WO2020137033A1 - コンデンサ - Google Patents

コンデンサ Download PDF

Info

Publication number
WO2020137033A1
WO2020137033A1 PCT/JP2019/036586 JP2019036586W WO2020137033A1 WO 2020137033 A1 WO2020137033 A1 WO 2020137033A1 JP 2019036586 W JP2019036586 W JP 2019036586W WO 2020137033 A1 WO2020137033 A1 WO 2020137033A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor element
capacitor
pair
metal foil
metal
Prior art date
Application number
PCT/JP2019/036586
Other languages
English (en)
French (fr)
Inventor
康一 西村
幸博 島崎
竹岡 宏樹
崇史 奥戸
律夫 正岡
浩正 尾崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020562354A priority Critical patent/JP7442143B2/ja
Priority to CN201980086062.XA priority patent/CN113228210B/zh
Publication of WO2020137033A1 publication Critical patent/WO2020137033A1/ja
Priority to US17/352,821 priority patent/US11935697B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/103Sealings, e.g. for lead-in wires; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/248Terminals the terminals embracing or surrounding the capacitive element, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/236Terminals leading through the housing, i.e. lead-through

Definitions

  • the present disclosure relates generally to capacitors, and more particularly to capacitors with capacitor elements.
  • Capacitors are passive components that store and release electric charge and are used as components of electronic equipment. Since a capacitor may be defective due to moisture absorption, a capacitor having excellent moisture resistance is required.
  • Patent Document 1 discloses a case mold type capacitor in which a capacitor is housed in a resin case and an insulating mold resin is filled in the case.
  • Patent Document 1 Although it is possible to obtain a film capacitor having a certain degree of moisture resistance, no consideration is given to weight reduction.
  • the purpose of the present disclosure is to provide a capacitor that realizes weight reduction and has excellent moisture resistance.
  • a capacitor according to an aspect of the present disclosure includes a capacitor element, a pair of external electrodes provided at both ends of the capacitor element, a pair of metal caps covering each of the pair of external electrodes, and/or the capacitor element.
  • FIG. 1 is a schematic cross-sectional view of the capacitor according to the first embodiment.
  • FIG. 2A is a perspective view of a capacitor including a heat-shrinkable tube in the first embodiment.
  • FIG. 2B is a perspective view of the capacitor without the heat shrink tube in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the capacitor according to the second embodiment.
  • FIG. 4A is a perspective view of a capacitor including a heat-shrinkable tube in the second embodiment.
  • FIG. 4B is a perspective view of a capacitor not including a heat-shrinkable tube in the second embodiment.
  • FIG. 5 is a schematic cross-sectional view of the capacitor according to the third embodiment.
  • FIG. 6A is a perspective view of a capacitor including a heat-shrinkable tube in the third embodiment.
  • FIG. 6B is a perspective view of a capacitor not including a heat-shrinkable tube in the third embodiment.
  • FIG. 7A is a process diagram (perspective view) of a method of manufacturing a wound-type capacitor element.
  • FIG. 7B is a perspective view of the wound capacitor element.
  • FIG. 8A is a process drawing (perspective view) of a method for manufacturing a multilayer capacitor element.
  • FIG. 8B is a process drawing (cross-sectional view) of the method for manufacturing the multilayer capacitor element.
  • FIG. 8C is a partially cutaway perspective view of the multilayer capacitor element shown in FIG. 8B.
  • FIG. 8D is a perspective view of the multilayer capacitor element.
  • a capacitor 10 As shown in FIG. 1, a capacitor 10 according to the present embodiment includes a capacitor element 1, a pair of external electrodes 2, and a pair of metal caps 3.
  • the pair of external electrodes 2 are provided at both ends of the capacitor element 1.
  • the pair of metal caps 3 covers each of the pair of external electrodes 2.
  • the capacitor 10 does not include an outer case and a mold resin filled in the outer case as described in Patent Document 1. That is, the capacitor 10 has a so-called caseless structure. Therefore, the weight of the capacitor 10 can be reduced by at least the amount corresponding to the conventional outer case.
  • the capacitor 10 includes the metal cap 3 that covers the external electrode 2.
  • the metal cap 3 is less likely to allow gas such as water vapor to pass therethrough than the external electrode 2. Therefore, by covering the external electrode 2 with the metal cap 3 so that the external electrode 2 does not come into direct contact with the outside air, it becomes easy to suppress moisture absorption by the external electrode 2.
  • the capacitor 10 according to the present embodiment includes the metal cap 3, it can have excellent moisture resistance.
  • FIG. 2A is a perspective view of the capacitor 10 according to this embodiment.
  • FIG. 1 is a sectional view taken along line XX of FIG. 2A.
  • FIG. 2B is a perspective view of the capacitor 10 without the heat shrink tube 6.
  • the capacitor 10 employs a so-called caseless structure, and does not include an outer case as described in Patent Document 1. That is, the capacitor 10 is a caseless capacitor. As shown in FIG. 1, the capacitor 10 includes a capacitor element 1, a pair of external electrodes 2, and a pair of metal caps 3. Preferably, the capacitor 10 further includes a capacitor element protection material 51. Preferably, the capacitor 10 further comprises an edge sealing material 23. Preferably, the condenser 10 further comprises a heat shrink tube 6.
  • the expression "A and/or B" means either "A", "B", or "A and B".
  • the capacitor element 1 (capacitor body) will be described.
  • the capacitor element 1 has a plastic film as a dielectric.
  • the capacitor element 1 includes a wound type capacitor element 7 (see FIG. 7B) and a laminated type capacitor element 8 (see FIG. 8D).
  • the winding type capacitor element 7 and the laminated type capacitor element 8 will be described below.
  • the wound capacitor element 7 can be manufactured, for example, as follows. First, a metallized film is prepared. Specifically, the metallized film includes a first metallized film 71 and a second metallized film 72 (see FIG. 7A).
  • the metallized film has a dielectric film and a conductive layer.
  • the first metallized film 71 has a first dielectric film 701 and a first conductive layer 711.
  • the first dielectric film 701 is a long film.
  • a first conductive layer 711 is formed on one surface of the first dielectric film 701 except for the first margin portion 721.
  • the first margin portion 721 is a portion where the first dielectric film 701 is exposed.
  • the first margin portion 721 is formed in a band shape thinner than the first conductive layer 711 along one long side of the first dielectric film 701.
  • the second metallized film 72 is formed similarly to the first metallized film 71. That is, the second metallized film 72 includes the second dielectric film 702 and the second conductive layer 712.
  • the second dielectric film 702 is a long film having the same width as the first dielectric film 701.
  • a second conductive layer 712 is formed on one surface of the second dielectric film 702 except for the second margin portion 722.
  • the second margin portion 722 is a portion where the second dielectric film 702 is exposed.
  • the second margin portion 722 is formed in a strip shape narrower than the second conductive layer 712 along one long side of the second dielectric film 702.
  • the first dielectric film 701 and the second dielectric film 702 are made of, for example, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyphenyl sulfide, polystyrene or the like.
  • the first conductive layer 711 and the second conductive layer 712 are formed by a method such as an evaporation method or a sputtering method.
  • the first conductive layer 711 and the second conductive layer 712 are formed of, for example, aluminum, zinc, magnesium or the like.
  • the two long sides of each of the first metallized film 71 and the second metallized film 72 are aligned and overlapped.
  • the first dielectric film 701 or the second dielectric film 702 is interposed between the first conductive layer 711 and the second conductive layer 712.
  • the long side on which the first margin portion 721 is formed and the long side on which the second margin portion 722 is formed are reversed.
  • the columnar wound body 73 can be obtained.
  • the side surface of the wound body 73 is pressed from both sides to form a flat wound body 74 (see FIG. 7B).
  • the flat wound body 74 has an oval cross section. By flattening in this way, it is possible to save space.
  • the wound capacitor element 7 is obtained as described above. Inside the spirally wound capacitor element 7, the first conductive layer 711 becomes a first internal electrode and the second conductive layer 712 becomes a second internal electrode. The pair of internal electrodes face each other with the dielectric film (the first dielectric film 701 or the second dielectric film 702) interposed therebetween.
  • the multilayer capacitor element 8 can be manufactured, for example, as follows. First, a metallized film is prepared. Specifically, the metallized film includes a first metallized film 81 and a second metallized film 82 (see FIG. 8A).
  • the metallized film has a dielectric film and a conductive layer.
  • the first metallized film 81 has a first dielectric film 801 and a first conductive layer 811.
  • the first dielectric film 801 is a rectangular film.
  • a first conductive layer 811 is formed on one surface of the first dielectric film 801 except for the first margin portion 821.
  • the first margin portion 821 is a portion where the first dielectric film 801 is exposed.
  • the first margin portion 821 is formed along one side of the first dielectric film 801 in a strip shape thinner than the first conductive layer 811.
  • the second metallized film 82 is formed similarly to the first metallized film 81. That is, the second metallized film 82 has a second dielectric film 802 and a second conductive layer 812.
  • the second dielectric film 802 is a rectangular film having the same size as the first dielectric film 801.
  • a second conductive layer 812 is formed on one surface of the second dielectric film 802 except for the second margin portion 822.
  • the second margin portion 822 is a portion where the second dielectric film 802 is exposed.
  • the second margin portion 822 is formed in a strip shape thinner than the second conductive layer 812 along one side of the second dielectric film 802.
  • the first dielectric film 801 and the second dielectric film 802 are formed of, for example, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyphenyl sulfide, polystyrene or the like.
  • the first conductive layer 811 and the second conductive layer 812 are formed by a method such as an evaporation method or a sputtering method.
  • the first conductive layer 811 and the second conductive layer 812 are formed of, for example, aluminum, zinc, magnesium or the like.
  • the four sides of the first metallized film 81 and the second metallized film 82 are aligned and alternately stacked.
  • the first dielectric film 801 or the second dielectric film 802 is interposed between the first conductive layer 811 and the second conductive layer 812.
  • the side on which the first margin portion 821 is formed and the side on which the second margin portion 822 are formed are reversed.
  • the first margin portion 821 is arranged rearward (negative X-axis direction) and the second margin portion 822 is arranged forward (positive X-axis direction).
  • the laminated body 83 is covered with the protective film 84 except for the front surface (the surface facing the positive direction of the X axis) and the rear surface (the surface facing the negative direction of the X axis).
  • the protective film 84 is a film having electrical insulation.
  • the multilayer capacitor element 8 is obtained as described above. Inside the multilayer capacitor element 8, the first conductive layer 811 serves as a first internal electrode and the second conductive layer 812 serves as a second internal electrode. The pair of internal electrodes are opposed to each other with the dielectric film (the first dielectric film 801 or the second dielectric film 802) in between.
  • the external electrode 2 is a first external electrode 21 and a second external electrode 22.
  • the pair of external electrodes 2 are provided at both ends of the capacitor element 1.
  • the pair of external electrodes 2 is electrically connected to each of the pair of internal electrodes of the capacitor element 1.
  • the external electrode 2 can be formed by, for example, metallikon (metal spraying method).
  • the material of the external electrode 2 is not particularly limited, but includes zinc, for example.
  • the external electrode 2 may be formed only of zinc, or may be formed of a mixture of zinc and another metal such as tin. Further, it is preferable to use a material having a low melting point as the material of the external electrode 2. In this case, when the external electrode 2 is formed by metallikon, the capacitor element 1 is less likely to be defective due to heat.
  • the material of the external electrode 2 preferably has a melting point of 700° C. or lower, more preferably 450° C. or lower.
  • the external electrodes 2 are formed on both end surfaces of the flat wound body 74 by metallikon.
  • the first outer electrode 21 is electrically connected to the first conductive layer 711 (first inner electrode).
  • the second external electrode 22 is electrically connected to the second conductive layer 712 (second internal electrode).
  • the first conductive layer 711 and the second conductive layer 712 form a pair of internal electrodes.
  • the bus bar 9 is not directly connected to the external electrode 2 (see FIG. 1), but the bus bar 9 may be electrically connected to the external electrode 2 if necessary.
  • the first bus bar 91 is electrically connected to the first external electrode 21, and the second bus bar 92 is electrically connected to the second external electrode 22.
  • this connection method include solder welding, resistance welding, and ultrasonic welding.
  • the first bus bar 91 and the second bus bar 92 are formed in a plate shape with, for example, copper or a copper alloy.
  • the external electrodes 2 (the first external electrode 21 and the second external electrode 22) are formed on the front surface and the rear surface of the multilayer body 83 by metallikon.
  • the first outer electrode 21 is electrically connected to the first conductive layer 811 (first inner electrode).
  • the second outer electrode 22 is electrically connected to the second conductive layer 812 (second inner electrode).
  • the first conductive layer 811 and the second conductive layer 812 form a pair of internal electrodes.
  • the bus bar 9 may be electrically connected to the external electrode 2 if necessary.
  • the first bus bar 91 is electrically connected to the first external electrode 21, and the second bus bar 92 is electrically connected to the second external electrode 22.
  • this connection method include solder welding, resistance welding, and ultrasonic welding.
  • the first bus bar 91 and the second bus bar 92 are formed in a plate shape with, for example, copper or a copper alloy.
  • the capacitor 10 according to the present embodiment employs a winding type capacitor element 7 as the capacitor element 1.
  • the bus bar 9 is not connected to the external electrode 2 of the wound type capacitor element 7.
  • the metal cap 3 is a metal cap having a cylindrical shape with a bottom.
  • the shape of the opening of the metal cap 3 is substantially the same as the shape of both ends of the capacitor element 1.
  • the shape of the opening of the metal cap 3 is an elliptical shape.
  • the shape of the opening of the metal cap 3 is rectangular.
  • the pair of metal caps 3 are a first metal cap 31 and a second metal cap 32.
  • the pair of metal caps 3 covers both ends of the capacitor element 1.
  • the pair of metal caps 3 covers each of the pair of external electrodes 2. That is, the first metal cap 31 covers the first external electrode 21, and the second metal cap 32 covers the second external electrode 22.
  • the inner bottom surface of the metal cap 3 and the outer electrode 2 are electrically connected.
  • the metal cap 3 has an opening edge, and this opening edge is located on the outer peripheral surface of the capacitor element 1.
  • the material of the metal cap 3 is not particularly limited.
  • the material of the metal cap 3 may be any material that is less likely to allow moisture and gas such as water vapor to pass through than the external electrode 2. From this viewpoint, the material of the metal cap 3 includes, for example, copper.
  • the thickness of the external electrode 2 may not be uniform.
  • both end surfaces of the capacitor element 1 surfaces on which the external electrodes 2 are formed
  • the external electrode 2 is covered with the metal cap 3 so that the external electrode 2 does not come into direct contact with the outside air, so that it is possible to suppress entry of moisture and gas such as water vapor.
  • the moisture resistance of the capacitor 10 can be improved.
  • the metal cap 3 preferably covers the boundary between the capacitor element 1 and each of the pair of external electrodes 2.
  • the external electrodes 2 are formed on both end surfaces of the capacitor element 1 by metallikon. There may be a minute gap at the boundary between each of the capacitor element 1 and the external electrode 2, and moisture and gas such as water vapor may enter through this gap. However, if the boundary portion is covered with the metal cap 3, the moisture resistance of the capacitor 10 can be further improved.
  • the metal cap 3 covers the boundary between the capacitor element 1 and the external electrode 2 via a capacitor element protection member 51 described later.
  • the metal cap 3 is attached to the capacitor element 1 as follows, for example. First, a metal cap 3 having a shape similar to the shape of the end portion of the capacitor element 1 provided with the external electrode 2 is prepared. In addition, in FIG. 1, since the metal cap 3 is attached after covering the capacitor element 1 with the capacitor element protecting material 51 described later, a size matching the shape of the end of the capacitor element 1 covered with the capacitor element protecting material 51. The metal cap 3 is used. As shown in FIGS. 2A and 2B, when the spiral type capacitor element 7 is used, the metal cap 3 has the shape of an elliptic cylinder whose one bottom surface is open.
  • the shape of the metal cap 3 is not limited to the shape of an elliptic cylinder, and may be any shape that can be attached to the end of the capacitor element 1 so as to cover the external electrode 2.
  • the metal cap 3 may have a rectangular parallelepiped shape with one surface open.
  • the metal cap 3 and the external electrode 2 of the capacitor element 1 can be connected as follows.
  • the metal caps 3 are arranged on the hot plate. At this time, the hot plate and the bottom surface of the metal cap 3 are in contact with each other.
  • the end portion of the capacitor element 1 provided with the external electrode 2 is put into the metal cap 3.
  • the solder balls are melted by the heat of the hot plate, and the external electrode 2 and the metal cap 3 are bonded by the melted solder balls. In this way, the capacitor 10 including the metal cap 3 can be obtained. Since the external electrode 2 and the metal cap 3 are in contact with each other, they are also electrically connected.
  • the capacitor 10 preferably further includes a capacitor element protection material 51.
  • the capacitor element protection member 51 is a member that covers and protects at least a part of the capacitor element 1.
  • the capacitor element protection material 51 covers the entire side surface of the capacitor element 1.
  • the side surface is a surface of the entire surface of the capacitor element 1 excluding both end surfaces.
  • the external electrodes 2 are located on both end surfaces.
  • the capacitor 10 since the capacitor 10 includes the metal cap 3, it is possible to suppress moisture absorption from the external electrode 2.
  • the capacitor element protection material 51 by covering the entire side surface of the capacitor element 1 with the capacitor element protection material 51 so that the capacitor element 1 does not come into direct contact with the outside air, it is easy to suppress moisture absorption from the surface of the capacitor element 1.
  • the capacitor 10 further includes the capacitor element protection material 51, the humidity resistance of the capacitor 10 can be further improved.
  • the material of the capacitor element protection material 51 is not particularly limited.
  • the material of the capacitor element protection member 51 may be any material having electrical insulation.
  • As the material of the capacitor element protection material 51 it is preferable to use a material that is less likely to allow moisture and gas such as water vapor to pass through than the surface of the capacitor element 1. In this case, the moisture resistance of the capacitor 10 can be further improved.
  • the capacitor element protection material 51 preferably contains at least one selected from the group consisting of an insulating film, a gas barrier film, and a cured product of prepreg. In this case, moisture absorption from the surface of the capacitor element 1 can be suppressed more easily, and the moisture resistance of the capacitor 10 can be further improved.
  • the insulating film is not particularly limited.
  • the insulating film may be a film having electrical insulation.
  • the material of the insulating film includes, for example, polypropylene, polyethylene, polyimide and the like.
  • the gas barrier film is not particularly limited.
  • the gas barrier film may be any film as long as it is electrically insulating and has a property of making it difficult for gas such as water vapor to pass therethrough.
  • As the gas barrier film a film having a base film and a gas barrier layer formed on the base film can be used.
  • the base film is not particularly limited. Examples of the base film include polyethylene terephthalate (PET) film (melting point 265° C., glass transition point 80° C. (TMA method)), polyphenylene sulfide (PPS) film (melting point 280° C., glass transition point 100° C.), polyether.
  • PET polyethylene terephthalate
  • TMA method glass transition point 80° C.
  • PPS polyphenylene sulfide
  • the gas barrier layer is not particularly limited.
  • the gas barrier layer contains, for example, at least one of silicon oxide and aluminum oxide.
  • the gas barrier layer can be formed by, for example, a vapor deposition method, a sputtering method, a plasma CVD method, or the like.
  • the cured product of prepreg is a substance in which the prepreg is completely cured and is in the C-stage state.
  • the C-stage is an insoluble and infusible state, which is the final state of the curing reaction.
  • the prepreg contains a reinforcing material and a thermosetting resin composition.
  • the reinforcing material is not particularly limited, and examples thereof include woven or non-woven fabric of organic fibers or inorganic fibers.
  • the reinforcing material includes, for example, a non-woven fabric of glass cloth and PET fiber.
  • the thermosetting resin composition is not particularly limited, but for example, a composition containing a thermosetting resin that is liquid at room temperature (25° C.) before the curing reaction can be used.
  • the thermosetting resin is not particularly limited, but examples thereof include epoxy resin, unsaturated polyester resin, and polyimide resin. Of these, epoxy resins are preferred. Epoxy resin has excellent properties such as heat resistance, chemical resistance, toughness, electrical insulation and adhesiveness.
  • the curing temperature of the thermosetting resin composition is preferably 120° C. or lower. In this case, it is possible to reduce the influence of heat on the capacitor element 1 when the thermosetting resin composition is cured.
  • the thermosetting resin composition may contain an inorganic filler.
  • the inorganic filler is not particularly limited, and examples thereof include silica, alumina, silicon nitride, boron nitride, magnesia, boehmite, calcium carbonate, aluminum hydroxide and talc. Further, the thermosetting resin composition may contain a known curing agent, catalyst and the like, if necessary.
  • the capacitor element protection member 51 preferably covers the boundary between the capacitor element 1 and each of the pair of external electrodes 2. That is, it is preferable that the end portion of the capacitor element protection member 51 extends outside the boundary portion between the capacitor element 1 and the pair of external electrodes 2.
  • the pair of external electrodes 2 are formed on both ends of the capacitor element 1 by the metallikon. A minute gap may exist at the boundary between the capacitor element 1 and each of the pair of external electrodes 2, and moisture and gas such as water vapor may enter through this gap.
  • the boundary is covered with the capacitor element protection material 51, the moisture resistance of the capacitor 10 can be further improved. In FIG.
  • the capacitor element protection member 51 covers the boundary portion between the capacitor element 1 and each of the pair of external electrodes 2, and the pair of metal caps 3 covers the boundary portion via the capacitor element protection member 51. It is covered. Therefore, it is possible to further suppress the ingress of water and gas such as water vapor from the above-mentioned gap at the boundary.
  • the capacitor 10 preferably further includes an edge sealing material 23.
  • the edge sealing material 23 seals the opening edge of the metal cap 3. That is, the edge sealing material 23 seals the boundary between the opening edge of the metal cap 3 and the capacitor element 1.
  • the edge sealing material 23 includes a first edge sealing material 231 and a second edge sealing material 232.
  • the first edge sealing material 231 seals the boundary portion between the opening edge of the first metal cap 31 and the capacitor element 1, and the second edge sealing material 232 serves as the opening edge of the second metal cap 32. The boundary with the capacitor element 1 is sealed.
  • the edge sealing material 23 is the opening edge of the metal cap 3 and the capacitor element protection material.
  • the boundary with 51 is sealed. That is, in FIG. 1, the edge sealing material 23 seals the boundary between the opening edge of the metal cap 3 and the capacitor element 1 via the capacitor element protection material 51.
  • the capacitor element protecting material 51 covers the capacitor element 1 after the metal cap 3 is mounted on the capacitor element 1, after the metal cap 3 is mounted, the opening edge of the metal cap 3 and the capacitor element 1 are covered.
  • the boundary with 1 is sealed with the edge sealing material 23, and then the capacitor element protection material 51 may cover the capacitor element 1.
  • the material of the edge sealing material 23 is not particularly limited, but for example, a material that can seal the opening edge of the metal cap 3 can be used.
  • the material of the edge sealing material 23 is preferably a material that is less likely to allow moisture and gas such as water vapor to permeate.
  • the material of the edge sealing material 23 includes, for example, a resin such as an epoxy resin and an adhesive.
  • a resin such as an epoxy resin and an adhesive.
  • a modified olefin-based hot melt adhesive and a tape including the adhesive may be used.
  • the melting point of the thermosetting resin is preferably 110° C. or lower. In this case, when forming the edge sealing material 23, the influence of heat on the capacitor element 1 can be reduced.
  • the condenser 10 preferably further includes a heat-shrinkable tube 6.
  • the heat-shrinkable tube 6 covers at least a part of the capacitor element 1.
  • the heat shrinkable tube 6 covers the entire side surface of the capacitor element 1.
  • the heat-shrinkable tube 6 is a resin member formed in a tube shape and has a property of shrinking when heat is applied. For example, by cutting the heat-shrinkable tube 6 into substantially the same length as the condenser 10 and mounting the cut-off heat-shrinkable tube 6 in the condenser 10 to heat the heat-shrinkable tube 6, the heat-shrinkable tube 6 shrinks to the condenser 10.
  • the heat-shrinkable tube 6 can be closely attached.
  • the material, thickness, and size of the heat-shrinkable tube 6 are not particularly limited.
  • any one can be used according to the size of the capacitor 10. Since the capacitor 10 further includes the heat-shrinkable tube 6, it is possible to further prevent moisture and gas such as water vapor from entering the inside of the capacitor element 1, and the capacitor 10 can have more excellent moisture resistance.
  • the heat-shrinkable tube 6 is preferably attached to the outermost layer of the capacitor 10.
  • the heat shrink tube 6 is provided in the outermost layer of the capacitor 10.
  • the condenser 10 may not include the heat shrinkable tube 6. That is, the capacitor 10 may not include the heat shrink tube 6 as shown in FIG. 2B.
  • the capacitor 10 includes a capacitor element protection member 51 that covers the entire side surface of the capacitor element 1, a pair of metal caps 3 that cover each of the pair of external electrodes 2, and opening edges of the pair of metal caps 3.
  • An edge sealing material 23 that covers and seals the boundary between the capacitor element protection material 51 and the capacitor element protection material 51 is provided.
  • the same components as those in the first embodiment may be assigned the same reference numerals and detailed description thereof may be omitted.
  • the capacitor 10 includes a capacitor element 1, a pair of external electrodes 2, and a metal foil 4.
  • the pair of external electrodes 2 are provided at both ends of the capacitor element 1.
  • the metal foil 4 covers at least a part of the capacitor element 1.
  • the capacitor 10 does not include an outer case and a mold resin filled in the outer case as described in Patent Document 1. That is, the capacitor 10 has a so-called caseless structure. Therefore, the weight of the capacitor 10 can be reduced by at least the amount corresponding to the conventional outer case.
  • the capacitor 10 includes the metal foil 4 that covers at least a part of the capacitor element 1.
  • the metal foil 4 is less likely to allow gas such as water vapor to pass through. Therefore, by covering at least a part of the surface of the capacitor element 1 with the metal foil 4 so that at least a part of the surface of the capacitor element 1 does not come into direct contact with the outside air, moisture absorption from the surface of the capacitor element 1 is prevented. It becomes easy to control.
  • the capacitor 10 according to the present embodiment includes the metal foil 4, and thus can have excellent moisture resistance.
  • FIG. 4A is a perspective view of the capacitor 10 according to this embodiment.
  • FIG. 3 is a sectional view taken along line XX of FIG. 4A.
  • FIG. 4B is a perspective view of the capacitor 10 without the heat shrink tube 6.
  • the capacitor 10 employs a so-called caseless structure, and does not include an outer case as described in Patent Document 1. That is, the capacitor 10 is a caseless capacitor. As shown in FIG. 3, the capacitor 10 includes a capacitor element 1, a pair of external electrodes 2, and a metal foil 4. Preferably, the capacitor 10 further includes a capacitor element protection material 51. Preferably, the capacitor 10 further includes a pair of bus bars 9. Preferably, the capacitor 10 further includes the electrode sealing material 24. Preferably, the capacitor 10 further includes a water repellent layer. Preferably, the condenser 10 further comprises a heat shrink tube 6.
  • each component will be described.
  • the capacitor element 1 of this embodiment is basically the same as the capacitor element 1 of the first embodiment.
  • the capacitor element 1 may be the winding type capacitor element 7 (see FIG. 7B) or the laminated type capacitor element 8 (see FIG. 8D).
  • the bus bar 9 is connected to the external electrode 2 of the capacitor element 1.
  • the capacitor 10 according to the present embodiment employs the winding type capacitor element 7 as the capacitor element 1.
  • the external electrode 2 of this embodiment is basically the same as the external electrode 2 of the first embodiment.
  • the capacitor 10 according to this embodiment also includes a pair of external electrodes 2.
  • the pair of external electrodes 2 are a first external electrode 21 and a second external electrode 22.
  • the metal foil 4 covers at least a part of the capacitor element 1. Preferably, the metal foil 4 covers the entire side surface of the capacitor element 1.
  • the metal foil 4 may be in contact with either the first external electrode 21 or the second external electrode 22, but as shown in FIG. 3, the metal foil 4 is preferably the first external electrode 21 and the second external electrode 22. It is not in contact with any of the external electrodes 22.
  • the metal foil 4 covers at least a part of the surface of the capacitor element 1 with the metal foil 4, it becomes easy to suppress moisture absorption from the surface of the capacitor element 1.
  • the metal foil 4 covers the capacitor element 1 via the capacitor element protection material 51. As a result, the metal foil 4 is prevented from coming into contact with the external electrode 2 to suppress a short circuit.
  • the material of the metal foil 4 is not particularly limited.
  • the material of the metal foil 4 may be any material that is less likely to allow moisture and gas such as water vapor to pass through than the side surface of the capacitor element 1.
  • the surface of the capacitor element 1 is a dielectric film formed of polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyphenyl sulfide, polystyrene or the like. Therefore, the metal foil 4 may be one that is less permeable to moisture and gas such as water vapor than the dielectric film.
  • the surface of the capacitor element 1 is covered with a protective film having electrical insulation.
  • the metal foil 4 may be one that is less permeable to moisture and gas such as water vapor than the protective film.
  • the material of the metal foil 4 includes, for example, copper, aluminum, iron, stainless steel, magnesium, silver, gold, nickel, and platinum.
  • a metal foil with resin may be used as the metal foil 4.
  • the metal foil with resin is a member in which a resin layer is provided on one side of the metal foil 4.
  • the capacitor 10 preferably further includes a capacitor element protection material 51.
  • the capacitor element protection member 51 of this embodiment is basically the same as the capacitor element protection member 51 of the first embodiment.
  • the capacitor element protection material 51 is preferably provided between the capacitor element 1 and the metal foil 4.
  • the capacitor element protection member 51 is provided between the capacitor element 1 and the metal foil 4, and the entire side surface of the capacitor element 1 and the side surfaces of each of the pair of external electrodes 2 are provided. And are covered.
  • the capacitor element protection material 51 is provided between the capacitor element 1 and the metal foil 4, it becomes easier to suppress moisture absorption from the surface of the capacitor element 1.
  • the capacitor element protection material 51 preferably electrically insulates the metal foil 4 and the pair of external electrodes 2 from each other. As described above, in the present embodiment, the capacitor element protection member 51 covers the entire side surface of the capacitor element 1 and the side surfaces of each of the pair of external electrodes 2. Therefore, even if the metal foil 4 for covering the capacitor element 1 is provided on the capacitor element protection material 51, the metal foil 4 and the pair of external electrodes 2 are electrically insulated by the capacitor element protection material 51, A short circuit can be suppressed.
  • the capacitor element protection material 51 preferably covers the boundary between each of the pair of external electrodes 2 and the capacitor element 1. That is, as shown in FIG. 3, the end portion of the capacitor element protection member 51 extends outside the boundary portion between each of the pair of external electrodes 2 and the capacitor element 1, and each of the pair of external electrodes 2 and the capacitor. It is preferable to cover the boundary with the element 1. There may be a gap at the boundary between the pair of external electrodes 2 and the capacitor element 1, and moisture and gas such as water vapor may enter through this gap. However, as shown in FIG. 3, by covering the boundary portion with the capacitor element protection material 51, the moisture resistance of the capacitor 10 can be further improved.
  • the metal foil 4 is connected to the pair of external electrodes 2 It is preferable to cover the boundary between each of the above and the capacitor element 1. That is, as shown in FIG. 3, the end portion of the metal foil 4 extends outside the boundary portion between each of the pair of external electrodes 2 and the capacitor element 1, and the pair of external electrodes 2 and the capacitor element protection member 51 are interposed therebetween. It is preferable to cover the boundary between the external electrode 2 and the capacitor element 1. There may be a gap at the boundary between each of the pair of external electrodes 2 and the capacitor element 1, and moisture and gas such as water vapor may enter through the gap. However, as shown in FIG. 3, the moisture resistance of the capacitor 10 can be further improved by covering the boundary portion with the metal foil 4 via the capacitor element protection material 51.
  • the metal foil 4 is provided so as not to contact at least one external electrode 2 (preferably both). Thereby, a short circuit can be suppressed.
  • the width of the metal foil 4 is shorter than the distance from the boundary between the first external electrode 21 and the capacitor element 1 to the boundary between the second external electrode 22 and the capacitor element 1.
  • the distance between the boundary between the first external electrode 21 and the capacitor element 1 and the end of the metal foil 4 on the side of the first external electrode 21 is preferably 3 mm or more, more preferably 5 mm or more.
  • the distance between the boundary between the second external electrode 22 and the capacitor element 1 and the end of the metal foil 4 on the second external electrode 22 side is preferably 3 mm or more, more preferably 5 mm or more. In this case, it becomes difficult for the pair of external electrodes 2 and the metal foil 4 to come into contact with each other, and it becomes easier to suppress a short circuit.
  • the metal foil 4 may be coated with the capacitor element protection material 51.
  • the capacitor element protection material 51 electrically insulates the metal foil 4 and the pair of external electrodes 2 from each other. It is preferable that the capacitor element 1 is covered with the protective material 51.
  • the metal foil 4 is preferably not exposed to the outside.
  • the capacitor 10 further includes the heat shrinkable tube 6 provided on the metal foil 4, the metal foil 4 is not exposed to the outside. In this way, by not exposing the metal foil 4 to the outside, it is possible to suppress the deterioration of the metal foil 4 due to oxidation or the like. Furthermore, it is possible to prevent the metal foil 4 and the pair of external electrodes 2 from coming into contact with each other to cause a short circuit.
  • the capacitor 10 preferably further includes a pair of bus bars 9.
  • the pair of bus bars 9 are a first bus bar 91 and a second bus bar 92.
  • the pair of bus bars 9 can be bonded to each of the pair of external electrodes 2 to electrically connect the pair of bus bars 9 to the pair of external electrodes 2.
  • the first bus bar 91 can be adhered to the first external electrode 21 to electrically connect them.
  • the second bus bar 92 can be adhered to the second external electrode 22 to electrically connect them.
  • the pair of bus bars 9 is not particularly limited, but may be, for example, a plate-shaped member made of copper or copper alloy.
  • the method of adhering the pair of bus bars to each of the pair of external electrodes 2 is not particularly limited, and examples thereof include a method of adhering them by solder welding, resistance welding, ultrasonic welding, or the like. From the viewpoint of suppressing a short circuit, the pair of bus bars 9 are not in contact with the metal foil 4, and the pair of bus bars 9 and the metal foil 4 are electrically insulated.
  • the capacitor 10 preferably further includes an electrode sealing material 24.
  • the electrode sealing material 24 covers the pair of external electrodes 2.
  • the electrode sealing material 24 includes a first electrode sealing material 241 and a second electrode sealing material 242.
  • the first electrode sealing material 241 seals and covers the first external electrode 21, and the second electrode sealing material 242 seals and covers the second external electrode 22.
  • the pair of external electrodes 2 with the electrode sealing material 24 so that the external electrodes 2 do not come into direct contact with the outside air, it becomes easy to suppress moisture absorption by the external electrodes 2.
  • the material of the electrode sealing material 24 is not particularly limited.
  • the material of the electrode sealing material 24 may be a resin material that is less likely to allow moisture and gas such as water vapor to pass through than the external electrode 2.
  • a thermosetting resin such as an epoxy resin can be used as the material of the electrode sealing material 24.
  • the electrode sealing material 24 can be formed by adhering the bus bar 9 to the external electrode 2 and then applying and curing the resin material so as to cover the entire external electrode 2.
  • the bus bar 9 projects from the electrode sealing material 24.
  • the connection point between the bus bar 9 and the external electrode 2 is covered with an electrode sealing material 24.
  • the curing temperature of the thermosetting resin is preferably 120° C. or lower.
  • the material of the electrode sealing material 24 may be a thermosetting resin composition.
  • the thermosetting resin composition contains known inorganic fillers, curing agents, catalysts and the like.
  • the capacitor 10 preferably further includes a water repellent layer (not shown in FIG. 3).
  • the water repellent layer covers the pair of external electrodes 2 and/or the electrode sealing material 24. By covering the external electrodes 2 and the like with the water repellent layer, the external electrodes 2 and the like easily repel water, and it becomes easy to suppress moisture absorption by the external electrodes 2 and the like.
  • the material of the water repellent layer is not particularly limited.
  • the material of the water-repellent layer may be any material that is less likely to allow moisture and gas such as water vapor to pass through than the external electrode 2.
  • the water-repellent layer can be formed using a fluorine-based or silicon-based water repellent.
  • the water-repellent layer can be formed by adhering the bus bar 9 to the external electrode 2 and then applying a water-repellent agent so as to cover the external electrode 2 and drying.
  • a water repellent layer may be formed so as to cover the electrode sealing material 24.
  • the heat-shrinkable tube 6 of this embodiment is basically the same as the heat-shrinkable tube 6 of the first embodiment.
  • the heat shrink tube 6 is provided in the outermost layer of the capacitor 10.
  • FIG. 4B shows the capacitor 10 without the heat shrink tube 6.
  • the metal foil 4 is provided in the outermost layer, and the capacitor element protection member 51 is provided between the metal foil 4 and the capacitor element 1.
  • the condenser 10 may not include the heat shrinkable tube 6. Further, the capacitor 10 may not include the capacitor element protection member 51, and the heat shrinkable tube 6 may be mounted on the metal foil 4.
  • the capacitor 10 includes a capacitor element 1, a pair of external electrodes 2, a pair of metal caps 3, and a metal foil 4.
  • the pair of external electrodes 2 are provided at both ends of the capacitor element 1.
  • the pair of metal caps 3 covers each of the pair of external electrodes 2.
  • the metal foil 4 covers at least a part of the capacitor element 1.
  • the capacitor 10 does not include an outer case and a mold resin filled in the outer case as described in Patent Document 1. That is, the capacitor 10 has a so-called caseless structure. Therefore, the weight of the capacitor 10 can be reduced by at least the amount corresponding to the conventional outer case.
  • the capacitor 10 includes the pair of metal caps 3 that cover each of the pair of external electrodes 2.
  • the metal cap 3 is less likely to allow gas such as water vapor to pass therethrough than the external electrode 2. Therefore, by covering the external electrode 2 with the metal cap 3, it becomes easy to suppress moisture absorption by the external electrode 2.
  • the capacitor 10 includes a metal foil 4 that covers at least a part of the capacitor element 1. Compared to the surface of the capacitor element 1, the metal foil 4 is less likely to allow gas such as water vapor to pass through. Therefore, by covering at least a part of the surface of the capacitor element 1 with the metal foil 4, it becomes easy to suppress moisture absorption from the surface of the capacitor element 1.
  • the capacitor 10 according to the present embodiment includes both the pair of metal caps 3 and the metal foil 4, and thus can have excellent moisture resistance.
  • FIG. 6A is a perspective view of the capacitor 10 according to this embodiment.
  • FIG. 5 is a sectional view taken along line XX of FIG. 6A.
  • FIG. 6B is a perspective view of the capacitor 10 without the heat shrink tube 6.
  • the capacitor 10 employs a so-called caseless structure, and does not include an outer case as described in Patent Document 1. That is, the capacitor 10 is a caseless capacitor. As shown in FIG. 5, the capacitor 10 includes a capacitor element 1, a pair of external electrodes 2, a pair of metal caps 3, and a metal foil 4. Preferably, the capacitor 10 further includes a capacitor element protection material 51. Preferably, the capacitor 10 further includes a metal foil protective material 52. Preferably, the condenser 10 further comprises a heat shrink tube 6.
  • each component will be described.
  • the capacitor element 1 of this embodiment is basically the same as the capacitor element 1 of the first embodiment. Also in the present embodiment, the capacitor element 1 may be the winding type capacitor element 7 (see FIG. 7B) or the laminated type capacitor element 8 (see FIG. 8D). As shown in FIGS. 5 to 6B, the capacitor 10 according to the present embodiment employs a wound-type capacitor element 7 as the capacitor element 1.
  • the external electrode 2 of this embodiment is basically the same as the external electrode 2 of the first embodiment.
  • the capacitor 10 according to this embodiment also includes a pair of external electrodes 2.
  • the pair of external electrodes 2 are a first external electrode 21 and a second external electrode 22.
  • the metal cap 3 of this embodiment is basically the same as the metal cap 3 of the first embodiment.
  • the capacitor 10 according to this embodiment also includes a pair of metal caps 3.
  • the pair of metal caps 3 are a first metal cap 31 and a second metal cap 32.
  • the first metal cap 31 covers the first external electrode 21, and the second metal cap 32 covers the second external electrode 22.
  • the pair of metal caps 3 covers the boundary between the capacitor element 1 and each of the pair of external electrodes 2. Thus, if the boundary is covered, the moisture resistance of the capacitor 10 can be further improved.
  • the method of mounting the metal cap 3 on the capacitor element 1 is the same as in the first embodiment.
  • the metal foil 4 of this embodiment is basically the same as the metal foil 4 of the second embodiment.
  • the metal foil 4 covers at least a part of the capacitor element 1.
  • the metal foil 4 covers the entire side surface of the capacitor element 1.
  • the metal foil 4 may be in contact with either the first metal cap 31 or the second metal cap 32, but as shown in FIG. 5, the metal foil 4 is preferably the first metal cap 31 and the second metal cap 32. It is not in contact with any of the metal caps 32. Thereby, a short circuit can be suppressed.
  • the metal foil 4 covers the capacitor element 1 via the capacitor element protection material 51. This prevents the metal foil 4 from contacting the metal cap 3. Thereby, a short circuit can be suppressed.
  • the capacitor 10 preferably further includes a capacitor element protection material 51.
  • the capacitor element protection member 51 of this embodiment is basically the same as the capacitor element protection member 51 of the first embodiment.
  • the capacitor element protection material 51 is preferably provided between the capacitor element 1 and the metal foil 4.
  • the capacitor element protection member 51 is provided between the capacitor element 1 and the metal foil 4, and the entire side surface of the capacitor element 1 and one of each of the pair of metal caps 3 are provided. The part (opening edge) is covered. As described above, since the capacitor element protection material 51 is provided between the capacitor element 1 and the metal foil 4, it becomes easier to suppress moisture absorption from the surface of the capacitor element 1.
  • the capacitor element protection material 51 preferably electrically insulates the metal foil 4 and the pair of metal caps 3. As described above, in the present embodiment, the capacitor element protection member 51 covers the entire side surface of the capacitor element 1 and a part of each of the pair of metal caps 3. Therefore, even if the metal foil 4 for covering the capacitor element 1 is provided on the capacitor element protection material 51, the metal foil 4 and the pair of metal caps 3 are electrically insulated by the capacitor element protection material 51. The short circuit can be suppressed.
  • the metal foil 4 includes the pair of metal caps 3 and the capacitor element. It is preferable that the boundary part with 1 is covered. That is, as shown in FIG. 5, the end portion of the metal foil 4 extends outside the boundary portion between each of the pair of metal caps 3 and the capacitor element 1, and the pair of metal elements is interposed via the capacitor element protective material 51. It is preferable to cover the boundary between the cap 3 and the capacitor element 1. A gap may exist at the boundary between the pair of metal caps 3 and the capacitor element 1, and moisture and gas such as water vapor may enter through the gap. However, as shown in FIG. 5, since the boundary is covered with the metal foil 4 via the capacitor element protection material 51, the moisture resistance of the capacitor 10 can be further improved.
  • the metal foil 4 is provided so as not to contact at least one metal cap 3 (preferably both). Thereby, a short circuit can be suppressed.
  • the width of the metal foil 4 is shorter than the distance from the boundary between the first metal cap 31 and the capacitor element 1 to the boundary between the second metal cap 32 and the capacitor element 1.
  • the distance between the boundary between the first metal cap 31 and the capacitor element 1 and the end of the metal foil 4 on the side of the first metal cap 31 (the capacitor element 1 Is preferably 3 mm or more, more preferably 5 mm or more.
  • the distance between the boundary between the second metal cap 32 and the capacitor element 1 and the end of the metal foil 4 on the second metal cap 32 side is preferably 3 mm or more, more preferably 5 mm or more. In this case, it becomes difficult for the pair of metal caps 3 and the metal foil 4 to come into contact with each other, and it becomes easier to suppress a short circuit.
  • the capacitor 10 preferably further includes a metal foil protective material 52.
  • the metal foil protective material 52 covers at least a part of the metal foil 4.
  • the metal foil protective material 52 covers the entire metal foil 4. In this case, the humidity resistance of the capacitor 10 can be particularly improved.
  • the material of the metal foil protective material 52 a material that can be used as the material of the capacitor element protective material 51 can be used.
  • the capacitor element protection material 51 and the metal foil protection material 52 may be formed of the same material or different materials. Good.
  • the metal foil protection material 52 preferably contains at least one selected from the group consisting of an insulating film, a gas barrier film, and a cured product of a prepreg. In this case, moisture absorption from the surface of the capacitor element 1 can be suppressed more easily, and the moisture resistance of the capacitor 10 can be further improved.
  • the metal foil 4 is not exposed to the outside. That is, as shown in FIG. 5, the metal foil 4 is preferably disposed between the capacitor element protection member 51 and the metal foil protection member 52 so that the metal foil 4 is not exposed to the outside. In this way, by not exposing the metal foil 4 to the outside, it is possible to suppress the deterioration of the metal foil 4 due to oxidation or the like. Further, it is possible to prevent the metal foil 4 and the pair of metal caps 3 from coming into contact with each other to cause a short circuit.
  • the heat-shrinkable tube 6 of this embodiment is basically the same as the heat-shrinkable tube 6 of the first embodiment.
  • the heat shrink tube 6 is provided in the outermost layer of the capacitor 10.
  • FIG. 6B shows the capacitor 10 without the heat shrink tube 6.
  • the metal foil protective material 52 is provided in the outermost layer.
  • the condenser 10 may not include the heat shrinkable tube 6.
  • the capacitor 10 may not include the metal foil protective material 52.
  • the metal foil 4 is provided on the outermost layer.
  • the capacitor 10 may not include the metal foil protective material 52, and the heat shrinkable tube 6 may be mounted on the metal foil 4.
  • the capacitor element 1 is covered with the capacitor element protection material 51 after the pair of metal caps 3 is attached to each of the pair of external electrodes 2 of the capacitor element 1, but the invention is not limited to this mode.
  • the pair of metal caps 3 may be attached after the capacitor element 1 is covered with the capacitor element protection material 51.
  • the metal cap 3 having a size matching the shape of the end of the capacitor element 1 covered with the capacitor element protection material 51 can be used.
  • the winding type capacitor element 7 is adopted as the capacitor element 1, but the laminated type capacitor element 8 may be adopted.
  • the metal cap 3 is attached, but the invention is not limited to this.
  • the entire side surface of the capacitor element 1 may be covered with the capacitor element protection material 51 after mounting the pair of metal caps 3 so as to cover the pair of external electrodes 2 on both ends of the capacitor element 1.
  • the metal cap 3 having the same shape as the end portion of the capacitor element 1 provided with the external electrode 2 can be used.
  • the capacitor element protection material 51 is It is preferable to cover the boundary with each of the pair of external electrodes 2. Also in this case, it is preferable that the metal cap 3 is first attached so as to cover this boundary portion, and then the capacitor element protection material 51 is provided via the metal cap 3 so as to further cover this boundary portion.
  • the capacitor 10 does not include the bus bar 9 as shown in FIGS. 1 to 2B, but may further include the bus bar 9.
  • the pair of bus bars 9 can be adhered to each of the pair of metal caps 3 to electrically connect the pair of external electrodes 2 to the pair of bus bars 9.
  • the entire side surface of the capacitor element 1 is covered with the capacitor element protection material 51, and after the pair of metal caps 3 are mounted, the edge sealing material 23 is used to cover the metal cap 3 and the capacitor element 3.
  • the boundary with the protective material 51 is sealed, the invention is not limited to this. A pair of metal caps 3 are attached, the boundary between the metal cap 3 and the capacitor element 1 is first sealed with the edge sealing material 23, and then the entire side surface of the capacitor element 1 is covered with the capacitor element protection material 51. You may.
  • one capacitor element protection member 51 covers the entire side surface of the capacitor element 1 and each side surface of the pair of external electrodes 2, but the present invention is not limited to this. ..
  • Two capacitor element protection members 51 may be used. That is, the first capacitor element protective material 51 is used to cover a part of the side surface of the first external electrode 21 and the side surface of the capacitor element 1 on the first external electrode 21 side, and the second capacitor element protective material. The material 51 may be used to cover a part of the side surface of the second external electrode 22 and the side surface of the capacitor element 1 on the second external electrode 22 side. Even in this case, since the metal foil 4 and each of the pair of external electrodes 2 are electrically insulated, a short circuit can be suppressed. However, from the viewpoint of simplifying the manufacturing process of the capacitor 10 and the viewpoint of improving the moisture resistance of the capacitor 10, one capacitor element protection member 51, as shown in FIG. It is preferable to cover each side surface of the external electrode 2 of FIG.
  • the metal foil protection material 52 of the third embodiment may be further included. That is, the metal foil 4 may be sandwiched between the capacitor element protection material 51 and the metal foil protection material 52. In this case, the humidity resistance of the capacitor 10 can be particularly improved. Further, the capacitor element protection member 51 and the metal foil protection member 52 sandwich the metal foil 4 so that the metal foil 4 is not exposed to the outside, so that deterioration of the metal foil 4 due to oxidation or the like can be suppressed.
  • one capacitor element protection member 51 covers the entire side surface of the capacitor element 1 and each side surface of the pair of metal caps 3, but the present invention is not limited to this. ..
  • Two capacitor element protection materials 51 may be used. That is, the side surface of the first metal cap 31 and a part of the side surface of the capacitor element 1 on the side of the first metal cap 31 are covered with the first capacitor element protection material 51, and the second capacitor element protection is performed.
  • the material 51 may be used to cover the side surface of the second metal cap 32 and a part of the side surface of the capacitor element 1 on the second metal cap 32 side. Even in this case, since the metal foil 4 and each of the pair of metal caps 3 are electrically insulated, a short circuit can be suppressed.
  • one capacitor element protection member 51 is, as shown in FIG. It is preferable to cover the side surface of the metal cap 3 of FIG.
  • the capacitor 10 does not include the bus bar 9, but may further include the bus bar 9.
  • the pair of bus bars 9 can be adhered to each of the pair of metal caps 3 to electrically connect the pair of external electrodes 2 to the pair of bus bars 9.
  • the capacitor (10) includes a capacitor element (1), a pair of external electrodes (2; 21, 22), a pair of metal caps (3; 31, 32), and/or a metal foil ( 4) and are provided.
  • the pair of external electrodes (2; 21, 22) are provided at both ends of the capacitor element (1).
  • the pair of metal caps (3; 31, 32) covers each of the pair of external electrodes (2; 21, 22).
  • the metal foil (4) covers at least a part of the capacitor element (1).
  • the capacitor (10) according to the second aspect, in the first aspect, further comprises a capacitor element protection material (51) having electrical insulation properties and covering at least a part of the capacitor element (1).
  • the second aspect it becomes easy to suppress moisture absorption from the surface of the capacitor element (1).
  • the capacitor element protective material (51) is at least one selected from the group consisting of an insulating film, a gas barrier film, and a cured product of prepreg. Including.
  • the third aspect it becomes easier to suppress moisture absorption from the surface of the capacitor element (1).
  • the capacitor (10) according to the fourth aspect includes the metal foil (4) according to the second or third aspect.
  • the capacitor element protection material (51) is provided between the capacitor element (1) and the metal foil (4).
  • the fourth aspect it is easier to suppress moisture absorption from the surface of the capacitor element (1), and it is easier to suppress a short circuit.
  • the capacitor (10) according to the fifth aspect includes the pair of metal caps (3; 31, 32) according to any one of the first to fourth aspects.
  • An edge sealing material (23) for sealing the opening edges of the pair of metal caps (3; 31, 32) is further provided.
  • the capacitor (10) according to the sixth aspect is any one of the first to fifth aspects, further including a water repellent layer that covers the pair of external electrodes (2; 21, 22).
  • the humidity resistance of the capacitor (10) can be further enhanced.
  • a capacitor (10) according to a seventh aspect is the capacitor (10) according to any one of the first to sixth aspects, wherein an electrode sealing material (8; 81, 82) covering the pair of external electrodes (2; 21, 22) is provided. Further prepare.
  • the humidity resistance of the capacitor (10) can be further enhanced.
  • the capacitor (10) according to the eighth aspect includes the metal foil (4) according to any one of the first to fourth aspects.
  • the metal foil protective material (52) which covers at least one part of the said metal foil (4) is further provided.
  • the humidity resistance of the capacitor (10) can be further enhanced.
  • the metal foil protective material (52) is at least one selected from the group consisting of an insulating film, a gas barrier film, and a cured product of a prepreg. Including.
  • the moisture resistance of the capacitor (10) can be further enhanced.
  • the capacitor (10) according to the tenth aspect further includes a heat-shrinkable tube (6) that covers at least a part of the capacitor element (1) according to any one of the first to ninth aspects.
  • the moisture resistance of the capacitor (10) can be further enhanced.

Abstract

コンデンサ10は、コンデンサ素子1と、コンデンサ素子1の両端に設けられた一対の外部電極2と、一対の外部電極2の各々を被覆する一対の金属キャップ3、及び/又はコンデンサ素子1の少なくとも一部を被覆する金属箔4と、を備える。

Description

コンデンサ
 本開示は、一般にコンデンサに関し、より詳細にはコンデンサ素子を備えるコンデンサに関する。
 コンデンサは、電荷を蓄えたり、放出したりする受動部品であり、電子機器の部品として用いられる。コンデンサは、吸湿により不良が生じることがあるため、優れた耐湿性を有するコンデンサが求められている。例えば、特許文献1には、樹脂製のケースにコンデンサを収容し、ケース内に絶縁性のモールド樹脂を充填したケースモールド型コンデンサが開示されている。
 特許文献1では、ある程度の耐湿性を有するフィルムコンデンサを得ることができるものの、軽量化には配慮されていない。
特開2008-251595号公報
 本開示の目的は、軽量化を実現するとともに、優れた耐湿性を有するコンデンサを提供することである。
 本開示の一態様に係るコンデンサは、コンデンサ素子と、前記コンデンサ素子の両端に設けられた一対の外部電極と、前記一対の外部電極の各々を被覆する一対の金属キャップ、及び/又は前記コンデンサ素子の少なくとも一部を被覆する金属箔と、を備える。
図1は、第1実施形態に係るコンデンサの概略断面図である。 図2Aは、第1実施形態において、熱収縮チューブを備えるコンデンサの斜視図である。図2Bは、第1実施形態において、熱収縮チューブを備えないコンデンサの斜視図である。 図3は、第2実施形態に係るコンデンサの概略断面図である。 図4Aは、第2実施形態において、熱収縮チューブを備えるコンデンサの斜視図である。図4Bは、第2実施形態において、熱収縮チューブを備えないコンデンサの斜視図である。 図5は、第3実施形態に係るコンデンサの概略断面図である。 図6Aは、第3実施形態において、熱収縮チューブを備えるコンデンサの斜視図である。図6Bは、第3実施形態において、熱収縮チューブを備えないコンデンサの斜視図である。 図7Aは、巻回型コンデンサ素子の製造方法の一工程図(斜視図)である。図7Bは、上記巻回型コンデンサ素子の斜視図である。 図8Aは、積層型コンデンサ素子の製造方法の一工程図(斜視図)である。図8Bは、積層型コンデンサ素子の製造方法の一工程図(断面図)である。図8Cは、図8Bに示す積層型コンデンサ素子の一部破断した斜視図である。図8Dは、上記積層型コンデンサ素子の斜視図である。
 1.第1実施形態
 (1)概要
 図1に示すように、本実施形態に係るコンデンサ10は、コンデンサ素子1と、一対の外部電極2と、一対の金属キャップ3と、を備える。一対の外部電極2は、コンデンサ素子1の両端に設けられる。一対の金属キャップ3は、一対の外部電極2の各々を被覆する。
 コンデンサ10は、特許文献1に記載されているような外装ケース及び外装ケース内に充填されたモールド樹脂を備えていない。すなわち、コンデンサ10は、いわゆるケースレス構造を採用している。そのため、コンデンサ10は、少なくとも従来の外装ケースに相当する分だけ、軽量化を実現することができる。
 上述のように、コンデンサ10は、外部電極2を被覆する金属キャップ3を備える。金属キャップ3は、外部電極2に比べて、水蒸気などのガスを透過させにくい。そのため、金属キャップ3で外部電極2を被覆して、外部電極2が外気に直接触れないようにすることで、外部電極2による吸湿を抑制しやすくなる。このように、本実施形態に係るコンデンサ10は、金属キャップ3を備えるため、優れた耐湿性を有することができる。
 (2)詳細
 以下、図1~図2Bを参照しながら本実施形態に係るコンデンサ10について詳細に説明する。
 図2Aは、本実施形態に係るコンデンサ10の斜視図である。図1は、図2AのX-X線断面図である。図2Bは、熱収縮チューブ6を備えないコンデンサ10の斜視図である。
 本実施形態に係るコンデンサ10は、いわゆるケースレス構造を採用しており、特許文献1に記載されているような外装ケースを備えていない。つまり、コンデンサ10は、ケースレスコンデンサである。図1に示すように、コンデンサ10は、コンデンサ素子1と、一対の外部電極2と、一対の金属キャップ3と、を備える。好ましくは、コンデンサ10は、コンデンサ素子保護材51を更に備える。好ましくは、コンデンサ10は、縁部封止材23を更に備える。好ましくは、コンデンサ10は、熱収縮チューブ6を更に備える。以下、各構成要素について説明する。なお、本明細書において「A及び/又はB」という表現は、「A」、「B」、又は「A及びB」のいずれかを意味する。
 <コンデンサ素子>
 まずコンデンサ素子1(コンデンサ本体)について説明する。コンデンサ素子1は、プラスチックフィルムを誘電体として有する。コンデンサ素子1には、巻回型コンデンサ素子7(図7B参照)、及び積層型コンデンサ素子8(図8D参照)が含まれる。以下、巻回型コンデンサ素子7、及び積層型コンデンサ素子8について説明する。
 ≪巻回型コンデンサ素子≫
 巻回型コンデンサ素子7は、例えば、次のようにして製造することができる。まず金属化フィルムを用意する。具体的には、金属化フィルムには、第1金属化フィルム71及び第2金属化フィルム72が含まれる(図7A参照)。
 金属化フィルムは、誘電体フィルムと、導電層と、を有する。
 具体的には、第1金属化フィルム71は、第1誘電体フィルム701と、第1導電層711と、を有する。第1誘電体フィルム701は、長尺状のフィルムである。第1誘電体フィルム701の片面に、第1マージン部721を除いて、第1導電層711が形成されている。第1マージン部721は、第1誘電体フィルム701が露出している部分である。第1マージン部721は、第1誘電体フィルム701の一方の長辺に沿って、第1導電層711よりも細い帯状に形成されている。
 一方、第2金属化フィルム72は、第1金属化フィルム71と同様に形成されている。すなわち、第2金属化フィルム72は、第2誘電体フィルム702と、第2導電層712と、を有する。第2誘電体フィルム702は、第1誘電体フィルム701と同じ幅を有する長尺状のフィルムである。第2誘電体フィルム702の片面に、第2マージン部722を除いて、第2導電層712が形成されている。第2マージン部722は、第2誘電体フィルム702が露出している部分である。第2マージン部722は、第2誘電体フィルム702の一方の長辺に沿って、第2導電層712よりも細い帯状に形成されている。
 第1誘電体フィルム701及び第2誘電体フィルム702は、例えばポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニルサルファイド又はポリスチレンなどで形成されている。第1導電層711及び第2導電層712は、蒸着法又はスパッタリング法などの方法で形成される。第1導電層711及び第2導電層712は、例えばアルミニウム、亜鉛及びマグネシウムなどで形成されている。
 次に図7Aに示すように、第1金属化フィルム71及び第2金属化フィルム72の各々の2つの長辺を揃えて重ねる。このとき第1導電層711と第2導電層712との間に、第1誘電体フィルム701又は第2誘電体フィルム702を介在させる。さらに第1マージン部721が形成されている長辺と、第2マージン部722が形成されている長辺と、を逆にする。このように、第1金属化フィルム71及び第2金属化フィルム72を重ねた状態で巻き取ることによって、円柱状の巻回体73を得ることができる。次にこの巻回体73の側面を両側から押圧して、扁平状巻回体74に加工する(図7B参照)。扁平状巻回体74の断面形状は、長円状をなしている。このように扁平化することで、省スペース化を図ることができる。
 以上のようにして、巻回型コンデンサ素子7が得られる。巻回型コンデンサ素子7の内部において、第1導電層711は第1内部電極となり、第2導電層712は第2内部電極となる。これらの一対の内部電極は、誘電体フィルム(第1誘電体フィルム701又は第2誘電体フィルム702)を介して対向している。
 ≪積層型コンデンサ素子≫
 一方、積層型コンデンサ素子8は、例えば、次のようにして製造することができる。まず金属化フィルムを用意する。具体的には、金属化フィルムには、第1金属化フィルム81及び第2金属化フィルム82が含まれる(図8A参照)。
 金属化フィルムは、誘電体フィルムと、導電層と、を有する。
 具体的には、第1金属化フィルム81は、第1誘電体フィルム801と、第1導電層811と、を有する。第1誘電体フィルム801は、矩形状のフィルムである。第1誘電体フィルム801の片面に、第1マージン部821を除いて、第1導電層811が形成されている。第1マージン部821は、第1誘電体フィルム801が露出している部分である。第1マージン部821は、第1誘電体フィルム801の1つの辺に沿って、第1導電層811よりも細い帯状に形成されている。
 一方、第2金属化フィルム82は、第1金属化フィルム81と同様に形成されている。すなわち、第2金属化フィルム82は、第2誘電体フィルム802と、第2導電層812と、を有する。第2誘電体フィルム802は、第1誘電体フィルム801と同じ大きさの矩形状のフィルムである。第2誘電体フィルム802の片面に、第2マージン部822を除いて、第2導電層812が形成されている。第2マージン部822は、第2誘電体フィルム802が露出している部分である。第2マージン部822は、第2誘電体フィルム802の1つの辺に沿って、第2導電層812よりも細い帯状に形成されている。
 第1誘電体フィルム801及び第2誘電体フィルム802は、例えばポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニルサルファイド又はポリスチレンなどで形成されている。第1導電層811及び第2導電層812は、蒸着法又はスパッタリング法などの方法で形成される。第1導電層811及び第2導電層812は、例えばアルミニウム、亜鉛及びマグネシウムなどで形成されている。
 次に図8A及び図8Bに示すように、第1金属化フィルム81及び第2金属化フィルム82の四辺を揃えて交互に重ねる。このとき第1導電層811と第2導電層812との間に、第1誘電体フィルム801又は第2誘電体フィルム802を介在させる。さらに第1マージン部821が形成されている一辺と、第2マージン部822が形成されている一辺と、を逆にする。図8Aでは、第1マージン部821を後方(X軸の負の向き)に、第2マージン部822を前方(X軸の正の向き)に配置している。このように、複数の第1金属化フィルム81及び第2金属化フィルム82を積層して一体化することによって、図8B及び図8Cに示すような積層体83を得ることができる。さらに積層体83は、前面(X軸の正の向きに向いている面)及び後面(X軸の負の向きに向いている面)を除いて、保護フィルム84で被覆されている。保護フィルム84は、電気的絶縁性を有するフィルムである。
 以上のようにして、積層型コンデンサ素子8が得られる。積層型コンデンサ素子8の内部において、第1導電層811は第1内部電極となり、第2導電層812は第2内部電極となる。これらの一対の内部電極は、誘電体フィルム(第1誘電体フィルム801又は第2誘電体フィルム802)を介して対向している。
 <外部電極>
 次に、外部電極2について説明する。図1に示すように、一対の外部電極2は、第1外部電極21及び第2外部電極22である。一対の外部電極2は、コンデンサ素子1の両端に設けられている。一対の外部電極2は、コンデンサ素子1の一対の内部電極の各々と電気的に接続されている。外部電極2は、例えば、メタリコン(金属溶射法)により形成することができる。外部電極2の材料は、特に限定されないが、例えば亜鉛を含む。外部電極2は、亜鉛のみで形成されていてもよく、亜鉛とスズなどの他の金属との混合物によって形成されていてもよい。さらに外部電極2の材料としては、融点の低い材料を使用することが好ましい。この場合、メタリコンによって外部電極2を形成する際に、熱によってコンデンサ素子1に不良が生じにくくなる。外部電極2の材料は、例えば700℃以下の融点を有することが好ましく、450℃以下の融点を有することがより好ましい。
 巻回型コンデンサ素子7の場合には、図7Bに示すように、メタリコンにより扁平状巻回体74の両端面に外部電極2(第1外部電極21及び第2外部電極22)を形成する。第1外部電極21は、第1導電層711(第1内部電極)に電気的に接続されている。第2外部電極22は、第2導電層712(第2内部電極)に電気的に接続されている。第1導電層711及び第2導電層712が一対の内部電極を構成している。
 第1実施形態では、外部電極2にバスバー9を直接接続していないが(図1参照)、必要に応じて、外部電極2にバスバー9を電気的に接続してもよい。例えば、図7Bに示すように、第1外部電極21に第1バスバー91を電気的に接続し、第2外部電極22に第2バスバー92を電気的に接続する。この接続方法として、例えば半田溶接、抵抗溶接、及び超音波溶接などが挙げられる。第1バスバー91及び第2バスバー92は、例えば銅又は銅合金などで板状に形成されている。
 一方、積層型コンデンサ素子8の場合には、図8Dに示すように、メタリコンにより積層体83の前面及び後面に外部電極2(第1外部電極21及び第2外部電極22)を形成する。第1外部電極21は、第1導電層811(第1内部電極)に電気的に接続されている。第2外部電極22は、第2導電層812(第2内部電極)に電気的に接続されている。第1導電層811及び第2導電層812が一対の内部電極を構成している。
 その後、必要に応じて、外部電極2にバスバー9を電気的に接続してもよい。例えば、図8Dに示すように、第1外部電極21に第1バスバー91を電気的に接続し、第2外部電極22に第2バスバー92を電気的に接続する。この接続方法として、例えば半田溶接、抵抗溶接及び超音波溶接などが挙げられる。第1バスバー91及び第2バスバー92は、例えば銅又は銅合金などで板状に形成されている。
 図1~図2Bに示すように、本実施形態に係るコンデンサ10は、コンデンサ素子1として、巻回型コンデンサ素子7を採用している。上述のように、本実施形態に係るコンデンサ10では、巻回型コンデンサ素子7の外部電極2にバスバー9は接続されていない。
 <金属キャップ>
 次に、金属キャップ3について説明する。金属キャップ3は、有底筒状をなす金属製のキャップである。金属キャップ3の開口部の形状は、コンデンサ素子1の両端部の形状とほぼ同じである。本実施形態では、コンデンサ素子1が巻回型コンデンサ素子7であるため、金属キャップ3の開口部の形状は、長円形状をなしている。コンデンサ素子1が積層型コンデンサ素子8である場合には、金属キャップ3の開口部の形状は、矩形状をなしている。
 一対の金属キャップ3は、第1金属キャップ31及び第2金属キャップ32である。一対の金属キャップ3は、コンデンサ素子1の両端に被せられている。このようにして、一対の金属キャップ3は、一対の外部電極2の各々を被覆する。すなわち、第1金属キャップ31が第1外部電極21を被覆し、第2金属キャップ32が第2外部電極22を被覆する。金属キャップ3の内底面と、外部電極2とは、電気的に接続されている。金属キャップ3は開口縁を有し、この開口縁はコンデンサ素子1の外周面に位置する。
 金属キャップ3の材料は、特に限定されない。金属キャップ3の材料は、外部電極2よりも、水蒸気などの水分及びガスを透過させにくい材料であればよい。この観点から、金属キャップ3の材料は、例えば銅を含む。
 ここで、外部電極2がメタリコンにより形成される場合、外部電極2の厚みは均一ではないことがある。また、コンデンサ素子1の両端面(外部電極2が形成される面)は、第1金属化フィルム71及び第2金属化フィルム72の断面を複数含むため、平坦ではないことがある。そのため、外部電極2の表面には、微小な隙間及び外部電極2の層が薄くなる箇所が存在し得る。このような箇所から水蒸気などの水分及びガスが入り込むと、コンデンサ10に不良が生じたり、コンデンサ10の寿命が短くなったりするおそれがある。しかし、本実施形態では、金属キャップ3によって外部電極2が被覆されて、外部電極2が外気に直接触れないようにしていることで、水蒸気などの水分及びガスが入り込むことを抑制することができ、コンデンサ10の耐湿性を向上させることができる。
 金属キャップ3は、コンデンサ素子1と一対の外部電極2の各々との境界部を被覆することが好ましい。上述のように、外部電極2は、メタリコンによりコンデンサ素子1の両端面に形成されている。このコンデンサ素子1と外部電極2の各々との境界部には微小な隙間が存在するおそれがあり、この隙間から水蒸気などの水分及びガスが入り込むおそれがある。しかし、金属キャップ3によってこの境界部が被覆されていれば、コンデンサ10の耐湿性を更に向上させることができる。なお、図1では、後述するコンデンサ素子保護材51を介して、金属キャップ3は、コンデンサ素子1と外部電極2との境界部を被覆している。
 金属キャップ3は、例えば、次のようにしてコンデンサ素子1に装着される。まず、コンデンサ素子1の外部電極2が設けられた端部の形状と同様の形状を有する金属キャップ3を準備する。なお、図1では、後述するコンデンサ素子保護材51でコンデンサ素子1を被覆した後に金属キャップ3を装着しているため、コンデンサ素子保護材51で被覆したコンデンサ素子1の端部の形状に合う大きさの金属キャップ3を用いている。図2A及び図2Bに示すように、巻回型コンデンサ素子7を用いる場合、金属キャップ3は、一方の底面が開口した楕円柱の形状を有する。金属キャップ3の形状は、楕円柱の形状に限られず、外部電極2を被覆するようにコンデンサ素子1の端部に装着可能な形状であればよい。例えば、積層型コンデンサ素子8を用いる場合、金属キャップ3は、一面が開口した直方体の形状を有していてもよい。
 金属キャップ3と、コンデンサ素子1の外部電極2との接続は、次のようにして行うことができる。例えばホットプレート上に金属キャップ3を並べる。このときホットプレートと金属キャップ3の底面とが接するようにする。はんだボールを金属キャップ3の内部の底面に配置した後、コンデンサ素子1の外部電極2が設けられた端部を金属キャップ3内に入れる。ホットプレートの熱ではんだボールが溶融し、外部電極2と金属キャップ3とが、溶融したはんだボールによって接着される。このようにして、金属キャップ3を備えるコンデンサ10を得ることができる。外部電極2と金属キャップ3とは接しているため、電気的にも接続される。
 <コンデンサ素子保護材>
 図1に示すように、コンデンサ10は、コンデンサ素子保護材51を更に備えることが好ましい。コンデンサ素子保護材51は、コンデンサ素子1の少なくとも一部を被覆して保護する部材である。好ましくは、コンデンサ素子保護材51は、コンデンサ素子1の側面全体を被覆する。側面は、コンデンサ素子1の表面全体のうち、両端面を除く面である。両端面には、外部電極2が位置している。本実施形態では、コンデンサ10は、金属キャップ3を備えるため、外部電極2からの吸湿を抑制することができる。さらにコンデンサ素子1の側面全体をコンデンサ素子保護材51で被覆して、コンデンサ素子1が外気に直接触れないようにすることで、コンデンサ素子1の表面からの吸湿も抑制しやすくなる。このように、コンデンサ10がコンデンサ素子保護材51を更に備えることで、コンデンサ10の耐湿性をより向上させることができる。
 コンデンサ素子保護材51の材料は、特に限定されない。コンデンサ素子保護材51の材料は、電気的絶縁性を有する材料であればよい。コンデンサ素子保護材51の材料として、コンデンサ素子1の表面よりも、水蒸気などの水分及びガスを透過させにくい材料を用いることが好ましい。この場合、コンデンサ10の耐湿性をより向上させることができる。
 コンデンサ素子保護材51は、絶縁性フィルム、ガスバリアフィルム、及びプリプレグの硬化物からなる群から選択される少なくとも一種を含むことが好ましい。この場合、コンデンサ素子1の表面からの吸湿をより抑制しやすくなり、コンデンサ10の耐湿性をより向上させることができる。
 絶縁性フィルムは、特に限定されない。絶縁性フィルムは、電気的絶縁性を有するフィルムであればよい。絶縁性フィルムの材料は、例えば、ポリプロピレン、ポリエチレン、及びポリイミド等を含む。
 ガスバリアフィルムは、特に限定されない。ガスバリアフィルムは、電気的絶縁性を有し、かつ水蒸気などのガスを透過させにくい性質を有するフィルムであればよい。ガスバリアフィルムとして、基材フィルムと、基材フィルム上に形成されたガスバリア層と、を有するフィルムを用いることができる。基材フィルムは、特に限定されない。基材フィルムとしては、例えば、ポリエチレンテレフタレート(PET)フィルム(融点265℃、ガラス転移点80℃(TMA法))、ポリフェニレンサルファイド(PPS)フィルム(融点280℃、ガラス転移点100℃)、ポリエーテルサルフォン(PES)フィルム(ガラス転移点220℃)、ポリエーテルイミド(PEI)フィルム(ガラス転移点220℃)、及びポリエーテルエーテルケトン(PEEK)フィルム(融点340℃、ガラス転移点140℃)などを用いることができる。これらのフィルムは、耐熱性にも優れているため、コンデンサ10の耐熱性を高めることもできる。なお、上記の融点及びガラス転移点は、DSC法(昇温速度:10℃/min)によるデータである。ガスバリア層は、特に限定されない。ガスバリア層は、例えば、酸化ケイ素及び酸化アルミニウムの少なくともいずれかを含む。ガスバリア層は、例えば、蒸着法、スパッタリング法、又はプラズマCVD法などにより形成可能である。
 プリプレグの硬化物は、プリプレグが完全に硬化し、C-ステージ状態にある物質である。C-ステージとは不溶不融の状態であり、硬化反応の最終状態である。プリプレグは、補強材と、熱硬化性樹脂組成物と、を含む。
 補強材としては、特に限定されないが、例えば、有機繊維又は無機繊維の織布又は不織布等が挙げられる。補強材は、例えば、ガラスクロス及びPET繊維の不織布を含む。
 熱硬化性樹脂組成物としては、特に限定されないが、例えば、硬化反応前の常温(25℃)において、液状である熱硬化性樹脂を含有する組成物を用いることができる。熱硬化性樹脂としては、特に限定されないが、例えば、エポキシ樹脂、不飽和ポリエステル樹脂及びポリイミド樹脂などが挙げられる。これらの中ではエポキシ樹脂が好ましい。エポキシ樹脂は、耐熱性、耐薬品性、強靭性、電気絶縁性及び接着性などの特性に優れている。熱硬化性樹脂組成物の硬化温度は、120℃以下であることが好ましい。この場合、熱硬化性樹脂組成物を硬化させる際の熱によるコンデンサ素子1への影響を小さくすることができる。熱硬化性樹脂組成物は、無機充填材を含有してもよい。無機充填材としては、特に限定されないが、例えば、シリカ、アルミナ、窒化珪素、窒化硼素、マグネシア、ベーマイト、炭酸カルシウム、水酸化アルミニウム及びタルクなどが挙げられる。また、熱硬化性樹脂組成物は、必要に応じて、公知の硬化剤及び触媒などを含有してもよい。
 図1に示すように、コンデンサ素子保護材51は、コンデンサ素子1と一対の外部電極2の各々との境界部を被覆することが好ましい。すなわち、コンデンサ素子保護材51の端部が、コンデンサ素子1と一対の外部電極2との境界部よりも外側に延伸していることが好ましい。上述のように、一対の外部電極2は、メタリコンによりコンデンサ素子1の両端に形成されている。コンデンサ素子1と一対の外部電極2の各々との境界部には微小な隙間が存在するおそれがあり、この隙間から水蒸気などの水分及びガスが入り込むおそれがある。しかし、コンデンサ素子保護材51によってこの境界部が被覆されていれば、コンデンサ10の耐湿性を更に向上させることができる。図1では、コンデンサ素子保護材51が、コンデンサ素子1と一対の外部電極2の各々との境界部を被覆し、さらにコンデンサ素子保護材51を介して一対の金属キャップ3が上記の境界部を被覆している。そのため、上記の境界部の隙間から水蒸気などの水分及びガスが入り込むことをより抑制することができる。
 <縁部封止材>
 図1に示すように、コンデンサ10は、縁部封止材23を更に備えることが好ましい。縁部封止材23は、金属キャップ3の開口縁を封止する。すなわち、縁部封止材23は、金属キャップ3の開口縁とコンデンサ素子1との境界部を封止する。縁部封止材23には、第1縁部封止材231及び第2縁部封止材232が含まれる。第1縁部封止材231は、第1金属キャップ31の開口縁とコンデンサ素子1との境界部を封止し、第2縁部封止材232は、第2金属キャップ32の開口縁とコンデンサ素子1との境界部を封止する。
 図1に示すように、コンデンサ素子1をコンデンサ素子保護材51で被覆した後に金属キャップ3が装着される態様においては、縁部封止材23は、金属キャップ3の開口縁とコンデンサ素子保護材51との境界部を封止する。すなわち、図1では、縁部封止材23は、コンデンサ素子保護材51を介して、金属キャップ3の開口縁とコンデンサ素子1との境界部を封止している。上述のように、金属キャップ3をコンデンサ素子1に装着した後に、コンデンサ素子保護材51でコンデンサ素子1を被覆する場合には、金属キャップ3を装着した後に、金属キャップ3の開口縁とコンデンサ素子1との境界部を縁部封止材23によって封止してから、コンデンサ素子保護材51でコンデンサ素子1を被覆すればよい。このように、縁部封止材23で金属キャップ3の開口縁を封止することで、金属キャップ3の開口縁とコンデンサ素子1との境界部、又は金属キャップ3の開口縁とコンデンサ素子保護材51との境界部の隙間から水蒸気などの水分及びガスが入り込むことをより抑制することができる。
 縁部封止材23の材料としては、特に限定されないが、例えば、金属キャップ3の開口縁を封止できる材料を用いることができる。縁部封止材23の材料は、水蒸気などの水分及びガスを透過させにくい材料であることが好ましい。縁部封止材23の材料は、例えば、エポキシ樹脂等の樹脂及び接着剤を含む。縁部封止材23として、変性オレフィン系のホットメルト系接着剤、及び接着剤を有するテープを用いてもよい。縁部封止材23として熱硬化性樹脂を用いる場合、熱硬化性樹脂の融点は110℃以下であることが好ましい。この場合、縁部封止材23を形成する際に、熱によるコンデンサ素子1への影響を小さくすることができる。
 <熱収縮チューブ>
 図1及び図2Aに示すように、コンデンサ10は、熱収縮チューブ6を更に備えることが好ましい。熱収縮チューブ6は、コンデンサ素子1の少なくとも一部を被覆する。好ましくは、熱収縮チューブ6は、コンデンサ素子1の側面全体を被覆する。熱収縮チューブ6は、チューブ状に形成された樹脂部材であり、熱を加えると収縮する性質を有する。例えば、熱収縮チューブ6をコンデンサ10とほぼ同じ長さに切り取り、切り取った熱収縮チューブ6をコンデンサ10にはめて加熱することで、熱収縮チューブ6が収縮し、これによってコンデンサ10に熱収縮チューブ6を密着させることができる。熱収縮チューブ6の材料、厚み、及び大きさは特に限定されない。熱収縮チューブ6としては、コンデンサ10の大きさに合わせて任意のものを用いることができる。コンデンサ10が熱収縮チューブ6を更に備えることで、コンデンサ素子1の内部に水蒸気などの水分及びガスが侵入することを更に抑制することができ、コンデンサ10はより優れた耐湿性を有し得る。なお、図1に示すように、熱収縮チューブ6は、コンデンサ10の最外層に装着されることが好ましい。
 本実施形態では、図1及び図2Aに示すように、コンデンサ10の最外層に熱収縮チューブ6が設けられている。しかし、上述のように、コンデンサ10は、熱収縮チューブ6を備えていなくてもよい。すなわち、コンデンサ10は、図2Bに示すように、熱収縮チューブ6を備えなくてもよい。図2Bでは、コンデンサ10には、コンデンサ素子1の側面全体を被覆するコンデンサ素子保護材51と、一対の外部電極2の各々を被覆する一対の金属キャップ3と、一対の金属キャップ3の開口縁とコンデンサ素子保護材51との境界部を被覆して封止する縁部封止材23と、が設けられている。
 2.第2実施形態
 (1)概要
 第2実施形態では、第1実施形態と同様の構成要素には第1実施形態と同一の符号を付して詳細な説明を省略する場合がある。
 図3に示すように、本実施形態に係るコンデンサ10は、コンデンサ素子1と、一対の外部電極2と、金属箔4と、を備える。一対の外部電極2は、コンデンサ素子1の両端に設けられる。金属箔4は、コンデンサ素子1の少なくとも一部を被覆する。
 コンデンサ10は、特許文献1に記載されているような外装ケース及び外装ケース内に充填されたモールド樹脂を備えていない。すなわち、コンデンサ10は、いわゆるケースレス構造を採用している。そのため、コンデンサ10は、少なくとも従来の外装ケースに相当する分だけ、軽量化を実現することができる。
 上述のように、コンデンサ10は、コンデンサ素子1の少なくとも一部を被覆する金属箔4を備える。金属箔4は、コンデンサ素子1の表面に比べて、水蒸気などのガスを透過させにくい。そのため、コンデンサ素子1の表面の少なくとも一部を金属箔4で被覆して、コンデンサ素子1の表面の少なくとも一部が外気に直接触れないようにすることで、コンデンサ素子1の表面からの吸湿を抑制しやすくなる。このように、本実施形態に係るコンデンサ10は、金属箔4を備えるため、優れた耐湿性を有することができる。
 (2)詳細
 以下、図3~図4Bを参照しながら本実施形態に係るコンデンサ10について詳細に説明する。図4Aは、本実施形態に係るコンデンサ10の斜視図である。図3は、図4AのX-X線断面図である。図4Bは、熱収縮チューブ6を備えないコンデンサ10の斜視図である。
 本実施形態に係るコンデンサ10は、いわゆるケースレス構造を採用しており、特許文献1に記載されているような外装ケースを備えていない。つまり、コンデンサ10は、ケースレスコンデンサである。図3に示すように、コンデンサ10は、コンデンサ素子1と、一対の外部電極2と、金属箔4と、を備える。好ましくは、コンデンサ10は、コンデンサ素子保護材51を更に備える。好ましくは、コンデンサ10は、一対のバスバー9を更に備える。好ましくは、コンデンサ10は、電極封止材24を更に備える。好ましくは、コンデンサ10は、撥水層を更に備える。好ましくは、コンデンサ10は、熱収縮チューブ6を更に備える。以下、各構成要素について説明する。
 <コンデンサ素子>
 本実施形態のコンデンサ素子1は、基本的には第1実施形態のコンデンサ素子1と同様である。本実施形態でも、コンデンサ素子1は、巻回型コンデンサ素子7(図7B参照)でもよいし、積層型コンデンサ素子8(図8D参照)でもよい。ただし、本実施形態では、コンデンサ素子1の外部電極2にバスバー9が接続されている。なお、図3~図4Bに示すように、本実施形態に係るコンデンサ10は、コンデンサ素子1として、巻回型コンデンサ素子7を採用している。
 <外部電極>
 本実施形態の外部電極2は、基本的には第1実施形態の外部電極2と同様である。本実施形態に係るコンデンサ10も、一対の外部電極2を備える。一対の外部電極2は、第1外部電極21及び第2外部電極22である。
 <金属箔>
 次に、金属箔4について説明する。金属箔4は、コンデンサ素子1の少なくとも一部を被覆する。好ましくは、金属箔4は、コンデンサ素子1の側面全体を被覆する。金属箔4は、第1外部電極21又は第2外部電極22のいずれかと接触していてもよいが、図3に示すように、好ましくは、金属箔4は、第1外部電極21及び第2外部電極22のいずれにも接触していない。コンデンサ素子1の表面の少なくとも一部を金属箔4で被覆することで、コンデンサ素子1の表面からの吸湿を抑制しやすくなる。本実施形態では、図3に示すように、金属箔4は、コンデンサ素子保護材51を介してコンデンサ素子1を被覆している。これにより、金属箔4が、外部電極2に接触しないようにして、短絡を抑制している。
 金属箔4の材料は、特に限定されない。金属箔4の材料としては、コンデンサ素子1の側面に比べて、水蒸気などの水分及びガスを透過させにくい材料であればよい。例えば、巻回型コンデンサ素子7を用いる場合、コンデンサ素子1の表面は、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニルサルファイド又はポリスチレンなどで形成された誘電体フィルムである。そのため、金属箔4は、誘電体フィルムよりも水蒸気などの水分及びガスを透過させにくいものであればよい。一方、積層型コンデンサ素子8を用いる場合、コンデンサ素子1の表面は、電気的絶縁性を有する保護フィルムで被覆されている。そのため、金属箔4は、保護フィルムよりも水蒸気などの水分及びガスを透過させにくいものであればよい。金属箔4の材料は、例えば、銅、アルミニウム、鉄、ステンレス鋼、マグネシウム、銀、金、ニッケル、及び白金を含む。金属箔4として、樹脂付き金属箔を用いてもよい。樹脂付き金属箔は、樹脂層が金属箔4の片面に設けられた部材である。
 <コンデンサ素子保護材>
 図3に示すように、コンデンサ10は、コンデンサ素子保護材51を更に備えることが好ましい。本実施形態のコンデンサ素子保護材51は、基本的には第1実施形態のコンデンサ素子保護材51と同様である。金属箔4に加えて、さらにコンデンサ素子保護材51でコンデンサ素子1を被覆することで、コンデンサ素子1の表面からの吸湿をより抑制しやすくなる。
 コンデンサ素子保護材51は、コンデンサ素子1と金属箔4との間に設けられることが好ましい。本実施形態では、図3に示すように、コンデンサ素子保護材51は、コンデンサ素子1と金属箔4との間に設けられ、コンデンサ素子1の側面全体と、一対の外部電極2の各々の側面と、を被覆する。このように、コンデンサ素子保護材51が、コンデンサ素子1と金属箔4との間に設けられることで、コンデンサ素子1の表面からの吸湿をより抑制しやすくなる。
 コンデンサ素子保護材51は、金属箔4と、一対の外部電極2と、を電気的に絶縁することが好ましい。上述のように、本実施形態では、コンデンサ素子保護材51は、コンデンサ素子1の側面全体と、一対の外部電極2の各々の側面と、を被覆している。そのため、コンデンサ素子保護材51の上からコンデンサ素子1を被覆するための金属箔4を設けても、金属箔4と一対の外部電極2とが、コンデンサ素子保護材51によって電気的に絶縁され、短絡を抑制することができる。
 コンデンサ素子保護材51は、一対の外部電極2の各々とコンデンサ素子1との境界部を被覆していることが好ましい。すなわち、図3に示すように、コンデンサ素子保護材51の端部は、一対の外部電極2の各々とコンデンサ素子1との境界部よりも外側に延伸し、一対の外部電極2の各々とコンデンサ素子1との境界部を被覆していることが好ましい。一対の外部電極2とコンデンサ素子1との境界部には隙間が存在するおそれがあり、この隙間から水蒸気などの水分及びガスが入り込むおそれがある。しかし、図3に示すように、上記の境界部をコンデンサ素子保護材51が被覆していることで、コンデンサ10の耐湿性を更に向上させることができる。
 コンデンサ10がコンデンサ素子保護材51を更に備え、金属箔4と一対の外部電極2の各々とがコンデンサ素子保護材51によって電気的に絶縁されている場合、金属箔4は、一対の外部電極2の各々とコンデンサ素子1との境界部を被覆していることが好ましい。すなわち、図3に示すように、金属箔4の端部は、一対の外部電極2の各々とコンデンサ素子1との境界部よりも外側に延伸し、コンデンサ素子保護材51を介して、一対の外部電極2とコンデンサ素子1との境界部を被覆していることが好ましい。一対の外部電極2の各々とコンデンサ素子1との境界部には隙間が存在するおそれがあり、この隙間から水蒸気などの水分及びガスが入り込むおそれがある。しかし、図3に示すように、コンデンサ素子保護材51を介してこの境界部を金属箔4が被覆していることで、コンデンサ10の耐湿性を更に向上させることができる。
 なお、コンデンサ10がコンデンサ素子保護材51を備えない場合には、金属箔4は、少なくとも一方の外部電極2(好ましくは両方)とは接触しないように設けられる。これにより、短絡を抑制することができる。この場合、例えば、コンデンサ素子1の側面の中央部分のみを、一対の外部電極2と接触しないように金属箔4で被覆する。この場合の金属箔4の幅は、第1外部電極21とコンデンサ素子1との境界部から第2外部電極22とコンデンサ素子1との境界部までの距離よりも短い幅である。
 金属箔4でコンデンサ素子1を直接被覆する場合には、第1外部電極21とコンデンサ素子1との境界部と、金属箔4の第1外部電極21側の端部との距離(コンデンサ素子1の両端を結ぶ方向における距離)は、好ましくは3mm以上、より好ましくは5mm以上である。同様に、第2外部電極22とコンデンサ素子1との境界部と、金属箔4の第2外部電極22側の端部との距離は、好ましくは3mm以上、より好ましくは5mm以上である。この場合、一対の外部電極2と金属箔4とが接触しにくくなり、短絡をより抑制しやすくなる。
 上記のようにしてコンデンサ素子1を金属箔4で被覆した後、この金属箔4をコンデンサ素子保護材51で被覆してもよい。ただし、短絡を抑制する観点から、上述のように、コンデンサ素子保護材51が、金属箔4と、一対の外部電極2と、を電気的に絶縁することが好ましく、金属箔4は、コンデンサ素子保護材51を介してコンデンサ素子1を被覆していることが好ましい。
 図3に示すように、金属箔4は、外部に露出していないことが好ましい。コンデンサ10の最外層に熱収縮チューブ6を設けることによって、金属箔4が外部に露出しないようにすることができる。本実施形態では、図3に示すように、コンデンサ10が、金属箔4の上に設けられる熱収縮チューブ6を更に備えるため、金属箔4は外部に露出しない。このように、金属箔4を外部に露出させないことで、金属箔4の酸化などによる劣化を抑制することができる。さらに金属箔4と一対の外部電極2とが接触して短絡することを抑制することができる。
 <バスバー>
 図3に示すように、コンデンサ10は、一対のバスバー9を更に備えることが好ましい。一対のバスバー9は、第1バスバー91及び第2バスバー92である。一対のバスバー9を一対の外部電極2の各々に接着して、一対のバスバー9と一対の外部電極2と電気的に接続することができる。具体的には、第1バスバー91を第1外部電極21に接着して、これらを電気的に接続することができる。同様に、第2バスバー92を第2外部電極22に接着して、これらを電気的に接続することができる。一対のバスバー9としては、特に限定されないが、例えば銅又は銅合金などが板状に形成されたものを用いることができる。一対のバスバーを一対の外部電極2の各々に接着する方法としては、特に限定されないが、例えば半田溶接、抵抗溶接、及び超音波溶接などによって接着する方法が挙げられる。なお、短絡抑制の観点から、一対のバスバー9は、金属箔4と接触しておらず、一対のバスバー9と金属箔4とは電気的に絶縁されている。
 <電極封止材>
 図3に示すように、コンデンサ10は、電極封止材24を更に備えることが好ましい。電極封止材24は、一対の外部電極2を被覆する。電極封止材24には、第1電極封止材241及び第2電極封止材242が含まれる。第1電極封止材241が第1外部電極21を封止して被覆し、第2電極封止材242が第2外部電極22を封止して被覆する。このように、一対の外部電極2を電極封止材24で被覆して、外部電極2が外気に直接触れないようにすることで、外部電極2による吸湿を抑制しやすくなる。
 電極封止材24の材料は、特に限定されない。電極封止材24の材料は、外部電極2よりも水蒸気などの水分及びガスを透過させにくい樹脂材料であればよい。例えば、電極封止材24の材料として、エポキシ樹脂等の熱硬化性樹脂を用いることができる。この場合、バスバー9を外部電極2に接着した後に、上記の樹脂材料を、外部電極2の全体を被覆するよう塗布して硬化させることによって電極封止材24を形成することができる。バスバー9は、電極封止材24から突出している。バスバー9と外部電極2との接続箇所は、電極封止材24によって被覆されている。電極封止材24の材料として熱硬化性樹脂を用いる場合、熱硬化性樹脂の硬化温度は120℃以下であることが好ましい。この場合、熱硬化性樹脂を硬化させる際の熱によるコンデンサ素子1への影響を小さくすることができる。なお、電極封止材24の材料は、熱硬化性樹脂組成物でもよい。熱硬化性樹脂組成物には、公知の無機充填材、硬化剤、及び触媒などが含有されている。
 <撥水層>
 コンデンサ10は、撥水層(図3には図示せず)を更に備えることが好ましい。撥水層は、一対の外部電極2及び/又は電極封止材24を被覆する。外部電極2等を撥水層で被覆することで、外部電極2等が水をはじきやすくなり、外部電極2等による吸湿を抑制しやすくなる。
 撥水層の材料は、特に限定されない。撥水層の材料は、外部電極2よりも水蒸気などの水分及びガスを透過させにくい材料であればよい。例えば、フッ素系、及びシリコン系の撥水剤を用いて撥水層を形成することができる。この場合、バスバー9を外部電極2に接着した後に、外部電極2を被覆するように撥水剤を塗布して乾燥させることによって撥水層を形成することができる。外部電極2を電極封止材24で封止した場合には、電極封止材24を被覆するように撥水層を形成してもよい。
 <熱収縮チューブ>
 本実施形態の熱収縮チューブ6は、基本的には第1実施形態の熱収縮チューブ6と同様である。本実施形態では、図3及び図4Aに示すように、コンデンサ10の最外層に熱収縮チューブ6が設けられている。図4Bは、熱収縮チューブ6を備えないコンデンサ10を示す。このコンデンサ10では、金属箔4が最外層に設けられ、金属箔4とコンデンサ素子1との間にコンデンサ素子保護材51が設けられている。このように、コンデンサ10は、熱収縮チューブ6を備えていなくてもよい。また、コンデンサ10は、コンデンサ素子保護材51を備えず、金属箔4上に熱収縮チューブ6が装着されていてもよい。
 3.第3実施形態
 (1)概要
 第3実施形態では、第1~2実施形態と同様の構成要素には第1~2実施形態と同一の符号を付して詳細な説明を省略する場合がある。
 図5に示すように、本実施形態に係るコンデンサ10は、コンデンサ素子1と、一対の外部電極2と、一対の金属キャップ3と、金属箔4と、を備える。一対の外部電極2は、コンデンサ素子1の両端に設けられる。一対の金属キャップ3は、一対の外部電極2の各々を被覆する。金属箔4は、コンデンサ素子1の少なくとも一部を被覆する。
 コンデンサ10は、特許文献1に記載されているような外装ケース及び外装ケース内に充填されたモールド樹脂を備えていない。すなわち、コンデンサ10は、いわゆるケースレス構造を採用している。そのため、コンデンサ10は、少なくとも従来の外装ケースに相当する分だけ、軽量化を実現することができる。
 上述のように、コンデンサ10は、一対の外部電極2の各々を被覆する一対の金属キャップ3を備える。金属キャップ3は、外部電極2に比べて、水蒸気などのガスを透過させにくい。そのため、金属キャップ3で外部電極2を被覆することで、外部電極2による吸湿を抑制しやすくなる。さらに、コンデンサ10は、コンデンサ素子1の少なくとも一部を被覆する金属箔4を備える。金属箔4は、コンデンサ素子1の表面に比べて、水蒸気などのガスを透過させにくい。そのため、コンデンサ素子1の表面の少なくとも一部を金属箔4で被覆することで、コンデンサ素子1の表面からの吸湿を抑制しやすくなる。このように、本実施形態に係るコンデンサ10は、一対の金属キャップ3と金属箔4との両方を備えるため、優れた耐湿性を有することができる。
 (2)詳細
 以下、図5~図6Bを参照しながら本実施形態に係るコンデンサ10について詳細に説明する。図6Aは、本実施形態に係るコンデンサ10の斜視図である。図5は、図6AのX-X線断面図である。図6Bは、熱収縮チューブ6を備えないコンデンサ10の斜視図である。
 本実施形態に係るコンデンサ10は、いわゆるケースレス構造を採用しており、特許文献1に記載されているような外装ケースを備えていない。つまり、コンデンサ10は、ケースレスコンデンサである。図5に示すように、コンデンサ10は、コンデンサ素子1と、一対の外部電極2と、一対の金属キャップ3と、金属箔4と、を備える。好ましくは、コンデンサ10は、コンデンサ素子保護材51を更に備える。好ましくは、コンデンサ10は、金属箔保護材52を更に備える。好ましくは、コンデンサ10は、熱収縮チューブ6を更に備える。以下、各構成要素について説明する。
 <コンデンサ素子>
 本実施形態のコンデンサ素子1は、基本的には第1実施形態のコンデンサ素子1と同様である。本実施形態でも、コンデンサ素子1は、巻回型コンデンサ素子7(図7B参照)でもよいし、積層型コンデンサ素子8(図8D参照)でもよい。なお、図5~図6Bに示すように、本実施形態に係るコンデンサ10は、コンデンサ素子1として、巻回型コンデンサ素子7を採用している。
 <外部電極>
 本実施形態の外部電極2は、基本的には第1実施形態の外部電極2と同様である。本実施形態に係るコンデンサ10も、一対の外部電極2を備える。一対の外部電極2は、第1外部電極21及び第2外部電極22である。
 <金属キャップ>
 本実施形態の金属キャップ3は、基本的には第1実施形態の金属キャップ3と同様である。本実施形態に係るコンデンサ10も、一対の金属キャップ3を備える。一対の金属キャップ3は、第1金属キャップ31及び第2金属キャップ32である。第1金属キャップ31は、第1外部電極21を被覆し、第2金属キャップ32は、第2外部電極22を被覆する。
 図5に示すように、一対の金属キャップ3は、コンデンサ素子1と一対の外部電極2の各々との境界部を被覆している。このように、境界部が被覆されていれば、コンデンサ10の耐湿性を更に向上させることができる。金属キャップ3のコンデンサ素子1への装着方法は、第1実施形態と同様である。
 <金属箔>
 本実施形態の金属箔4は、基本的には第2実施形態の金属箔4と同様である。金属箔4は、コンデンサ素子1の少なくとも一部を被覆する。好ましくは、金属箔4は、コンデンサ素子1の側面全体を被覆する。金属箔4は、第1金属キャップ31又は第2金属キャップ32のいずれかと接触していてもよいが、図5に示すように、好ましくは、金属箔4は、第1金属キャップ31及び第2金属キャップ32のいずれにも接触していない。これにより、短絡を抑制することができる。さらにコンデンサ素子1の表面の少なくとも一部を金属箔4で被覆することで、コンデンサ素子1の表面からの吸湿を抑制しやすくなる。本実施形態では、図5に示すように、金属箔4は、コンデンサ素子保護材51を介してコンデンサ素子1を被覆している。これにより、金属箔4が、金属キャップ3に接触しないようにしている。これにより、短絡を抑制することができる。
 <コンデンサ素子保護材>
 図5に示すように、コンデンサ10は、コンデンサ素子保護材51を更に備えることが好ましい。本実施形態のコンデンサ素子保護材51は、基本的には第1実施形態のコンデンサ素子保護材51と同様である。金属箔4に加えて、さらにコンデンサ素子保護材51でコンデンサ素子1を被覆することで、コンデンサ素子1の表面からの吸湿をより抑制しやすくなる。
 コンデンサ素子保護材51は、コンデンサ素子1と金属箔4との間に設けられることが好ましい。本実施形態では、図5に示すように、コンデンサ素子保護材51は、コンデンサ素子1と金属箔4との間に設けられ、コンデンサ素子1の側面全体と、一対の金属キャップ3の各々の一部(開口縁)を被覆する。このように、コンデンサ素子保護材51が、コンデンサ素子1と金属箔4との間に設けられることで、コンデンサ素子1の表面からの吸湿をより抑制しやすくなる。
 コンデンサ素子保護材51は、金属箔4と、一対の金属キャップ3と、を電気的に絶縁することが好ましい。上述のように、本実施形態では、コンデンサ素子保護材51は、コンデンサ素子1の側面全体と、一対の金属キャップ3の各々の一部を被覆している。そのため、コンデンサ素子保護材51の上から、コンデンサ素子1を被覆するための金属箔4を設けても、金属箔4と一対の金属キャップ3とが、コンデンサ素子保護材51によって電気的に絶縁され、短絡を抑制することができる。
 コンデンサ10がコンデンサ素子保護材51を備え、金属箔4と一対の金属キャップ3とがコンデンサ素子保護材51によって電気的に絶縁されている場合、金属箔4は、一対の金属キャップ3とコンデンサ素子1との境界部を被覆していることが好ましい。すなわち、図5に示すように、金属箔4の端部は、一対の金属キャップ3の各々とコンデンサ素子1との境界部よりも外側に延伸し、コンデンサ素子保護材51を介して一対の金属キャップ3とコンデンサ素子1との境界部を被覆していることが好ましい。一対の金属キャップ3とコンデンサ素子1との境界部には隙間が存在するおそれがあり、この隙間から水蒸気などの水分及びガスが入り込むおそれがある。しかし、図5に示すように、コンデンサ素子保護材51を介してこの境界部を金属箔4が被覆していることで、コンデンサ10の耐湿性を更に向上させることができる。
 なお、コンデンサ10がコンデンサ素子保護材51を備えない場合には、金属箔4は、少なくとも一方の金属キャップ3(好ましくは両方)とは接触しないように設けられる。これにより、短絡を抑制することができる。この場合、例えば、コンデンサ素子1の側面の中央部分のみを、一対の金属キャップ3と接触しないように金属箔4で被覆する。この場合の金属箔4の幅は、第1金属キャップ31とコンデンサ素子1との境界部から第2金属キャップ32とコンデンサ素子1との境界部までの距離よりも短い幅である。
 金属箔4でコンデンサ素子1を直接被覆する場合には、第1金属キャップ31とコンデンサ素子1との境界部と、金属箔4の第1金属キャップ31側の端部との距離(コンデンサ素子1の両端を結ぶ方向における距離)は、好ましくは3mm以上、より好ましくは5mm以上である。同様に、第2金属キャップ32とコンデンサ素子1との境界部と、金属箔4の第2金属キャップ32側の端部との距離は、好ましくは3mm以上、より好ましくは5mm以上である。この場合、一対の金属キャップ3と金属箔4とが接触しにくくなり、短絡をより抑制しやすくなる。
 <金属箔保護材>
 コンデンサ10は、金属箔保護材52を更に備えることが好ましい。金属箔保護材52は、金属箔4の少なくとも一部を被覆する。好ましくは、図5に示すように、金属箔保護材52は、金属箔4の全体を被覆する。この場合、コンデンサ10の耐湿性を特に向上させることができる。
 金属箔保護材52の材料は、コンデンサ素子保護材51の材料として使用可能な材料を用いることができる。コンデンサ10がコンデンサ素子保護材51及び金属箔保護材52の両方を備える場合、コンデンサ素子保護材51と金属箔保護材52とは同じ材料で形成されていてもよく、異なる材料で形成されていてもよい。
 金属箔保護材52は、コンデンサ素子保護材51と同様に、絶縁性フィルム、ガスバリアフィルム、及びプリプレグの硬化物からなる群から選択される少なくとも一種を含むことが好ましい。この場合、コンデンサ素子1の表面からの吸湿をより抑制しやすくなり、コンデンサ10の耐湿性をより向上させることができる。
 金属箔4は、外部に露出していないことが好ましい。すなわち、図5に示すように、金属箔4が外部に露出しないように、コンデンサ素子保護材51及び金属箔保護材52の間に金属箔4が配置されていることが好ましい。このように、金属箔4を外部に露出させないことで、金属箔4の酸化などによる劣化を抑制することができる。さらに金属箔4と一対の金属キャップ3とが接触して短絡することを防ぐことができる。
 <熱収縮チューブ>
 本実施形態の熱収縮チューブ6は、基本的には第1実施形態の熱収縮チューブ6と同様である。
 本実施形態では、図5及び図6Aに示すように、コンデンサ10の最外層に熱収縮チューブ6が設けられている。図6Bは、熱収縮チューブ6を備えないコンデンサ10を示す。このコンデンサ10では、金属箔保護材52が最外層に設けられている。このように、コンデンサ10は、熱収縮チューブ6を備えていなくてもよい。また、コンデンサ10は、金属箔保護材52を備えなくてもよい。この場合には、最外層に金属箔4が設けられている。また、コンデンサ10は、金属箔保護材52を備えず、金属箔4上に熱収縮チューブ6が装着されていてもよい。
 本実施形態では、コンデンサ素子1の一対の外部電極2の各々に一対の金属キャップ3を装着した後に、コンデンサ素子1をコンデンサ素子保護材51で被覆しているが、この態様には限定されない。例えば、コンデンサ素子1をコンデンサ素子保護材51で被覆した後に、一対の金属キャップ3を装着してもよい。この場合、コンデンサ素子保護材51で被覆したコンデンサ素子1の端部の形状に合う大きさの金属キャップ3を用いることができる。またコンデンサ素子1を先にコンデンサ素子保護材51で被覆する場合には、金属箔4は、一対の金属キャップ3と接触しないように、コンデンサ素子保護材51に被覆される。
 4.変形例
 第1~3実施形態では、コンデンサ素子1として、巻回型コンデンサ素子7を採用しているが、積層型コンデンサ素子8を採用してもよい。
 第1実施形態では、図1に示すように、コンデンサ素子保護材51でコンデンサ素子1の側面全体を被覆した後、金属キャップ3を装着しているが、これには限定されない。例えば、コンデンサ素子1の両端の一対の外部電極2の各々を被覆するように一対の金属キャップ3を装着した後に、コンデンサ素子保護材51でコンデンサ素子1の側面全体を被覆してもよい。この場合には、コンデンサ素子1の外部電極2が設けられた端部の形状と同様の形状を有する金属キャップ3を用いることができる。
 上述のように、まず一対の金属キャップ3をコンデンサ素子1に装着し、次にコンデンサ素子保護材51でコンデンサ素子1を被覆する場合であっても、コンデンサ素子保護材51は、コンデンサ素子1と一対の外部電極2の各々との境界部を被覆することが好ましい。この場合においても、まずこの境界部を被覆するように金属キャップ3を装着した後、金属キャップ3を介してコンデンサ素子保護材51がこの境界部を更に被覆するように設けることが好ましい。
 第1実施形態では、図1~図2Bに示すように、コンデンサ10は、バスバー9を備えていないが、バスバー9を更に備えてもよい。一対のバスバー9を、一対の金属キャップ3の各々に接着して、一対の外部電極2と一対のバスバー9とをそれぞれ電気的に接続することができる。
 第1実施形態において、図2Bでは、コンデンサ素子保護材51でコンデンサ素子1の側面全体を被覆し、一対の金属キャップ3が装着された後に、縁部封止材23により金属キャップ3とコンデンサ素子保護材51との境界部が封止されているが、これには限定されない。一対の金属キャップ3を装着して、まず金属キャップ3とコンデンサ素子1との境界部を縁部封止材23で封止し、次にコンデンサ素子保護材51でコンデンサ素子1の側面全体を被覆してもよい。
 第2実施形態において、図3では、1つのコンデンサ素子保護材51が、コンデンサ素子1の側面全体と、一対の外部電極2の各々の側面と、を被覆しているが、これには限定されない。2つのコンデンサ素子保護材51を用いてもよい。すなわち、1つ目のコンデンサ素子保護材51を用いて、第1外部電極21の側面及びコンデンサ素子1の第1外部電極21側の側面の一部を被覆するとともに、2つ目のコンデンサ素子保護材51を用いて、第2外部電極22の側面及びコンデンサ素子1の第2外部電極22側の側面の一部を被覆するようにしてもよい。この場合でも、金属箔4と一対の外部電極2の各々とが電気的に絶縁されるため、短絡を抑制することができる。ただし、コンデンサ10の製造工程を簡素化する観点、及びコンデンサ10の耐湿性を向上させる観点から、1つのコンデンサ素子保護材51が、図3に示すように、コンデンサ素子1の側面全体と、一対の外部電極2の各々の側面と、を被覆することが好ましい。
 第2実施形態に係るコンデンサ10が、図3に示すようにコンデンサ素子保護材51を備える場合、第3実施形態の金属箔保護材52を更に備えてもよい。すなわち、金属箔4をコンデンサ素子保護材51と金属箔保護材52とで挟んでもよい。この場合、コンデンサ10の耐湿性を特に向上させることができる。さらにコンデンサ素子保護材51と金属箔保護材52とで金属箔4を挟んで外部に露出させないようにすることで、金属箔4の酸化などによる劣化を抑制することができる。
 第3実施形態において、図5では、1つのコンデンサ素子保護材51が、コンデンサ素子1の側面全体と、一対の金属キャップ3の各々の側面と、を被覆しているが、これには限定されない。2つのコンデンサ素子保護材51を用いてもよい。すなわち、1つ目のコンデンサ素子保護材51を用いて、第1金属キャップ31の側面及びコンデンサ素子1の第1金属キャップ31側の側面の一部を被覆するとともに、2つ目のコンデンサ素子保護材51を用いて、第2金属キャップ32の側面及びコンデンサ素子1の第2金属キャップ32側の側面の一部とを被覆するようにしてもよい。この場合でも、金属箔4と一対の金属キャップ3の各々とが電気的に絶縁されるため、短絡を抑制することができる。ただし、コンデンサ10の製造工程を簡素化する観点、及びコンデンサ10の耐湿性を向上させる観点から、1つのコンデンサ素子保護材51が、図5に示すように、コンデンサ素子1の側面全体と、一対の金属キャップ3の側面と、を被覆することが好ましい。
 第3実施形態では、図5~図6Bに示すように、コンデンサ10は、バスバー9を備えていないが、バスバー9を更に備えてもよい。一対のバスバー9を、一対の金属キャップ3の各々に接着して、一対の外部電極2と一対のバスバー9とをそれぞれ電気的に接続することができる。
 5.態様
 上記実施形態及び変形例から明らかなように、本開示は、下記の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
 第1の態様に係るコンデンサ(10)は、コンデンサ素子(1)と、一対の外部電極(2;21,22)と、一対の金属キャップ(3;31,32)、及び/又は金属箔(4)と、を備える。前記一対の外部電極(2;21,22)は、前記コンデンサ素子(1)の両端に設けられる。前記一対の金属キャップ(3;31,32)は、前記一対の外部電極(2;21,22)の各々を被覆する。前記金属箔(4)は、前記コンデンサ素子(1)の少なくとも一部を被覆する。
 第1の態様によれば、軽量化を実現するとともに、優れた耐湿性を有するコンデンサ(10)を得ることができる。
 第2の態様に係るコンデンサ(10)は、第1の態様において、電気的絶縁性を有し、前記コンデンサ素子(1)の少なくとも一部を被覆するコンデンサ素子保護材(51)を更に備える。
 第2の態様によれば、コンデンサ素子(1)の表面からの吸湿を抑制しやすくなる。
 第3の態様に係るコンデンサ(10)では、第2の態様において、前記コンデンサ素子保護材(51)は、絶縁性フィルム、ガスバリアフィルム、及びプリプレグの硬化物からなる群から選択される少なくとも一種を含む。
 第3の態様によれば、コンデンサ素子(1)の表面からの吸湿をより抑制しやすくなる。
 第4の態様に係るコンデンサ(10)は、第2又は3の態様において、前記金属箔(4)を備える。前記コンデンサ素子保護材(51)は、前記コンデンサ素子(1)と前記金属箔(4)との間に設けられる。
 第4の態様によれば、コンデンサ素子(1)の表面からの吸湿をより抑制しやすくなるとともに、短絡を抑制しやすくなる。
 第5の態様に係るコンデンサ(10)は、第1~4のいずれかの態様において、前記一対の金属キャップ(3;31,32)を備える。前記一対の金属キャップ(3;31,32)の開口縁を封止する縁部封止材(23)を更に備える。
 第5の態様によれば、一対の金属キャップ(3;31,32)の開口縁からの吸湿を抑制しやすくなる。
 第6の態様に係るコンデンサ(10)は、第1~5のいずれかの態様において、前記一対の外部電極(2;21,22)を被覆する撥水層を更に備える。
 第6の態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 第7の態様に係るコンデンサ(10)は、第1~6のいずれかの態様において、前記一対の外部電極(2;21,22)を被覆する電極封止材(8;81,82)を更に備える。
 第7の態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 第8の態様に係るコンデンサ(10)は、第1~4のいずれかの態様において、前記金属箔(4)を備える。前記金属箔(4)の少なくとも一部を被覆する金属箔保護材(52)を更に備える。
 第8の態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 第9の態様に係るコンデンサ(10)では、第8の態様において、前記金属箔保護材(52)は、絶縁性フィルム、ガスバリアフィルム、及びプリプレグの硬化物からなる群から選択される少なくとも一種を含む。
 第9の態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 第10の態様に係るコンデンサ(10)は、第1~9のいずれかの態様において、前記コンデンサ素子(1)の少なくとも一部を被覆する熱収縮チューブ(6)を更に備える。
 第10の態様によれば、コンデンサ(10)の耐湿性を更に高めることができる。
 1   コンデンサ素子
 10  コンデンサ
 2   外部電極
 23  縁部封止材
 24  電極封止材
 3   金属キャップ
 4   金属箔
 51  コンデンサ素子保護材
 52  金属箔保護材
 6   熱収縮チューブ

Claims (10)

  1.  コンデンサ素子と、
     前記コンデンサ素子の両端に設けられた一対の外部電極と、
     前記一対の外部電極の各々を被覆する一対の金属キャップ、及び/又は前記コンデンサ素子の少なくとも一部を被覆する金属箔と、を備える、
     コンデンサ。
  2.  電気的絶縁性を有し、前記コンデンサ素子の少なくとも一部を被覆するコンデンサ素子保護材を更に備える、
     請求項1に記載のコンデンサ。
  3.  前記コンデンサ素子保護材は、絶縁性フィルム、ガスバリアフィルム、及びプリプレグの硬化物からなる群から選択される少なくとも一種を含む、
     請求項2に記載のコンデンサ。
  4.  前記コンデンサは、前記金属箔を備え、
     前記コンデンサ素子保護材は、前記コンデンサ素子と前記金属箔との間に設けられる、
     請求項2又は3に記載のコンデンサ。
  5.  前記コンデンサは、前記一対の金属キャップを備え、
     前記一対の金属キャップの開口縁を封止する縁部封止材を更に備える、
     請求項1~4のいずれか1項に記載のコンデンサ。
  6.  前記一対の外部電極を被覆する撥水層を更に備える、
     請求項1~5のいずれか1項に記載のコンデンサ。
  7.  前記一対の外部電極を被覆する電極封止材を更に備える、
     請求項1~6のいずれか1項に記載のコンデンサ。
  8.  前記コンデンサは、前記金属箔を備え、
     電気的絶縁性を有し、前記金属箔の少なくとも一部を被覆する金属箔保護材を更に備える、
     請求項1~4のいずれか1項に記載のコンデンサ。
  9.  前記金属箔保護材は、絶縁性フィルム、ガスバリアフィルム、及びプリプレグの硬化物からなる群から選択される少なくとも一種を含む、
     請求項8に記載のコンデンサ。
  10.  前記コンデンサ素子の少なくとも一部を被覆する熱収縮チューブを更に備える、
     請求項1~9のいずれか1項に記載のコンデンサ。
PCT/JP2019/036586 2018-12-26 2019-09-18 コンデンサ WO2020137033A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020562354A JP7442143B2 (ja) 2018-12-26 2019-09-18 コンデンサ
CN201980086062.XA CN113228210B (zh) 2018-12-26 2019-09-18 电容器
US17/352,821 US11935697B2 (en) 2018-12-26 2021-06-21 Capacitor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018243206 2018-12-26
JP2018243207 2018-12-26
JP2018243205 2018-12-26
JP2018-243206 2018-12-26
JP2018-243207 2018-12-26
JP2018-243205 2018-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/352,821 Continuation US11935697B2 (en) 2018-12-26 2021-06-21 Capacitor

Publications (1)

Publication Number Publication Date
WO2020137033A1 true WO2020137033A1 (ja) 2020-07-02

Family

ID=71129331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036586 WO2020137033A1 (ja) 2018-12-26 2019-09-18 コンデンサ

Country Status (4)

Country Link
US (1) US11935697B2 (ja)
JP (1) JP7442143B2 (ja)
CN (1) CN113228210B (ja)
WO (1) WO2020137033A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128651U (ja) * 1974-04-08 1975-10-22
JPS5897829U (ja) * 1981-12-25 1983-07-02 ニチコン株式会社 チツプ型フイルムコンデンサ
JPH02155215A (ja) * 1988-12-08 1990-06-14 Nitsuko Corp 低背形フィルムコンデンサの製造方法
JPH05182862A (ja) * 1991-12-27 1993-07-23 Matsushita Electric Ind Co Ltd チップ型フィルムコンデンサとその外装方法
JP2006093532A (ja) * 2004-09-27 2006-04-06 Matsushita Electric Ind Co Ltd 電子部品
JP2007019235A (ja) * 2005-07-07 2007-01-25 Shizuki Electric Co Inc 乾式コンデンサ
JP2009094122A (ja) * 2007-10-04 2009-04-30 Kansai Electric Power Co Inc:The 乾式金属蒸着フィルムコンデンサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL185879C (nl) * 1977-11-19 1990-08-01 Taiyo Yuden Kk Buisvormige condensator en werkwijze voor de vervaardiging daarvan.
CA1112729A (en) * 1977-11-19 1981-11-17 Tomiji Kobayashi Tubular capacitor and method of making the same
JPS58142931U (ja) * 1982-03-19 1983-09-27 日本電気株式会社 チツプ型フイルムコンデンサ
DE59006271D1 (de) * 1989-03-20 1994-08-04 Siemens Ag Axialer elektrischer Wickelkondensator.
JPH04259205A (ja) * 1991-02-13 1992-09-14 Marcon Electron Co Ltd チップ形セラミックコンデンサ
DE10039436C2 (de) * 2000-08-11 2003-01-16 Epcos Ag Elekrochemischer Doppelschichtkondensator
JP4747560B2 (ja) * 2004-11-17 2011-08-17 パナソニック株式会社 フィルムコンデンサおよびその製造方法
JP2006210681A (ja) * 2005-01-28 2006-08-10 Nissin Electric Co Ltd 金属蒸着フィルムコンデンサ
JP5012140B2 (ja) 2007-03-29 2012-08-29 パナソニック株式会社 ケースモールド型コンデンサ及びその検査方法
JP5439954B2 (ja) * 2009-06-01 2014-03-12 株式会社村田製作所 積層型電子部品およびその製造方法
JP2011192788A (ja) 2010-03-15 2011-09-29 Nippon Chemicon Corp 金属化フィルムコンデンサ、金属化フィルムコンデンサ装置及びこれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128651U (ja) * 1974-04-08 1975-10-22
JPS5897829U (ja) * 1981-12-25 1983-07-02 ニチコン株式会社 チツプ型フイルムコンデンサ
JPH02155215A (ja) * 1988-12-08 1990-06-14 Nitsuko Corp 低背形フィルムコンデンサの製造方法
JPH05182862A (ja) * 1991-12-27 1993-07-23 Matsushita Electric Ind Co Ltd チップ型フィルムコンデンサとその外装方法
JP2006093532A (ja) * 2004-09-27 2006-04-06 Matsushita Electric Ind Co Ltd 電子部品
JP2007019235A (ja) * 2005-07-07 2007-01-25 Shizuki Electric Co Inc 乾式コンデンサ
JP2009094122A (ja) * 2007-10-04 2009-04-30 Kansai Electric Power Co Inc:The 乾式金属蒸着フィルムコンデンサ

Also Published As

Publication number Publication date
JPWO2020137033A1 (ja) 2021-11-04
JP7442143B2 (ja) 2024-03-04
CN113228210A (zh) 2021-08-06
US11935697B2 (en) 2024-03-19
US20210313112A1 (en) 2021-10-07
CN113228210B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US8790817B2 (en) Pouch-type lithium secondary battery
KR100879893B1 (ko) 실링부의 안전성이 향상된 이차전지
JP7217404B2 (ja) コンデンサ
JP6266375B2 (ja) 電気化学セル
JP7083419B2 (ja) ケースレスフィルムコンデンサ
JP2007019235A (ja) 乾式コンデンサ
WO2020044778A1 (ja) コンデンサ及びその製造方法
JP4733566B2 (ja) 金属化フィルムコンデンサ
KR101085885B1 (ko) 전기이중층축전지
JP2024012698A (ja) コンデンサ
WO2020137033A1 (ja) コンデンサ
KR101460637B1 (ko) 전지 케이스 실링용 실런트 부재, 및 이를 이용하여 제조되는 전지
JP7390559B2 (ja) コンデンサ
JP7300637B2 (ja) ケースレスフィルムコンデンサの製造方法
JP6569282B2 (ja) 絶縁リード及び蓄電デバイス
CN111630677B (zh) 袋型二次电池及其制造方法
JP7171351B2 (ja) ラミネート型二次電池及びその製造方法
JP2012227222A (ja) 金属化フィルムコンデンサ
JP2021132166A (ja) コンデンサ
JP2021132165A (ja) コンデンサ
WO2018055960A1 (ja) 蓄電デバイス
KR20010086992A (ko) 전지 외장재
JP2021150399A (ja) コンデンサ及びコンデンサの製造方法
JP2022086849A (ja) コンデンサ
KR20160058707A (ko) 리드 부재 및 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562354

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905106

Country of ref document: EP

Kind code of ref document: A1