WO2020110493A1 - エポキシ樹脂組成物及びその硬化物 - Google Patents

エポキシ樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2020110493A1
WO2020110493A1 PCT/JP2019/040648 JP2019040648W WO2020110493A1 WO 2020110493 A1 WO2020110493 A1 WO 2020110493A1 JP 2019040648 W JP2019040648 W JP 2019040648W WO 2020110493 A1 WO2020110493 A1 WO 2020110493A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
cured product
compound
epoxy
Prior art date
Application number
PCT/JP2019/040648
Other languages
English (en)
French (fr)
Inventor
洋史 加藤
竹内 謙一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US17/296,767 priority Critical patent/US20220025106A1/en
Priority to KR1020217018116A priority patent/KR20210096135A/ko
Priority to CN201980077563.1A priority patent/CN113286840B/zh
Priority to EP19891316.2A priority patent/EP3889201A4/en
Publication of WO2020110493A1 publication Critical patent/WO2020110493A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention relates to an epoxy resin composition and a cured product thereof.
  • Epoxy resin is used in various applications such as fiber reinforced materials, electronic parts, adhesives, and paints because the cured product has excellent heat resistance, strength, chemical resistance, adhesiveness, etc. ing.
  • a composition containing an epoxy resin usually contains a curing agent for curing the composition, and may further contain a curing accelerator [for example, , JP-A-2005-083634 (Patent Document 1) and JP-A-2013-032510 (Patent Document 2)].
  • an epoxy resin composition is required to have characteristics according to the application to which it is applied.
  • an epoxy resin composition is required to have a long pot life from the viewpoint of workability, and also has an excellent curability (low temperature curing) from the viewpoint of productivity of a product containing a cured product of the epoxy resin composition. Properties and fast curing properties) are required.
  • the cured product of the epoxy resin composition is required to have high heat resistance and may be required to have tensile properties depending on the application to which it is applied.
  • An object of the present invention is to provide an epoxy resin composition and a cured product thereof that have a good pot life and curability and can give a cured product that exhibits good heat resistance and tensile properties.
  • R 1 represents a hydrogen atom, a halogen atom, a methoxy group or a hydrocarbon group having 1 to 12 carbon atoms.
  • a curing agent containing a compound represented by (B), and an imidazole adduct type curing accelerator (C) An epoxy resin composition containing The epoxy resin composition, wherein the molar ratio of the phenolic hydroxyl group content to the epoxy group content in the epoxy resin composition is 0.25 to 0.67.
  • the curing agent (B) has the following formula (B-2):
  • R 2 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group.
  • [6] A cured product of the epoxy resin composition according to any one of [1] to [5].
  • [7] A prepreg containing the epoxy resin composition according to any one of [1] to [5] and fibers.
  • Epoxy resin composition has the following components: Epoxy resin (A), Curing agent (B) and imidazole adduct type curing accelerator (C) including.
  • the curing agent (B) contains a compound represented by the above formula (B-1) (hereinafter, also referred to as “compound (B-1)”).
  • the compounds exemplified in the present specification as components included in or contained in the curable composition can be used alone or in combination of two or more types, unless otherwise specified.
  • Epoxy resin (A) is not particularly limited as long as it has one or more epoxy groups in the molecule, but from the viewpoint of the curability of the epoxy resin composition and the heat resistance and strength of the cured product, it is preferably in the molecule. It contains an epoxy resin having two or more epoxy groups, and more preferably an epoxy resin having two epoxy groups in the molecule.
  • Examples of the epoxy resin having two or more epoxy groups in the molecule include: Obtained by reacting bisphenol A, bisphenol F, bisphenol AD, bisphenol S, biphenyl diol, naphthalene diol, a polyhydric phenol compound such as novolak resin obtained by condensation or co-condensation of phenols with aldehydes, and epichlorohydrin Aromatic glycidyl ether type epoxy resin capable of Aliphatic glycidyl that can be obtained by reacting a polyhydric alcohol compound such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, polypropylene glycol, neopentyl glycol, glycerin, pentaerythritol, and sorbitol with epichlorohydrin Ether type epoxy resin; Glycidyl ester type epoxy resin which can be obtained by the reaction of a polybasic acid such as phthalic acid, hexahydr
  • the epoxy resin exemplified above may be an epoxy resin having two epoxy groups in the molecule.
  • aromatic glycidyl ether type epoxy resin having two epoxy groups in the molecule examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, biphenyldiol type epoxy resin. , Naphthalene diol type epoxy resin.
  • Examples of the aliphatic glycidyl ether type epoxy resin having two epoxy groups in the molecule include hydrogenated bisphenol A type epoxy resin, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyethylene. Examples thereof include glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and neopentyl glycol diglycidyl ether.
  • Examples of the glycidyl ester type epoxy resin having two epoxy groups in the molecule include phthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, and dimer acid diglycidyl ester.
  • Examples of the glycidyl amine type epoxy resin having two epoxy groups in the molecule include glycidyl aniline and glycidyl toluidine.
  • the epoxy resin (A) is preferably an aromatic glycidyl ether type epoxy resin, and more preferably bisphenol, from the viewpoint of the viscosity and curability of the epoxy resin, and thus the epoxy resin composition and the heat resistance and strength of the cured product.
  • Type epoxy resin more preferably bisphenol A type epoxy resin.
  • the epoxy resin (A) preferably contains a liquid epoxy resin, and more preferably, when the epoxy resin (A) contains one or more epoxy resins, the epoxy resin (A) is liquid as a whole. ..
  • Liquid in the present specification means exhibiting fluidity at 25°C.
  • a substance that is “liquid” usually exhibits a viscosity, and the viscosity is 0.0001 Pa ⁇ s to 1000 Pa ⁇ s at a temperature of 25° C. measured by a viscometer (EMS viscometer) using an electromagnetic spinning method. s, and may be 0.001 Pa ⁇ s to 500 Pa ⁇ s.
  • liquid a state in which one or more components are dispersed in another component is included.
  • the epoxy resin (A) is liquid as a whole include the following cases.
  • the epoxy resin (A) may include a solid epoxy resin.
  • solid means a solid at 25°C.
  • the solid epoxy resin may be dissolved or dispersed in the liquid epoxy resin. In order to carry out the curing reaction uniformly, it is preferable that the solid epoxy resin is uniformly dissolved.
  • the viscosity of the epoxy resin (A) (when two or more epoxy resins are contained, the viscosity as a mixture of the two or more epoxy resins) is
  • the viscosity at 25° C. measured by an EMS viscometer is preferably 50 Pa ⁇ s or less, more preferably 40 Pa ⁇ s or less, and further preferably 20 Pa ⁇ s or less.
  • the viscosity of the epoxy resin (A) at 25° C. is usually 0.01 Pa ⁇ s or more, 0.1 Pa ⁇ s or more, or 1 Pa ⁇ s or more.
  • the epoxy resin having two or more epoxy groups in the molecule may be used alone or in combination of two or more.
  • the epoxy resin (A) preferably contains an epoxy resin having two epoxy groups in the molecule.
  • the epoxy resin (A) is selected from the group consisting of an epoxy resin having two epoxy groups in the molecule, an epoxy resin having one epoxy group in the molecule, and an epoxy resin having three or more epoxy groups in the molecule. It may contain one or more epoxy resins.
  • the content of the epoxy resin having two epoxy groups in the molecule in the epoxy resin (A) is, for example, 50 parts by mass or more in 100 parts by mass of the epoxy resin (A), and the characteristics of the cured product of the epoxy resin composition ( From the viewpoint of heat resistance and/or tensile properties, etc.), it is preferably 60 parts by mass or more, more preferably 70 parts by mass or more, still more preferably 80 parts by mass or more, still more preferably 90 parts by mass. It is above, and may be 100 mass parts.
  • the epoxy equivalent of the epoxy resin (A) is the tensile property and heat resistance of the cured product of the epoxy resin composition. And from the viewpoint of strength and the like, it is preferably 30 g/eq to 500 g/eq, more preferably 40 g/eq to 400 g/eq, further preferably 50 g/eq to 300 g/eq, still more preferably 50 g. /Eq to 250 g/eq.
  • the epoxy equivalent of the epoxy resin can be measured according to JIS K7236.
  • the curing agent (B) contains a compound capable of crosslinking and curing the epoxy resin (A).
  • the curing agent (B) contains the compound (B-1) represented by the above formula (B-1).
  • R 1 represents a hydrogen atom, a halogen atom, a methoxy group or a hydrocarbon group having 1 to 12 carbon atoms.
  • the curing agent (B) may contain one type of compound (B-1), or may contain two or more types.
  • halogen atom for R 1 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the hydrocarbon group having 1 to 12 carbon atoms in R 1 include an aliphatic group (such as an alkyl group), an alicyclic group (such as a cycloalkyl group), an aromatic group, and a combination of an aliphatic group and an alicyclic group. And a hydrocarbon group composed of a combination of an aromatic group and an aliphatic group and/or an alicyclic group.
  • the carbon number of the hydrocarbon group is preferably 1-8. From the viewpoint of the viscosity of the epoxy resin composition, the hydrocarbon group is a methyl group or a 1-phenylethyl group.
  • R 1 is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom.
  • the positional relationship between the two OH groups contained in the compound (B-1) may be any of the ortho position, the meta position and the para position, but from the viewpoint of reducing the viscosity of the epoxy resin composition and in the epoxy resin composition. From the viewpoint of suppressing the crystal precipitation in (3), the ortho position or the meta position is preferable, and the meta position is more preferable.
  • the compound (B-1) is used from the viewpoint of reducing the viscosity of the epoxy resin composition, suppressing the precipitation of crystals in the epoxy resin composition, and lowering the melting temperature when preparing the epoxy resin composition. It is preferably a compound having a melting point of 150° C. or lower, and more preferably a compound having a melting point of 130° C. or lower.
  • Examples of the compound (B-1) having a melting point of 150° C. or lower include catechol (1,2-dihydroxybenzene), resorcin (1,3-dihydroxybenzene), 4-fluoro-1,3-dihydroxybenzene, 2- Chloro-1,3-dihydroxybenzene, 4-chloro-1,3-dihydroxybenzene, 2-methoxy-1,3-dihydroxybenzene, 4-methoxy-1,3-dihydroxybenzene, 5-methoxy-1,3- Dihydroxybenzene, 4-methyl-1,3-dihydroxybenzene, 5-methyl-1,3-dihydroxybenzene, 2-ethyl-1,3-dihydroxybenzene, 4-ethyl-1,3-dihydroxybenzene, 5-ethyl Examples thereof include 1,3-dihydroxybenzene and 4-(1-phenylethyl)-1,3-dihydroxybenzene.
  • the compound (B-1) contains 1,3-dihydroxybenzene.
  • the epoxy resin composition may contain a compound having three or more phenolic hydroxyl groups together with the compound (B-1). By including the compound, the properties (heat resistance and/or tensile properties) of the cured product of the epoxy resin composition may be further improved.
  • Examples of the compound having 3 or more phenolic hydroxyl groups include a compound (B-1) in which one of the hydrogen atoms directly bonded to the benzene ring is substituted with a hydroxyl group, a phenol resin, a novolac resin, and the like.
  • the epoxy resin composition may contain a compound having one phenolic hydroxyl group together with the compound (B-1).
  • the compound having one or more phenolic hydroxyl groups include phenol, cresol, xylenol, t-butylphenol and the like.
  • the molar ratio of the phenolic hydroxyl group content to the epoxy group content in the epoxy resin composition is 0.25 to 0.67. This makes it possible to achieve both good heat resistance and good tensile properties in the cured product of the epoxy resin composition.
  • the epoxy group content in the epoxy resin composition means the number (moles) of epoxy groups contained in the epoxy resin (A).
  • the “phenolic hydroxyl group content” is the phenolic hydroxyl group content in the epoxy resin composition, and is the number (moles) of the phenolic hydroxyl groups contained in the compound (B-1) and other than the compound (B-1). And the number (moles) of phenolic hydroxyl groups of the phenolic compound having a phenolic hydroxyl group.
  • the cured product of the epoxy resin composition maintains good heat resistance and good tensile properties.
  • an adduct (addition reaction product) of the epoxy resin (A) and the compound (B-1) is produced in an appropriate amount, and the epoxy groups of the adduct are Is presumed to be polymerized to form a cured product.
  • the epoxy resin (A) is an epoxy resin having two epoxy groups in the molecule
  • the adduct body is, for example, a 2:1 adduct body of the epoxy resin (A) and the compound (B-1). ..
  • This adduct has an epoxy group at both ends, and these epoxy groups serve as reaction points (crosslinking points) with other adducts and/or epoxy groups of the epoxy resin (A).
  • the cured product of the epoxy resin composition may not have sufficient tensile properties. It is estimated that this is because the amount of the adduct body produced is not sufficient.
  • the cured product of the epoxy resin composition may not have sufficient heat resistance. It is presumed that this is because the amount of the adduct body produced was too large and the number of crosslinking points decreased.
  • the above molar ratio is preferably 0.3 or more, more preferably 0.35 or more, and further preferably 0.4 or more. ..
  • the above molar ratio is preferably 0.6 or less, more preferably 0.55 or less, still more preferably 0.5 or less.
  • the above molar ratio is preferably 0.3 to 0.6, more preferably 0.35 to 0.55, and further preferably 0.4 to 0.5.
  • the content of the compound (B-1) in the epoxy resin composition is not particularly limited as long as the above molar ratio is within the above range, but is, for example, 7.3 parts by mass to 100 parts by mass of the epoxy resin (A). It is 19.4 parts by mass, preferably 8.7 parts by mass to 16.0 parts by mass, and more preferably 10.2 parts by mass to 14.5 parts by mass.
  • the curing agent (B) may further contain a compound represented by the above formula (B-2) (hereinafter, also referred to as compound (B-2)).
  • R 2 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group.
  • the curing agent (B) may contain one type of compound (B-2), or may contain two or more types.
  • Inclusion of the compound (B-2) in the epoxy resin composition may be advantageous for lowering the viscosity of the epoxy resin composition.
  • the inclusion of the compound (B-2) in the epoxy resin composition may be advantageous in further improving the tensile properties of the cured product of the epoxy resin composition. At this time, the elongation at break characteristics can be further enhanced without lowering the heat resistance of the cured product.
  • halogen atom for R 2 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 2 is preferably a hydrogen atom, a methyl group or a methoxy group, more preferably a hydrogen atom.
  • the compound (B-1) contains 1,3-dihydroxybenzene
  • the epoxy resin composition further contains the compound (B-2)
  • the compound (B- 2) contains dihydrocoumarin (R 2 : hydrogen atom).
  • the content of the compound (B-2) in the epoxy resin composition is, for example, 0.1 part by mass or more based on 100 parts by mass of the epoxy resin (A). From the viewpoint of more effectively exhibiting the above effects, the amount is preferably 1 part by mass or more, and more preferably 2 parts by mass or more.
  • the content of the compound (B-2) in the epoxy resin composition is preferably 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A). Or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less.
  • the epoxy resin composition contains the compound (B-2) together with the compound (B-1), the compound (B-1) relative to the content of the compound (B-1) in the epoxy resin composition (from the viewpoint of curability of the epoxy resin composition).
  • the content ratio of B-2) in terms of mass ratio is preferably 0.01 to 6.9, more preferably 0.06 to 4.6, and further preferably 0.14 to 3.0. Is.
  • the epoxy resin composition may further contain a curing agent for epoxy resin other than the above, as long as the effect of the present invention is not impaired.
  • the other curing agent for epoxy resin may be a conventionally known curing agent.
  • the content of the other curing agent for epoxy resin in the curing agent (B) is 100 parts by mass based on the total amount of the curing agent (B).
  • the amount is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, further preferably 5 parts by mass or less, and still more preferably 1 part by mass or less (for example, 0 parts by mass).
  • Imidazole adduct type curing accelerator (C)
  • the “curing accelerator” refers to an agent having a function of promoting a curing reaction.
  • the term “promoting” as used herein also includes the case of initiating a curing reaction.
  • the imidazole adduct type curing accelerator (C) is used among the curing accelerators.
  • the epoxy resin composition can have both good pot life and good curability (rapid curability, etc.).
  • the imidazole adduct type curing accelerator (C) effectively causes the curing reaction between the epoxy resins (A) and the curing reaction between the epoxy resin (A) and the compound (B-1) and the compound (B-2). It is presumed that it can be initiated and/or promoted, and because the imidazole adduct type curing accelerator (C) generally has a potential, it is advantageous in extending the pot life. ..
  • the use of the imidazole adduct type curing accelerator (C) as the curing accelerator is advantageous in that the curing reaction can be performed at a relatively low temperature, and also in improving the storage stability of the epoxy resin composition. But it is advantageous.
  • the imidazole adduct type curing accelerator (C) may be used alone or in combination of two or more.
  • “Latency” means that it can be stably stored at room temperature (25° C.) even in the presence of an epoxy resin, or in the presence of an epoxy resin and a curing agent, while promoting a curing reaction by heat, light, pressure, or the like. It refers to the property capable of expressing a function.
  • the imidazole adduct type curing accelerator (C) used in the present invention preferably has a property (heat potential) capable of exhibiting a function of promoting a curing reaction by heat.
  • Imidazole adduct type curing accelerator (C) is a compound in which an adduct is added to an imidazole compound.
  • the addition of the adduct gives the potential.
  • the adduct is, for example, a compound which can be bonded to the N atom of the imidazole ring, preferably the 1-position N atom by reaction with an imidazole compound.
  • the bond is usually a covalent bond.
  • the adduct is preferably a compound capable of imparting good potential, and examples thereof include an epoxy compound, an isocyanate compound, a (meth)acrylic compound, and a urea compound.
  • the imidazole adduct type curing accelerator (C) is preferably a polymer compound obtained by reacting the imidazole compound with the adduct.
  • the above-mentioned adduct may be made into a solid solution with a phenol resin or the like, or may be surface-treated with an organic acid or boric acid compound.
  • the imidazole adduct type curing accelerator (C) produced in this way is usually pulverized to a particle size of about 0.5 to 50 ⁇ m and used by dispersing it in an epoxy resin.
  • the imidazole adduct type curing accelerator (C) generally has low solubility in an epoxy resin at room temperature, the imidazole adduct type curing accelerator (C) mixed with the epoxy resin often exhibits thermal potential.
  • the imidazole adduct type curing accelerator (C) is a known patent document, for example, JP-A-59-053526, JP-A-60-004524, JP-A-60-072917, and JP-A-2005-206744. It can be manufactured by the methods described in Japanese Patent Application Laid-Open No. 06-073156, Japanese Patent Application Laid-Open No. 06-172495, Japanese Patent Application Laid-Open No. 2008-214567, Japanese Patent Application Laid-Open No. 2014-177525, and the like.
  • a commercially available product may be used as the imidazole adduct type curing accelerator (C).
  • Commercially available products of the imidazole adduct type curing accelerator (C) are all trade names under the trade names of "Fujicure FXR-1020", “Same FXR-1030", “Same FXR-1032", “Same FXR-1081” and “ “FXR-1121", “FXR-1131” (above, made by T&K TOKA Co., Ltd.); "Adeka Hardener EH-5011S", “EH-5046S” (above made by ADEKA Co., Ltd.); “Cure Duct P-" 0505” (manufactured by Shikoku Chemicals Co., Ltd.); “Amicure PN-23”, “Same PN-23J”, “Same PN-31”, “Same PN-31J”, “Same PN-40”, “Same PN-” 40J”,
  • the epoxy resin composition may contain one or more curing accelerators other than the imidazole adduct type curing accelerator (C) as long as the effects of the present invention are not impaired.
  • curing accelerators are not particularly limited, and examples thereof include tertiary amine compounds and salts thereof, imidazole compounds (non-adduct type), imidazolium salts, phosphorus compounds such as triphenylphosphine and phosphonium salts, and metal carboxylates. Examples thereof include salts and 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole (TBZ).
  • the content of the other curing accelerator in the curing accelerator is preferably 20 parts by mass or less when the total amount of the curing accelerator is 100 parts by mass, and It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 1 part by mass or less (for example, 0 parts by mass).
  • the content of the imidazole adduct-type curing accelerator (C) in the epoxy resin composition is, for example, 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A), and the above effects are more effectively exhibited. From the point of view, it is preferably 2 parts by mass to 40 parts by mass, more preferably 3 parts by mass to 30 parts by mass, further preferably 5 parts by mass to 20 parts by mass, still more preferably 5 parts by mass to 15 parts by mass.
  • the epoxy resin composition may further contain other compounding components other than the above-mentioned components.
  • compounding ingredients include, for example, rubber particles, inorganic particles (particles made of metal, metal oxide, etc.), flame retardant, surface treatment agent, release agent, antibacterial agent, leveling agent, defoaming agent, thixotropic agent. , Heat stabilizers, light stabilizers, ultraviolet absorbers, colorants, coupling agents, surfactants, metal alkoxides, thermoplastic resins, diluents and the like.
  • the other compounding ingredients only one kind may be used, or two or more kinds may be used in combination.
  • the addition of the rubber particles makes it possible to improve the toughness of the cured product of the epoxy resin composition while maintaining good heat resistance.
  • the rubber particles include core-shell type acrylic rubber particles, surface modified type acrylic rubber particles, crosslinked NBR particles, silicone rubber particles and the like. These rubber particles may be conventionally known particles.
  • the average particle diameter of the rubber particles is, for example, about 0.05 ⁇ m to 1 ⁇ m, preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the rubber particles may be used alone or in combination of two or more.
  • a commercially available product may be used as the rubber particles, or a dispersion product in which rubber particles are previously dispersed in an epoxy resin may be used.
  • Commercially available products of the rubber particles or the dispersions are trade names, "Acryset BPA328" (manufactured by Nippon Shokubai Co., Ltd.); "Kaneace MX-153", “MX-154" and "MX-257".
  • the content of the rubber particles in the epoxy resin composition is, for example, 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the epoxy resin (A), and is preferably 5 from the viewpoint of more effectively exhibiting the above effect. It is from 80 to 80 parts by mass, more preferably from 10 to 50 parts by mass.
  • the content of the rubber particles in the epoxy resin composition is, for example, 1% by mass to 50% by mass with respect to the entire composition, and preferably 2% by mass to 30% by mass from the viewpoint of more effectively exhibiting the above effects. %, and more preferably 5% by mass to 20% by mass.
  • Epoxy Resin Composition contains the epoxy resin (A), the compound (B-1) and the imidazole adduct type curing accelerator (C), and optionally other components. , Preferably liquid.
  • liquid is as described above.
  • liquid epoxy resin composition all components contained therein may be in a dissolved state, or one or more components may be dispersed in another component.
  • the liquid epoxy resin composition according to the present invention can have a relatively low viscosity.
  • the relatively low viscosity can improve the productivity and workability of products using the epoxy resin composition.
  • a method for producing a molding material (composition) containing a cured product of an epoxy resin composition and fibers includes a step of impregnating a woven fabric or a fiber bundle of the epoxy resin composition with a low viscosity. By using this epoxy resin composition, the impregnation property of the epoxy resin composition can be enhanced.
  • the viscosity of the epoxy resin composition measured by an EMS viscometer at 25° C. is preferably 50 Pa ⁇ s or less, more preferably 40 Pa ⁇ s or less, further preferably 35 Pa ⁇ s or less, and even more It is preferably 20 Pa ⁇ s or less.
  • the viscosity of the epoxy resin composition at 25° C. is usually 0.01 Pa ⁇ s or more, 0.1 Pa ⁇ s or more, or 1 Pa ⁇ s or more.
  • the epoxy resin composition according to the present invention can have a relatively long pot life.
  • the time required for the viscosity to be twice the initial viscosity is 0.5 days or longer, further 1 day or longer, further 2 days or longer, further 3 days or longer, further 5 days or longer.
  • the epoxy resin composition according to the present invention can exhibit good curability. That is, the epoxy resin composition can be sufficiently cured with a relatively short heat curing time and/or at a relatively low temperature.
  • the cured product according to the present invention is obtained by curing the above-mentioned epoxy resin composition according to the present invention.
  • the cured product according to the present invention is a cured product of the epoxy resin composition according to the present invention, it has both good heat resistance and good tensile properties.
  • the cured product according to the present invention can exhibit a glass transition temperature of, for example, 110° C. or higher, further 115° C. or higher, further 120° C. or higher, further 130° C. or higher.
  • the cured product according to the present invention may have a tensile strength or elongation at break according to JIS K 7161-1 and JIS K 7161-2, for example, a tensile strength of 30 MPa or more, further 45 MPa or more, and further 60 MPa or more.
  • the elongation at break can be, for example, 4.5% or more, further 5.5% or more, further 6.5% or more, further 7.5% or more.
  • the cured product according to the present invention can exhibit good toughness.
  • the cured product according to the present invention has a fracture toughness K 1C in accordance with ASTM D5045-14 of, for example, 0.5 MPa ⁇ m 1/2 or more, further 0.8 MPa ⁇ m 1/2 or more, further 1 MPa ⁇ m. It may be 1 ⁇ 2 or more, further 1.2 MPa ⁇ m 1/2 or more, further 1.4 MPa ⁇ m 1/2 or more, further 1.5 MPa ⁇ m 1/2 or more.
  • a dumbbell test piece is produced in accordance with JIS K 7139A-2, and a tensile test is performed on this test piece at a pulling speed of 10 mm/min according to JIS K 7161-1 and JIS K 7161-2. When it is carried out, it is possible to show the property of causing necking at break.
  • Necking means that the cross-sectional area of the test piece locally decreases around the fracture surface of the dumbbell test piece, which means that the cured product exhibits plastic deformation.
  • the above properties serve as an index that the cured product exhibits good tensile properties.
  • the epoxy resin composition and the cured product thereof according to the present invention have excellent heat resistance of the cured product and can be applied to various applications because of excellent tensile properties, for example, adhesives, sealing of electronic parts, It can be used as a resin composition for impregnating fibers.
  • the epoxy resin composition according to the present invention has a low viscosity (50 Pa ⁇ s or less at 25° C.) and is excellent in impregnation property, and is cured by heating in a short time (for example, 135° C., 15 minutes) and is excellent in productivity. Therefore, it can be suitably used as a resin composition for sealing electronic members and impregnating fibers.
  • the present invention also relates to products or parts containing the above-mentioned cured product.
  • An example of the product is a molded product (composition) containing the cured product and fibers.
  • the product or part containing the cured product may contain components other than the epoxy resin composition-derived component (cured product), such as fibers.
  • Fibers such as glass fiber, aramid fiber and kenaf fiber can be used as the fiber used in combination with the epoxy resin composition according to the present invention.
  • the surface of the fiber may be subjected to a known sizing treatment.
  • a known method can be used as a method for producing a molded article by compounding the epoxy resin composition according to the present invention with fibers.
  • the method specifically, Wet filament winding method in which fibers are impregnated with an epoxy resin composition, wound around a molding die such as a mandrel, molded, and cured by heating;
  • a dry filament winding method in which a prepreg in which fibers are pre-impregnated with an epoxy resin composition is prepared, the prepreg is wound around a molding die such as a mandrel, molded, and cured by heating.
  • a resin transfer molding method in which a fiber woven fabric is prepared, the fiber woven fabric is laminated on a mold, press-pressed, and the epoxy resin composition is vacuum-impregnated into the preform, followed by heat curing.
  • a sheet winding method in which a prepreg in which a woven fabric of fibers is impregnated with an epoxy resin composition in advance is prepared, wound around a molding die such as a mandrel, molded, and heat-cured;
  • a press molding method in which a prepreg in which a woven fabric of fibers is impregnated with an epoxy resin composition in advance is prepared, the prepreg is laminated on a mold, and the mixture is heated and pressed and cured by a press;
  • An autoclave molding method in which a prepreg in which a woven fabric of fibers is pre-impregnated with an epoxy resin composition is prepared, the prepreg is placed on a molding jig, covered with a bag film, and heated and pressure-cured in an
  • Epoxy resin 1 Liquid epoxy resin manufactured by Mitsubishi Chemical Corporation "JER828” (bisphenol A type epoxy resin, epoxy equivalent: about 190 g/eq, viscosity: about 15 Pa ⁇ s (25°C))
  • Epoxy resin 2 solid epoxy resin manufactured by Mitsubishi Chemical Corporation "jER YX4000” (biphenyl type epoxy resin, epoxy equivalent: about 190 g/eq, melting point: about 105°C)
  • Curing agent 1 1,3-dihydroxybenzene (resorcin)
  • Hardener 2 Dihydrocoumarin
  • Hardener 3 Bisphenol A (2,2-bis(4-hydroxyphenyl)propane)
  • Curing accelerator 1 imidazole adduct type curing accelerator manufactured by T&K TOKA Co., Ltd.
  • Curing accelerator 2 imidazole adduct type curing accelerator manufactured by ADEKA Co., Ltd.
  • Curing accelerator 3 Imidazole-based curing accelerator manufactured by Shikoku Chemicals Co., Ltd.
  • Curing accelerator 4 dicyandiamide
  • Rubber particles 1 Acrylic rubber particles (trade name "jER828", which is an epoxy resin, and acrylic rubber particles included in the product name "Akuriset BPA328" manufactured by Nippon Shokubai Co. In which the composition is dispersed). The compounding amount of the epoxy resin contained in this composition is included in the compounding amount described in the column of "epoxy resin 1" in Table 1.
  • the viscosity of the epoxy resin composition of Comparative Example 1 was high, so the viscosity was measured at a temperature of 30°C.
  • the viscosity of the epoxy resin composition was monitored with the EMS viscometer while the sample tube after measurement was stored in a thermostat at 25°C.
  • the pot life was calculated as the time (days) until the viscosity was doubled at the start of storage. The results are shown in Tables 1 and 2.
  • Comparative Example 1 The curability of Comparative Example 1 was not evaluated.
  • the epoxy resin composition of Comparative Example 4 was scorched in the epoxy resin composition layer, and a cured product which could be measured for physical properties was not obtained.
  • the temperature is raised from 25°C to 135°C at a rate of 15°C/min, held at 135°C for 20 minutes, cooled from 135°C to 30°C at a rate of -10°C/min, and again from 30°C.
  • Tg The midpoint of the stepwise change in the DSC curve observed when the temperature was raised to 200°C at a rate of 10°C/min was defined as Tg (°C).
  • dumbbell test piece according to JIS K 7139A-2 was obtained by pouring the epoxy resin composition into a silicone mold and curing it under the same temperature conditions as in (2-2) above.
  • test piece was subjected to a tensile test at a speed of 10 mm/min in accordance with JIS K 7161-1 and JIS K 7161-2 using an autograph (AGX-10kNXplus) manufactured by Shimadzu Corporation.
  • the results are shown in Tables 1 and 2.
  • the distance between marked lines was calculated using a video-type non-contact elongation width meter (TRView).
  • Comparative Examples 1, 3 and 4 were not measured.
  • the above test pieces were prepared from the cured products of Examples 1 to 12, and 10 mm/in accordance with JIS K 7161-1 and JIS K 7161-2 using an autograph (AGX-10kNXplus) manufactured by Shimadzu Corporation. When a tensile test was performed at a speed of minutes, necking occurred at the time of breaking.
  • a 6 mm ⁇ 150 mm ⁇ 150 mm cured product was obtained by pouring the epoxy resin composition into a silicone mold and curing it under the same temperature conditions as in (2-2) above.
  • a test piece of 6 mm ⁇ 60 mm ⁇ 12 mm was produced from this cured product by cutting, notched with a 30°t1.0 equiangular slice blade, and then precracked.
  • test piece after pre-cracking was subjected to a bending test at a speed of 1 mm/min using the universal material testing machine (type 5966) manufactured by Instron Co., Ltd., and the breaking load was measured. .
  • test piece of 6 mm ⁇ 150 mm ⁇ 12 mm was produced from the above cured product of 6 mm ⁇ 150 mm ⁇ 150 mm by cutting and notched with a 30°t1.0 equiangular slice blade, followed by pre-cracking. went.
  • test piece after pre-cracking was subjected to a bending test at a speed of 2.6 mm/min using a universal material testing machine 5966 type manufactured by Instron Co., and 0.2% proof stress was measured.
  • the fracture toughness K 1C was measured for Examples 3, 6, 7 and 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

エポキシ樹脂(A)、下記式(B-1)[式中、Rは、水素原子、ハロゲン原子、メトキシ基又は炭素数1~12の炭化水素基を表す。]で表される化合物を含む硬化剤(B)、及びイミダゾールアダクト型硬化促進剤(C)を含むエポキシ樹脂組成物であって、エポキシ樹脂組成物中のエポキシ基含有量に対するフェノール性水酸基含有量のモル比が0.25~0.67であるエポキシ樹脂組成物、並びに、その硬化物が提供される。

Description

エポキシ樹脂組成物及びその硬化物
 本発明は、エポキシ樹脂組成物及びその硬化物に関する。
 エポキシ樹脂は、その硬化物が耐熱性、強度、耐薬品性、接着性等に優れていることから、繊維強化材用、電子部品用、接着剤用、塗料用等、様々な用途に適用されている。
 各種用途において、エポキシ樹脂を含む組成物(以下、「エポキシ樹脂組成物」という。)は通常、該組成物を硬化させるための硬化剤を含み、硬化促進剤をさらに含有させることもある〔例えば、特開2015-083634号公報(特許文献1)及び特開2013-032510号公報(特許文献2)〕。
特開2015-083634号公報 特開2013-032510号公報
 エポキシ樹脂組成物には、その適用される用途に応じた特性が求められる。一般的に、エポキシ樹脂組成物には、作業性の観点から、長いポットライフが求められ、また、エポキシ樹脂組成物の硬化物を含む製品の生産性の観点から、優れた硬化性(低温硬化性、速硬化性)が求められる。
 また、エポキシ樹脂組成物の硬化物には、その適用される用途によっては高い耐熱性が求められ、引張特性が求められることもある。
 本発明の目的は、良好なポットライフ及び硬化性を有するとともに、良好な耐熱性及び引張特性を示す硬化物を与えることができるエポキシ樹脂組成物及びその硬化物を提供することにある。
 本発明は、以下に示すエポキシ樹脂組成物及び硬化物を提供する。
 [1] エポキシ樹脂(A)、
 下記式(B-1):
Figure JPOXMLDOC01-appb-C000003
[式中、Rは、水素原子、ハロゲン原子、メトキシ基又は炭素数1~12の炭化水素基を表す。]
で表される化合物を含む硬化剤(B)、及び
 イミダゾールアダクト型硬化促進剤(C)
を含むエポキシ樹脂組成物であって、
 前記エポキシ樹脂組成物中のエポキシ基含有量に対するフェノール性水酸基含有量のモル比が0.25~0.67である、エポキシ樹脂組成物。
 [2] 前記エポキシ樹脂(A)は、分子内にエポキシ基を2個有するエポキシ樹脂を含む、[1]に記載のエポキシ樹脂組成物。
 [3] 前記化合物は、融点が150℃以下である、[1]又は[2]に記載のエポキシ樹脂組成物。
 [4] 前記モル比が0.35~0.5である、[1]~[3]のいずれかに記載のエポキシ樹脂組成物。
 [5] 前記硬化剤(B)は、下記式(B-2):
Figure JPOXMLDOC01-appb-C000004
[式中、Rは、水素原子、ハロゲン原子、メチル基又はメトキシ基を表す。]
で表される化合物をさらに含む、[1]~[4]のいずれかに記載のエポキシ樹脂組成物。
 [6] [1]~[5]のいずれかに記載のエポキシ樹脂組成物の硬化物。
 [7] [1]~[5]のいずれかに記載のエポキシ樹脂組成物と繊維を含むプリプレグ。
 [8] [1]~[5]のいずれかに記載のエポキシ樹脂組成物の硬化物と繊維を含む組成物。
 良好なポットライフ及び硬化性を有するとともに、良好な耐熱性及び引張特性を示す硬化物を与えることができるエポキシ樹脂組成物及びその硬化物を提供することができる。
 <エポキシ樹脂組成物>
 本発明に係るエポキシ樹脂組成物(以下、「エポキシ樹脂組成物」ともいう。)は、下記成分:
 エポキシ樹脂(A)、
 硬化剤(B)、及び
 イミダゾールアダクト型硬化促進剤(C)
を含む。
 硬化剤(B)は、上記式(B-1)で表される化合物(以下、「化合物(B-1)」ともいう。)を含む。
 以下、エポキシ樹脂組成物に含まれる又は含まれ得る各成分及びエポキシ樹脂組成物について詳細に説明する。
 なお、本明細書において硬化性組成物に含まれる又は含まれ得る各成分として例示する化合物は、特に断りのない限り、単独で、又は、複数種を組み合わせて使用することができる。
 〔1〕エポキシ樹脂(A)
 エポキシ樹脂(A)としては、分子内にエポキシ基を1個以上有する限り特に制限されないが、エポキシ樹脂組成物の硬化性並びに硬化物の耐熱性及び強度等の観点から、好ましくは、分子内にエポキシ基を2個以上有するエポキシ樹脂を含み、より好ましくは、分子内にエポキシ基を2個有するエポキシ樹脂を含む。
 分子内にエポキシ基を2個以上有するエポキシ樹脂としては、例えば、
 ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビフェニルジオール、ナフタレンジオール、フェノール類とアルデヒド類とを縮合又は共縮合させて得られるノボラック樹脂等の多価フェノール化合物と、エピクロルヒドリンとの反応によって得ることができる芳香族グリシジルエーテル型エポキシ樹脂;
 1,4-ブタンジオール、1,6-ヘキサンジオール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビトール等の多価アルコール化合物と、エピクロルヒドリンとの反応によって得ることができる脂肪族グリシジルエーテル型エポキシ樹脂;
 フタル酸、ヘキサヒドロフタル酸、ダイマー酸等の多塩基酸と、エピクロルヒドリンとの反応によって得ることができるグリシジルエステル型エポキシ樹脂;
 アニリン、トルイジン、ジアミノジフェニルメタン、p-アミノフェノール、p-アミノクレゾール等のアミンと、エピクロルヒドリンとの反応によって得ることができるグリシジルアミン型エポキシ樹脂;
 大豆油、ポリブタジエン等の分子内に2個以上の不飽和結合を有するオレフィン系化合物や、インデン、4-ビニル-1-シクロヘキセン、3-シクロヘキセン-1-カルボン酸(3-シクロヘキセニル)メチル等の分子内に2個以上の不飽和結合を有する環状オレフィン化合物を過酸(過酢酸等)で酸化することによって得ることができる脂環エポキシ樹脂
等が挙げられる。
 上記例示のエポキシ樹脂は、分子内にエポキシ基を2個有するエポキシ樹脂であり得る。
 分子内にエポキシ基を2個有する芳香族グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニルジオール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂が挙げられる。
 分子内にエポキシ基を2個有する脂肪族グリシジルエーテル型エポキシ樹脂としては、例えば、水添ビスフェノールA型エポキシ樹脂、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテルが挙げられる。
 分子内にエポキシ基を2個有するグリシジルエステル型エポキシ樹脂としては、例えば、フタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステルが挙げられる。
 分子内にエポキシ基を2個有するグリシジルアミン型エポキシ樹脂としては、例えば、グリシジルアニリン、グリシジルトルイジン等が挙げられる。
 エポキシ樹脂、ひいてはエポキシ樹脂組成物の粘度及び硬化性並びに硬化物の耐熱性及び強度等の観点から、エポキシ樹脂(A)は、好ましくは、芳香族グリシジルエーテル型エポキシ樹脂であり、より好ましくはビスフェノール型エポキシ樹脂であり、さらに好ましくはビスフェノールA型エポキシ樹脂である。
 エポキシ樹脂(A)は、好ましくは、液状エポキシ樹脂を含み、より好ましくは、エポキシ樹脂(A)が1種又は2種以上のエポキシ樹脂を含む場合において、エポキシ樹脂(A)全体として液状である。
 本明細書において「液状」とは、25℃において流動性を示すことをいう。本明細書において「液状」である物質は通常、粘性を示し、その粘度は、電磁スピニング法を用いた粘度計(EMS粘度計)による25℃での粘度で、0.0001Pa・s~1000Pa・sであり得、0.001Pa・s~500Pa・sであってもよい。
 「液状」である場合には、1以上の成分が他の成分に分散している状態が含まれる。
 エポキシ樹脂(A)全体として液状である場合としては、例えば以下の場合が挙げられる。
 a)エポキシ樹脂(A)が1種の液状エポキシ樹脂からなる場合
 b)エポキシ樹脂(A)が2種以上の液状エポキシ樹脂の混合物である場合
 c)エポキシ樹脂(A)が1種以上の液状エポキシ樹脂と1種以上の固体エポキシ樹脂との混合物であり、該混合物が液状である場合
 d)エポキシ樹脂(A)が2種以上の固体エポキシ樹脂の混合物であり、該混合物が液状である場合
 したがって、エポキシ樹脂(A)は、固体エポキシ樹脂を含み得る。本明細書において「固体」とは、25℃において固体であることをいう。固体エポキシ樹脂は、液状エポキシ樹脂に溶解していてもよいし、分散されていてもよい。硬化反応を均一に行うために、固体エポキシ樹脂は均一に溶解していることが好ましい。
 エポキシ樹脂組成物の粘度を好ましい範囲に調整する観点から、エポキシ樹脂(A)の粘度(2種以上のエポキシ樹脂を含む場合には、該2種以上のエポキシ樹脂の混合物としての粘度)は、EMS粘度計による25℃での粘度で、好ましくは50Pa・s以下であり、より好ましくは40Pa・s以下であり、さらに好ましくは20Pa・s以下である。
 エポキシ樹脂(A)の25℃での粘度は、通常0.01Pa・s以上であり、0.1Pa・s以上であってもよく、1Pa・s以上であってもよい。
 分子内にエポキシ基を2個以上有するエポキシ樹脂は、1種のみを用いてもよいし、2種以上を併用してもよい。
 ビスフェノールA型エポキシ樹脂とビフェニル型エポキシ樹脂を併用すると、良好な耐熱性と良好な引張特性との両立に有利に働くことがあるので好ましい。
 エポキシ樹脂(A)は、分子内にエポキシ基を2個有するエポキシ樹脂を含むことが好ましい。
 エポキシ樹脂(A)は、分子内にエポキシ基を2個有するエポキシ樹脂と、分子内にエポキシ基を1個有するエポキシ樹脂及び分子内にエポキシ基を3個以上有するエポキシ樹脂からなる群より選ばれる1種以上のエポキシ樹脂とを含んでいてもよい。
 エポキシ樹脂(A)における分子内にエポキシ基を2個有するエポキシ樹脂の含有量は、エポキシ樹脂(A)100質量部中、例えば50質量部以上であり、エポキシ樹脂組成物の硬化物の特性(耐熱性及び/又は引張特性等)等の観点から、好ましくは60質量部以上であり、より好ましくは70質量部以上であり、さらに好ましくは80質量部以上であり、なおさらに好ましくは90質量部以上であり、100質量部であってもよい。
 エポキシ樹脂(A)のエポキシ当量(2種以上のエポキシ樹脂を含む場合には、該2種以上のエポキシ樹脂の混合物としてのエポキシ当量)は、エポキシ樹脂組成物の硬化物の引張特性、耐熱性及び強度等の観点から、好ましくは30g/eq~500g/eqであり、より好ましくは40g/eq~400g/eqであり、さらに好ましくは50g/eq~300g/eqであり、なおさらに好ましくは50g/eq~250g/eqである。
 エポキシ樹脂のエポキシ当量は、JIS K 7236に従って測定することができる。
 〔2〕硬化剤(B)
 硬化剤(B)は、エポキシ樹脂(A)を架橋硬化させることができる化合物を含む。該化合物として、硬化剤(B)は、上記式(B-1)で表される化合物(B-1)を含む。
 上記式(B-1)中、Rは、水素原子、ハロゲン原子、メトキシ基又は炭素数1~12の炭化水素基を表す。
 硬化剤(B)は、化合物(B-1)を1種含んでいてもよいし、2種以上含んでいてもよい。
 エポキシ樹脂組成物に化合物(B-1)を所定量含有させることにより、エポキシ樹脂組成物の硬化物において、良好な耐熱性と良好な引張特性との両立を図ることが可能になる。
 Rにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Rにおける炭素数1~12の炭化水素基としては、脂肪族基(アルキル基等)、脂環族基(シクロアルキル基等)、芳香族基、脂肪族基と脂環族基との組み合わせからなる炭化水素基、並びに、芳香族基と脂肪族基及び/又は脂環族基との組み合わせからなる炭化水素基等が挙げられる。
 炭化水素基の炭素数は、好ましくは1~8である。エポキシ樹脂組成物の粘度の観点から炭化水素基はメチル基又は1-フェニルエチル基である。
 Rは、好ましくは、水素原子又は炭化水素基であり、より好ましくは水素原子である。
 化合物(B-1)が有する2つのOH基の位置関係は、オルト位、メタ位、パラ位のいずれであってもよいが、エポキシ樹脂組成物の粘度を低減する観点及びエポキシ樹脂組成物中での結晶析出を抑制する観点から、好ましくは、オルト位又はメタ位であり、より好ましくはメタ位である。
 化合物(B-1)は、エポキシ樹脂組成物の粘度を低減する観点、エポキシ樹脂組成物中での結晶析出を抑制する観点、及びエポキシ樹脂組成物を調製する際の溶解温度を低くする観点から、好ましくは、融点が150℃以下の化合物であり、より好ましくは、融点が130℃以下の化合物である。
 融点が150℃以下の化合物(B-1)としては、例えば、カテコール(1,2-ジヒドロキシベンゼン)、レゾルシン(1,3-ジヒドロキシベンゼン)、4-フルオロ-1,3-ジヒドロキシベンゼン、2-クロロ-1,3-ジヒドロキシベンゼン、4-クロロ-1,3-ジヒドロキシベンゼン、2-メトキシ-1,3-ジヒドロキシベンゼン、4-メトキシ-1,3-ジヒドロキシベンゼン、5-メトキシ-1,3-ジヒドロキシベンゼン、4-メチル-1,3-ジヒドロキシベンゼン、5-メチル-1,3-ジヒドロキシベンゼン、2-エチル-1,3-ジヒドロキシベンゼン、4-エチル-1,3-ジヒドロキシベンゼン、5-エチル-1,3-ジヒドロキシベンゼン、4-(1-フェニルエチル)-1,3-ジヒドロキシベンゼン等が挙げられる。
 1つの好ましい実施形態に係るエポキシ樹脂組成物において、化合物(B-1)は、1,3-ジヒドロキシベンゼンを含む。
 エポキシ樹脂組成物は、化合物(B-1)とともに、フェノール性水酸基を3個以上有する化合物を含んでいてもよい。該化合物を含有させることにより、エポキシ樹脂組成物の硬化物の特性(耐熱性及び/又は引張特性等)をさらに改善できることがある。
 フェノール性水酸基を3個以上有する化合物としては、化合物(B-1)が有するベンゼン環に直接結合する水素原子の1個を水酸基で置換した化合物、フェノール樹脂、ノボラック樹脂等が挙げられる。
 また、エポキシ樹脂組成物は、化合物(B-1)とともに、フェノール性水酸基を1個有する化合物を含んでいてもよい。フェノール性水酸基を1個以上有する化合物としては、フェノール、クレゾール、キシレノール、t-ブチルフェノール等が挙げられる。
 エポキシ樹脂組成物中のエポキシ基含有量に対するフェノール性水酸基含有量のモル比は0.25~0.67とされる。これにより、エポキシ樹脂組成物の硬化物において、良好な耐熱性と良好な引張特性との両立を図ることが可能になる。
 「エポキシ樹脂組成物中のエポキシ基含有量」とは、エポキシ樹脂(A)が有するエポキシ基の数(モル数)をいう。
 「フェノール性水酸基含有量」とは、エポキシ樹脂組成物中のフェノール性水酸基含有量であり、化合物(B-1)が有するフェノール性水酸基の数(モル数)と、化合物(B-1)以外のフェノール性水酸基を有するフェノール系化合物が有するフェノール性水酸基の数(モル数)との合計をいう。
 エポキシ樹脂組成物中のエポキシ基含有量に対するフェノール性水酸基含有量のモル比を上記範囲内にすることによって、エポキシ樹脂組成物の硬化物において、良好な耐熱性を維持しながら、良好な引張特性が得られる理由は定かではないが、硬化反応において、エポキシ樹脂(A)と化合物(B-1)とのアダクト体(付加反応物)が適度な量で生成し、このアダクト体のエポキシ基同士が重合して硬化物が形成されるようになるためであると推定される。上記アダクト体は、エポキシ樹脂(A)が分子内にエポキシ基を2個有するエポキシ樹脂である場合、例えば、エポキシ樹脂(A)と化合物(B-1)との2:1アダクト体等である。このアダクト体は、両末端にエポキシ基を有しており、これらのエポキシ基は、他のアダクト体及び/又はエポキシ樹脂(A)のエポキシ基との反応点(架橋点)となる。
 上記アダクト体は、エポキシ樹脂(A)それ自体よりも架橋点間の距離が長いことから、引張特性が良好な硬化物が得られると推定される。
 上記モル比が0.25よりも小さい場合、エポキシ樹脂組成物の硬化物において、十分な引張特性が得られない。これは、上記アダクト体の生成量が十分でないことが要因であると推定される。
 上記モル比が0.67よりも大きい場合、エポキシ樹脂組成物の硬化物において、十分な耐熱性が得られない。これは、上記アダクト体の生成量が多すぎて、架橋点の数が減少するためであると推定される。
 良好な耐熱性と良好な引張特性との両立を図る観点から、上記モル比は、好ましくは0.3以上であり、より好ましくは0.35以上であり、さらに好ましくは0.4以上である。また、上記モル比は、好ましくは0.6以下であり、より好ましくは0.55以下であり、さらに好ましくは0.5以下である。上記モル比がこの範囲であれば、良好な耐熱性と良好な引張特性との両立を図ることができ、特に破断伸び特性を高めることができる。したがって上記モル比は、好ましくは0.3~0.6であり、より好ましくは0.35~0.55であり、さらに好ましくは0.4~0.5である。
 エポキシ樹脂組成物における化合物(B-1)の含有量は、上記モル比が上記範囲内となる限り特に制限されないが、エポキシ樹脂(A)100質量部に対して、例えば7.3質量部~19.4質量部であり、好ましくは8.7質量部~16.0質量部であり、より好ましくは10.2質量部~14.5質量部である。
 硬化剤(B)は、上記式(B-2)で表される化合物(以下、化合物(B-2)ともいう。)をさらに含んでいてもよい。
 上記式(B-2)中、Rは、水素原子、ハロゲン原子、メチル基又はメトキシ基を表す。
 硬化剤(B)は、化合物(B-2)を1種含んでいてもよいし、2種以上含んでいてもよい。
 エポキシ樹脂組成物に化合物(B-2)を含有させることは、エポキシ樹脂組成物の低粘度化に有利となり得る。
 また、エポキシ樹脂組成物に化合物(B-2)を含有させることは、エポキシ樹脂組成物の硬化物において、引張特性をさらに高めるうえで有利となり得る。この際、硬化物の耐熱性を低下させることなく、破断伸び特性をさらに高め得る。
 Rにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Rは、融点の観点から、好ましくは、水素原子、メチル基又はメトキシ基であり、より好ましくは水素原子である。
 1つの好ましい実施形態に係るエポキシ樹脂組成物において、化合物(B-1)が1,3-ジヒドロキシベンゼンを含み、エポキシ樹脂組成物がさらに化合物(B-2)を含み、かつ、化合物(B-2)がジヒドロクマリン(R:水素原子)を含む。
 エポキシ樹脂組成物が化合物(B-2)を含む場合、エポキシ樹脂組成物における化合物(B-2)の含有量は、エポキシ樹脂(A)100質量部に対して、例えば0.1質量部以上であり、上記効果をより効果的に発現させる観点から、好ましくは1質量部以上であり、より好ましくは2質量部以上である。
 エポキシ樹脂組成物における化合物(B-2)の含有量が過度に大きすぎると、エポキシ樹脂組成物の硬化が不十分となり得る。したがって、エポキシ樹脂組成物が化合物(B-2)を含む場合、エポキシ樹脂組成物における化合物(B-2)の含有量は、エポキシ樹脂(A)100質量部に対して、好ましくは50質量部以下であり、より好ましくは40質量部以下であり、さらに好ましくは30質量部以下である。
 エポキシ樹脂組成物が化合物(B-1)とともに化合物(B-2)を含む場合、エポキシ樹脂組成物の硬化性の観点から、エポキシ樹脂組成物における化合物(B-1)の含有量に対する化合物(B-2)の含有量の比は、質量比で、好ましくは0.01~6.9であり、より好ましくは0.06~4.6であり、さらに好ましくは0.14~3.0である。
 エポキシ樹脂組成物は、本発明の効果を阻害しない限り、上記した以外の他のエポキシ樹脂用硬化剤をさらに含んでいてもよい。他のエポキシ樹脂用硬化剤は、従来公知の硬化剤であってよい。
 ただし、エポキシ樹脂組成物の硬化物の耐熱性及び引張特性等の観点から、硬化剤(B)における他のエポキシ樹脂用硬化剤の含有量は、硬化剤(B)の全体量を100質量部とするとき、好ましくは20質量部以下であり、より好ましくは10質量部以下であり、さらに好ましくは5質量部以下であり、なおさらに好ましくは1質量部以下(例えば0質量部)である。
 〔3〕イミダゾールアダクト型硬化促進剤(C)
 本明細書において「硬化促進剤」とは、硬化反応を促進させる機能を有する剤をいう。ここでいう「促進」には、硬化反応を開始させる場合も含まれる。
 本発明では、硬化促進剤の中でも、イミダゾールアダクト型硬化促進剤(C)を用いる。イミダゾールアダクト型硬化促進剤(C)を用いることにより、エポキシ樹脂組成物において、良好なポットライフと良好な硬化性(速硬化性等)とを両立させることができる。これは、イミダゾールアダクト型硬化促進剤(C)がエポキシ樹脂(A)同士の硬化反応及びエポキシ樹脂(A)と化合物(B-1)及び化合物(B-2)との硬化反応を効果的に開始及び/又は促進させることができるとともに、イミダゾールアダクト型硬化促進剤(C)が一般的には潜在性を有しているために、ポットライフの延長に有利に働くためであると推定される。
 また、硬化促進剤としてイミダゾールアダクト型硬化促進剤(C)を用いることは、比較的低温での硬化反応を可能にするうえでも有利であり、また、エポキシ樹脂組成物の保存安定性を高めるうえでも有利である。
 イミダゾールアダクト型硬化促進剤(C)は、1種のみを用いてもよいし、2種以上を併用してもよい。
 「潜在性」とは、エポキシ樹脂の存在下、又は、エポキシ樹脂及び硬化剤の存在下においても室温(25℃)では安定に貯蔵できる一方で、熱、光又は圧力等により硬化反応を促進させる機能を発現することができる性質をいう。
 本発明に用いられるイミダゾールアダクト型硬化促進剤(C)は、好ましくは、熱により硬化反応を促進させる機能を発現することができる性質(熱潜在性)を有する。
 イミダゾールアダクト型硬化促進剤(C)は、イミダゾール化合物に付加体が付加した化合物である。付加体の付加によって潜在性が付与される。付加体は、例えば、イミダゾール化合物との反応によりイミダゾール環のN原子、好ましくは1-位のN原子に結合することができる化合物である。該結合は、通常、共有結合である。
 付加体は、良好な潜在性を付与できる化合物であることが好ましく、例えば、エポキシ化合物、イソシアネート化合物、(メタ)アクリル系化合物、尿素化合物等が挙げられる。
 イミダゾールアダクト型硬化促進剤(C)は、イミダゾール化合物に上記付加体を反応させることによって得られる高分子化合物であることが好ましい。
 また、上記付加体をさらにフェノール樹脂等との固溶体としたり、有機酸やホウ酸化合物等で表面処理をしてもよい。
 このようにして製造されたイミダゾールアダクト型硬化促進剤(C)は、通常、0.5~50μm程度の粒径に粉砕され、エポキシ樹脂に分散して使用される。
 イミダゾールアダクト型硬化促進剤(C)は、一般にエポキシ樹脂に対する常温における溶解性が低いことから、エポキシ樹脂と混合されたイミダゾールアダクト型硬化促進剤(C)は、熱潜在性を示す場合が多い。
 イミダゾールアダクト型硬化促進剤(C)は、公知の特許文献、例えば、特開昭59-053526号公報、特開昭60-004524号公報、特開昭60-072917号公報、特開2005-206744号公報、特開平06-073156号公報、特開平06-172495号公報、特開2008-214567号公報、特開2014-177525号公報等に記載されている方法で製造することができる。
 イミダゾールアダクト型硬化促進剤(C)として市販品が用いられてもよい。イミダゾールアダクト型硬化促進剤(C)の市販品としては、いずれも商品名で、「フジキュアー FXR-1020」、「同 FXR-1030」、「同 FXR-1032」、「同 FXR-1081」、「同 FXR-1121」、「同 FXR-1131」(以上、株式会社T&K TOKA製);「アデカハードナー EH-5011S」、「同 EH-5046S」(以上、株式会社ADEKA製);「キュアダクト P-0505」(四国化成工業株式会社製);「アミキュア PN-23」、「同 PN-23J」、「同 PN-31」、「同 PN-31J」、「同 PN-40」、「同 PN-40J」、「同 PN-50」、「同 PN-F」、「同 PN-H」(以上、味の素ファインテクノ株式会社製)等が挙げられる。
 エポキシ樹脂組成物は、本発明の効果を阻害しない限り、イミダゾールアダクト型硬化促進剤(C)以外の他の硬化促進剤を1種又は2種以上含んでいてもよい。
 他の硬化促進剤としては特に制限されず、例えば、第3級アミン化合物及びその塩、イミダゾール化合物(非アダクト型)、イミダゾリウム塩、トリフェニルホスフィンやホスホニウム塩等のリン系化合物、カルボン酸金属塩、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール(TBZ)等が挙げられる。
 上記効果をより効果的に発現させる観点から、硬化促進剤における他の硬化促進剤の含有量は、硬化促進剤の全体量を100質量部とするとき、好ましくは20質量部以下であり、より好ましくは10質量部以下であり、さらに好ましくは5質量部以下であり、なおさらに好ましくは1質量部以下(例えば0質量部)である。
 エポキシ樹脂組成物におけるイミダゾールアダクト型硬化促進剤(C)の含有量は、エポキシ樹脂(A)100質量部に対して、例えば1質量部~50質量部であり、上記効果をより効果的に発現させる観点から、好ましくは2質量部~40質量部であり、より好ましくは3質量部~30質量部であり、さらに好ましくは5質量部~20質量部であり、なおさらに好ましくは5質量部~15質量部である。
 〔4〕その他の配合成分
 エポキシ樹脂組成物は、上述した成分以外の他の配合成分をさらに含むことができる。
 他の配合成分としては、例えば、ゴム粒子、無機粒子(金属、金属酸化物等からなる粒子)、難燃剤、表面処理剤、離型剤、抗菌剤、レベリング剤、消泡剤、揺変剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、カップリング剤、界面活性剤、金属アルコキシド、熱可塑性樹脂、希釈剤等が挙げられる。
 他の配合成分は、1種のみを用いてもよいし、2種以上を併用してもよい。
 ゴム粒子の添加により、エポキシ樹脂組成物の硬化物において、良好な耐熱性を維持しながら、靱性を向上させることが可能となる。
 なお、エポキシ樹脂組成物の低粘度化をさらに考慮するとき、ゴム粒子を添加する場合には、上述の化合物(B-2)を併せて添加することが好ましいことがある。
 ゴム粒子としては、例えば、コアシェル型アクリルゴム粒子、表面修飾型アクリルゴム粒子、架橋NBR粒子、シリコーンゴム粒子等が挙げられる。これらのゴム粒子は、従来公知のものであってよい。ゴム粒子の平均粒子径は、例えば、0.05μm~1μm程度であり、好ましくは0.2μm~0.5μmである。
 ゴム粒子は、1種のみを用いてもよいし、2種以上を併用してもよい。
 ゴム粒子として市販品が用いられてもよいし、あらかじめエポキシ樹脂にゴム粒子が分散された分散品を用いてもよい。ゴム粒子又は該分散品の市販品としては、いずれも商品名で、「アクリセット BPA328」(株式会社日本触媒製);「カネエース MX-153」、「同 MX-154」、「同 MX-257」、「同 MX-960」(以上、株式会社カネカ製);「スタフィロイド AC」シリーズ(アイカ工業株式会社製);「パラロイド EXL」シリーズ(ダウ社製);「メタブレン」(三菱ケミカル株式会社製);「XER-91」(JSR株式会社製);「GENIOPERL P52」(旭化成ワッカーシリコーン株式会社製)等が挙げられる。
 エポキシ樹脂組成物におけるゴム粒子の含有量は、エポキシ樹脂(A)100質量部に対して、例えば1質量部~100質量部であり、上記効果をより効果的に発現させる観点から、好ましくは5質量部~80質量部であり、より好ましくは10質量部~50質量部である。
 エポキシ樹脂組成物におけるゴム粒子の含有量は、組成物全体に対して、例えば1質量%~50質量%であり、上記効果をより効果的に発現させる観点から、好ましくは2質量%~30質量%であり、より好ましくは5質量%~20質量%である。
 〔5〕エポキシ樹脂組成物
 エポキシ樹脂(A)、化合物(B-1)及びイミダゾールアダクト型硬化促進剤(C)、並びに任意で添加されるその他の成分を含む本発明に係るエポキシ樹脂組成物は、好ましくは液状である。「液状」の意味は上述のとおりである。
 液状のエポキシ樹脂組成物において、それに含まれるすべての成分は、溶解している状態であってもよいし、1以上の成分が他の成分に分散されている状態であってもよい。
 本発明に係る液状のエポキシ樹脂組成物は、比較的低い粘度を有することができる。比較的低い粘度は、エポキシ樹脂組成物を用いた製品の生産性及び作業性を向上させ得る。例えば、エポキシ樹脂組成物の硬化物と繊維等とを含む成形材(組成物)を製造するための方法は、繊維の織物や繊維束にエポキシ樹脂組成物を含浸させる工程を含むところ、低粘度のエポキシ樹脂組成物を用いることにより、エポキシ樹脂組成物の含浸性を高めることができる。
 エポキシ樹脂組成物の粘度は、EMS粘度計による25℃での粘度で、好ましくは50Pa・s以下であり、より好ましくは40Pa・s以下であり、さらに好ましくは35Pa・s以下であり、なおさらに好ましくは20Pa・s以下である。エポキシ樹脂組成物の25℃での粘度は、通常0.01Pa・s以上であり、0.1Pa・s以上であってもよく、1Pa・s以上であってもよい。
 本発明に係るエポキシ樹脂組成物は、比較的長いポットライフを有することができる。例えば、エポキシ樹脂組成物は、当初の粘度の2倍になるまでの時間が、0.5日以上、さらには1日以上、さらには2日以上、さらには3日以上、さらには5日以上であり得る。
 本発明に係るエポキシ樹脂組成物は、良好な硬化性を示すことができる。すなわち、エポキシ樹脂組成物は、比較的短い熱硬化時間で、及び/又は、比較的低温で、十分に硬化することができる。
 <硬化物>
 本発明に係る硬化物は、上記本発明に係るエポキシ樹脂組成物を硬化させてなるものである。
 本発明に係る硬化物は、上記本発明に係るエポキシ樹脂組成物の硬化物であるため、良好な耐熱性と良好な引張特性とを両立することができる。
 本発明に係る硬化物は、例えば、110℃以上、さらには115℃以上、さらには120℃以上、さらには130℃以上のガラス転移温度を示すことができる。
 本発明に係る硬化物は、JIS K 7161-1及びJIS K 7161-2に準拠する引張強度や破断伸びにおいて、例えば、引張強度が、30MPa以上、さらには45MPa以上、さらには60MPa以上であり得、また、破断伸びが、例えば、4.5%以上、さらには5.5%以上、さらには6.5%以上、さらには7.5%以上であり得る。
 本発明に係る硬化物は、良好な靱性を示し得る。本発明に係る硬化物は、ASTM D5045-14に準拠する破壊靭性K1Cが、例えば、0.5MPa・m1/2以上、さらには0.8MPa・m1/2以上、さらには1MPa・m1/2以上、さらには1.2MPa・m1/2以上、さらには1.4MPa・m1/2以上、さらには1.5MPa・m1/2以上であり得る。
 本発明に係る硬化物は、JIS K 7139A-2に従ってダンベル試験片を作製し、この試験片についてJIS K 7161-1及びJIS K 7161-2に準拠して、10mm/分の引張速度で引張試験を実施したとき、破断時にネッキングを起こすという性質を示すことができる。
 ネッキングとは、ダンベル試験片の破断面の周辺において試験片の断面積が局部的に減少することであり、硬化物が塑性変形を示すことを意味する。
 上記性質は、硬化物が良好な引張特性を示すことの指標となるものである。
 本発明に係るエポキシ樹脂組成物及びその硬化物は、硬化物の耐熱性に優れ、引張特性にも優れることから様々な用途に適用することができ、例えば、接着剤、電子部品の封止、繊維への含浸用樹脂組成物として使用することができる。また、本発明に係るエポキシ樹脂組成物は、低粘度(25℃で50Pa・s以下)で含浸性に優れ、加熱により短時間(例えば135℃、15分)で硬化し、生産性に優れることから、電子部材の封止や、繊維への含浸用樹脂組成物として好適に使用できる。
 本発明は、上記硬化物を含む製品又は部品にも関する。該製品の一例は、上記硬化物と繊維等とを含む成形物(組成物)である。上記硬化物を含む製品又は部品は、例えば繊維のように、エポキシ樹脂組成物由来成分(硬化物)以外の成分を含んでいてもよい。
 本発明に係るエポキシ樹脂組成物を繊維への含浸用樹脂組成物として使用する場合について以下に説明する。
 本発明に係るエポキシ樹脂組成物と併用する繊維としては、ガラスファイバー、アラミド繊維、ケナフ繊維等の繊維を使用することができる。繊維の表面には公知のサイジング処理を実施してもよい。
 本発明に係るエポキシ樹脂組成物と繊維とを複合化して成形物を作製する方法としては、公知の方法を用いることができる。該方法としては、具体的には、
 繊維にエポキシ樹脂組成物を含浸して、マンドレル等の成型金型に巻き付けて成形し、加熱硬化させる、ウェットフィラメントワインディング法;
 繊維にエポキシ樹脂組成物を予め含浸させたトゥプリプレグを準備し、トゥプリプレグをマンドレル等の成型金型に巻き付けて成形し、加熱硬化させる、ドライフィラメントワインディング法;
 繊維の織物を作製し、金型に繊維織物を積層してプレス加圧して作製したプリフォームに、エポキシ樹脂組成物を真空含浸して、加熱硬化する、レジントランスファーモールド法;
 繊維の織物にエポキシ樹脂組成物を予め含浸させたプリプレグを準備し、マンドレル等の成型金型に巻き付けて成形し、加熱硬化させる、シートワインディング法;
 繊維の織物にエポキシ樹脂組成物を予め含浸させたプリプレグを準備し、金型にプリプレグを積層し、プレスで加熱・加圧硬化させる、プレス成形法;
 繊維の織物にエポキシ樹脂組成物を予め含浸させたプリプレグを準備し、プリプレグを成形冶具に載せてバッグフィルムで覆い、オートクレーブ中で加熱・加圧硬化させる、オートクレーブ成形法;
等が挙げられる。
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す%及び部は、特記ない限り、質量基準である。
 <実施例1~12、比較例1~6>
 (1)エポキシ樹脂組成物の調製
 下記表1及び表2に示される各成分を、下記表1及び表2に示される配合量で混合して、エポキシ樹脂組成物を調製した。表1及び表2において、各成分の配合量の単位は質量部である。すべての実施例及び比較例において、得られたエポキシ樹脂組成物は、液状であった(25℃で流動性あり)。
 表1及び表2の「OH/EPモル比」の欄に、仕込み量から算出される、エポキシ樹脂組成物中のエポキシ基含有量に対するフェノール性水酸基含有量のモル比を記載した。
 なお、ゴム粒子を添加した例においては、ゴム粒子がエポキシ樹脂に分散された組成物をエポキシ樹脂組成物調製用の配合成分として用いた。
 表1及び表2に示される各配合成分の詳細は次のとおりである。
 〔a〕エポキシ樹脂1:三菱ケミカル株式会社製の液状エポキシ樹脂 商品名「jER828」(ビスフェノールA型エポキシ樹脂、エポキシ当量:約190g/eq、粘度:約15Pa・s(25℃))
 〔b〕エポキシ樹脂2:三菱ケミカル株式会社製の固体エポキシ樹脂 商品名「jER YX4000」(ビフェニル型エポキシ樹脂、エポキシ当量:約190g/eq、融点:約105℃)
 〔c〕硬化剤1:1,3-ジヒドロキシベンゼン(レゾルシン)
 〔d〕硬化剤2:ジヒドロクマリン
 〔e〕硬化剤3:ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)
 〔f〕硬化促進剤1:株式会社T&K TOKA製のイミダゾールアダクト型硬化促進剤 商品名「フジキュアー FXR-1121」(潜在性)
 〔g〕硬化促進剤2:株式会社ADEKA製のイミダゾールアダクト型硬化促進剤 商品名「アデカハードナー EH-5011S」(潜在性)
 〔h〕硬化促進剤3:四国化成工業株式会社製のイミダゾール系硬化促進剤 商品名「キュアゾール 2E4MZ」(非アダクト型、非潜在性、化学名:2-エチル-4-メチルイミダゾール)
 〔i〕硬化促進剤4:ジシアンジアミド
 〔j〕ゴム粒子1:株式会社日本触媒製の商品名「アクリセット BPA328」に含まれるアクリルゴム粒子(エポキシ樹脂である上記商品名「jER828」にアクリルゴム粒子が分散された組成物)。この組成物に含まれるエポキシ樹脂の配合量は、表1の「エポキシ樹脂1」の欄に記載の配合量に含まれている。
 (2)エポキシ樹脂組成物及びその硬化物の評価
 (2-1)エポキシ樹脂組成物の粘度及びポットライフ
 約2gのエポキシ樹脂組成物を4.7mmアルミニウム球状プローブとともに試料管に封入した。この試験管を25℃に設定された京都電子工業株式会社製 EMS粘度計(EMS-1000)にセットし、モーター回転数1000rpm、測定時間2分又は1分、測定間隔30秒の条件でエポキシ樹脂組成物の粘度を測定した。結果を表1及び表2に示す。
 比較例1のエポキシ樹脂組成物については、粘度が高かったため、温度30℃で粘度を測定した。
 測定後の試料管を25℃恒温槽内で保管しながら、上記EMS粘度計にてエポキシ樹脂組成物の粘度をモニタリングした。保管開始の粘度の2倍になるまでの時間(日)としてポットライフを求めた。結果を表1及び表2に示す。
 比較例1、3及び4についてはポットライフの測定を行わなかった。
 (2-2)エポキシ樹脂組成物の硬化性
 エポキシ樹脂組成物を135℃に加熱したシリコーン金型に流し込み、同温度で15分間保持して、エポキシ樹脂組成物層の硬化反応を行った。
 硬化反応後にシリコーン金型を傾け、液垂れが生じるか否かを目視で確認し、下記評価基準に従ってエポキシ樹脂組成物の硬化性(速硬化性)を評価した。結果を表1及び表2に示す。
 A:液垂れは生じておらず、硬化反応後のエポキシ樹脂組成物層は十分に硬化しており、エポキシ樹脂組成物は速硬化性を有する。
 B:液垂れが生じていることから、硬化反応後のエポキシ樹脂組成物層の硬化が不十分であり、エポキシ樹脂組成物は速硬化性を有しない。
 比較例1については硬化性の評価を行わなかった。比較例4のエポキシ樹脂組成物は、上記硬化反応を実施すると、エポキシ樹脂組成物層に焦げが生じ、物性測定を行うことができるような硬化物が得られなかった。
 (2-3)硬化物のガラス転移温度(Tg)
 上記(2-2)で得られたエポキシ樹脂組成物の硬化物の約40mgをアルミニウムセルに秤量し、株式会社島津製作所製 示差走査熱量計(DSAC-60A)を用いて、ガラス転移温度(Tg)を測定した。結果を表1及び表2に示す。
 25℃から135℃まで15℃/分の昇温速度で昇温し、135℃で20分間保持した後、135℃から30℃まで-10℃/分の降温速度で冷却し、再び30℃から200℃まで10℃/分の昇温速度で昇温した際に観測されるDSC曲線の階段状変化の中間点をTg(℃)とした。
 比較例1、3及び4についてはTgの測定を行わなかった。
 (2-4)硬化物の引張特性
 エポキシ樹脂組成物の硬化物について、JIS K 7161-1及びJIS K 7161-2に準拠して引張特性を測定した。
 具体的には、エポキシ樹脂組成物をシリコーン金型に流し込み、上記(2-2)と同じ温度条件で硬化させることで、JIS K 7139A-2に従うダンベル試験片を得た。
 得られた試験片について、株式会社島津製作所製 オートグラフ(AGX-10kNXplus)を用いてJIS K 7161-1及びJIS K 7161-2に準拠して10mm/分の速度で引張試験を実施した。結果を表1及び表2に示す。破断伸びの測定においては、ビデオ式非接触伸び幅計(TRView)を用いて、標線間距離を算出した。
 比較例1、3及び4については引張特性の測定を行わなかった。
 なお、実施例1~12の硬化物から上記試験片を作製し、株式会社島津製作所製 オートグラフ(AGX-10kNXplus)を用いてJIS K 7161-1及びJIS K 7161-2に準拠して10mm/分の速度で引張試験を行ったところ、破断時にネッキングを起こした。
 (2-5)硬化物の破壊靱性
 6mmの厚みを有するエポキシ樹脂組成物の硬化物について、ASTM D5045-14に準拠して、破壊靭性K1Cを測定した。
 具体的には、エポキシ樹脂組成物をシリコーン金型に流し込み、上記(2-2)と同じ温度条件で硬化させることで、6mm×150mm×150mmの硬化物を得た。この硬化物から切削加工により6mm×60mm×12mmの試験片を作製し、30°t1.0一等角スライス刃でノッチ加工を行った後、予き裂加工を行った。
 予き裂加工後の試験片について、インストロン社製 万能材料試験機(5966型)を用いてASTM D5045-14に準拠して、1mm/minの速度で曲げ試験を行い、破壊荷重を測定した。
 また、上記6mm×150mm×150mmの硬化物から切削加工により6mm×150mm×12mmの試験片を作製し、30°t1.0一等角スライス刃でノッチ加工を行った後、予き裂加工を行った。
 予き裂加工後の試験片について、インストロン社製 万能材料試験機5966型を用いて、2.6mm/minの速度で曲げ試験を行い、0.2%耐力を測定した。
 得られた曲げ試験の0.2%耐力にて降伏応力を代用し、破壊靭性K1C(MPa・m1/2)を算出した。結果を表1及び表2に示す。
 破壊靭性K1Cの測定は、実施例3、6、7及び12について行った。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (8)

  1.  エポキシ樹脂(A)、
     下記式(B-1):
    Figure JPOXMLDOC01-appb-C000001

    [式中、Rは、水素原子、ハロゲン原子、メトキシ基又は炭素数1~12の炭化水素基を表す。]
    で表される化合物を含む硬化剤(B)、及び
     イミダゾールアダクト型硬化促進剤(C)
    を含むエポキシ樹脂組成物であって、
     前記エポキシ樹脂組成物中のエポキシ基含有量に対するフェノール性水酸基含有量のモル比が0.25~0.67である、エポキシ樹脂組成物。
  2.  前記エポキシ樹脂(A)は、分子内にエポキシ基を2個有するエポキシ樹脂を含む、請求項1に記載のエポキシ樹脂組成物。
  3.  前記化合物は、融点が150℃以下である、請求項1又は2に記載のエポキシ樹脂組成物。
  4.  前記モル比が0.35~0.5である、請求項1~3のいずれか1項に記載のエポキシ樹脂組成物。
  5.  前記硬化剤(B)は、下記式(B-2):
    Figure JPOXMLDOC01-appb-C000002

    [式中、Rは、水素原子、ハロゲン原子、メチル基又はメトキシ基を表す。]
    で表される化合物をさらに含む、請求項1~4のいずれか1項に記載のエポキシ樹脂組成物。
  6.  請求項1~5のいずれか1項に記載のエポキシ樹脂組成物の硬化物。
  7.  請求項1~5のいずれか1項に記載のエポキシ樹脂組成物と繊維を含むプリプレグ。
  8.  請求項1~5のいずれか1項に記載のエポキシ樹脂組成物の硬化物と繊維を含む組成物。
PCT/JP2019/040648 2018-11-27 2019-10-16 エポキシ樹脂組成物及びその硬化物 WO2020110493A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/296,767 US20220025106A1 (en) 2018-11-27 2019-10-16 Epoxy resin composition and cured product thereof
KR1020217018116A KR20210096135A (ko) 2018-11-27 2019-10-16 에폭시 수지 조성물 및 그 경화물
CN201980077563.1A CN113286840B (zh) 2018-11-27 2019-10-16 环氧树脂组合物及其固化物
EP19891316.2A EP3889201A4 (en) 2018-11-27 2019-10-16 EPOXY RESIN COMPOSITION AND CURED PRODUCT THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018220978A JP7198644B2 (ja) 2018-11-27 2018-11-27 エポキシ樹脂組成物及びその硬化物
JP2018-220978 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020110493A1 true WO2020110493A1 (ja) 2020-06-04

Family

ID=70852267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040648 WO2020110493A1 (ja) 2018-11-27 2019-10-16 エポキシ樹脂組成物及びその硬化物

Country Status (6)

Country Link
US (1) US20220025106A1 (ja)
EP (1) EP3889201A4 (ja)
JP (1) JP7198644B2 (ja)
KR (1) KR20210096135A (ja)
CN (1) CN113286840B (ja)
WO (1) WO2020110493A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241286A1 (ja) * 2020-05-27 2021-12-02 住友化学株式会社 エポキシ樹脂組成物及びその硬化物
WO2021241288A1 (ja) * 2020-05-27 2021-12-02 住友化学株式会社 エポキシ樹脂組成物及びその硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022175617A (ja) * 2021-05-14 2022-11-25 住友化学株式会社 エポキシ樹脂組成物及びその硬化物

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953526A (ja) 1982-09-21 1984-03-28 Ajinomoto Co Inc エポキシ樹脂用潜在性硬化剤
JPS59168023A (ja) * 1983-03-03 1984-09-21 インテッツ・インコ−ポレ−テド エポキシ樹脂用変性イミダゾ−ル系硬化触媒
JPS604524A (ja) 1983-06-22 1985-01-11 Ajinomoto Co Inc エポキシ樹脂用潜在性硬化剤
JPS6072917A (ja) 1983-09-30 1985-04-25 Ajinomoto Co Inc エポキシ樹脂用潜在性硬化剤
DD289280A5 (de) * 1989-11-29 1991-04-25 Elektronische Bauelemente,De Verfahren zur haertung von epoxidharzsystemen
JPH0673156A (ja) 1992-06-24 1994-03-15 Shikoku Chem Corp 潜在性エポキシ硬化剤及びその製造方法並びにエポキシ樹脂組成物
JPH06172495A (ja) 1992-10-05 1994-06-21 Shikoku Chem Corp エポキシ樹脂組成物
JP2000351831A (ja) * 1999-06-11 2000-12-19 Nippon Kayaku Co Ltd 光半導体封止用エポキシ樹脂組成物
JP2005206744A (ja) 2004-01-26 2005-08-04 Fuji Kasei Kogyo Co Ltd 一成分系加熱硬化性エポキシド組成物
JP2008214567A (ja) 2007-03-07 2008-09-18 Adeka Corp エポキシ樹脂用硬化剤組成物及びそれを用いた硬化性エポキシ樹脂組成物
JP2013032510A (ja) 2011-06-29 2013-02-14 Toray Ind Inc エポキシ樹脂組成物、成形材料および繊維強化複合材料
JP2014177525A (ja) 2013-03-14 2014-09-25 Adeka Corp ビスイミダゾール化合物、該ビスイミダゾール化合物を含有するエポキシ樹脂用硬化剤及び該エポキシ樹脂用硬化剤を含有する一液型硬化性エポキシ樹脂組成物
JP2015083634A (ja) 2013-10-25 2015-04-30 日立化成株式会社 エポキシ樹脂組成物、このエポキシ樹脂組成物を用いた電子部品装置及び電子部品装置の製造方法。

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145654B2 (de) * 1983-11-09 1992-05-13 Ciba-Geigy Ag Verfahren zum Innenauskleiden von Rohren oder Rohrteilstücken
JPH02227470A (ja) * 1989-02-28 1990-09-10 Somar Corp エポキシ樹脂紛体塗料組成物
US5464910A (en) * 1993-12-22 1995-11-07 Shikoku Chemicals Corporation Epoxy resin adduct combined with a borate ester and phenolic compound
JPH11256013A (ja) * 1998-03-12 1999-09-21 Ajinomoto Co Inc エポキシ樹脂組成物
US20040075802A1 (en) * 1999-12-14 2004-04-22 Mitsui Chemicals, Inc. Sealant for liquid crystal display cell, composition for liquid crystal display cell sealant and liquid crystal display element
US7037399B2 (en) * 2002-03-01 2006-05-02 National Starch And Chemical Investment Holding Corporation Underfill encapsulant for wafer packaging and method for its application
JP2004111380A (ja) * 2002-08-29 2004-04-08 Toray Ind Inc 有機電界発光素子封止用樹脂組成物、有機電界発光素子及び有機電界発光素子の封止方法
ATE397634T1 (de) * 2005-02-18 2008-06-15 Henkel Kgaa Aminhärtende epoxidharzzusammensetzungen mit einem lacton mit geringer schwindung
JPWO2009001492A1 (ja) * 2007-06-22 2010-08-26 住友ベークライト株式会社 接着フィルムおよびこれを用いた半導体装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953526A (ja) 1982-09-21 1984-03-28 Ajinomoto Co Inc エポキシ樹脂用潜在性硬化剤
JPS59168023A (ja) * 1983-03-03 1984-09-21 インテッツ・インコ−ポレ−テド エポキシ樹脂用変性イミダゾ−ル系硬化触媒
JPS604524A (ja) 1983-06-22 1985-01-11 Ajinomoto Co Inc エポキシ樹脂用潜在性硬化剤
JPS6072917A (ja) 1983-09-30 1985-04-25 Ajinomoto Co Inc エポキシ樹脂用潜在性硬化剤
DD289280A5 (de) * 1989-11-29 1991-04-25 Elektronische Bauelemente,De Verfahren zur haertung von epoxidharzsystemen
JPH0673156A (ja) 1992-06-24 1994-03-15 Shikoku Chem Corp 潜在性エポキシ硬化剤及びその製造方法並びにエポキシ樹脂組成物
JPH06172495A (ja) 1992-10-05 1994-06-21 Shikoku Chem Corp エポキシ樹脂組成物
JP2000351831A (ja) * 1999-06-11 2000-12-19 Nippon Kayaku Co Ltd 光半導体封止用エポキシ樹脂組成物
JP2005206744A (ja) 2004-01-26 2005-08-04 Fuji Kasei Kogyo Co Ltd 一成分系加熱硬化性エポキシド組成物
JP2008214567A (ja) 2007-03-07 2008-09-18 Adeka Corp エポキシ樹脂用硬化剤組成物及びそれを用いた硬化性エポキシ樹脂組成物
JP2013032510A (ja) 2011-06-29 2013-02-14 Toray Ind Inc エポキシ樹脂組成物、成形材料および繊維強化複合材料
JP2014177525A (ja) 2013-03-14 2014-09-25 Adeka Corp ビスイミダゾール化合物、該ビスイミダゾール化合物を含有するエポキシ樹脂用硬化剤及び該エポキシ樹脂用硬化剤を含有する一液型硬化性エポキシ樹脂組成物
JP2015083634A (ja) 2013-10-25 2015-04-30 日立化成株式会社 エポキシ樹脂組成物、このエポキシ樹脂組成物を用いた電子部品装置及び電子部品装置の製造方法。

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889201A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241286A1 (ja) * 2020-05-27 2021-12-02 住友化学株式会社 エポキシ樹脂組成物及びその硬化物
WO2021241288A1 (ja) * 2020-05-27 2021-12-02 住友化学株式会社 エポキシ樹脂組成物及びその硬化物

Also Published As

Publication number Publication date
CN113286840A (zh) 2021-08-20
EP3889201A1 (en) 2021-10-06
JP2020084050A (ja) 2020-06-04
KR20210096135A (ko) 2021-08-04
US20220025106A1 (en) 2022-01-27
EP3889201A4 (en) 2022-08-24
JP7198644B2 (ja) 2023-01-04
CN113286840B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US9249282B2 (en) Curable resin composition and short-cure method
WO2020110493A1 (ja) エポキシ樹脂組成物及びその硬化物
US20130096232A1 (en) Curable epoxy resin compositions and composites made therefrom
JP6459475B2 (ja) プリプレグ、及び成形品の製造方法
US20220325073A1 (en) Matrix resin for laminates with high transparency, low yellowing and high glass transition temperatures
JP5842395B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
WO2021241287A1 (ja) エポキシ樹脂組成物
JP2017186453A (ja) エポキシ化合物、エポキシ化合物含有組成物及びその硬化物
JP7491741B2 (ja) エポキシ樹脂組成物及びその硬化物
WO2021241286A1 (ja) エポキシ樹脂組成物及びその硬化物
WO2022239797A1 (ja) エポキシ樹脂組成物及びその硬化物
JP7161482B2 (ja) 硬化性エポキシ樹脂組成物、及びそれを用いた繊維強化複合材料
WO2021241288A1 (ja) エポキシ樹脂組成物及びその硬化物
JP7059000B2 (ja) エポキシ樹脂組成物の硬化方法
JP6697711B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料およびその製造方法
JP2024058812A (ja) エポキシ樹脂組成物及びその硬化物
KR20160136513A (ko) 탈오토클레이브 성형용 열경화성 복합수지 조성물 및 이를 이용한 수지필름 제조방법
JP2016050233A (ja) 繊維強化複合材料用エポキシ樹脂組成物、それを用いた繊維強化複合材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217018116

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019891316

Country of ref document: EP

Effective date: 20210628