WO2014050572A1 - 全固体リチウムイオン二次電池の製造方法 - Google Patents

全固体リチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2014050572A1
WO2014050572A1 PCT/JP2013/074573 JP2013074573W WO2014050572A1 WO 2014050572 A1 WO2014050572 A1 WO 2014050572A1 JP 2013074573 W JP2013074573 W JP 2013074573W WO 2014050572 A1 WO2014050572 A1 WO 2014050572A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
solid
lithium ion
Prior art date
Application number
PCT/JP2013/074573
Other languages
English (en)
French (fr)
Inventor
小林 伸行
木村 浩二
隆太 杉浦
武内 幸久
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2014050572A1 publication Critical patent/WO2014050572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an all-solid-state lithium ion secondary battery.
  • lithium ion secondary batteries have attracted attention from the viewpoint of high energy density.
  • lithium ion secondary batteries currently widely used are mainly organic electrolytes in which lithium salts are dissolved in flammable organic solvents, it is important to ensure safety against liquid leakage and the like. Yes.
  • an all-solid battery using a solid electrolyte instead of an electrolytic solution has been proposed as a highly safe battery that does not require the use of a flammable organic solvent.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-193802 discloses an all-solid battery in which each of a positive electrode current collector, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector is formed of a green compact.
  • This green compact all solid state battery has low density of the active material layer and the electrolyte layer, and has a problem in high capacity and rate characteristics. Further, since the bonding interface is not dense, it is considered that the resistance becomes high.
  • each member is formed of a green compact, it is understood that a restraining means for pressing these members is required.
  • Patent Document 2 International Publication No. 2011/132627 discloses an all solid state secondary battery in which a positive electrode layer, a negative electrode layer, and a solid electrolyte layer are joined by sintering.
  • This all-solid-state secondary battery is produced by laminating green sheets of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, and simultaneously sintering the obtained green sheet laminate.
  • the heat treatment temperature must be increased, and as a result, the interface resistance becomes very high, and each member has a good function inherently. It is difficult to make the best use of.
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2009-009897 discloses an all-solid-state thin film battery in which each of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer is formed by a gas phase process. Since this thin-film all-solid battery has few active materials in the electrode, in principle, it is difficult to increase the capacity and the energy density is small. In addition, since the positive electrode active material is in an amorphous state immediately after film formation and the original active material performance cannot be sufficiently exhibited, heat treatment for crystallization is required. A layer is formed, and sufficient capacity and rate characteristics as a battery cannot be obtained.
  • Patent Document 4 Japanese Patent Laid-Open No. 2012-009193
  • Patent Document 5 Japanese Patent Laid-Open No. 2012-009194
  • Patent Document 6 Japanese Patent No.
  • JP 2009-193802 A International Publication No. 2011/132627 JP 2009-009897 A JP 2012-009193 A JP 2012-009194 A Japanese Patent No. 4745463 JP 2011-051800 A JP 2011-073962 A JP 2011-073963 A
  • the size of the sintered body plate is preferably 100 ⁇ m or less in terms of battery performance and 1 mm 2 or more in terms of handling, and there is a problem that defects such as cracks and cracks are likely to occur during handling. is there.
  • a battery having a multilayer structure in which a plurality of cells are stacked is manufactured, there is a problem in that defects are likely to occur as a battery.
  • the present inventors recently prepared and used a self-supporting positive electrode plate with a current collector embedded therein as a positive electrode plate in the production of an all-solid-state lithium ion secondary battery. It was found that the solid electrolyte and the negative electrode can be sequentially laminated and integrated while suppressing the above, thereby obtaining a stack-type all-solid-state lithium ion secondary battery with a high yield.
  • the object of the present invention is to sequentially stack and integrate the solid electrolyte and the negative electrode while effectively suppressing the cracking of the positive electrode plate, thereby achieving a stack type all solid lithium ion secondary with a high yield. To get a battery.
  • an integrated firing comprising a positive electrode active material plate comprising a positive electrode active material comprising a lithium composite oxide and an internal current collector embedded in the positive electrode active material plate.
  • a step of preparing a positive electrode made of a bonded body A step of sequentially stacking a solid electrolyte and a negative electrode on both surfaces of the positive electrode to obtain a stack-type all solid lithium ion secondary battery including an assembled battery composed of two unit batteries;
  • a method for producing an all-solid lithium ion secondary battery is provided.
  • a positive electrode active material plate including a positive electrode active material made of a lithium composite oxide, and an internal current collector embedded in the positive electrode active material plate are provided.
  • a positive electrode for an all-solid-state lithium ion secondary battery comprising a self-supporting integrated sintered body.
  • FIG. 1 It is a schematic cross section which shows an example of the positive electrode used for the method of this invention. It is a schematic cross section which shows another example of the positive electrode used for the method of this invention. It is a schematic cross section which shows the structure of the lithium ion secondary battery by this invention using the positive electrode shown by FIG.
  • the manufacturing method of an all-solid-state lithium ion secondary battery is a method of manufacturing an all-solid-state lithium ion secondary battery. This method includes a step of preparing a positive electrode and a step of laminating a solid electrolyte and a negative electrode. Hereinafter, each step will be described.
  • the positive electrode active material board containing the positive electrode active material which consists of lithium complex oxides, and the internal electrical power collector embedded inside the positive electrode active material board were provided.
  • a positive electrode made of an integrated sintered body is prepared.
  • the positive electrode active material plate containing the positive electrode active material is baked and integrated and reinforced with the internal current collector embedded therein.
  • This configuration can also be expressed as a self-supporting integrated sintered body, where “self-standing” means that it is carried on some substrate or other sheet-like object (for example, a solid electrolyte plate) ) And is not integrated and means that it can be handled alone.
  • the solid electrolyte and the negative electrode can be stacked and integrated sequentially while effectively suppressing cracking of the positive electrode plate, thereby achieving a high yield.
  • a stack type all solid lithium ion secondary battery can be manufactured. That is, since it is made of a ceramic sintered body, it is difficult to break the positive electrode plate by embedding a current collector inside the positive electrode plate which is very easily broken, and a battery can be manufactured with high yield.
  • the size of the sintered positive electrode plate is preferably 100 ⁇ m or less in terms of battery performance and 1 mm 2 or more in terms of handling, defects such as cracks and cracks may occur during handling. It becomes difficult to enter.
  • the positive electrode of the present invention since the positive electrode active material plate containing the positive electrode active material is provided with a current collector and integrated by firing, it becomes a conventionally used resistance component. The use of a conductive bonding material that can be avoided can be avoided. As a result, the positive electrode of the present invention is advantageous in increasing the output because the internal resistance is reduced.
  • the internal current collector has at least one opening, and the opening is filled with the positive electrode active material so that lithium ions can move.
  • An example of the positive electrode according to this embodiment is schematically shown in FIG.
  • a positive electrode 10 shown in FIG. 1 is formed of an integrated sintered body including a positive electrode active material plate 12 and an internal current collector 14.
  • the positive electrode active material plate 12 includes a positive electrode active material made of a lithium composite oxide.
  • the internal current collector 14 is embedded in the positive electrode active material plate 12, has at least one opening 14a, and the opening is filled with the positive electrode active material so that lithium ions can move.
  • the side end portion of the internal current collector 14 may be configured to extend from the side end portion of the positive electrode active material plate 12 and be connected to an external terminal.
  • the positive electrode of the present invention has a very characteristic layer structure in which the current collector is provided inside the positive electrode, unlike the conventional positive electrode in which the current collector is provided outside.
  • This layer configuration can be said to be a configuration in which the positive electrode active material layers 12a and 12b are provided on both sides of the current collector 14, but the positive electrode active material 12c is also present in the opening 14a of the internal current collector.
  • the internal current collector 14 may not have the opening 14a.
  • the positive electrode active material layer 12a ′ which is a portion on one surface side of the positive electrode active material plate
  • the positive electrode active material layer 12b ′ which is a portion on the other surface side
  • the lithium ion may be separated so as not to move by 14 ′.
  • the positive electrode active material plate 12 is made of a ceramic sintered body containing a positive electrode active material made of a lithium composite oxide.
  • the positive electrode active material is not particularly limited as long as it can function as an active material in the positive electrode of the lithium ion secondary battery, but is preferably a lithium-transition metal composite oxide.
  • the positive electrode active material, particularly the lithium-transition metal composite oxide preferably has a layered rock salt structure or a spinel structure, and more preferably has a layered rock salt structure.
  • the layered rock salt structure has the property that the redox potential decreases due to occlusion of lithium ions, and the redox potential increases due to elimination of lithium ions.
  • the layered rock salt structure is a crystal structure in which transition metal layers other than lithium and lithium layers are alternately stacked with an oxygen atom layer interposed therebetween, that is, an ion layer and lithium ions of transition metals other than lithium.
  • Crystal structure in which layers are alternately stacked with oxide ions typically ⁇ -NaFeO 2 type structure: a structure in which transition metal and lithium are regularly arranged in the [111] axis direction of cubic rock salt type structure ).
  • lithium-transition metal composite oxides having a layered rock salt structure include lithium nickelate, lithium manganate, nickel / lithium manganate, nickel / lithium cobaltate, cobalt / nickel / lithium manganate, cobalt / manganese
  • these materials include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, and the like.
  • One or more elements such as Sb, Te, Ba, Bi and the like may be further included.
  • the lithium-transition metal composite oxide is Li x M1O 2 or Li x (M1, M2) O 2 (where 0.5 ⁇ x ⁇ 1.10, M1 is a group consisting of Ni, Mn, and Co)
  • M1 is a group consisting of Ni, Mn, and Co
  • M2 is at least one composition selected from the group consisting of Mg, Al and Zr, more preferably Li x (M1, M2) O 2 , where M1 is Ni and Co And M2 is Al.
  • the proportion of Ni in the total amount of M1 and M2 is preferably 0.6 or more in atomic ratio.
  • Any of such compositions can take a layered rock salt structure.
  • the positive electrode active material is a polycrystal composed of a plurality of crystal particles, and the plurality of crystal particles are preferably oriented. That is, it is effective to orient the crystal faces of the crystal particles constituting the positive electrode active material plate that is a sintered body so that lithium ions are easily diffused. That is, this orientation facilitates the movement of lithium ions, further enhancing the effect of the internal current collecting structure and improving the rate characteristics.
  • This orientation is preferably oriented so that the (003) plane of the layered rock salt structure intersects the plate surface (principal surface) of the positive electrode active material plate, more preferably a plane other than (003). (For example, (104) plane) is preferably oriented parallel to the plate surface of the positive electrode active material plate.
  • the degree of orientation in such a positive electrode active material plate is the ratio of the diffraction intensity (peak intensity) due to the (003) plane to the diffraction intensity due to the (104) plane in the X-ray diffraction from the plate surface of the positive electrode active material plate [003].
  • / [104] and a preferable [003] / [104] ratio is 2 or less, more preferably 1 or less, and still more preferably 0.5 or less.
  • a low [003] / [104] ratio means that the ratio of the appearance of the (003) plane parallel to the plate surface in the plate surface or inside of the positive electrode active material plate is reduced.
  • lithium ions can be diffused three-dimensionally, so that the influence on the lithium ion diffusion by orientation is small.
  • it is difficult for lithium ions to move in the grain boundary portion it is effective to have a structure in which the grain boundaries are reduced.
  • the positive electrode active material plate it is effective to have a structure in which one particle is formed in the plate thickness direction with the internal current collector interposed therebetween.
  • the positive electrode active material plate 12 is made of a ceramic sintered body containing a positive electrode active material.
  • this ceramic sintered body may contain arbitrary components, such as a conductive support agent, besides a positive electrode active material, it is also possible to set it as the structure which does not contain such arbitrary components substantially.
  • the positive electrode active material plate is preferably made of only the positive electrode active material (consisting essentially of), more preferably made of only the positive electrode active material (consisting of).
  • the positive electrode active material plate 12 and the positive electrode active material constituting the positive electrode active material plate 12 preferably have pores.
  • the presence of pores in the positive electrode active material plate can relieve stress that may be caused by expansion or contraction associated with insertion / extraction of lithium ions due to charge / discharge. Furthermore, it is possible to significantly relieve internal stress that is likely to occur during simultaneous firing with the internal current collector, and to improve reliability. As a result, it is possible to effectively prevent peeling at the interface that may occur when the dense plates are joined together.
  • the positive electrode active material preferably has a porosity of 3 to 30%, more preferably 5 to 25%, and still more preferably 10 to 20%.
  • the voidage is a volume ratio of pores (including open pores and closed pores) in the positive electrode active material plate, and is sometimes referred to as porosity. It can be calculated from the density.
  • the dimensions of the positive electrode active material plate 12 are not particularly limited, but the thickness of the positive electrode active material plate 12 (which is equal to the thickness of the positive electrode 10) is 1 to 200 ⁇ m from the viewpoint of the active material capacity per unit area and output characteristics. More preferably, it is 5 to 100 ⁇ m, and the size of the plate surface is preferably 0.5 mm ⁇ 0.5 mm to 200 mm ⁇ 200 mm, more preferably 1 mm ⁇ 1 mm to 50 mm ⁇ from the viewpoint of ease of electrode production. 50 mm.
  • the internal current collector 14 is a current collector mainly composed of a conductor embedded in the positive electrode active material plate 12 and may be in the form of a plate, foil, or film.
  • the material of the internal current collector 14 is a conductor such as stainless steel, gold, platinum, palladium, copper, nickel, silver, or an alloy thereof, and can be integrated with the lithium composite oxide. Although not specifically limited, what processed metal foil may be used.
  • the internal current collector 14 is not limited to a metal, and may be a composite of a lithium ion conductor and an electron conductor.
  • the thickness of the internal current collector 14 is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 10 ⁇ m, still more preferably 1 to 10 ⁇ m.
  • the internal current collector 14 has at least one opening 14a, and the opening 14a is filled with the positive electrode active material 12c so that lithium ions can move. It is preferable that a plurality of openings 14a exist innumerably.
  • the shape of the opening 14a is not particularly limited as long as lithium ion permeability can be ensured, and may be a lattice shape, a mesh shape, a structure having innumerable fine holes, or the like, but is preferably a lattice shape.
  • the opening 14a needs to be filled with an active material. If a grid is used, the active material can be easily filled, and the flatness of the current collector can be easily secured, and the distance between the electrodes is constant. Electric field concentration is less likely to occur.
  • the internal current collector 14 shown in FIG. 1 has at least one opening 14a, but may be an internal current collector that does not have an opening as shown in FIG. That is, in the positive electrode 10 ′ shown in FIG. 2, the internal current collector 14 ′ does not have an opening, and the positive electrode active material plate 12 ′ has positive electrode active material layers 12a ′, It can also be said that 12b 'is provided.
  • the step of preparing a positive electrode includes a first outer layer and a second outer layer made of a positive electrode active material or a precursor thereof, and an inner layer made of an internal current collector or a precursor thereof provided between the first outer layer and the second outer layer. It is preferable to carry out by preparing a precursor laminate composed of the above, and sintering and integrating the precursor laminate. That is, the positive electrode is preferably manufactured by a method including a sintering step in which a material to be a positive electrode active material plate containing a positive electrode active material and a material to be an internal current collector are integrated by firing. It is.
  • a green sheet of a positive electrode active material is prepared by a tape molding method, a printing method, etc., and a conductor paste is printed in a desired pattern on one side of the active material green sheet.
  • a method of laminating green sheets of active material so as to sandwich the conductor pattern, and pressing and integrating them (2) producing a green sheet of the conductor, as described above (3) Laminate and press and sinter so that the conductive foil is sandwiched between green sheets of active material as described above.
  • the green sheet of the positive electrode active material used in the manufacturing method described above may be made of a positive electrode active material precursor that gives a positive electrode active material made of lithium composite oxide through sintering, and may be manufactured by any method. Good. Therefore, a green sheet may be formed using a molding slurry containing a compound of a constituent element other than lithium in the lithium composite oxide in the form of particles, and a lithium compound such as lithium carbonate may be applied to the green sheet. Alternatively, a green sheet containing a compound containing all the constituent elements of the lithium composite oxide may be formed at a time. That is, the lithium compound can be added at the time of molding or before firing after molding.
  • the lithium compound can be added to the molding slurry described above together with the positive electrode active material precursor particles during molding.
  • a compact that does not contain a lithium compound is temporarily calcined (molded calcined), and then a mixture of the calcined compact and the lithium compound is calcined (main calcining) in two stages (lithium
  • the molded body to be preliminarily fired sandwiches a conductor pattern to be an internal current collector.
  • any lithium-containing compound that can finally give the composition of the positive electrode active material preferably Li x M1O 2 or Li x (M1, M2) O 2
  • examples include lithium oxide and lithium carbonate.
  • the lithium amount may be excessive by about 0.1 to 40 mol%.
  • the green sheet can be produced by forming the raw slurry into a sheet and drying it. Thereby, a green sheet in which a large number of primary particles are oriented can be obtained.
  • the green sheet preferably has a thickness of 400 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the thickness of the green sheet is preferably 2 ⁇ m or more.
  • the molding method is not particularly limited as long as the raw material powder is filled in the molded body with the same crystal orientation.
  • a green sheet filled with the raw material powder with the same crystal orientation can be obtained by forming (forming) a slurry containing the raw material powder using a doctor blade method.
  • a slurry containing raw material powder is applied to a flexible substrate (for example, an organic polymer plate such as a PET film), and the applied slurry is dried and solidified.
  • a dry film is used.
  • the dry film is peeled from the above-described substrate to obtain a green sheet in which the raw material powder is oriented (filled with the same crystal orientation).
  • the obtained green sheet is preferably dried and then processed into a desired size by punching or the like.
  • a binder, a plasticizer, or the like may be appropriately added to the raw material powder dispersed in an appropriate dispersion medium.
  • the type and amount of the additive such as a binder are appropriately adjusted so that the packing density and orientation degree of the raw material powder at the time of molding can be controlled to a desired state.
  • a slurry containing raw material powder it is preferable to adjust the viscosity to 0.5 to 20 Pa ⁇ s or to defoam under reduced pressure. Further, when another compound is present in the pores, it is preferable to prepare a slurry containing this compound and the raw material powder.
  • FIG. 3 conceptually shows an example of such a lithium ion secondary battery.
  • the lithium ion secondary battery 20 shown in FIG. 3 includes a positive electrode 10, negative electrodes 22a and 22b, and solid electrolytes 28a and 28b provided between the positive electrode 10 and the negative electrodes 22a and 22b.
  • a separator may be provided as appropriate. Portions other than the positive electrode 10 in the lithium ion secondary battery 20 can be formed using various conventionally known materials.
  • inorganic solid electrolytes having lithium ion conductivity are preferable.
  • the lithium ion conductive inorganic solid electrolyte include at least one selected from the group consisting of garnet-based ceramic materials, nitride-based ceramic materials, perovskite-based ceramic materials, and phosphate-based ceramic materials.
  • garnet based ceramic materials include Li—La—Zr—O based materials (specifically, Li 7 La 3 Zr 2 O 12 etc.), Li—La—Ta—O based materials (specifically, Li 7 La 3 Ta 2 O 12 etc.) and those described in Patent Documents 7 to 9 (Japanese Unexamined Patent Application Publication Nos.
  • nitride ceramic materials include Li 3 N, LiPON, and the like.
  • perovskite ceramic materials include Li—La—Ti—O materials (specifically, LiLa 1-x Ti x O 3 (0.04 ⁇ x ⁇ 0.14), etc.).
  • phosphoric acid based ceramic materials include Li—Al—Ti—PO, Li—Al—Ge—PO, and Li—Al—Ti—Si—PO (specifically, Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12 (0 ⁇ x ⁇ 0.4, 0 ⁇ y ⁇ 0.6) and the like.
  • a particularly preferred lithium ion conductive inorganic solid electrolyte is a garnet-based ceramic material in that no reaction occurs even when it is in direct contact with negative electrode lithium.
  • an oxide sintered body having a garnet type or a garnet type-like crystal structure containing Li, La, Zr and O is excellent in sinterability and easily densified, and has high ionic conductivity. This is preferable.
  • a garnet-type or garnet-like crystal structure of this type of composition is called an LLZ crystal structure, and is referred to as an X-ray diffraction file No. of CSD (Cambridge Structural Database). It has an XRD pattern similar to 422259 (Li 7 La 3 Zr 2 O 12 ). In addition, No.
  • the constituent elements are different and the Li concentration in the ceramics may be different, so the diffraction angle and the diffraction intensity ratio may be different.
  • the molar ratio Li / La of Li to La is preferably 2.0 or more and 2.5 or less, and the molar ratio Zr / La to La is preferably 0.5 or more and 0.67 or less.
  • This garnet-type or garnet-like crystal structure may further comprise Nb and / or Ta. That is, by replacing a part of Zr of LLZ with one or both of Nb and Ta, the conductivity can be improved as compared with that before the substitution.
  • the substitution amount (molar ratio) of Zr with Nb and / or Ta is preferably set such that the molar ratio of (Nb + Ta) / La is 0.03 or more and 0.20 or less.
  • the garnet-based oxide sintered body preferably further contains Al and / or Mg, and these elements may exist in the crystal lattice or may exist in other than the crystal lattice.
  • the amount of Al added is preferably 0.01 to 1% by mass of the sintered body, and the molar ratio Al / La to La is preferably 0.008 to 0.12.
  • the amount of Mg added is preferably 0.01 to 1% by mass or more, more preferably 0.05 to 0.30% by mass.
  • the molar ratio of Mg to La, Mg / La, is preferably 0.0016 to 0.07.
  • Such LLZ ceramics are manufactured according to known methods as described in Patent Documents 7 to 9 (Japanese Patent Laid-Open Nos. 2011-051800, 2011-073962, and 2011-073963). Or it can carry out by correcting it suitably.
  • the method for laminating the solid electrolytes 28a and 28b on the positive electrode 10 is not particularly limited, and a laminate is obtained by laminating the positive electrode 10 and the solid electrolytes 28a and 28b, and the laminate is heated and pressurized simultaneously to be solidified.
  • Examples include a method of integrating by phase reaction, a method of forming a solid electrolyte film on the positive electrode 10 by a sputtering method, a vapor phase method such as a CVD method, a liquid phase method such as a sol-gel method, an aerosol deposition method, and the like. It is done.
  • the positive electrode 10 and the solid electrolytes 28a and 28b are laminated to obtain a laminated body, and the laminated body is heated and pressurized simultaneously and integrated by solid phase reaction.
  • the positive electrode according to the present invention is formed of a self-supporting integrated sintered body in which a current collector is embedded, and thus is difficult to break and contributes to an improvement in yield.
  • the positive electrode active material plate is made of a ceramic sintered body containing the positive electrode active material, while the solid electrolyte plate is typically made of a ceramic sintered body having ion conductivity.
  • both the positive electrode active material plate and the solid electrolyte plate are formed of a ceramic sintered body rather than a green compact, a green sheet, and a vapor-phase synthetic thin film
  • a positive electrode active material comprising this ceramic sintered body
  • the positive electrode and the solid electrolyte can be integrated by a solid phase reaction.
  • the bonding between the sintered ceramics does not require the sintering of powders as required for the lamination of green sheets, thus suppressing the generation of a high-resistance reaction layer that can occur between highly active dissimilar powders. be able to.
  • the firing temperature can be lowered by simultaneous heating and pressurization as compared with the case of joining by heating alone.
  • generation of the highly resistant reaction layer which can be formed in the temperature range with a high sintering temperature can be suppressed.
  • the adhesiveness of the joint interface of the composite obtained by simultaneous heating and pressurization is surprisingly high. According to this method, bonding at a relatively low temperature is enabled to suppress the formation of a high-resistance reaction layer at the interface, and the adhesion area of the positive electrode active material plate and the solid electrolyte plate at the interface is increased to maximize the bonding area.
  • the heating and pressurization according to the present invention are performed at the same time, as long as it includes a stage of pressurization while heating, and there may be a deviation in the timing of heating and pressurization.
  • Examples of methods for performing heating and pressurization simultaneously include hot press method (HP), hot isostatic press method (HIP), and discharge plasma sintering method (SPS). Is preferable because the hot pressing method (HP) is preferable.
  • Heating is preferably performed at a temperature of 500 to 800 ° C, more preferably 600 to 750 ° C, and further preferably 650 to 725 ° C.
  • the pressurization is preferably performed at a pressure of 5 to 3000 kgf / cm 2 , more preferably 500 to 2500 kgf / cm 2 , more preferably 1000 to 2000 kgf / cm 2 .
  • the time for reaching the target pressure is preferably 0.1 to 10 hours, more preferably 1 to 7 hours, and further preferably 3 to 5 hours.
  • the timing of starting pressurization is after the temperature raising process in the firing profile is completed.
  • Heating and pressing are preferably performed for 0.05 to 10 hours, more preferably 1 to 8 hours, and further preferably 2 to 5 hours. Within such a range, the formation of a high-resistance reaction layer at the interface can be more reliably suppressed, and the adhesion between the positive electrode active material plate and the solid electrolyte plate at the interface can be further enhanced.
  • Negative electrodes 22a and 22b are further stacked on the solid electrolytes 28a and 28b.
  • the negative electrode may be formed using various conventionally known materials.
  • the negative electrode active materials constituting the negative electrode layers 24a and 24b include amorphous carbonaceous materials such as soft carbon and hard carbon, highly graphitized carbon materials such as artificial graphite and natural graphite, acetylene black, activated carbon, carbon Carbonaceous materials such as nanotubes and carbon nanofibers are used. Further, alloys containing lithium metal, silicon, tin, indium, etc., oxides of silicon, tin, etc.
  • nitrides of lithium and cobalt such as Li 2.6 Co 0.4 N , Etc. can also be used for lithium storage materials.
  • nitrides of lithium and cobalt such as Li 2.6 Co 0.4 N , Etc.
  • Li 4 Ti 5 O 12 , TiO 2 , Nb 2 O 5 , MoO 2 and the like can also be used.
  • a negative electrode material prepared using these negative electrode active materials is coated on the negative electrode current collectors 26a and 26b made of a metal foil or the like, and if it is an oxide or the like, a sintered body plate is produced.
  • the negative electrodes 22a and 22b may be formed by bonding to a body or using metallic lithium as it is.
  • a step of preparing a plurality of assembled batteries and laminating the plurality of assembled batteries may be further performed, and a negative electrode current collector is interposed between adjacent assembled batteries. Also good. As a result, it is possible to obtain a higher-capacity multilayer stack type all solid lithium ion secondary battery including a large number of unit batteries.
  • Example 1 In this example, using the positive electrode according to the present invention, a solid electrolyte / positive electrode / solid electrolyte composite for an all-solid-state energy storage device was produced, and handling properties were evaluated.
  • This example is an example of producing a solid electrolyte / positive electrode / solid electrolyte composite of the intermediate product, not the all-solid-state lithium ion secondary battery itself, but the advantages in the manufacturing process confirmed in this example Is to be understood as a method for producing an all-solid-state lithium ion secondary battery according to the present invention.
  • a positive electrode plate embedded with an internal current collector was produced as follows. First, 100 parts by weight of cobalt oxide particles, 50 parts by weight of dispersion soot (containing xylene and butanol at a weight ratio of 1: 1), polyvinyl butyral as a binder (product number BM-2) 10 Part by weight, 4.5 parts by weight of DOP (Di (2-ethylhexyl) phthalate: manufactured by Kurokin Kasei Co., Ltd.) as a plasticizer, and 3 parts by weight of a dispersant (Kao Co., Ltd., Rheodor SPO-30) were weighed. .
  • the obtained green sheet was coated with lithium carbonate to obtain an active material precursor green sheet.
  • the green body of the gold conductor to be the internal current collector is laminated so as to be sandwiched between the upper and lower active material precursor green sheets, and the current collector and the active material are simultaneously fired at 1000 ° C. to integrally sinter. Got the body.
  • the obtained positive electrode plate was slightly warped, but even if it was extended, the integral structure was maintained by the ductility of the inner metal layer, and no cracks occurred.
  • the obtained positive electrode was obtained by orienting a plurality of crystal particles made of LiCoO 2 having a layered rock salt structure as a positive electrode active material, and had pores.
  • the obtained positive electrode had a size of 10 mm ⁇ 10 mm and a thickness of 25 ⁇ m.
  • the thickness of the internal current collector was 5 ⁇ m.
  • the firing raw material was put in an alumina crucible, heated at 600 ° C./hour in the air atmosphere, and held at 900 ° C. for 6 hours.
  • the second firing step ⁇ -Al 2 O 3 was added to the powder obtained in the first firing step so that the Al concentration was 0.08 wt%, and this powder and cobblestone were mixed to prepare a vibration mill. And milled for 3 hours.
  • the obtained powder was press-molded at about 100 MPa using a mold into pellets. Place the obtained pellets on a magnesia setter, place the setter in a magnesia sheath as shown in Table 1, raise the temperature at 200 ° C./hour in an Ar atmosphere, and hold at 1000 ° C. for 36 hours.
  • a sintered body having a size of 35 mm ⁇ 18 mm and a thickness of 11 mm was obtained, and an LLZ ceramic plate having a size of 10 mm ⁇ 10 mm and a thickness of 1 mm was obtained therefrom as a solid electrolyte plate.
  • Ar atmosphere the inside of the furnace having a capacity of about 3 L was evacuated in advance, and then Ar gas having a purity of 99.99% or more was flowed into the electric furnace at 2 L / min.
  • Example 2 (Comparison)
  • a sintered body as a positive electrode plate was obtained in the same manner as in Example 1 except that the active material precursor green sheet alone was fired at 1000 ° C. without using a green body of a gold conductor as a current collector. Got.
  • the obtained sintered body had many cracks and could hardly be taken out as an integral body.
  • the one that could be taken out as a single body was strongly warped and cracked immediately when trying to correct it, and could not be joined to the solid electrolyte plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウム複合酸化物からなる正極活物質を含んでなる正極活物質板と、正極活物質板の内部に埋め込まれた内部集電体とを備えた一体化焼結体からなる正極を準備する工程と、正極の両面に固体電解質及び負極を順に積層して、2つの単位電池からなる組電池を備えたスタック型の全固体リチウムイオン二次電池を得る工程とを含む、全固体リチウムイオン二次電池の製造方法が提供される。この方法によれば、正極板の割れを効果的に抑制しながら固体電解質及び負極を順次積層して一体化することができ、それにより、高い歩留まりでスタック型の全固体リチウムイオン二次電池が得られる。

Description

全固体リチウムイオン二次電池の製造方法
 本発明は、全固体リチウムイオン二次電池の製造方法に関する。
 近年、リチウムイオン二次電池が高いエネルギー密度の観点から注目されている。しかしながら、現在広く使用されているリチウムイオン二次電池は、可燃性の有機溶媒にリチウム塩を溶解した有機電解液が主流であるため、液漏れ等に対する安全性の確保が重要な課題となっている。これに対して、電解液の代わりに固体電解質を用いた全固体電池が、可燃性の有機溶媒を使用する必要が無い安全性の高い電池として提案されている。
 例えば、特許文献1(特開2009-193802号公報)には、正極集電体、正極層、固体電解質層、負極層及び負極集電体の各々を圧粉体で構成した全固体電池が開示されている。この圧粉体型の全固体電池は、活物質層及び電解質層の密度が低く、高容量化やレート特性に課題がある。また、接合界面が緻密でないため、高抵抗になるものと考えられる。その上、各部材が圧粉体で構成されるため、それらの部材を押付けする拘束手段が必要になるものと解される。
 特許文献2(国際公開第2011/132627号)には、正極層、負極層及び固体電解質層が焼結によって接合された全固体二次電池が開示されている。この全固体二次電池は、正極層、負極層及び固体電解質層の各々のグリーンシートを積層し、得られたグリーンシート積層体を同時に焼結させることによって作製されている。このような同時焼結製法で密着性の高い界面を形成するためには熱処理温度を高くせざるを得ず、その結果、界面抵抗が非常に高くなってしまい、各部材が本来有する良好な機能を最大限に発揮させることが困難である。
 特許文献3(特開2009-009897号公報)には、正極層、負極層及び固体電解質層の各々が気相プロセスによって形成された全固体薄膜電池が開示されている。この薄膜型の全固体電池は、電極内の活物質が少ないため、原理的に高容量化が難しく、エネルギー密度が小さい。また、正極活物質は成膜直後においてアモルファス状態であり、本来の活物質性能を十分に発揮できないため、結晶化のための熱処理を必要とするが、その熱処理の際に界面に高抵抗な反応層が形成され、電池として十分な容量やレート特性が得られない。
 ところで、リチウムイオン二次電池の正極活物質層として、リチウム複合酸化物焼結体板が提案されている。例えば、特許文献4(特開2012-009193号公報)及び特許文献5(特開2012-009194号公報)には、層状岩塩構造を有し、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が2以下である、リチウム複合酸化物焼結体板が開示されている。このような構成とすることで、リチウムイオン二次電池において、良好なサイクル特性を維持しつつ、高容量化を実現している。また、特許文献6(特許第4745463号公報)には、一般式:Li(Ni,Co,Al)O(式中、0.9≦p≦1.3、0.6<x≦0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)で表され、層状岩塩構造を有する板状粒子が開示されており、(003)面が粒子の板面と交差するように配向されることで、固体型リチウム二次電池の正極材料として用いた際における高容量と高レート特性との同時実現を可能としている。
特開2009-193802号公報 国際公開第2011/132627号 特開2009-009897号公報 特開2012-009193号公報 特開2012-009194号公報 特許第4745463号公報 特開2011-051800号公報 特開2011-073962号公報 特開2011-073963号公報
 ところで、このような焼結体板に、比較的低温でイオン伝導体膜を形成する、あるいはイオン伝導体セラミックス板と低温加圧接合する等の手法により、界面における高抵抗な反応層の生成が抑制されるとともに、密着性の高い、全固体蓄電素子用の正極-固体電解質複合体を得ることが考えられる。しかしながら、この場合には、焼結体板のサイズは、電池性能の関係から厚さ100μm以下、ハンドリングの関係から1mm平方以上が好ましく、ハンドリング中に割れやクラックなどの欠陥が入りやすいという問題がある。特に、複数のセルが積層された多層構造の電池を作製する際においては、電池として欠陥が入りやすいという問題がある。
 本発明者らは、今般、全固体リチウムイオン二次電池の作製において、正極板として内部に集電体が埋め込まれた自立した正極板を準備し且つ使用することにより、正極板の割れを効果的に抑制しながら固体電解質及び負極を順次積層して一体化することができ、それにより、高い歩留まりでスタック型の全固体リチウムイオン二次電池を得られるとの知見を得た。
 したがって、本発明の目的は、正極板の割れを効果的に抑制しながら固体電解質及び負極を順次積層して一体化することができ、それにより、高い歩留まりでスタック型の全固体リチウムイオン二次電池を得ることにある。
 本発明の一態様によれば、リチウム複合酸化物からなる正極活物質を含んでなる正極活物質板と、前記正極活物質板の内部に埋め込まれた内部集電体とを備えた一体化焼結体からなる正極を準備する工程と、
 前記正極の両面に固体電解質及び負極を順に積層して、2つの単位電池からなる組電池を備えたスタック型の全固体リチウムイオン二次電池を得る工程と、
を含む、全固体リチウムイオン二次電池の製造方法が提供される。
 本発明の別の一態様によれば、リチウム複合酸化物からなる正極活物質を含んでなる正極活物質板と、前記正極活物質板の内部に埋め込まれた内部集電体とを備えた、自立した一体化焼結体からなる、全固体リチウムイオン二次電池用正極が提供される。
本発明の方法に用いられる正極の一例を示す模式断面図である。 本発明の方法に用いられる正極の他の一例を示す模式断面図である。 図1に示される正極を用いた本発明によるリチウムイオン二次電池の構成を示す模式断面図である。
 全固体リチウムイオン二次電池の製造方法
 本発明は全固体リチウムイオン二次電池を製造する方法である。この方法は、正極を準備する工程と、固体電解質及び負極を積層する工程とを含む。以下、各工程について説明する。
(1)正極準備工程
 本発明の方法においては、リチウム複合酸化物からなる正極活物質を含んでなる正極活物質板と、正極活物質板の内部に埋め込まれた内部集電体とを備えた一体化焼結体からなる正極が準備される。このように、正極活物質を含んでなる正極活物質板がその内部に埋め込まれた内部集電体と焼成一体化されて補強された構成となる。この構成は自立した一体化焼結体と表現することもでき、ここで「自立した」(self-standing)とは、何らかの基板に担持されていたり、他のシート状の物体(例えば固体電解質板)と積層一体化されたりしておらず、単体でハンドリング可能な状態を意味する。このような、自立した一体化焼結体からなる構成によれば、正極板の割れを効果的に抑制しながら固体電解質及び負極を順次積層して一体化することができ、それにより、高い歩留まりでスタック型全固体リチウムイオン二次電池を製造ことができる。すなわち、セラミックス焼結体からなるが故に本来であれば非常に割れやすい正極板に対し、内部に集電体を埋め込むことで正極板を割れにくくし、歩留りよく電池を作製することができる。この手法によれば、電池性能の関係から厚さ100μm以下、ハンドリングの関係から1mm平方以上が好ましいとされる焼結体正極板のサイズであっても、ハンドリング中に割れやクラックなどの欠陥が入りにくくなる。特に、電池として欠陥が入りやすくなりがちな複数のセルが積層された多層スタック構造の電池を作製する際においても欠陥の発生を効果的に抑制することができる。その上、本発明の正極にあっては、正極活物質を含んでなる正極活物質板の内部に集電体を備えて焼成一体化されたものであるため、従来使用されてきた抵抗成分となりうる導電性接合材の使用を回避することができる。その結果、本発明の正極は、内部抵抗が低減されるため高出力化にも有利となる。
 本発明の好ましい態様によれば、内部集電体が少なくとも1つの開口部を有し、開口部が正極活物質で充填されてリチウムイオンが移動可能とされてなる。この態様による正極の一例を図1に模式的に示す。図1に示される正極10は、正極活物質板12及び内部集電体14を備えた一体化焼結体からなる。正極活物質板12はリチウム複合酸化物からなる正極活物質を含んでなる。内部集電体14は正極活物質板12の内部に埋め込まれてなり、少なくとも1つの開口部14aを有し、開口部が正極活物質で充填されてリチウムイオンが移動可能とされてなる。なお、内部集電体14の側端部分は正極活物質板12の側端部分から延出して外部端子と接続されるように構成されてもよい。このように、本発明の正極においては、集電体が外部に設けられる従来の正極とは異なり、正極の内部に集電体を備えるという極めて特徴的な層構成を有している。この層構成は、集電体14の両面に正極活物質層12a,12bを備えた構成ということもできるが、内部集電体の開口部14a内にも正極活物質12cが存在している。
 本発明の別の好ましい態様によれば、内部集電体14が開口部14aを有していないものであってもよい。この場合には、図2に示されるように、正極活物質板の一面側の部分である正極活物質層12a’と他面側の部分である正極活物質層12b’とが内部集電体14’によってリチウムイオンが移動できないように分離されてなるものであってもよい。
 正極活物質板12はリチウム複合酸化物からなる正極活物質を含んでなるセラミックス焼結体からなる。正極活物質はリチウムイオン二次電池の正極において活物質として機能しうるものであれば特に限定されないが、リチウム-遷移金属系複合酸化物であるのが好ましい。正極活物質、特にリチウム-遷移金属系複合酸化物は、層状岩塩構造又はスピネル構造を有するのが好ましく、より好ましくは層状岩塩構造を有する。層状岩塩構造は、リチウムイオンの吸蔵により酸化還元電位が低下し、リチウムイオンの脱離により酸化還元電位が上昇する性質がある。ここで、層状岩塩構造とは、リチウム以外の遷移金属系層とリチウム層とが酸素原子の層を挟んで交互に積層された結晶構造、すなわち、リチウム以外の遷移金属等のイオン層とリチウムイオン層とが酸化物イオンを挟んで交互に積層された結晶構造(典型的にはα-NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。層状岩塩構造を有するリチウム-遷移金属系複合酸化物の典型例としては、ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン酸リチウム、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、コバルト・マンガン酸リチウム等が挙げられ、これらの材料に、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi等の元素が1種以上更に含まれていてもよい。
 すなわち、リチウム-遷移金属系複合酸化物は、LiM1O又はLi(M1,M2)O(式中、0.5<x<1.10、M1はNi,Mn及びCoからなる群から選択される少なくとも一種の遷移金属元素、M2はMg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba及びBiからなる群から選択される少なくとも一種の元素である)で表される組成を有するのが好ましく、より好ましくはLi(M1,M2)Oで表され、M1がNi及びCoであり、M2はMg,Al及びZrからなる群から選択される少なくとも一種である組成であり、さらに好ましくはLi(M1,M2)Oで表され、M1がNi及びCoであり、M2がAlである。M1及びM2の合計量に占めるNiの割合が原子比で0.6以上であるのが好ましい。このような組成はいずれも層状岩塩構造を採ることができる。なお、M1がNi及びCoであり、M2がAlである、Li(Ni,Co,Al)O系組成のセラミックスはNCAセラミックスと称されることがあり、一般式:Li(Ni,Co,Al)O(式中、0.9≦p≦1.3、0.6<x≦0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)で表され、層状岩塩構造を有するものが好ましく例示される。
 典型的には、正極活物質は、複数の結晶粒子からなる多結晶体であり、これら複数の結晶粒子が配向されてなるのが好ましい。すなわち、焼結体である正極活物質板を構成する結晶粒子の結晶面を、リチウムイオンが拡散しやすいように配向させることが有効である。すなわち、この配向により、リチウムイオンの移動がしやすくなり、内部集電構造の効果をさらに高め、レート特性が向上する。この配向は、層状岩塩構造の(003)面が正極活物質板の板面(主面(principal surface))と交差するように配向しているのが好ましく、より好ましくは(003)以外の面(例えば(104)面)が正極活物質板の板面と平行に配向しているのが好ましい。このような正極活物質板における配向度は、正極活物質板の板面からのX線回折における、(104)面による回折強度に対する(003)面による回折強度(ピーク強度)の比率[003]/[104]で評価することができ、好ましい[003]/[104]比は2以下であり、より好ましくは1以下であり、さらに好ましくは0.5以下である。なお、このような低い[003]/[104]比は、正極活物質板の板面や内部において板面と平行に(003)面が出現している割合が減っていることを意味する。なお、スピネル構造を有するリチウム-遷移金属複合酸化物の場合、リチウムイオンは3次元的に拡散できるため、配向させることによるリチウムイオン拡散への影響は小さい。ただし、粒界部分はリチウムイオンが移動しにくいため、粒界を減らした構造とすることが有効である。例えば、正極活物質板において、板厚方向に、内部集電体を挟んで粒子1個ずつとなる構造とすることが有効である。
 正極活物質板12は、正極活物質を含むセラミックス焼結体からなる。このセラミックス焼結体は正極活物質以外にも導電助剤等の任意成分を含むものであってもよいが、このような任意成分を実質的に含まない構成とすることも可能である。例えば、正極活物質が焼成一体化して結晶粒子間が繋がっている場合には、導電助剤等を使用することなく電子伝導性を向上させることができるので、活物質充填率を最大限に高めることができる。したがって、正極活物質板は正極活物質のみから実質的になる(consisting essentially of)のが好ましく、より好ましくは正極活物質のみからなる(consisting of)。
 正極活物質板12及びそれを構成する正極活物質は、気孔を有するのが好ましい。正極活物質板中に気孔が存在することで、充放電によるリチウムイオンの挿脱に伴う膨張ないし収縮によって生じうる応力を緩和することができる。さらに、内部集電体との同時焼成時に発生しやすい内部応力を有意に緩和することができ、信頼性を向上することができる。これにより、緻密な板同士の接合で起こりうる界面での剥離も効果的に防止することができる。正極活物質は3~30%の空隙率を有するのが好ましく、より好ましくは5~25%であり、さらに好ましくは10~20%である。空隙率(voidage)は、正極活物質板における気孔(開気孔及び閉気孔を含む)の体積比率であり、気孔率(porosity)と称されることもあり、正極活物質板の嵩密度と真密度とから算出可能である。
 正極活物質板12の寸法は特に限定されないが、正極活物質板12の厚さ(これは正極10の厚さに等しい)は単位面積当りの活物質容量及び出力特性の観点から、1~200μmが好ましく、より好ましくは5~100μmであり、板面の大きさは電極作製の容易さの観点から、0.5mm×0.5mm~200mm×200mmが好ましく、より好ましくは1mm×1mm~50mm×50mmである。
 内部集電体14は正極活物質板12の内部に埋め込まれてなる、主として導電体からなる集電体であり、板、箔又は膜の形態でありうる。内部集電体14の材質は、ステンレス、金、白金、パラジウム、銅、ニッケル、銀、およびそれらの合金等の導電体であって、リチウム複合酸化物と同時に焼成一体化可能なものであれば特に限定されないが、金属箔を加工したものであってもよい。内部集電体14は、金属に限られるものではなく、リチウムイオン伝導体と電子伝導体の複合物であってもよい。内部集電体14の厚さは0.1~10μmであるのが好ましく、より好ましくは0.5~10μmであり、更に好ましくは1~10μmである。
 内部集電体14は少なくとも1つの開口部14aを有し、開口部14aが正極活物質12cで充填されてリチウムイオンが移動可能とされてなる。開口部14aは複数ないし無数に存在するのが好ましい。このような開口部14aの形状はリチウムイオン透過性さえ確保できれば特に限定されず、格子状、メッシュ状、無数の微細孔を有する構造等であることができるが、好ましくは格子状である。開口部14aには活物質が充填される必要があるところ、格子状にすれば、活物質の充填が容易にできることに加え、集電体の平坦性も確保しやすく、電極間距離が一定となり、電界集中が生じにくくなる。
 図1に示される内部集電体14は少なくとも1つの開口部14aを有するものであるが、図2に示されるように開口部を有しない内部集電体としてもよい。すなわち、図2に示される正極10’において、内部集電体14’は開口部を有しておらず、正極活物質板12’は集電体14’の両面に正極活物質層12a’,12b’を備えた構成ということもできる。
 正極を準備する工程は、正極活物質又はその前駆体からなる第一外層及び第二外層と、第一外層及び第二外層の間に設けられ、内部集電体又はその前駆体からなる内層とからなる前駆積層物を用意し、前駆積層物を焼結させて一体化させることにより行われるのが好ましい。すなわち、正極は、正極活物質を含んでなる正極活物質板となるべき材料と、内部集電体となるべき材料とを焼成により一体化する焼結工程を含む方法によって製造されることが望まれる。そのような方法の好ましい例としては、(1)テープ成形法、印刷法等で正極活物質のグリーンシートを作成し、この活物質グリーンシートの片面に導体のペーストを所望のパターンに印刷して集電体のグリーン体を形成した後、その導体パターンを挟むように活物質のグリーンシートを積層し且つ圧着して焼結一体化する方法、(2)導体のグリーンシートを作製し、上記したような活物質のグリーンシートで挟むように積層及び圧着して焼結一体化する方法、(3)導体の箔を上記したような活物質のグリーンシートで挟むように積層及び圧着して焼結一体化する方法、及び(4)導体の箔に、エアロゾルデポジション、パウダージェットデポジション、溶射等で直接活物質粒子を塗布して焼結一体化する方法等が挙げられる。
 上述した製造方法に用いられる正極活物質のグリーンシートは、焼結を経てリチウム複合酸化物からなる正極活物質を与える正極活物質前駆体からなるものであってよく、いかなる方法によって製造されてもよい。したがって、リチウム複合酸化物のリチウム以外の構成元素の化合物を粒子形態で含む成形用スラリーを用いてグリーンシートを形成しておき、このグリーンシートに炭酸リチウム等のリチウム化合物を塗布してもよいし、あるいはリチウム複合酸化物の全構成元素を含む化合物を含むグリーンシートを一度に形成してもよい。すなわち、リチウム化合物は、成形時あるいは成形後焼成前に添加され得る。例えば、リチウム化合物は、成形時に正極活物質前駆体粒子とともに上述の成形用スラリーに添加され得る。あるいは、リチウム化合物を含まない成形体を一旦仮焼成(成形体仮焼成)した後、かかる仮焼成成形体とリチウム化合物とが混合されたものを焼成する(本焼成)という二段階で焼成(リチウム導入)工程が行われてもよいが、その場合には仮焼成される成形体が、内部集電体となるべき導体パターン等を挟んだものであることが望まれる。リチウム化合物は正極活物質の組成(好ましくはLiM1O又はLi(M1,M2)O)を最終的に与えることが可能なあらゆるリチウム含有化合物が使用可能であり、好ましい例としては水酸化リチウム、炭酸リチウム等が挙げられる。なお、反応性を高めるために、リチウム量を0.1~40mol%程度過剰にしてもよい。
 グリーンシートの作製は、原料スラリーをシート状に成形及び乾燥して作製することができる。これにより、多数の一次粒子が配向されたグリーンシートを得ることができる。このグリーンシートの厚さは400μm以下であるのが好ましく、より好ましくは200μm以下である。また、グリーンシートの厚さは、2μm以上であるのが好ましい。成形方法としては、原料粉末が成形体内にて結晶方位を揃えて充填される限り、特に限定はない。例えば、ドクターブレード法を用いて、原料粉末を含むスラリーを成膜(成形)することで、原料粉末が結晶方位を揃えて充填されたグリーンシートを得ることができる。具体的には、ドクターブレード法を用いる場合、まず、可撓性を有する基板(例えば、PETフィルム等の有機ポリマー板等)に原料粉末を含むスラリーを塗布し、塗布したスラリーを乾燥固化して乾燥膜とする。次に、この乾燥膜を上述の基板から剥離することにより、原料粉末が配向した(結晶方位を揃えて充填された)グリーンシートが得られる。得られたグリーンシートは乾燥された後、打ち抜き加工等により所望のサイズに加工されるのが好ましい。
 グリーンシート成形前のスラリーや坏土を調製する段階で、原料粉末を適当な分散媒に分散させたものに対して、バインダーや可塑剤等が適宜加えられてもよい。バインダー等の添加剤の種類や量は、成形時の原料粉末の充填密度や配向度を所望の状態に制御できるように、適宜調整される。原料粉末を含むスラリーを使用する場合は、粘度を0.5~20Pa・sとなるように調整したり、減圧下で脱泡したりすることが好ましい。さらに、空孔内に他の化合物を存在させる場合、この化合物と原料粉末とを含むスラリーを調製することが好ましい。
(2)固体電解質及び負極の積層工程
 正極の両面に固体電解質及び負極を順に積層して、2つの単位電池からなる組電池を備えたスタック型の全固体リチウムイオン二次電池が得られる。図3にそのようなリチウムイオン二次電池の一例が概念的に示される。図3に示されるリチウムイオン二次電池20は、正極10と、負極22a,22bと、正極10と負極22a,22bとの間に設けられる固体電解質28a,28bとを備えてなり、必要に応じてセパレータが適宜設けられてよい。このリチウムイオン二次電池20における、正極10以外の部分は、従来周知の種々の材料を用いて形成することが可能である。
 固体電解質28a,28bとしては、リチウムイオン伝導性を有する無機固体電解質が好ましい。リチウムイオン伝導性無機固体電解質の好ましい例としては、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、及びリン酸系セラミックス材料からなる群から選択される少なくとも一種が挙げられる。ガーネット系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLaZr12など)、Li-La-Ta-O系材料(具体的には、LiLaTa12など)が挙げられ、特許文献7~9(特開2011-051800号公報、特開2011-073962号公報及び特開2011-073963号公報)に記載されているものも用いることができる。窒化物系セラミックス材料の例としては、LiN、LiPONなどが挙げられる。ペロブスカイト系セラミックス材料の例としては、Li-La-Ti-O系材料(具体的には、LiLa1-xTi(0.04≦x≦0.14)など)が挙げられる。リン酸系セラミックス材料の例としては、Li-Al-Ti-P-O,Li-Al-Ge-P-O、及びLi-Al-Ti-Si-P-O(具体的には、Li1+x+yAlTi2-xSi3-y12(0≦x≦0.4、0<y≦0.6)など)が挙げられる。
 特に好ましいリチウムイオン伝導性無機固体電解質は、負極リチウムと直接接触しても反応が起きない点で、ガーネット系セラミックス材料である。とりわけ、Li、La、Zr及びOを含んで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体が、焼結性に優れて緻密化しやすく、かつ、イオン伝導率も高いことから好ましい。この種の組成のガーネット型又はガーネット型類似の結晶構造はLLZ結晶構造と呼ばれ、CSD(Cambridge Structural Database)のX線回折ファイルNo.422259(LiLaZr12)に類似のXRDパターンを有する。なお、No.422259と比較すると構成元素が異なり、またセラミックス中のLi濃度などが異なる可能性があるため、回折角度や回折強度比が異なる場合もある。Laに対するLiのモル数の比Li/Laは2.0以上2.5以下であることが好ましく、Laに対するZrのモル比Zr/Laは0.5以上0.67以下であるのが好ましい。このガーネット型又はガーネット型類似の結晶構造はNb及び/又はTaをさらに含んで構成されるものであってもよい。すなわち、LLZのZrの一部がNb及びTaのいずれか一方又は双方で置換されることにより、置換前に比べて伝導率を向上させることができる。ZrのNb及び/又はTaによる置換量(モル比)は、(Nb+Ta)/Laのモル比が0.03以上0.20以下となる量にすることが好ましい。また、このガーネット系酸化物焼結体はAl及び/又はMgをさらに含んでいるのが好ましく、これらの元素は結晶格子に存在してもよいし、結晶格子以外に存在していてもよい。Alの添加量は焼結体の0.01~1質量%とするのが好ましく、Laに対するAlのモル比Al/Laは、0.008~0.12であるのが好ましい。Mgの添加量は0.01~1質量%以上が好ましく、より好ましくは0.05~0.30質量%である。Laに対するMgのモル比Mg/Laは、0.0016~0.07であるのが好ましい。このようなLLZ系セラミックスの製造は、特許文献7~9(特開2011-051800号公報、特開2011-073962号公報及び特開2011-073963号公報)に記載されるような公知の手法に従って又はそれを適宜修正することにより行うことができる。
 正極10への固体電解質28a,28bの積層手法は特に限定されず、正極10及び固体電解質28a,28bを積層して積層体を得ておき、この積層体に加熱及び加圧を同時に施して固相反応により一体化させる方法や、正極10に対して、固体電解質をスパッタ法、CVD法等の気相法、ゾルゲル法等の液相法、エアロゾルデポジション法等により成膜する方法等が挙げられる。中でも、正極10及び固体電解質28a,28bを積層して積層体を得ておき、この積層体に加熱及び加圧を同時に施して固相反応により一体化させる方法が好ましい。このような加熱及び加圧を行う際にも本発明による正極は、内部に集電体を埋め込んだ自立した一体化焼結体からなるため、割れにくく、歩留りの向上に寄与する。正極活物質板は正極活物質を含むセラミックス焼結体からなる一方、固体電解質板は典型的にはイオン伝導性を有するセラミックス焼結体からなる。このように、正極活物質板及び固体電解質板がいずれも、圧粉体、グリーンシート及び気相合成薄膜ではなく、セラミックス焼結体で構成される場合、このセラミック焼結体からなる正極活物質板及び固体電解質板の積層体に加熱及び加圧を同時に施すことで、正極と固体電解質とを固相反応により一体化させることができる。このセラミック焼結体同士の接合は、グリーンシートの積層で必要とされるような粉末同士の焼結を要しないので、高活性の異種粉末間で起こりうる高抵抗な反応層の生成を抑制することができる。その上、同時加熱及び加圧により、加熱のみで接合した場合に比べ、焼成温度を低温化する事が可能である。これにより、焼結温度の高い温度域において形成されうる高抵抗な反応層の生成を抑制することができる。また、同時加熱及び加圧により得られる複合体の接合界面の密着性は驚くほど高い。この手法によれば、比較的低温での接合を可能にして界面における高抵抗な反応層の生成を抑制するとともに、界面における正極活物質板及び固体電解質板の密着性を高めて接合面積を最大化することができる。このような特徴を有する正極-固体電解質複合体を用いることで、薄型でありながら極めて高い容量の全固体電池の提供が可能となる。
 本発明による加熱及び加圧は同時に行われるものであり、加熱しながら加圧している段階を含んでいればよく、加熱及び加圧のタイミングにずれがあってもよい。加熱及び加圧を同時に行う手法の例としては、ホットプレス法(HP)、熱間静水圧プレス法(HIP)、放電プラズマ焼結法(SPS)が挙げられるが、量産性が高く、製造コストを安く抑えることができることからホットプレス法(HP)が好ましい。
 加熱は500~800℃の温度で行われるのが好ましく、より好ましくは600~750℃であり、さらに好ましくは650~725℃である。加圧は5~3000kgf/cmの圧力で行われるのが好ましく、より好ましくは500~2500kgf/cm、より好ましくは1000~2000kgf/cmである。また、狙いの圧力への到達時間は、0.1~10hで行われるのが好ましく、より好ましくは1~7hであり、さらに好ましくは3~5hである。さらに、加圧開始のタイミングは、焼成プロファイルにおける昇温過程終了後であることが好ましい。加熱及び加圧は0.05~10時間行われるのが好ましく、より好ましくは1~8時間、さらに好ましくは2~5時間である。このような範囲内であると、界面における高抵抗な反応層の生成をより一層確実に抑制するとともに、界面における正極活物質板及び固体電解質板の密着性をより一層高めることができる。
 固体電解質28a,28b上には負極22a,22bが更に積層される。負極は、従来周知の種々の材料を用いて形成すればよい。例えば、負極層24a,24bを構成する負極活物質としては、ソフトカーボンやハードカーボン等のアモルファス系炭素質材料、人造黒鉛や天然黒鉛等の高黒鉛化炭素材料、その他、アセチレンブラック、活性炭、カーボンナノチューブ、カーボンナノファイバーなどの炭素質材料が用いられる。また、リチウム金属、ケイ素,スズ、インジウム等を含む合金、リチウムに近い低電位で充放電できるケイ素,スズ等の酸化物、Li2.6Co0.4N等のリチウムとコバルトとの窒化物、等のリチウム吸蔵物質も等を用いることができる。また、その他酸化物として、LiTi12、TiO、Nb、MoOなども用いることができる。これらの負極活物質を用いて調製した負極材を、金属箔等からなる負極集電体26a,26b上に塗工したり、酸化物などであれば焼結体板を作製し、負極集電体に接合したり、金属リチウムをそのまま用いることで、負極22a,22bが形成されてもよい。
 本発明の好ましい態様によれば、組電池を複数個用意し、該複数個の組電池を積層させる工程を更に行ってもよく、隣り合う組電池の間には負極集電体を介在させてもよい。これにより、多数の単位電池を備えた、より高い容量の多層スタック型の全固体リチウムイオン二次電池を得ることができる。
 本発明を以下の例によってさらに具体的に説明する。
 例1
 本例では、本発明による正極を用いて全固体蓄電素子用の固体電解質/正極/固体電解質複合体を作製し、ハンドリング性を評価した。なお、本例は、全固体リチウムイオン二次電池自体ではなく、その中間製造物の固体電解質/正極/固体電解質複合体を作製する例であるが、本例において確認される製造工程上の利点は本発明による全固体リチウムイオン二次電池の製造方法として理解されるべきものである。
(1)内部集電体の埋め込まれた正極板の作製
 内部集電体の埋め込まれた正極板を以下のようにして作製した。まず、酸化コバルト粒子100重量部に、分散煤(キシレン及びブタノールを1:1の重量比で含むもの)50重量部、バインダーとしてのポリビニルブチラール(積水化学工業株式会社製:品番BM-2)10重量部、可塑剤としてのDOP(Di(2-ethylhexyl)phthalate:黒金化成株式会社製)4.5重量部、及び分散剤(花王株式会社製、レオドールSPO-30)3重量部を秤量した。これらの秤量された原料を乳鉢で予備混練した後、トリロールを用いて混練することで、(ブルックフィールド社製LVT型粘度計を用いて測定して)2~3Pa・sの粘度を有する成形用スラリーを調製した。こうして得られた成形用スラリーを用いて、ドクターブレード法により、30μm厚さのシートを成形した。乾燥後のシートに対して打ち抜き加工を施すことによって、10mm平方のグリーンシート成形体を得た。
 次いで、得られたグリーンシートに炭酸リチウムをコートして、活物質前駆体グリーンシートを得た。そして、内部集電体となるべき金導体のグリーン体を上下2枚の活物質前駆体グリーンシートで挟むようにして積層し、集電体と活物質とを同時に1000℃で焼成して一体化焼結体を得た。得られた正極板は、若干の反りが見られたが、延ばしても、内層の金属層による延性によって一体構造が保持され、割れは生じなかった。また、得られた正極は、正極活物質としての層状岩塩構造を有するLiCoOからなる複数の結晶粒子が配向されてなるものであり、気孔を有するものであった。また、得られた正極のサイズは10mm×10mmであり、厚さは25μmであった。内部集電体の厚さは5μmであった。
(2)固体電解質板の作製
 固体電解質板として用いられるLLZセラミックス板を以下の手順で作製した。まず、焼成用原料調製のための各原料成分として、水酸化リチウム(関東化学株式会社)、水酸化ランタン(信越化学工業株式会社)、酸化ジルコニウム(東ソー株式会社)、酸化タンタルを用意した。これらの粉末をLiOH:La(OH):ZrO:Ta=7:3:1.625:0.1875になるように秤量及び配合し、ライカイ機にて混合して焼成用原料を得た。
 第一の焼成工程として、上記焼成用原料をアルミナ坩堝に入れて大気雰囲気で600℃/時間にて昇温し900℃にて6時間保持した。
 第二の焼成工程として、第一の焼成工程で得られた粉末に対しγ-AlをAl濃度が0.08wt%となるように添加し、この粉末と玉石を混合し振動ミルを用いて3時間粉砕した。この粉砕粉を篩通しした後、得られた粉末を、金型を用いて約100MPaにてプレス成形してペレット状にした。得られたペレットをマグネシア製のセッター上に乗せ、セッターごと表1に示されるとおりマグネシア製のサヤ内に入れて、Ar雰囲気にて200℃/時間で昇温し、1000℃で36時間保持することにより、35mm×18mmのサイズで厚さ11mmの焼結体を得て、そこから10mm×10mmのサイズで厚さ1mmのLLZセラミックス板を固体電解質板として得た。なお、Ar雰囲気として、事前に容量約3Lの炉内を真空引きした後、純度99.99%以上のArガスを電気炉に2L/分で流した。
(3)ホットプレスによる正極板/固体電解質複合体の作製
 上記(1)で作製された10mm平方の正極板を、上記(2)で作製された2枚の固体電解質板で挟み、内部集電体を中心に正極活物質層/固体電解質が2組構成されるように配置した。この上下面を焼成冶具との癒着防止用Pt箔で挟み、焼成条件700℃で2時間、2000kgf/cmの圧力でホットプレスにより焼成して、固体電解質板/正極/固体電解質板の複合体を得た。得られた複合体を断面SEMにて何箇所かの断面を観察したところ、積層方向に平行なクラックが正極板部分に僅かに見られたものの、良好な接合体が得られていることを確認した。
 例2(比較)
 本例では、内部集電体を有しない従来の正極を用いて全固体蓄電素子用の固体電解質/正極/固体電解質複合体を作製し、ハンドリング性を評価した。具体的には、集電体となる金導体のグリーン体を用いずに前記活物質前駆体グリーンシート単独を1000℃で焼成したこと以外は例1と同様にして、正極板としての焼結体を得た。得られた焼結体は割れが多く発生し、一体物としてはほとんど取り出せなかった。また、一体物として取り出せたものも、反りも強く発生し、修正しようとするとすぐに割れてしまい、固体電解質板と接合することはできなかった。

Claims (10)

  1.  リチウム複合酸化物からなる正極活物質を含んでなる正極活物質板と、前記正極活物質板の内部に埋め込まれた内部集電体とを備えた一体化焼結体からなる正極を準備する工程と、
     前記正極の両面に固体電解質及び負極を順に積層して、2つの単位電池からなる組電池を備えたスタック型の全固体リチウムイオン二次電池を得る工程と、
    を含む、全固体リチウムイオン二次電池の製造方法。
  2.  前記正極活物質板が1~200μmの厚さを有する、請求項1に記載の方法。
  3.  前記内部集電体が0.1~10μmの厚さを有する、請求項1又は2に記載の方法。
  4.  前記正極活物質板が前記正極活物質のみからなる、請求項1~3のいずれか一項に記載の方法。
  5.  前記正極活物質が層状岩塩構造を有する、請求項1~4のいずれか一項に記載の方法。
  6.  前記正極活物質が複数の結晶粒子からなる多結晶体であり、該複数の結晶粒子が配向されてなる、請求項1~5のいずれか一項に記載の方法。
  7.  前記正極活物質が気孔を有する、請求項1~6のいずれか一項に記載の方法。
  8.  前記正極を準備する工程が、前記正極活物質又はその前駆体からなる第一外層及び第二外層と、前記第一外層及び前記第二外層の間に設けられ、前記内部集電体又はその前駆体からなる内層とからなる前駆積層物を用意し、前記前駆積層物を焼結させて一体化させることにより行われる、請求項1~7のいずれか一項に記載の方法。
  9.  前記組電池を複数個用意し、該複数個の組電池を積層させ、多層スタック型の全固体リチウムイオン二次電池を得る工程を更に含む、請求項1~8のいずれか一項に記載の方法。
  10.  リチウム複合酸化物からなる正極活物質を含んでなる正極活物質板と、前記正極活物質板の内部に埋め込まれた内部集電体とを備えた、自立した一体化焼結体からなる、全固体リチウムイオン二次電池用正極。
PCT/JP2013/074573 2012-09-26 2013-09-11 全固体リチウムイオン二次電池の製造方法 WO2014050572A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261705808P 2012-09-26 2012-09-26
US61/705,808 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050572A1 true WO2014050572A1 (ja) 2014-04-03

Family

ID=50387979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074573 WO2014050572A1 (ja) 2012-09-26 2013-09-11 全固体リチウムイオン二次電池の製造方法

Country Status (1)

Country Link
WO (1) WO2014050572A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004703A (ja) * 2014-06-18 2016-01-12 日本碍子株式会社 リチウム二次電池用正極活物質板の製造方法
CN109585848A (zh) * 2017-09-29 2019-04-05 丰田自动车株式会社 正极活性物质及其制造方法、正极合剂、正极的制造方法及氧化物固体电池的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181872A (ja) * 2008-01-31 2009-08-13 Ohara Inc リチウムイオン二次電池およびその製造方法
JP2010170972A (ja) * 2008-12-22 2010-08-05 Sumitomo Electric Ind Ltd 正極部材、非水電解質電池、および正極部材の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181872A (ja) * 2008-01-31 2009-08-13 Ohara Inc リチウムイオン二次電池およびその製造方法
JP2010170972A (ja) * 2008-12-22 2010-08-05 Sumitomo Electric Ind Ltd 正極部材、非水電解質電池、および正極部材の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004703A (ja) * 2014-06-18 2016-01-12 日本碍子株式会社 リチウム二次電池用正極活物質板の製造方法
CN109585848A (zh) * 2017-09-29 2019-04-05 丰田自动车株式会社 正极活性物质及其制造方法、正极合剂、正极的制造方法及氧化物固体电池的制造方法
CN109585848B (zh) * 2017-09-29 2022-03-22 丰田自动车株式会社 正极活性物质及其制造方法、正极合剂、正极的制造方法及氧化物固体电池的制造方法

Similar Documents

Publication Publication Date Title
JP7009390B2 (ja) リチウムイオン電池及びその製造方法
KR102233591B1 (ko) 이차 전지
JP6018930B2 (ja) 正極−固体電解質複合体の製造方法
US20180198170A1 (en) All-solid-state lithium battery
JP6646666B2 (ja) 全固体リチウム電池
KR102325924B1 (ko) 전고체 리튬 전지 및 그 제조 방법
JP6109672B2 (ja) セラミック正極−固体電解質複合体
JP6099407B2 (ja) 全固体蓄電素子
KR102381016B1 (ko) 2차 전지
JP7183529B2 (ja) 積層体グリーンシート、全固体二次電池及びその製造方法
JP6109673B2 (ja) セラミック正極−固体電解質複合体
JP6166584B2 (ja) リチウムイオン伝導性固体電解質並びにそれを用いた複合体及び電池
JP2016033880A (ja) 全固体リチウム電池
WO2017065034A1 (ja) 全固体リチウム電池の製造方法
JP2017054792A (ja) リチウム電池
JP2020071948A (ja) 電極積層体及び焼結体並びにそれらの製造方法
JP6168690B2 (ja) セラミック正極−固体電解質複合体
JP6153802B2 (ja) 蓄電素子
WO2014050569A1 (ja) リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池
JP2019192609A (ja) 全固体リチウム電池及びその製造方法
JP7423760B2 (ja) リチウムイオン二次電池及びその製造方法
WO2014050572A1 (ja) 全固体リチウムイオン二次電池の製造方法
JP2017135100A (ja) リチウムイオン電池
JP2014220174A (ja) リチウムイオン伝導性固体電解質−電極複合体の製造方法
JP7268142B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP