JP2017054792A - リチウム電池 - Google Patents

リチウム電池 Download PDF

Info

Publication number
JP2017054792A
JP2017054792A JP2015180096A JP2015180096A JP2017054792A JP 2017054792 A JP2017054792 A JP 2017054792A JP 2015180096 A JP2015180096 A JP 2015180096A JP 2015180096 A JP2015180096 A JP 2015180096A JP 2017054792 A JP2017054792 A JP 2017054792A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
positive electrode
solid electrolyte
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015180096A
Other languages
English (en)
Inventor
一樹 前田
Kazuki Maeda
一樹 前田
小林 伸行
Nobuyuki Kobayashi
伸行 小林
吉田 俊広
Toshihiro Yoshida
俊広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2015180096A priority Critical patent/JP2017054792A/ja
Publication of JP2017054792A publication Critical patent/JP2017054792A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】自立した箔によって構成される負極層と固体電解質層を良好に接続可能なリチウム電池を提供する。【解決手段】リチウム電池10は、配向正極板12と、固体電解質層14と、電解液層15と、負極層16とを備える。負極層16は、自立した箔によって構成される。固体電解質層14は、配向正極板12と負極層16の間に配置される。電解液層15は、固体電解質層14と負極層16の間に配置される。【選択図】図3

Description

本発明は、リチウム電池に関する。
近年、正極層と固体電解質層と負極層とを備えるリチウム電池の開発が進められている。特許文献1では、金属系活物質によって構成される自立した箔を負極層として用いることが提案されている。
特開2012−146512号公報
しかしながら、負極層として自立した箔を用いる場合、自立した箔を固体電解質層上に載置するだけでは、自立した箔を固体電解質層に密着させることが困難である。また、自立した箔を固体電解質層に押しつけて密着させると、固体電解質層の表面にクラックが生じるおそれがある。
本発明は、上述の状況に鑑みてなされたものであり、自立した箔によって構成される負極層と固体電解質層を良好に接続可能なリチウム電池を提供することを目的とする。
本発明に係るリチウム電池は、正極層と、負極層と、固体電解質層と、電解液層とを備える。負極層は、自立した箔によって構成される。固体電解質層は、正極層と負極層の間に配置される。電解液層は、固体電解質層と負極層の間に配置される。
本発明によれば、自立した箔によって構成される負極層と固体電解質層を良好に接続可能なリチウム電池を提供することができる。
実施形態に係るリチウム電池の断面図 実施形態に係るリチウム電池の上面図 図1の部分拡大図
(リチウム電池10の全体構成)
図1は、本実施形態に係るリチウム電池10の断面図である。図2は、リチウム電池10の上面図である。
リチウム電池10は、パーソナルコンピュータやポータブル機器(例えば、携帯電話)などを含む各種デバイスの電源として用いられる。リチウム電池10は、リフローはんだ付け工程などの加熱工程(例えば、200℃以上の温度を伴うプロセス)を経て、各種デバイスの基板上に実装される。
リチウム電池10は、2つの単位電池1を備える。単位電池1は、配向正極板12(正極層の一例)、固体電解質層14、電解液層15、及び負極層16によって構成される。2つの単位電池1は、並列接続されている。
リチウム電池10は、外装部2を備える。外装部2は、2枚の正極外装材20、1枚の負極外装材24、及び2つの封止部26によって構成される。外装部2は、2つの単位電池1を被覆する。2つの単位電池1は、負極外装材24を介して上下対称に配置されている。
リチウム電池10は、2つの接続部3を備える。接続部3は、金属層22、導電性接着剤層28、及び端部絶縁部18によって構成される。接続部3は、外装部2に単位電池1を固定する。
(単位電池1の構成)
図3は、図1の部分拡大図である。図3では、単位電池1を構成する配向正極板12、固体電解質層14、電解液層15、及び負極層16が示されている。
1.配向正極板12
配向正極板12は、板状のセラミックス焼結体である。従って、配向正極板12の厚さを大きくしやすいため、気相法によって形成される膜に比べて電池の容量及びエネルギー密度を高くすることができる。また、原料の秤量によって配向正極板12の組成が決まるため、気相法によって形成される膜に比べて組成を精度よく制御することができる。配向正極板12の厚さは特に制限されないが、5μm以上80μm以下とすることができ、20μm以上50μm以下であることが好ましい。
配向正極板12は、固体電解質層14に接触する接触面12Sを有する。配向正極板12は、セラミックス焼結体であるため、接触面12Sには凹凸が形成されやすい。接触面12Sにおける最大断面高さRtは特に制限されないが、0.1μm以上10μm以下とすることができ、0.2μm以上7μm以下が好ましい。
接触面12Sにおける最大断面高さRtは、以下の方法によって測定できる。まず、リチウム電池10を樹脂埋めした後、クロスセクションポリッシャ(CP)によりリチウム電池10の断面研磨面が観察できるように研磨する。次に、SEM(走査型子顕微鏡、「JSM−6390LA」日本電子社製)により、任意の5視野における倍率1000倍の断面イメージを取得する。次に、各断面イメージを画像処理することにより、最も高い山と最も低い谷の高さの差を各断面イメージについて求め、その平均値を最大断面高さRtとする。
配向正極板12は、配向された複数のリチウム遷移金属酸化物粒子によって構成される配向多結晶体である。すなわち、配向多結晶体である配向正極板12を形成する粒子は、リチウム遷移金属酸化物によって構成される。
リチウム遷移金属酸化物は、層状岩塩構造又はスピネル構造を有するのが好ましく、層状岩塩構造を有するのがより好ましい。層状岩塩構造は、リチウムイオンの蓄積によって酸化還元電位が低下し、リチウムイオンの放出によって酸化還元電位が上昇する性質を有する。ここで、層状岩塩構造は、リチウム以外の遷移金属系層とリチウム層とが酸素原子を含む層を介して交互に積層された結晶構造である。すなわち、層状岩塩構造は、リチウム以外の遷移金属などのイオン層とリチウムイオン層とが酸化物イオン層を挟んで交互に積層された結晶構造である。このような結晶構造としては、立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列したα−NaFeO型構造が挙げられる。
層状岩塩構造を有するリチウム−遷移金属系複合酸化物としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン酸リチウム、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、コバルト・マンガン酸リチウムなどが挙げられる。リチウム−遷移金属系複合酸化物には、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Biなどのうち一種以上の元素が含まれていてもよい。
このように、リチウム遷移金属酸化物粒子は、LiM1O又はLi(M1,M2)O(式中、0.5<x<1.10、M1はNi,Mn及びCoの群から選択される少なくとも一種の遷移金属元素、M2はMg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba及びBiの群から選択される少なくとも一種の元素である)で表される組成を有するのが好ましい。リチウム遷移金属酸化物粒子は、Li(M1,M2)Oで表される組成を有し、かつ、M1がNi及びCoであって、M2はMg,Al及びZrの群から選択される少なくとも一種であることがより好ましい。リチウム遷移金属酸化物粒子は、Li(M1,M2)Oで表される組成を有し、かつ、M1がNi及びCoであって、M2がAlであることがさらに好ましい。さらに、リチウム遷移金属酸化物粒子は、LiM1Oで表される組成を有し、かつ、M1がNi,Mn及びCoであるか、又は、M1がCoであるのも好ましい。
なお、Li(M1,M2)Oという組成式は、具体的には、Li(M1,M2)(式中、0<m<1、0<n<1、m+n=1)と表される。式中、M1及びM2の合計量に占めるNiの割合は原子比で0.6以上であることが好ましい。以上の組成は、いずれも層状岩塩構造を採ることができる。
なお、Li(Ni,Co,Al)O系組成を有し、かつ、M1がNi及びCoであって、M2がAlであるセラミックスは、NCAセラミックスと称される。NCAセラミックスは、一般式Li(Ni,Co,Al)O(式中、0.9≦p≦1.3、0.6<x≦0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)で表される組成を有し、かつ、層状岩塩構造を有するのが好ましい。
上述のとおり、配向正極板12は、配向された複数のリチウム遷移金属酸化物粒子によって構成される配向多結晶体である。配向正極板12において、複数のリチウム遷移金属酸化物粒子は、所定の方向に配向されていることが好ましい。所定の方向は、リチウムイオンの伝導方向であることが好ましい。従って、配向正極板12の構成粒子の特定の結晶面は、配向正極板12から負極層16に向かう方向に配向されていることが好ましい。具体的には、配向正極板12の構成粒子の(003)面が、配向正極板12、固体電解質層14、電解液層15及び負極層16の積層方向に配向されていることが好ましい。言い換えると、(003)面が、積層面と交差する方向に配向されていることが好ましい。これによって、配向正極板12に対するリチウムイオンの蓄積時及び放出時の抵抗を低減できるため、高入力時(すなわち、充電時)に多くのリチウムイオンを放出できるとともに、高出力時(すなわち、放電時)に多くのリチウムイオンを蓄積することができる。
配向多結晶体の配向度は、10%以上とすることができる。配向多結晶体の配向度の下限値は、20%以上が好ましく、30%以上がより好ましく、40%以上がさらに好ましく、50%以上が特に好ましい。配向度の上限値は特に制限されないが、95%以下とすることができる。配向度の上限値は、90%以下、85%以下、80%以下、75%以下、又は70%以下とすることができる。配向正極板12の配向度は、XRD装置(例えば、株式会社リガク製、TTR−III)によって得られる接触面12SにおけるXRDプロファイルを用いて、ロットゲーリング法に従って下記式(1)から算出される。XRD装置による測定は、2θで10°から70°のX線回折角の範囲を2°/minかつステップ幅0.02°の条件で行うものとする。
Figure 2017054792

上記式(1)において、Iは、測定試料の回折強度であり、Iは無配向の参照試料の回折強度である。(HKL)は、配向度を評価したい回折線であり、(00l)(lは、例えば3、6及び9)以外の回折線に相当にする。(hkl)は、全ての回折線に相当する。
無配向の参照試料とは、無配向であること以外は測位試料と同様の構成を有する試料である。参照試料は、例えば配向正極板12の試料を乳鉢で粉砕して無配向状態にすることによって得られる。
上記式(1)において、(HKL)から(00l)の回折線が除かれているのは、(00l)の回折線に対応する面(例えば、(003)面など)ではその面内方向にしかリチウムイオンが移動できないため、この面が積層方向に対して垂直な面方向に沿って配向されると、リチウムイオンの移動が妨げられるからである。
このような配向多結晶体である配向正極板12は、無配向の多結晶体に比べて厚さを大きくすることができる。配向正極板12の厚さは、単位面積当りの活物質容量を考慮すると、20μm以上が好ましく、25μm以上がより好ましく、30μm以上がさらに好ましく、35μm以上が特に好ましい。配向正極板12の厚さの上限値は特に制限されないが、充放電の繰り返しに伴う電池特性の劣化(特に、抵抗値の上昇)の抑制を考慮すると、100μm未満が好ましく、90μm以下がより好ましく、80μm以下がさらに好ましく、70μm以下が特に好ましい。
配向正極板12は、シート状に形成されるのが好ましい。配向正極板12は、シート状に形成された1枚の正極活物質によって構成されていてもよいし、シート状に形成された正極活物質の小片を層状に配置することによって構成されていてもよい。
配向正極板12の相対密度は、75%以上99.97%以下が好ましく、80%以上99.95%以下がより好ましく、90%以上99.90%以下がさらに好ましく、95%以上99.88%以下が特に好ましく、97%以上99.85%以下が最も好ましい。配向正極板12の相対密度は、容量及びエネルギー密度を考慮すれば基本的には高い方が望ましいが、相対密度を上記の範囲内にすることによって、充放電を繰り返したときの抵抗値の上昇を抑制できる。これは、リチウムの蓄積及び放出に伴って配向正極板12が適度に膨張収縮することによって応力を緩和できるためだと考えられる。
なお、配向正極板12の構成及び作製方法については、特開2012−009193号公報、特開2012−009194号公報及び特許第4745463号公報に詳細に記載されている。本明細書では、これら3つの公報の開示内容を援用する。
2.固体電解質層14
固体電解質層14は、配向正極板12と負極層16の間に配置される。固体電解質層14は、リチウムイオン伝導材料によって構成される。リチウムイオン伝導材料としては、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、リン酸系セラミックス材料、硫化物系セラミックス材料、及び高分子系材料の群から選択される少なくとも一種が好ましく、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、及びリン酸系セラミックス材料の群から選択される少なくとも一種がより好ましい。
ガーネット系セラミックス材料としては、Li−La−Zr−O系材料(具体的には、LiLaZr12など。以下、「LLZ系セラミックス材料」という。)やLi−La−Ta−O系材料(具体的には、LiLaTa12など)が挙げられる。窒化物系セラミックス材料としては、LiNが挙げられる。ペロブスカイト系セラミックス材料としては、LLZ系セラミックス材料(具体的には、LiLa1−xTi(0.04≦x≦0.14)など)が挙げられる。リン酸系セラミックス材料としては、リン酸リチウム、リン酸リチウムオキシナイトライド(LiPON)、Li−Al−Ti−P−O,Li−Al−Ge−P−O、及びLi−Al−Ti−Si−P−O(具体的には、Li1+x+yAlTi2−xSi3−y12(0≦x≦0.4、0<y≦0.6)など)が挙げられる。
固体電解質層14は、LLZ系セラミックス材料及び/又はLiPON系セラミックス材料によって構成されるのが特に好ましい。
LLZ系セラミックス材料は、Li、La、Zr及びOを含むガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体である。LLZ系セラミックス材料としては、LiLaZr12などのガーネット系セラミックス材料が挙げられる。ガーネット系セラミックス材料は、負極層16と直接接触しても反応が起きないリチウムイオン伝導材料である。LLZ系セラミックス材料は、焼結性に優れるため緻密化しやすく、かつ、イオン伝導率も高い。LLZ系セラミックス材料の結晶構造は、LLZ結晶構造と呼ばれており、LLZ系セラミックス材料のXRDパターンはCSD(Cambridge Structural Database)のX線回折ファイルNo.422259(LiLaZr12)に類似している。なお、LLZ系セラミックス材料とNo.422259とでは構成元素が異なり、またセラミックス中のLi濃度などが異なる可能性もある。そのため、LLZ系セラミックス材料とNo.422259とでは回折角度や回折強度比が異なる場合がある。
なお、LLZ系セラミックス材料におけるLaに対するLiのモル数の比Li/Laは、2.0以上2.5以下が好ましい。LLZ系セラミックス材料におけるLaに対するZrのモル比Zr/Laは、0.5以上0.67以下が好ましい。
LLZ系セラミックス材料は、Nb及び/又はTaを含んでいてもよい。LLZ系セラミックス材料中のZrの一部をNb及びTaのいずれか一方又は双方で置換することによって、置換前よりも伝導率を向上させることができる。ZrのNb及び/又はTaによる置換量(モル比)は、(Nb+Ta)/Laのモル比が0.03以上0.20以下となる量にすることが好ましい。また、LLZ系セラミックス材料は、Alをさらに含んでいるのが好ましい。焼結体におけるAlの添加量は、0.01〜1質量%が好ましい。Laに対するAlのモル比Al/Laは、0.008〜0.12が好ましい。Nb、Ta及びAlの元素は、結晶格子に存在してもよいし、結晶格子外に存在していてもよい。
LLZ系セラミックス材料は、公知の手法に従って、又は、公知の手法を適宜修正することによって製造することができる。
LiPON系セラミックス材料は、Li2.9PO3.30.46の組成で表されるような化合物群であり、例えばLiPO(式中、aは2〜4、bは3〜5、cは0.1〜0.9)で表される化合物群である。
固体電解質層14は、負極層16と対向する第1対向面14S(対向面の一例)を有する。第1対向面14Sには凹凸が形成されている。第1対向面14Sにおける最大断面高さRtは特に制限されないが、0.1μm以上10μm以下とすることができる。第1対向面14Sにおける最大断面高さRtは、0.2μm以上7μm以下であることがより好ましい。第1対向面14Sにおける最大断面高さRtは、上述した接触面12Sにおける最大断面高さRtと同様の手法によって測定することができる。
固体電解質層14の第1対向面14Sにおける凹凸は、配向正極板12の接触面12Sにおける凹凸を利用して形成することができる。すなわち、配向正極板12の凹凸が固体電解質層14に引き継がれる手法で固体電解質層14を形成することによって、第1対向面14Sを凹凸にすることができる。また、固体電解質層14の第1対向面14Sにおける凹凸は、固体電解質層14の第1対向面14Sに表面加工又は表面処理を施すことによっても形成することができる。
固体電解質層14の厚さは特に制限されないが、0.1μm以上100μm以下とすることができる。配向正極板12の接触面12Sにおける凹凸を固体電解質層14の第1対向面14Sに引き継ぐことを考慮すると、固体電解質層14の厚さは0.2μm以上20μm以下であることが好ましい。また、充放電レート特性を考慮すると、0.3μm以上4.0μm以上であることがより好ましい。
固体電解質層14の形成方法としては、各種パーティクルジェットコーティング法、固相法、溶液法、気相法を用いることができる。パーティクルジェットコーティング法としては、エアロゾルデポジション(AD)法、ガスデポジション(GD)法、パウダージェットデポジション(PJD)法、コールドスプレー(CS)法、溶射法などが挙げられる。特に、エアロゾルデポジション(AD)法では常温成膜できるため、成膜中における組成ずれの発生や配向正極板12との反応による高抵抗層の形成を抑制することができる。固相法としては、テープ積層法、印刷法などが挙げられる。特に、テープ積層法では固体電解質層14の厚さを薄くできるとともに、厚さの制御を容易に行うことができる。溶液法としては、ソルボサーマル法、水熱合成法、ゾルゲル法、沈殿法、マイクロエマルション法、溶媒蒸発法などが挙げられる。特に、水熱合成法では低温で結晶性の高い結晶粒を形成することができる。溶液法によって合成される微結晶は、配向正極板12上に堆積させてもよいし、配向正極板12上に直接析出させてもよい。気相法としては、レーザー堆積(PLD)法、スパッタ法、蒸発凝縮(PVD)法、気相反応法(CVD)法、真空蒸着法、分子線エピタキシ(MBE)法などが挙げられる。特に、レーザー堆積(PLD)法では組成ずれの発生を抑制できるとともに、比較的結晶性の高い膜を形成することができる。
なお、配向正極板12と固体電解質層14の界面には界面抵抗を下げるための処理が施されていてもよい。具体的には、配向正極板12及び/又は固体電解質層14を被膜で覆うことによって界面抵抗を下げることができる。被膜を構成する材料としては、ニオブ酸化物、チタン酸化物、タングステン酸化物、タンタル酸化物、ジルコニウム酸化物、リチウム・ニッケル複合酸化物、リチウム・チタン複合酸化物、リチウム・ニオブ化合物、リチウム・タンタル化合物、リチウム・タングステン化合物、リチウム・チタン化合物、これらの複合酸化物、及びこれらの任意の組み合わせが挙げられる。被膜は薄いことが好ましく、例えば20nm以下が好ましい。
3.負極層16
負極層16は、電解液層15を介して固体電解質層14上に配置される。負極層16は、自立した箔によって構成される。本実施形態において、「自立した」とは、単独で取り扱うことができることを意味する。従って、自立した箔によって構成される負極層16は、把持、載置及び除去を単独で行うことができる。
自立した箔の材質としては、リチウム金属、リチウムと可逆的に合金化反応を起こす金属、リチウムと反応しない金属、炭素材質、チタン酸リチウム(LTO)などが挙げられる。リチウムと可逆的に合金化反応を起こす金属の例としては、Al(アルミニウム)、Si(シリコン)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲルマニウム)、Ag(銀)、Au(金)、Pt(白金)、Cd(カドミウム)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Pb(鉛)、Bi(ビスマス)、及びそれらの任意の組み合わせが挙げられる。リチウムと合金化する金属は、MgSiやMgSn等の2種類以上の元素により構成された合金であってもよい。リチウムと反応しない金属の例としては、銅、ニッケル、タングステンが挙げられる。自立した箔としては、特にリチウム金属が好適である。自立した箔の厚さは特に制限されないが、例えば0.1μm以上300μm以下とすることができ、1μm以上であることが好ましい。
負極層16は、固体電解質層14と対向する第2対向面16Sを有する。負極層16の第2対向面16Sは、固体電解質層14の第1対向面14Sに比べて平坦であってもよい。
負極層16の第2対向面16Sは、電解液層15と接触する。負極層16の第2対向面16Sは、固体電解質層14の第1対向面14Sと部分的に接触していることが好ましい。これによって、負極層16と固体電解質層14の間における直接的なリチウムイオン伝導を確保することができる。負極層16の第2対向面16Sは、固体電解質層14の第1対向面14Sに形成された凸部の頂部付近に接触していることが好ましい。
4.電解液層15
電解液層15は、固体電解質層14と負極層16の間に配置される。本実施形態において、電解液層15は、自立した箔によって構成される負極層と凹凸を有する固体電解質層とを良好に接続する。電解液層15は、固体電解質層14と負極層16の隙間を埋めるように充填されていることが好ましい。すなわち、電解液層15は、固体電解質層14と負極層16が直接接触する部分を除いて、固体電解質層14の第1対向面14S及び負極層16の第2対向面16Sそれぞれの略全面に接触していることが好ましい。これによって、負極層16と固体電解質層14の間における電解液層15を介した間接的なリチウムイオン伝導を向上させることができる。
電解液層15は、リチウムイオン伝導性を有する電解液によって構成される。このような電解液としては、有機電解液、イオン液体電解液、及びこれらの混合液を用いることができる。
有機電解液は、有機溶媒と電解質を含む。有機溶媒には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、及びこれらの任意の組み合わせを用いることができる。電解質には、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiPF)、及びこれらの組み合わせを用いることができる。
イオン液体電解液は、イオン液体カチオンとイオン液体アニオンと電解質を含む。イオン液体カチオンには、1‐エチル‐3‐メチルイミダゾリウムカチオン(EMI)、1‐メチル‐1‐プロピルピロリジニウムカチオン(P13)、1‐メチル‐1‐プロピルピペリジニウムカチオン(PP13)、これらの誘導体、及びこれらの任意の組み合わせを用いることができる。イオン液体アニオンには、ビス(トリフルオロメチルスルホニル)イミドアニオン(TFSI)、ビス(フルオロスルホニル)イミドアニオン(FSI)、及びこれらの組み合わせを用いることができる。電解質には、ビス(トリフルオロメチルスルホニル)イミドリチウム塩(LiTFSI)、ビス(フルオロスルホニル)イミドリチウム塩(LiFSI)、及びこれらの組み合わせを用いることができる。
このようなイオン液体電解液は、一般的には有機電解液に比べてリチウムイオン伝導性が劣るため、通常のリチウム電池に使用すると内部抵抗は高くなってしまう。一方で、イオン液体電解液を電解液層15に使用する場合、電解液層15は固体電解質層14と負極層16の隙間を埋める程度の薄さになるため、リチウムイオン伝導度が低いという不利な点を補うことができる。また、イオン液体電解液は、難燃性と短絡防止性(過剰電流が流れたときに電解液が分解されて電流を遮断する性質)を有するため、高温でも使用できる、という固体電解質を使用した電池の利点を損なわない。上記の理由から、電解液層15は、イオン液体電解液によって構成されることがより好ましい。
電解液層15は、固体電解質層14の第1対向面14S上に電解液を滴下した後、電解液上に負極層16を載置することによって形成することができる。電解液上に負極層16を載置した際、固体電解質層14に損傷が生じない程度に負極層16を押圧することが好ましい。これによって、固体電解質層14と負極層16の隙間から気泡を抜きながら電解液を充填することができる。電解液の滴下量は、固体電解質層14と負極層16の隙間全体に電解液が行き渡る量であればよい。
(外装部2の構成)
外装部2は、図1に示すように、正極外装材20、負極外装材24及び封止部26を含む。
1.正極外装材20
正極外装材20は、配向正極板12の外側を被覆する。正極外装材20は、接続部3を介して、単位電池1の配向正極板12と電気的に接続される。正極外装材20は、正極集電体として機能する。正極外装材20は、金属によって構成される。金属としては、ステンレス、アルミニウム、銅、白金、ニッケルなどが挙げられ、特にステンレスが好適である。正極外装材20は、板状又は箔状に形成することができ、特に箔状が好ましい。従って、正極外装材20としてステンレス箔を用いることが特に好ましい。正極外装材20が箔状に形成される場合、正極外装材20の厚さは1〜30μmとすることができ、5μm以上25μm以下が好ましく、10μm以上20μm以下がより好ましい。
本実施形態において、正極外装材20は、ザグリ状の凹部20aと、凹部20aの外周に形成される枠状の凸部20bとを有する。
2.負極外装材24
負極外装材24は、単位電池1の負極層16と電気的に接続される。負極外装材24は、負極集電体として機能する。負極外装材24は、金属によって構成される。負極外装材24は、正極外装材20と同様の材料によって構成することができる。従って、負極外装材24としてステンレス箔を用いることが好ましい。負極外装材24が箔状に形成される場合、負極外装材24の厚さは1〜30μmとすることができ、5μm以上25μm以下が好ましく、10μm以上20μm以下がより好ましい。
3.封止部26
封止部26は、正極外装材20と負極外装材24の隙間を封止する。封止部26は、リチウム電池10内への水分の侵入を抑制する。また、正極外装材20と負極外装材24の間の電気絶縁性を確保するため、封着材の抵抗率は1×10Ωcm以上が好ましく、1×10Ωcm以上がより好ましく、1×10Ωcm以上がさらに好ましい。このような封止部26は、電気絶縁性の封着材によって構成することができる。
封着材としては、樹脂を含む樹脂系封着材を用いることができる。樹脂系封着材を用いることによって、封止部26の形成を比較的低温(例えば400℃以下)で行うことができるため、加熱による電池の破壊や変質を抑制できる。
封止部26は、樹脂フィルムの積層や液状樹脂のディスペンスなどによって形成することができる。図1に示すように、正極外装材20が枠状の凸部20bを有する場合、封止部26は、凸部20bと負極外装材24の間に配置されるのが好ましい。これによって、封止部26で封止する領域を小さくできるため、水分の侵入をより抑制できる。
(接続部3の構成)
接続部3は、図1に示すように、金属層22、導電性接着剤層28、及び端部絶縁部18を含む。
1.金属層22
金属層22は、配向正極板12と導電性接着剤層28の間に配置される。配向正極板12と導電性接着剤層28との間に金属層22を介挿することによって、配向正極板12と導電性接着剤層28の間の電子伝導性を向上させることができる。金属層22は、配向正極板12及び導電性接着剤層28それぞれとの電子伝導抵抗及び反応性が低い金属によって構成することができる。このような金属層22としては、配向正極板12の板面へスパッタにより形成したAuスパッタ層を用いることができる。金属層22の厚さは10nm以上1000nm以下とすることができ、50nm以上500nm以下が好ましい。
2.導電性接着剤層28
導電性接着剤層28は、正極外装材20と金属層22の間に配置される。導電性接着剤層28は、正極外装材20と金属層22を機械的に強固に接合することによって、配向正極板12と正極外装材20の電気的接続を確保する。導電性接着剤層28は、導電性材料と接着剤を含む。導電性材料としては、導電性カーボンなどを用いることができる。接着剤としては、エポキシ系などの樹脂材料を用いることができる。導電性接着剤層28の厚さは特に制限されないが、5μm以上100μm以下とすることができ、10μm以上50μm以下であることが好ましい。
3.端部絶縁部18
端部絶縁部18は、配向正極板12と外装部2との隙間に充填される。端部絶縁部18は、充電時における配向正極板12の膨張に伴う応力を緩和しつつ、配向正極板12と負極層16との短絡を抑制することができればよく、その材質や形状は特に制限されないが、配向正極板12と接着又は密着可能な有機高分子材料を含むことが好ましい。
(他の実施形態)
本発明は上記実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
上記実施形態において、リチウム電池10は、正極層として配向正極板12を備えることとしたが、配向正極板12に代えて周知の正極活物質を含む正極層を備えていてもよい。このような正極層は、例えば特開2012−146512号公報や特開2013−105708号公報に開示されている。
上記実施形態において、負極層16は、部分的に固体電解質層14と直接接触することとしたが、固体電解質層14と直接接触していなくてもよい。この場合であっても、負極層16と固体電解質層14の間には電解液層15が配置されているため、負極層16と固体電解質層14の間のリチウムイオン伝導は確保される。ただし、積層方向における負極層16と固体電解質層14の最小距離(すなわち、電解液層15の上積み部分の厚み)は、20μm以下であることが好ましい。
上記実施形態において、リチウム電池10は、2つの単位電池1を備えることとしたが、1つの単位電池1又は3つ以上の単位電池1を備えていてもよい。リチウム電池10が2つ以上の単位電池1を備える場合、単位電池1同士は並列接続されてもよいし、直列接続されてもよい。
上記実施形態において、2つの単位電池1は、負極外装材24を挟むように配置されることとしたが、正極外装材20を挟むように配置されてもよい。この場合、2つの単位電池1それぞれの外側に2つの負極外装材24を配置すればよい。
上記実施形態において、リチウム電池10は、外装部2を備えることとしたが、外装部2を備えていなくてもよい。この場合、単位電池1の配向正極板12及び負極層16それぞれに電極取り出しタブなどを接続すればよい。
上記実施形態において、外装部2は、封止部26を有することとしたが、封止部26を有していなくてもよい。
上記実施形態において、リチウム電池10は、接続部3を備えることとしたが、接続部3を備えていなくてもよい。この場合、配向正極板12を正極外装材20に直接接触させればよい。
上記実施形態において、接続部3は、金属層22及び端部絶縁部18を有することとしたが、金属層22及び端部絶縁部18の少なくとも一方を有していなくてもよい。
以下において本発明に係るリチウム電池の実施例について説明するが、本発明は以下に説明する実施例に限定されるものではない。なお、本実施例では、以下に説明するサンプルNo.1〜3に係るリチウム電池を10個ずつ作製した。
(サンプルNo.1の作製)
1.配向正極板の作製
1.1 グリーンシートの作製
まず、体積基準D50粒径が0.3μmのCo原料粉末(正同化学工業株式会社製)に体積基準D50粒径が0.3μmのBi(太陽鉱工株式会社製)を5wt%の割合で添加して混合粉末を得た。次に、この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部とを混合した。次に、この混合物を減圧下で撹拌することによって脱泡しながら、粘度が4000cPのスラリーを調製した。スラリーの粘度は、ブルックフィールド社製LVT型粘度計で測定した。次に、調製したスラリーをドクターブレード法によってPETフィルム上においてシート状に成形することによってグリーンシートを作製した。乾燥後のグリーンシートの厚さは、40μmであった。
1.2 配向焼結板の作製
PETフィルムから剥がしたグリーンシートをカッターで40mm角に切り出してグリーンシートの小片を形成した。次に、突起の高さが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央にグリーンシートの小片を載置した。次に、グリーンシートの小片を1300℃で5時間焼成した後、降温速度50℃/hにて降温した。次に、ジルコニア製セッターに溶着していない部分をCo配向焼結板として取り出した。
1.3 リチウムの導入
LiOH・HO粉末(和光純薬工業株式会社製)をジェットミルで1μm以下に粉砕した後、エタノールに分散させることによってスラリーを作製した。次に、Li/Co=1.3になるようにスラリーをCo配向焼結板に塗布した後、乾燥させた。次に、スラリーが塗布された配向焼結板をジルコニア製セッター上に載置した。次に、スラリーが塗布された配向焼結板を大気中にて840℃で20時間加熱処理することによって、厚さ45μmのLiCoO配向焼結板を作製した。
2.リチウム電池の作製
2.1 金属層の作製
イオンスパッタリング装置(日本電子製、JFC−1500)を用いたスパッタリングにより、コバルト酸リチウム配向正極板の第2主面上に金属層としてのAu膜を形成した。金属層の厚さは、1000Åであった。
2.2 配向正極板の固定
金属層が形成されたLiCoO配向焼結板を□10mmで切出した。次に、導電性カーボンを分散させたエポキシ系の導電性接着剤を用いて、正極外装材としてのステンレス集電板(厚さ100μm)に切り出したLiCoO配向焼結板の金属層を固定した。これによって、LiCoO配向正極板と金属層と導電性接着剤と正極外装材が順次積層された平板状の積層板が作製された。
2.3 固体電解質層の形成
直径4インチ(約10cm)のリン酸リチウム焼結体ターゲットを準備した。次に、スパッタリング装置(キャノンアネルバ製、SPF−430H)を用いたRFマグネトロン方式にて、ターゲットにガス種Nを0.2Paかつ出力0.2kWの条件で衝突させることによって、LiCoO配向正極板の第1主面にLiPON系のスパッタ膜を固体電解質層として形成した。固体電解質層の厚さは、3.5μmであった。
2.4 電解液層および負極層の形成
エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解させた有機電解液を準備した。次に、有機電解液を固体電解質層の表面全面が濡れるように滴下した。次に、滴下した有機電解液上に金属リチウム箔を載置することによって、電解液層及び負極層を形成した。この際、固体電解質層と負極層の隙間から電解液層が露出していることを目視することによって、電解液層が充填されたことを確認した。以上によって、単位電池が完成した。
2.5 外装部による封止
電極取り出し用タブを接着したAlラミネートフィルムによって単位電池を封止した。これによって、サンプルNo.1に係る特性評価用のリチウム電池が完成した。
(サンプルNo.2の作製)
有機電解液に代えてイオン液体電解液を用いて電解液層を形成した以外は、上記サンプルNo.1と同じ工程にてサンプルNo.2を作製した。
イオン液体電解液としては、イオン液体カチオンとしての1‐メチル‐1‐プロピルピロリジニウムカチオン(P13)及びイオン液体アニオンとしてのビス(フルオロスルホニル)イミドアニオン(FSI)を含むイオン液体に対して、電解質としてビス(トリフルオロメチルスルホニル)イミドリチウム塩(LiTFSI)を0.8mol/Lの濃度となるように溶解させたものを用いた。
(サンプルNo.3の作製)
電解液層を形成しなかった以外は、上記サンプルNo.1と同じ工程にてサンプルNo.3を作製した。サンプルNo.3では、固体電解質層上に負極層が直接載置されている。
(最大断面高さRt評価)
サンプルNo.1〜3それぞれ5個ずつについて、LiCoO配向正極板の第1主面および固体電解質層の表面(対向面)における最大断面高さRtを測定した。
まず、サンプルNo.1〜3のリチウム電池を樹脂埋めした後、クロスセクションポリッシャによってリチウム電池の断面研磨面が観察できるように研磨した。次に、SEM(「JSM−6390LA」、日本電子社製)により、任意の5視野における倍率1000倍の断面イメージを取得した。次に、各断面イメージを画像処理することによって、最も高い山と最も低い谷の高さの差を各断面イメージについて求め、その平均値を最大断面高さRtとした。
サンプルNo.1〜3ともに、LiCoO配向正極板の第1主面における最大断面高さは5.5μmであり、固体電解質層の表面(対向面)における最大断面高さは5.5μmであった。
(電池評価)
サンプルNo.1〜3それぞれ10個ずつについて電池評価を行った。
まず、0.1Cレートの電流値で電池電圧が4.0Vとなるまで定電流充電した。次に、電池電圧を4.0Vに維持する電流条件において、電流値が1/5に低下するまで定電圧充電した後、10分間休止した。
次に、0.1Cレートの電流値で電池電圧が2.5Vになるまで定電流放電した後、10分間休止した。
以上の充放電操作を1サイクルとして、25℃の条件下で10サイクル繰り返した。そして、10サイクル繰り返した後に、サンプルNo.1〜3における平均容量維持率を測定した。測定結果を表1にまとめて示す。
Figure 2017054792
表1に示すように、サンプルNo.1,2では、サンプルNo.3と比較して平均容量維持率を向上させることができた。これは、負極層と固体電解質層の間に電解液層を介挿することによって、負極層と固体電解質層の良好な接続を図ることができたためである。
10 リチウム電池
12 配向正極板
14 固体電解質層
15 電解液層
16 負極層
18 端部絶縁部
20 正極外装材
22 金属層
24 負極外装材
26 封止部
28 導電性接着剤

Claims (9)

  1. 正極層と、
    自立した箔によって構成される負極層と、
    前記正極層と前記負極層の間に配置される固体電解質層と、
    前記固体電解質層と前記負極層の間に配置される電解液層と、
    を備える、
    リチウム電池。
  2. 前記固体電解質層は、前記負極層と対向する第1対向面を有し、
    前記第1対向面における最大断面高さRtは、0.1μm以上である、
    請求項1に記載のリチウム電池。
  3. 前記正極層は、焼結体である、
    請求項1又は2に記載のリチウム電池。
  4. 前記正極層は、配向された複数のリチウム遷移金属酸化物粒子によって構成される、
    請求項3に記載のリチウム電池。
  5. 前記固体電解質層の厚さは、20μm以下である、
    請求項1乃至4に記載のリチウム電池。
  6. 前記負極層は、前記固体電解質層と対向する第2対向面を有し、
    前記第2対向面は、前記第1対向面と部分的に接触している、
    請求項1乃至5のいずれかに記載のリチウム電池。
  7. 前記電解液層は、前記固体電解質層と前記負極層の間に充填されている、
    請求項1乃至6のいずれかに記載のリチウム電池。
  8. 前記固体電解質層と前記負極層の間に配置される電解液層は、イオン液体電解液である、
    請求項1乃至7のいずれかに記載のリチウム電池。
  9. 前記負極層は、リチウム金属箔である、
    請求項1乃至8のいずれかに記載のリチウム電池。
JP2015180096A 2015-09-11 2015-09-11 リチウム電池 Pending JP2017054792A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015180096A JP2017054792A (ja) 2015-09-11 2015-09-11 リチウム電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015180096A JP2017054792A (ja) 2015-09-11 2015-09-11 リチウム電池

Publications (1)

Publication Number Publication Date
JP2017054792A true JP2017054792A (ja) 2017-03-16

Family

ID=58317199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015180096A Pending JP2017054792A (ja) 2015-09-11 2015-09-11 リチウム電池

Country Status (1)

Country Link
JP (1) JP2017054792A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170271A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
JP2020047613A (ja) * 2018-05-17 2020-03-26 日本碍子株式会社 リチウム二次電池
WO2020217579A1 (ja) * 2019-04-26 2020-10-29 日本碍子株式会社 リチウム二次電池
US10840538B2 (en) 2017-05-29 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Lithium metal secondary battery using lithium metal as negative electrode active material
JP2020535608A (ja) * 2017-09-28 2020-12-03 セブン キング エナージー カンパニー リミテッドSeven King Energy Co.,Ltd. 一体型全固体二次電池{Integral All−Solid State Rechargeable Batteries}
WO2021100659A1 (ja) * 2019-11-19 2021-05-27 日本碍子株式会社 複合電極及びそれを用いた電池
CN113140783A (zh) * 2021-04-07 2021-07-20 光鼎铷业(广州)集团有限公司 一种铷掺杂固态液态混合电解质锂电池结构
CN113228374A (zh) * 2018-12-19 2021-08-06 富特日本电池株式会社 锂电池的缓冲以及锂电池的制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172537A (ja) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2004171995A (ja) * 2002-11-21 2004-06-17 Mitsubishi Heavy Ind Ltd リチウム二次電池及びリチウム二次電池の製造方法
JP2008053135A (ja) * 2006-08-28 2008-03-06 Sumitomo Electric Ind Ltd 薄膜電池
JP2008171588A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd リチウム電池
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
WO2010073978A1 (ja) * 2008-12-26 2010-07-01 独立行政法人産業技術総合研究所 リチウム二次電池
JP2010287414A (ja) * 2009-06-11 2010-12-24 Toyota Motor Corp 金属二次電池
JP2012146512A (ja) * 2011-01-12 2012-08-02 Toyota Motor Corp 電池の製造方法
JP2013089470A (ja) * 2011-10-18 2013-05-13 Sumitomo Electric Ind Ltd 非水電解質電池の製造方法、および非水電解質電池
JP2014238925A (ja) * 2013-06-06 2014-12-18 日本碍子株式会社 全固体電池
JP2015028846A (ja) * 2013-07-30 2015-02-12 富士通株式会社 固体電解質複合体、全固体イオン電池及び固体電解質複合体の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172537A (ja) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2004171995A (ja) * 2002-11-21 2004-06-17 Mitsubishi Heavy Ind Ltd リチウム二次電池及びリチウム二次電池の製造方法
JP2008053135A (ja) * 2006-08-28 2008-03-06 Sumitomo Electric Ind Ltd 薄膜電池
JP2008171588A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd リチウム電池
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
WO2010073978A1 (ja) * 2008-12-26 2010-07-01 独立行政法人産業技術総合研究所 リチウム二次電池
JP2010287414A (ja) * 2009-06-11 2010-12-24 Toyota Motor Corp 金属二次電池
JP2012146512A (ja) * 2011-01-12 2012-08-02 Toyota Motor Corp 電池の製造方法
JP2013089470A (ja) * 2011-10-18 2013-05-13 Sumitomo Electric Ind Ltd 非水電解質電池の製造方法、および非水電解質電池
JP2014238925A (ja) * 2013-06-06 2014-12-18 日本碍子株式会社 全固体電池
JP2015028846A (ja) * 2013-07-30 2015-02-12 富士通株式会社 固体電解質複合体、全固体イオン電池及び固体電解質複合体の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170271A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
US10840538B2 (en) 2017-05-29 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Lithium metal secondary battery using lithium metal as negative electrode active material
JP2020535608A (ja) * 2017-09-28 2020-12-03 セブン キング エナージー カンパニー リミテッドSeven King Energy Co.,Ltd. 一体型全固体二次電池{Integral All−Solid State Rechargeable Batteries}
JP7100120B2 (ja) 2017-09-28 2022-07-12 セブン キング エナージー カンパニー リミテッド 一体型全固体二次電池{Integral All-Solid State Rechargeable Batteries}
JP2020047613A (ja) * 2018-05-17 2020-03-26 日本碍子株式会社 リチウム二次電池
JP7189163B2 (ja) 2018-05-17 2022-12-13 日本碍子株式会社 リチウム二次電池
CN113228374A (zh) * 2018-12-19 2021-08-06 富特日本电池株式会社 锂电池的缓冲以及锂电池的制造方法
WO2020217579A1 (ja) * 2019-04-26 2020-10-29 日本碍子株式会社 リチウム二次電池
JPWO2020217579A1 (ja) * 2019-04-26 2021-12-23 日本碍子株式会社 リチウム二次電池
JP7268142B2 (ja) 2019-04-26 2023-05-02 日本碍子株式会社 リチウム二次電池
WO2021100659A1 (ja) * 2019-11-19 2021-05-27 日本碍子株式会社 複合電極及びそれを用いた電池
CN113140783A (zh) * 2021-04-07 2021-07-20 光鼎铷业(广州)集团有限公司 一种铷掺杂固态液态混合电解质锂电池结构

Similar Documents

Publication Publication Date Title
JP6646666B2 (ja) 全固体リチウム電池
JP6779221B2 (ja) 全固体リチウム電池
KR102643570B1 (ko) 판형 리튬 복합 산화물
US20170373300A1 (en) All solid state lithium battery
KR102233591B1 (ko) 이차 전지
JP2017054792A (ja) リチウム電池
US20190006707A1 (en) Method for Suppressing Metal Propagation in Solid Electrolytes
JP6906522B2 (ja) 全固体リチウム電池
JP6906524B2 (ja) 全固体リチウム電池
WO2018123479A1 (ja) リチウムイオン電池及びその製造方法
JP6277079B2 (ja) 全固体リチウム電池
KR102325924B1 (ko) 전고체 리튬 전지 및 그 제조 방법
JP6906523B2 (ja) 全固体リチウム電池の使用方法
JP2009181807A (ja) 固体電解質、および固体電解質電池、並びにリチウムイオン伝導体の製造方法、固体電解質の製造方法、および固体電解質電池の製造方法
JP6820960B2 (ja) リチウムイオン電池
WO2017065034A1 (ja) 全固体リチウム電池の製造方法
WO2015151566A1 (ja) 全固体リチウム電池
JP2017054761A (ja) 全固体リチウム電池の検査方法及び全固体リチウム電池の製造方法
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
JP6168690B2 (ja) セラミック正極−固体電解質複合体
JP2017135100A (ja) リチウムイオン電池
WO2014050572A1 (ja) 全固体リチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827