WO2020129183A1 - リチウム電池のバッファおよびリチウム電池の製造方法 - Google Patents

リチウム電池のバッファおよびリチウム電池の製造方法 Download PDF

Info

Publication number
WO2020129183A1
WO2020129183A1 PCT/JP2018/046793 JP2018046793W WO2020129183A1 WO 2020129183 A1 WO2020129183 A1 WO 2020129183A1 JP 2018046793 W JP2018046793 W JP 2018046793W WO 2020129183 A1 WO2020129183 A1 WO 2020129183A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrolyte
substrate
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2018/046793
Other languages
English (en)
French (fr)
Inventor
壹 友寄
Original Assignee
株式会社BTO Consultors Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社BTO Consultors Japan filed Critical 株式会社BTO Consultors Japan
Priority to PCT/JP2018/046793 priority Critical patent/WO2020129183A1/ja
Priority to JP2020560702A priority patent/JP7299445B2/ja
Priority to CN201880100219.5A priority patent/CN113228374B/zh
Publication of WO2020129183A1 publication Critical patent/WO2020129183A1/ja
Priority to US17/351,230 priority patent/US20210313565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium battery buffer and a method for manufacturing a lithium battery.
  • Patent Document 1 discloses that such a lithium battery can be manufactured by using a solid electrolyte membrane containing LISICON (Lithium-Super-Ion-Conductor).
  • the present invention has been made in view of these points, and an object thereof is to enable efficient production of a lithium battery having improved conductivity.
  • the positive electrode material layer and the electrolyte layer may have LAGP finely divided to a size of 5 ⁇ m or less.
  • Each of the positive electrode material layer and the electrolyte layer has a Lisicon (Lithium-Super-Ion-Conductor) finely divided to a size of 5 ⁇ m or less, and the electrolyte layer is coated at least at an interface with the negative electrode layer. It may have a material.
  • the step of forming a positive electrode material layer by applying a positive electrode material to one surface of the substrate, drying and baking the surface, and the surface of the positive electrode material layer facing the substrate are A step of forming an electrolyte layer by applying an electrolyte to the opposite surface, drying and firing, and applying a buffer material to at least a part of the surface of the electrolyte layer opposite to the surface facing the substrate. Forming a buffer layer, and forming a negative electrode layer by bonding a negative electrode material containing lithium to a surface of the buffer layer opposite to the surface facing the substrate to form the electrolyte layer.
  • the negative electrode layer After forming the negative electrode layer, connecting a wiring material to each of the substrate and the negative electrode layer, sealing a material other than a part of the wiring material with a sealing material, and adding the sealing material.
  • the step of pressing may further be provided.
  • the structural example of the lithium battery 10 which concerns on this embodiment is shown.
  • An example of a cross-sectional configuration of the lithium battery 10 according to the present embodiment is shown.
  • An example of a flow for producing the lithium battery 10 according to the present embodiment will be shown.
  • An example of the cross-sectional structure at the stage where the positive electrode material layer 120 is formed on the substrate 110 according to the present embodiment, and then the electrolyte is applied and dried is shown.
  • An example of the cross-sectional structure at the stage when the recess 132 is formed in the substrate 110 according to the present embodiment is shown.
  • An example of a cross-sectional structure at the stage of forming the internal configuration of the lithium battery 10 according to the present embodiment is shown.
  • FIG. 1 shows a configuration example of a lithium battery 10 according to this embodiment.
  • three axes orthogonal to each other are an X axis, a Y axis, and a Z axis.
  • the lithium battery 10 according to the present embodiment is a secondary battery that uses at least metallic lithium as a negative electrode material.
  • the lithium battery 10 includes a positive electrode terminal 12 and a negative electrode terminal 14 for accumulating and charging electric charge inside and discharging and discharging electric charge accumulated outside.
  • lithium battery such a secondary battery using lithium as the material of the negative electrode
  • lithium battery instead of “lithium ion battery”.
  • the technical scope of the present invention is not limited only to the secondary battery described as a lithium battery, and other secondary batteries using at least lithium as a negative electrode material can be used. It goes without saying that it extends.
  • the lithium battery 10 since the lithium battery 10 was produced by bonding an electrode plate of metallic lithium to the upper surface of the electrolyte layer, the interface resistance between the electrolyte layer and the negative electrode material tended to increase. Ideally, it is conceivable that vacuum deposition of metallic lithium is performed on the upper surface of the electrolyte layer to bring the electrolyte layer and the negative electrode material into close contact with each other. However, the vacuum deposition of metallic lithium has low production efficiency, and since a vacuum device is used, it takes time and cost to manufacture it. Therefore, the lithium battery 10 according to the present embodiment, which can be manufactured by a simple method without using vapor deposition or the like, reduces the interface resistance between the electrolyte layer and the negative electrode material, and improves the conductivity, will be described.
  • FIG. 2 shows an example of a cross-sectional configuration of the lithium battery 10 according to this embodiment.
  • FIG. 2 shows a configuration example of a cross section of the lithium battery 10 taken along the line AA′ shown in FIG.
  • the lithium battery 10 includes a positive electrode terminal 12 and a negative electrode terminal 14, a substrate 110, a positive electrode material layer 120, an electrolyte layer 130, a buffer layer 140, a negative electrode layer 150, and a sealing material 160.
  • the substrate 110 is an electrode plate having conductivity.
  • the substrate 110 is, for example, a metal electrode plate.
  • the substrate 110 is, for example, a stainless substrate having iron, chromium, or the like, an alumina substrate, or the like.
  • the positive electrode terminal 12 is electrically connected to the substrate 110.
  • the positive electrode terminal 12 has a metal such as copper.
  • FIG. 1 shows an example in which a substrate 110 is arranged substantially parallel to the XY plane.
  • FIG. 1 illustrates an example in which the positive electrode material layer 120, the electrolyte layer 130, the buffer layer 140, and the negative electrode layer 150 are stacked in the +Z direction on one surface of the substrate 110.
  • the electrolyte layer 130 is formed on the surface of the positive electrode material layer 120 opposite to the surface facing the substrate 110.
  • the electrolyte layer 130 has, for example, finely divided LAGP as an active material.
  • the electrolyte layer 130 is formed using MPS containing such an active material as a binder. Further, the electrolyte layer 130 may have LISICON finely sized to a size of 5 ⁇ m or less, like the positive electrode material layer 120.
  • the electrolyte layer 130 is an inorganic solid electrolyte layer formed by using an electrolyte prepared by mixing finely divided LISICON and active material-containing MPS into a slurry.
  • the buffer layer 140 is formed on the surface of the electrolyte layer 130 opposite to the surface facing the substrate 110.
  • the buffer layer 140 has at least an electrolytic solution or an ionic liquid, for example.
  • alumina aerogel may be added to the buffer layer 140 in order to increase viscosity and operability.
  • Alumina aerogel may be a thickener, for example, powdered aluminum oxide is mixed.
  • the first sealing material 162 is in close contact with the surface of the negative electrode layer 150 facing the side opposite to the substrate 110.
  • the second sealing material 164 is in close contact with the surface of the substrate 110 facing the side opposite to the positive electrode material layer 120. Further, the first sealing material 162 and the second sealing material 164 are larger than any of the substrate 110, the positive electrode material layer 120, the electrolyte layer 130, the buffer layer 140, and the negative electrode layer 150 in the XY plane, and the substrate 110, The positive electrode material layer 120, the electrolyte layer 130, and the negative electrode layer 150 are in close contact with the periphery of the members to seal these members. Accordingly, the sealing material 160 can prevent the gel-like material of the buffer layer 140 from seeping out.
  • the electrolyte layer 130 and the negative electrode layer 150 are formed with the buffer layer 140 interposed therebetween. Therefore, as compared with the conventional configuration example in which the negative electrode layer 150 is attached to the surface of the electrolyte layer 130, the adhesion between the electrolyte layer 130 and the negative electrode layer 150 is excellent, and the interface resistance can be reduced. Further, the lithium battery 10 can be manufactured by bonding the negative electrode layer 150 and the buffer layer 140 without vacuum deposition of metallic lithium. Therefore, the lithium battery 10 having improved conductivity can be manufactured at low cost and with high efficiency. A process for producing the above lithium battery 10 will be described below.
  • FIG. 3 shows an example of a flow for producing the lithium battery 10 according to this embodiment.
  • a positive electrode material is applied to one surface of the substrate 110 (S310).
  • the positive electrode material is, for example, an electrolyte raw material for a positive electrode, which is obtained by adding a positive electrode active material-containing MPS solution to LAGP finely pulverized to a size of 5 ⁇ m or less and stirring. It should be noted that, in place of LAGP, it is also possible to use LISICON which is finely pulverized to a size of 5 ⁇ m or less.
  • the positive electrode material is stirred and slurried by, for example, a stirring and dispersing device, a spatula, a stirrer, an ultrasonic vibrator, or the like. Further, the positive electrode material is applied by, for example, an applying device.
  • the size of LAGP or LISON may be 5 ⁇ m or less in diameter, for example, the diameter is in the range of 0.1 ⁇ m to 5 ⁇ m.
  • the size of LAGP or LISON is preferably in the range of about 0.3 ⁇ m to 4 ⁇ m, and more preferably in the range of about 0.5 ⁇ m to 3 ⁇ m.
  • the positive electrode active material-containing MPS is formed, for example, by dissolving organolithium and organomanganese in a polyvinyl acetate polymer using propylene glycol monomethyl ether as a solvent.
  • the positive electrode active material is LiCoO 2
  • the positive electrode active material-containing MPS is formed, for example, by dissolving organic lithium and organic cobalt in a polyvinyl acetate polymer using propylene glycol monomethyl ether as a solvent.
  • the applied positive electrode material is dried (S320).
  • the positive electrode material is exposed to an environment having a temperature of approximately 100° C. or higher, for example.
  • the positive electrode material is dried by holding the substrate 110 coated with the positive electrode material in an environment of about 125° C. for about 30 minutes.
  • the dried positive electrode material is pressurized at a predetermined pressure (S330).
  • a pressure is applied to the substrate 110 after the positive electrode material is dried by using, for example, a roller press machine, a heating flat press machine, or the like.
  • a hole or the like is generated inside the positive electrode material, the hole can be eliminated or reduced.
  • the dried positive electrode material is fired (S340).
  • the positive electrode material is exposed to an environment having a temperature of approximately 500° C. or higher by using, for example, a firing furnace.
  • the positive electrode material is baked by holding the substrate 110 on which the positive electrode material is applied and dried in an environment of about 600° C. for about 60 minutes.
  • the positive electrode material is applied to one surface of the substrate 110, dried, and baked to form the positive electrode material layer 120.
  • an electrolyte is applied to the exposed surface of the positive electrode material layer 120 (S350).
  • the electrolyte is, for example, an electrolyte raw material obtained by adding LAGP finely pulverized to a size of 5 ⁇ m or less to an MPS solution and stirring the mixture. It should be noted that, in place of LAGP, it is also possible to use LISICON which is finely pulverized to a size of 5 ⁇ m or less.
  • the electrolyte is dispersed into a coating slurry by using, for example, a stirring and dispersing device that revolves around the axis using centrifugal force.
  • the mixture is again stirred and dispersed by a spatula, a stirrer, an ultrasonic vibrator, or the like, and the electrolyte is coated by, for example, a coating device in the same manner as the positive electrode material.
  • FIG. 4 shows an example of a cross-sectional structure at the stage where the positive electrode material layer 120 is formed on the substrate 110 according to the present embodiment, and then the electrolyte is applied and dried.
  • the dried electrolyte is pressurized at a predetermined pressure (S370).
  • a predetermined pressure S370.
  • the recess 132 may be formed by pressurizing the electrolyte.
  • a part of the surface of the electrolyte opposite to the surface facing the substrate 110 is pressed to form the recess 132 so as to be recessed toward the substrate 110.
  • the pores of the electrolyte can be reduced, and the recess 132 having a predetermined shape can be formed in the dried electrolyte.
  • a roller press machine for pressing the electrolyte, for example, a roller press machine, a heating flat press machine, etc. are used. Since the electrolyte is formed on the already-fired positive electrode material layer 120, cracks or the like may occur in the positive electrode material layer 120 when pressed with a roller press. Therefore, it is preferable to use a heating flat press to pressurize the electrolyte.
  • FIG. 5 shows an example of a cross-sectional structure at the stage when the recess 132 is formed in the substrate 110 according to this embodiment.
  • a plurality of recesses 132 may be formed.
  • the recess 132 may be divided into a plurality of parts.
  • by forming a plurality of concave portions 132 to form a smooth interface in this manner it is possible to reduce the occurrence rate of contact failure or the like in the pressing process.
  • by providing the plurality of recesses 132 it is possible to prevent at least a part of the buffer layer 140 that fills the plurality of recesses 132 from coming into contact with the negative electrode material, resulting in poor conduction.
  • the electrolyte in which the recess 132 is formed is fired (S380). Like the positive electrode material, the electrolyte is exposed to an environment of a temperature of approximately 500° C. or higher by, for example, a firing furnace or the like. As an example, the substrate 110 having the electrolyte in which the recess 132 is formed is held in an environment of about 600° C. for about 60 minutes to bake the electrolyte. As described above, the electrolyte layer 130 is formed by applying the electrolyte to the surface of the positive electrode material layer 120 on the opposite side of the substrate 110, drying, and firing. Such firing of the electrolyte also stabilizes the recess 132.
  • a negative electrode material containing lithium is attached to the surface of the buffer layer 140 opposite to the surface facing the substrate 110 to form the negative electrode layer 150 (S400).
  • the negative electrode material is, for example, a substrate to which a copper foil and a lithium foil are attached.
  • the negative electrode material is preferably attached to the buffer layer 140 in a glove box in an argon gas atmosphere, for example.
  • the negative electrode material has a square shape of 50 mm ⁇ 50 mm in the XY plane, and the internal configuration of the lithium battery 10 having a shape of approximately 50 mm ⁇ 50 mm is formed.
  • FIG. 6 shows an example of a cross-sectional structure at the stage when the internal structure of the lithium battery 10 according to this embodiment is formed.
  • a wiring material is connected to each of the substrate 110 and the negative electrode layer 150 (S410).
  • the wiring materials are the positive electrode terminal 12 and the negative electrode terminal 14. That is, the positive electrode terminal 12 is fixed to the substrate 110 and the negative electrode terminal 14 is fixed to the negative electrode layer 150.
  • the positive electrode terminal 12 and the negative electrode terminal 14 are fixed, for example, with a polyimide tape or the like. In the case of a lithium metal negative electrode material, the positive electrode terminal 12 and the negative electrode terminal 14 are preferably fixed, for example, in a glove box in an argon gas atmosphere.
  • the sealing material is the sealing material 160.
  • the sealing material 160 covers the substrate 110, the positive electrode material layer 120, the electrolyte layer 130, the buffer layer 140, and the negative electrode layer 150, and seals a part of the positive electrode terminal 12 and the negative electrode terminal 14 to the outside.
  • the sealing material 160 seals the internal configuration of the lithium battery 10 by, for example, sealing with a vacuum sealer or the like. Note that aluminum foil or the like may be disposed on the other surface of the substrate 110 and the surface of the negative electrode layer 150 opposite to the substrate 110, and then the sealing material 160 may be used for sealing.
  • the sealing material 160 which is a sealing material, is pressed by, for example, a heating roller or the like. As a result, the sealing material 160 and the internal structure of the lithium battery 10 are in close contact with each other, so that the gel-like material of the buffer layer 140 can be prevented from seeping out.
  • the pressurization of the sealing material 160 is preferably performed in a depressurized atmosphere whose atmospheric pressure is lower than the standard atmospheric pressure, for example.
  • the application of the buffer material in S390 to the pressurization of the sealing material in S430 may be performed in a glove box in an argon gas atmosphere.
  • FIG. 1 and FIG. 2 are configuration examples at the stage where the sealing material 160 is pressurized, that is, one example of the result of producing the lithium battery 10 according to the present embodiment.
  • the lithium battery 10 according to the present embodiment does not use vapor deposition or the like, it can be easily manufactured using simple equipment such as a glove box. Therefore, the lithium battery 10 having the buffer layer 140 and improved conductivity can be manufactured at low cost and with high efficiency.
  • the example in which the single lithium battery 10 is manufactured has been described, but the present invention is not limited to this.
  • the positive electrode material layer 120, the electrolyte layer 130, the buffer layer 140, and the negative electrode layer 150 may be formed on the substrate 110 extending in one direction, and a part of the plurality of lithium batteries 10 may be commonly formed.
  • the plurality of lithium batteries 10 can be manufactured by cutting the commonly formed members and then performing the flow after the connection of the wiring material in S400 for each of the cut members.
  • the electrolyte layer 130 is pressed to form the recess 132 filled with the buffer material
  • the present invention is not limited thereto.
  • the recess 132 may be formed by processing the electrolyte layer 130 by etching or the like. Further, at least a part of the electrolyte layer 130 may be selectively laminated by photolithography or the like to form the recess 132.
  • the recess 132 is formed in a part of the electrolyte layer 130, and the buffer layer 140 is formed in the recess 132.
  • the portion of the electrolyte layer 130 where the recess 132 is not formed is attached so as to contact the negative electrode layer 150.
  • the electrolyte layer 130 having LISON may chemically react with lithium. Such a chemical reaction damages the electrolyte layer 130 and causes the battery to lose its function.
  • a coating material that reduces such a chemical reaction may be further provided between the electrolyte layer 130 and the negative electrode layer 150.
  • the coating material may be a material that can reduce the chemical reaction between the electrolyte layer 130 and the negative electrode layer 150.
  • the electrolyte layer 130 may include lithium phosphate (LiPO 4 ), a solder resist, a photoresist, or the like as a coating material at least at the interface with the negative electrode layer 150.
  • the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes are possible within the scope of the gist thereof. is there.
  • the specific embodiment of the distribution/integration of the device is not limited to the above-described embodiment, and all or a part of the device may be functionally or physically distributed/integrated in arbitrary units.
  • You can Further, a new embodiment that occurs due to an arbitrary combination of a plurality of embodiments is also included in the embodiment of the present invention. The effect of the new embodiment produced by the combination also has the effect of the original embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

導電性を向上させたリチウム電池を効率的に作製する。基板と、基板の一方の面に形成されている正極材層と、正極材層の基板を向く面とは反対側の面に形成されている電解質層と、電解質層の基板を向く面とは反対側の面に形成されているバッファ層と、バッファ層の基板を向く面とは反対側の面に形成されており、リチウムを含む負極層とを備え、電解質層は、負極層を向く面の一部において、基板に向けてくぼんでいる凹部を有し、バッファ層は、凹部を満たすように形成されている、リチウム電池を提供する。

Description

リチウム電池のバッファおよびリチウム電池の製造方法
 本発明は、リチウム電池のバッファおよびリチウム電池の製造方法に関する。
 従来、負極用電極板に金属リチウムを用いたリチウム二次電池が知られている。また、特許文献1には、このようなリチウム電池を、LISICON(Lithium-Super-Ion-Conductor)を含む固体電解質膜を用いて製造できることが開示されている。
特開2009-301726号公報
 従来、リチウムイオン二次電池は、非水性の有機溶媒を含む可燃性の電解液が用いられていた。したがって、このようなリチウムイオン二次電池は、電解液の漏洩の恐れがあり、また、発火事故が生じうるという課題があった。また、電解液に代えて、当該電解液の漏洩を低減できるポリマー電解質を用いることが知られていた。このようなポリマー電解質は、例えば、200℃程度の高温における可燃性を抑えることができず、また、リチウムイオンの伝導性が劣るという課題があった。したがって、電解液の漏洩を低減でき、また、発火性を克服できる固体電解質層を用いたリチウム電池の実現が期待されている。しかしながら、このような固体電解質層を用いたリチウム電池は、電解質層および負極材の間の界面抵抗が大きくなる傾向にあり、導電性が低下してしまうことがあった。
 そこで、本発明はこれらの点に鑑みてなされたものであり、導電性を向上させたリチウム電池を効率よく作製できるようにすることを目的とする。
 本発明の第1の態様においては、基板と、前記基板の一方の面に形成されている正極材層と、前記正極材層の前記基板を向く面とは反対側の面に形成されている電解質層と、前記電解質層の前記基板を向く面とは反対側の面に形成されているバッファ層と、前記バッファ層の前記基板を向く面とは反対側の面に形成されており、リチウムを含む負極層とを備え、前記電解質層は、前記負極層を向く面の一部において、前記基板に向けてくぼんでいる凹部を有し、前記バッファ層は、前記凹部を満たすように形成されている、リチウム電池を提供する。
 前記バッファ層は、アルミナエアロゲルが添加されているゲル状の層でもよい。前記電解質層は、前記負極層を向く面の一部において、前記凹部を複数有し、前記バッファ層は、複数の前記凹部を満たすように形成されていてもよい。
 前記正極材層および前記電解質層は、5μm以下のサイズに細粒化されているLAGPを有してもよい。前記正極材層および前記電解質層は、5μm以下のサイズに細粒化されているLISICON(Lithium-Super-Ion-Conductor)を有し、前記電解質層は、少なくとも前記負極層との界面において、被覆材料を有してもよい。
 本発明の第2の態様においては、基板の一方の面に正極材を塗布して乾燥させ、焼成することで正極材層を形成するステップと、前記正極材層の前記基板を向く面とは反対側の面に電解質を塗布して乾燥させ、焼成することで電解質層を形成するステップと、前記電解質層の前記基板を向く面とは反対側の面の少なくとも一部にバッファ材を塗布してバッファ層を形成するステップと、前記バッファ層の前記基板を向く面とは反対側の面にリチウムを含む負極材を貼り合わせて負極層を形成するステップとを備え、前記電解質層を形成するステップは、前記電解質を乾燥した後に、前記電解質の前記基板を向く面とは反対側の面の一部に、前記基板に向けてくぼむように凹部を形成するステップを更に有し、前記バッファ層を形成するステップは、前記電解質層の前記凹部にバッファ材を塗布して前記バッファ層を形成する、リチウム電池の製造方法を提供する。
 前記バッファ材は、電解液またはイオン性液体にアルミナエアロゲルが添加された材料を含んでもよい。前記正極材層を形成するステップは、乾燥後の前記正極材を予め定められた圧力で加圧するステップを更に有してもよい。前記電解質層を形成するステップは、乾燥後の前記電解質を予め定められた圧力で加圧するステップを更に有してもよい。
 前記電解質を加圧するステップは、前記電解質層に予め定められた形状の前記凹部を形成させてもよい。
 前記負極層を形成するステップの後に、前記基板および前記負極層のそれぞれに配線材料を接続するステップと、前記配線材料の一部以外の材料をシール材料でシーリングするステップと、前記シール材料を加圧するステップとを更に備えてもよい。
 本発明によれば、導電性を向上させた固体電解質膜を用いたリチウム電池を効率的に作製できるという効果を奏する。
本実施形態に係るリチウム電池10の構成例を示す。 本実施形態に係るリチウム電池10の断面構成の一例を示す。 本実施形態に係るリチウム電池10を作製するフローの一例を示す。 本実施形態に係る基板110に正極材層120を形成した後に、電解質を塗布して乾燥させた段階における断面構造の一例を示す。 本実施形態に係る基板110に凹部132を形成した段階における断面構造の一例を示す。 本実施形態に係るリチウム電池10の内部構成を形成した段階における断面構造の一例を示す。
<リチウム電池10の概略構成例>
 図1は、本実施形態に係るリチウム電池10の構成例を示す。図1において、互いに直交する3つの軸をX軸、Y軸、およびZ軸とする。本実施形態に係るリチウム電池10は、負極材として少なくとも金属リチウムを用いた二次電池である。リチウム電池10は、内部に電荷を蓄積して充電し、また、外部に蓄積した電荷を放出して放電するための正極端子12および負極端子14を備える。
 なお、本実施形態において、このような負極の材料としてリチウムを用いた二次電池を、慣例として、「リチウムイオン電池」ではなく「リチウム電池」と表記する。しかしながら、本発明の技術的範囲は、リチウム電池と表記された二次電池だけに限定されることはなく、負極材として少なくともリチウムを用いた二次電池であれば、他の表記の電池にも及ぶことは言うまでもない。
 従来、リチウム電池10は、電解質層の上面に金属リチウムの電極板を貼り合わせて作製していたので、電解質層および負極材の間の界面抵抗が大きくなる傾向にあった。理想的には、電解質層の上面に金属リチウムを真空蒸着させて、電解質層および負極材を密着させて形成することが考えられる。しかしながら、金属リチウムの真空蒸着は生産効率が低く、また、真空装置を用いるので製造に手間およびコストがかかってしまう。そこで、蒸着等を用いずに簡便な方法によって作製可能で、電解質層および負極材の間の界面抵抗を低減させ、導電性を向上させた本実施形態に係るリチウム電池10について説明する。
<リチウム電池10の断面の構成例>
 図2は、本実施形態に係るリチウム電池10の断面構成の一例を示す。図2は、図1に示すA-A’線におけるリチウム電池10の断面の構成例を示す。リチウム電池10は、正極端子12および負極端子14と、基板110と、正極材層120と、電解質層130と、バッファ層140と、負極層150と、シール材160とを備える。
 基板110は、導電性を有する電極板である。基板110は、例えば、金属製の電極板である。基板110は、例えば、鉄およびクロム等を有するステンレス基板、アルミナ基板等である。基板110には、正極端子12が電気的に接続されている。正極端子12は、例えば、銅等の金属を有する。図1は、XY面と略平行に基板110が配置された例を示す。また、図1は、基板110の一方の面において、正極材層120、電解質層130、バッファ層140、および負極層150が+Z方向に積層された例を示す。
 正極材層120は、基板110の一方の面に形成されている。正極材層120は、正極活物質として、例えば、LiMn、LiCoO、LiFePO、およびLiPOのいずれかを含んでよい。そして、正極材層120は、このような正極活物質を含有するMPS(Metal Polymer Solution:金属ポリマー溶液)をバインダとして用いて形成されている。
 また、正極材層120は、5μm以下のサイズに細粒化されているLi1+xAlGe2-x(PO等のLAGPを有する。正極材層120は、これに代えて、5μm以下のサイズに細粒化されているLISICONを有してもよい。例えば、正極材層120は、細粒化したLAGPまたはLISICONと正極活物質含有MPSとを混合してスラリー化した正極材を用いて形成されている、無機固体電解質層である。
 電解質層130は、正極材層120の基板110を向く面とは反対側の面に形成されている。電解質層130は、例えば、細粒化されているLAGPを活物質として有している。そして、電解質層130は、このような活物質を含有するMPSをバインダとして用いて形成されている。また、電解質層130は、正極材層120と同様に、5μm以下のサイズに細粒化されているLISICONを有してもよい。例えば、電解質層130は、細粒化したLISICONと活物質含有MPSとを混合してスラリー化した電解質を用いて形成されている、無機固体電解質層である。
 バッファ層140は、電解質層130の基板110を向く面とは反対側の面に形成されている。バッファ層140は、例えば、電解液またはイオン性液体を少なくとも有する。また、バッファ層140は、粘度を上げて操作性を高めるために、アルミナエアロゲルを添加してもよい。アルミナエアロゲルは、増粘剤でよく、一例として、粉体の酸化アルミニウムが混合されている。
 バッファ層140の少なくとも一部は、電解質層130の表面の加工された領域に形成されていることが望ましい。例えば、電解質層130は、負極層150を向く面の一部において、基板110に向けてくぼんでいる凹部132を有する。凹部132は、電解質層130の端部を除く領域に形成されることが望ましい。凹部132は、一例として、バスタブ形状を有している。凹部132は、電解質層130に複数設けられてもよい。これにより、凹部132は、リチウム電池10の製造過程において、ゲル状のバッファ層140が電解質層130の端部から流出することを防止できる。そして、バッファ層140は、このような凹部132を満たすように形成されている。
 負極層150は、バッファ層140の基板110を向く面とは反対側の面に形成されており、リチウムを含む。負極層150は、導電性を有する電極板である。負極層150は、例えば、銅箔およびリチウム箔が貼り合わされている基板である。負極層150には、負極端子14が電気的に接続されている。負極端子14は、例えば、銅等の金属を有する。図1は、負極層150が基板110と略平行に配置された例を示す。
 シール材160は、基板110、正極材層120、電解質層130、バッファ層140、および負極層150を覆うように設けられ、リチウム電池10の内部を被覆している。シール材160は、リチウム電池10の内部に通電させるための正極端子12および負極端子14の一部を露出させている。シール材160は、少なくとも、基板110および負極層150と密着するように設けられていることが望ましい。
 シール材160は、基板110、正極材層120、電解質層130、バッファ層140、および負極層150を封止するように設けられる。シール材160は、例えば、負極層150側の第1シール材162と、基板110側の第2シール材164を有する。第1シール材162および第2シール材164は、例えば、一体の材料である。例えば、シール材160を折り曲げ、折り目で分割される一部を第1シール材162とし、他方の一部を第2シール材164とする。この場合、第1シール材162および第2シール材164の対応する端部同士が重ね合わさり、真空シーラ等で少なくとも端部同士が密着されることで、内部を封止しているシール材160が形成されることになる。
 第1シール材162は、負極層150の基板110とは反対側を向く面と密着している。また、第2シール材164は、基板110の正極材層120とは反対側を向く面と密着している。また、第1シール材162および第2シール材164は、XY平面において、基板110、正極材層120、電解質層130、バッファ層140、および負極層150のいずれの部材よりも大きく、基板110、正極材層120、電解質層130、および負極層150の部材の周囲と密着して、これらの部材を封止している。これにより、シール材160は、バッファ層140のゲル状の材料が外部に染み出すことを防止できる。
 以上のように、本実施形態に係るリチウム電池10は、バッファ層140を挟んで電解質層130および負極層150が形成されている。したがって、電解質層130の表面に負極層150を貼り合わせていた従来の構成例と比較して、電解質層130と負極層150との密着性に優れ、界面抵抗を低減させることができる。また、金属リチウムを真空蒸着することなしに、負極層150およびバッファ層140を貼り合わせることで、リチウム電池10を作製できる。したがって、このような導電性を向上させたリチウム電池10を安価に、また、高効率で作製できる。以上のリチウム電池10を作製するプロセスについて次に説明する。
<リチウム電池10の製造フロー>
 図3は、本実施形態に係るリチウム電池10を作製するフローの一例を示す。まず、基板110の一方の面に正極材を塗布する(S310)。正極材は、例えば、5μm以下のサイズに細粒化されているLAGPに、正極活物質含有MPS溶液を加えて撹拌させた、正極用電解質原材である。なお、LAGPに代えて、5μm以下のサイズに細粒化されているLISICONを用いてもよい。正極材は、例えば、撹拌分散装置、スパチューラ、スターラ、超音波振動機等によって撹拌されてスラリー化される。また、正極材は、例えば、塗布装置によって塗布される。
 LAGPまたはLISICONのサイズは、直径が5μm以下でよく、例えば、直径が0.1μmから5μm程度の範囲である。LAGPまたはLISICONのサイズは、0.3μmから4μm程度の範囲であることが好ましく、また、0.5μmから3μm程度の範囲であることがより好ましい。
 正極活物質がLiMnの場合、正極活物質含有MPSは、例えば、有機リチウムおよび有機マンガンを、プロピレングリコールモノメチルエーテルを溶剤として、ポリ酢酸ビニルポリマーに溶解させて形成される。また、正極活物質がLiCoOの場合、正極活物質含有MPSは、例えば、有機リチウムおよび有機コバルトを、プロピレングリコールモノメチルエーテルを溶剤として、ポリ酢酸ビニルポリマーに溶解させて形成される。
 次に、塗布した正極材を乾燥させる(S320)。正極材は、例えば、略100℃以上の温度の環境に晒される。一例として、正極材が塗布された基板110を125℃程度の環境に30分間程度保持することで、正極材を乾燥させる。
 次に、乾燥後の正極材を予め定められた圧力で加圧する(S330)。この場合、例えば、ローラプレス機、加熱平面プレス機等を用いて、正極材を乾燥した後の基板110に圧力を加える。これにより、正極材の内部に空孔等が発生していた場合、当該空孔を消滅または低減させることができる。
 次に、乾燥した正極材を焼成させる(S340)。正極材は、例えば、焼成炉等により、略500℃以上の温度の環境に晒される。一例として、正極材を塗布して乾燥させた基板110を600℃程度の環境に60分間程度保持することで、正極材を焼成させる。以上のように、基板110の一方の面に正極材を塗布して乾燥させ、焼成することで、正極材層120を形成する。
 次に、正極材層120の露出している面に電解質を塗布する(S350)。電解質は、例えば、5μm以下のサイズに細粒化されているLAGPをMPS溶液に加えて撹拌させた、電解質原材である。なお、LAGPに代えて、5μm以下のサイズに細粒化されているLISICONを用いてもよい。電解質は、正極材と同様に、例えば、遠心力を用いた自公転する攪拌分散装置を用いて分散されて塗布スラリー化される。塗布直前に更にスパチューラ、スターラ、超音波振動機等によって再度撹拌分散され、電解質は、正極材と同様に、例えば、塗布装置によって塗布される。
 次に、塗布した電解質を乾燥させる(S360)。電解質は、例えば、略100℃以上の温度の環境に晒される。電解質は、一例として、正極材と同様の条件で乾燥される。図4は、本実施形態に係る基板110に正極材層120を形成した後に、電解質を塗布して乾燥させた段階における断面構造の一例を示す。
 次に、乾燥後の電解質を予め定められた圧力で加圧する(S370)。これにより、電解質の内部に空孔等が発生していた場合、当該空孔を消滅または低減させることができる。ここで、電解質を加圧することにより、凹部132を形成してもよい。この場合、電解質を乾燥させた後に、当該電解質の基板110を向く面とは反対側の面の一部を加圧して、基板110に向けてくぼむように凹部132を形成する。これにより、電解質の空孔を低減させると共に、乾燥後の電解質に予め定められた形状の凹部132を形成できる。
 電解質の加圧には、例えば、ローラプレス機、加熱平面プレス機等を用いる。なお、電解質は、既に焼成された正極材層120に重ねて形成されているので、ローラプレス機で加圧すると、正極材層120にクラック等が発生することがある。したがって、電解質への加圧は、加熱平面プレス機を用いる方が好ましい。
 ここで、一例として、XY平面において、50mm×50mmの正方形の基板110の一方の面に正極材層120および電解質が形成されているとする。この場合、露出している電解質の50mm×50mmの面のうち、例えば、40mm×40mmの正方形の領域を加圧して、凹部132が形成される。図5は、本実施形態に係る基板110に凹部132を形成した段階における断面構造の一例を示す。
 ここで、凹部132は、複数形成されてもよい。例えば、バッファ層140の界面を平滑な面とすべく、凹部132は複数に分割して設けられていてもよい。また、このように凹部132を複数設けて平滑な界面を形成することで、加圧工程における接触不良等の発生率を低減できる。また、凹部132を複数設けることにより、複数の凹部132を満たすバッファ層140の少なくとも一部が負極材と接触して、通電不良となることを防止できる。
 次に、凹部132が形成された電解質を焼成させる(S380)。電解質は、正極材と同様に、例えば、焼成炉等により、略500℃以上の温度の環境に晒される。一例として、凹部132が形成された電解質を有する基板110を600℃程度の環境に60分間程度保持することで、電解質を焼成させる。以上のように、正極材層120の基板110とは反対側の面に電解質を塗布して乾燥させ、焼成することで、電解質層130を形成する。このような、電解質の焼成により、凹部132も安定化される。
 次に、電解質層130の基板110を向く面とは反対側の面の少なくとも一部にバッファ材を塗布してバッファ層140を形成する(S390)。バッファ材は、例えば、電解液またはイオン性液体にアルミナエアロゲルが添加されたゲル状の材料を含む。アルミナエアロゲルは、例えば、Alを含む。バッファ層140は、電解質層130の凹部132にこのようなバッファ材を塗布することで形成される。バッファ材の塗布は、例えば、アルゴンガス中のグローブボックス内等の酸素に暴露しない雰囲気中で実行されることが好ましい。
 次に、バッファ層140の基板110を向く面とは反対側の面にリチウムを含む負極材を貼り合わせて負極層150を形成する(S400)。負極材は、例えば、銅箔およびリチウム箔が貼り合わされている基板である。負極材は、例えば、アルゴンガス雰囲気のグローブボックス中でバッファ層140に貼り合わせられることが好ましい。負極材は、一例として、XY平面において、50mm×50mmの正方形の形状を有し、略50mm×50mmの形状のリチウム電池10の内部構成が形成される。図6は、本実施形態に係るリチウム電池10の内部構成を形成した段階における断面構造の一例を示す。
 次に、基板110および負極層150のそれぞれに配線材料を接続する(S410)。配線材料は正極端子12および負極端子14である。即ち、正極端子12を基板110に、負極端子14を負極層150に固定する。正極端子12および負極端子14は、例えば、ポリイミドテープ等でそれぞれ固定される。リチウム金属負極材の場合、正極端子12および負極端子14は、例えば、アルゴンガス雰囲気のグローブボックス中でそれぞれ固定されることが好ましい。
 次に、配線材料の一部以外の材料をシール材料でシーリングする(S420)。シール材料はシール材160である。シール材160は、基板110、正極材層120、電解質層130、バッファ層140、および負極層150を覆い、正極端子12および負極端子14の一部を外部に露出させるようにシーリングする。シール材160は、例えば、真空シーラ等によるシーリングにより、リチウム電池10の内部構成をシーリングする。なお、基板110の他方の面と、負極層150の基板110とは反対側の面とに、それぞれアルミ箔等を配置してから、シール材160でシーリングしてもよい。
 次に、リチウム電池10の内部構成をシーリングした状態のシーリング材料を加圧する(S430)。シール材料であるシール材160は、例えば、加熱ローラ等によって加圧される。これにより、シール材160とリチウム電池10の内部構成とが密着するので、バッファ層140のゲル状の材料が外部に染み出すことを防止できる。シール材160の加圧は、例えば、標準大気圧よりも気圧の低い減圧雰囲気において実行されることが好ましい。一例として、S390のバッファ材の塗布からS430のシール材料の加圧までを、アルゴンガス雰囲気のグローブボックス中で実行してよい。図1および図2は、シール材160を加圧した段階の構成例であり、即ち、本実施形態に係るリチウム電池10を作製した結果の一例である。
 以上のように、本実施形態に係るリチウム電池10は、蒸着等を用いないので、例えば、グローブボックス等の簡便な設備を用いて、容易に作製することができる。したがって、バッファ層140を設けて導電性を向上させたリチウム電池10を、安価に、また高効率で作製できる。なお、本実施形態においては、単体のリチウム電池10を作製する例を説明したが、これに限定されることはない。例えば、一方向に延伸する基板110に、正極材層120、電解質層130、バッファ層140、および負極層150を形成して、複数のリチウム電池10の一部を共通に形成してもよい。この場合、共通に形成した部材を切断した後に、S400の配線材料の接続以降のフローを切断した部材ごとに実行することで、複数のリチウム電池10を作製できる。
 以上の本実施形態に係るリチウム電池10は、電解質層130を加圧してバッファ材が充填される凹部132を形成する例を説明したが、これに限定されることはない。例えば、電解質層130をエッチング等によって加工することで、凹部132を形成してもよい。また、電解質層130の少なくとも一部をフォトリソグラフィ等により選択的に積層させて、凹部132を形成してもよい。
 また、本実施形態に係るリチウム電池10は、電解質層130の一部に凹部132を形成し、当該凹部132にバッファ層140を形成する例を説明した。この場合、電解質層130の凹部132が形成されない部分は、負極層150と接するように貼り合わされる。ここで、LISICONを有する電解質層130は、リチウムと化学反応することがある。このような化学反応は、電解質層130を破損し、バッテリー機能を喪失させる。
 そこで、電解質層130および負極層150の間に、このような化学反応を低減させる被覆材料を更に設けてもよい。被覆材料は、電解質層130および負極層150の間の化学反応を低減できる材料であればよい。例えば、電解質層130は、少なくとも負極層150との界面において、被覆材料としてリン酸リチウム(LiPO)、ソルダーレジスト、フォトレジスト等を有してよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
10 リチウム電池
12 正極端子
14 負極端子
110 基板
120 正極材層
130 電解質層
132 凹部
140 バッファ層
150 負極層
160 シール材
162 第1シール材
164 第2シール材

Claims (11)

  1.  基板と、
     前記基板の一方の面に形成されている正極材層と、
     前記正極材層の前記基板を向く面とは反対側の面に形成されている電解質層と、
     前記電解質層の前記基板を向く面とは反対側の面に形成されているバッファ層と、
     前記バッファ層の前記基板を向く面とは反対側の面に形成されており、リチウムを含む負極層と
     を備え、
     前記電解質層は、前記負極層を向く面の一部において、前記基板に向けてくぼんでいる凹部を有し、
     前記バッファ層は、前記凹部を満たすように形成されている、
     リチウム電池。
  2.  前記バッファ層は、アルミナエアロゲルが添加されているゲル状の層である、請求項1に記載のリチウム電池。
  3.  前記電解質層は、前記負極層を向く面の一部において、前記凹部を複数有し、
     前記バッファ層は、複数の前記凹部を満たすように形成されている、
     請求項1または2に記載のリチウム電池。
  4.  前記正極材層および前記電解質層は、5μm以下のサイズに細粒化されているLAGPを有する、請求項1から3のいずれか一項に記載のリチウム電池。
  5.  前記正極材層および前記電解質層は、5μm以下のサイズに細粒化されているLISICON(Lithium-Super-Ion-Conductor)を有し、
     前記電解質層は、少なくとも前記負極層との界面において、被覆材料を有する、請求項1から3のいずれか一項に記載のリチウム電池。
  6.  基板の一方の面に正極材を塗布して乾燥させ、焼成することで正極材層を形成するステップと、
     前記正極材層の前記基板を向く面とは反対側の面に電解質を塗布して乾燥させ、焼成することで電解質層を形成するステップと、
     前記電解質層の前記基板を向く面とは反対側の面の少なくとも一部にバッファ材を塗布してバッファ層を形成するステップと、
     前記バッファ層の前記基板を向く面とは反対側の面にリチウムを含む負極材を貼り合わせて負極層を形成するステップと
     を備え、
     前記電解質層を形成するステップは、前記電解質を乾燥した後に、前記電解質の前記基板を向く面とは反対側の面の一部に、前記基板に向けてくぼむように凹部を形成するステップを更に有し、
     前記バッファ層を形成するステップは、前記電解質層の前記凹部にバッファ材を塗布して前記バッファ層を形成する、
     リチウム電池の製造方法。
  7.  前記バッファ材は、電解液またはイオン性液体にアルミナエアロゲルが添加された材料を含む、請求項6に記載の製造方法。
  8.  前記正極材層を形成するステップは、乾燥後の前記正極材を予め定められた圧力で加圧するステップを更に有する、請求項6または7に記載の製造方法。
  9.  前記電解質層を形成するステップは、乾燥後の前記電解質を予め定められた圧力で加圧するステップを更に有する、請求項6から8のいずれか一項に記載の製造方法。
  10.  前記電解質を加圧するステップは、前記電解質層に予め定められた形状の前記凹部を形成させる、請求項9に記載の製造方法。
  11.  前記負極層を形成するステップの後に、
     前記基板および前記負極層のそれぞれに配線材料を接続するステップと、
     前記配線材料の一部以外の材料をシール材料でシーリングするステップと、
     前記シール材料を加圧するステップと
     を更に備える、請求項6から10のいずれか一項に記載の製造方法。
PCT/JP2018/046793 2018-12-19 2018-12-19 リチウム電池のバッファおよびリチウム電池の製造方法 WO2020129183A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/046793 WO2020129183A1 (ja) 2018-12-19 2018-12-19 リチウム電池のバッファおよびリチウム電池の製造方法
JP2020560702A JP7299445B2 (ja) 2018-12-19 2018-12-19 リチウム電池のバッファおよびリチウム電池の製造方法
CN201880100219.5A CN113228374B (zh) 2018-12-19 2018-12-19 锂电池以及锂电池的制造方法
US17/351,230 US20210313565A1 (en) 2018-12-19 2021-06-18 Lithium battery and method for manufacturing lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046793 WO2020129183A1 (ja) 2018-12-19 2018-12-19 リチウム電池のバッファおよびリチウム電池の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,230 Continuation US20210313565A1 (en) 2018-12-19 2021-06-18 Lithium battery and method for manufacturing lithium battery

Publications (1)

Publication Number Publication Date
WO2020129183A1 true WO2020129183A1 (ja) 2020-06-25

Family

ID=71101157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046793 WO2020129183A1 (ja) 2018-12-19 2018-12-19 リチウム電池のバッファおよびリチウム電池の製造方法

Country Status (4)

Country Link
US (1) US20210313565A1 (ja)
JP (1) JP7299445B2 (ja)
CN (1) CN113228374B (ja)
WO (1) WO2020129183A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229967A (ja) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc ゲル状電解質およびリチウム電池
JP2008171588A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd リチウム電池
JP2009301726A (ja) * 2008-06-10 2009-12-24 Kazu Tomoyose リチウムイオン電池の製法及びリチウム電池の製法
JP2011129316A (ja) * 2009-12-16 2011-06-30 Idemitsu Kosan Co Ltd リチウムイオン二次電池
JP2013045738A (ja) * 2011-08-26 2013-03-04 Toyota Motor Corp 固体電解質焼結体、及びその製造方法、並びに全固体リチウム電池
JP2015028846A (ja) * 2013-07-30 2015-02-12 富士通株式会社 固体電解質複合体、全固体イオン電池及び固体電解質複合体の製造方法
KR20180036410A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 전고체 전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011899A2 (en) * 2005-07-15 2007-01-25 Cymbet Corporation Thin-film batteries with polymer and lipon electrolyte layers and method
JP5151692B2 (ja) * 2007-09-11 2013-02-27 住友電気工業株式会社 リチウム電池
JP5316809B2 (ja) * 2007-11-13 2013-10-16 住友電気工業株式会社 リチウム電池およびその製造方法
JP5334485B2 (ja) * 2008-07-25 2013-11-06 日新製鋼株式会社 リチウムイオン二次電池用集電体および負極材料
WO2011111555A1 (ja) * 2010-03-09 2011-09-15 株式会社 村田製作所 全固体二次電池およびその製造方法
WO2012035631A1 (ja) * 2010-09-16 2012-03-22 トヨタ自動車株式会社 固体電池及びその再生方法
JP5784819B2 (ja) * 2012-03-15 2015-09-24 株式会社東芝 固体電解質二次電池用電極、固体電解質二次電池および電池パック
JP5447578B2 (ja) * 2012-04-27 2014-03-19 株式会社豊田自動織機 固体電解質及び二次電池
JP6681603B2 (ja) * 2015-05-26 2020-04-15 パナソニックIpマネジメント株式会社 全固体リチウムイオン二次電池、および、その製造方法
JP2017054792A (ja) * 2015-09-11 2017-03-16 日本碍子株式会社 リチウム電池
CN107195969B (zh) * 2017-06-20 2018-07-06 湖北汇锂新能源科技有限公司 一种用于锂电池电解液的螯合导电添加剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229967A (ja) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc ゲル状電解質およびリチウム電池
JP2008171588A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd リチウム電池
JP2009301726A (ja) * 2008-06-10 2009-12-24 Kazu Tomoyose リチウムイオン電池の製法及びリチウム電池の製法
JP2011129316A (ja) * 2009-12-16 2011-06-30 Idemitsu Kosan Co Ltd リチウムイオン二次電池
JP2013045738A (ja) * 2011-08-26 2013-03-04 Toyota Motor Corp 固体電解質焼結体、及びその製造方法、並びに全固体リチウム電池
JP2015028846A (ja) * 2013-07-30 2015-02-12 富士通株式会社 固体電解質複合体、全固体イオン電池及び固体電解質複合体の製造方法
KR20180036410A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 전고체 전지

Also Published As

Publication number Publication date
CN113228374A (zh) 2021-08-06
US20210313565A1 (en) 2021-10-07
JP7299445B2 (ja) 2023-06-28
CN113228374B (zh) 2024-07-23
JPWO2020129183A1 (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2012164723A1 (ja) 全固体電池の製造方法
WO2015045921A1 (ja) 正極活物質層
JP2018181451A (ja) 積層型全固体電池およびその製造方法
JP2018125260A (ja) 全固体電池
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
JP5773827B2 (ja) 二次電池
JP2015005398A (ja) 全固体リチウムイオン電池用正極
JP2017117672A (ja) 全固体蓄電デバイスおよびその製造方法
JP7298626B2 (ja) 固体電池
JP7160753B2 (ja) 固体電池の製造方法及び固体電池
US9941504B2 (en) All-solid-state electrode body and electrochemical cell
JP2018181473A (ja) 全固体電池の製造方法
JP2019192563A (ja) 全固体電池およびその製造方法
JP2015005421A (ja) 電極体及び全固体電池
JP6400898B2 (ja) ポリマー二次電池
JP7180685B2 (ja) 固体電池
WO2020129183A1 (ja) リチウム電池のバッファおよびリチウム電池の製造方法
JP2020024779A (ja) 二次電池用電極、二次電池、それらの製造方法
JP6251974B2 (ja) 電池の製造方法
US20220238913A1 (en) Solid state battery
TWI741923B (zh) 固體電池之製造方法及固體電池
WO2015159331A1 (ja) 全固体電池、全固体電池用電極及びその製造方法
CN112930611B (zh) 电池以及电池的制造方法
JP6721646B2 (ja) ポリマー二次電池
WO2021075420A1 (ja) 全固体リチウム二次電池及び全固体リチウム二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943585

Country of ref document: EP

Kind code of ref document: A1