WO2020175160A1 - シリカ粉末、樹脂組成物および分散体 - Google Patents

シリカ粉末、樹脂組成物および分散体 Download PDF

Info

Publication number
WO2020175160A1
WO2020175160A1 PCT/JP2020/005618 JP2020005618W WO2020175160A1 WO 2020175160 A1 WO2020175160 A1 WO 2020175160A1 JP 2020005618 W JP2020005618 W JP 2020005618W WO 2020175160 A1 WO2020175160 A1 WO 2020175160A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica powder
particle size
mass
silica
size distribution
Prior art date
Application number
PCT/JP2020/005618
Other languages
English (en)
French (fr)
Inventor
慶二 佐伯
昌之 沼田
哲平 上野
博男 青木
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2021501921A priority Critical patent/JP7430700B2/ja
Priority to CN202080011725.4A priority patent/CN113365943B/zh
Priority to KR1020217023323A priority patent/KR20210130138A/ko
Priority to US17/425,852 priority patent/US20220002165A1/en
Publication of WO2020175160A1 publication Critical patent/WO2020175160A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a novel silica powder, a resin composition and a dispersion. More specifically, the present invention relates to a silica powder having an excellent filling property, in which the particle size and the particle size distribution are controlled.
  • the present invention particularly provides a novel silica powder that can be suitably used as a filler to be added to a resin composition used for a semiconductor encapsulant or the like.
  • fillers added to semiconductor encapsulants and semiconductor mounting adhesives represented by epoxy resin compositions have been developed.
  • the particle size tends to decrease.
  • the filler has a specific surface area of Mitsumi
  • amorphous silica powder having a particle size of 100 n or more and 600 n or less in terms of primary particle size has been used.
  • the existing amorphous silica powder having the above-mentioned specific surface area is generally poor in dispersibility due to its strong cohesiveness, resulting in a large dispersed particle size and further a particle size distribution during dispersion.
  • a resin composition using such an amorphous silica powder has coarse particles derived from the filler, and causes poor penetration of the resin, which does not sufficiently penetrate into the gap during molding.
  • the Mitsunita specific surface area is in the range of 5 or more and 20 2 /9 or less as in the conventional case, but the cohesiveness is extremely weak and the dispersibility is excellent. Therefore, a hydrophilic dry silica powder having a small dispersed particle size and a narrow particle size distribution at the time of dispersion has been proposed (Patent Document 1). Further, the silica powder described in Patent Document 2 has also been proposed.
  • Patent Document 1 Japanese Unexamined Patent Publication "Japanese Unexamined Patent Publication No. 20 1 4-1 5 2 0 4 8" ⁇ 02020/175160 2 (: 170?2020/005618
  • Patent Document 2 Japanese Patent Laid-Open Publication "Japanese Patent Laid-Open No. 2 017-1 1 9 6 2 1" Summary of Invention
  • an object of the present invention is to provide a silica powder having a controlled particle size and particle size distribution and excellent filling properties. More specifically, it is intended to provide a silica powder which, when used as a resin filler, is capable of obtaining a resin composition having excellent gap permeability and low viscosity.
  • the inventors of the present invention have proposed a burner, a reactor in which a burner is installed in silica obtained by burning a silicon compound in a flame, a flame condition and the like in a flame and a flame.
  • a burner is installed in silica obtained by burning a silicon compound in a flame, a flame condition and the like in a flame and a flame.
  • the present invention is a silica powder characterized by satisfying all of the following conditions (1) to (3).
  • is more than 300 ⁇ ! and less than 5001 ⁇ .
  • ⁇ 100 is 30% or more and 45% or less.
  • ⁇ 90 is the cumulative 90 mass% diameter of the mass-based particle size distribution obtained by the centrifugal sedimentation method.
  • the resin composition containing the silica powder has excellent viscosity characteristics and excellent interstitial permeability. Can achieve both. Therefore, it is suitable as a filler for semiconductor encapsulants and semiconductor mounting adhesives. In particular, it can be suitably used as a filler for high-density mounting resin.
  • FIG. 1 A schematic view of a main part of a reactor used for producing silica. MODE FOR CARRYING OUT THE INVENTION
  • the silica powder of the present invention is produced by burning a silicon compound, and is a so-called “dry method (also referred to as a combustion method)”, which is a method for producing silica powder that grows and agglomerates in and near a flame. ] Is a silica powder obtained by
  • ⁇ 100 is 30% or more and 45% or less.
  • ⁇ 90 is the cumulative 90 mass% diameter of the mass-based particle size distribution obtained by the centrifugal sedimentation method.
  • the viscosity of the product is low, the silica particle size is too large for the gap, resulting in voids when penetrating the gap, causing molding failure. In other words, sufficient narrow gap penetration cannot be obtained.
  • the particle size is less than 300 n , the viscosity of the resin composition increases, which is not preferable. More preferably 330 n More than 400
  • the packing characteristics of silica powder are loose and the bulk density is 250 More than 400 Specified by being 9 or less.
  • the loose bulk density is a packing density when the silica powder is naturally dropped into a cup having a predetermined volume. Loose loose It is not preferable because the viscosity of the resin composition increases.
  • Loose bulk density is 400 If it exceeds 3 , the viscosity of the resin composition will be low, but as a result of the silica particle size being too large in the gap, voids will be generated when the gap penetrates, causing defective molding. In other words, sufficient narrow gap permeability cannot be obtained.
  • loose bulk density 270 9/3 or more, 3501 ⁇ 9 / Rei_1
  • the characteristics that the particle size distribution is appropriately adjusted are the cumulative 50% mass diameter port 50 and the cumulative 90% mass diameter ⁇ 9 . Therefore, it is specified that ⁇ (0 9 ⁇ -0 5 ⁇ )/0 5 ⁇ 100 is 30% or more and 45% or less. If the particle size distribution represented by the above formula exceeds 45%, coarse particles will increase and cause voids. On the other hand, when the particle size distribution is less than 30%, the particle size distribution is narrow and loose, and the value of the bulk density becomes small, so that the viscosity is not lowered, which is not preferable. More preferably, ⁇ (0 9 ⁇ -0 5 ⁇ )/0 50 ⁇ 100 is 33% or more and 42% or less.
  • the silica powder of the present invention has a geometric standard deviation 9 of the mass-based particle size distribution obtained by a centrifugal sedimentation method of 1.25 or more,...! .40 or less is preferable. If the geometric standard deviation 9 is small, it can be said that the particle size distribution is narrow, and thus the amount of coarse particles is reduced. However, the presence of a particle size distribution within a certain range tends to reduce the viscosity when added to the resin.
  • the geometric standard deviation 9 is the cumulative standard particle size distribution obtained by the centrifugal sedimentation method. ⁇ 02020/175 160 5 (: 170?2020/005618
  • the mass-based particle size distribution measured by the centrifugal sedimentation method is based on the hydrophilic dry silica powder.
  • the elemental contents of iron, nickel, chromium, and aluminum be less than 1 because the short-circuit between metal wirings in the semiconductor device can be reduced.
  • the silica powder of the present invention has a sodium ion, potassium ion, and chloride ion content measured by a hot water extraction method, each of which has an ion content of less than 1 is a malfunction of a semiconductor device. It is preferable because it can reduce the corrosion of the metal wiring in the semiconductor device.
  • the particles constituting the silica powder of the present invention are preferably spherical.
  • the shape can be grasped, for example, by observation with an electron microscope.
  • the silica powder of the present invention has a ⁇ .
  • the silica powder of the present invention has a median diameter aperture 5 as described above. Etc., so usually
  • the use of the silica powder of the present invention as described above is not particularly limited.
  • the silica powder of the present invention is, for example, a filler for a semiconductor encapsulating material or a semiconductor mounting adhesive, a filler for a dial attach film or a die attach paste, or a filler for a resin composition such as an insulating film of a semiconductor package substrate. It can be used as a material.
  • the silica powder of the present invention is preferably used as a filler for a resin composition for high density mounting.
  • the resin used in the resin composition include resins known as resins for semiconductor encapsulants and adhesives, and specifically include epoxy resin, acrylic resin, silicone resin and the like.
  • the silica powder of the present invention can be dispersed in a solvent to form a dispersion.
  • the dispersion may be a liquid dispersion, or a solid obtained by solidifying such a dispersion.
  • the solvent used for dispersing the silica powder is not particularly limited as long as it is a solvent in which the silica powder is easily dispersed.
  • a solvent for example, water and organic solvents such as alcohols, ethers and ketones can be used. Examples of the alcohols include methanol, ethanol and isopropanol.
  • the solvent a mixed solvent of water and one or more of the above organic solvents may be used.
  • a dispersing agent such as a surfactant, a thickener, a wetting agent, an antifoaming agent or an acidic or alkaline pH adjusting agent are added. May be. And the pH of dispersion is not limited.
  • the silica powder of the present invention is a raw material for quartz products, abrasive grains of CMP (Chem i cal l Meehan i cal po li sh i ng) abrasive, toner external additive, additive for liquid crystal sealing material, It can also be used as a dental filling material or an ink jet coating agent, etc.
  • the silica powder of the present invention is treated with at least one treatment agent selected from the group consisting of silylating agents, silicone oils, siloxanes, fatty acids, etc., depending on the application as described above. It may be used as a base material or a bulk material containing silica powder. ⁇ 02020/175160 7 ⁇ (: 170?2020/005618
  • the silica powder of the present invention is a method for producing dry silica, which is produced by burning a silicon compound, grows in and near a flame, and is aggregated to obtain silica powder. It can be obtained by installing a PANA with a multi-tube structure in a reactor equipped with a jacket for cooling around it and adjusting the flame combustion conditions and cooling conditions. That is, the combustion condition of the flame is to control so that the oxygen content of the entire flame is large, and the cooling condition is to control so that the cooling rate of the flame is slowed down, so that the efficiency of the present invention is improved. Silica powder can be produced.
  • Fig. 1 shows a schematic diagram of an apparatus for producing the silica powder of the present invention.
  • the circumference of the concentric triple tube structure burner 1 is further covered with a cylindrical outer tube 2.
  • the cylindrical outer tube 2 is regarded as the fourth tube of the burner 1
  • the burner 1 is It can be regarded as having a quadruple pipe structure as a whole.
  • the tubes that make up the concentric triple tube will be referred to as the "center tube,” “first annular tube,” and “second annular tube” in that order from the center to the outer edge.
  • the burner 1 is installed in the reactor 3 in which a flame is burned, and a silicid force is generated from the silicon compound inside the burner 1.
  • the reactor 3 has a jacket (not shown) on the outside so that the cooling medium can flow through it so that forced cooling can be performed.
  • a silicon compound in a gaseous state and oxygen are premixed and introduced into the central tube of the triple tube.
  • an inert gas such as nitrogen may also be mixed and mixed.
  • the silicon compound is a liquid or a solid at room temperature, the silicon compound is heated and vaporized before use.
  • silica is generated by the hydrolysis reaction of a silicon compound, a fuel that generates water vapor when it reacts with oxygen, such as hydrogen or hydrocarbon, is mixed together.
  • an auxiliary flame is formed in the first annular pipe adjacent to the central pipe of the triple pipe. ⁇ 02020/175 160 8 ⁇ (: 17 2020/005618
  • an inert gas such as nitrogen may be mixed and introduced.
  • oxygen may also be mixed and mixed.
  • oxygen is introduced into the second annular pipe adjacent to the outside of the first annular pipe of the triple pipe.
  • This oxygen has two roles: formation of silica by reaction with silicon compounds and formation of auxiliary flame.
  • an inert gas such as nitrogen may be mixed and mixed.
  • a mixed gas of oxygen and an inert gas such as nitrogen is introduced into the space formed by the outer wall of the triple tube and the inner wall of the cylindrical outer cylinder 2. It is preferable to use air as the mixed gas because it is easy.
  • a jacket portion is provided outside the reactor 3, and a refrigerant for removing combustion heat is circulated outside the system. Since the combustion gas mostly contains water vapor, in order to prevent corrosion of the reactor 3 caused by dew condensation of water vapor and subsequent absorption of the corrosive components in the combustion gas into the condensed water. It is a preferable mode that the temperature of the refrigerant before the absorption of the combustion heat (specifically, the temperature of the refrigerant introduced into the jacket) is set to 50 ° or more and 200 ° or less. Considering the ease of implementation, it is even more preferable to use hot water of 50° or more and 90° or less as the refrigerant.
  • the difference between the temperature when the refrigerant is introduced into the jacket (inlet temperature) and the temperature of the refrigerant discharged from the jacket (outlet temperature) is calculated. From the amount of the generated refrigerant, the amount of heat absorbed by the refrigerant, that is, the amount of heat removed by the refrigerant from the reactor 3 can be grasped.
  • the silica powder of the present invention it is particularly important to adjust the flame combustion condition and the cooling condition, as described below, and it is preferable to satisfy the following conditions.
  • the silicon compound which is a raw material of the silica powder those which are gas, liquid or solid at room temperature are used without particular limitation.
  • cyclic siloxanes such as octamethylcyclotetrasiloxane, chain siloxanes such as hexamethyldisiloxane, alkoxysilanes such as tetramethoxysilane, and chlorosilanes such as tetrachlorosilane can be used as silicon compounds.
  • a silicon compound containing no chlorine in its molecular formula such as the above-mentioned siloxane and alkoxysilane, because chloride ions contained in the obtained silica powder can be significantly reduced.
  • the silicon compound those having a small content of various metal impurities can be easily obtained. Therefore, by using such a silicon compound having a low content of metal impurities as a raw material, the amount of metal impurities contained in the produced silica powder can be reduced. Further, the amount of metal impurities contained in the produced silica powder can be further reduced by further purifying the arsenic compound by distillation or the like and using it as a raw material.
  • the recovery of the silica powder of the present invention is not particularly limited, but it is performed by separating it from the combustion gas by filter separation with a sintered metal filter, ceramic filter, back filter or the like or centrifugal separation with a cyclone or the like. .. ⁇ 02020/175160 10 (: 170?2020/005618
  • the number of concentric triple tubes used is one, but it is also possible to use a multiple tube system in which a plurality of concentric triple tubes are arranged, as shown in Examples described later.
  • the multiple tube method it is important to obtain the silica powder of the present invention in terms of homogeneity by making the concentric triple tubes have the same structure and the same size and making the distance between the nearest centers of the concentric triple tubes the same. Is preferred.
  • the cylindrical outer cylinder 2 may be installed so as to collectively cover a plurality of concentric triple tube manifolds.
  • silica powder produced by burning a silicon compound liquid silica that is melted in a flame is spheroidized due to surface tension, and thus solid silica powder particles produced are Becomes a spherical shape close to a true sphere.
  • the true density is theoretical density of silica 2.2. Matches approximately 3 Therefore, it mentioned above, silica powder produced by the production method of the silica powder of the present invention also, the shape is spherical, the true density is approximately 2.2 9 / ⁇ 3.
  • the present invention is a silica powder characterized by satisfying all of the following conditions (1) to (3).
  • ⁇ 100 is 30% or more and 45% or less.
  • ⁇ 90 is the cumulative 90 mass% diameter of the mass-based particle size distribution obtained by the centrifugal sedimentation method.
  • the geometric standard deviation 9 of the mass-based particle size distribution obtained by the centrifugal sedimentation method is 1.25 or more, and! It is preferably in the range of .40 or less.
  • each element is less than 10!. ⁇ 02020/175160 11 ⁇ (: 170?2020/005618
  • the ion content of each of sodium ion, potassium ion, and chloride ion which is measured by a hot water extraction method, is preferably less than 1.
  • the present invention also provides a resin composition in which the silica powder of the present invention is filled in a resin, and a dispersion in which the silica powder of the present invention is dispersed in a solvent.
  • a resin composition in which the silica powder of the present invention is filled in a resin
  • a dispersion in which the silica powder of the present invention is dispersed in a solvent.
  • Shibata Rikagaku's specific surface area measuring device 3 Nitrogen adsorption using 1 000, using the one-point method for the use of nitrogen. Was measured.
  • a silica suspension having a silica concentration of 1.51% obtained by the above method was added to 0? 3 ⁇ 3 1
  • the mass-standard particle size distribution was measured using a disk centrifugal type particle size distribution measuring instrument port I 2 ⁇ 0. Incidentally measurement conditions, the rotation number 9 0 0 0 "01, and a silica true density of 2. 2 9 / Rei_rei_1 3.
  • the loosened bulk density and the firm bulk density were measured using a powder characteristic evaluation device, Powder Tester D1 X, manufactured by Hosokawa Micron Corporation.
  • the "loose bulk density” in the present invention refers to the bulk density in a loosely packed state, in which a sample is placed in a cylindrical container (material: stainless steel) with a volume of 100! It is measured by feeding it uniformly from the top, scraping the top surface, and weighing.
  • hard bulk density refers to the bulk density when tapping is added to this to make a dense packing.
  • tapping is an operation in which the container filled with the sample is repeatedly dropped from a certain height to give a light impact to the bottom, and the sample is densely packed.
  • the upper surface is cut off and weighed, and then a cap (equipment of Hosokawa Micron's powder-tester below) is put on this container, and the powder is added to this upper edge.
  • tapping is performed 180 times. After the completion, remove the cap, scrape off the powder on the upper surface of the container, and weigh it. The bulk density in this state is taken as the bulk density.
  • the dried silica powder 29 was precisely weighed and transferred to a platinum dish, and concentrated nitric acid 10 !_ and hydrofluoric acid 100 1 1_ were added in this order. This was placed on a hot plate set at 200° and heated to dry the contents. After cooling to room temperature, concentrated nitric acid 21_ was further added, and the solution was placed on a hot plate set at 200°C and heated to dissolve. After cooling to room temperature, the solution, which is the content of the platinum dish, is poured into a mes- ⁇ 02020/175160 13 ⁇ (: 170?2020/005618
  • the sample was transferred to Sco, diluted with ultrapure water and adjusted to the marked line.
  • the element contents of iron, nickel, chromium, and aluminum were measured by an optical emission spectrometer (manufactured by Shimadzu Corporation, model number: 0_3_100V).
  • Silica powder 59 was added to ultrapure water 509, and the mixture was heated at 120 ° for 24 hours using a fluororesin decomposition vessel to perform hot water extraction of ions. For ultrapure water and silica powder, ⁇ . Weighed to the unit. Then, the solid content was separated using a centrifuge to obtain a measurement sample. The same operation was performed using only ultrapure water, and this was used as a blank sample for measurement.
  • the silica powder 0.0 3 9 were weighed, after addition of ethanol 3_Rei ⁇ , using an ultrasonic cleaner, and dispersed for 5 minutes to obtain ethanol suspension. After dropping this suspension on a silicon wafer, it was dried and the field emission scanning electron microscope 3-5500 manufactured by Hitachi High-Technologies Corporation was used to observe the silica at 3 times IV! I confirmed.
  • is the distance between the center of the central tube and the center of another central tube (the length of the side of the equilateral triangle), is the inner diameter of the central tube, and the mouth is the center of the central tube and the inner wall of the reactor. Is the shortest distance between and. The larger the mouth /, the greater the distance between the flame and the inner wall of the reactor. ⁇ 02020/175160 15 ⁇ (: 170?2020/005618
  • octamethylcyclotetrasiloxane was burned as described below to produce silica powder.
  • the octamethylcyclotetrasiloxane will be simply referred to as a raw material.
  • the mixture was introduced into the central tube of the concentric triple tube at 200°.
  • hydrogen and nitrogen were mixed and introduced into the first annular pipe, which is the outermost tube adjacent to the central tube of the concentric triple tube.
  • oxygen was introduced into the second annular pipe, which is the outermost peripheral pipe adjacent to the first annular pipe of the concentric triple tube.
  • air was introduced into the space consisting of the outer wall of the second annular pipe of the concentric triple tube and the inner wall of the outer cylinder surrounding the concentric triple tube.
  • Table 1 shows the production conditions and the characteristics of the obtained silica powder. Also, 1 ⁇ 1
  • Table 1 shows the physical properties of the obtained silica powder. In each of the examples, the content of 6, 1 ⁇ ] ⁇ ”, eight, N 3 +, [ ⁇ + and ⁇ _- was all less than 1.
  • Table 2 shows the physical properties of the obtained silica powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

半導体封止剤等の樹脂充填剤として用いた場合に、隙間浸透性に優れ、かつ粘度の低い樹脂組成物を得ることができるシリカ粉末を提供する。(1)遠心沈降法により得られる質量基準粒度分布の累積50%質量径D50が300nm以上、500nm以下(好ましくは330nm以上、400nm以下)であり、(2)ゆるめ嵩密度が250kg/m以上、400kg/m以下(好ましくは270kg/m以上、350kg/m以下)であり、(3){(D90-D50)/D50}×100が30%以上かつ45%以下(好ましくは33%以上かつ42%以下)であるシリカ粉末。珪素化合物を燃焼させるシリカの製造方法において、3重管以上の同心円多重管構造を有するバーナを、その周囲に冷却用のジャケット部を設けた反応器に設置し、火炎の燃焼条件と冷却条件を調整することで製造することが可能である。

Description

\¥02020/175160 1 卩(:17 2020/005618
明 細 書
発明の名称 : シリカ粉末、 樹脂組成物および分散体
技術分野
[0001 ] 本発明は、 新規なシリカ粉末、 樹脂組成物および分散体に関する。 詳しく は、 粒子径と粒度分布とが制御され、 充填性に優れたシリカ粉末に関する。 本発明は、 特に、 半導体封止剤等に使用する樹脂組成物に添加する充填剤と して好適に使用できる新規なシリカ粉末を提供する。
背景技術
[0002] 近年、 高集積、 高密度化を目的とした半導体デバイスの小型化、 薄型化に 伴い、 エポキシ樹脂組成物に代表される半導体封止剤や半導体実装接着剤に 添加される充填剤の粒子径が小さくなっていく傾向がある。 従来、 当該充填 剤として、 巳巳丁比表面積が
Figure imgf000003_0001
以下、 1次粒子 径換算で、 粒子径が 1 0 0 n 以上かつ 6 0 0 n 以下程度の非晶質シリカ 粉末が用いられてきた。
[0003] しかしながら、 前記巳巳丁比表面積を有する既存の非晶質シリカ粉末は、 一般に凝集性が強いため、 分散性が悪く、 その結果、 分散粒子径が大きく、 さらに分散時の粒度分布が広い。 斯様な非晶質シリカ粉末を用いた樹脂組成 物は、 充填剤由来の粗粒が存在し、 成型時に隙間へ樹脂が十分に浸透しない という浸透不良を生じることがわかってきた。
[0004] 前記隙間への浸透不良を解決するために、 巳日丁比表面積が従来と同じ 5 以上かつ 2 0 2/ 9以下の範囲にありながら、 凝集性が著しく弱く 、 分散性に優れており、 分散粒子径が小さくて、 なおかつ分散時の粒度分布 が狭い親水性乾式シリカ粉末が提案されている (特許文献 1) 。 また、 特許 文献 2に記載のシリカ粉末も提案されている。
先行技術文献
特許文献
[0005] 特許文献 1 : 日本国公開特許公報 「特開 2 0 1 4 - 1 5 2 0 4 8号公報」 \¥02020/175160 2 卩(:170?2020/005618
特許文献 2 : 日本国公開特許公報 「特開 2 0 1 7 - 1 1 9 6 2 1号公報」 発明の概要
発明が解決しようとする課題
[0006] しかしながら、 特許文献 1 に記載のシリカ粉末では、 隙間部への樹脂の浸 透性は向上するものの、 分散粒子径が小さいため、 樹脂組成物への増粘効果 を誘起し、 これを充填した樹脂組成物の粘度が高くなる課題が残されていた
[0007] 一方、 特許文献 2では、 巳巳丁比表面積が前記 5
Figure imgf000004_0001
以上かつ 2 0 2
/ 9以下であるにもかかわらず、 分散時に粘度を低く維持する粒子径を持ち 、 隙間浸透を阻害する粗大粒子を含まない特異な分散性を有するシリカ粉末 が提案されている。 この特異な分散性により、 これを充填剤として添加した 樹脂組成物は、 粘度特性と隙間浸透性の両者で優れた性能を発揮することが 示されたが、 低ギヤップ化へ対応するために粘度特性と隙間浸透性の更なる 性能向上が望まれている。
[0008] したがって、 本発明の目的は、 粒子径と粒度分布とが制御され、 充填性に 優れたシリカ粉末を提供することにある。 さらに詳しくは、 樹脂充填剤とし て用いた場合に、 隙間浸透性に優れ、 かつ粘度の低い樹脂組成物を得ること ができるシリカ粉末を提供することにある。
課題を解決するための手段
[0009] 本発明者等は、 前記課題を解決すべく、 火炎中で珪素化合物を燃焼させて 得られるシリカにおいてバーナ、 バーナを設置する反応器、 さらに火炎条件 等を変え、 火炎中、 および火炎近傍におけるシリカ粒子の成長や粒子の凝集 等について、 鋭意検討を行った。 その結果、 火炎条件を調整することにより 、 前記目的を達成した充填性に優れるシリカ粉末が得られることを見出し、 本発明を完成するに至った。
[0010] 即ち、 本発明は、 以下の条件 (1) 〜 (3) を全て満足することを特徴と するシリカ粉末である。
[001 1 ] (1) 遠心沈降法により得られる質量基準粒度分布の累積 5 0 %質量径口5 \¥02020/175160 3 卩(:170?2020/005618
〇が 300 〇!以上かつ 5001^ 以下である。
[0012] (2) ゆるめ嵩密度が
Figure imgf000005_0001
以上かつ
Figure imgf000005_0002
以下であ る。
[0013] (3) { (09〇-05〇) /05。} 1 00が 30%以上かつ 45%以下であ る。 ここで〇90は、 遠心沈降法により得られる質量基準粒度分布の累積 90 質量%径である。
発明の効果
[0014] 本発明のシリカ粉末は、 粒子径と粒度分布とを制御し、 充填性を高めてい るため、 当該シリカ粉末を添加した樹脂組成物は優れた粘度特性と優れた隙 間浸透性とを両立できる。 したがって、 半導体封止剤や半導体実装接着剤の 充填剤として好適である。 特に、 高密度実装用樹脂の充填剤として好適に用 いることができる。
図面の簡単な説明
[0015] [図 1]シリカを製造する際に使用する反応装置要部の模式図。 発明を実施するための形態
[0016] 本発明のシリカ粉末は、 珪素化合物を燃焼させることで生成し、 火炎中お よび火炎近傍において成長、 凝集させるシリカ粉末の製造方法、 所謂、 「乾 式法 (燃焼法などともいう) 」 により得られるシリカ粉末であり、
(1 ) 遠心沈降法により得られる質量基準粒度分布の累積 50%質量径口5
Figure imgf000005_0003
以下である。
[0017] (2) ゆるめ嵩密度が
Figure imgf000005_0004
以上かつ
Figure imgf000005_0005
以下であ る。
[0018] (3) { (09〇-05〇) /05。} 1 00が 30%以上かつ 45%以下であ る。 ここで〇90は、 遠心沈降法により得られる質量基準粒度分布の累積 90 質量%径である。
という特性を有する。
[0019] 遠心沈降法により得られる質量基準粒度分布の累積 50%質量径口50 (以 下、 「メジアン径050」 ともいう。 ) が 500 n を超える場合、 樹脂組成 \¥02020/175160 4 卩(:170?2020/005618
物の粘度は低いものの、 隙間に対してシリカ粒子径が大きすぎる結果、 隙間 浸透時にボイ ドが発生し、 成型不良の原因となる。 つまり、 十分な狭ギャッ プ浸透性が得られない。 一方粒子径が 300 n 未満の場合、 樹脂組成物の 粘度が高くなるため好ましくない。 より好ましくは 330 n
Figure imgf000006_0001
以上、 400
Figure imgf000006_0002
[0020] シリカ粉末の充填特性はゆるめ嵩密度が 250
Figure imgf000006_0004
以上、 400
Figure imgf000006_0003
9 以下であることで特定される。 ここでゆるめ嵩密度は、 定められた容量 のカップへシリカ粉末を自然落下させたときの充填密度である。 ゆるめ嵩密
Figure imgf000006_0005
樹脂組成物の粘度が高くな るため好ましくない。
[0021] ゆるめ嵩密度が 400
Figure imgf000006_0006
3を超える場合には樹脂組成物の粘度は低い ものの、 隙間に対してシリカ粒子径が大きすぎる結果、 隙間浸透時にボイ ド が発生し、 成型不良の原因となる。 つまり、 十分な狭ギャップ浸透性が得ら れない。 好ましくは、 ゆるめ嵩密度が 270 9/ 3以上、 3501< 9/〇1
3以下である。
[0022] 粒度分布が適度に調節されている特性は、 累積 50%質量径口50と累積 9 〇%質量径〇9。との関係で、 { (09〇-05〇) /05〇} 1 00が 30%以上 かつ 45%以下であることで特定される。 前記式で示される粒度分布が 45 %を超える場合、 粗粒が多くなりボイ ドの原因となる。 一方粒度分布が 30 %未満の場合、 粒度分布が狭くゆるめ嵩密度の値が小さくなり低粘度化しな いため好ましくない。 より好ましくは、 { (09〇-05〇) /050} 1 00が 33 %以上かつ 42 %以下である。
[0023] さらに、 本発明のシリカ粉末は、 遠心沈降法により得られる質量基準粒度 分布の幾何標準偏差 9が 1. 25以上、 ·! . 40以下の範囲であることが好 ましい。 前記幾何標準偏差 9が小さいということは、 粒度分布が狭いといえ 、 よって粗粒の量が低減されているといえる。 しかしながら、 ある程度の範 囲の粒度分布が存在した方が、 樹脂に添加した際の粘度を低減しやすい。
[0024] なお、 幾何標準偏差 9は遠心沈降法により得られる質量基準粒度分布を累 \¥02020/175160 5 卩(:170?2020/005618
積頻度 1 0 1 %以上かつ 9 0 1 %以下の範囲で対数正規分布フィッティ ング (最小 2乗法) し、 そのフィッティングから算出される幾何標準偏差で ある。
[0025] 前記遠心沈降法による質量基準粒度分布は、 当該親水性乾式シリカ粉末を
1 . 5 1 %濃度で出力 2〇 、 処理時間 1 5分で水中分散させて得られる 分散粒子の質量基準粒度分布である。
[0026] 本発明のシリカ粉末は、 鉄、 ニッケル、 クロム、 アルミニウム、 各々の元 素含有量が 1 未満であることが、 半導体デバイス内の金属配線間の短 絡を低減できるために好ましい。
[0027] また、 本発明のシリカ粉末は、 熱水抽出法によって測定されるナトリウム イオン、 カリウムイオン、 塩化物イオン、 各々のイオン含有量が 1 未 満であることが、 半導体デバイスの動作不良、 半導体デバイス内の金属配線 の腐食を低減できるために好ましい。
[0028] また本発明のシリカ粉末を構成する粒子は球状であることが好ましい。 当 該形状は例えば、 電子顕微鏡観察により把握できる。
[0029] 本発明のシリカ粉末は、 その〇.
Figure imgf000007_0001
の光に対する吸光度て 7 0 0が〇. 6 0以下であることが好ましい。 吸光度て7 0 。の値が小さいということは、 分散性が良好であることを示し、 したがって分 散粒子径が小さく、 更に分散時の粒度分布が狭く粗粒の少ないことを示す。 そのため、 いっそう浸透性が良好となる。
[0030] 本発明のシリカ粉末は、 前記のようなメジアン径口5。等をもつため、 通常
Figure imgf000007_0002
111 2 / 9以上かつ 1 4 01 2/ 9以下程度である。
[0031 ] 前記のような本発明のシリカ粉末の用途は特に限定されない。 本発明のシ リカ粉末は、 例えば、 半導体封止材もしくは半導体実装接着剤の充填材、 ダ イアタッチフィルムもしくはダイアタッチべーストの充填材、 または半導体 パッケージ基板の絶縁膜等の樹脂組成物の充填材として使用できる。 特に、 本発明のシリカ粉末は、 高密度実装用樹脂組成物の充填材として好適に用い ることができる。 当該樹脂組成物に使用される樹脂としては、 半導体封止材 や接着剤用の樹脂として公知の樹脂が挙げられるが、 具体的にはエポキシ樹 月旨、 アクリル樹脂、 シリコーン樹脂等が挙げられる。
[0032] 本発明のシリカ粉末は、 これを溶媒中に分散させて分散体とすることがで きる。 分散体は、 液体状の分散液であってもよく、 このような分散液が固化 等した固体状のものであってもよい。 シリカ粉末を分散させるために使用さ れる溶媒は、 シリカ粉末が分散し易い溶媒であれば特に制限はない。 かかる 溶媒としては、 例えば、 水ならびにアルコール類、 エーテル類およびケトン 類等の有機溶媒が利用できる。 前記アルコール類としては、 例えば、 メタノ —ル、 エタノールおよびイソプロパノール等が挙げられる。 溶媒として、 水 と、 前記有機溶媒のいずれか 1つ以上との混合溶媒を使用してもよい。 なお 、 シリカ粒子の安定性および分散性を向上させるために、 界面活性剤等の分 散剤、 増粘剤、 湿潤剤、 消泡剤または酸性もしくはアルカリ性の p H調製剤 等の各種添加剤を加えてもよい。 また分散体の p Hは制限されない。
[0033] このような分散体を樹脂に混合する場合には、 乾燥した状態のシリカ粉末 を樹脂に混合する場合よりも、 シリカ粉末の分散状態が良好な樹脂組成物を 得ることができる。 粒子の分散状態が良好であるということは、 樹脂組成物 中に凝集粒子が少なくなることを意味する。 そのため、 本発明のシリカ粉末 を充填剤として含む樹脂組成物の粘度特性と隙間浸透性との、 両者の性能を さらに向上させることができる。
[0034] さらに本発明のシリカ粉末は、 石英製品の原料、 C M P (Chem i ca l Meehan i ca l Po l i sh i ng) 研磨剤の砥粒、 トナー外添剤、 液晶シール材の添加剤、 歯 科充填材またはインクジエツ トコート剤等として使用することも可能である
[0035] さらにまた、 本発明のシリカ粉末は、 上記したような用途に応じて、 シリ ル化剤、 シリコーンオイル、 シロキサン類、 脂肪酸等からなる群から少なく とも 1種類選ばれる処理剤によって処理されてなる、 シリカ粉末を含む基材 または原体として使用されてもよい。 \¥02020/175160 7 卩(:170?2020/005618
[0036] 以下、 本発明のシリカ粉末の製造方法について説明する。
[0037] 本発明のシリカ粉末は、 珪素化合物を燃焼させることで生成し、 火炎中お よび火炎近傍において成長、 凝集せしめてシリカ粉末を得る乾式シリカの製 造方法において、 3重管以上の同心円多重管構造を有するパーナを、 その周 囲に冷却用のジャケッ ト部を設けた反応器に設置し、 火炎の燃焼条件と冷却 条件を調整することで得られる。 即ち、 火炎の燃焼条件としては火炎全体の 酸素量が多くなるように制御することであり、 冷却条件としては、 火炎の冷 却速度が遅くなるように制御することにより、 効率的に本発明のシリカ粉末 を製造することができる。
[0038] 以下、 火炎の燃焼条件や冷却条件の制御方法を含め、 具体例を挙げて説明 する。
[0039] 本発明のシリカ粉末を製造する装置の模式図を図 1 に示す。 図 1記載の装 置では、 同心円 3重管構造のバーナ 1の周囲をさらに円筒型外筒 2で覆って おり、 円筒型外筒 2をバーナ 1の 4番目の管とみなせば、 バーナ 1は全体と して 4重管構造を有するともみなせる。 なお以下では、 同心円 3重管を構成 する管を、 中心部から外縁に向かって順に、 「中心管」 、 「第 1環状管」 お よび 「第 2環状管」 と称す。
[0040] バーナ 1は、 内部で火炎が燃焼し、 よってその内部で珪素化合物からシリ 力が生じることになる反応器 3に設置されている。 反応器 3は強制冷却が可 能なように、 その外側にジャケッ ト部 (図示しない) を設け、 そこへ冷媒を 流すことが可能な構造とされている。
[0041 ] 前記装置においては、 前記 3重管の中心管に気体状態にある珪素化合物と 酸素を予め混合して導入する。 この際、 窒素等の不活性ガスも合わせて混合 してもよい。 なお、 珪素化合物が常温で液体あるいは固体の場合、 当該珪素 化合物を加熱することで気化して使用する。 また、 珪素化合物の加水分解反 応でシリカを生成させる場合は、 酸素と反応すると水蒸気を生成する燃料、 例えば水素や炭化水素等を合わせて混合する。
[0042] また、 前記 3重管の中心管に隣接する第 1環状管には、 補助火炎形成のた \¥02020/175160 8 卩(:17 2020/005618
めの燃料、 例えば水素や炭化水素を導入する。 この際、 窒素等の不活性ガス を合わせて混合して導入してよい。 さらに、 酸素も合わせて混合してもよい
[0043] さらに、 前記 3重管の第 1環状管の外に隣接する第 2環状管には、 酸素を 導入する。 この酸素は珪素化合物との反応によるシリカ生成ならびに補助火 炎形成との 2つの役割がある。 この際、 窒素等の不活性ガスを合わせて混合 してもよい。
[0044] さらに、 前記 3重管外壁と円筒型外筒 2の内壁が構成する空間には、 酸素 と窒素等の不活性ガスの混合ガスを導入する。 当該混合ガスとして空気を用 いるのは、 容易であるため、 好適な様態である。
[0045] 前記の通り、 反応器 3の外側はジャケッ ト部を設け、 燃焼熱を系外に除去 するための冷媒を流通させる。 燃焼ガスは水蒸気を含有する場合が大半であ るため、 水蒸気の結露、 それに続く燃焼ガス中の腐食成分が結露した水に吸 収されることで引き起こされる反応器 3の腐食を防止するために、 燃焼熱吸 収前の冷媒温度 (具体的には、 ジャケッ トへの冷媒導入温度) を 5 0 °〇以上 かつ 2 0 0 °〇以下にするのが、 好適な様態である。 実施の容易性を考えると 、 冷媒として 5 0 °〇以上かつ 9 0 °〇以下の温水を利用することが、 さらに好 適な様態である。 なお、 ジャケッ ト部に冷媒を導入する際の温度 (入口温度 ) とジャケッ ト部から排出された冷媒の温度 (出口温度) との差をとり、 さ らに当該温度差、 冷媒の比熱および流した冷媒の量から、 当該冷媒が吸収し た熱量、 即ち、 反応器 3から冷媒が除去した熱量が把握できる。
[0046] 本発明のシリカ粉末を得るには、 以下に説明するように、 火炎の燃焼条件 と冷却条件を調整することが特に重要であり、 以下の条件を満足することが 好ましい。
[0047] (八) 〇. 5
Figure imgf000010_0001
した酸素量 ( 〇 I / II) / { 1 6 X中心管に 導入した原料ガス量 ( 〇 丨 / ) }
Figure imgf000010_0002
\¥02020/175160 9 卩(:170?2020/005618
1^ 3 :第 3環状管導入ガス量 (1X1 0^/ 11)
1\/1 :生成するシリカ質量 (1< 9 / 11)
さらに、
Figure imgf000011_0001
〇 01匕 I 3が 0 . 5未満の場合は火炎全体の酸素量が少ないた め反応が完全に進行しないため粒子の成長時間が短くなる。 結果として粒子 径が数 1 0 n の微小粒子が発生し、 メジアン径口 5 0が低下する、 およびゆ るめ嵩密度の値が小さくなる。
[0048] 前記 1^(3 3/!^ ^が 1 . 0を超える場合には火炎が急速に冷却される結果、 粒子径が数 1 0〇 の微小粒子が発生し、 また溶融状態のシリカ融液の粘度 が高い領域が増え形状転換が困難になる (生じた微小粒子同士が成長し難く 小粒径のままである傾向が強くなる) 。 そのため、 メジアン径口5 0が 3 0 0 01を下回ってしまう。
[0049] シリカ粉末の原料である珪素化合物としては、 常温で気体、 液体、 固体で あるものが特に制限なく使用される。 例えば、 オクタメチルシクロテトラシ ロキサン等の環状シロキサン、 ヘキサメチルジシロキサン等の鎖状シロキサ ン、 テトラメ トキシシラン等のアルコキシシラン、 テトラクロロシラン等の クロロシラン類を珪素化合物して使用することができる。
[0050] 前記シロキサンおよびアルコキシシランの如く分子式中に塩素を含まない 珪素化合物を使用することにより、 得られるシリカ粉末に含有される塩化物 イオンを著しく低減できるため好ましい。
[0051 ] また、 前記珪素化合物は各種金属不純物の含有量の少ないものが容易に入 手できる。 そのため、 このような金属不純物の含有量の少ない珪素化合物を 原料として使用することにより、 生成されるシリカ粉末に含有される金属不 純物の量を低減できる。 また、 挂素化合物を蒸留等によって更に精製し、 原 料として使用することにより、 生成されるシリカ粉末に含有される金属不純 物の量を更に低減することもできる。
[0052] 本発明のシリカ粉末の回収は特に限定されないが、 焼結金属フィルター、 セラミックフィルター、 バックフィルター等によるフィルター分離やサイク ロン等による遠心分離で燃焼ガスと分離させて回収することでなされる。 \¥02020/175160 10 卩(:170?2020/005618
[0053] なお前記説明では、 用いる同心円 3重管は 1本単独の場合であるが、 後述 する実施例に示すように複数の同心円 3重管を配置した多本式で実施しても よい。 多本式の場合、 各同心円 3重管を同一構造、 同一寸法とし、 同心円 3 重管の最近接中心間距離を同一とすることが、 本発明のシリカ粉末を得るに あたって均一性の点で好ましい。 また、 円筒型外筒 2は、 複数の同心円 3重 管パーナをまとめて被うように設置すればよい。
[0054] なお周知の如く珪素化合物を燃焼させてシリカ粉末を製造する方法では、 炎中で溶融している液体状のシリカが表面張力により球状化するため、 製造 される固体のシリカ粉末の粒子も真球に近い球状となる。 また前記方法で製 造されるシリカ粉末の粒子は、 内部気泡を実質的に含まないので、 真密度が シリカの理論密度 2. 2
Figure imgf000012_0001
3と略一致する。 したがって、 上述した、 本 発明のシリカ粉末の製造方法で製造されるシリカ粉末も、 形状が球状となり 、 真密度が略 2. 29/〇 3となる。
[0055] 〔まとめ〕
本発明は、 以下の条件 (1 ) 〜 (3) を全て満足することを特徴とするシ リカ粉末である。
[0056] (1 ) 遠心沈降法により得られる質量基準粒度分布の累積 50%質量径口5
Figure imgf000012_0002
以下である。
[0057] (2) ゆるめ嵩密度が
Figure imgf000012_0003
以上、
Figure imgf000012_0004
[0058] (3) { (09〇-05〇) /05。} 1 00が 30%以上かつ 45%以下であ る。 ここで〇90は、 遠心沈降法により得られる質量基準粒度分布の累積 90 質量%径である。
[0059] 前記本発明のシリカ粉末において、 遠心沈降法により得られる質量基準粒 度分布の幾何標準偏差 9が 1. 25以上、 ·! . 40以下の範囲であることが 好ましい。
[0060] 前記本発明のシリカ粉末において、 鉄、 ニッケル、 クロム、 アルミニウム
、 各々の元素含有量が 1 〇!未満であることが好ましい。 \¥02020/175160 11 卩(:170?2020/005618
[0061] 前記本発明のシリカ粉末において、 熱水抽出法によって測定されるナトリ ウムイオン、 カリウムイオン、 塩化物イオン、 各々のイオン含有量が 1 未満であることが好ましい。
[0062] また、 本発明は、 前記本発明のシリカ粉末が樹脂に充填された樹脂組成物 、 および前記本発明のシリカ粉末が溶媒中に分散された分散体も提供する。 実施例
[0063] 本発明を具体的に説明するために実施例および比較例を示すが、 本発明は これらの実施例に限定されるものではない。
[0064] なお、 以下の実施例および比較例における各種の物性測定は以下の方法に よる。
[0065] (1 ) 巳巳丁比表面積
柴田理化学社製比表面積測定装置 3
Figure imgf000013_0001
1 000を用い、 窒素吸着巳巳丁 1点法により巳巳丁比表面積 3
Figure imgf000013_0002
を測定した。
[0066] (2) 吸光度て700
シリカ粉末〇. 39と蒸留水20 丨 をガラス製のサンプル管瓶 (アズワ に入れ、 超音波細胞破砕器 (巳
Figure imgf000013_0003
6 1 2500、 プローブ: 1
. 4インチ) のプローブチップ水面下 1 5
Figure imgf000013_0004
になるように試料入りサンプ ル管瓶を設置し、 出力 20\^/、 分散時間 1 5分の条件でシリカ粉末を蒸留水 に分散させて、 シリカ濃度 1. 5 I %水縣濁液を調製した。 続いて、 この 水縣濁液をさらに蒸留水を加えて希釈し、 濃度を 20分の 1 にすることで、 シリカを〇. 075 1 %濃度で含有する水縣濁液を得た。
[0067] 得られたシリカ濃度〇.
Figure imgf000013_0005
の光に 対する吸光度 ^ 7〇〇を日本分光社製分光光度計 V— 630を用いて測定した。 なお、 測定に際して、 前記水縣濁液の波長 460 n の光に対する吸光度て4 60も合わせて測定し、 丨 ^1 (て 700 /て460) /丨 1'"1 (460/700) で定 義した分散性指数 1·!も求めた。
[0068] (3) 遠心沈降法による質量基準粒度分布 \¥0 2020/175160 12 卩(:170? 2020 /005618
前記方法で得た、 シリカ濃度 1 . 5 1 %水縣濁液を、 0 ? 3 ^ 3 1
Figure imgf000014_0001
I 1^〇 . 製のディスク遠心式粒度分布測定装置口 0 2 4 0 0 0を用いて、 質量基準粒度分布を測定した。 なお測定条件は、 回転数 9 0 0 0 「 01、 シリカ真密度 2 . 2 9 /〇〇1 3とした。
[0069] 得られた質量基準粒度分布から累積 5 0 %質量径口5。と累積 9 0質量%径 〇9 0を算出した。 また、 得られた質量基準粒度分布に対し、 累積頻度 1 0質 量%以上かつ 9 0質量%以下の範囲で対数正規分布フィッティングし、 その フィッティングから幾何標準偏差 9を算出した。
[0070] ( 4 ) 嵩密度
ゆるめ嵩密度およびかため嵩密度は、 ホソカワミクロン株式会社製の粉体 特性評価装置パウダーテスター 丁一X型を使用して測定した。 本発明にお ける 「ゆるめ嵩密度」 とは、 疎充填の状態の嵩密度をいい、 容積 1 0 0〇! !_ の円筒容器 (材質:ステンレス) へ試料を円筒容器の 1 8〇 01上方から均一 に供給し、 上面をすり切って秤量することによって測定される。
[0071 ] —方、 「かため嵩密度」 とは、 これにタッピングを加えて密充填にした場 合の嵩密度をいう。 ここで、 タッピングとは、 試料を充填した容器を一定高 さから繰り返し落下させて底部に軽い衝撃を与え、 試料を密充填にする操作 をいう。 具体的には、 ゆるめ嵩密度を測定するために上面をすり切って秤量 した後、 さらにこの容器の上にキャップ (下記ホソカワミクロン社製パウダ —テスターの備品) をはめ、 この上縁まで粉体を加えてタッピングを 1 8 0 回行う。 終了後、 キャップを外して容器の上面で粉体をすり切って秤量し、 この状態の嵩密度をかため嵩密度とする。
[0072] ( 5 ) 鉄、 ニッケル、 クロム、 アルミニウムの元素含有量
乾燥後のシリカ粉末 2 9を精秤して白金皿に移し、 濃硝酸 1 0 !_および フッ酸 1 0〇1 1_をこの順で加えた。 これを 2 0 0 °〇に設定したホッ トプレー 卜上に乗せて加熱して内容物を乾固した。 室温まで冷却後、 さらに濃硝酸 2 1_を加え、 2 0 0 °〇に設定したホッ トプレート上に乗せて加熱して溶解し た。 室温まで冷却後、 白金皿の内容物である溶液を容量 5 0 1_のメスフラ \¥02020/175160 13 卩(:170?2020/005618
スコに移し、 超純水で希釈して標線に合わせた。 これを試料として、 丨 〇 発光分析装置 ((株)島津製作所製、 型番丨 0 3 _ 1 0 0 0 I V) により、 鉄、 ニッケル、 クロム、 アルミニウムの元素含有量を測定した。
[0073] (6) 熱水抽出法によるイオン含有量
超純水 5 0 9にシリカ粉末 5 9を添加し、 フッ素樹脂製の分解容器を用い て 1 2 0 °〇で 2 4時間加熱し、 イオンの熱水抽出を行った。 なお、 超純水お よびシリカ粉末は〇.
Figure imgf000015_0001
単位まで秤量した。 続いて、 遠心分離器を用い て固形分を分離し、 測定サンプルを得た。 なお、 超純水のみで同じ操作を行 い、 これを測定に際してのブランク試料とした。
[0074] 当該測定サンプル、 およびブランク試料に含まれるナトリウムイオン、 力 リウムイオン、 塩化物イオンの濃度を、 日本ダイオネクス社製イオンクロマ 下記式を用いて算
Figure imgf000015_0002
〇5丨 。3 :シリカ中のイオン濃度 ( )
8 111 I 6 :測定試料中のイオン濃度 ( )
〇巳| 3 !1 |< : ブフンク試料中のイオン濃度 ( )
IV! ^ :超純水水量 ( 9)
IV! | | 3 :シリカ重量 ( 9)
なお、 各イオンの
Figure imgf000015_0003
はすべて〇 であった。
[0076] (7) 電子顕微鏡観察
シリカ粉末を〇. 〇 3 9秤取し、 3〇 丨 のエタノールに添加した後、 超 音波洗浄器を用いて、 5分間分散させてエタノール縣濁液を得た。 この縣濁 液をシリコンウェハ上に滴下した後、 乾燥させて、 日立ハイテクノロジーズ 製電界放射型走査電子顕微鏡 3— 5 5 0 0を用いて、 シリカの 3巳 IV!観察を 行い粒子径形状の確認を行った。
[0077] (8) 製造条件
基本構造は図 1 に示した通りの装置で行った。 ただし、 実験例によりパー \¥0 2020/175160 14 卩(:170? 2020 /005618
ナの数が 3本の場合がある。 冷媒としては温水を流通させた。 なお前述の定 義に加え、 表に示した製造条件における定義は以下の通りである。
[0078] 酸素濃度
(中心管に導入した酸素のモル数) / (中心管に導入した酸素のモル数 十中心管に導入した窒素のモル数) X I 〇〇
(中心管に導入した酸素のモル数) / (1 6 X中心管に導入した原料の モル数)
(第 1環状管に導入した水素のモル数) / (3 2 X中心管に導入した原 料のモル数) 除熱量
(温水の比熱) X (温水導入量) X (温水出口温度一温水入口温度) なお全ての実験例で温水を 7 5 °〇で導入したため、 温水入口温度 = 7 5 °〇、 である。 また、 温水の比熱として 1
Figure imgf000016_0001
なお、 出 口および入口は、 ジャケッ ト部 (図示していない) における温水排出口およ び導入口である。
[0079] 燃焼熱量
(導入した原料のモル数 X原料の燃焼熱量) 十 (導入した水素のモル数 X水素の燃焼熱量)
なお、 原料 (オクタメチルシクロテトラシロキサン) の燃焼熱量として 1 7 9 8 1<〇 3 I /〇!〇 I を、 水素の燃焼熱量として
Figure imgf000016_0002
を用いた。
[0080] 表 1 について、 同心円 3重管の中心管、 第 1環状管および第 2環状管をそ れぞれ単に中心管、 第 1環状管および第 2環状管と記して説明する。 △は中 心管の中心と別の中心管の中心との間の距離 (前記正三角形の辺の長さ) で あり、 は中心管の内径であり、 口は中心管の中心と反応器内壁との間の最 短距離である。 口/ が大きいほど、 火炎と反応器内壁との間の距離が離れ ていることを意味する。 \¥02020/175160 15 卩(:170?2020/005618
[0081] 実施例 1
バーナとして同 _寸法である同心円 3重管を 3本用い、 これらの中心が正 三角形を構成するように配置し、 これを取り囲むように円筒型の外筒を取り 付けた。 3本のバーナの中心部が反応器の中心に位置するように取り付けて 実験を行った。
[0082] 前記設定の下、 下記のようにオクタメチルシクロテトラシロキサンを燃焼 させ、 シリカ粉末を製造した。 なお、 以下、 前記オクタメチルシクロテトラ シロキサンを単に原料と記す。
[0083] 気化させた原料と酸素と窒素を混合した後、 2 0 0 °〇で同心円 3重管の中 心管に導入した。 また、 水素と窒素を混合し、 同心円 3重管の中心管の最隣 接外周管にあたる第 1環状管に導入した。 さらに、 酸素を同心円 3重管の第 1環状管の最隣接外周管にあたる第 2環状管に導入した。 くわえて、 空気を 同心円 3重管の第 2環状管外壁と同心円 3重管を取り囲む外筒の内壁で構成 される空間に導入した。
[0084] 反応器のジャケッ ト部に温水を 7 5 °〇で導入した。
[0085] 得られたシリカ粉末の巳巳丁比表面積 3、 吸光度て4 6 0、 吸光度て 7〇〇、 遠 心沈降法による質量基準粒度分布、 ゆるめ嵩密度、 かため嵩密度、 6含有 量、 丨含有量、 0 「含有量、 I含有量、 8 +含有量、
Figure imgf000017_0001
含有量、 (3 I _ 含有量を測定した。 また、 電子顕微鏡観察により、 当該シリカ粉末を構成す る 1次粒子の形状を確認した。 なお、 測定された巳巳丁比表面積 3から巳巳 丁比表面積換算径口 8を、 吸光度て 4 6〇と吸光度 7: 7〇。とから分散性指数〇を 、 遠心沈降法による質量基準粒度分布からメジアン径口 5〇と累積 9 0質量% 径〇9 0、 幾何標準偏差 £7 9を算出した。
[0086] 表 1 に製造条件と得られたシリカ粉末の特性を示す。 また、
Figure imgf000017_0002
1\1 し
〇 「、 八 丨、 N 3 +、 [< +および〇 丨 -の含有量は、 いずれも 1 未満であ った。
[0087] 実施例 2〜 1 1
製造条件を表 1 に示したように変更し、 実施例 1 と同様にシリカ粉末を製 \¥02020/175160 16 卩(:170?2020/005618
造した。 表 1 に得られたシリカ粉末の物性を示す。 なお、 いずれの実施例に おいても、 6、 1\] し 〇 「、 八 丨、 N 3 +、 [<+および〇 丨 -の含有量は、 全 て 1 未満であった。
[0088] 比較例·!〜 6
製造条件を表 2に示したように変更し、 実施例 1 と同様にシリカ粉末を製 造した。 ただし、 比較例 3〜 6では同心円 3重管バーナを 1本のみに変更し 、 かつ用いる同心円 3重管の中心管の内径は実施例 1の同心円 3重管の中心 管の内径の 2倍、 第 1環状管、 第 2環状管のサイズもそれに合わせて拡大し た。 また、 同心円 3重管の中心管の中心が反応器の中心軸上に位置するよう に設置した。
[0089] 表 2に得られたシリカ粉末の物性を示す。
〔¾二
Figure imgf000019_0001
\¥0 2020/175160 18 卩(:17 2020 /005618
[表
Figure imgf000020_0001
符号の説明
[0090] 1 . バーナ \¥02020/175160 19 卩(:17 2020/005618
2 . 円筒型外筒
3 . 反応器

Claims

\¥02020/175160 20 卩(:17 2020/005618 請求の範囲 [請求項 1] 以下の条件 (1 ) 〜 (3) を全て満足することを特徴とするシリカ 粉末。
(1 ) 遠心沈降法により得られる質量基準粒度分布の累積 50%質 量径口5。が 3001^ 111以上 500
Figure imgf000022_0001
以下である。
(2) ゆるめ嵩密度が
Figure imgf000022_0002
以上、 4001< 9/〇13以 下である。
(3) { (09〇-05〇) /05。} 1 00が 30%以上かつ 45% 以下である。 ここで口 90は、 遠心沈降法により得られる質量基準粒 度分布の累積 90質量%径である。
[請求項 2] 遠心沈降法により得られる質量基準粒度分布の幾何標準偏差 9
1. 25以上、 1. 40以下の範囲である請求項 1 に記載のシリカ粉 末。
[請求項 3] 鉄、 ニッケル、 クロム、 アルミニウム、 各々の元素含有量が 1
Figure imgf000022_0003
未満である請求項 1 または請求項 2に記載のシリカ粉末。
[請求項 4] 熱水抽出法によって測定されるナトリウムイオン、 カリウムイオン
、 塩化物イオン、 各々のイオン含有量が 1 未満である請求項 1 〜 3のいずれか 1項に記載のシリカ粉末。
[請求項 5] 請求項 1〜 4のいずれか 1項に記載のシリカ粉末が樹脂に充填され た樹脂組成物。
[請求項 6] 請求項 1〜 4のいずれか 1項に記載のシリカ粉末が溶媒中に分散さ れた分散体。
PCT/JP2020/005618 2019-02-28 2020-02-13 シリカ粉末、樹脂組成物および分散体 WO2020175160A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021501921A JP7430700B2 (ja) 2019-02-28 2020-02-13 シリカ粉末、樹脂組成物および分散体
CN202080011725.4A CN113365943B (zh) 2019-02-28 2020-02-13 二氧化硅粉末、树脂组合物及分散体
KR1020217023323A KR20210130138A (ko) 2019-02-28 2020-02-13 실리카 분말, 수지 조성물 및 분산체
US17/425,852 US20220002165A1 (en) 2019-02-28 2020-02-13 Silica powder, resin composition, and dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-035109 2019-02-28
JP2019035109 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175160A1 true WO2020175160A1 (ja) 2020-09-03

Family

ID=72238905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005618 WO2020175160A1 (ja) 2019-02-28 2020-02-13 シリカ粉末、樹脂組成物および分散体

Country Status (6)

Country Link
US (1) US20220002165A1 (ja)
JP (1) JP7430700B2 (ja)
KR (1) KR20210130138A (ja)
CN (1) CN113365943B (ja)
TW (1) TWI816978B (ja)
WO (1) WO2020175160A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604182B (zh) * 2021-08-16 2022-11-29 广东生益科技股份有限公司 一种树脂组合物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089130A (ja) * 1999-09-14 2001-04-03 Denki Kagaku Kogyo Kk 微細球状シリカ質粉末の製造方法
JP2002003213A (ja) * 2000-06-20 2002-01-09 Nippon Aerosil Co Ltd 非晶質微細シリカ粒子とその製造方法および用途
JP2003171117A (ja) * 2001-11-30 2003-06-17 Shin Etsu Chem Co Ltd 疎水性シリカ微粉末及びその製造方法
JP2005015251A (ja) * 2003-06-24 2005-01-20 Shin Etsu Chem Co Ltd 疎水性球状シリカ系微粒子、その製造方法、および、それを用いた静電荷像現像用トナー外添剤
JP2008019157A (ja) * 2006-06-09 2008-01-31 Tokuyama Corp 乾式シリカ微粒子
JP2017119621A (ja) * 2015-12-25 2017-07-06 株式会社トクヤマ 親水性乾式シリカ粉末

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787957A1 (de) * 2005-11-16 2007-05-23 Degussa GmbH Trockene Flüssigkeiten, Verfahren und Vorrichtung zu ihrer Herstellung
US7985292B2 (en) * 2007-11-26 2011-07-26 Evonik Degussa Corporation Precipitated silica for thickening and creating thixotropic behavior in liquid systems
JP6112888B2 (ja) 2013-02-05 2017-04-12 株式会社トクヤマ 乾式シリカ微粒子
KR20170119621A (ko) 2016-04-19 2017-10-27 김상철 계좌인출 관리시스템 및 관리방법
GB2559608A (en) * 2017-02-13 2018-08-15 Sibelco Nederland N V Grains comprising silica and methods of forming grains comprising silica
JP6778662B2 (ja) * 2017-08-01 2020-11-04 信越化学工業株式会社 造粒処理シリカの製造方法
EP3476815B1 (en) * 2017-10-27 2023-11-29 Heraeus Quarzglas GmbH & Co. KG Production of a porous product including post-adapting a pore structure
KR20200115502A (ko) * 2018-01-31 2020-10-07 스미또모 가가꾸 가부시끼가이샤 수지 조성물
KR20230002311A (ko) 2020-04-24 2023-01-05 가부시끼가이샤 도꾸야마 표면 처리 실리카 분말의 제조 방법, 수지 조성물 및 슬러리

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089130A (ja) * 1999-09-14 2001-04-03 Denki Kagaku Kogyo Kk 微細球状シリカ質粉末の製造方法
JP2002003213A (ja) * 2000-06-20 2002-01-09 Nippon Aerosil Co Ltd 非晶質微細シリカ粒子とその製造方法および用途
JP2003171117A (ja) * 2001-11-30 2003-06-17 Shin Etsu Chem Co Ltd 疎水性シリカ微粉末及びその製造方法
JP2005015251A (ja) * 2003-06-24 2005-01-20 Shin Etsu Chem Co Ltd 疎水性球状シリカ系微粒子、その製造方法、および、それを用いた静電荷像現像用トナー外添剤
JP2008019157A (ja) * 2006-06-09 2008-01-31 Tokuyama Corp 乾式シリカ微粒子
JP2017119621A (ja) * 2015-12-25 2017-07-06 株式会社トクヤマ 親水性乾式シリカ粉末

Also Published As

Publication number Publication date
JPWO2020175160A1 (ja) 2020-09-03
JP7430700B2 (ja) 2024-02-13
TWI816978B (zh) 2023-10-01
US20220002165A1 (en) 2022-01-06
TW202035286A (zh) 2020-10-01
CN113365943B (zh) 2023-06-09
CN113365943A (zh) 2021-09-07
KR20210130138A (ko) 2021-10-29

Similar Documents

Publication Publication Date Title
JP4541955B2 (ja) 熱分解法により製造された二酸化ケイ素粉末及びこの粉末を含有するシリコーンシーラント
CN1803604B (zh) 热解法制造的二氧化硅粉末
JP5644789B2 (ja) 粉体組成物
JPH0465006B2 (ja)
US20230125516A1 (en) Method for producing surface-treated silica powder, resin composition, and slurry
JP6255471B1 (ja) シリカ粒子分散液及びその製造方法
JPWO2021215285A5 (ja)
CN111629998A (zh) 熔融球状二氧化硅粉末及其制造方法
JP6112888B2 (ja) 乾式シリカ微粒子
WO2020175160A1 (ja) シリカ粉末、樹脂組成物および分散体
JP6901853B2 (ja) 親水性乾式シリカ粉末
JP6516623B2 (ja) シリカ−チタニア複合酸化物粒子及びその製造方法
JP5974986B2 (ja) シリカ付着珪素粒子及び焼結混合原料、ならびにシリカ付着珪素粒子及び疎水性球状シリカ微粒子の製造方法
WO2018181713A1 (ja) シリカ粒子分散液の製造方法
JP2017222569A (ja) 表面改質シリカ粒子の製造方法及びフィラー含有組成物の製造方法
JP6745005B2 (ja) 分散性に優れたシリカ粉末およびそれを用いた樹脂組成物、ならびにその製造方法
JP6084510B2 (ja) 乾式シリカ微粒子
JP6091301B2 (ja) 乾式シリカ微粒子
JP6043992B2 (ja) 疎水化乾式シリカ微粒子
JP5907092B2 (ja) 金属珪素粉末の製造方法
JP6022302B2 (ja) 乾式シリカ微粒子
JP4380011B2 (ja) 球状シリカの製造方法
JP2012087027A (ja) 金属酸化物超微粉末、その製造方法およびその用途
JP7470508B2 (ja) シリカ粉体、シリカ粉体の製造方法、および焼成シリカ粉体の製造方法
JP2023083524A (ja) 複合酸化物粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762803

Country of ref document: EP

Kind code of ref document: A1