WO2020194601A1 - エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 Download PDF

Info

Publication number
WO2020194601A1
WO2020194601A1 PCT/JP2019/013363 JP2019013363W WO2020194601A1 WO 2020194601 A1 WO2020194601 A1 WO 2020194601A1 JP 2019013363 W JP2019013363 W JP 2019013363W WO 2020194601 A1 WO2020194601 A1 WO 2020194601A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
epoxy
atom
cured product
Prior art date
Application number
PCT/JP2019/013363
Other languages
English (en)
French (fr)
Inventor
片木 秀行
優希 中村
福田 和真
智博 池田
林 田
慶 東ヶ崎
丸山 直樹
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/013363 priority Critical patent/WO2020194601A1/ja
Priority to KR1020217032468A priority patent/KR20210146326A/ko
Priority to JP2021508549A priority patent/JP7294404B2/ja
Priority to US17/598,305 priority patent/US20220162374A1/en
Priority to EP19921760.5A priority patent/EP3950760A4/en
Priority to CN201980094760.4A priority patent/CN113631618A/zh
Publication of WO2020194601A1 publication Critical patent/WO2020194601A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4064Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/444Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus

Definitions

  • the present disclosure relates to epoxy resins, epoxy resin compositions, epoxy resin cured products and composite materials.
  • CFRP carbon fiber reinforced plastic
  • reaction-curing resins such as epoxy resins, which are superior in strength and heat resistance to thermoplastic resins, is being studied.
  • Opening mode fracture toughness is dramatically increased by using, for example, an epoxy resin containing a mesogen structure (see, for example, Patent Document 1). It is considered that this is due to the intermolecular cohesive force at the time of fracture, and it is considered that the stress relaxation works to suppress the growth of cracks.
  • the present disclosure discloses an epoxy resin and an epoxy resin composition capable of producing a cured product having excellent fracture toughness, an epoxy resin cured product which is a cured product of the epoxy resin composition, and a composite using the cured product.
  • the issue is the provision of materials.
  • the means for solving the above problems include the following embodiments.
  • Ar represents a substituted or unsubstituted aromatic ring
  • R 1 and R 2 each represent a monovalent organic group having a glycidyl group independently, and of R 1 and R 2 .
  • At least one has a mesogen structure
  • each R 3 independently represents a hydrogen atom or a monovalent organic group.
  • R 4 represents a monovalent organic group
  • * represents a binding site with an oxygen atom
  • X represents at least one linking group selected from the group (A) consisting of a single bond or the following divalent groups
  • Y represents an aliphatic group having 1 to 8 carbon atoms independently.
  • n represents an integer of 0 to 4 independently. * Represents a bond site with an adjacent atom.
  • Y is independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, and a nitro group.
  • n represents an integer of 0 to 4 independently
  • k represents an integer of 0 to 7
  • m represents an integer of 0 to 8
  • l represents an integer of 0 to 12.
  • Y is independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, and the like.
  • n represents an integer of 0 to 4 independently, and * represents a bonding site with an adjacent atom.
  • the epoxy resin according to any one of ⁇ 1> to ⁇ 8> which has a melt viscosity at 100 ° C. of 2.0 Pa ⁇ s to 50.0 Pa ⁇ s. ⁇ 10>
  • the fracture toughness value of the cured product measured by a three-point bending measurement based on ASTM D5045-14 is 2.4 MPa ⁇ m.
  • the epoxy resin according to any one of ⁇ 1> to ⁇ 9> which is 1/2 or more.
  • ⁇ 11> When the cured product is observed in a cross-nicol state using a polarizing microscope as a cured product together with the curing agent 3,3'-diaminodiphenyl sulfone, interference fringes due to depolarization are observed.
  • ⁇ 12> An epoxy resin composition containing the epoxy resin according to any one of ⁇ 1> to ⁇ 11> and a curing agent.
  • ⁇ 13> An epoxy resin cured product, which is a cured product of the epoxy resin composition according to ⁇ 12>.
  • ⁇ 14> A composite material containing the epoxy resin cured product according to ⁇ 13> and a reinforcing material.
  • an epoxy resin and an epoxy resin composition capable of producing a cured product having excellent fracture toughness, an epoxy resin cured product which is a cured product of the epoxy resin composition, and a composite material using the cured product are provided. Will be done.
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified.
  • the term “layer” is used not only when the area where the layer exists is observed, but also when the layer is formed in the entire area or only a part of the area. included.
  • the term “laminated” means that layers are stacked, and two or more layers may be bonded or two or more layers may be detachable.
  • the "epoxy compound” means a compound having an epoxy group in the molecule.
  • the “epoxy resin” is a concept in which a plurality of epoxy compounds are regarded as an aggregate and means a state in which the compound is not cured.
  • the epoxy resin in one embodiment of the present disclosure includes an epoxy compound having a mesogen structure, an aromatic hydroxycarboxylic acid in which a carboxy group and a hydroxyl group are bonded to an aromatic ring, and two carboxy groups bonded to the aromatic ring. Includes reaction products with at least one selected from the group consisting of aromatic dicarboxylic acids.
  • at least one selected from the group consisting of an aromatic hydroxycarboxylic acid in which a carboxy group and a hydroxyl group are bonded to an aromatic ring and an aromatic dicarboxylic acid in which two carboxy groups are bonded to an aromatic ring is included. It may be referred to as "specific aromatic carboxylic acid”.
  • the epoxy resin in a further embodiment of the present disclosure comprises at least one compound selected from the group consisting of the following general formulas (E1) and (E2).
  • Ar represents a substituted or unsubstituted aromatic ring
  • R 1 and R 2 each represent a monovalent organic group having a glycidyl group independently, and of R 1 and R 2 .
  • At least one has a mesogen structure
  • each R 3 independently represents a hydrogen atom or a monovalent organic group.
  • At least one compound selected from the group consisting of the general formulas (E1) and (E2) may be a reaction product of an epoxy compound having a mesogen structure and a specific aromatic carboxylic acid.
  • the epoxy resin of the present disclosure a cured product having excellent fracture toughness can be produced.
  • the epoxy resin of the present disclosure can form a higher-order structure when cured as described later and can obtain excellent fracture toughness by including a mesogen structure as a part.
  • the epoxy resin of the present disclosure further has a carbonyl group bonded to an aromatic ring. It is considered that this carbonyl group enhances the intermolecular interaction when the epoxy resin composition containing the epoxy resin of the present disclosure is cured, and higher fracture toughness can be achieved. Further, it is considered that the carbon atom of the carbonyl group directly bonded to the aromatic ring exists on the same plane as the aromatic ring, and the ⁇ electron on the carbon atom is delocalized. It is considered that this improves the interaction between the molecules.
  • the epoxy resin of the present disclosure contains a reaction product of an epoxy compound having a mesogen structure and a specific aromatic carboxylic acid, or at least one compound selected from the group consisting of the general formulas (E1) and (E2). Anything may be included, and other epoxy compounds may be contained, or a mixture of a plurality of types of epoxy compounds may be used.
  • the epoxy resin of the present disclosure may be a mixture containing an epoxy compound (epoxy monomer) that has not reacted when the epoxy resin of the present disclosure is synthesized.
  • the epoxy resin of the present disclosure may be a mixture containing a monomer, a dimer, a trimer, or the like of an epoxy compound having a mesogen structure existing in a synthetic system.
  • the mesogen structure means a structure in which an epoxy resin, which is a reaction product of an epoxy compound having the same, may exhibit liquid crystallinity.
  • the mesogen structure includes a biphenyl structure, a phenylbenzoate structure, a cyclohexylbenzoate structure, an azobenzene structure, a stilbene structure, a terphenyl structure, an anthracene structure, derivatives thereof, and two or more of these mesogen structures via a linking group.
  • Examples include structures that are combined with each other.
  • the number of mesogen structures in one molecule of the epoxy compound may be one or two or more.
  • the two or more mesogen structures in an epoxy compound having two or more mesogen structures may be different or the same.
  • An epoxy resin containing an epoxy compound having a mesogen structure or an epoxy compound containing a structure derived from the epoxy compound can form a higher-order structure in a cured product of the epoxy resin composition containing the epoxy resin.
  • the higher-order structure means a structure including a higher-order structure in which its components are arranged to form a micro-ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase.
  • the presence or absence of such a higher-order structure can be determined by a polarizing microscope. That is, in the observation in the cross Nicol state, it is possible to distinguish by observing the interference fringes due to the elimination of polarized light.
  • This higher-order structure usually exists in an island shape in the cured product of the epoxy resin composition to form a domain structure, and one of the islands corresponds to one higher-order structure.
  • the components themselves of this higher-order structure are generally formed by covalent bonds.
  • Examples of the higher-order structure formed in the cured state include a nematic structure and a smectic structure.
  • the nematic structure and the smectic structure are each a kind of liquid crystal structure.
  • the nematic structure is a liquid crystal structure in which the major axis of the molecule is oriented in a uniform direction and only the orientation order is present.
  • the smectic structure is a liquid crystal structure having a one-dimensional position order in addition to the orientation order and having a layered structure. The order is higher in the smectic structure than in the nematic structure. Therefore, from the viewpoint of thermal conductivity and fracture toughness of the cured product, it is more preferable to form a higher-order structure having a smectic structure.
  • Whether or not a smectic structure is formed in the cured product can be determined by X-ray diffraction measurement of the cured product.
  • the X-ray diffraction measurement can be performed using, for example, an X-ray diffractometer manufactured by Rigaku Corporation.
  • the mesogen structure may be a structure represented by the following general formula (M).
  • X represents at least one linking group selected from the group (A) consisting of a single bond or the following divalent groups.
  • Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group. .. n independently represents an integer of 0 to 4. * Represents a binding site with an adjacent atom.
  • Y is independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, and a nitro group.
  • Or represents an acetyl group.
  • n represents an integer of 0 to 4
  • k represents an integer of 0 to 7
  • m represents an integer of 0 to 8
  • l represents an integer of 0 to 12.
  • the linking group is derived from the following divalent groups. It is preferable that the linking group is at least one selected from the group (Aa), and the linking group is at least one linking group selected from the group (Aa) and contains at least one cyclic structure. Is more preferable.
  • Y is independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, and a nitro group.
  • Or represents an acetyl group.
  • n represents an integer of 0 to 4
  • k represents an integer of 0 to 7
  • m represents an integer of 0 to 8
  • l represents an integer of 0 to 12.
  • the mesogen structure represented by the general formula (M) is preferably the mesogen structure represented by the following general formula (M-1).
  • Preferred examples of the mesogen structure represented by the general formula (M-1) include the mesogen structures represented by the following general formulas (M-2), general formula (M-3) and general formula (M-4). Can be mentioned.
  • the general formula (M-2), the general formula (M-3) and the general formula (M-4) the definitions and preferable examples of Y, n and * are Y, n and * of the general formula (M-1). Is similar to the definition and preferred example of.
  • the epoxy compound having a mesogen structure may contain an epoxy compound having a structure represented by the following general formula (1-m).
  • the epoxy compound having the structure represented by the general formula (1-m) is an epoxy compound having the structure represented by the following general formula (2-m). Is preferable.
  • Preferred examples of the epoxy compound having a structure represented by the general formula (2-m) are represented by the following general formulas (3-m), general formula (4-m) and general formula (5-m). Epoxy compounds having a structure can be mentioned. From the viewpoint of improving the fracture toughness of the cured product, it is preferable to use an epoxy compound represented by the general formula (3-m).
  • the definitions and preferable examples of Y and n are the definitions and preferable examples of Y and n in the general formula (2-m). Similar to the example.
  • a commercially available product may be used as the epoxy compound.
  • YX4000 Mitsubishi Chemical Corporation
  • YL6121H Mitsubishi Chemical Corporation
  • 5-m epoxy compounds represented by the general formula (5-m).
  • the epoxy equivalent of the epoxy compound having a mesogen structure is not particularly limited.
  • it is preferably 100 g / eq to 300 g / eq, more preferably 120 g / eq to 280 g / eq, and 140 g / eq. It is more preferably ⁇ 260 g / eq.
  • epoxy equivalents are measured by the perchloric acid titration method.
  • the specific aromatic carboxylic acid is an aromatic hydroxycarboxylic acid in which a carboxy group and a hydroxyl group are bonded to an aromatic ring (hereinafter, may be simply referred to as an aromatic hydroxycarboxylic acid), and two carboxy groups are bonded to the aromatic ring. It is at least one selected from the group consisting of aromatic dicarboxylic acids (hereinafter, may be simply referred to as aromatic dicarboxylic acids).
  • One type of specific aromatic carboxylic acid may be used alone, or two or more types may be used in combination.
  • the specific aromatic carboxylic acid may have a substituent in addition to the carboxy group and the hydroxyl group, and may not have a substituent.
  • substituents include an alkyl group having 1 to 5 carbon atoms, an ether group in which an organic group is bonded via an oxygen atom, a carboxylic acid ester group, and the like.
  • the number of carbon atoms of the organic group is not particularly limited, and may be, for example, 1 to 20, 1 to 10, or 1 to 5.
  • Aromatic hydroxycarboxylic acid has a structure in which at least one hydroxyl group and at least one carboxy group are bonded to an aromatic ring (excluding aromatic dicarboxylic acid). From the viewpoint of handleability and the like, the aromatic hydroxycarboxylic acid is preferably an aromatic hydroxycarboxylic acid in which one carboxy group and one hydroxyl group are bonded to an aromatic ring.
  • the aromatic ring contained in the specific aromatic carboxylic acid may be a monocyclic ring or a condensed ring having two or more rings, and at least one selected from the group consisting of a benzene ring and a naphthalene ring is preferable. Therefore, preferred examples of the specific aromatic carboxylic acid include benzenehydroxycarboxylic acid, benzenedicarboxylic acid, naphthalenehydroxycarboxylic acid, naphthalenedicarboxylic acid and the like.
  • At least one selected from the group consisting of benzenehydroxycarboxylic acid and naphthalenehydroxycarboxylic acid is preferable from the viewpoint of good fracture toughness and melt viscosity, and benzenedicarboxylic acid is preferable from the viewpoint of high toughness.
  • the benzenehydroxycarboxylic acid preferably has a structure in which one hydroxyl group and one carboxy group are bonded to a benzene ring.
  • the substitution position of the hydroxyl group with respect to the carboxy group of the benzenehydroxycarboxylic acid may be the ortho-position, the meta-position or the para-position, preferably the meta-position or the para-position, and preferably the para-position. More preferred.
  • the substitution position of the hydroxyl group with respect to the carboxy group is in the para position, the linearity of the molecular structure of the epoxy compound synthesized using the benzenehydroxycarboxylic acid is enhanced and the orientation is facilitated, so that the fracture toughness is further improved. Be done.
  • the benzenehydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, and alkyl having at least one hydrogen atom bonded to the aromatic ring of these benzenehydroxycarboxylic acids having 1 to 5 carbon atoms.
  • Examples thereof include an ether group in which a group and an organic group are bonded via an oxygen atom, and a benzenehydroxycarboxylic acid substituted with a substituent such as a carboxylic acid ester group.
  • the number of carbon atoms of the organic group is not particularly limited, and may be, for example, 1 to 20, 1 to 10, or 1 to 5.
  • 4-hydroxybenzoic acid is preferable from the viewpoint of good fracture toughness, melt viscosity, heat resistance and the like.
  • the benzenedicarboxylic acid may be an ortho-form, a meta-form or a para-form, and is preferably a para-form from the viewpoint of fracture toughness. ..
  • phthalic acid, isophthalic acid, terephthalic acid, and at least one of the hydrogen atoms bonded to the aromatic ring of these benzenedicarboxylic acids are alkyl groups having 1 to 5 carbon atoms, hydroxyl groups, and organic groups via oxygen atoms.
  • Examples thereof include benzenedicarboxylic acid substituted with a substituent such as a bonded ether group and a carboxylic acid ester group.
  • the number of carbon atoms of the organic group is not particularly limited, and may be, for example, 1 to 20, 1 to 10, or 1 to 5.
  • the naphthalene hydroxycarboxylic acid preferably has a structure in which one hydroxyl group and one carboxy group are bonded to a naphthalene ring.
  • the substitution positions of the carboxy group and the hydroxyl group of the naphthalene hydroxycarboxylic acid are not particularly limited, and the combination of the 2-position and the 6-position is preferable from the viewpoint of fracture toughness.
  • naphthalene hydroxycarboxylic acid examples include 2-hydroxy-1-naphthoic acid, 3-hydroxy-1-naphthoic acid, 4-hydroxy-1-naphthoic acid, 5-hydroxy-1-naphthoic acid, and 6-hydroxy-1-naphthoic acid.
  • Acid 7-Hydroxy-1-naphthoic acid, 8-hydroxy-1-naphthoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, 7-hydroxy -2-naphthoic acid, an alkyl group in which at least one of the hydrogen atoms bonded to the aromatic ring of these naphthalene hydroxycarboxylic acids has 1 to 5 carbon atoms, an ether group in which an organic group is bonded via an oxygen atom, a carboxylic acid ester group, etc. Examples thereof include naphthalene hydroxycarboxylic acid substituted with the substituent of.
  • the number of carbon atoms of the organic group is not particularly limited, and may be, for example, 1 to 20, 1 to 10, or 1 to 5.
  • 2-hydroxy-1-naphthoic acid, 6-hydroxy-1-naphthoic acid, 3-hydroxy-2-naphthoic acid, and 6-hydroxy-2-naphthoic acid are preferable, and good destruction is performed.
  • 6-hydroxy-2-naphthoic acid is more preferable.
  • the substitution position of the carboxy group is not particularly limited.
  • the naphthalenedicarboxylic acid includes 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and at least one of the hydrogen atoms bonded to the aromatic ring of these naphthalenedicarboxylic acids has one carbon number.
  • Examples thereof include an ether group in which an alkyl group, a hydroxyl group, and an organic group of ⁇ 5 are bonded via an oxygen atom, and a naphthalenedicarboxylic acid substituted with a substituent such as a carboxylic acid ester group.
  • the number of carbon atoms of the organic group is not particularly limited, and may be, for example, 1 to 20, 1 to 10, or 1 to 5. From the viewpoint of fracture toughness, 2,6-naphthalenedicarboxylic acid is preferable.
  • reaction product of an epoxy compound having a mesogen structure and a specific aromatic carboxylic acid The mode of the reaction product of the epoxy compound having a mesogen structure and the specific aromatic carboxylic acid is not particularly limited as long as it is the product obtained by reacting the epoxy compound having the mesogen structure with the specific aromatic carboxylic acid. ..
  • the reaction product may be a dimer, a trimer, or the like of an epoxy compound having a mesogen structure as a raw material.
  • the reaction product may be one in which an epoxy compound having a mesogen structure is linearly polymerized by reacting with a specific aromatic carboxylic acid, or one having a branched structure.
  • the reaction product is a dimer in which an epoxy compound having a mesogen structure of two molecules is linked by one specific aromatic carboxylic acid, and an epoxy compound having a mesogen structure of three molecules is two. It may be a trimer formed by linking with a specific aromatic carboxylic acid of the molecule.
  • the reaction product is a trimer or tetramer having a branched structure in which an epoxy compound having a mesogen structure of one or two molecules is further added to the hydroxyl group generated in the synthesis of the dimer. There may be.
  • the reaction product may be obtained by reacting an epoxy compound having a mesogen structure and a specific aromatic carboxylic acid with other raw materials.
  • the reaction product may be a reaction product of an epoxy compound having a mesogen structure, another epoxy compound, and a specific aromatic carboxylic acid.
  • "Other epoxy compounds” include, for example, an epoxy compound having a substituted or unsubstituted benzene ring and two or more glycidyloxy groups, and a compound having a substituted or unsubstituted naphthalene ring and two or more glycidyloxy groups. Can be mentioned.
  • examples of the substituent include an organic group having 1 to 18 carbon atoms.
  • the reaction product of the epoxy compound having a mesogen structure and the specific aromatic carboxylic acid may contain at least one compound selected from the group consisting of the above general formulas (E1) and (E2).
  • the general formulas (E1) and (E2) are reprinted below.
  • Ar represents a substituted or unsubstituted aromatic ring
  • R 1 and R 2 each represent a monovalent organic group having a glycidyl group independently, and of R 1 and R 2 .
  • At least one has a mesogen structure
  • each R 3 independently represents a hydrogen atom or a monovalent organic group.
  • the aromatic ring represented by Ar may be a monocyclic ring or a fused ring having two or more rings, and at least selected from the group consisting of a benzene ring and a naphthalene ring. It is preferably one.
  • the carbonyl group and oxygen atom adjacent to Ar in the general formula (E1) and the two carbonyl groups adjacent to Ar in the general formula (E2) are each directly bonded to the aromatic ring represented by Ar.
  • the monovalent organic group having a glycidyl group represented by R 1 and R 2 for example, one glycidyl oxy group among the epoxy compounds having the above-mentioned mesogen structure is used.
  • examples thereof include a monovalent organic group excluding the monovalent organic group, and a monovalent organic group excluding one glycidyloxy group among other epoxy compounds.
  • Examples of the "monovalent organic group consisting of an epoxy compound having a mesogen structure excluding one glycidyloxy group” include a biphenyl structure, a phenylbenzoate structure, a cyclohexylbenzoate structure, an azobenzene structure, a stilben structure, and a terphenyl structure. Examples thereof include a monovalent organic group having an anthracene structure, a derivative thereof, or a structure in which two or more of these mesogen structures are bonded via a linking group, and a glycidyl group.
  • the "monovalent organic group excluding one glycidyloxy group among other epoxy compounds” includes a monovalent organic group containing a glycidyl group and an aliphatic hydrocarbon group, a glycidyl group and an aromatic hydrocarbon group. Examples thereof include monovalent organic groups including.
  • the aliphatic hydrocarbon group and the aromatic hydrocarbon group may or may not have a substituent, respectively. Examples of the substituent include an organic group having 1 to 18 carbon atoms.
  • Examples of the aliphatic hydrocarbon group in the "monovalent organic group containing a glycidyl group and an aliphatic hydrocarbon group" include an alkylene group and an alkenylene group.
  • Examples of the aromatic hydrocarbon group in the "monovalent organic group containing a glycidyl group and an aromatic hydrocarbon group” include a phenylene group and a naphthylene group.
  • Examples of the monovalent organic group containing a glycidyl group and an aromatic hydrocarbon group in a preferred embodiment include a phenylene group to which a glycidyloxy group is bonded, a naphthylene group to which a glycidyloxy group is bonded, and the like.
  • R 1 and R 2 have the mesogen structure, both R 1 and R 2 may have a mesogenic structure. R 1 and R 2 may have the same structure or different structures.
  • the number of carbon atoms of the monovalent organic group represented by R 1 and R 2 is not particularly limited, for example may be 25 or less, it may be 20 or less , 15 or less.
  • the monovalent organic group having a glycidyl group represented by R 1 and R 2 may have a structure derived from an epoxy compound.
  • the epoxy compound is not particularly limited, and examples thereof include an epoxy compound having two or more epoxy groups in one molecule, and an epoxy compound having two epoxy groups in one molecule is preferable. Epoxy compounds having two glycidyl ether groups are more preferred.
  • the epoxy compound may be an epoxy compound having the above-mentioned mesogen structure, or may be another epoxy compound.
  • “Other epoxy compounds” include, for example, an epoxy compound having a substituted or unsubstituted benzene ring and two or more glycidyloxy groups, and a compound having a substituted or unsubstituted naphthalene ring and two or more glycidyloxy groups. Can be mentioned.
  • the benzene ring or the naphthalene ring has a substituent
  • substituent include an organic group having 1 to 18 carbon atoms.
  • R 3 represents a monovalent organic group or a hydrogen atom. From the viewpoint of suppressing the increase in viscosity even when shearing is applied and having excellent viscosity stability, R 3 is preferably a monovalent organic group. When R 3 is a monovalent organic group, the viscosity stability of the epoxy compound tends to be excellent. The reason for this is not always clear, but one reason is that part of the linearity of the molecular structure of the epoxy compound is disrupted by branching (the part indicated by OR 3 ), and the orientation of the molecule during shearing is suppressed. Guess.
  • the orientation of the molecule at the time of shearing can be suppressed without impairing the stacking force of the molecule due to the mesogen structure. Therefore, there is a tendency that both the fracture toughness of the cured product and the handleability before curing can be improved at the same time.
  • At least one of R 3 preferably has the structure of the following formula (c).
  • R 4 represents a monovalent organic group
  • * represents a binding site with an oxygen atom
  • Examples of the monovalent organic group represented by R 4 include those described in detail as a monovalent organic group having a glycidyl group represented by R 1 and R 2 .
  • R 4 may have the same structure as R 1 and / or R 2 , or may have a different structure.
  • the method for obtaining the epoxy resin of the present disclosure is not particularly limited.
  • the epoxy resin of the present disclosure can be obtained by reacting an epoxy compound having a mesogen structure with a specific aromatic carboxylic acid and another epoxy compound used as needed.
  • an epoxy compound having a mesogen structure as a raw material and other epoxy compounds used as needed may be collectively referred to as an “epoxy monomer”.
  • the epoxy monomer, the specific aromatic carboxylic acid, and the reaction catalyst used as needed are dissolved in a solvent and heated. You may react by stirring while stirring.
  • the epoxy monomer and the specific aromatic carboxylic acid may be mixed using a reaction catalyst and reacted with stirring while heating.
  • the epoxy monomer and the specific aromatic carboxylic acid may be mixed without using a reaction catalyst and a solvent, and may be reacted by stirring while heating.
  • the method for introducing the branched structure is not particularly limited.
  • it can be introduced by further reacting the epoxy group of the epoxy monomer with the secondary hydroxyl group generated by reacting the epoxy monomer with the specific aromatic carboxylic acid.
  • the progress of the reaction when the epoxy group of the epoxy monomer is reacted with the secondary hydroxyl group generated by reacting the epoxy monomer with the specific aromatic carboxylic acid is controlled, for example, by appropriately selecting the type of reaction catalyst used in the reaction. can do.
  • reaction catalyst having a relatively low activity the reaction between the epoxy group of the epoxy monomer and the carboxy group or the hydroxyl group of the specific aromatic carboxylic acid proceeds, while the secondary hydroxyl group generated by the reaction proceeds.
  • the reaction with the further epoxy monomer does not proceed, and the rate of forming the branched structure tends to be low.
  • a relatively highly active reaction catalyst in addition to the reaction between the epoxy group of the epoxy monomer and the carboxy group or hydroxyl group of the specific aromatic carboxylic acid, the secondary hydroxyl group generated by the reaction and further epoxy are added. The reaction with the monomer proceeds, and the rate at which a branched structure is formed tends to increase.
  • the solvent is not particularly limited as long as it can dissolve the epoxy monomer and the specific aromatic carboxylic acid and can be heated to the temperature required for both compounds to react.
  • Specific examples thereof include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone, methyl cellosolve, ethyl cellosolve, propylene glycol monopropyl ether and the like.
  • the amount of the solvent is not particularly limited as long as it can dissolve the epoxy monomer, the specific aromatic carboxylic acid, and the reaction catalyst used as needed at the reaction temperature.
  • solubility varies depending on the type of raw material before the reaction, the type of solvent, etc., for example, if the charged solid content concentration is 20% by mass to 60% by mass, the viscosity of the solution after the reaction is in a preferable range. There is a tendency.
  • the type of reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoints of reaction rate, reaction temperature, storage stability, etc. Specific examples thereof include imidazole compounds, organic phosphorus compounds, tertiary amines, and quaternary ammonium salts.
  • One type of reaction catalyst may be used alone, or two or more types may be used in combination.
  • an organic phosphorus compound and an imidazole compound are preferable as the reaction catalyst.
  • the structure of the obtained epoxy resin can be obtained by selectively promoting the reaction between the epoxy group of the epoxy monomer and the carboxy group or hydroxyl group of the specific aromatic carboxylic acid.
  • an organic phosphorus compound is preferable as the reaction catalyst.
  • the organic phosphorus compound are an organic phosphine compound, a compound having an intramolecular polarization obtained by adding a compound having a ⁇ bond such as maleic anhydride, a quinone compound, a diazophenylmethane, and a phenol resin to the organic phosphine compound, and an organic compound.
  • examples thereof include a complex of a phosphine compound and an organic boron compound.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, Tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiaryl Examples include phosphine.
  • 1,4-benzoquinone 1,4-benzoquinone, 2,5-turquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl- Examples thereof include 1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone and phenyl-1,4-benzoquinone.
  • organic boron compound examples include tetraphenyl borate, tetra-p-tolyl borate, and tetra-n-butyl borate.
  • intramolecular salt-type phosphine compounds and intermolecular salt-type phosphine-possible substances are preferable as reaction catalysts, and addition reactions of tributylphosphine and hydroquinone and tetra. Salts of butylphosphine and carboxylic acid are more preferred.
  • the amount of reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, the total mass of the epoxy monomer and the specific aromatic carboxylic acid is preferably 0.01 parts by mass to 1.5 parts by mass, preferably 0.05 parts by mass, based on 100 parts by mass. It is more preferably parts to 1 part by mass.
  • a reaction vessel such as a flask can be used for a small amount of scale and a synthetic kettle can be used for a large amount of scale.
  • the specific synthesis method is as follows, for example. First, the epoxy monomer is put into a reaction vessel, a solvent is added if necessary, and the epoxy monomer is heated to the reaction temperature by an oil bath or a heat medium to dissolve the epoxy monomer. A specific aromatic carboxylic acid is added thereto, and then a reaction catalyst is added as needed to start the reaction. Then, if necessary, the solvent is distilled off under reduced pressure to obtain the epoxy resin of the present disclosure.
  • the reaction temperature is not particularly limited as long as the reaction between the epoxy group of the epoxy monomer and the functional group of the specific aromatic carboxylic acid proceeds, and is preferably in the range of, for example, 100 ° C to 180 ° C, preferably 100 ° C to 180 ° C. More preferably, it is in the range of 170 ° C.
  • the compounding ratio of the epoxy monomer and the specific aromatic carboxylic acid when synthesizing the epoxy resin of the present disclosure is not particularly limited.
  • the ratio (A: B) of the equivalent number (A) of the epoxy group of the epoxy monomer to the total equivalent number (B) of the functional groups (carboxy group and hydroxyl group) of the specific aromatic carboxylic acid is 10:10 to 10
  • the compounding ratio may be in the range of 0.01. From the viewpoint of fracture toughness and heat resistance of the cured product, a blending ratio in which A: B is in the range of 10: 5 to 10: 0.1 is preferable.
  • the equivalent number (A) of the epoxy group is the total equivalent number of the epoxy compound having a mesogen structure and other epoxy compounds.
  • the ratio (A: B) of the equivalent number of epoxy groups (A) to the total equivalent number (B) of functional groups (carboxy groups and hydroxyl groups) of the specific aromatic carboxylic acid is The compounding ratio in the range of 10: 1.5 to 10: 3.0 is preferable, and the compounding ratio in the range of 10: 1.6 to 10: 2.9 is more preferable, and the compounding ratio is 10: 1.7 to 10: 2.
  • a compounding ratio in the range of .8 is more preferable.
  • A: B) preferably has a compounding ratio in the range of 10: 1.0 to 10: 3.0, more preferably a compounding ratio in the range of 10: 1.4 to 10: 2.6, and 10: 1.
  • a compounding ratio in the range of .6 to 10: 2.4 is more preferable.
  • the structure of the synthesized epoxy resin is carried out using, for example, the molecular weight of the epoxy resin estimated to be obtained by the reaction of the epoxy monomer with the specific aromatic carboxylic acid, and a liquid chromatograph equipped with a UV and mass spectrum detector. It can be determined by collating with the molecular weight of the target compound obtained by the liquid chromatography. Liquid chromatography can be performed by the method described below.
  • the UV spectrum detector detects the absorbance at a wavelength of 280 nm
  • the mass spectrum detector detects the ionization voltage as 2700 V.
  • the weight average molecular weight (Mw) of the epoxy resin is not particularly limited. From the viewpoint of reducing the viscosity, the weight average molecular weight (Mw) of the epoxy resin is preferably 500 to 4000, more preferably 700 to 3500, and even more preferably 800 to 3000.
  • the weight average molecular weight (Mw) is a value obtained by liquid chromatography.
  • Liquid chromatography can be performed under the following conditions, for example.
  • "LaChrom II C18" manufactured by Hitachi, Ltd. is used as an analytical column, and the eluent mixing ratio (volume basis) is set to (acetonitrile) / (tetrahydrofuran) / (10 mmol / l ammonium acetate) using the gradient method.
  • the epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoints of fluidity of the epoxy resin, thermal conductivity of the cured product, compatibility between fracture toughness and flexural modulus, etc., it is preferably 245 g / eq to 500 g / eq, and 250 g / eq to 450 g / eq. Is more preferable, and 300 g / eq to 380 g / eq is even more preferable.
  • the viscosity of the epoxy resin is not particularly limited and can be selected according to the application of the epoxy resin. From the viewpoint of handleability, the melt viscosity of the epoxy resin at 100 ° C. is preferably 200.0 Pa ⁇ s or less, more preferably 100.0 Pa ⁇ s or less, and 50.0 Pa ⁇ s or less. It is more preferably 20.0 Pa ⁇ s or less, and particularly preferably 20.0 Pa ⁇ s or less.
  • the melt viscosity of the epoxy resin at 100 ° C. is preferably 1.0 Pa ⁇ s or more, preferably 2.0 Pa ⁇ s or more, from the viewpoint of suppressing an increase in viscosity due to shear orientation when mixed with a curing agent.
  • the melt viscosity of the epoxy resin at 100 ° C. is preferably 1.0 Pa ⁇ s to 100.0 Pa ⁇ s, more preferably 2.0 Pa ⁇ s to 50.0 Pa ⁇ s, and 3.0 Pa ⁇ s to 3.0 Pa ⁇ s. 20.0 Pa. It is more preferably s.
  • the melt viscosity of the epoxy resin at 100 ° C. can be measured using a cone plate viscometer (for example, CAP2000, BROOKFIELD). For example, the measurement temperature is 100 ⁇ 2 ° C., and the cone is No. Using 5, the number of revolutions can be measured 50 times per minute (rpm).
  • the viscosity stability of the epoxy resin can be determined, for example, by continuously measuring the melt viscosity while applying shear to the epoxy resin under predetermined conditions using a viscoelasticity measuring device. For example, when the dynamic shear viscosity is continuously measured for 80 minutes with the gap between the parallel plate and the stage set to 0.05 mm, the frequency set to 0.5 Hz, the strain set to 8000%, and the temperature set to 80 ° C. (constant).
  • ⁇ '2 / ⁇ obtained from the initial (immediately after the start of measurement) dynamic shear viscosity ⁇ '1 (Pa ⁇ s) and the maximum value ⁇ '2 (Pa ⁇ s) of the dynamic shear viscosity obtained during measurement. It can be judged that the smaller the value of '1, the smaller the degree of increase in viscosity due to the application of shearing, and the better the viscosity stability.
  • the value of ⁇ '2 / ⁇ '1 is not particularly limited, and from the viewpoint of handleability, for example, it may be 3 or less, 2 or less, or 1.5 or less.
  • the absolute value of the dynamic shear viscosity in the measurement is not particularly limited.
  • the initial dynamic shear viscosity ⁇ '1 may be 200 Pa ⁇ s or less.
  • the ratio of the monomer of the epoxy compound having a mesogen structure to the total amount of the epoxy resin of the present disclosure is not particularly limited.
  • the ratio is the ratio of the area of the peak derived from the monomer of the epoxy compound having the mesogen structure to the total area of the peak derived from all the epoxy resins ( %) (Hereinafter, the ratio is also referred to as "GPC peak area ratio M").
  • the absorbance of the epoxy resin to be measured at a wavelength of 280 nm is detected, and the total area of all the detected peaks and the area of the peak corresponding to the monomer of the epoxy compound having a mesogen structure are used. Calculate by the following formula.
  • GPC peak area ratio M (%) (area of peak corresponding to monomer of epoxy compound having mesogen structure / total area of peaks derived from all epoxy resins) ⁇ 100
  • the GPC peak area ratio M is preferably 50% or less, more preferably 49% or less, and further preferably 48% or less.
  • the GPC peak area ratio M may be 5% or more, 10% or more, or 15% or more.
  • the ratio of the reaction products of the present disclosure having a branched structure to the total amount of epoxy resin is not particularly limited.
  • the reaction product having a structure is referred to as reaction product B.
  • the ratio of the total amount of the reaction product B to the total amount of the epoxy resin is derived from the reaction product B in the total area of the peaks derived from all the epoxy resins in the chart obtained by GPC according to the above. It can be measured as the ratio (%) of the peak area to be measured (hereinafter, the ratio is also referred to as GPC peak area ratio B).
  • the GPC peak area ratio B may be 3% or more, 5% or more, or 7% or more. Further, the GPC peak area ratio B may be 15% or less, 12% or less, or 10% or less.
  • Gel permeation chromatography is performed with a sample concentration of 0.5% by mass, tetrahydrofuran being used as the mobile phase, and a flow rate of 1.0 ml / min.
  • the measurement can be performed using, for example, a high performance liquid chromatograph "L6000” manufactured by Hitachi, Ltd. and a data analysis device "CR4A” manufactured by Shimadzu Corporation.
  • As the column for example, "G2000HXL” and “G3000HXL", which are GPC columns manufactured by Tosoh Corporation, can be used.
  • the epoxy resin of the present disclosure has a fracture toughness value of 2 as measured by a three-point bending measurement based on ASTM D5045-14 when it is made into a cured product together with a curing agent of 3,3'-diaminodiphenyl sulfone. It is preferably 4 MPa ⁇ m 1/2 or more.
  • the fracture toughness of the cured product will be described later.
  • the epoxy resin of the present disclosure preferably forms a higher-order structure in the cured product when it is formed into a cured product together with the curing agent 3,3'-diaminodiphenyl sulfone. That is, it is preferable that interference fringes due to depolarization can be seen in the observation in the cross Nicol state using a polarizing microscope.
  • the epoxy resin composition of the present disclosure contains the epoxy resin of the present disclosure and a curing agent. From the viewpoint of fracture toughness, the epoxy resin composition is preferably capable of forming a smectic structure or a nematic structure when formed into a cured product.
  • the epoxy resin cured product of the present disclosure is a cured product obtained by curing the epoxy resin composition of the present disclosure.
  • the curing agent is not particularly limited as long as it is a compound capable of causing a curing reaction with the epoxy resin.
  • Specific examples of the curing agent include amine curing agents, phenol curing agents, acid anhydride curing agents, polypeptide curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents and the like.
  • the curing agent one type may be used alone or two or more types may be used in combination.
  • the curing agent is preferably an amine curing agent or a phenol curing agent, and more preferably an amine curing agent.
  • an amine curing agent having an aromatic ring and an amino group is preferable, an amine curing agent in which an amino group is directly bonded to the aromatic ring is more preferable, and two or more amino groups are directly bonded to the aromatic ring.
  • Amine curing agent is more preferred.
  • the aromatic ring include a benzene ring and a naphthalene ring.
  • amine curing agent 3,3'-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylether, 4,4′-diamino- 3,3'-dimethoxybiphenyl, 4,4'-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene, 1,3-diamino Examples thereof include benzene, 1,4-diaminobenzene, 4,4'-diaminobenzanilide, trimethylene-bis-4-aminobenzoate and the like.
  • the amine curing agent includes 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 1,3-diaminobenzene, 1 , 4-Diaminobenzene, 4,4'-diaminobenzanilide, 1,5-diaminonaphthalene, 4,4'-diaminodiphenylmethane, and trimethylene-bis-4-aminobenzoate are preferred, with low water absorption and high fracture toughness. From the viewpoint of obtaining a cured product of, 3,3'-diaminodiphenyl sulfone is more preferable.
  • the phenol curing agent examples include a low-molecular-weight phenol compound and a phenol novolac resin obtained by connecting low-molecular-weight phenol compounds with a methylene chain or the like to form a novolak.
  • the low molecular weight phenol compound examples include monofunctional phenol compounds such as phenol, o-cresol, m-cresol and p-cresol, bifunctional phenol compounds such as catechol, resorcinol and hydroquinone, 1,2,3-trihydroxybenzene and 1 , 2,4-Trihydroxybenzene, 1,3,5-trihydroxybenzene and other trifunctional phenolic compounds and the like.
  • the content of the curing agent in the epoxy resin composition is not particularly limited. From the viewpoint of the efficiency of the curing reaction, the equivalent number of functional groups of the curing agent contained in the epoxy resin composition (the equivalent number of active hydrogen in the case of an amine curing agent) and the equivalent number of epoxy groups of the epoxy resin are used.
  • the ratio (the number of equivalents of functional groups / the number of equivalents of epoxy groups) is preferably an amount of 0.3 to 3.0, and more preferably 0.5 to 2.0.
  • the epoxy resin composition may contain other components other than the epoxy resin and the curing agent, if necessary.
  • it may contain a curing catalyst, a filler and the like.
  • Specific examples of the curing catalyst include compounds exemplified as reaction catalysts that can be used in the synthesis of the epoxy resin of the present disclosure.
  • the epoxy resin composition preferably has a fracture toughness value of 2.4 MPa ⁇ m 1/2 or more when it is made into a cured product.
  • the fracture toughness value of the cured product can be measured by performing a three-point bending measurement based on ASTM D5045-14. Specifically, it can be measured by the method described in Examples described later.
  • the epoxy resin composition preferably has a flexural modulus of 2.0 GPa or more, more preferably 2.5 GPa or more, and further preferably 2.6 GPa or more when made into a cured product. It is particularly preferable that it is 7 GPa or more.
  • the flexural modulus of the cured product can be measured by a three-point bending measurement based on JIS K7171 (2016).
  • the epoxy resin composition preferably has a glass transition temperature of 145 ° C. or higher, more preferably 150 ° C. or higher, and even more preferably 155 ° C. or higher as a cured product.
  • the glass transition temperature of the cured product can be measured, for example, as follows. Specifically, the cured product is cut into strips to prepare a test piece, and dynamic viscoelasticity is measured in a tensile mode for calculation. The measurement conditions are a frequency of 10 Hz, a heating rate of 5 ° C./min, and a strain of 0.1%, and the temperature at which tan ⁇ is maximized in the obtained temperature-tan ⁇ relationship diagram may be regarded as the glass transition temperature.
  • RSA-G2 TA Instruments
  • epoxy resin composition and cured epoxy resin The use of the epoxy resin composition and the cured epoxy resin is not particularly limited, and it can be suitably used for applications that require excellent fracture toughness. For example, it can be suitably used for manufacturing FRP used for aircraft, spacecraft and the like.
  • the epoxy resin of the present disclosure contains an epoxy compound having a branched structure
  • the epoxy resin composition can be suitably used in a processing process in which low viscosity and excellent fluidity are required.
  • a processing method for example, manufacturing FRP used for aircraft, spacecraft, etc.
  • a processing method for example, manufacturing FRP used for aircraft, spacecraft, etc.
  • the composite material of the present disclosure includes the epoxy resin cured product of the present disclosure and a reinforcing material.
  • the material of the reinforcing material contained in the composite material is not particularly limited and can be selected according to the application of the composite material.
  • Specific examples of the reinforcing material include carbon materials, glass, aromatic polyamide-based resins (for example, Kevlar (registered trademark)), ultra-high molecular weight polyethylene, alumina, boron nitride, aluminum nitride, mica, and silica.
  • the shape of the reinforcing material is not particularly limited, and examples thereof include fibrous form and particulate form (filler). From the viewpoint of the strength of the composite material, the reinforcing material is preferably a carbon material, and more preferably carbon fiber.
  • the reinforcing material contained in the composite material may be one kind or two or more kinds.
  • the form of the composite material is not particularly limited.
  • it may have a structure in which at least one cured product-containing layer containing an epoxy resin cured product and at least one reinforcing material-containing layer containing a reinforcing material are laminated.
  • -Denaturant- -4-Hydroxybenzoic acid terephthalic acid, isophthalic acid, 6-hydroxy-2-naphthoic acid, 2,6-naphthalenedicarboxylic acid, 2,6-dihydroxynaphthalene, hydroquinone, resorcinol, 4,4'-biphenol, 4- Hydroxysilicate acid / 4-hydroxypropionic acid
  • melt viscosity The melt viscosity of the obtained epoxy resin was measured using a cone plate viscometer (CAP2000, BROOKFIELD). The measurement temperature was 100 ° C ⁇ 2 ° C, and the cone was No. No. 5 was used, and the number of revolutions was measured 50 times per minute (rpm).
  • the fracture toughness value (MPa ⁇ m 1/2 ) was calculated by performing a three-point bending measurement based on ASTM D5045-14. As an evaluation device, Instron 5948 (Instron) was used. The results are shown in Tables 1 and 2.
  • the glass transition temperature (Tg) was used as an index of the heat resistance of the cured epoxy resin.
  • the glass transition temperature of the test piece was calculated by performing dynamic viscoelasticity measurement in the tensile mode. The measurement conditions were a frequency of 10 Hz, a heating rate of 5 ° C./min, and a strain of 0.1%. In the obtained temperature-tan ⁇ relationship diagram, the temperature at which tan ⁇ is maximized was regarded as the glass transition temperature.
  • RSA-G2 (TA Instruments) was used as the evaluation device. The results are shown in Tables 1 and 2.
  • X-ray diffraction measurement was performed using an X-ray diffractometer (manufactured by Rigaku Co., Ltd.) in a range of a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ of 1 ° to 30 ° using CuK ⁇ 1 wire.
  • the diffraction peak exists in the range of 2 ⁇ of 2 ° to 10 °, it is determined that the liquid crystal structure contains the smectic structure.
  • the liquid crystal structure was contained and the smectic structure was not contained, it was judged that the liquid crystal structure was a nematic structure.
  • Tables 1 and 2 Sm indicates that a smectic structure was observed.
  • the fracture toughness was 2.4 MPa ⁇ m 1/2 or more, and the fracture toughness was excellent.
  • Example 4 the cured product of Example 4 using 6-hydroxy-2-naphthoic acid as a denaturing agent for the epoxy compound showed a remarkably high glass transition temperature.
  • epoxy resins synthesized in Examples 1 and 4 had a low melt viscosity and were excellent in handleability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Epoxy Resins (AREA)

Abstract

エポキシ樹脂は、メソゲン構造を有するエポキシ化合物と、カルボキシ基と水酸基とが芳香環に結合している芳香族ヒドロキシカルボン酸、及び2つのカルボキシ基が芳香環に結合している芳香族ジカルボン酸からなる群より選択される少なくとも1つと、の反応生成物を含む。

Description

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
 本開示は、エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料に関する。
 近年、省エネルギー化の流れから、電子材料、産業機器、航空宇宙等の分野で使用される材料において、セラミック、金属等からより軽量な樹脂材料への変換が進んでいる。
 樹脂材料を金属の代替材として適用するうえでは、樹脂材料単体では耐熱性及び強度に対する要求を満足できないことが多いため、フィラー、繊維等の無機材料と樹脂材料とを組み合わせた複合材料を用いることが一般的である。特に、炭素繊維を樹脂と組み合わせた複合材料である炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic、CFRP)は、軽量化と高強度化の両立を図ることができる有望な材料として着目されており、近年では航空機の駆体にも採用されている。
 航空機等へCFRPの適用を拡大するにあたってはさらなる高強度化、特に開口モード破壊靭性(Gic)の向上が望まれている。そこで、熱可塑性樹脂に比べて強度及び耐熱性の面で優れるエポキシ樹脂等の反応硬化系の樹脂の利用が検討されている。
 開口モード破壊靭性は、例えばメソゲン構造を含有するエポキシ樹脂を使用することで飛躍的に増大する(例えば、特許文献1参照)。これは破壊時の分子間凝集力に起因すると考えられ、応力緩和が働くことにより亀裂の進展を抑制することが可能となると考えられる。
特開2014-122337号公報
 しかしながら、これまでのメソゲン構造を含有するエポキシ樹脂を用いた場合であっても、航空機等へのCFRPの適用において望まれる破壊靭性には改良の余地があった。
 上記事情に鑑み、本開示は、破壊靭性に優れる硬化物を作製可能なエポキシ樹脂及びエポキシ樹脂組成物、当該エポキシ樹脂組成物の硬化物であるエポキシ樹脂硬化物、並びに当該硬化物を用いた複合材料の提供を課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1> メソゲン構造を有するエポキシ化合物と、
 カルボキシ基と水酸基とが芳香環に結合している芳香族ヒドロキシカルボン酸、及び2つのカルボキシ基が芳香環に結合している芳香族ジカルボン酸からなる群より選択される少なくとも1つと、
の反応生成物を含むエポキシ樹脂。
<2> 前記芳香環がベンゼン環又はナフタレン環である、<1>に記載のエポキシ樹脂。
<3> 下記一般式(E1)及び(E2)からなる群より選択される少なくとも1つの化合物を含むエポキシ樹脂:
Figure JPOXMLDOC01-appb-C000006
 一般式(E1)及び(E2)において、Arは置換又は非置換の芳香環を表し;R及びRはそれぞれ独立にグリシジル基を有する一価の有機基を表し、R及びRの少なくとも一方はメソゲン構造を有し;Rはそれぞれ独立に、水素原子又は一価の有機基を表す。
<4> 前記一般式(E1)及び(E2)におけるArが置換又は非置換のベンゼン環又はナフタレン環である、<3>に記載のエポキシ樹脂。
<5> 前記一般式(E1)及び(E2)において、Rの少なくとも1つが下記式(c)の一価の有機基である、<3>又は<4>に記載のエポキシ樹脂:
Figure JPOXMLDOC01-appb-C000007
 式(c)において、Rは一価の有機基を表し、*は酸素原子との結合部位を表す。
<6> 前記メソゲン構造が下記一般式(M)で表される構造を含む、<1>~<5>のいずれか1項に記載のエポキシ樹脂:
Figure JPOXMLDOC01-appb-C000008
 一般式(M)中、Xは単結合又は下記2価の基からなる群(A)より選択される少なくとも1種の連結基を表し;Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表し;nは各々独立に0~4の整数を表し;*は隣接する原子との結合部位を表す。
Figure JPOXMLDOC01-appb-C000009
 群(A)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表し;nは各々独立に0~4の整数を表し;kは0~7の整数を表し;mは0~8の整数を表し;lは0~12の整数を表す。
<7> 前記メソゲン構造が、下記一般式(M-2)で表される構造を含む、<1>~<6>のいずれか1項に記載のエポキシ樹脂:
Figure JPOXMLDOC01-appb-C000010
 式(M-2)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表し;nは各々独立に0~4の整数を表し;*は隣接する原子との結合部位を表す。
<8> エポキシ当量が300g/eq~380g/eqである、<1>~<7>のいずれか1項に記載のエポキシ樹脂。
<9> 100℃での溶融粘度が2.0Pa・s~50.0Pa・sである<1>~<8>のいずれか1項に記載のエポキシ樹脂。
<10> 硬化剤である3,3’-ジアミノジフェニルスルホンとともに硬化物としたときに、ASTM D5045-14に基づく3点曲げ測定により測定される前記硬化物の破壊靭性値が2.4MPa・m1/2以上である、<1>~<9>のいずれか1項に記載のエポキシ樹脂。
<11> 硬化剤である3,3’-ジアミノジフェニルスルホンとともに硬化物として、偏光顕微鏡を用いてクロスニコル状態で前記硬化物を観察したときに、偏光解消による干渉縞が見られる、<1>~<10>のいずれか1項に記載のエポキシ樹脂。
<12> <1>~<11>のいずれか1項に記載のエポキシ樹脂と、硬化剤と、を含有するエポキシ樹脂組成物。
<13> <12>に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
<14> <13>に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
 本開示によれば、破壊靭性に優れる硬化物を作製可能なエポキシ樹脂及びエポキシ樹脂組成物、当該エポキシ樹脂組成物の硬化物であるエポキシ樹脂硬化物、並びに当該硬化物を用いた複合材料が提供される。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「エポキシ化合物」とは、分子中にエポキシ基を有する化合物を意味する。「エポキシ樹脂」とは、複数のエポキシ化合物を集合体として捉える概念であって硬化していない状態のものを意味する。
≪エポキシ樹脂≫
 本開示の一実施形態におけるエポキシ樹脂は、メソゲン構造を有するエポキシ化合物と、カルボキシ基と水酸基とが芳香環に結合している芳香族ヒドロキシカルボン酸、及び2つのカルボキシ基が芳香環に結合している芳香族ジカルボン酸からなる群より選択される少なくとも1つと、の反応生成物を含む。以下、カルボキシ基と水酸基とが芳香環に結合している芳香族ヒドロキシカルボン酸、及び2つのカルボキシ基が芳香環に結合している芳香族ジカルボン酸からなる群より選択される少なくとも1つを包括的に「特定芳香族カルボン酸」と称することがある。
 本開示のさらなる一実施形態におけるエポキシ樹脂は、下記一般式(E1)及び(E2)からなる群より選択される少なくとも1つの化合物を含む。
Figure JPOXMLDOC01-appb-C000011
 一般式(E1)及び(E2)において、Arは置換又は非置換の芳香環を表し;R及びRはそれぞれ独立にグリシジル基を有する一価の有機基を表し、R及びRの少なくとも一方はメソゲン構造を有し;Rはそれぞれ独立に、水素原子又は一価の有機基を表す。
 一般式(E1)及び(E2)からなる群より選択される少なくとも1つの化合物は、メソゲン構造を有するエポキシ化合物と、特定芳香族カルボン酸と、の反応生成物であってもよい。
 本開示のエポキシ樹脂によれば、優れた破壊靭性を有する硬化物を作製することができる。この理由は必ずしも明らかではないが、以下のように推測される。
 本開示のエポキシ樹脂は、メソゲン構造を一部に含むことにより、後述するように硬化したときに高次構造を形成し、優れた破壊靭性を得ることができると考えられる。また、本開示のエポキシ樹脂はさらに芳香環に結合しているカルボニル基を有する。このカルボニル基により、本開示のエポキシ樹脂を含有するエポキシ樹脂組成物を硬化させたときに、分子間の相互作用が高まり、より高い破壊靭性を達成することができると考えられる。また、芳香環に直接結合しているカルボニル基の炭素原子は芳香環と同一平面上に存在し、当該炭素原子上のπ電子は非局在化していると考えられる。これにより、分子間の相互作用がより向上していると考察される。
 本開示のエポキシ樹脂は、メソゲン構造を有するエポキシ化合物と特定芳香族カルボン酸との反応生成物、又は一般式(E1)及び(E2)からなる群より選択される少なくとも1つの化合物、を含むものであればよく、その他のエポキシ化合物を含んでいてもよく、複数種のエポキシ化合物の混合物であってもよい。例えば、本開示のエポキシ樹脂は、本開示のエポキシ樹脂を合成する際に未反応であったエポキシ化合物(エポキシモノマー)を含む混合物であってもよい。また、本開示のエポキシ樹脂は、合成系に存在する、メソゲン構造を有するエポキシ化合物の単量体、二量体、三量体等を含む混合物であってもよい。
 まず、メソゲン構造を有するエポキシ化合物及び特定芳香族カルボン酸について詳述する。
 -メソゲン構造を有するエポキシ化合物-
 メソゲン構造を有するエポキシ化合物又はこれに由来する構造を含むエポキシ化合物を含有するエポキシ樹脂は、硬化したときに高次構造を形成し易い。このため、メソゲン構造を有するエポキシ化合物又はこれに由来する構造を含むエポキシ化合物を含有しないエポキシ樹脂と比べ、硬化物の破壊靭性により優れる傾向にある。
 メソゲン構造とは、これを有するエポキシ化合物の反応産物であるエポキシ樹脂が液晶性を発現する可能性のある構造を意味する。メソゲン構造は、具体的には、ビフェニル構造、フェニルベンゾエート構造、シクロヘキシルベンゾエート構造、アゾベンゼン構造、スチルベン構造、ターフェニル構造、アントラセン構造、これらの誘導体、これらのメソゲン構造の2つ以上が連結基を介して結合した構造等が挙げられる。
 エポキシ化合物1分子中におけるメソゲン構造は1つであっても2つ以上であってもよい。2つ以上のメソゲン構造を有するエポキシ化合物における2つ以上のメソゲン構造は異なっていても同じであってもよい。
 メソゲン構造を有するエポキシ化合物又はこれに由来する構造を含むエポキシ化合物を含有するエポキシ樹脂は、このエポキシ樹脂を含有するエポキシ樹脂組成物の硬化物中に高次構造を形成することができる。ここで、高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば結晶相及び液晶相が相当する。このような高次構造体の存在の有無は、偏光顕微鏡によって判断することができる。すなわち、クロスニコル状態での観察において、偏光解消による干渉縞が見られることで判別可能である。この高次構造体は、通常はエポキシ樹脂組成物の硬化物中に島状に存在してドメイン構造を形成しており、その島の一つが一つの高次構造体に対応する。この高次構造体の構成要素自体は、一般には共有結合により形成されている。
 硬化した状態で形成される高次構造としては、ネマチック構造とスメクチック構造とが挙げられる。ネマチック構造とスメクチック構造は、それぞれ液晶構造の一種である。ネマチック構造は分子長軸が一様な方向を向いており、配向秩序のみをもつ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、層構造を有する液晶構造である。秩序性はネマチック構造よりもスメクチック構造の方が高い。従って、硬化物の熱伝導性及び破壊靭性の観点からは、スメクチック構造の高次構造を形成することがより好ましい。
 硬化物中にスメクチック構造が形成されているか否かは、硬化物のX線回折測定により判断できる。X線回折測定は、例えば、株式会社リガクのX線回折装置を用いて行うことができる。本開示では、CuKα1線を用い、管電圧40kV、管電流20mA、2θ=1°~30°の範囲でX線回折測定を行ったとき、2θ=2°~10°の範囲に回折ピークが現れる場合に、硬化物中にスメクチック構造が形成されていると判断する。
 メソゲン構造は、下記一般式(M)で表される構造であってもよい。
Figure JPOXMLDOC01-appb-C000012
 一般式(M)中、Xは単結合又は下記2価の基からなる群(A)より選択される少なくとも1種の連結基を表す。Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表す。nは各々独立に0~4の整数を表す。*は隣接する原子との結合部位を表す。
Figure JPOXMLDOC01-appb-C000013
 群(A)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表す。nは各々独立に0~4の整数を表し、kは0~7の整数を表し、mは0~8の整数を表し、lは0~12の整数を表す。
 一般式(M)で表されるメソゲン構造において、Xが上記2価の基からなる群(A)より選択される少なくとも1種の連結基である場合、当該連結基は下記2価の基からなる群(Aa)より選択される少なくとも1種の連結基であることが好ましく、群(Aa)より選択される少なくとも1種の連結基であって少なくとも1つの環状構造を含む連結基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 群(Aa)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表す。nは各々独立に0~4の整数を表し、kは0~7の整数を表し、mは0~8の整数を表し、lは0~12の整数を表す。
 硬化物中に高次構造を形成し易い観点からは、一般式(M)で表されるメソゲン構造は、下記一般式(M-1)で表されるメソゲン構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(M-1)において、X、Y、n及び*の定義及び好ましい例は、一般式(M)のX、Y、n及び*の定義及び好ましい例と同様である。
 一般式(M-1)で表されるメソゲン構造の好ましい例としては、下記一般式(M-2)、一般式(M-3)及び一般式(M-4)で表されるメソゲン構造が挙げられる。一般式(M-2)、一般式(M-3)及び一般式(M-4)において、Y、n及び*の定義及び好ましい例は、一般式(M-1)のY、n及び*の定義及び好ましい例と同様である。
Figure JPOXMLDOC01-appb-C000016
 メソゲン構造を有するエポキシ化合物は、下記一般式(1-m)で表される構造を有するエポキシ化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000017
 一般式(1-m)において、X、Y及びnの定義及び好ましい例は、一般式(M)におけるX、Y及びnの定義及び好ましい例と同様である。
 硬化物中に高次構造を形成し易い観点からは、一般式(1-m)で表される構造を有するエポキシ化合物は、下記一般式(2-m)で表される構造を有するエポキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(2-m)において、X、Y及びnの定義及び好ましい例は、一般式(1-m)におけるX、Y及びnの定義及び好ましい例と同様である。
 一般式(2-m)で表される構造を有するエポキシ化合物の好ましい例としては、下記一般式(3-m)、一般式(4-m)及び一般式(5-m)で表される構造を有するエポキシ化合物が挙げられる。硬化物の破壊靭性を向上させる観点からは、一般式(3-m)で表されるエポキシ化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(3-m)、一般式(4-m)及び一般式(5-m)において、Y及びnの定義及び好ましい例は、一般式(2-m)におけるY及びnの定義及び好ましい例と同様である。
 エポキシ化合物としては市販品を用いてもよい。例えば、一般式(5-m)で表されるエポキシ化合物として、YX4000(三菱ケミカル株式会社)、YL6121H(三菱ケミカル株式会社)等が入手可能である。
 メソゲン構造を有するエポキシ化合物のエポキシ当量は特に制限されない。例えば、架橋密度、ガラス転移点、弾性率等の特性を担保する観点から、100g/eq~300g/eqであることが好ましく、120g/eq~280g/eqであることがより好ましく、140g/eq~260g/eqであることがさらに好ましい。本開示において、エポキシ当量は、過塩素酸滴定法により測定する。
-特定芳香族カルボン酸-
 特定芳香族カルボン酸は、カルボキシ基と水酸基とが芳香環に結合している芳香族ヒドロキシカルボン酸(以下、単に芳香族ヒドロキシカルボン酸ということがある)、及び2つのカルボキシ基が芳香環に結合している芳香族ジカルボン酸(以下、単に芳香族ジカルボン酸ということがある)からなる群より選択される少なくとも1つである。特定芳香族カルボン酸は1種を単独で用いても2種以上を併用してもよい。
 特定芳香族カルボン酸は、カルボキシ基と水酸基の他に置換基を有していてもよく、置換基を有していなくてもよい。当該置換基としては、炭素数1~5のアルキル基、有機基が酸素原子を経て結合したエーテル基、カルボン酸エステル基等が挙げられる。当該有機基の炭素数は特に制限されず、例えば1~20であってもよく、1~10であってもよく、1~5であってもよい。
 芳香族ヒドロキシカルボン酸は、少なくとも1つの水酸基と少なくとも1つのカルボキシ基が芳香環に結合している構造を有する(ただし芳香族ジカルボン酸を除く)。取扱い性等の観点から、芳香族ヒドロキシカルボン酸は、1つのカルボキシ基と1つの水酸基とが芳香環に結合している芳香族ヒドロキシカルボン酸であることが好ましい。 
 特定芳香族カルボン酸が有する芳香環は単環であっても2環以上の縮合環であってもよく、ベンゼン環及びナフタレン環からなる群より選択される少なくとも1つが好ましい。したがって、特定芳香族カルボン酸の好ましい例としては、ベンゼンヒドロキシカルボン酸、ベンゼンジカルボン酸、ナフタレンヒドロキシカルボン酸、ナフタレンジカルボン酸等が挙げられる。なかでも、良好な破壊靭性及び溶融粘度の観点からは、ベンゼンヒドロキシカルボン酸及びナフタレンヒドロキシカルボン酸からなる群より選択される少なくとも1つが好ましく、高靭性の観点からはベンゼンジカルボン酸が好ましい。
 特定芳香族カルボン酸がベンゼンヒドロキシカルボン酸である場合、当該ベンゼンヒドロキシカルボン酸は1つの水酸基及び1つのカルボキシ基がベンゼン環に結合した構造を有することが好ましい。ベンゼンヒドロキシカルボン酸のカルボキシ基に対する水酸基の置換位置はオルト位であってもメタ位であってもパラ位であってもよく、メタ位又はパラ位であることが好ましく、パラ位であることがより好ましい。カルボキシ基に対する水酸基の置換位置がパラ位であると、当該ベンゼンヒドロキシカルボン酸を用いて合成されたエポキシ化合物の分子構造の直線性が高まり、より配向しやすくなるため、破壊靭性がより向上すると考えられる。
 ベンゼンヒドロキシカルボン酸としては、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、これらのベンゼンヒドロキシカルボン酸の芳香環に結合する水素原子の少なくとも1つが炭素数1~5のアルキル基、有機基が酸素原子を経て結合したエーテル基、カルボン酸エステル基等の置換基で置換されたベンゼンヒドロキシカルボン酸などが挙げられる。当該有機基の炭素数は特に制限されず、例えば1~20であってもよく、1~10であってもよく、1~5であってもよい。なかでも、良好な破壊靭性、溶融粘度、耐熱性等の観点から、4-ヒドロキシ安息香酸が好ましい。
 特定芳香族カルボン酸がベンゼンジカルボン酸である場合、当該ベンゼンジカルボン酸はオルト体であってもメタ体であってもパラ体であってもよく、破壊靭性の観点からパラ体であることが好ましい。ベンゼンジカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、これらのベンゼンジカルボン酸の芳香環に結合する水素原子の少なくとも1つが炭素数1~5のアルキル基、水酸基、有機基が酸素原子を経て結合したエーテル基、カルボン酸エステル基等の置換基で置換されたベンゼンジカルボン酸などが挙げられる。当該有機基の炭素数は特に制限されず、例えば1~20であってもよく、1~10であってもよく、1~5であってもよい。
 特定芳香族カルボン酸がナフタレンヒドロキシカルボン酸である場合、当該ナフタレンヒドロキシカルボン酸は1つの水酸基と1つのカルボキシ基とがナフタレン環に結合した構造を有することが好ましい。ナフタレンヒドロキシカルボン酸のカルボキシ基及び水酸基の置換位置は特に制限されず、破壊靭性の観点からは、2位と6位の組み合わせが好ましい。
 ナフタレンヒドロキシカルボン酸としては、2-ヒドロキシ-1-ナフトエ酸、3-ヒドロキシ-1-ナフトエ酸、4-ヒドロキシ-1-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、6-ヒドロキシ-1-ナフトエ酸、7-ヒドロキシ-1-ナフトエ酸、8-ヒドロキシ-1-ナフトエ酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、7-ヒドロキシ-2-ナフトエ酸、これらのナフタレンヒドロキシカルボン酸の芳香環に結合する水素原子の少なくとも1つが炭素数1~5のアルキル基、有機基が酸素原子を経て結合したエーテル基、カルボン酸エステル基等の置換基で置換されたナフタレンヒドロキシカルボン酸などが挙げられる。当該有機基の炭素数は特に制限されず、例えば1~20であってもよく、1~10であってもよく、1~5であってもよい。入手容易性の観点からは、2-ヒドロキシ-1-ナフトエ酸、6-ヒドロキシ-1-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、及び6-ヒドロキシ-2-ナフトエ酸が好ましく、良好な破壊靭性、溶融粘度、耐熱性等の観点からは、6-ヒドロキシ-2-ナフトエ酸がより好ましい。
 特定芳香族カルボン酸がナフタレンジカルボン酸である場合、カルボキシ基の置換位置は特に限定されない。ナフタレンジカルボン酸としては、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、これらのナフタレンジカルボン酸の芳香環に結合する水素原子の少なくとも1つが炭素数1~5のアルキル基、水酸基、有機基が酸素原子を経て結合したエーテル基、カルボン酸エステル基等の置換基で置換されたナフタレンジカルボン酸などが挙げられる。当該有機基の炭素数は特に制限されず、例えば1~20であってもよく、1~10であってもよく、1~5であってもよい。破壊靭性の観点からは、2,6-ナフタレンジカルボン酸が好ましい。
-メソゲン構造を有するエポキシ化合物と特定芳香族カルボン酸との反応生成物-
 メソゲン構造を有するエポキシ化合物と特定芳香族カルボン酸との反応生成物は、上述のメソゲン構造を有するエポキシ化合物と特定芳香族カルボン酸とを反応させた生成物であれば、その態様は特に制限されない。
 例えば、反応生成物は原料であるメソゲン構造を有するエポキシ化合物の二量体、三量体等であってもよい。また、反応生成物はメソゲン構造を有するエポキシ化合物が特定芳香族カルボン酸と反応することによって直鎖状に重合したものでもよく、分岐構造を有するものであってもよい。
 より具体的な例として、反応生成物は、2分子のメソゲン構造を有するエポキシ化合物が1分子の特定芳香族カルボン酸により連結されてなる二量体、3分子のメソゲン構造を有するエポキシ化合物が2分子の特定芳香族カルボン酸により連結されてなる三量体等であってもよい。また、反応生成物は、上記二量体の合成において発生した水酸基に1分子又は2分子のメソゲン構造を有するエポキシ化合物がさらに付加してなる、分岐構造を有する三量体又は四量体等であってもよい。
 反応生成物は、メソゲン構造を有するエポキシ化合物及び特定芳香族カルボン酸に加えて、その他の原料を反応させたものであってもよい。例えば、反応生成物は、メソゲン構造を有するエポキシ化合物とその他のエポキシ化合物と特定芳香族カルボン酸との反応生成物であってもよい。「その他のエポキシ化合物」としては、例えば、置換又は非置換のベンゼン環及び2つ以上のグリシジルオキシ基を有するエポキシ化合物、並びに置換又は非置換のナフタレン環及び2つ以上のグリシジルオキシ基を有する化合物が挙げられる。ベンゼン環又はナフタレン環が置換基を有する場合の置換基としては、炭素数1~18の有機基等が挙げられる。
 メソゲン構造を有するエポキシ化合物と特定芳香族カルボン酸との反応生成物は、上述の一般式(E1)及び(E2)からなる群より選択される少なくとも1つの化合物を含むものであってもよい。以下に一般式(E1)及び(E2)を再掲する。
Figure JPOXMLDOC01-appb-C000020
 一般式(E1)及び(E2)において、Arは置換又は非置換の芳香環を表し;R及びRはそれぞれ独立にグリシジル基を有する一価の有機基を表し、R及びRの少なくとも一方はメソゲン構造を有し;Rはそれぞれ独立に、水素原子又は一価の有機基を表す。
 一般式(E1)及び(E2)中、Arで表される芳香環は単環であっても2環以上の縮合環であってもよく、ベンゼン環及びナフタレン環からなる群より選択される少なくとも1つであることが好ましい。一般式(E1)のArに隣接するカルボニル基及び酸素原子、並びに一般式(E2)のArに隣接する2つのカルボニル基は、それぞれ、Arで表される芳香環に直接結合している。

 一般式(E1)及び(E2)中、R及びRで表されるグリシジル基を有する一価の有機基としては、例えば、前述のメソゲン構造を有するエポキシ化合物のうち1つのグリシジルオキシ基を除いてなる一価の有機基、及びその他のエポキシ化合物のうち1つのグリシジルオキシ基を除いてなる一価の有機基が挙げられる。
 「メソゲン構造を有するエポキシ化合物のうち1つのグリシジルオキシ基を除いてなる一価の有機基」としては、例えば、ビフェニル構造、フェニルベンゾエート構造、シクロヘキシルベンゾエート構造、アゾベンゼン構造、スチルベン構造、ターフェニル構造、アントラセン構造、これらの誘導体、又はこれらのメソゲン構造の2つ以上が連結基を介して結合した構造と、グリシジル基と、を有する一価の有機基が挙げられる。
 「その他のエポキシ化合物のうち1つのグリシジルオキシ基を除いてなる一価の有機基」としては、グリシジル基と脂肪族炭化水素基とを含む一価の有機基、グリシジル基と芳香族炭化水素基とを含む1価の有機基等が挙げられる。当該脂肪族炭化水素基及び芳香族炭化水素基はそれぞれ置換基を有していても有していなくてもよい。置換基としては、炭素数1~18の有機基等が挙げられる。
 「グリシジル基と脂肪族炭化水素基とを含む一価の有機基」における脂肪族炭化水素基としては、アルキレン基、アルケニレン基等が挙げられる。
 「グリシジル基と芳香族炭化水素基とを含む1価の有機基」における芳香族炭化水素基としては、フェニレン基、ナフチレン基等が挙げられる。好ましい態様におけるグリシジル基と芳香族炭化水素基とを含む1価の有機基の例として、グリシジルオキシ基が結合したフェニレン基、グリシジルオキシ基が結合したナフチレン基等が挙げられる。
 一般式(E1)及び(E2)中、R及びRの少なくとも一方はメソゲン構造を有し、R及びRの両方がメソゲン構造を有してもよい。R及びRは同じ構造を有していても異なる構造を有していてもよい。
 一般式(E1)及び(E2)において、R及びRで表される一価の有機基の炭素数は特に制限されず、例えば25以下であってもよく、20以下であってもよく、15以下であってもよい。
 一般式(E1)及び(E2)中、R及びRで表されるグリシジル基を有する一価の有機基は、エポキシ化合物に由来する構造であってもよい。当該エポキシ化合物としては特に制限されず、例えば、1分子中に2個以上のエポキシ基を有するエポキシ化合物が挙げられ、1分子中に2個のエポキシ基を有するエポキシ化合物が好ましく、1分子中に2個のグリシジルエーテル基を有するエポキシ化合物がより好ましい。エポキシ化合物は前述のメソゲン構造を有するエポキシ化合物であってもよく、その他のエポキシ化合物であってもよい。「その他のエポキシ化合物」としては、例えば、置換又は非置換のベンゼン環及び2つ以上のグリシジルオキシ基を有するエポキシ化合物、並びに置換又は非置換のナフタレン環及び2つ以上のグリシジルオキシ基を有する化合物が挙げられる。ベンゼン環又はナフタレン環が置換基を有する場合の置換基としては、炭素数1~18の有機基等が挙げられる。
 一般式(E1)及び(E2)中、R及びRで表されるグリシジル基を有する一価の有機基において、グリシジル基は少なくとも1つ存在すればよく、複数存在していてもよい。グリシジル基の位置は、R及びRで表される一価の有機基の末端であってもよい。
 一般式(E1)及び(E2)中、Rは一価の有機基、又は水素原子を表す。
 せん断を付与しても粘度上昇が抑制され、粘度安定性に優れる観点からは、Rは一価の有機基であることが好ましい。Rが一価の有機基であると、当該エポキシ化合物の粘度安定性に優れる傾向にある。この理由は必ずしも明らかではないが、エポキシ化合物の分子構造の直線性の一部が分岐(ORで示される部分)によって崩され、せん断付与時の分子の配向が抑制されることが一因と推測される。メソゲン構造を有するエポキシ化合物の分子に分岐を導入する手法によれば、メソゲン構造に起因する分子のスタッキング力を損なうことなくせん断付与時の分子の配向を抑制することができる。このため、硬化物の破壊靭性向上と硬化前のハンドリング性の向上を両立することができる傾向にある。
 一般式(E1)及び(E2)中、Rの少なくとも1つは下記式(c)の構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(c)において、Rは一価の有機基を表し、*は酸素原子との結合部位を表す。
 Rで表される一価の有機基としては、R及びRで表されるグリシジル基を有する一価の有機基として詳述したものが挙げられる。Rは、R及び/又はRと同じ構造を有していてもよく、異なる構造を有していてもよい。
[エポキシ樹脂の合成方法]
 本開示のエポキシ樹脂を得る方法は特に制限されない。例えば、メソゲン構造を有するエポキシ化合物と、特定芳香族カルボン酸と、必要に応じて用いられるその他のエポキシ化合物と、を反応させることによって本開示のエポキシ樹脂を得ることができる。以下、エポキシ樹脂の合成方法の説明において、原料となるメソゲン構造を有するエポキシ化合物と必要に応じて用いられるその他のエポキシ化合物とをあわせて「エポキシモノマー」ということがある。
 エポキシモノマーと特定芳香族カルボン酸を反応させる方法としては、具体的には、エポキシモノマーと、特定芳香族カルボン酸と、必要に応じて用いられる反応触媒と、を溶媒中に溶解し、加熱しながら撹拌して反応させてもよい。
 または、例えば、エポキシモノマーと特定芳香族カルボン酸とを、反応触媒を用いて混合し、加熱しながら撹拌して反応させてもよい。エポキシモノマーと特定芳香族カルボン酸とを、反応触媒と溶媒を用いずに混合し、加熱しながら撹拌して反応させてもよい。
 反応生成物に一般式(c)で表される分岐構造を導入する場合、分岐構造を導入する方法は、特に制限されない。例えば、エポキシモノマーと特定芳香族カルボン酸とを反応させて生じる2級水酸基に、さらにエポキシモノマーのエポキシ基を反応させることで導入することができる。
 エポキシモノマーと特定芳香族カルボン酸とを反応させて生じる2級水酸基にエポキシモノマーのエポキシ基を反応させる際の反応の進行は、例えば、反応に用いる反応触媒の種類を適切に選択することによって制御することができる。例えば、比較的活性の低い反応触媒を用いると、エポキシモノマーのエポキシ基と、特定芳香族カルボン酸のカルボキシ基又は水酸基との間の反応が進行する一方で、当該反応により生成する2級水酸基とさらなるエポキシモノマーとの反応は進まず、分岐構造が形成される割合が低い傾向にある。これに対し、比較的活性の高い反応触媒を用いると、エポキシモノマーのエポキシ基と特定芳香族カルボン酸のカルボキシ基又は水酸基との間の反応に加え、当該反応により生成する2級水酸基とさらなるエポキシモノマーとの反応が進行し、分岐構造が形成される割合が高くなる傾向にある。
 溶媒は、エポキシモノマーと特定芳香族カルボン酸とを溶解でき、両化合物が反応するのに必要な温度にまで加温できる溶媒であれば、特に制限されない。具体的には、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノプロピルエーテル等が挙げられる。
 溶媒の量は、エポキシモノマーと、特定芳香族カルボン酸と、必要に応じて用いられる反応触媒と、を反応温度において溶解できる量であれば特に制限されない。反応前の原料の種類、溶媒の種類等によって溶解性が異なるものの、例えば、仕込み固形分濃度が20質量%~60質量%となる量であれば、反応後の溶液の粘度が好ましい範囲となる傾向にある。
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択できる。具体的には、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。反応触媒は1種を単独で用いてもよく、2種以上を併用してもよい。
 エポキシモノマーと特定芳香族カルボン酸との反応を促進する観点からは、反応触媒としては有機リン化合物及びイミダゾール化合物が好ましい。エポキシ基の単独重合を抑制してゲル化を抑制する観点、エポキシモノマーのエポキシ基と特定芳香族カルボン酸のカルボキシ基又は水酸基との反応を選択的に促進して、得られるエポキシ樹脂の構造を制御する観点、及び硬化物の耐熱性の観点からは、反応触媒としては有機リン化合物が好ましい。
 有機リン化合物の好ましい例としては、有機ホスフィン化合物、有機ホスフィン化合物に無水マレイン酸、キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、有機ホスフィン化合物と有機ボロン化合物との錯体などが挙げられる。
 有機ホスフィン化合物として具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 キノン化合物として具体的には、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等が挙げられる。
 有機ボロン化合物として具体的には、テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等が挙げられる。
 一般式(c)で表される分岐構造を導入する場合には、反応触媒としては、分子内塩型ホスフィン化合物及び分子間塩型ホスフィン可能物が好ましく、トリブチルホスフィンとヒドロキノンの付加反応物及びテトラブチルホスフィンとカルボン酸の塩がより好ましい。
 反応触媒の量は、特に制限されない。反応速度及び貯蔵安定性の観点からは、エポキシモノマーと特定芳香族カルボン酸との合計質量100質量部に対し、0.01質量部~1.5質量部であることが好ましく、0.05質量部~1質量部であることがより好ましい。
 エポキシモノマーと特定芳香族カルボン酸とを反応させる場合、反応後のエポキシ樹脂において、エポキシモノマーが全て反応して残存していなくてもよく、エポキシモノマーの一部が反応せずに残存していてもよい。
 エポキシモノマーと特定芳香族カルボン酸とを反応させる場合、少量スケールであればフラスコ、大量スケールであれば合成釜等の反応容器を使用して行うことができる。具体的な合成方法は、例えば以下の通りである。
 まず、エポキシモノマーを反応容器に投入し、必要に応じて溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、エポキシモノマーを溶解する。そこに特定芳香族カルボン酸を投入し、次いで必要に応じて反応触媒を投入し、反応を開始させる。次いで、必要に応じて減圧下で溶媒を留去することで、本開示のエポキシ樹脂が得られる。
 反応温度は、エポキシモノマーのエポキシ基と特定芳香族カルボン酸の官能基との反応が進行する温度であれば特に制限されず、例えば100℃~180℃の範囲であることが好ましく、100℃~170℃の範囲であることがより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化する可能性を低減できる傾向にある。
 本開示のエポキシ樹脂を合成するときのエポキシモノマーと特定芳香族カルボン酸の配合比は、特に制限されない。例えば、エポキシモノマーのエポキシ基の当量数(A)と、特定芳香族カルボン酸の官能基(カルボキシ基及び水酸基)の合計当量数(B)との比(A:B)が10:10~10:0.01の範囲となる配合比としてもよい。硬化物の破壊靭性及び耐熱性の観点からは、A:Bが10:5~10:0.1の範囲となる配合比が好ましい。なお、エポキシモノマーが、メソゲン構造を有するエポキシ化合物及びその他のエポキシ化合物を含む場合、上記エポキシ基の当量数(A)は、メソゲン構造を有するエポキシ化合物及びその他のエポキシ化合物の合計当量数とする。
 エポキシモノマーの取り扱い性の観点からは、エポキシ基の当量数(A)と、特定芳香族カルボン酸の官能基(カルボキシ基及び水酸基)の合計当量数(B)との比(A:B)は10:1.5~10:3.0の範囲となる配合比が好ましく、10:1.6~10:2.9の範囲となる配合比がより好ましく、10:1.7~10:2.8の範囲となる配合比がさらに好ましい。
 曲げ弾性率と破壊靭性を効果的に両立する観点からは、エポキシ基の当量数(A)と、特定芳香族カルボン酸の官能基(カルボキシ基及び水酸基)の合計当量数(B)との比(A:B)は10:1.0~10:3.0の範囲となる配合比が好ましく、10:1.4~10:2.6の範囲となる配合比がより好ましく、10:1.6~10:2.4の範囲となる配合比がさらに好ましい。
 合成されたエポキシ樹脂の構造は、例えば、エポキシモノマーと特定芳香族カルボン酸との反応より得られると推定されるエポキシ樹脂の分子量と、UV及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで決定することができる。
 液体クロマトグラフィーは、後述の方法で行うことができる。UVスペクトル検出器では280nmの波長における吸光度を検出し、マススペクトル検出器ではイオン化電圧を2700Vとして検出する。
[エポキシ樹脂の物性等]
〔重量平均分子量〕
 エポキシ樹脂の重量平均分子量(Mw)は、特に制限されない。低粘度化の観点からは、エポキシ樹脂の重量平均分子量(Mw)は500~4000であることが好ましく、700~3500であることがより好ましく、800~3000であることがさらに好ましい。
 本開示において、重量平均分子量(Mw)は液体クロマトグラフィーにより得られる値とする。液体クロマトグラフィーは例えば以下の条件で行うことができる。例えば、株式会社日立製作所の「LaChrom II C18」を分析用カラムとして使用し、グラジエント法を用いて、溶離液の混合比(体積基準)を(アセトニトリル)/(テトラヒドロフラン)/(10mmol/l酢酸アンモニウム水溶液)=20/5/75から、アセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経て、アセトニトリル/テトラヒドロフラン=50/50(開始から35分)と連続的に変化させて測定を行う。また、例えば流速を1.0ml/minとして行う。
〔エポキシ当量〕
 エポキシ樹脂のエポキシ当量は、特に制限されない。エポキシ樹脂の流動性、硬化物の熱伝導性、破壊靭性と曲げ弾性率の両立等の観点からは、245g/eq~500g/eqであることが好ましく、250g/eq~450g/eqであることがより好ましく、300g/eq~380g/eqであることがさらに好ましい。
〔溶融粘度〕
 エポキシ樹脂の粘度は、特に制限されず、エポキシ樹脂の用途に応じて選択できる。取り扱い性の観点から、エポキシ樹脂の100℃における溶融粘度は200.0Pa・s以下であることが好ましく、100.0Pa・s以下であることがより好ましく、50.0Pa・s以下であることがさらに好ましく、20.0Pa・s以下であることが特に好ましい。また、エポキシ樹脂の100℃における溶融粘度は、硬化剤と混合する際のせん断配向による粘度上昇を抑制する観点から、1.0Pa・s以上であることが好ましく、2.0Pa・s以上であることがより好ましく、3.0Pa・s以上であることがさらに好ましい。
 エポキシ樹脂100℃における溶融粘度は、1.0Pa・s~100.0Pa・sであることが好ましく、2.0Pa・s~50.0Pa・sであることがより好ましく、3.0Pa・s~20.0Pa.sであることがさらに好ましい。
 エポキシ樹脂の100℃における溶融粘度は、コーンプレート粘度計(例えば、CAP2000,BROOKFIELD社)を用いて測定することができる。例えば、測定温度は100±2℃で、コーンはNo.5を使用し、回転数は50回毎分(rpm)の条件で測定することができる。
〔粘度安定性〕
 エポキシ樹脂が前述の一般式(c)で表される分岐構造を含むと、せん断を付与しても粘度上昇が抑制され、粘度安定性に優れる傾向にある。エポキシ樹脂の粘度安定性は、例えば、粘弾性測定装置を用いてエポキシ樹脂に所定の条件でせん断を付与しながら溶融粘度を連続的に測定して判断することができる。
 例えば、パラレルプレートとステージの間のギャップを0.05mm、周波数を0.5Hz、歪みを8000%、温度を80℃(一定)として、80分間連続して動的せん断粘度を測定した場合に、初期(測定開始直後)の動的せん断粘度η’1(Pa・s)と、測定中に得られる動的せん断粘度の最大値η’2(Pa・s)とから得られるη’2/η’1の値が小さいほど、せん断の付与による粘度上昇の度合いが小さく、粘度安定性に優れていると判断できる。
 η’2/η’1の値は特に制限されず、取扱い性の観点から、例えば、3以下であってもよく、2以下であってもよく、1.5以下であってもよい。
 前記測定における動的せん断粘度の絶対値は特に制限されない。例えば、初期の動的せん断粘度η’1が200Pa・s以下であってもよい。
〔GPCピーク面積比〕
 本開示のエポキシ樹脂の合計量に対する、メソゲン構造を有するエポキシ化合物の単量体の割合は特に制限されない。当該割合は、ゲルパーミエーションクロマトグラフィー(GPC)により得られるチャートにおいて、全てのエポキシ樹脂に由来するピークの合計面積に占める、メソゲン構造を有するエポキシ化合物の単量体由来のピークの面積の割合(%)(以下、当該割合を「GPCピーク面積比M」ともいう)によって求められる。具体的には、測定対象のエポキシ樹脂の280nmの波長における吸光度を検出し、検出された全てのピークの合計面積と、メソゲン構造を有するエポキシ化合物の単量体に相当するピークの面積とから、下記式により算出する。
 GPCピーク面積比M(%)=(メソゲン構造を有するエポキシ化合物の単量体に相当するピークの面積/全てのエポキシ樹脂に由来するピークの合計面積)×100
 取扱い性向上の観点からは、GPCピーク面積比Mは、50%以下であることが好ましく、49%以下であることがより好ましく、48%以下であることがさらに好ましい。GPCピーク面積比Mが50%以下であると、昇温時に粘度が下がりやすく取り扱い性に優れる傾向にある。また、GPCピーク面積比Mは、5%以上であってもよく、10%以上であってもよく、15%以上であってもよい。
 エポキシ樹脂の合計量に対する、分岐構造を有する本開示の反応生成物の割合は特に制限されない。例えば、2分子のメソゲン構造を有する化合物が1分子の特定芳香族カルボン酸によって連結されてなる二量体の水酸基に、1分子又は2分子のメソゲン構造を有する化合物がさらに付加してなる、分岐構造を有する反応生成物を反応生成物Bとする。このとき、エポキシ樹脂の合計量に対する反応生成物Bの合計量の割合は、上記に倣ってGPCにより得られるチャートにおいて、全てのエポキシ樹脂に由来するピークの合計面積に占める反応生成物Bに由来するピークの面積の割合(%)として測定することができる(以下、当該割合をGPCピーク面積比Bともいう)。
 粘度安定性の向上の観点からは、GPCピーク面積比Bは、3%以上であってもよく、5%以上であってもよく、7%以上であってもよい。また、GPCピーク面積比Bは15%以下であってもよく、12%以下であってもよく、10%以下であってもよい。
 ゲルパーミエーションクロマトグラフィーは、試料濃度を0.5質量%とし、移動相にテトラヒドロフランを用い、流速を1.0ml/minとして行う。測定は、例えば、株式会社日立製作所の高速液体クロマトグラフ「L6000」と、株式会社島津製作所のデータ解析装置「C-R4A」を用いて行うことができる。カラムとしては、例えば、東ソー株式会社のGPCカラムである「G2000HXL」及び「G3000HXL」を用いることができる。
〔硬化物としたときの破壊靭性〕
 本開示のエポキシ樹脂は、硬化剤である3,3’-ジアミノジフェニルスルホンとともに硬化物としたときに、ASTM D5045-14に基づく3点曲げ測定により測定される前記硬化物の破壊靭性値が2.4MPa・m1/2以上であることが好ましい。硬化物の破壊靭性については後述する。
〔硬化物としたときの液晶構造〕
 本開示のエポキシ樹脂は、硬化剤である3,3’-ジアミノジフェニルスルホンとともに硬化物としたときに、硬化物中に高次構造を形成していることが好ましい。すなわち、偏光顕微鏡を用いたクロスニコル状態での観察において、偏光解消による干渉縞が見られることが好ましい。
≪エポキシ樹脂組成物及びエポキシ樹脂硬化物≫
 本開示のエポキシ樹脂組成物は、本開示のエポキシ樹脂と、硬化剤と、を含有する。エポキシ樹脂組成物は、破壊靭性の観点から、硬化物としたときにスメクチック構造又はネマチック構造を形成可能であることが好ましい。
 本開示のエポキシ樹脂硬化物は、本開示のエポキシ樹脂組成物を硬化して得られる硬化物である。
<硬化剤>
 硬化剤は、エポキシ樹脂と硬化反応を生じることができる化合物であれば、特に制限されない。硬化剤の具体例としては、アミン硬化剤、フェノール硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、1種を単独で用いても2種以上を併用してもよい。
 エポキシ樹脂組成物の硬化物中に高次構造を形成する観点からは、硬化剤としては、アミン硬化剤又はフェノール硬化剤が好ましく、アミン硬化剤がより好ましい。アミン硬化剤としては、芳香環及びアミノ基を有するアミン硬化剤が好ましく、アミノ基が芳香環に直接結合しているアミン硬化剤がより好ましく、2つ以上のアミノ基が芳香環に直接結合しているアミン硬化剤がさらに好ましい。芳香環としては、ベンゼン環及びナフタレン環が挙げられる。
 アミン硬化剤として具体的には、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノベンズアニリド、トリメチレン-ビス-4-アミノベンゾアート等が挙げられる。
 エポキシ樹脂組成物の硬化物中にスメクチック構造を形成する観点からは、アミン硬化剤としては、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノベンズアニリド、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルメタン、及びトリメチレン-ビス-4-アミノベンゾアートが好ましく、低吸水率及び高破壊靭性の硬化物を得る観点からは3,3’-ジアミノジフェニルスルホンがより好ましい。
 フェノール硬化剤としては、低分子フェノール化合物、及び低分子フェノール化合物をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂が挙げられる。低分子フェノール化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能フェノール化合物、カテコール、レゾルシノール、ヒドロキノン等の2官能フェノール化合物、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能フェノール化合物などが挙げられる。
 エポキシ樹脂組成物における硬化剤の含有量は特に制限されない。硬化反応の効率性の観点からは、エポキシ樹脂組成物に含まれる硬化剤の官能基の当量数(アミン硬化剤の場合は活性水素の当量数)と、エポキシ樹脂のエポキシ基の当量数との比(官能基の当量数/エポキシ基の当量数)が0.3~3.0となる量であることが好ましく、0.5~2.0となる量であることがより好ましい。
<その他の成分>
 エポキシ樹脂組成物は、必要に応じてエポキシ樹脂と硬化剤以外のその他の成分を含んでもよい。例えば、硬化触媒、フィラー等を含んでもよい。硬化触媒の具体例としては、本開示のエポキシ樹脂の合成に使用しうる反応触媒として例示した化合物が挙げられる。
[エポキシ樹脂硬化物の物性]
〔破壊靭性〕
 エポキシ樹脂組成物は、硬化物としたときの破壊靭性値が2.4MPa・m1/2以上であることが好ましい。破壊靭性値が2.4MPa・m1/2以上であると、本開示のエポキシ樹脂硬化物をCFRPの用途に用いるとしても、強度が十分となる傾向にある。硬化物の破壊靭性値は、ASTM D5045-14に基づいて3点曲げ測定を行うことで測定することができる。具体的には、後述する実施例に記載された方法で測定することができる。
〔曲げ弾性率〕
 エポキシ樹脂組成物は、硬化物としたときの曲げ弾性率が2.0GPa以上であることが好ましく、2.5GPa以上であることがより好ましく、2.6GPa以上であることがさらに好ましく、2.7GPa以上であることが特に好ましい。
 硬化物の曲げ弾性率は、JIS K7171(2016)に基づいて3点曲げ測定によって測定することができる。
〔ガラス転移温度〕
 エポキシ樹脂組成物は、硬化物としたときのガラス転移温度が145℃以上であることが好ましく、150℃以上であることがより好ましく、155℃以上であることがさらに好ましい。
 硬化物のガラス転移温度は、例えば、以下のように測定することができる。具体的には硬化物を短冊状に切り出して試験片を作製し、引張りモードによる動的粘弾性測定を行って算出する。測定条件は、周波数10Hz、昇温速度5℃/分、ひずみ0.1%とし、得られた温度‐tanδ関係図において、tanδが最大となる温度を、ガラス転移温度とみなせばよい。評価装置には、例えば、RSA-G2(ティー・エイ・インスツルメント社)を用いることができる。
[エポキシ樹脂組成物及びエポキシ樹脂硬化物の用途]
 エポキシ樹脂組成物及びエポキシ樹脂硬化物の用途は特に制限されず、優れた破壊靭性が要求される用途にも好適に用いることができる。例えば、航空機、宇宙船等に用いるFRPの製造に好適に用いることができる。
 また、本開示のエポキシ樹脂が分岐構造を有するエポキシ化合物を含む場合、エポキシ樹脂組成物は、粘度が低く、流動性に優れていることが要求される加工工程にも好適に用いることができる。例えば、硬化物中のボイドの発生を抑制する観点から粘度低下のための溶媒の添加を省略又は低減することが望まれる加工方法(例えば、航空機、宇宙船等に用いるFRPの製造)にも好適に用いることができる。また、繊維間の空隙にエポキシ樹脂組成物を加温しながら含浸する工程を伴うFRPの製造、エポキシ樹脂組成物を加温しながらスキージ等で広げる工程を伴うシート状物の製造などにも好適に用いることができる。
≪複合材料≫
 本開示の複合材料は、本開示のエポキシ樹脂硬化物と、強化材と、を含む。
 複合材料に含まれる強化材の材質は特に制限されず、複合材料の用途等に応じて選択できる。強化材として具体的には、炭素材料、ガラス、芳香族ポリアミド系樹脂(例えば、ケブラー(登録商標))、超高分子量ポリエチレン、アルミナ、窒化ホウ素、窒化アルミニウム、マイカ、シリカ等が挙げられる。強化材の形状は特に制限されず、繊維状、粒子状(フィラー)等が挙げられる。複合材料の強度の観点からは、強化材は炭素材料であることが好ましく、炭素繊維であることがより好ましい。複合材料に含まれる強化材は、1種でも2種以上であってもよい。
 複合材料の形態は、特に制限されない。例えば、エポキシ樹脂硬化物を含む少なくとも1つの硬化物含有層と、強化材を含む少なくとも1つの強化材含有層とが積層された構造を有するものであってもよい。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されるものではない。
〔エポキシ樹脂の合成〕
 エポキシ樹脂の合成には以下の材料を用いた。
-メソゲン構造を有するエポキシ化合物-
・エポキシ化合物1:trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート(エポキシ当量:227g/eq)
-変性剤-
・4-ヒドロキシ安息香酸
・テレフタル酸
・イソフタル酸
・6-ヒドロキシ-2-ナフトエ酸
・2,6-ナフタレンジカルボン酸
・2,6-ジヒドロキシナフタレン
・ヒドロキノン
・レゾルシノール
・4,4’-ビフェノール
・4-ヒドロキシけい皮酸
・4-ヒドロキシプロピオン酸
-反応触媒-
・トリブチルホスフィンとヒドロキノンとの反応付加物
 100質量部のエポキシ化合物1をシクロヘキサノン160質量部と混合し、還流条件下で脱水処理を行った。その後、表1及び表2に記載される変性剤を、表1及び表2に記載の配合量で添加し、溶解した後に反応触媒をエポキシ化合物の質量に対して0.6質量%加え、還流条件下にて3時間加熱した。その後、真空条件下、最大170℃の温度条件にて脱溶工程を実施することにより、エポキシ樹脂を得た。実施例及び比較例で合成したエポキシ樹脂はいずれも固形分が99.0質量%以上であった。
 なお、反応触媒としてトリブチルホスフィンとヒドロキノンとの反応付加物を用いているため、合成されたエポキシ樹脂には分岐構造を有するエポキシ化合物が含まれている。
〔エポキシ当量の測定〕
 得られたエポキシ樹脂のエポキシ当量を、過塩素酸滴定法により測定した。
〔溶融粘度の評価〕
 得られたエポキシ樹脂の溶融粘度を、コーンプレート粘度計(CAP2000,BROOKFIELD社)を用いて測定した。測定温度は100℃±2℃で、コーンはNo.5を使用し、回転数は50回毎分(rpm)の条件で測定した。
〔破壊靭性の評価〕
 各実施例及び比較例で得られたエポキシ樹脂、並びに硬化剤として3,3’-ジアミノジフェニルスルホンを、当量比率が1:1になるように混合した。混合物をステンレスシャーレに入れ、ホットプレートで180℃に加熱し、その後150℃の温度で真空条件下で脱泡処理を行った。その後、オーブンで150℃、4時間の加熱を行いエポキシ樹脂組成物の硬化物を得た。得られた硬化物を3.75mm×7.5mm×33mmに切り出し、破壊靭性評価用の試験片を作製した。ASTM D5045-14に基づいて3点曲げ測定を行って破壊靭性値(MPa・m1/2)を算出した。評価装置としては、インストロン5948(インストロン社)を用いた。結果を表1及び表2に示す。
〔ガラス転移温度の測定〕
 エポキシ樹脂硬化物の耐熱性の指標として、ガラス転移温度(Tg)を用いた。試験片のガラス転移温度は、引張りモードによる動的粘弾性測定を行って算出した。測定条件は、周波数10Hz、昇温速度5℃/分、ひずみ0.1%とした。得られた温度‐tanδ関係図において、tanδが最大となる温度を、ガラス転移温度とみなした。評価装置には、RSA-G2(ティー・エイ・インスツルメント社)を用いた。結果を表1及び表2に示す。
〔液晶構造の観察〕
 エポキシ樹脂硬化物を50μmの厚さに研磨し、偏光顕微鏡(株式会社ニコン製、製品名:「OPTIPHOT2-POL」)を用いて直交ニコル下で観察して、液晶構造の有無を確認した。暗視野にならず、組織が観察できれば液晶構造を形成していると判断した。
 また、液晶構造におけるスメクチック構造又はネマチック構造の有無を下記方法により確認した。CuKα1線を用い、管電圧40kV、管電流20mA、2θが1°~30°の範囲で、X線回折装置(株式会社リガク製)を用いてX線回折測定を行った。2θが2°~10°の範囲に回折ピークが存在する場合に、液晶構造がスメクチック構造を含んでいると判断した。液晶構造を含んでおり、かつスメクチック構造を含んでいない場合は、液晶構造がネマチック構造であると判断した。
 結果を表1及び表2に示す。なお、表1及び表2において、Smはスメクチック構造が観察されたことを表す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 メソゲン構造を有するエポキシ化合物と特定芳香族カルボン酸を用いた実施例では、破壊靭性が2.4MPa・m1/2以上であり、優れた破壊靭性を有していた。
 また、エポキシ化合物の変性剤として6-ヒドロキシ-2-ナフトエ酸を用いた実施例4の硬化物は、顕著に高いガラス転移温度を示した。
 さらに、実施例1及び実施例4で合成したエポキシ樹脂は、溶融粘度が低く、取扱い性に優れていた。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (14)

  1.  メソゲン構造を有するエポキシ化合物と、
     カルボキシ基と水酸基とが芳香環に結合している芳香族ヒドロキシカルボン酸、及び2つのカルボキシ基が芳香環に結合している芳香族ジカルボン酸からなる群より選択される少なくとも1つと、
    の反応生成物を含むエポキシ樹脂。
  2.  前記芳香環がベンゼン環又はナフタレン環である、請求項1に記載のエポキシ樹脂。
  3.  下記一般式(E1)及び(E2)からなる群より選択される少なくとも1つの化合物を含むエポキシ樹脂:
    Figure JPOXMLDOC01-appb-C000001

     一般式(E1)及び(E2)において、Arは置換又は非置換の芳香環を表し;R及びRはそれぞれ独立にグリシジル基を有する一価の有機基を表し、R及びRの少なくとも一方はメソゲン構造を有し;Rはそれぞれ独立に、水素原子又は一価の有機基を表す。
  4.  前記一般式(E1)及び(E2)におけるArが置換又は非置換のベンゼン環又はナフタレン環である、請求項3に記載のエポキシ樹脂。
  5.  前記一般式(E1)及び(E2)において、Rの少なくとも1つが下記式(c)の一価の有機基である、請求項3又は請求項4に記載のエポキシ樹脂:
    Figure JPOXMLDOC01-appb-C000002

     式(c)において、Rは一価の有機基を表し、*は酸素原子との結合部位を表す。
  6.  前記メソゲン構造が下記一般式(M)で表される構造を含む、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂:
    Figure JPOXMLDOC01-appb-C000003

     一般式(M)中、Xは単結合又は下記2価の基からなる群(A)より選択される少なくとも1種の連結基を表し;Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表し;nは各々独立に0~4の整数を表し;*は隣接する原子との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000004

     群(A)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表し;nは各々独立に0~4の整数を表し;kは0~7の整数を表し;mは0~8の整数を表し;lは0~12の整数を表す。
  7.  前記メソゲン構造が、下記一般式(M-2)で表される構造を含む、請求項1~請求項6のいずれか1項に記載のエポキシ樹脂:
    Figure JPOXMLDOC01-appb-C000005

     式(M-2)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8のアルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を表し;nは各々独立に0~4の整数を表し;*は隣接する原子との結合部位を表す。
  8.  エポキシ当量が300g/eq~380g/eqである、請求項1~請求項7のいずれか1項に記載のエポキシ樹脂。
  9.  100℃での溶融粘度が2.0Pa・s~50.0Pa・sである請求項1~請求項8のいずれか1項に記載のエポキシ樹脂。
  10.  硬化剤である3,3’-ジアミノジフェニルスルホンとともに硬化物としたときに、ASTM D5045-14に基づく3点曲げ測定により測定される前記硬化物の破壊靭性値が2.4MPa・m1/2以上である、請求項1~請求項9のいずれか1項に記載のエポキシ樹脂。
  11.  硬化剤である3,3’-ジアミノジフェニルスルホンとともに硬化物として、偏光顕微鏡を用いてクロスニコル状態で前記硬化物を観察したときに、偏光解消による干渉縞が見られる、請求項1~請求項10のいずれか1項に記載のエポキシ樹脂。
  12.  請求項1~請求項11のいずれか1項に記載のエポキシ樹脂と、硬化剤と、を含有するエポキシ樹脂組成物。
  13.  請求項12に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
  14.  請求項13に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
PCT/JP2019/013363 2019-03-27 2019-03-27 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 WO2020194601A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/013363 WO2020194601A1 (ja) 2019-03-27 2019-03-27 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
KR1020217032468A KR20210146326A (ko) 2019-03-27 2019-03-27 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
JP2021508549A JP7294404B2 (ja) 2019-03-27 2019-03-27 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US17/598,305 US20220162374A1 (en) 2019-03-27 2019-03-27 Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
EP19921760.5A EP3950760A4 (en) 2019-03-27 2019-03-27 EPOXY RESIN, EPOXY RESIN COMPOSITION, EPOXY RESIN CURED PRODUCT, AND COMPOSITE MATERIAL
CN201980094760.4A CN113631618A (zh) 2019-03-27 2019-03-27 环氧树脂、环氧树脂组合物、环氧树脂固化物及复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013363 WO2020194601A1 (ja) 2019-03-27 2019-03-27 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Publications (1)

Publication Number Publication Date
WO2020194601A1 true WO2020194601A1 (ja) 2020-10-01

Family

ID=72610318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013363 WO2020194601A1 (ja) 2019-03-27 2019-03-27 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Country Status (6)

Country Link
US (1) US20220162374A1 (ja)
EP (1) EP3950760A4 (ja)
JP (1) JP7294404B2 (ja)
KR (1) KR20210146326A (ja)
CN (1) CN113631618A (ja)
WO (1) WO2020194601A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240128A (ja) * 1989-01-17 1990-09-25 Dow Chem Co:The メソゲン/剛直棒状部分を含有するビニルエステル樹脂
JP2002226550A (ja) * 2001-01-31 2002-08-14 Hitachi Ltd エポキシ樹脂組成物及び導電性ペースト
JP2004161909A (ja) * 2002-11-14 2004-06-10 Hitachi Ltd エポキシ樹脂の製造方法
WO2011027802A1 (ja) * 2009-09-03 2011-03-10 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP2012177060A (ja) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp 樹脂組成物及び樹脂硬化物
JP2014009232A (ja) * 2012-06-27 2014-01-20 Hitachi Chemical Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2014114426A (ja) * 2012-12-12 2014-06-26 Panasonic Corp 半導体封止用エポキシ樹脂組成物とそれを用いたパワーモジュール
JP2014122337A (ja) 2012-11-22 2014-07-03 Asahi Kasei E-Materials Corp 新規液晶性エポキシ樹脂およびその組成物
JP2015074750A (ja) * 2013-10-10 2015-04-20 日立化成株式会社 エポキシ樹脂組成物、接着シート及び半導体装置
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2017145413A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔及び金属基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622610A1 (de) * 1986-07-05 1988-01-14 Bayer Ag Fluessig-kristalline diglycidylverbindungen, ihre herstellung und verwendung in haertbaren epoxid-gemischen
US5270406A (en) * 1989-01-17 1993-12-14 The Dow Chemical Company Advanced epoxy resin compositions containing mesogenic moieties
US5412057A (en) * 1994-02-15 1995-05-02 The Dow Chemical Company Mesogen-containing aromatic anhydride compounds
WO2002053621A1 (en) * 2001-01-05 2002-07-11 Resolution Research Nederland B.V. Advanced resin derived from a low molecular weight glycidyl ether and a di-tertiary carboxylic acid and powder coating compositions comprising it
JP4798856B2 (ja) * 2001-02-23 2011-10-19 上野製薬株式会社 流動性が改良された全芳香族耐熱液晶ポリエステル樹脂組成物
TW201631021A (zh) * 2014-12-26 2016-09-01 日立化成股份有限公司 環氧樹脂成形材料、成形物、成形硬化物、及成形物的製造方法
JP6680351B2 (ja) * 2016-02-25 2020-04-15 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、成形物及び成形硬化物
JP2017106034A (ja) * 2017-03-03 2017-06-15 日立化成株式会社 封止用エポキシ樹脂成形材料及び電子部品装置
WO2018173953A1 (ja) * 2017-03-24 2018-09-27 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240128A (ja) * 1989-01-17 1990-09-25 Dow Chem Co:The メソゲン/剛直棒状部分を含有するビニルエステル樹脂
JP2002226550A (ja) * 2001-01-31 2002-08-14 Hitachi Ltd エポキシ樹脂組成物及び導電性ペースト
JP2004161909A (ja) * 2002-11-14 2004-06-10 Hitachi Ltd エポキシ樹脂の製造方法
WO2011027802A1 (ja) * 2009-09-03 2011-03-10 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP2012177060A (ja) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp 樹脂組成物及び樹脂硬化物
JP2014009232A (ja) * 2012-06-27 2014-01-20 Hitachi Chemical Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2014122337A (ja) 2012-11-22 2014-07-03 Asahi Kasei E-Materials Corp 新規液晶性エポキシ樹脂およびその組成物
JP2014114426A (ja) * 2012-12-12 2014-06-26 Panasonic Corp 半導体封止用エポキシ樹脂組成物とそれを用いたパワーモジュール
JP2015074750A (ja) * 2013-10-10 2015-04-20 日立化成株式会社 エポキシ樹脂組成物、接着シート及び半導体装置
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2017145413A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔及び金属基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950760A4

Also Published As

Publication number Publication date
JPWO2020194601A1 (ja) 2020-10-01
US20220162374A1 (en) 2022-05-26
EP3950760A1 (en) 2022-02-09
KR20210146326A (ko) 2021-12-03
JP7294404B2 (ja) 2023-06-20
EP3950760A4 (en) 2022-02-23
CN113631618A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
JP6891901B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
TWI751299B (zh) 環氧樹脂、環氧樹脂組成物、環氧樹脂硬化物及複合材料
JP6775737B2 (ja) エポキシ樹脂組成物、硬化物及び複合材料
JP7439761B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7294404B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6866939B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7004000B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7003999B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243093B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6835292B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7119801B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243091B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243092B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2020053937A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7003998B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020200355A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、及び複合材料
WO2019198158A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2021001285A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、複合材料、及びエポキシ樹脂組成物の製造方法
JP2020143192A (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020132717A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032468

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019921760

Country of ref document: EP

Effective date: 20211027