WO2012035631A1 - 固体電池及びその再生方法 - Google Patents

固体電池及びその再生方法 Download PDF

Info

Publication number
WO2012035631A1
WO2012035631A1 PCT/JP2010/066031 JP2010066031W WO2012035631A1 WO 2012035631 A1 WO2012035631 A1 WO 2012035631A1 JP 2010066031 W JP2010066031 W JP 2010066031W WO 2012035631 A1 WO2012035631 A1 WO 2012035631A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
solid
solid electrolyte
electrolyte layer
metal ions
Prior art date
Application number
PCT/JP2010/066031
Other languages
English (en)
French (fr)
Inventor
寛 広瀬
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/819,577 priority Critical patent/US9225038B2/en
Priority to CN201080068999.3A priority patent/CN103081215B/zh
Priority to JP2012533786A priority patent/JP5500260B2/ja
Priority to PCT/JP2010/066031 priority patent/WO2012035631A1/ja
Publication of WO2012035631A1 publication Critical patent/WO2012035631A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a solid battery having a solid electrolyte layer and a regeneration method thereof.
  • Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • the lithium ion secondary battery includes a positive electrode layer and a negative electrode layer (a pair of electrode layers) and an electrolyte disposed therebetween, and the electrolyte is composed of, for example, a non-aqueous liquid or solid.
  • electrolytic solution a liquid (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte (hereinafter referred to as “solid electrolyte”) is nonflammable, the above system can be simplified. Therefore, a lithium ion secondary battery (hereinafter referred to as “solid battery”) having a layer containing a solid electrolyte that is nonflammable has been proposed.
  • Patent Document 1 discloses a battery including a positive electrode including a movable alkali metal ion source under charge, an alkali metal negative electrode, and a polymer electrolyte.
  • Patent Document 2 includes a positive electrode containing a positive electrode active material capable of inserting and extracting lithium, a negative electrode containing an alloy-based negative electrode active material, and a solid electrolyte containing a polymer or a separator impregnated with the solid electrolyte.
  • a solid electrolyte secondary battery including a battery cell and control means for controlling the battery cell at the time of discharge so as to be equal to or higher than the deformable temperature of the polymer is disclosed.
  • an object of the present invention is to provide a solid state battery capable of reducing overvoltage and a method for regenerating the same.
  • a first aspect of the present invention is a solid electrolyte layer including a negative electrode capable of occluding and releasing alkali metal ions or alkaline earth metal ions, a solid electrolyte having ion conductivity disposed so as to be in contact with the negative electrode, And a method of regenerating a solid battery comprising a positive electrode capable of releasing and occluding alkali metal ions or alkaline earth metal ions that move between the negative electrode and heated to a temperature at which the negative electrode softens, And a step of compressing the negative electrode in a direction intersecting the surface in contact with the solid electrolyte layer.
  • alkali metal ion means an ion generated from an alkali metal element such as lithium ion, sodium ion, potassium ion or the like.
  • alkaline earth metal ion refers to an ion generated from an alkaline earth metal element such as calcium ion or magnesium ion.
  • having ion conductivity means having a property of conducting ions (alkali metal ions or alkaline earth metal ions) moving between the negative electrode and the positive electrode.
  • the “temperature at which the negative electrode softens” refers to a temperature at which at least a part of the negative electrode softens while maintaining a solid state. More specifically, the temperature is equal to or higher than the temperature at which the negative electrode starts to soften and lower than the temperature at which the negative electrode becomes completely liquid.
  • the negative electrode can occlude and release lithium ions, and the heating temperature is 160 ° C. or higher and lower than 185 ° C.
  • a second aspect of the present invention is a solid electrolyte layer comprising a negative electrode capable of occluding and releasing alkali metal ions or alkaline earth metal ions, and a solid electrolyte having ion conductivity disposed so as to be in contact with the negative electrode
  • a positive electrode capable of releasing and occluding alkali metal ions or alkaline earth metal ions moving between the negative electrode, a heating means for heating the negative electrode to a temperature at which the negative electrode softens, and a force for bringing the solid electrolyte layer and the negative electrode into close contact with each other A solid state battery.
  • the negative electrode can occlude and release lithium ions, and the heating temperature is 160 ° C. or higher and lower than 185 ° C.
  • a solid battery having a negative electrode capable of occluding and releasing alkali metal ions or alkaline earth metal ions dendrite is generated in the negative electrode during charging, and dendrite grows when charging and discharging are repeated.
  • the negative electrode on which the dendrite has grown is deformed, and the solid state battery having the deformed negative electrode has an increased interface resistance and an increased overvoltage.
  • heating is performed in order to soften the negative electrode capable of occluding and releasing alkali metal ions or alkaline earth metal ions, and the softened negative electrode is brought into close contact with the solid electrolyte layer.
  • a step of compressing is performed in order to soften the negative electrode capable of occluding and releasing alkali metal ions or alkaline earth metal ions.
  • the negative electrode deformed due to the growth of dendrites can be softened to bring the negative electrode and the solid electrolyte layer into close contact with each other, and thereby the surface of the negative electrode in contact with the solid electrolyte layer can be smoothed.
  • the contact area between the negative electrode and the solid electrolyte layer can be increased, and as a result, the interface resistance can be reduced and the overvoltage can be reduced. . Therefore, according to the present invention, it is possible to provide a method of regenerating a solid battery that can reduce overvoltage.
  • the negative electrode can occlude and release lithium ions, and the heating temperature is 160 ° C. or higher and lower than 185 ° C., so that it is possible to reduce the overvoltage of a solid battery with high energy density.
  • a method for regenerating a solid battery can be provided.
  • the solid state battery according to the second aspect of the present invention has a heating means for heating the anode capable of occluding and releasing alkali metal ions or alkaline earth metal ions to a temperature at which the anode is softened, and a force for adhering the solid electrolyte layer and the anode. Fastening means to be applied. Therefore, the negative electrode deformed due to the growth of dendrites can be softened, and the negative electrode and the solid electrolyte layer can be brought into close contact with each other, whereby the surface of the negative electrode in contact with the solid electrolyte layer can be smoothed. .
  • the contact area between the negative electrode and the solid electrolyte layer can be increased, and as a result, the interface resistance can be reduced and the overvoltage can be reduced. . Therefore, according to the present invention, a solid state battery capable of reducing overvoltage can be provided.
  • the negative electrode can occlude and release lithium ions, and the heating temperature is 160 ° C. or higher and lower than 185 ° C., so that the energy density is high and the overvoltage can be easily reduced.
  • a solid state battery can be provided.
  • FIG. 1 is a diagram for explaining a method for regenerating a solid battery of the present invention (hereinafter sometimes referred to as “method of the present invention”).
  • the solid battery 10 solid battery 10a
  • the solid battery 10 solid battery 10b
  • the subscript a is used as, for example, “solid battery 10a”.
  • the subscript b may be added, for example, as "solid battery 10b”.
  • the solid battery 10 includes a negative electrode 1 and a positive electrode 2, a solid electrolyte layer 3 sandwiched between the negative electrode 1 and the positive electrode 2, a negative electrode current collector 4 connected to the negative electrode 1, and a positive electrode 2.
  • a direction in which the positive electrode current collector 5 connected, the heating means 6 embedded in the negative electrode current collector 4, the negative electrode 1 and the solid electrolyte layer 3 are brought into close contact the solid battery 10 is viewed from the upper end side and the lower end side in FIG.
  • Fastening means 7 capable of applying a force in the direction of compression).
  • the solid battery 10 is used in a state where the components shown in FIG. 1 are accommodated in an exterior material not shown.
  • the negative electrode 1 contains a negative electrode active material capable of occluding and releasing lithium ions
  • the positive electrode 2 contains a positive electrode active material capable of occluding and releasing lithium ions.
  • the fastening means 7 is in contact with the negative electrode current collector 4 and the positive electrode current collector 5. When the solid battery 10 is used (charge / discharge), lithium ions move between the negative electrode 1 and the positive electrode 2 through the solid electrolyte layer 3.
  • the solid battery 10a has lithium at the interface between the negative electrode 1a and the solid electrolyte layer 3.
  • Ion conduction resistance interface resistance
  • overvoltage tends to increase. Since the performance of the solid battery 10a in which the interfacial resistance is increased and the overvoltage is increased is likely to deteriorate, it is effective to reduce the interface resistance in order to improve the performance of the solid battery 10a.
  • FIG. 2 is a charging curve of a solid state battery in which lithium ions move between the negative electrode and the positive electrode.
  • the vertical axis in FIG. 2 is the overvoltage [V] of the solid state battery, and the horizontal axis in FIG. 2 is the capacity [mAh].
  • the overvoltage gradually increases, and in the result shown in FIG. 2, the change of the overvoltage with the increase in capacity is reduced when the overvoltage is around ⁇ 0.15 V (hereinafter referred to as “overvoltage”).
  • the region where the change in overvoltage accompanying the increase in capacity is small is referred to as a “plateau region”.
  • the method of the present invention is performed.
  • the negative electrode current collector 4 is heated using the heating means 6 to heat the negative electrode 1a in contact with the negative electrode current collector 4 and soften the negative electrode 1a.
  • the softening start temperature of lithium is 160 ° C.
  • the melting point of lithium is 180.54 ° C.
  • the temperature at which solid lithium becomes completely liquid is 185 ° C., for example. Therefore, when the negative electrode 1a is a lithium foil, the heating means 6 is used so that the negative electrode 1a has a temperature of 160 ° C. or higher and lower than 185 ° C., more specifically, for example, the negative electrode 1a has a temperature of 160 ° C. Then, the negative electrode 1a may be softened by heating the negative electrode 1a.
  • the force in the direction in which the negative electrode 1a and the solid electrolyte layer 3 are brought into close contact with each other using the fastening means 7 (the force in the direction intersecting the surface of the negative electrode 1a in contact with the solid electrolyte layer 3). Is applied to the softened negative electrode 1a to compress the negative electrode 1a. By compressing the softened negative electrode 1a, the negative electrode 1a and the solid electrolyte layer 3 can be brought into close contact with each other. As a result, the solid having the negative electrode 1b whose surface facing the solid electrolyte layer 3 is smoothed It can be regenerated into the battery 10b. As shown in FIG.
  • the entire surface of the negative electrode 1 b facing the solid electrolyte layer 3 is in contact with the solid electrolyte layer 3. Therefore, compared with the solid battery 10a, the lithium ion conduction resistance (interface resistance) at the interface between the negative electrode 1b and the solid electrolyte layer 3 can be reduced, and the overvoltage can be reduced. Further, by smoothing the surface of the negative electrode 1 facing the solid electrolyte layer 3, the solid electrolyte layer 3 is formed by the negative electrode 1a having large irregularities on the surface facing the solid electrolyte layer 3 due to growth of dendrites or the like. It is possible to avoid the situation of being destroyed.
  • the adhesion between the negative electrode 1a and the negative electrode current collector 4 can be improved by applying a force in the above direction to the negative electrode 1a using the fastening means 7. Therefore, as compared with the solid battery 10a, it is possible to reduce the electron conduction resistance at the interface between the negative electrode 1b and the negative electrode current collector 4b, and as a result, it is possible to reduce the overvoltage. Therefore, according to the present invention, it is possible to provide a method of regenerating a solid battery that can reduce overvoltage. In addition, by adopting a configuration in which the heating means 6 and the fastening means 7 are provided, according to the present invention, it is possible to provide the solid state battery 10 capable of reducing overvoltage.
  • the negative electrode 1 contains a negative electrode active material capable of inserting and extracting lithium ions.
  • a negative electrode active material include Li, Zn, Al, Ag, or an alloy of Li and another metal (for example, Zn, Al, Ag, etc.), a carbon material such as graphite, and the like.
  • a known negative electrode active material that can be used for the negative electrode of the secondary battery can be appropriately used.
  • the negative electrode 1 may contain a solid electrolyte, a conductive material, and a binder for binding them. When the negative electrode 1 contains a solid electrolyte, the negative electrode 1 can appropriately contain a known solid electrolyte that can be used in a solid battery.
  • the negative electrode 1 when making the negative electrode 1 contain a electrically conductive material, the negative electrode 1 can be made to contain suitably the well-known electrically conductive material which can be used for a solid battery. Examples of such a conductive material include a carbon material typified by carbon black.
  • the negative electrode 1 when the negative electrode 1 contains a binder, the negative electrode 1 can appropriately contain a known binder that can be used in a solid battery.
  • a binder include synthetic rubbers such as fluorine rubber, and polymer materials such as polyvinylidene fluoride.
  • the positive electrode 2 contains a positive electrode active material capable of inserting and extracting lithium ions.
  • a positive electrode active material capable of inserting and extracting lithium ions.
  • the positive electrode active material to be contained in the positive electrode 2 a known positive electrode active material that can be used for a solid battery can be appropriately used.
  • a positive electrode active material lithium cobaltate etc. can be mentioned, for example.
  • the positive electrode 2 may contain a solid electrolyte, a conductive material, and a binder for binding them.
  • the positive electrode 2 contains a solid electrolyte, a conductive material, and a binder, the same solid electrolyte, conductive material, and binder as can be contained in the negative electrode 1 should be used. it can.
  • the solid electrolyte layer 3 contains a solid electrolyte that has lithium ion conductivity and does not have electron conductivity.
  • a known solid electrolyte that can be used in a solid battery can be appropriately used.
  • the negative electrode current collector 4 known materials that can be used for the negative electrode current collector of the solid state battery can be appropriately used.
  • the negative electrode current collector 4 for example, a copper foil or a nickel foil can be used.
  • the positive electrode current collector 5 a known material that can be used for the positive electrode current collector of the solid state battery can be appropriately used.
  • the positive electrode current collector 5 for example, an aluminum foil, a nickel foil, or the like can be used.
  • the heating means 6 is not particularly limited in form as long as it can heat the negative electrode 1a at least to a temperature at which the negative electrode 1a begins to soften and can withstand the environment when the solid battery 10 is used. Any known heating means can be used as appropriate. As the heating means 6, for example, a known heating element that generates heat when an electric current is passed can be used. In the present invention, the time for heating the negative electrode 1a using the heating means 6 (heating time) is from when the application of force using the fastening means 7 is started until the application of force is completed. The time required for maintaining the negative electrode 1a in a softened state can be set. The heating time can be, for example, not less than 0.1 seconds and not more than 180 seconds. In addition, when the heating unit 6 is a known heating element that generates heat when an electric current is passed, the current that is passed to cause the heating unit 6 to generate heat can be, for example, 30 A or more and 500 A or less.
  • the fastening means 7 can apply a compressive force capable of smoothing the surface of the negative electrode 1 facing the solid electrolyte layer 3 to the negative electrode 1 a and can withstand the environment when the solid battery 10 is used. If it is a thing, the form will not be specifically limited.
  • the fastening means 7 is a known fastening means capable of applying a compressive force (fastening force) to each component housed in the exterior material for the purpose of reducing the interface resistance at the interface between the solid electrolyte layer and the negative electrode. Can be used as appropriate.
  • the magnitude of the force (pressure) applied to the negative electrode 1a is not particularly limited as long as the surface of the negative electrode 1 facing the solid electrolyte layer 3 can be smoothed.
  • the pressure can be set to 100 MPa or less.
  • the time for applying the force to the negative electrode 1a is appropriately changed according to the magnitude of the force applied to the negative electrode 1a.
  • the time for applying the force to the negative electrode 1a is not particularly limited as long as the surface of the negative electrode 1 facing the solid electrolyte layer 3 can be smoothed.
  • the time is 0.1 seconds or more and 300 seconds or less. It can be.
  • the compressive force applied to the negative electrode 1a only needs to exhibit a function of smoothing the surface of the negative electrode 1a facing the solid electrolyte layer 3, and the compressive force of the negative electrode 1a facing the solid electrolyte layer 3 can be reduced. It need not be applied only to smooth the surface.
  • the fastening means 7 has a function of continuously applying a force in the direction in which the negative electrode 1, the solid electrolyte layer 3, and the positive electrode 2 are brought into close contact with each other regardless of the unevenness of the surface of the negative electrode 1 facing the solid electrolyte layer 3. You may do it.
  • the present invention compresses the negative electrode 1a heated using the heating means 6 using the force applied before the negative electrode 1a is heated, so that the negative electrode 1 facing the solid electrolyte layer 3 is compressed. It is also possible to adopt a form in which the surface is smoothed. Even when the solid battery 10 is operated while applying a force in the direction in which the solid electrolyte layer 3 and the negative electrode 1 are brought into close contact with each other using the fastening means 7, when the interface resistance increases and the overvoltage increases, the fastening means 7 It is considered that the force applied using is smaller than the force required to smooth the surface of the negative electrode 1.
  • the operation of the fastening means 7 is controlled using a control means (not shown) so as to increase the force applied using the fastening means 7, and then the heated negative electrode 1a is applied. By applying force, it may be regenerated into the negative electrode 1b (solid battery 10b including the negative electrode 1b) having a smooth surface facing the solid electrolyte layer 3b.
  • the surface of the negative electrode 1 facing the solid electrolyte layer 3 is smoothed by compressing the softened negative electrode 1a at a heating temperature of 160 ° C., thereby reducing the overvoltage of the solid battery 10.
  • the present invention is not limited to the form. In the present invention, it is possible to reduce the overvoltage through a process of heating the negative electrode 1a so that a part of the negative electrode 1a melts.
  • the negative electrode 1a, the solid electrolyte layer 3 sandwiching the negative electrode 1a, and the negative electrode current collector 4 are accommodated in an exterior material not shown, and the interior of the exterior material in which the negative electrode 1a is to be disposed Is determined by the solid electrolyte layer 3, the negative electrode current collector 4, and the exterior material. Therefore, even if a part of the negative electrode 1a is melted, the solidified negative electrode 1b is solidified by applying a force using the fastening means 7 and solidifying the negative electrode 1 by lowering the temperature after the heating to solidify the negative electrode 1b. 3 and the negative electrode current collector 4, and the solid battery 10 b can be operated.
  • the present invention may be in a form in which overvoltage is reduced through a process of heating the negative electrode 1a so that a temperature at which a part of the negative electrode 1a is melted.
  • the present invention is configured to smooth the surface of the negative electrode facing the solid electrolyte layer by applying force to the softened negative electrode, the temperature at which the negative electrode is heated and softened is the negative electrode contained. It can be appropriately changed according to the composition of the active material.
  • the negative electrode is heated and softened so that it is 160 ° C. or higher and lower than 185 ° C. It is preferable that
  • solid battery 10 in which lithium ions move between the negative electrode 1 and the positive electrode 2 through the solid electrolyte layer 3 has been described.
  • the present invention is limited to this form. is not.
  • the solid battery to which the method of the present invention is applied and the solid battery of the present invention (hereinafter collectively referred to simply as “solid battery of the present invention”) are alkali metal ions other than lithium ions (for example, sodium) It is also possible to adopt a form in which ions, potassium ions, etc. (the same applies below) move between the negative electrode and the positive electrode through the solid electrolyte layer.
  • the solid battery of the present invention has a form in which alkaline earth metal ions (for example, calcium ions, magnesium ions, etc., the same applies hereinafter) move between the negative electrode and the positive electrode through the solid electrolyte layer. Also good. However, from the viewpoint of providing a solid battery having a high energy density, it is preferable that lithium ions move between the negative electrode and the positive electrode via the solid electrolyte layer.
  • alkaline earth metal ions for example, calcium ions, magnesium ions, etc., the same applies hereinafter
  • an alkali metal simple substance that generates the alkali metal ions may be used as the negative electrode active material for the negative electrode of the solid battery of the present invention. It can.
  • metals such as Zn, Al, and Ag, alloys of alkali metals that generate alkali metal ions with other metals (for example, Zn, Al, and Ag), carbon materials such as graphite, and the like as negative electrode active materials Can be used.
  • the negative electrode of the solid battery of the present invention includes an alkaline earth metal simple substance that generates the alkaline earth metal ions as the negative electrode active material.
  • an alkaline earth metal simple substance that generates the alkaline earth metal ions as the negative electrode active material.
  • metals such as Zn, Al, and Ag, alloys of alkaline earth metals that generate alkaline earth metal ions and other metals (for example, Zn, Al, Ag, etc.), carbon materials such as graphite, etc. It can be used as a negative electrode active material.
  • a known positive electrode active material that generates the alkali metal ions is appropriately used for the positive electrode of the solid battery of the present invention.
  • Can do When alkaline earth metal ions are moved between the negative electrode and the positive electrode, a known positive electrode active material that generates the alkaline earth metal ions is appropriately used for the positive electrode of the solid battery of the present invention. Can do.
  • the heating means 6 is embedded in the negative electrode current collector 4
  • the present invention is not limited to this mode.
  • the heating means may be provided in a form capable of heating the negative electrode.
  • the solid battery of this invention is not limited to the said form.
  • the solid battery of the present invention can also be configured in such a manner that an electrolyte is filled between the positive electrode and the solid electrolyte layer while being held by a separator as necessary.
  • the electrolytic solution for example, a known electrolytic solution that can be used for a solid battery such as an aqueous electrolyte or a nonaqueous electrolytic solution can be appropriately used.
  • the aqueous electrolyte include an alkaline aqueous electrolyte in which a lithium salt is dissolved, a neutral aqueous electrolyte in which a lithium salt is dissolved, and the like.
  • lithium salt such as LiOH, CH 3 COOLi, LiClO 4 , Li 2 SO 4 can be dissolved in the aqueous electrolyte, and the LiOH concentration is greater than 0 mol / L and less than or equal to 5.12 mol / L. be able to. 5.12 mol / L is the saturation concentration at room temperature.
  • the electrolyte concentration is less than 0.1 mol / L, the decrease in lithium ion conductivity becomes significant.
  • KOH, NaOH, H 2 O 2 or (K + , Na + , H + , NH 4) of about 0.1 mol / L to 12 mol / L is separately provided.
  • the solid state battery of the present invention can be operated even in a state where LiOH precipitates are present exceeding the saturation concentration of LiOH at room temperature of 5.12 mol / L.
  • a non-aqueous electrolyte containing a lithium salt and an organic solvent can be used.
  • Lithium salts to be contained in the non-aqueous electrolyte include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F Examples include organic lithium salts such as 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 .
  • organic solvent used in the non-aqueous electrolyte examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate, and ⁇ -butyrolactone. And sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and mixtures thereof. Moreover, it is preferable that an organic solvent is a solvent with high oxygen solubility from a viewpoint of making it the form in which dissolved oxygen is used for reaction efficiently.
  • the concentration of the lithium salt in the nonaqueous electrolytic solution can be, for example, 0.2 mol / L or more and 3 mol / L or less.
  • a low-volatile liquid such as an ionic liquid
  • the nonaqueous electrolytic solution can be used.
  • nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric, etc. other than porous membranes, such as polyethylene and a polypropylene, can be used.
  • the solid battery 10 was regenerated by the method of the present invention.
  • the heating means 6 a heating element that generates heat when an electric current flows is used.
  • the negative electrode 1a was heated to 160 ° C. using the heating means 6 and softened.
  • the solid battery 10a was regenerated into the solid battery 10b by applying a compression pressure of 0.005 MPa to the softened negative electrode 1a using the fastening means 7 for 30 seconds.
  • FIG. 3 shows charging curves of the solid battery 10a and the solid battery 10b.
  • the vertical axis represents overvoltage [V]
  • the horizontal axis represents capacity [mAh].
  • the overvoltage in the plateau region of the solid battery 10a before being regenerated by the method of the present invention was ⁇ 0.1510V, but after being regenerated by the method of the present invention, the solid battery 10b
  • the overvoltage in the plateau region was ⁇ 0.1481V. That is, according to the method of the present invention, the overvoltage of the solid battery 10 could be reduced by 0.0029V.
  • the solid battery 10a had an overvoltage of ⁇ 0.15 V before the capacity became 0.06 mAh, but the capacity of the solid battery 10b regenerated by the method of the present invention was 0.00. Even when it exceeded 08 mAh, the overvoltage was less than -0.15V. It is considered that this result also has an effect of improving the adhesion between the negative electrode and the negative electrode current collector by carrying out the method of the present invention. As described above, according to the present invention, the overvoltage can be reduced.
  • the solid battery of the present invention can be used for electric vehicles and hybrid vehicles.
  • the solid battery regenerating method of the present invention can be used for reducing the overvoltage of a solid battery having such an application.

Abstract

本発明は、過電圧を低減することが可能な固体電池及びその再生方法を提供することを主目的とする。 本発明は、アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵及び放出可能な負極と、該負極に接触するように配設されたイオン伝導性を有する固体電解質を含む固体電解質層と、負極との間を移動するアルカリ金属イオン又はアルカリ土類金属イオンを放出及び吸蔵可能な正極と、負極が軟化する温度へ負極を加熱する加熱手段と、固体電解質層及び負極を密着させる力を付与可能な締結手段と、を備える固体電池とし、上記負極が軟化する温度へと加熱し、軟化している負極を、固体電解質層と接触する面に交差する方向へと圧縮する工程を有する固体電池の再生方法とする。

Description

固体電池及びその再生方法
 本発明は、固体電解質層を有する固体電池及びその再生方法に関する。
 リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池には、正極層及び負極層(一対の電極層)と、これらの間に配置される電解質とが備えられ、電解質は、例えば非水系の液体又は固体によって構成される。電解質に液体(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質(以下において、「固体電解質」という。)は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体電解質を含有する層が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)が提案されている。
 このような固体電池に関する技術として、例えば特許文献1には、充電下で可動アルカリ金属イオン源を含む正電極と、アルカリ金属負電極と、重合体電解質と、を備えた電池が開示されている。また、特許文献2には、リチウムを吸蔵及び放出可能な正極活物質を含有する正極、合金系負極活物質を含有する負極及びポリマーを含有する固体電解質又は該固体電解質を含浸させたセパレータを含む電池セルと、放電時の電池セルがポリマーの変形可能温度以上になるように制御する制御手段とを含む固体電解質二次電池が開示されている。
特表2002-504741号公報 特開2010-49968号公報
 固体電池の負極に、例えばリチウム等のアルカリ金属、又は、カルシウム等のアルカリ土類金属を含有する金属を用いた場合、充電反応時に、負極にデンドライトが生じる。負極にデンドライトが生じている固体電池の充放電を繰り返すと、デンドライトが成長しやすく、電解質層と接触する負極の表面に、凹凸が形成されやすい。こうして負極の表面に凹凸が形成されると、負極と電解質層との界面におけるリチウムイオン伝導抵抗(以下において、「界面抵抗」という。)が増大し、過電圧が増大するため、電池の性能が低下しやすい。特許文献1や特許文献2に開示されている技術では、負極に、デンドライトの発生が懸念される金属を用いている。そのため、負極が変形して性能が低下しやすいという問題があった。また、特許文献2に開示されている技術では、ポリマーを加熱し変形させることによって、ポリマーを元の形状に復元させるので、負極と固体電解質との界面抵抗の増加を抑制することが可能になるとも考えられる。しかしながら、特許文献2に開示されている技術では、変形した負極を元の形状に戻すための対策が施されていない。それゆえ、特許文献2に開示されている技術では、負極と固体電解質との界面抵抗の増加を抑制して過電圧を低減する効果が不十分になりやすかった。
 そこで本発明は、過電圧を低減することが可能な固体電池及びその再生方法を提供することを課題とする。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵及び放出可能な負極、該負極に接触するように配設されたイオン伝導性を有する固体電解質を含む固体電解質層、及び、負極との間を移動するアルカリ金属イオン又はアルカリ土類金属イオンを放出及び吸蔵可能な正極を備える固体電池を再生させる方法であって、負極が軟化する温度へと加熱し、軟化している負極を、固体電解質層と接触する面に交差する方向へと圧縮する工程、を有することを特徴とする、固体電池の再生方法である。
 本発明において、「アルカリ金属イオン」とは、リチウムイオン、ナトリウムイオン、カリウムイオン等、アルカリ金属元素から生じたイオンをいう。また、本発明において、「アルカリ土類金属イオン」とは、カルシウムイオンやマグネシウムイオン等、アルカリ土類金属元素から生じたイオンをいう。また、本発明において、「イオン伝導性を有する」とは、負極と正極との間を移動するイオン(アルカリ金属イオン又はアルカリ土類金属イオン)を伝導させる性質を有することをいう。また、本発明において、「負極が軟化する温度」とは、負極の少なくとも一部が固体の状態を維持したまま軟化する温度をいう。より具体的には、負極が軟化し始める温度以上であって、且つ、負極が完全に液体になる温度未満の温度をいう。
 また、本発明の第1の態様において、負極がリチウムイオンを吸蔵放出可能であり、加熱温度が160℃以上185℃未満であることが好ましい。
 本発明の第2の態様は、アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵及び放出可能な負極と、該負極に接触するように配設されたイオン伝導性を有する固体電解質を含む固体電解質層と、負極との間を移動するアルカリ金属イオン又はアルカリ土類金属イオンを放出及び吸蔵可能な正極と、負極が軟化する温度へ負極を加熱する加熱手段と、固体電解質層及び負極を密着させる力を付与可能な締結手段と、を備えることを特徴とする、固体電池である。
 また、本発明の第2の態様において、負極がリチウムイオンを吸蔵放出可能であり、加熱温度が160℃以上185℃未満であることが好ましい。
 アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵放出可能な負極を有する固体電池は、充電時に負極にデンドライトが生じ、充放電を繰り返すとデンドライトが成長する。デンドライトが成長した負極は変形しており、変形した負極を有する固体電池は界面抵抗が増大し、過電圧が増大する。ここで、本発明の第1の態様は、アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵放出可能な負極を軟化させるために加熱し、軟化している負極を固体電解質層に密着させる方向へと圧縮する工程を有している。それゆえ、デンドライトが成長する等して変形した負極を軟化させて負極と固体電解質層とを密着させることができ、これによって、固体電解質層と接触する負極の表面を平滑化することができる。固体電解質層と接触する負極の表面を平滑化することにより、負極と固体電解質層との接触面積を増大させることができ、その結果、界面抵抗を低減して過電圧を低減することが可能になる。したがって、本発明によれば、過電圧を低減することが可能な、固体電池の再生方法を提供することができる。
 また、本発明の第1の態様において、負極がリチウムイオンを吸蔵放出可能であり、加熱温度が160℃以上185℃未満であることにより、エネルギー密度が高い固体電池の過電圧を低減することが可能な、固体電池の再生方法を提供することができる。
 本発明の第2の態様にかかる固体電池は、アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵放出可能な負極が軟化する温度へ加熱する加熱手段と、固体電解質層と負極とを密着させる力を付与する締結手段と、を有している。それゆえ、デンドライトが成長する等して変形した負極を軟化させて、負極と固体電解質層とを密着させることができ、これによって、固体電解質層と接触する負極の表面を平滑化することができる。固体電解質層と接触する負極の表面を平滑化することにより、負極と固体電解質層との接触面積を増大させることができ、その結果、界面抵抗を低減して過電圧を低減することが可能になる。したがって、本発明によれば、過電圧を低減することが可能な、固体電池を提供することができる。
 また、本発明の第2の態様において、負極がリチウムイオンを吸蔵放出可能であり、加熱温度が160℃以上185℃未満であることにより、エネルギー密度が高く、且つ、過電圧を容易に低減し得る固体電池を提供することができる。
本発明の固体電池の再生方法を説明する図である。 固体電池の充電曲線である。 本発明の固体電池の再生方法を適用する前及び適用した後の固体電池の充電曲線である。
 1、1a、1b…負極
 2…正極
 3…固体電解質層
 4、4b…負極集電体
 5…正極集電体
 6…加熱手段
 7…締結手段
 10、10a、10b…固体電池
 以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。
 図1は、本発明の固体電池の再生方法(以下において、「本発明の方法」ということがある。)を説明する図である。図1には、本発明の方法を実施する前の固体電池10(固体電池10a)、及び、本発明の方法を実施した後の固体電池10(固体電池10b)を示した。図1を参照した以下の説明において、本発明の固体電池を「固体電池10」という。また、以下の説明において、本発明の方法が実施される前の固体電池10(充電反応後の固体電池10)について特に言及する場合には、例えば「固体電池10a」のように添え字aを付すことがあり、本発明の方法が実施された後の固体電池10について特に言及する場合には、例えば「固体電池10b」のように添え字bを付すことがある。
 図1に示すように、固体電池10は、負極1及び正極2と、負極1及び正極2によって挟持された固体電解質層3と、負極1に接続された負極集電体4と、正極2に接続された正極集電体5と、負極集電体4に埋め込まれた加熱手段6と、負極1と固体電解質層3とを密着させる方向(固体電池10を図1の上端側及び下端側から圧縮する方向)へ力を付与可能な締結手段7と、を有している。固体電池10は、図1に示されている構成要素が、図示されていない外装材に収容された状態で使用される。負極1には、リチウムイオンを吸蔵及び放出可能な負極活物質が含有されており、正極2には、リチウムイオンを吸蔵及び放出可能な正極活物質が含有されている。締結手段7は、負極集電体4及び正極集電体5と接触している。固体電池10の使用時(充放電時)には、固体電解質層3を介して、負極1と正極2との間をリチウムイオンが移動する。
 固体電池10の充電時に、負極1ではリチウムが不均一に析出し、デンドライトが生じる。負極1にデンドライトが生じている固体電池10の使用(充電、又は、充放電)を継続すると、負極1のデンドライトが成長し、負極1aとなる。図1に示すように、負極1aを有する固体電池10aは、固体電解質層3に対向している負極1aの表面の一部と固体電解質層3とが接触している。それゆえ、固体電解質層3に対向している負極1の表面全体と固体電解質層3とが接触している場合と比較して、固体電池10aは負極1aと固体電解質層3との界面におけるリチウムイオン伝導抵抗(界面抵抗)が増大しやすく、過電圧も増大しやすい。界面抵抗が増大して過電圧が増大している固体電池10aは、性能が低下しやすいので、固体電池10aの性能を向上させるためには、界面抵抗を低減することが有効である。
 図2は、負極と正極との間をリチウムイオンが移動する固体電池の充電曲線である。図2の縦軸が固体電池の過電圧[V]であり、図2の横軸が容量[mAh]である。図2に示すように、充電反応を継続すると過電圧が徐々に増大し、図2に示した結果では、過電圧が-0.15V付近で、容量の増大に伴う過電圧の変化が少なくなった(以下において、容量の増大に伴う過電圧の変化が少ない領域(図2の、過電圧が-0.15V付近の領域)を、「プラトー領域」という。)。このプラトー領域では、負極活物質にリチウムイオンが吸蔵され、負極にデンドライトが生じていると考えられる。図2に示すように、プラトー領域では、過電圧が-0.1497Vから-0.1510Vへと変化し、過電圧が0.0013V増加した。この0.013Vの過電圧増加は、負極に生じたデンドライトの成長に伴う、界面抵抗の増大が一因になっていると考えられる。
 このように、負極1においてデンドライトが成長し、固体電解質層3に対向している負極1の表面に凹凸が形成されると、負極1と固体電解質層3との界面におけるリチウムイオン伝導抵抗(界面抵抗)が増大し、過電圧が増大する。そこで、界面抵抗を低減して過電圧を低減するために、本発明の方法を実施する。図1に示した本発明の方法は、加熱手段6を用いて負極集電体4を加熱することにより、この負極集電体4と接触している負極1aを加熱し、負極1aを軟化させる。例えば、リチウムの軟化開始温度は160℃であり、リチウムの融点は180.54℃であり、固体のリチウムが完全に液体になる温度は例えば185℃である。そのため、負極1aがリチウム箔である場合、負極1aを160℃以上185℃未満の温度にするように、より具体的には、例えば、負極1aを160℃にするように、加熱手段6を用いて負極1aを加熱することにより、負極1aを軟化させれば良い。
 本発明の方法では、さらに、締結手段7を用いて、負極1aと固体電解質層3とを密着させる向きの力(固体電解質層3に接触している負極1aの面に交差する方向の力)を、軟化している負極1aへと付与することにより、負極1aを圧縮する。軟化している負極1aを圧縮することにより、負極1aと固体電解質層3とを密着させることができ、その結果、固体電解質層3に対向している面が平滑化された負極1bを有する固体電池10bへと再生することができる。図1に示すように、本発明の方法が実施された固体電池10bでは、固体電解質層3に対向している負極1bの表面全体と固体電解質層3とが接触している。そのため、固体電池10aと比較して、負極1bと固体電解質層3との界面におけるリチウムイオン伝導抵抗(界面抵抗)を低減することができ、過電圧を低減することができる。また、固体電解質層3に対向している負極1の表面を平滑化することにより、デンドライトが成長する等して固体電解質層3に対向する表面に大きな凹凸を有する負極1aによって、固体電解質層3が破壊される事態も回避することができる。加えて、締結手段7を用いて、上記方向の力を負極1aへと付与することにより、負極1aと負極集電体4との密着性を向上させることもできる。それゆえ、固体電池10aと比較して、負極1bと負極集電体4bとの界面における電子伝導抵抗も低減することが可能になり、その結果、過電圧を低減することが可能になる。したがって、本発明によれば、過電圧を低減することが可能な、固体電池の再生方法を提供することができる。加えて、加熱手段6及び締結手段7が備えられる形態とすることにより、本発明によれば、過電圧を低減することが可能な、固体電池10を提供することができる。
 以下、本発明の具体的な構成について、説明を続ける。
 負極1は、リチウムイオンを吸蔵及び放出可能な負極活物質を含有している。このような負極活物質としては、Li、Zn、Al、Ag、又は、Liと他の金属(例えば、Zn、Al、Ag等)との合金のほか、グラファイト等の炭素材料等、リチウムイオン二次電池の負極に用いることができる公知の負極活物質を適宜用いることができる。また、負極1は、負極活物質に加えて、固体電解質、導電材、及び、これらを結着させる結着材を含有していても良い。負極1に固体電解質を含有させる場合、負極1には、固体電池に使用可能な公知の固体電解質を適宜含有させることができる。そのような固体電解質としては、例えば、質量比で、LiS:P=50:50~100:0となるようにLiS及びPを混合して作製した硫化物固体電解質(例えば、質量比で、LiS:P=70:30となるようにLiS及びPを混合して作製した硫化物固体電解質)等を用いることができる。また、負極1に導電材を含有させる場合、負極1には、固体電池に使用可能な公知の導電材を適宜含有させることができる。そのような導電材としては、例えば、カーボンブラックに代表される炭素材料等を挙げることができる。また、負極1に結着材を含有させる場合、負極1には、固体電池に使用可能な公知の結着材を適宜含有させることができる。そのような結着材としては、例えば、フッ素系ゴム等の合成ゴムや、ポリビニリデンフルオライド等の高分子材料等を挙げることができる。
 正極2は、リチウムイオンを吸蔵及び放出可能な正極活物質を含有している。正極2に含有させる正極活物質としては、固体電池に使用可能な公知の正極活物質を適宜用いることができる。そのような正極活物質としては、例えば、コバルト酸リチウム等を挙げることができる。また、正極2は、正極活物質に加えて、固体電解質、導電材、及び、これらを結着させる結着材を含有していても良い。正極2に固体電解質、導電材、及び、結着材を含有させる場合には、負極1に含有させることが可能な上記固体電解質、導電材、及び、結着材と同様のものを用いることができる。
 固体電解質層3は、リチウムイオン伝導性を有し、且つ、電子伝導性を有しない固体電解質を含有している。固体電解質層3には、固体電池に使用可能な公知の固体電解質を適宜用いることができる。固体電解質層3に用いられる固体電解質としては、例えば、質量比で、LiS:P=50:50~100:0となるようにLiS及びPを混合して作製した硫化物固体電解質(例えば、質量比で、LiS:P=70:30となるようにLiS及びPを混合して作製した硫化物固体電解質)等を挙げることができる。
 負極集電体4は、固体電池の負極集電体に使用可能な公知の材料を適宜用いることができる。負極集電体4としては、例えば、銅箔やニッケル箔等を用いることができる。
 正極集電体5は、固体電池の正極集電体に使用可能な公知の材料を適宜用いることができる。正極集電体5としては、例えば、アルミニウム箔やニッケル箔等を用いることができる。
 加熱手段6は、少なくとも負極1aが軟化し始める温度まで負極1aを加熱することが可能であり、且つ、固体電池10の使用時の環境に耐え得るものであれば、その形態は特に限定されず、公知の加熱手段を適宜用いることができる。加熱手段6としては、例えば、電流を流すことによって発熱する公知の発熱体等を用いることができる。また、本発明において、加熱手段6を用いて負極1aを加熱する時間(加熱時間)は、締結手段7を用いた力の付与が開始されてから力の付与が終了される迄の間において、負極1aを軟化させた状態で維持するために必要な時間とすることができる。加熱時間は、例えば、0.1秒以上180秒以下とすることができる。また、加熱手段6が電流を流すことによって発熱する公知の発熱体である場合、加熱手段6を発熱させるために流す電流は、例えば、30A以上500A以下とすることができる。
 締結手段7は、固体電解質層3に対向する負極1の表面を平滑化させることが可能な圧縮力を、負極1aへと付与可能であり、且つ、固体電池10の使用時の環境に耐え得るものであれば、その形態は特に限定されない。締結手段7としては、固体電解質層と負極との界面における界面抵抗を低減する等の目的で、外装材に収容される各構成要素に圧縮力(締結力)を付与可能な、公知の締結手段を適宜用いることができる。負極1aへと付与される力(圧力)の大きさは、固体電解質層3に対向する負極1の表面を平滑化させることが可能であれば特に限定されるものではなく、例えば、0.0001MPa以上100MPa以下とすることができる。また、負極1aへと力を付与する時間は、負極1aへと付与される力の大きさ等に応じて適宜変更される。負極1aへと力を付与する時間は、固体電解質層3に対向する負極1の表面を平滑化させることが可能であれば特に限定されるものではなく、例えば、0.1秒以上300秒以下とすることができる。
 本発明において、負極1aへと付与される圧縮力は、固体電解質層3に対向する負極1aの表面を平滑化する機能を発揮するものであれば良く、固体電解質層3に対向する負極1aの表面を平滑化するためだけに付与される必要はない。締結手段7は、例えば、固体電解質層3に対向する負極1の表面の凹凸の大小に関わらず、負極1と固体電解質層3と正極2とを密着させる方向の力を付与し続ける機能を有していても良い。この場合、本発明は、加熱手段6を用いて加熱した負極1aを、負極1aが加熱される前から付与されている力を用いて圧縮することにより、固体電解質層3に対向する負極1の表面を平滑化する形態、とすることもできる。締結手段7を用いて固体電解質層3と負極1とを密着させる方向の力を付与しながら固体電池10を作動させても、界面抵抗が増大して過電圧が増大する場合には、締結手段7を用いて付与している力が、負極1の表面を平滑化するために必要とされる力よりも小さいと考えられる。したがって、このような場合には、締結手段7を用いて付与する力を増大させるように、図示されていない制御手段を用いて締結手段7の動作を制御した上で、加熱された負極1aに力を付与することにより、固体電解質層3bと対向する表面が平滑化された負極1b(負極1bを備える固体電池10b)へと再生すれば良い。
 本発明に関する上記説明では、加熱温度を160℃にして軟化させた負極1aを圧縮することにより、固体電解質層3に対向する負極1の表面を平滑化し、これによって固体電池10の過電圧を低減させる形態について言及したが、本発明は当該形態に限定されるものではない。本発明では、負極1aの一部が溶融する温度となるように、負極1aを加熱する過程を経て、過電圧を低減させる形態とすることも可能である。固体電池10aにおいて、負極1aや、負極1aを挟持している固体電解質層3及び負極集電体4は図示されていない外装材に収容されており、負極1aが配設されるべき外装材内の箇所は、固体電解質層3、負極集電体4、及び、外装材によって確定される。それゆえ、負極1aの一部を溶融させても、締結手段7を用いて力を付与しながら、加熱終了後に温度を低下させて負極1を凝固させることにより、凝固した負極1bを固体電解質層3及び負極集電体4に接触させることができ、固体電池10bを作動させることができる。したがって、本発明は、負極1aの一部が溶融する温度となるように、負極1aを加熱する過程を経て、過電圧を低減させる形態であっても良い。また、本発明を、軟化させた負極へ力を付与することにより、固体電解質層に対向する負極の表面を平滑化させる形態とする場合、負極を加熱して軟化させる温度は、含有される負極活物質の組成に応じて適宜変更することができる。ただし、リチウムイオンを吸蔵放出可能な負極が用いられる場合には、容易に過電圧を低減し得る形態にする等の観点から、負極が160℃以上185℃未満となるように加熱して軟化させる形態とすることが好ましい。
 また、本発明に関する上記説明では、固体電解質層3を介してリチウムイオンが負極1と正極2との間を移動する形態の固体電池10について言及したが、本発明は当該形態に限定されるものではない。本発明の方法が適用される固体電池、及び、本発明の固体電池(以下において、これらをまとめて単に「本発明の固体電池」という。)は、リチウムイオン以外のアルカリ金属イオン(例えば、ナトリウムイオンやカリウムイオン等。以下において同じ。)が固体電解質層を介して負極と正極との間を移動する形態であっても良い。このほか、本発明の固体電池は、アルカリ土類金属イオン(例えば、カルシウムイオンやマグネシウムイオン等。以下において同じ。)が固体電解質層を介して負極と正極との間を移動する形態であっても良い。ただし、エネルギー密度の高い固体電池を提供可能な形態にする等の観点からは、固体電解質層を介して負極と正極との間をリチウムイオンが移動する形態とすることが好ましい。
 リチウムイオン以外のアルカリ金属イオンが負極と正極との間を移動する形態にする場合、本発明の固体電池の負極には、当該アルカリ金属イオンを生じさせるアルカリ金属単体を負極活物質として用いることができる。このほか、Zn、Al、Ag等の金属、アルカリ金属イオンを生じさせるアルカリ金属と他の金属(例えば、Zn、Al、Ag等)との合金や、グラファイト等の炭素材料等を負極活物質として用いることができる。また、アルカリ土類金属イオンが負極と正極との間を移動する形態にする場合、本発明の固体電池の負極には、当該アルカリ土類金属イオンを生じさせるアルカリ土類金属単体を負極活物質として用いることができる。このほか、Zn、Al、Ag等の金属、アルカリ土類金属イオンを生じさせるアルカリ土類金属と他の金属(例えば、Zn、Al、Ag等)との合金や、グラファイト等の炭素材料等を負極活物質として用いることができる。
 また、リチウムイオン以外のアルカリ金属イオンが負極と正極との間を移動する形態にする場合、本発明の固体電池の正極には、当該アルカリ金属イオンを生じさせる公知の正極活物質を適宜用いることができる。また、アルカリ土類金属イオンが負極と正極との間を移動する形態にする場合、本発明の固体電池の正極には、当該アルカリ土類金属イオンを生じさせる公知の正極活物質を適宜用いることができる。
 また、本発明に関する上記説明では、加熱手段6が負極集電体4に埋め込まれている形態を例示したが、本発明は当該形態に限定されるものではない。本発明において、加熱手段は、負極を加熱可能な形態で備えられていれば良い。
 また、本発明に関する上記説明では、正極2と固体電解質層3とが直接接触している形態を例示したが、本発明の固体電池は当該形態に限定されるものではない。本発明の固体電池は、正極と固体電解質層との間に、必要に応じてセパレータに保持された状態で、電解液が充填されている形態とすることも可能である。正極と固体電解質層との間に電解液を充填させる場合、この電解液としては、例えば、水溶液電解質や非水電解液等、固体電池に使用可能な公知の電解液を適宜用いることができる。水溶液電解質の具体例としては、リチウム塩を溶解させたアルカリ性の水溶液電解質や、リチウム塩を溶解させた中性の水溶液電解質等を用いることができる。本発明において、水溶液電解質には、LiOH、CHCOOLi、LiClO、LiSO等のリチウム塩を溶解させることができ、LiOHの濃度は0mol/Lより大きく5.12mol/L以下とすることができる。5.12mol/Lは、室温における飽和濃度である。ただし、0.1mol/L未満の電解質濃度では、リチウムイオン伝導性の低下が顕著になる。そのため、当該LiOH濃度領域における動作を補償するために、別途、0.1mol/L以上12mol/L以下程度のKOH、NaOH、H、若しくは、(K、Na、H、NH4、Li)と(SO 2-、ClO 、NO 、Cl、Br、I、F、CHCOO、PO 3-)との組み合わせ、又は、海水等を加えることができる。なお、LiOHの室温における飽和濃度5.12mol/Lを超えてLiOHの沈殿物が存在する状態においても、本発明の固体電池は作動させることが可能である。また、非水電解液の具体例としては、リチウム塩及び有機溶媒を含有する非水電解液を用いることができる。非水電解液に含有させるリチウム塩としては、LiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩のほか、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を例示することができる。また、非水電解液に用いる有機溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン及びこれらの混合物等を例示することができる。また、溶存酸素が効率良く反応に用いられる形態にする等の観点から、有機溶媒は、酸素溶解性が高い溶媒であることが好ましい。非水電解液におけるリチウム塩の濃度は、例えば0.2mol/L以上3mol/L以下とすることができる。また、本発明においては、非水電解液として、例えばイオン性液体等の低揮発性液体を用いることも可能である。さらに、電解液をセパレータに保持させる場合、セパレータとしては、ポリエチレン、ポリプロピレン等の多孔膜のほか、樹脂不織布やガラス繊維不織布等の不織布等を用いることができる。
 リチウム箔を負極1として用いた固体電池10を一定の時間に亘って充電した後、本発明の方法で固体電池10を再生した。加熱手段6としては、電流を流すことによって発熱する発熱体を用いた。加熱手段6を用いて負極1aを160℃に加熱し、軟化させた。そして、軟化している負極1aに、締結手段7を用いて0.005MPaの圧縮圧力を30秒間に亘って付与することにより、固体電池10aを固体電池10bへと再生した。固体電池10a及び固体電池10bの充電曲線を図3に示す。図3の縦軸は過電圧[V]であり、横軸は容量[mAh]である。
 図3に示すように、本発明の方法によって再生される前の、固体電池10aのプラトー領域における過電圧は-0.1510Vであったが、本発明の方法で再生された後の、固体電池10bのプラトー領域における過電圧は-0.1481Vであった。すなわち、本発明の方法により、固体電池10の過電圧を0.0029V低減することができた。また、図3に示すように、固体電池10aは、容量が0.06mAhとなる前に過電圧が-0.15Vを超えたが、本発明の方法によって再生された固体電池10bの容量が0.08mAhを超えても、過電圧は-0.15V未満であった。この結果には、本発明の方法を実施することにより、負極と負極集電体との密着性が向上したことも影響していると考えられる。以上より、本発明によれば、過電圧を低減することができた。
 本発明の固体電池は、電気自動車やハイブリッド自動車用等に利用することができる。また、本発明の固体電池の再生方法は、このような用途を有する固体電池の過電圧を低減して再生する際に利用することができる。

Claims (4)

  1. アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵及び放出可能な負極、該負極に接触するように配設されたイオン伝導性を有する固体電解質を含む固体電解質層、及び、前記負極との間を移動する前記アルカリ金属イオン又は前記アルカリ土類金属イオンを放出及び吸蔵可能な正極を備える固体電池を再生させる方法であって、
     前記負極が軟化する温度へと加熱し、軟化している前記負極を、前記固体電解質層と接触する面に交差する方向へと圧縮する工程、
    を有することを特徴とする、固体電池の再生方法。
  2. 前記負極がリチウムイオンを吸蔵放出可能であり、加熱温度が160℃以上185℃未満であることを特徴とする、請求の範囲第1項に記載の固体電池の再生方法。
  3. アルカリ金属イオン又はアルカリ土類金属イオンを吸蔵及び放出可能な負極と、該負極に接触するように配設されたイオン伝導性を有する固体電解質を含む固体電解質層と、前記負極との間を移動する前記アルカリ金属イオン又は前記アルカリ土類金属イオンを放出及び吸蔵可能な正極と、前記負極が軟化する温度へ前記負極を加熱する加熱手段と、前記固体電解質層及び前記負極を密着させる力を付与可能な締結手段と、を備えることを特徴とする、固体電池。
  4. 前記負極がリチウムイオンを吸蔵放出可能であり、加熱温度が160℃以上185℃未満であることを特徴とする、請求の範囲第3項に記載の固体電池。
PCT/JP2010/066031 2010-09-16 2010-09-16 固体電池及びその再生方法 WO2012035631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/819,577 US9225038B2 (en) 2010-09-16 2010-09-16 Solid battery and method for regenerating the same
CN201080068999.3A CN103081215B (zh) 2010-09-16 2010-09-16 固体电池及其再生方法
JP2012533786A JP5500260B2 (ja) 2010-09-16 2010-09-16 固体電池及びその再生方法
PCT/JP2010/066031 WO2012035631A1 (ja) 2010-09-16 2010-09-16 固体電池及びその再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066031 WO2012035631A1 (ja) 2010-09-16 2010-09-16 固体電池及びその再生方法

Publications (1)

Publication Number Publication Date
WO2012035631A1 true WO2012035631A1 (ja) 2012-03-22

Family

ID=45831131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066031 WO2012035631A1 (ja) 2010-09-16 2010-09-16 固体電池及びその再生方法

Country Status (4)

Country Link
US (1) US9225038B2 (ja)
JP (1) JP5500260B2 (ja)
CN (1) CN103081215B (ja)
WO (1) WO2012035631A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141241A1 (ja) * 2012-03-23 2013-09-26 公立大学法人大阪府立大学 固体電解質層及び全固体リチウム二次電池
US11355787B2 (en) 2017-12-28 2022-06-07 Lg Energy Solution, Ltd. Method for regenerating EOL cell
WO2022272162A1 (en) * 2021-06-25 2022-12-29 Ascend Elements, Inc. RECYCLING ALL SOLID-STATE BATTERIES (ASSBs) AND ANODE RECOVERY

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722279B2 (en) * 2014-12-24 2017-08-01 Toyota Motor Engineering & Manufacturing North America, Inc. All-solid-state metal-metal battery comprising ion conducting ceramic as electrolyte
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
DE102016214398A1 (de) * 2016-08-04 2018-02-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung einer elektrochemischen Zelle mit Lithiumelektrode und elektrochemische Zelle
KR20180018884A (ko) * 2016-08-09 2018-02-22 인천대학교 산학협력단 수계 리튬이차전지용 표면 처리된 양극 활물질
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
WO2018094074A2 (en) 2016-11-16 2018-05-24 Pacesetter, Inc. Battery with enhanced resistance to dendrite formation
JP6934727B2 (ja) * 2017-01-31 2021-09-15 日立造船株式会社 全固体電池およびその製造方法
JP7065323B2 (ja) * 2017-02-09 2022-05-12 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法
KR20210060495A (ko) * 2018-08-30 2021-05-26 하이드로-퀘벡 이온성 액체 전해질 및 전극 압력을 갖는 재충전 가능한 배터리
WO2020129183A1 (ja) * 2018-12-19 2020-06-25 株式会社BTO Consultors Japan リチウム電池のバッファおよびリチウム電池の製造方法
CN112635842A (zh) * 2020-12-24 2021-04-09 蜂巢能源科技有限公司 一种固态电池及其处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250543A (ja) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd リチウム二次電池
JP2010049968A (ja) * 2008-08-22 2010-03-04 Panasonic Corp 固体電解質二次電池
JP2010067584A (ja) * 2008-09-12 2010-03-25 Toyota Motor Corp 蓄電装置
JP2010086689A (ja) * 2008-09-30 2010-04-15 Toyota Motor Corp リチウム二次電池システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461498B2 (ja) * 1997-12-16 2010-05-12 パナソニック株式会社 非水電解液二次電池およびその負極
US6402795B1 (en) 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
US20050130043A1 (en) * 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
JP4578904B2 (ja) * 2004-09-13 2010-11-10 富士フイルム株式会社 内視鏡
JP5148051B2 (ja) * 2005-06-27 2013-02-20 三菱重工業株式会社 リチウム電池用負極電極、その製法及び装置、リチウム電池の製法、リチウム二次電池
US7531270B2 (en) * 2006-10-13 2009-05-12 Enerdel, Inc. Battery pack with integral cooling and bussing devices
JP4656102B2 (ja) * 2007-07-27 2011-03-23 トヨタ自動車株式会社 固体型電池
JP5314872B2 (ja) * 2007-10-01 2013-10-16 株式会社オハラ 発熱機構を備える二次電池
JP5277859B2 (ja) * 2007-12-03 2013-08-28 セイコーエプソン株式会社 硫化物系リチウムイオン伝導性固体電解質ガラスおよび全固体リチウム二次電池
US20090202899A1 (en) * 2008-02-11 2009-08-13 Pyszczek Michael F Electrical apparatus with integral thin film solid state battery and methods of manufacture
JP4692556B2 (ja) * 2008-02-12 2011-06-01 トヨタ自動車株式会社 全固体リチウム二次電池
JP2010010094A (ja) * 2008-06-30 2010-01-14 Panasonic Corp 非水電解質二次電池用電極の製造方法および非水電解質二次電池用電極群の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250543A (ja) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd リチウム二次電池
JP2010049968A (ja) * 2008-08-22 2010-03-04 Panasonic Corp 固体電解質二次電池
JP2010067584A (ja) * 2008-09-12 2010-03-25 Toyota Motor Corp 蓄電装置
JP2010086689A (ja) * 2008-09-30 2010-04-15 Toyota Motor Corp リチウム二次電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141241A1 (ja) * 2012-03-23 2013-09-26 公立大学法人大阪府立大学 固体電解質層及び全固体リチウム二次電池
US11355787B2 (en) 2017-12-28 2022-06-07 Lg Energy Solution, Ltd. Method for regenerating EOL cell
WO2022272162A1 (en) * 2021-06-25 2022-12-29 Ascend Elements, Inc. RECYCLING ALL SOLID-STATE BATTERIES (ASSBs) AND ANODE RECOVERY

Also Published As

Publication number Publication date
US9225038B2 (en) 2015-12-29
JPWO2012035631A1 (ja) 2014-01-20
CN103081215A (zh) 2013-05-01
US20130164571A1 (en) 2013-06-27
CN103081215B (zh) 2015-07-22
JP5500260B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5500260B2 (ja) 固体電池及びその再生方法
Xiang et al. Alkali-metal anodes: from lab to market
US9755204B2 (en) Separator, electrode element, electric energy storage device and method for producing separator
JP2008243736A (ja) リチウムイオン二次電池およびその製造方法
JP5888551B2 (ja) 密閉型リチウム二次電池の製造方法
JP5818116B2 (ja) 密閉型リチウム二次電池とその製造方法
WO2015045493A1 (ja) 非水電解質二次電池およびその製造方法
JP2011171096A (ja) 非水電解質電池
CN114530589B (zh) 锂金属负极、其制备方法及其相关的锂金属电池和装置
JP2011216200A (ja) リチウムイオン二次電池の制御方法
CN102195089A (zh) 非水电解质和非水电解质电池
KR101833597B1 (ko) 리튬 이온 2차 전지의 제조 방법
KR20120116954A (ko) 리튬-이온 전지
JP2013045556A (ja) 二次電池システム
JP4258711B2 (ja) 非水電解質電池
KR20140024600A (ko) 상변화 물질을 포함하는 리튬이온 이차전지 셀 및 모듈
KR101342696B1 (ko) 리튬이차전지 및 그 제조방법
JP2012138290A (ja) リチウム二次電池システム、及び当該リチウム二次電池システムの制御方法
CN112216812B (zh) 锂离子电池重复单元、锂离子电池及其使用方法、电池模组和汽车
JP2013191345A (ja) リチウム二次電池およびその製造方法
CN110476288B (zh) 非水电解质蓄电元件及其制造方法
CN113950757A (zh) 蓄电元件
CN111540869A (zh) 锂离子二次电池用正极、锂离子二次电池用负极、锂离子二次电池及其制造方法
JP7239537B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池用電極の製造方法
JP7368400B2 (ja) 集電体構造及びそれを用いた二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068999.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533786

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13819577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857265

Country of ref document: EP

Kind code of ref document: A1