエーテル(G4)を準備した。金属酸化物粒子として、ヒュームドシリカ粒子(AEROSIL(登録商標)380、日本アエロジル株式会社、BET法による比表面積350m2/g-410m2/g)を準備した。結着剤として、ポリテトラフルオロエチレン(PTFE)を準備した。
リチウムビス(フルオロスルホニル)イミド(LiFSI)とテトラエチレングリコールジメチルエーテル(G4)を、モル比で、LiFSI/G4=1/1になるように秤量し、よく撹拌して電解液を調製した。次に、電解液と、ヒュームドシリカ粒子とを、質量比で、電解液/ヒュームドシリカ粒子=80/20になるように秤量し、よく混合した。さらに、電解液とヒュームドシリカ粒子との合計100質量部に対し、ポリテトラフルオロエチレン(PTFE)を5質量部添加して、メノウ乳鉢を用いてよく混合した。その後、この混合物に対し、フッ素樹脂製モールド上で圧縮成形し、固体電解質膜を得た。なお、この固体電解質膜において、電解液と結着剤との質量比は94/6であり、電解液と結着剤との混合物100質量部に対し、フィラー添加量は24質量部となる。
結着剤として、ポリテトラフルオロエチレン(PTFE)を準備した。また、実施例1と同様の方法で、電解液を調製した。
調製した電解液と、ヒュームドシリカ粒子とを、質量比で、電解液/ヒュームドシリカ粒子=80/20になるように秤量し、よく混合した。さらに、電解液とヒュームドシリカ粒子との合計100質量部に対し、ポリテトラフルオロエチレン(PTFE)を5質量部添加して、メノウ乳鉢を用いてよく混合した。その後、この混合物に対し、フッ素樹脂製モールド上で圧縮成形した以外は、実施例1と同様にして固体電解質膜を得た。なお、この固体電解質膜において、電解液と結着剤との質量比は94/6であり、電解液と結着剤との混合物100質量部に対し、フィラー添加量は24質量部となる。
実施例1並びに比較例1、3、8および9で得られた固体電解質膜について、前述の溶解析出試験、イオン伝導度測定、およびリチウムイオン輸率測定を行った。また、実施例1並びに比較例1、3、8および9について、前述の電解液のイオン伝導度測定を行った。
また、イオン伝導度の結果について、実施例1では、各比較例よりもイオン伝導度が高いことが分かる。
Claims (9)
- リチウム塩、およびカーボネート系溶媒を含む電解液と、金属酸化物粒子と、イオン伝導性高分子と、を含有し、
前記イオン伝導性高分子が、架橋型ポリエーテルの架橋物を含有し、
前記電解液と、前記イオン伝導性高分子との合計含有量を100質量%としたとき、
前記電解液の含有量が、87質量%以上93質量%以下であり、
前記イオン伝導性高分子の含有量が、7質量%以上13質量%以下である、
固体電解質。 - 請求項1に記載の固体電解質において、
前記電解液に含まれる、前記カーボネート系溶媒に対する前記リチウム塩のモル比(リチウム塩/カーボネート系溶媒)が、1/4以上1/1以下である、
固体電解質。 - 請求項1に記載の固体電解質において、
前記電解液と、前記イオン伝導性高分子との合計含有量を100質量部としたとき、
前記金属酸化物粒子の含有量が、3質量部以上30質量部以下である、
固体電解質。 - 請求項1に記載の固体電解質において、
前記リチウム塩が、リチウムビス(フルオロスルホニル)イミド、およびホウフッ化リチウムからなる群から選択される少なくとも1つである、
固体電解質。 - 請求項1から請求項4のいずれか1項に記載の固体電解質において、
前記カーボネート系溶媒が、ジメチルカーボネート、およびプロピレンカーボネートからなる群から選択される少なくとも1つである、
固体電解質。 - 請求項1から請求項4のいずれか1項に記載の固体電解質において、
前記金属酸化物粒子が、シリカ粒子である、
固体電解質。 - 請求項1から請求項4のいずれか1項に記載の固体電解質において、
前記金属酸化物粒子のBET法により測定される比表面積が、160m2/g以上700m2/g以下である、
固体電解質。 - 請求項1から請求項4のいずれか1項に記載の固体電解質を備える、
電池。 - 電解液、金属酸化物粒子、架橋型ポリエーテル、および光重合開始剤を混合して、混合物を調製する工程と、
前記混合物を成形して、成形物を得る工程と、
前記成形物に対し、紫外線を照射することにより、前記架橋型ポリエーテルが架橋したイオン伝導性高分子を含む固体電解質を得る工程と、
を備え、
前記電解液が、リチウム塩、およびカーボネート系溶媒を含み、
前記固体電解質が、前記電解液、前記金属酸化物粒子、および前記イオン伝導性高分子を含有し、
前記電解液と、前記イオン伝導性高分子との合計含有量を100質量%としたとき、
前記電解液の含有量が、87質量%以上93質量%以下であり、
前記イオン伝導性高分子の含有量が、7質量%以上13質量%以下である、
固体電解質の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247009762A KR20240063913A (ko) | 2021-09-21 | 2022-09-12 | 고체 전해질, 고체 전해질의 제조 방법 및 전지 |
EP22872750.9A EP4407636A1 (en) | 2021-09-21 | 2022-09-12 | Solid electrolyte, production method for solid electrolyte, and battery |
JP2023549480A JPWO2023047996A1 (ja) | 2021-09-21 | 2022-09-12 | |
CN202280063607.7A CN117981014A (zh) | 2021-09-21 | 2022-09-12 | 固体电解质、固体电解质的制造方法及电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-153549 | 2021-09-21 | ||
JP2021153549 | 2021-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023047996A1 true WO2023047996A1 (ja) | 2023-03-30 |
Family
ID=85720638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/034001 WO2023047996A1 (ja) | 2021-09-21 | 2022-09-12 | 固体電解質、固体電解質の製造方法、および電池 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4407636A1 (ja) |
JP (1) | JPWO2023047996A1 (ja) |
KR (1) | KR20240063913A (ja) |
CN (1) | CN117981014A (ja) |
TW (1) | TW202329517A (ja) |
WO (1) | WO2023047996A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024209977A1 (ja) * | 2023-04-07 | 2024-10-10 | 東京エレクトロン株式会社 | 基板支持部、基板処理装置及び基板支持部の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06140052A (ja) | 1992-09-08 | 1994-05-20 | Sumitomo Seika Chem Co Ltd | ゲル状電解質 |
JPH09306543A (ja) * | 1996-05-15 | 1997-11-28 | Matsushita Electric Ind Co Ltd | リチウム・ポリマ二次電池 |
JP2017059432A (ja) | 2015-09-17 | 2017-03-23 | 株式会社日立製作所 | 擬似固体電解質およびそれを用いた全固体リチウム二次電池 |
US20190198923A1 (en) * | 2016-08-22 | 2019-06-27 | Samsung Sdi Co., Ltd. | Electrolyte for lithium metal battery and lithium metal battery including the same |
-
2022
- 2022-09-12 WO PCT/JP2022/034001 patent/WO2023047996A1/ja active Application Filing
- 2022-09-12 CN CN202280063607.7A patent/CN117981014A/zh active Pending
- 2022-09-12 KR KR1020247009762A patent/KR20240063913A/ko unknown
- 2022-09-12 EP EP22872750.9A patent/EP4407636A1/en active Pending
- 2022-09-12 JP JP2023549480A patent/JPWO2023047996A1/ja active Pending
- 2022-09-16 TW TW111135128A patent/TW202329517A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06140052A (ja) | 1992-09-08 | 1994-05-20 | Sumitomo Seika Chem Co Ltd | ゲル状電解質 |
JPH09306543A (ja) * | 1996-05-15 | 1997-11-28 | Matsushita Electric Ind Co Ltd | リチウム・ポリマ二次電池 |
JP2017059432A (ja) | 2015-09-17 | 2017-03-23 | 株式会社日立製作所 | 擬似固体電解質およびそれを用いた全固体リチウム二次電池 |
US20190198923A1 (en) * | 2016-08-22 | 2019-06-27 | Samsung Sdi Co., Ltd. | Electrolyte for lithium metal battery and lithium metal battery including the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024209977A1 (ja) * | 2023-04-07 | 2024-10-10 | 東京エレクトロン株式会社 | 基板支持部、基板処理装置及び基板支持部の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240063913A (ko) | 2024-05-10 |
CN117981014A (zh) | 2024-05-03 |
TW202329517A (zh) | 2023-07-16 |
EP4407636A1 (en) | 2024-07-31 |
JPWO2023047996A1 (ja) | 2023-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Development of ionic liquid-based lithium battery prototypes | |
Xu et al. | High capacity silicon electrodes with nafion as binders for lithium-ion batteries | |
Li et al. | Developments of electrolyte systems for lithium–sulfur batteries: A review | |
KR101798259B1 (ko) | 이온액체를 이용한 리튬이차전지 | |
KR101954601B1 (ko) | 유무기 복합고체 전해질, 이를 포함하는 리튬 이차전지 및 그 제조방법 | |
EP2909886A1 (en) | Ion conducting polymers and polymer blends for alkali metal ion batteries | |
US10547082B2 (en) | Crosslinked polymer electrolyte | |
WO2008050599A1 (fr) | Solution électrolytique pour accumulateur à ion lithium | |
EP2937918B1 (en) | Hindered glymes for electrolyte compositions | |
JP2009540518A (ja) | 金属リチウム電極の界面抵抗を改変する方法 | |
Josef et al. | Ionic Liquids and Their Polymers in Lithium‐Sulfur Batteries | |
JP2016164832A (ja) | リチウムイオン二次電池 | |
Wei et al. | Towards a High‐Performance Lithium‐Metal Battery with Glyme Solution and an Olivine Cathode | |
Xu et al. | The role of LiTDI additive in LiNi1/3Mn1/3Co1/3O2/graphite lithium-ion batteries at elevated temperatures | |
Lin et al. | Self-assembly formation of solid-electrolyte interphase in gel polymer electrolytes for high performance lithium metal batteries | |
WO2023047996A1 (ja) | 固体電解質、固体電解質の製造方法、および電池 | |
Chauque et al. | Use of poly [ionic liquid] as a conductive binder in lithium ion batteries | |
EP3614481A1 (en) | Polymer electrolyte composition, and polymer secondary battery | |
CN110661034A (zh) | 聚合物电解质组合物、聚合物电解质片及其制造方法、电化学装置用电极、聚合物二次电池 | |
JP2007280658A (ja) | 高分子固体電解質 | |
Kha et al. | Electrochemical performance of hard carbon anode in different carbonate‐based electrolytes | |
CN110537285A (zh) | 聚合物电解质组合物及聚合物二次电池 | |
KR102431233B1 (ko) | 리튬 금속 전지용 전해액 조성물, 및 이를 포함하는 리튬 금속 전지 | |
KR102240799B1 (ko) | 이미다졸륨 기능화된 이미드 기반 리튬 염, 이의 제조방법 및 이를 포함하는 리튬 이온 배터리용 전해질 조성물 | |
JP7133749B1 (ja) | 固体電解質及び電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872750 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023549480 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18693923 Country of ref document: US Ref document number: 202280063607.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247009762 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022872750 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022872750 Country of ref document: EP Effective date: 20240422 |