WO2020059626A1 - 有機半導体デバイス製造用インク組成物 - Google Patents

有機半導体デバイス製造用インク組成物 Download PDF

Info

Publication number
WO2020059626A1
WO2020059626A1 PCT/JP2019/035857 JP2019035857W WO2020059626A1 WO 2020059626 A1 WO2020059626 A1 WO 2020059626A1 JP 2019035857 W JP2019035857 W JP 2019035857W WO 2020059626 A1 WO2020059626 A1 WO 2020059626A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ink composition
organic semiconductor
substituent
substituent selected
Prior art date
Application number
PCT/JP2019/035857
Other languages
English (en)
French (fr)
Inventor
赤井泰之
横尾健
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020217010998A priority Critical patent/KR20210060538A/ko
Priority to EP19863021.2A priority patent/EP3855520A4/en
Priority to US17/271,096 priority patent/US11702557B2/en
Priority to CN201980061317.7A priority patent/CN112771684A/zh
Priority to JP2020548429A priority patent/JP7404257B2/ja
Publication of WO2020059626A1 publication Critical patent/WO2020059626A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to an ink composition for producing an organic semiconductor device. More specifically, the present invention relates to an ink composition used for manufacturing an organic semiconductor device by a coating film forming method including a printing method.
  • Priority is claimed on Japanese Patent Application No. 2018-174905, filed on September 19, 2018, the content of which is incorporated herein by reference.
  • organic semiconductors which have been expected as the core technology of printed electronics, have high mechanical strength against bending and can be formed by a low-temperature process and coating method. It has excellent characteristics compared to semiconductor materials, and research and development of materials and devices for practical use are actively conducted.
  • an organic single-crystal semiconductor film for realizing a high-performance organic semiconductor device has attracted attention, and an edge casting method and a continuous edge casting method have been proposed as manufacturing techniques thereof (Patent Document 1).
  • Patent Document 2 a chalcogen-containing organic compound functioning as a p-type semiconductor
  • Patent Document 3 An organic compound having a perylene bisimide skeleton represented by (Perylene @ diimides (PDIs)) and the like (Patent Document 3) has been proposed.
  • the low molecular weight organic single crystal semiconductor material proposed above has a fused ring skeleton in which ⁇ electrons are highly conjugated, and has a very low solubility in a solvent due to its rigid main chain skeleton structure. It has been very difficult to obtain an ink composition for forming a good quality organic single crystal semiconductor.
  • organic semiconductor material is manufactured by a manufacturing method centering on a vapor phase growth process, and a benzothienobenzothiophene derivative (Cn-BTBT, 2,7- derivatives such as dialkyl [1] benzothieno [3,2-b] [1] benzothiophenes) and TIPS-Pentacene (6,13-Bis (triisopropysilylethylynyl) pentacene) to which a highly soluble substituent is added, and tetrabenzo.
  • an object of the present invention is to provide an ink composition for manufacturing an organic semiconductor device, which is capable of forming an organic semiconductor material having a rigid main chain skeleton at an optimum solute concentration for a single crystal forming process. That is.
  • a further object of the present invention is to provide an ink composition for manufacturing an organic semiconductor device, which can form a high-performance organic single-crystal semiconductor element having few crystal grain boundaries.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, the organic semiconductor material having a rigid main chain skeleton for a specific naphthalene compound has a relatively high solubility, which is optimal for a single crystal forming process of the organic semiconductor material. It has been found that it is suitable as a solvent capable of forming an ink at a solute concentration. Further, they have found that by reducing the isomer content of the above-mentioned naphthalene compound, a large single crystal can be grown to form an organic single crystal semiconductor element with a small number of crystal grain boundaries. The present invention has been completed based on this finding.
  • the present invention provides an ink composition for manufacturing an organic semiconductor device, comprising at least one solvent selected from the following naphthalene compounds (A) and at least one solute.
  • Naphthalene compound (A) a compound represented by the following formula (a) [In the formula (a), R is a hydrogen atom, a halogen atom, a C 1-20 alkyl group which may have a substituent selected from the following group 1, and a group which has a substituent selected from the following group 1.
  • Group 1 includes a halogen atom, a sulfonyl group, a hydroxy group, an aldehyde group (—CHO), a carbonyl group, a carboxyl group, a nitro group, an amino group, a sulfo group (—SO 3 H), an ether group, a C 1-20 alkylthio group.
  • Group 2 includes a substituent selected from Group 1 above, a C 1-20 alkyl group optionally having a substituent selected from Group 1 above, and a C 1-20 alkyl group optionally having a substituent selected from Group 1 above. It is selected from a 2-20 alkenyl group and a C 2-20 alkynyl group which may have a substituent selected from the above group 1. ]
  • R is preferably a halogen atom or a C 1-20 alkyl group which may have a substituent selected from Group 1.
  • the naphthalene compound (A) is preferably at least one selected from the group consisting of 1-chloronaphthalene and 1-methylnaphthalene.
  • the content of the isomer of the naphthalene compound (A) is 2% as a ratio of a peak area by gas chromatography to the naphthalene compound (A) (100%). % Is preferable.
  • the solute may be an organic semiconductor material.
  • the solute may be an n-type organic semiconductor material.
  • the ink composition for manufacturing an organic semiconductor device may further include a polymer compound as a second component in addition to the solute.
  • the ink composition for manufacturing an organic semiconductor device may be used for producing an organic single crystal semiconductor film by a drop casting method, an inkjet printing method, an edge casting method, or a continuous edge casting method.
  • the ink composition for manufacturing an organic semiconductor device of the present invention has the above-described structure, even when an organic semiconductor material having a rigid main chain skeleton is used, the ink concentration can be realized in a temperature range where a coating process is possible. Further, by lowering the isomer content of the naphthalene compound to the above range, a large single crystal can be grown to efficiently form a high-performance organic single crystal semiconductor device having a small number of crystal grain boundaries, and the cost can be reduced. A highly reliable organic single crystal semiconductor film can be efficiently formed. Further, since a coating process can be performed, an organic single crystal semiconductor film with high uniformity can be formed over a large area. Therefore, an unprecedented high-performance flexible device can be provided with high efficiency and low cost by using the organic thin film transistor.
  • an organic single crystal semiconductor is formed by a coating method such as a drop casting method, an inkjet printing method, an edge casting method, or a continuous edge casting method.
  • FIG. 1 is a drawing showing a schematic diagram of a cross-sectional structure of an example of an organic thin film transistor. It is a drawing which shows the concept of an example of a continuous edge casting method.
  • the ink composition for manufacturing an organic semiconductor device of the present invention (hereinafter, may be simply referred to as “the ink composition of the present invention”) comprises at least one solvent selected from the following naphthalene compounds (A) and at least one solvent Characterized by containing a solute of Naphthalene compound (A): a compound represented by the following formula (a) [In the formula (a), R is a hydrogen atom, a halogen atom, a C 1-20 alkyl group which may have a substituent selected from the following group 1, and a group which has a substituent selected from the following group 1.
  • Group 1 includes a halogen atom, a sulfonyl group, a hydroxy group, an aldehyde group (—CHO), a carbonyl group, a carboxyl group, a nitro group, an amino group, a sulfo group (—SO 3 H), an ether group, a C 1-20 alkylthio group.
  • Group 2 includes a substituent selected from Group 1 above, a C 1-20 alkyl group optionally having a substituent selected from Group 1 above, and a C 1-20 alkyl group optionally having a substituent selected from Group 1 above. It is selected from a 2-20 alkenyl group and a C 2-20 alkynyl group which may have a substituent selected from the above group 1. ]
  • the ink composition of the present invention contains, as a solvent, at least one selected from naphthalene compounds (A) which are compounds represented by the above formula (a).
  • the naphthalene compound (A) exhibits relatively high solubility even in an organic semiconductor material having a rigid main chain skeleton, and is suitable as a solvent capable of forming an ink at an optimum solute concentration for a single crystal forming process of the organic semiconductor material. I have.
  • the ink composition of the present invention may contain only one type of naphthalene compound (A), or may contain two or more types of naphthalene compounds (A).
  • R may be a hydrogen atom, a halogen atom, a C 1-20 alkyl group optionally having a substituent selected from the above group 1, and a substituent selected from the above group 1.
  • a C 1-20 alkylthio group optionally having a substituent selected from Group 1, a C 2-20 alkylcarbonyl group optionally having a substituent selected from Group 1, and a substituent selected from Group 1
  • a C 2-20 alkoxycarbonyl group optionally having a group, a di- or mono-C 1-20 alkylamino group optionally having a substituent selected from the above group 1, a substituent selected from the above group 2 good C 6-20 aryl group which may have a heterocyclic group of monovalent which may have a substituent selected from the group 2 Or
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable.
  • C 1-20 alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group Linear or branched alkyl groups having 1 to 20 carbon atoms such as isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, heptyl group, octyl group, nonyl group and decyl group.
  • a methyl group an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl
  • C 2-22 alkenyl group examples include vinyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 3-methyl-2- Butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 3-hexenyl, 5-hexenyl, 1-heptenyl, 1-octenyl, 1-nonenyl, Examples thereof include a linear or branched alkenyl group having 2 to 22 carbon atoms such as 1-decenyl.
  • the “C 2-22 alkynyl group” includes, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl C2-C22 linear or branched such as pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-heptynyl, 1-octynyl, 1-noninyl, and 1-decynyl
  • a chain alkynyl group is exemplified.
  • the “C 1-20 alkoxy group” includes, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyl 1 to 20 carbon atoms such as oxy group, isopentyloxy group, neopentyloxy group, tert-pentyloxy group, n-hexyloxy group, isohexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, and decyloxy group And a straight-chain or branched-chain alkoxy group.
  • the “C 1-20 alkylthio group” includes, for example, methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, n- C1-C20 linear chains such as pentylthio, isopentylthio, neopentylthio, tert-pentylthio, n-hexylthio, isohexylthio, heptylthio, octylthio, nonylthio, decylthio, etc. Or a branched alkylthio group.
  • C 2-20 alkylcarbonyl group examples include, for example, acetyl group, propionyl group, n-butyryl group, isobutyryl group, n-butylcarbonyl group, isobutylcarbonyl group, sec-butylcarbonyl group, tert-butylcarbonyl group , N-pentylcarbonyl, isopentylcarbonyl, neopentylcarbonyl, tert-pentylcarbonyl, n-hexylcarbonyl, isohexylcarbonyl, heptylcarbonyl, octylcarbonyl, nonylcarbonyl, decylcarbonyl, etc. And a linear or branched alkylcarbonyl group having 2 to 20 carbon atoms.
  • C 2-20 alkoxycarbonyl group examples include, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, an n-butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group Tert-butoxycarbonyl group, n-pentyloxycarbonyl group, isopentyloxycarbonyl group, neopentyloxycarbonyl group, tert-pentyloxycarbonyl group, n-hexyloxycarbonyl group, isohexyloxycarbonyl group, heptyloxycarbonyl group And a straight-chain or branched-chain alkoxycarbonyl group having 2 to 20 carbon atoms such as octyloxycarbonyl group, nonyloxycarbonyl group and decyloxycarbonyl group.
  • Examples of the “di- or mono-C 1-20 alkylamino group” include a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, an isobutylamino group, a tert-butylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-dipropylamino group, N, N-diisopropylamino group, N, N-dibutylamino group, N, N-diisobutylamino group, An amino group mono- or di-substituted with the above “C 1-20 alkyl group” such as an N-di-tert-butylamino group and an N-methyl-N-ethylamino group is exemplified.
  • the “C 6-20 aryl group” includes, for example, an aryl group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an acenaphthylenyl group and a biphenylyl group.
  • heterocyclic group for example, a 5- to 20-membered (preferably 5 to 20) member having a carbon atom and 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen in the ring. Or 6-membered) aromatic heterocyclic group and non-aromatic heterocyclic group.
  • aromatic heterocyclic group examples include, for example, monocyclic aromatic heterocyclic groups such as furyl, thienyl, pyridyl, pyrrolyl, imidazolyl, pyrazolyl, and thiazolyl; quinolyl, isoquinolyl and the like And a condensed aromatic heterocyclic group.
  • non-aromatic heterocyclic group examples include, for example, a monocyclic non-aromatic heterocyclic group such as a piperidyl group, a morpholinyl group, a piperazinyl group, and a tetrahydrofuryl group; a chromenyl group, a tetrahydroquinolinyl group, and a tetrahydroisoxyl group
  • a fused non-aromatic heterocyclic group such as a norinyl group is exemplified.
  • C 3-20 cycloalkyl group examples include a C 3-20 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group. And an alkyl group.
  • sulfonyl group examples include “C 1-20 alkylsulfonyl group”, “C 6-20 arylsulfonyl group” and the like.
  • the “C 1-20 alkylsulfonyl group” includes methylsulfonyl group, ethylsulfonyl group, n-propylsulfonyl group, isopropylsulfonyl group, n-butylsulfonyl group, isobutylsulfonyl group, sec-butylsulfonyl group, tert-butyl Sulfonyl group, n-pentylsulfonyl group, isopentylsulfonyl group, neopentylsulfonyl group, tert-pentylsulfonyl group, n-hexylsulfonyl group, isohexylsulfonyl group, heptylsulfonyl group, octylsulfonyl group, nonylsulfonyl group, decylsul
  • C 6-20 arylsulfonyl group examples include, for example, those having 6 carbon atoms such as phenylsulfonyl group, naphthylsulfonyl group, anthrylsulfonyl group, phenanthrylsulfonyl group, acenaphthylenylsulfonyl group, biphenylylsulfonyl group and the like. -20 arylsulfonyl groups.
  • carbonyl group examples include the above-mentioned “C 2-20 alkylcarbonyl group”, the above-mentioned “C 2-20 alkoxycarbonyl group”, and the above-mentioned “C 7-20 arylcarbonyl group”.
  • the “C 7-20 arylcarbonyl group” includes, for example, those having 7 to 7 carbon atoms such as a benzoyl group, a naphthylcarbonyl group, an anthrylcarbonyl group, a phenanthrylcarbonyl group, an acenaphthylenylcarbonyl group and a biphenylylcarbonyl group. 20 arylcarbonyl groups.
  • ether group examples include the above-mentioned “C 1-20 alkoxy group”, “C 6-20 aryloxy group” and the like.
  • C 6-20 aryloxy group examples include those having 6 to 6 carbon atoms such as phenoxy, naphthyloxy, anthryloxy, phenanthryloxy, acenaphthylenyloxy, biphenylyloxy and the like. 20 aryloxy groups.
  • C 3-20 substituted silyl group examples include the above-mentioned "C 1-20 alkyl group” such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, tert-butyldiphenylsilyl group, triisopropylsilyl group and the like. And a silyl group having 1 to 3 (preferably 3) substituents selected from the above “C 6-20 aryl group”.
  • C 1-20 alkyl group C 2-22 alkenyl group”, “C 2-22 alkynyl group”, “C 1-20 alkoxy group”, “C 1-20 alkylthio group”, “C 2
  • the “-20 alkylcarbonyl group”, “C 2-20 alkoxycarbonyl group”, and “di- or mono-C 1-20 alkylamino group” may have a substituent selected from Group 1 described above;
  • the “C 6-20 aryl group”, “monovalent heterocyclic group”, and “C 3-20 cycloalkyl group” may have a substituent selected from Group 2 described above.
  • the number of substituents is not particularly limited, and is preferably 1 to 3. When the compound has two or more substituents, the two or more substituents may be the same or different.
  • R a halogen atom, a C 1-20 alkyl group which may have a substituent selected from the above group 1, and a group represented by the above group 1 from the viewpoint of the solubility and availability of the solute in the naphthalene compound (A).
  • a C 1-20 alkoxy group which may have a selected substituent is preferable, and a halogen atom, a C 1-20 alkyl group, a C 1-20 alkoxy group and the like are more preferable, and a fluorine atom, a chlorine atom, a C 1- 6 alkyl groups (methyl group, ethyl group, etc.) and C 1-6 alkoxy groups (methoxy group, ethoxy group, etc.) are more preferred, and C 1-6 alkyl groups (particularly, methyl group, etc.) and chlorine atoms are particularly preferred.
  • naphthalene compounds are obtained as by-products of crude oil refining, and are mainly fractionated by distillation and further derivatized. Structural isomers of naphthalene compounds have very similar physical properties and are difficult to separate by fractionation and derivatization. Therefore, industrially distributed naphthalene compounds contain several% of isomers.
  • the naphthalene compound (A) is not particularly limited, but the content of the isomer of the naphthalene compound (A) is 2% as the ratio of the peak area by gas chromatography to the naphthalene compound (A) (100%).
  • % Or less more preferably 1.8% or less, still more preferably 1.5% or less, further preferably 1.2% or less, still more preferably 1% or less, and particularly preferably 0.8% or less.
  • a naphthalene compound (A) having an isomer content of 2% or less as a solvent for the ink composition of the present invention, a large single crystal can be easily grown and a high-performance organic single crystal having few crystal grain boundaries. There is a tendency to obtain a semiconductor device including a semiconductor element.
  • the isomer of the naphthalene compound (A) is not particularly limited, but isomers that are difficult to separate from the naphthalene compound (A) include positional isomers. Specifically, the isomers represented by the following formula (a ′) Naphthalene compound (A ').
  • R ′ has the same meaning as R in the above formula (a).
  • the naphthalene compound (A) is a 1-substituted product ( ⁇ -substituted product), and the naphthalene compound (A ′) is a 2-substituted product ( ⁇ -substituted product).
  • a known precision distillation eg, an Oldershaw-type distillation apparatus.
  • the mechanism by which a large single crystal grows and the number of crystal grain boundaries decreases is not clear, but can be inferred as follows. That is, the 1-substituted product ( ⁇ -substituted product) has a substituent in the longitudinal direction ( ⁇ direction) with respect to the naphthalene ring surface, and thus is difficult to crystallize and generally becomes liquid at room temperature.
  • the content of the isomer of the naphthalene compound (A) can be measured as a ratio of a peak area by gas chromatography.
  • the measurement conditions of gas chromatography are not particularly limited as long as the naphthalene compound (A) and its isomer can be separated, and for example, the conditions described in Examples described later can be used.
  • the molecular weight of the naphthalene compound (A) is not particularly limited, but is, for example, about 250 or less, preferably 128 to 200, and particularly preferably 130 to 180. When the molecular weight of the naphthalene compound (A) is higher than 250, the naphthalene compound (A) becomes difficult to evaporate, and the production efficiency of the organic single crystal semiconductor may decrease.
  • the boiling point of the naphthalene compound (A) is not particularly limited, but is, for example, about 300 ° C. or less, preferably 200 to 300 ° C., and particularly preferably 210 to 280 ° C. When the boiling point of the naphthalene compound (A) is higher than 300 ° C., the naphthalene compound (A) becomes difficult to evaporate, and the production efficiency of the organic single crystal semiconductor may decrease.
  • the SP value of the naphthalene compound (A) at 25 ° C. according to the Fedors method is, for example, 7.0 to 12.0 [(cal / cm 3 ) 0.5 ], preferably 8.0 to 12.0 [(cal / cm 3). ) 0.5 ], particularly preferably 9.0 to 11.5 [(cal / cm 3 ) 0.5 ].
  • the SP value according to the Fedors method is described in Polym. Eng. Sci. , 14 [2], 147-154 (1974).
  • naphthalene compound (A) examples include 1-naphthaleneacetic acid, 1-naphthalenemethanol, 1-naphthaleneethanol, 1-vinylnaphthalene, 1-methylnaphthalene, 1-ethylnaphthalene, 1-fluoronaphthalene, 1-chloro Naphthalene, 1-bromonaphthalene, 1-iodonaphthalene, 1-methoxynaphthalene, 1-ethoxynaphthalene, 1- (chloromethyl) naphthalene, 1- (2-bromoethyl) naphthalene, 1-acetylnaphthalene, 1- (aminomethyl) Examples thereof include naphthalene and 1- (trifluoromethyl) naphthalene.
  • 1-chloronaphthalene, 1-methylnaphthalene, 1-ethylnaphthalene, 1-fluoronaphthalene, 1-methoxynaphthalene, and the like are preferable from the viewpoints of solubility of an organic semiconductor material, film forming property of an organic single crystal semiconductor, and the like.
  • 1-chloronaphthalene, 1-methylnaphthalene, 1-fluoronaphthalene and 1-methoxynaphthalene are more preferred, and 1-chloronaphthalene, 1-methylnaphthalene and 1-methoxynaphthalene are even more preferred. From the viewpoint of reducing the grain boundaries, 1-chloronaphthalene and 1-methylnaphthalene are particularly preferred.
  • the ink composition of the present invention may contain a solvent (other solvent) other than the naphthalene compound (A).
  • the above-mentioned other solvent is a solvent generally used for electronic materials, and includes a solvent compatible with the naphthalene compound (A).
  • One or more of the other solvents may be contained.
  • the content ratio of the naphthalene compound (A) in the total amount of the solvent (100% by weight) contained in the ink composition of the present invention is, for example, 50% by weight or more (for example, 50% by weight or more).
  • the content of the naphthalene compound (A) is below the above range, the solubility of the organic semiconductor material tends to decrease.
  • the solute contained in the ink composition of the present invention is not particularly limited, but is preferably an organic semiconductor material.
  • organic semiconductor material known organic semiconductor materials can be used without particular limitation, and p-type organic semiconductor materials and n-type organic semiconductor materials can be used.
  • a compound having a rigid main chain skeleton is preferable from the viewpoint of field-effect mobility and the like.
  • a compound represented by the following formula (1-2) is preferable from the viewpoint of field-effect mobility and the like.
  • X 1 and X 2 are each independently an oxygen atom, a sulfur atom, or a selenium atom, m is 0 or 1, and n 1 and n 2 are each independently 0 or 1.
  • R 1 , R 2 are each independently a fluorine atom, a C 1-20 alkyl group, a C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group, and a hydrogen atom contained in the alkyl group
  • One or more of the hydrogen atoms contained in the aryl group, pyridyl group, furyl group, thienyl group and thiazolyl group may be substituted with a fluorine atom or a carbon atom having 1 to 10 carbon atoms. May be substituted with an alkyl group
  • X 1 and X 2 are each independently an oxygen atom, a sulfur atom, or a selenium atom, and among them, an oxygen atom or a sulfur atom is preferable in view of high carrier mobility, and a sulfur atom is particularly preferable.
  • ⁇ m is 0 or 1, preferably 0.
  • n 1 and n 2 are each independently 0 or 1, and 0 is preferred from the viewpoint of excellent solubility.
  • Examples of the C 1-20 alkyl group for R 1 and R 2 include the same examples as the C 1-20 alkyl group for R.
  • a C 4-15 alkyl group is particularly preferred, a C 6-12 alkyl group is particularly preferred, and a C 6-10 alkyl group is most preferred.
  • Examples of the C 6-10 aryl group for R 1 and R 2 include those having 6 to 10 carbon atoms among the C 6-20 aryl groups for the above R. Of these, a phenyl group is preferred.
  • pyridyl group examples include a 2-pyridyl, 3-pyridyl, 4-pyridyl group and the like.
  • Examples of the furyl group include 2-furyl and 3-furyl groups.
  • thienyl group examples include a 2-thienyl group and a 3-thienyl group.
  • Examples of the thiazolyl group include a 2-thiazolyl group.
  • One or more hydrogen atoms contained in the alkyl group may be substituted with a fluorine atom.
  • a fluorine atom for example, a trifluoromethyl group and the like can be mentioned.
  • One or more hydrogen atoms contained in the aryl group, pyridyl group, furyl group, thienyl group and thiazolyl group may be substituted with a fluorine atom or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group of up to 10 include straight-chain or branched chains such as methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, and n-decyl groups.
  • Alkyl group an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is particularly preferable.
  • Examples of the group in which at least one of the hydrogen atoms contained in the aryl group is substituted with an alkyl group having 1 to 10 carbon atoms include, for example, a tolyl group and a xylyl group.
  • Examples of the group in which at least one of the hydrogen atoms contained in the aryl group is substituted with a fluorine atom include a p-fluorophenyl group and a pentafluorophenyl group.
  • R 1 and R 2 are the same or different from each other in terms of having a high carrier mobility, and may be a C 1-20 alkyl group, a C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl. Groups are preferred.
  • the compound represented by the above formula (1-2) exceeds 200 ° C. This is preferable in that the crystal state can be maintained even in a high temperature environment and the thermal stability is excellent.
  • a compound represented by the following formula (2) is particularly preferable.
  • R 3, R 4 are each independently a C 1-20 alkyl group, C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or thiazolyl group, said R 3, R 4 And the same examples as the C 1-20 alkyl group, C 6-10 aryl group, pyridyl group, furyl group, thienyl group, and thiazolyl group.
  • R 3 and R 4 are preferably the same group in terms of having high carrier mobility, and particularly preferably a C 1-20 alkyl group, a phenyl group, a furyl group, or a thienyl group.
  • a C 1-20 alkyl group (among which a C 4-15 alkyl group is preferable, a C 6-12 alkyl group is most preferable, and a C 6-10 alkyl group is most preferable) is preferable.
  • the p-type organic semiconductor material of the present invention is characterized in that at least one compound selected from the group consisting of compounds represented by the following formulas (2-1) to (2-5) has high carrier mobility. Particularly preferred.
  • the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) can be produced by a production method described in International Publication No. 2014/136827 or the like. Also, for example, commercially available products such as “C 10 -DNBDT-NW” and “C 6 -DNBDT-NW” (all manufactured by PiCrystal Co., Ltd.) can be used.
  • the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) form an N-shaped molecular structure in which a benzene ring is linked to both wings with a crosslinked portion formed by a chalcogen atom as a bending point. It has a structure in which substituents are introduced into benzene rings at both ends of the rigid main chain skeleton. Therefore, the solubility in the naphthalene compound (A) is higher than that of a linear molecule having the same number of rings, and it is difficult to precipitate even in a low-temperature environment.
  • n-type organic semiconductor material as a solute contained in the ink composition of the present invention, a compound having a rigid main chain skeleton is preferable from the viewpoint of field-effect mobility and the like, and is represented by, for example, the following formula (3).
  • a 11 and A 12 each independently represent —O—, —N (R N ) — or —P (R N ) —.
  • RN and RM represent a hydrogen atom or a substituent.
  • X 11 to X 14 each independently represent an oxygen atom or a sulfur atom.
  • a 11 and A 12 each represent -O-, -N (R N )-or -P (R N )-.
  • a 11 and A 12 are each preferably —N (R N ) —.
  • a 11 and A 12 may be the same or different from each other, but are preferably the same, and both are more preferably -N (R N )-.
  • RN represents a hydrogen atom or a substituent.
  • the substituents can take as R N, it is not particularly limited.
  • a group selected from the following substituent group Z can be mentioned.
  • Substituent group Z A halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom is preferred, and a fluorine atom or a chlorine atom is preferred); an alkyl group (preferably having 1 to 40 carbon atoms, more preferably 1 to 3 carbon atoms); The number in parentheses represents the number of carbon atoms in the case of a cycloalkyl group, for example, methyl, ethyl, propyl, 2-methylpropyl, butyl, amyl, pentyl.
  • the ring-constituting atoms include at least one or more heteroatoms and 1 to 30 carbon atoms.
  • hetero atom examples include a nitrogen atom, an oxygen atom, and a sulfur atom, and the number is not particularly limited, but is, for example, 1 or 2.
  • the number of ring-constituting carbon atoms is preferably from 3 to 20, and more preferably from 3 to 12.
  • the heterocyclic group is preferably a 5-membered or 6-membered ring or a group of a condensed ring thereof.
  • the heterocyclic group includes an aromatic heterocyclic group (heteroaryl group) and an aliphatic heterocyclic group.
  • Examples include thienyl, thiazolyl, imidazolyl, pyridyl, pyrimidinyl, quinolyl, furanyl, selenophenyl (C 4 H 3 Se), piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, 2-hexylfuranyl, pyranyl, and the like.
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, for example, trimethylsilyl, triphenylsilyl, dimethylphenylsilyl, etc.), an alkoxy group ( It preferably has 1 to 20, more preferably 1 to 12, particularly preferably 1 to 8 carbon atoms, and includes, for example, methoxy, ethoxy, butoxy and the like, and an amino group (preferably 0 to 20, more preferably carbon number).
  • 0 to 10 particularly preferably 0 to 6, for example, amino, methylamino, dimethylamino, diethylamino, dibenzylamino, anilino and the like; an aryloxy group (preferably having 6 to 20 carbon atoms) It is preferably from 6 to 16, particularly preferably from 6 to 12, for example, phenyloxy, 2-naphthyloxy and the like.
  • An acyl group (preferably having 1 to 20, more preferably 1 to 16, and particularly preferably 1 to 12 carbon atoms such as acetyl, hexanoyl, benzoyl, formyl, pivaloyl, etc.),
  • An alkoxycarbonyl group (preferably having 2 to 20, more preferably 2 to 16, and particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl and ethoxycarbonyl), an aryloxycarbonyl group (preferably carbon The number is from 7 to 20, more preferably from 7 to 16, particularly preferably from 7 to 10, such as phenyloxycarbonyl, etc., and an acyloxy group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms).
  • acylamino group preferably having 2 to 20, more preferably 2 to 16, particularly preferably 2 to 10, such as acetylamino, benzoylamino, etc.
  • An aminocarbonylamino group preferably having 2 to 20, more preferably 2 to 16, particularly preferably 2 to 12 and including a ureido group
  • an alkoxy or aryloxycarbonylamino group preferably having 2 (7) to 20, more preferably 2 (7) to 16, particularly preferably 2 (7) to 12.
  • the number in parentheses represents the number of carbon atoms in the case of an aryloxycarbonylamino group, for example, methoxy. Carbonylamino or phenyloxycarbonylamino, etc.), alkyl or aryl Sulfonylamino group, alkylthio group (preferably having 1 to 20, more preferably 1 to 16, and particularly preferably 1 to 12 carbon atoms such as methylthio, ethylthio, octylthio and the like.
  • An arylthio group (preferably having 6 to 20, more preferably 6 to 16, and particularly preferably 6 to 12 carbon atoms such as a phenylthio group), an alkyl or aryl sulfinyl group, an alkyl or aryl sulfonyl Group, silyloxy group, heterocyclic oxy group, carbamoyl group, carbamoyloxy group, heterocyclic thio group, sulfamoyl group, aryl or heterocyclic azo group, imide group, phosphino group, phosphinyl group, phosphinyloxy group, phosphinyl Amino group, hydrazino group, imino group, cyano group, hydroxy group, nitro group, mercapto group, sulfo group, carboxy group, hydroxamic acid group, sulfino group, boronic acid group (-B (OH) 2 ), phosphato group (- OPO (OH)
  • R N may take as R N, as the group selected from the substituent group Z, an alkyl group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group or a silyl group preferably an alkyl group (preferably having a carbon number of 1 To 20), an aryl group (preferably having 6 to 20 carbon atoms) or a heteroaryl group (containing at least one or more of the above hetero atoms as ring-constituting atoms.
  • a 5-membered ring or a 6-membered ring or a condensed ring thereof is used.
  • an alkyl group particularly preferably 4 to 20 carbon atoms).
  • the group selected from the substituent group Z described above may further have a substituent.
  • substituents include groups selected from substituent group Z.
  • the number of substituents which may be further included is not particularly limited, but is, for example, preferably 1 to 6, more preferably 1 to 3.
  • the group formed in combination is not particularly limited, and examples thereof include a group in which each of the above-mentioned groups preferable as the group selected from the substituent group Z is substituted with another group selected from the substituent group Z.
  • a halogen atom an alkyl group, an aryl group, a heterocyclic group (heteroaryl group), an alkoxy group (including a hydroxyalkoxy group, a halogenated alkoxy group and a heteroarylalkoxy group), an amino group, an acyloxy group, a hydroxy group
  • An alkyl group, a halogenated aryl group or a (fluorinated) alkylaryl group having a group selected from the group consisting of a sulfo group and a phosphono group as a substituent, or an alkynyl group having a silyl group as a substituent.
  • a group in which one hydrogen atom has been removed from the compound represented by the formula (3) can also be mentioned. More specifically, the groups exemplified in the above-mentioned substituent group Z, or the groups in the following exemplified compounds or the compounds used in Examples are mentioned.
  • an alkyl group having a halogen atom as a substituent (halogenated alkyl group) or an alkyl group having an aryl group as a substituent is preferable, and an alkyl group having a fluorine atom as a substituent is preferred.
  • Alkyl group) or an alkyl group having an aryl group as a substituent, and an alkyl group having an aryl group as a substituent is particularly preferable.
  • the substituents can take as R N, (unsubstituted) alkyl group, more preferably an alkyl group having a halogenated alkyl group or an aryl group as a substituent.
  • a 11 and A 12 have each R N, 2 two R N may be the same or different from each other.
  • RM represents a hydrogen atom or a substituent.
  • the substituent that can be used as R M is not particularly limited, and includes, for example, a group selected from the above substituent group Z.
  • the group selected from the substituent group Z may further have a substituent. Examples of such a substituent include groups selected from substituent group Z.
  • R M represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxycarbonyl group, an aryl group, an alkoxy group, a heterocyclic group (particularly a heteroaryl group), an amino group, a halogen atom, a cyano group, a carboxy group, a nitro group or a mercapto group.
  • Groups are preferred, and hydrogen atoms, alkyl groups, alkenyl groups, aryl groups, alkoxy groups, heterocyclic groups (particularly heteroaryl groups), halogen atoms or cyano groups are more preferred, and hydrogen atoms, alkyl groups, aryl groups, and heterocyclic groups are preferred. (Especially a heteroaryl group), a halogen atom or a cyano group are particularly preferred.
  • Substituents can take as R M may be bonded to form a ring.
  • Examples of the form in which the substituent forms a ring include a form in which the substituents are bonded to each other to form a ring, and a form in which a plurality of substituents form a ring by sharing one atom.
  • Examples of an embodiment in which substituents are bonded to each other to form a ring include an embodiment in which two vinyl groups are bonded to each other to form a benzene ring together with the carbon atom to which R M is bonded.
  • a plurality of substituents share one atom to form a ring, for example, an embodiment in which two substituents are integrated to form a sulfur atom (—S— group) is given.
  • -N which can be taken as B 11 to B 18 may have a nitrogen atom having a substituent. For example, an N-oxide group (N ⁇ O group), a salt having a counter anion, and the like can be given.
  • X 11 to X 14 each represent an oxygen atom or a sulfur atom, and an oxygen atom is preferable. More preferably, X 11 to X 14 are all oxygen atoms.
  • the combination of A 11 and A 12 with X 11 to X 14 is not particularly limited, but A 11 and A 12 are —N (R N ) — and X 11 to X 14 are oxygen atoms. Combinations are preferred.
  • At least one compound selected from the group consisting of the compounds represented by the following formulas (3-1) to (3-5) has a high carrier mobility. Is particularly preferred.
  • Compound represented by formula (3-1) N, N'-bis (2-phenylethyl) pyrene-3,4,9,10-dicarbodiimide
  • Compound represented by formula (3-2) N, N'-bis (3-phenylpropyl) pyrene-3,4,9,10-dicarbodiimide
  • Compound represented by formula (3-4) 2,9-bis (2,2,3,3,4,4,4-heptafluorobutyl) -1,2,3,8,9,10-hexahydro -1,3,8,10-Tetraoxoanthra [2,1,9-def: 6,5,10-d'e'
  • the compound represented by the above formula (3) can be produced by the production method described in WO 2011/082234 and JP-A-2018-6745, and a commercially available product can also be used.
  • the compound represented by the above formula (3) has a structure in which a substituent is introduced into the imide nitrogen at both ends of the pyrylene diimide skeleton as a rigid main chain skeleton, the compound has high solubility in the naphthalene compound (A). , Hardly to precipitate even in a low temperature environment.
  • n-type organic semiconductor material as a solute contained in the ink composition of the present invention, a compound having a naphthalenediimide skeleton as a rigid main chain skeleton is also preferable.
  • a compound represented by the following formula (5) is also preferable.
  • a 21 and A 22 each independently represent —N (R N1 ) —, —P (R N1 ) —, or —O—.
  • R N1 represents a hydrogen atom or a substituent.
  • a plurality of R N1 may be the same or different.
  • Ch 21 represents a sulfur atom, a sulfinyl group, a sulfonyl group, a selenium atom, a seleninyl group, a selenonyl group, or a group represented by —B 23 —B 24 —.
  • X 21 , X 22 , X 23 and X 24 each independently represent an oxygen atom or a sulfur atom.
  • a 31 and A 32 each independently represent —N (R N1 ) —, —P (R N1 ) —, or —O—.
  • R N1 represents a hydrogen atom or a substituent.
  • a plurality of R N1 may be the same or different.
  • R M1 represents a hydrogen atom or a substituent.
  • Ch 31 represents a sulfur atom, a sulfinyl group, a sulfonyl group, a selenium atom, a seleninyl group, or a selenonyl group.
  • X 31 , X 32 , X 33 and X 34 each independently represent an oxygen atom or a sulfur atom.
  • R 31 and R 32 each independently represent a hydrogen atom or a substituent.
  • a 21 and A 22 each independently represent —N (R N1 ) —, —P (R N1 ) — or —O—.
  • a 21 and A 22 are preferably each independently -N (R N1 )-or -P (R N1 )-from the viewpoint of further improving the carrier mobility, and -N (R N1 ) -is more preferable.
  • R N1 represents a hydrogen atom or a substituent.
  • a plurality of R N1 may be the same or different.
  • the substituent represented by R N1 is not particularly limited, and includes, for example, a group selected from the above substituent group Z.
  • a 21 and A 22 are preferably the same group from the viewpoint of further improving the carrier mobility.
  • R N1 is preferably a hydrogen atom, a silyl group, a heterocyclic group, an aryl group, an alkynyl group, or a linear, branched or cyclic alkyl group.
  • each group except for a hydrogen atom may be further substituted by a substituent selected from the above substituent group Z.
  • R N1 represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a carbon atom having 6 to 20 carbon atoms from the viewpoint of further improving carrier mobility.
  • R N1 is a cyclic alkyl group having 3 to 8 carbon atoms (preferably 4 to 7 carbon atoms, more preferably 5 to 6 carbon atoms) from the viewpoint of further improving carrier mobility. (Cycloalkyl group), and particularly preferably a cyclohexyl group.
  • R M1 contained in R M1 and B 22 included in the B 21 to form a ring may have a substituent selected from the substituent group Z
  • substituent The groups may be combined with each other to form a ring.
  • R M1 represents a hydrogen atom or a substituent.
  • R M1 there are a plurality each of the plurality of R M1 may be the same or different.
  • the substituent represented by R M1 is not particularly limited, and includes, for example, a group selected from the above-mentioned substituent group Z.
  • R M1 is preferably a hydrogen atom, a halogen atom, a halogenated alkyl group, a cyano group, a nitro group, an alkoxy group, an alkoxycarbonyl group, a carboxy group, a heterocyclic group, or an amino group. It is more preferably an atom, a halogen atom or a cyano group, and further preferably a hydrogen atom or a cyano group.
  • Ch 21 is a sulfur atom, a sulfinyl group (—SO—), a sulfonyl group (—SO 2 —), a selenium atom, a seleninyl group (—SeO—), a selenonyl group (—SeO 2 —), or -B 23 -B 24 - represents a group represented by.
  • R M2 included in R M2 and B 24 included in the B 23 to form a ring may have a substituent selected from the substituent group Z
  • substituent The groups may be combined with each other to form a ring.
  • R M2 represents a hydrogen atom or a substituent.
  • the substituent that can be used as R M2 is not particularly limited, and includes, for example, a group selected from the above substituent group Z.
  • Ch 21 is preferably a sulfur atom, a selenium atom, or a group represented by —B 23 —B 24 — from the viewpoint of further improving the carrier mobility.
  • X 21 , X 22 , X 23 and X 24 each independently represent an oxygen atom or a sulfur atom, but from the viewpoint of further improving atmospheric stability, X 21 , X 22 , X 23 It is preferred that X and X 24 are both oxygen atoms.
  • a 31 and A 32 have the same meanings as A 21 and A 22 in the formula (4), respectively, and are each independently —N (R N1 ) —, —P (R N1 ) — or Represents -O-.
  • R N1 represents a hydrogen atom or a substituent.
  • a plurality of R N1 may be the same or different.
  • the substituent represented by R N1 is not particularly limited, and includes, for example, a group selected from the above substituent group Z.
  • the preferred embodiments of A 31 and A 32 in the formula (5) are the same as the preferred embodiments of A 21 and A 22 in the formula (4).
  • R M1 represents a hydrogen atom or a substituent.
  • R M1 is not particularly limited, and includes, for example, a group selected from the above-mentioned substituent group Z.
  • the mode in this case is also the same as the above-described equation (4).
  • X 31 , X 32 , X 33 and X 34 have the same meanings as X 21 , X 22 , X 23 and X 24 in the above formula (4), respectively.
  • Preferred embodiments of X 31 , X 32 , X 33 and X 34 in the formula (5) are the same as preferred embodiments of X 21 , X 22 , X 23 and X 24 in the formula (4).
  • Ch 31 represents a sulfur atom, a sulfinyl group (—SO—), a sulfonyl group (—SO 2 —), a selenium atom, a seleninyl group (—SeO—), or a selenonyl group (—SeO 2 —).
  • a sulfur atom or a selenium atom is preferable.
  • R 31 and R 32 each independently represent a hydrogen atom or a substituent.
  • the substituents represented by R 31 and R 32 are not particularly limited, and include, for example, groups selected from the above substituent group Z.
  • R 31 and R 32 each independently represent a hydrogen atom, a cyano group, a halogen atom, a silyl group, or a straight chain having 1 to 20 carbon atoms, from the viewpoint of further improving carrier mobility. It is preferably a branched or cyclic alkyl group, more preferably a hydrogen atom, a methyl group, a halogen atom or a cyano group.
  • the compound represented by the formula (4) and the compound represented by the formula (5) can be produced by the production method described in WO 2011/082234, WO 2017/022735, and the like. Commercial products can also be used.
  • the compound represented by the above formula (4) or the compound represented by the formula (5) has a structure in which a substituent is introduced into the imide nitrogen at both ends of the naphthalenediimide skeleton as a rigid main chain skeleton, naphthalene It has high solubility in compound (A) and hardly precipitates even in a low temperature environment.
  • the ink composition of the present invention may contain a polymer compound in addition to the naphthalene compound (A) and the solute.
  • the polymer compound is preferably selected from inert polymers that do not affect the electrical characteristics of the organic semiconductor material, such as an epoxy resin, an acrylic resin, a polystyrene resin, a cellulose resin, and a butyral resin.
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinyl) Phenol
  • BCB benzocyclobutene
  • POSS cage-like oligosilsesquioxane
  • PTFEMA poly (2,2,2-trifluoroethyl methacrylate
  • P2VP poly (2-vinylpyridine
  • film forming property refers to the temperature of the ink composition, the temperature of the substrate, the coating speed (single crystal growth speed), the temperature of the slit, the temperature of the piping, the temperature of the ink tank, the temperature of the slit and the substrate during the formation of the organic single crystal film. For a set value such as an inter-distance, the lower the film forming rate and the higher the speed, the better the film forming property.
  • the content is not particularly limited, but is preferably 0.01 to 20% by weight, and more preferably 0.1 to 20% by weight based on 100% by weight of the ink composition. 10% by weight is more preferred.
  • the content of the polymer compound is within this range, the ink composition of the present invention tends to have improved film formability.
  • the ink composition of the present invention contains the above naphthalene compound (A) as a solvent, a solute (particularly, an organic semiconductor material), and if necessary, the above polymer compound.
  • the naphthalene compound (A), the solute, and the polymer compound to be blended if necessary can be used alone or in combination of two or more.
  • the ink composition of the present invention is prepared, for example, by mixing the above-mentioned naphthalene compound (A), a solute, and a polymer compound to be blended if necessary, under an air atmosphere, a nitrogen atmosphere, or an argon atmosphere. It can be prepared by heating at a temperature of about 150 ° C. for about 0.1 to 5 hours.
  • the content of the naphthalene compound (A) in the total amount of the ink composition of the present invention is, for example, 99.999% by weight or less.
  • the lower limit is, for example, 90.000% by weight, preferably 93.000% by weight, particularly preferably 95,000% by weight, and the upper limit is preferably 99.990% by weight.
  • the content of the solute (especially, the organic semiconductor material) in the ink composition of the present invention is, for example, 0.02 to 100 parts by weight of the naphthalene compound (A). It is at least 0.03 parts by weight, preferably at least 0.03 parts by weight, particularly preferably at least 0.04 parts by weight.
  • the upper limit of the solute content is, for example, 1 part by weight, preferably 0.5 part by weight, and particularly preferably 0.1 part by weight.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of an example of an organic thin film transistor.
  • the organic thin film transistor includes a resin substrate 101 having flexibility, a conductive thin film (gate electrode) 102, a gate insulating film 103, and an organic single crystal semiconductor on a temporary fixing substrate 100 (also referred to as a carrier substrate) for handling in the process.
  • a thin film 104, a conductive thin film (source electrode, drain electrode) 105, a charge injection layer 106 for ohmic junction, and a protective layer 107 are formed.
  • the fabrication of the organic thin film transistor will be briefly described.
  • a conductive thin film 102 is formed on a resin substrate 101 temporarily fixed on a handling temporary fixing substrate 100 to be used as a gate electrode of an organic thin film transistor.
  • a method for forming the conductive thin film 102 for example, a sputtering method, a PVD method typified by a vacuum deposition method, or a coating method using an ink containing a conductive material is used to form the conductive thin film 102 on the resin substrate 101. And then forming the film by patterning into a predetermined shape by photolithography.
  • the conductive thin film 102 patterned in a predetermined shape is directly formed on the resin substrate 101 by a plate printing method or a plateless printing method. Method. The process can be simplified by directly forming the conductive thin film 102 patterned into a predetermined shape.
  • the conductive thin film 102 may be formed by a plating method.
  • a plating method for example, a plating primer layer previously patterned into a predetermined shape is formed on the resin substrate 101 by a photolithography method, a plate printing method, or a plateless printing method.
  • a method of forming the conductive thin film 102 at a predetermined position by an electroless plating method or a combination of the electroless plating method and the electrolytic plating method.
  • the thickness of the conductive thin film 102 is not particularly limited, but is preferably 20 nm to 1 ⁇ m, and more preferably 20 nm to 300 nm.
  • a gate insulating film 103 is formed on the resin substrate 101 and the conductive thin film 102.
  • the gate insulating film 103 an organic insulating film containing a ferroelectric substance such as a ceramic represented by a metal compound having a high relative dielectric constant or a polymer compound is preferable.
  • the thickness of the gate insulating film 103 is not particularly limited, but is preferably 1 nm to 1 ⁇ m, more preferably 10 nm to 600 nm, and further preferably 10 nm to 200 nm.
  • FIG. 2 shows a conceptual diagram of an example of a method for forming an organic single crystal semiconductor film by a continuous edge casting method. Briefly explaining FIG.
  • a substrate stage 200 for setting a substrate on a continuous edge cast apparatus, a slit 201 for continuous edge cast coating and ink supply, and an ink tank 202 are provided at a minimum, and the ink tank 202 is pressurized.
  • the ink is supplied to the substrate surface to form an ink meniscus 203, and thereafter, all parameters such as a coating speed (single crystal growth speed), heating of each unit of the apparatus, heating of the substrate, and an evaporation speed are finely adjusted.
  • a single crystal semiconductor film 104 ' is obtained.
  • the drop casting method and the ink jet printing method can also be performed by known methods.
  • the organic single crystal semiconductor film 104 ′ that is not patterned into the shape of a transistor formed by a drop casting method, an inkjet printing method, an edge casting method, or a continuous edge casting method is then patterned into a predetermined shape by a photolithography method. As a result, an organic single crystal semiconductor thin film 104 is obtained. After the organic single crystal semiconductor thin film 104 is formed, a baking treatment for controlling morphology or volatilizing a solvent contained in the organic single crystal semiconductor thin film 104 may be performed.
  • the thickness of the organic single crystal semiconductor thin film 104 is not particularly limited, but is preferably 1 nm to 1000 nm, more preferably 1 nm to 100 nm, and further preferably 1 nm to 50 nm.
  • the best film is more preferably a crystal film having 3 to 6 molecular layers or less, and the optimum total number of molecules varies depending on the molecular structure.
  • a patterned conductive thin film 105 is formed on the gate insulating film 103 and the organic single crystal semiconductor thin film 104.
  • the conductive thin film 105 forms a source electrode and a drain electrode of the organic thin film transistor.
  • the conductive thin film 105 can be formed by the same method as the above-described conductive thin film 102. Note that the conductive thin film 105 may be formed by the same method as that of the conductive thin film 102 or by a different method. If necessary, a charge injection layer 106 for ohmic junction between the organic single crystal semiconductor thin film 104 and the conductive thin film 105 may be provided between the organic single crystal semiconductor thin film 104 and the conductive thin film 105.
  • the thickness of the conductive thin film 105 (that is, the thickness of the source electrode and the drain electrode of the organic thin film transistor) is not particularly limited, but is preferably 20 nm to 1 ⁇ m, more preferably 20 nm to 600 nm, and more preferably 20 nm to 500 nm. Is more preferable.
  • a protective layer 107 is formed over the gate insulating film 103, the organic single crystal semiconductor thin film 104, and the conductive thin film 105.
  • a method for forming the protective layer 107 for example, a PVD method typified by a vacuum evaporation method, a CVD method typified by an ALD (atomic layer deposition) method, or a coating method using an ink containing a protective layer material is used.
  • a method of forming the film by patterning it into a predetermined shape by a photolithography method may be mentioned.
  • Another method of forming the protective layer 107 includes, for example, a method of directly forming the protective layer 107 patterned into a predetermined shape by a plate printing method or a plateless printing method.
  • a method of directly forming the protective layer 107 patterned into a predetermined shape By directly forming the protective layer 107 patterned into a predetermined shape, the step of forming the protective layer 107 can be simplified.
  • a method of directly forming the protective layer 107 patterned into a predetermined shape by a plate printing method or a plateless printing method is preferable.
  • a hole may be formed in a predetermined location by laser ablation to perform patterning.
  • inks containing various protective layer materials can be used.
  • the ink containing the protective layer material include a dispersion ink containing an inorganic material, an SOG (spin-on-glass) material, an ink containing a low-molecular protective layer material, and an ink containing a polymer protective layer material. Inks containing layer materials are preferred.
  • a material for forming the protective film 107 for example, in addition to the material contained in the above-described ink and the SOG material, the same materials as those exemplified in the gate insulating film 103 described above can be used.
  • the thickness of the protective layer 107 is not particularly limited, but is preferably from 50 nm to 5 ⁇ m, more preferably from 500 nm to 3.0 ⁇ m.
  • the flexible resin substrate 101 is peeled off from the temporary fixed substrate 100 to complete the organic thin film transistor on the flexible substrate.
  • a laser lift-off method LLO
  • a release layer or a fine adhesive layer is previously formed between the temporary fixing substrate 100 and the flexible resin substrate 101 using a fluoropolymer, a self-assembled monomolecular film (SAMs), a slightly adhesive adhesive, or the like. It is also possible to physically peel off after completion. As a matter of course, after the release layer or the slightly adhesive layer is formed, the layer may be finally removed by LLO. Thus, an organic thin film transistor can be manufactured.
  • naphthalene compound (A) is used as a solvent in the ink composition of the present invention, a solute (particularly, an organic semiconductor material) can be dissolved in a high concentration even at a relatively low temperature. Therefore, even in a low-temperature environment (for example, 20 to 50 ° C., preferably 20 to 40 ° C.), an organic semiconductor device can be easily formed by a simple method using a wet process such as the edge casting method or the continuous edge casting method described above. Yes, significant cost savings are possible.
  • organic semiconductor devices can be directly formed on a lightweight and flexible plastic substrate, which has low heat resistance compared to a glass substrate, but is resistant to impact, and forms a lightweight, flexible display and computer equipment that is resistant to impact. can do.
  • solutes (particularly, organic semiconductor materials) contained in the composition are crystallized by a self-organizing action, so that high carrier mobility (for example, 0.1 cm 2 / Vs or more, preferably 1.0 cm 2 / Vs or more, particularly preferably 4.0 cm 2 / Vs or more, more preferably not 5.0 cm 2 / Vs or more, and most preferably 7.0 cm 2 / Vs or higher)
  • high carrier mobility for example, 0.1 cm 2 / Vs or more, preferably 1.0 cm 2 / Vs or more, particularly preferably 4.0 cm 2 / Vs or more, more preferably not 5.0 cm 2 / Vs or more, and most preferably 7.0 cm 2 / Vs or higher
  • Production Example 1 Purification of 1-chloronaphthalene A crude 1-chloronaphthalene (containing about 12.0% of 2-chloronaphthalene as an impurity) purchased from a reagent maker was used under conditions of a reflux ratio of 30 using an Oldershaw distillation apparatus. The amount of 2-chloronaphthalene contained was 3%, 1%, and 0.7% when the relative evaluation was performed with 1-chloronaphthalene being 100% in terms of area% of gas chromatography. Was prepared. An analysis method in which a stock solution was directly introduced under the following measurement conditions was used for gas chromatography.
  • Production Example 2 Purification of 1-methylnaphthalene Crude 1-methylnaphthalene purchased from a reagent maker (containing about 4.0% of 2-methylnaphthalene as an impurity) using an Oldershaw-type distillation apparatus at a reflux ratio of 30. The amount of 2-methylnaphthalene contained was 3%, 1%, and 0.7% when the relative evaluation was performed with 1-methylnaphthalene being 100% in terms of gas chromatography area%. was prepared. An analysis method in which a stock solution was directly introduced under the same measurement conditions as in Production Example 1 was used for gas chromatography.
  • Example 1 N, N'-bis (2-phenylethyl) pyrene-3,4,9,10-dicarbodiimide (in the above formula (3-1)) is used as a solute in 1-chloronaphthalene containing 2-chloronaphthalene at a relative ratio of 3%. 0.03 wt% of a compound represented by the formula (hereinafter, referred to as compound (3-1)) was mixed and heated and dissolved at 160 ° C., whereby all of the compound (3-1) was dissolved. The obtained solution was applied by a continuous edge casting method shown in FIG. 2 to form a single crystal.
  • the prepared single crystal was randomly sampled at 10 locations in a range of 10 mm ⁇ 10 mm, observed with a polarizing microscope, and observed for the presence or absence of grain boundaries, and evaluated according to the following criteria. :: Almost no grain boundaries are observed. :: Crystal grain boundaries are slightly observed. ⁇ : Crystal grain boundaries are observed. ⁇ : Many crystal grain boundaries are observed. Table 1 shows the results.
  • Example 2 When 0.03 wt% of compound (3-1) was mixed as a solute with 1-chloronaphthalene containing 2-chloronaphthalene at a relative ratio of 1%, and dissolved by heating at 160 ° C., all of compound (3-1) was dissolved. did.
  • the obtained solution was applied by a continuous edge casting method shown in FIG. 2 to form a single crystal.
  • the prepared single crystal was randomly sampled at 10 locations in a range of 10 mm ⁇ 10 mm, observed with a polarizing microscope, and observed for the presence or absence of grain boundaries, and evaluated based on the above criteria. Table 1 shows the results.
  • Example 3 Compound (3-1) was mixed as a solute with 0.03 wt% as a solute in 1-chloronaphthalene containing 2-chloronaphthalene at a relative ratio of 0.7%, and dissolved by heating at 160 ° C. All dissolved. The obtained solution was applied by a continuous edge casting method shown in FIG. 2 to form a single crystal. The prepared single crystal was randomly sampled at 10 locations in a range of 10 mm ⁇ 10 mm, observed with a polarizing microscope, and observed for the presence or absence of grain boundaries, and evaluated based on the above criteria. Table 1 shows the results.
  • Example 4 A compound (3-1) was mixed as a solute in 0.03 wt% with 1-methylnaphthalene containing 2-methylnaphthalene at a relative ratio of 3%, and dissolved by heating at 170 ° C., and the compound (3-1) was completely dissolved. did.
  • the obtained solution was applied by a continuous edge casting method shown in FIG. 2 to form a single crystal.
  • the prepared single crystal was randomly sampled at 10 locations in a range of 10 mm ⁇ 10 mm, observed with a polarizing microscope, and observed for the presence or absence of grain boundaries, and evaluated based on the above criteria. Table 1 shows the results.
  • Example 5 When 0.03 wt% of compound (3-1) was mixed as a solute with 1-methylnaphthalene containing 2-methylnaphthalene at a relative ratio of 1%, and heated and dissolved at 170 ° C., all of compound (3-1) was dissolved. did.
  • the obtained solution was applied by a continuous edge casting method shown in FIG. 2 to form a single crystal.
  • the prepared single crystal was randomly sampled at 10 locations in a range of 10 mm ⁇ 10 mm, observed with a polarizing microscope, and observed for the presence or absence of grain boundaries, and evaluated based on the above criteria. Table 1 shows the results.
  • Example 6 When 1-methylnaphthalene containing 2-methylnaphthalene at a relative ratio of 0.7% was mixed with 0.03 wt% of compound (3-1) as a solute and dissolved by heating at 170 ° C., compound (3-1) was obtained. All dissolved. The obtained solution was applied by a continuous edge casting method shown in FIG. 2 to form a single crystal. The prepared single crystal was randomly sampled at 10 locations in a range of 10 mm ⁇ 10 mm, observed with a polarizing microscope, and evaluated for the presence or absence of a grain boundary by observing the above criteria. Table 1 shows the results.
  • Examples 7 to 12 Using the solutions obtained in Examples 1 to 6, organic thin film transistors shown in FIG. 1 were produced. The obtained organic thin film transistor and transistor characteristics were measured and evaluated according to the following criteria. Table 2 shows the results. :: Carrier mobility is 0.3 cm 2 / Vs or more :: Carrier mobility is 0.1 cm 2 / Vs or more and less than 0.3 cm 2 / Vs ⁇ : Carrier mobility is 0.05 cm 2 / Vs or more and 0 ⁇ : less than 1 cm 2 / Vs ⁇ : carrier mobility is less than 0.05 cm 2 / Vs
  • Naphthalene compound (A) a compound represented by the following formula (a) [In the formula (a), R is a hydrogen atom, a halogen atom, a C 1-20 alkyl group which may have a substituent selected from the following group 1, and a group which has a substituent selected from the following group 1.
  • Group 1 includes a halogen atom, a sulfonyl group, a hydroxy group, an aldehyde group (—CHO), a carbonyl group, a carboxyl group, a nitro group, an amino group, a sulfo group (—SO 3 H), an ether group, a C 1-20 alkylthio group.
  • Group 2 includes a substituent selected from Group 1 above, a C 1-20 alkyl group optionally having a substituent selected from Group 1 above, and a C 1-20 alkyl group optionally having a substituent selected from Group 1 above. It is selected from a 2-20 alkenyl group and a C 2-20 alkynyl group which may have a substituent selected from the above group 1.
  • R is a halogen atom or a C 1-20 alkyl group which may have a substituent selected from Group 1.
  • the content of the isomer of the naphthalene compound (A) is 2% or less (for example, 1.8%) as the ratio of the peak area determined by gas chromatography to the naphthalene compound (A) (100%). Below, 1.5% or less, 1.2% or less, 1% or less, or 0.8% or less).
  • the ink composition for manufacturing an organic semiconductor device according to any one of [1] to [3]. Stuff.
  • An ink composition for manufacturing a device [8]
  • the SP value of the naphthalene compound (A) at 25 ° C. by the Fedors method is 7.0 to 12.0 [(cal / cm 3 ) 0.5 ] (for example, 8.0 to 12.0 [(cal) / Cm 3 ) 0.5 ], or 9.0 to 11.5 [(cal / cm 3 ) 0.5 ]), the ink composition for manufacturing an organic semiconductor device according to any one of [1] to [7].
  • Stuff. [9]
  • the content of the naphthalene compound (A) in the total amount of the solvent (100% by weight) is 50% by weight or more (eg, 70% by weight or more, or 80% by weight or more), [1] to [8]. ]
  • the method according to [11], wherein the n-type organic semiconductor material is at least one compound selected from the group consisting of compounds represented by the above formulas (3-1) to (3-5). An ink composition for manufacturing an organic semiconductor device.
  • the n-type organic semiconductor material is at least one compound selected from the group consisting of a compound represented by the above formula (4) and a compound represented by the above formula (5).
  • the p-type organic semiconductor material is at least one compound selected from the group consisting of a compound represented by the formula (1-1) and a compound represented by the formula (1-2).
  • the polymer compound is at least one polymer compound selected from the group consisting of an epoxy resin, an acrylic resin, a polystyrene resin, a cellulose resin, and a butyral resin.
  • Production ink compositions. [21] [19] or [20], wherein the content of the polymer compound is 0.01 to 20% by weight (for example, 0.1 to 10% by weight) based on 100% by weight of the ink composition. ]
  • the content of the naphthalene compound (A) in the total amount of the ink composition is 99.999% by weight or less (the lower limit is, for example, 90.000% by weight, 93.000% by weight, or 95,000% by weight.
  • the content of the solute is 0.02 parts by weight or more (for example, 0.03 parts by weight or more, or 0.04 parts by weight or more) based on 100 parts by weight of the naphthalene compound (A),
  • the organic semiconductor device according to any one of [1] to [22] which is used for producing an organic single crystal semiconductor film by a drop casting method, an inkjet printing method, an edge casting method, or a continuous edge casting method. Production ink compositions.
  • REFERENCE SIGNS LIST 100 Temporary fixed substrate 101 for handling Resin substrate 102 Conductive thin film (gate electrode) 103 gate insulating film 104 organic single crystal semiconductor thin film 105 conductive thin film (source electrode, drain electrode) 106 Charge injection layer 107 for ohmic junction 107 Protective layer 200 Substrate stage 201 on which substrate is installed on continuous edge cast device Slit for continuous edge cast coating / ink supply 202 Ink tank 203 Organic device formed between slit and substrate Meniscus of ink composition for production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本発明は、剛直な主鎖骨格を有する有機半導体材料を単結晶形成プロセスに最適な溶質濃度でインク化が可能な有機半導体デバイス製造用インク組成物を提供することを目的とする。 本発明は、下記ナフタレン化合物(A)から選ばれる少なくとも1種の溶剤と、少なくとも1種類の溶質を含有することを特徴とする有機半導体デバイス製造用インク組成物を提供する。ナフタレン化合物(A)の異性体の含有量は、ナフタレン化合物(A)(100%)に対して、ガスクロマトグラフィーによるピーク面積の割合として2%以下であることが好ましい。 ナフタレン化合物(A):下記式(a)で表される化合物 [式(a)中、Rは、明細書で定義する通りである。]

Description

有機半導体デバイス製造用インク組成物
 本発明は、有機半導体デバイス製造用インク組成物に関する。より詳細には、印刷法を含む塗布成膜法により有機半導体デバイスを製造する用途に使用するインク組成物に関する。本願は、2018年9月19日に日本に出願した、特願2018-174905の優先権を主張し、その内容をここに援用する。
 近年、次世代薄膜能動素子の候補として、有機半導体、酸化物半導体、マイクロクリスタルシリコン半導体、溶液塗布可能な低温ポリシリコン半導体等の研究開発がなされてきた。更に近年は、フレキシブル基板デバイスの早期市場立ち上げに向けて、有機エレクトロニクス材料等を用いたプリンテッドエレクトロニクス技術と高い性能が必要な部分には既存の半導体やMEMS技術等を組み合わせた、フレキシブル・ハイブリッド・エレクトロニクス(Flexible Hybrid Electronics(FHE))の開発が盛んに行われている。
 その中でプリンテッドエレクトロニクスの中心技術として期待されてきた有機半導体は、曲げに対する機械強度が強く、低温プロセスかつ塗布法にて形成することができるという、フレキシブル基板を用いた素子の製造において他の半導体材料に比べ優れた特徴を有しており、実用化に向けた材料・デバイスの研究開発が盛んに行われている。特に、高性能な有機半導体デバイスを実現する有機単結晶半導体膜が注目されており、その作製技術としてエッジキャスト法及び、連続エッジキャスト法が提案されている(特許文献1)。更に、エッジキャスト法や連続エッジキャスト法により高性能な有機単結晶半導体を形成可能な半導体材料として、p型半導体として機能するカルコゲン含有有機化合物(特許文献2)やn型半導体として機能するペリレンジイミド(Perylene diimides(PDIs))などに代表されるペリレンビスイミド骨格を有する有機化合物(特許文献3)が提案されている。
特開2015-185620 国際公開第2014/136827号 特開2018-006745
 上記に提案されている低分子型の有機単結晶半導体用材料は、π電子が高度に共役した縮合環骨格を有し、その剛直な主鎖骨格構造のため、溶媒に対する溶解性が非常に低く、良質な有機単結晶半導体を形成するためのインク組成物を得ることが非常に困難であった。そのため、この様な有機半導体材料は気相成長プロセスを中心とした作製方法で作製されており、溶液塗布法で塗布形成されるものは、ベンゾチエノベンゾチオフェン誘導体(Cn-BTBT、2,7-dialkyl[1]benzothieno[3,2-b][1]benzothiophenes)や溶解性の高い置換基を付与したTIPS-Pentacene(6,13-Bis(triisopropylsilylethynyl)pentacene)に代表される誘導体及び、テトラベンゾポルフィリン前駆体等の溶解性が比較的高い有機半導体材料が用いられてきた。しかしながら、これらの誘導体や前駆体は、剛直な主鎖骨格を有するカルコゲン含有有機化合物やペリレンビスイミド骨格を有する有機半導体材料と比べ電界効果移動度に代表される電気的特性や化学的な安定性に欠けるという問題があり、有機半導体デバイスとしての本格的な実用化には至っていない。
 また、有機単結晶半導体を形成する際には、大きな単結晶を成長させて結晶粒界(結晶間に存在する界面)を少なくすることも重要である。すなわち、有機単結晶半導体を形成する際にその素子内に多くの結晶粒界が存在すると、バンド伝導でなく、ホッピング伝導が起こりやすくなるために半導体性能の指標である電界効果移動度(キャリア移動度)が大きく低下し、特に、工業的に多数の有機半導体素子を組み合わせたデバイスを作成する場合に結晶粒界が多くなるとデバイスの性能低下や動作の不安定化を引き起こすことになり、有機半導体素子の不良率が上昇して、製造効率が低下するという問題があった。
 このような状況を鑑み、本発明の目的は、剛直な主鎖骨格を有する有機半導体材料を単結晶形成プロセスに最適な溶質濃度でインク化が可能な有機半導体デバイス製造用インク組成物を提供することである。
 また、本発明のさらなる目的は、結晶粒界が少ない高性能な有機単結晶半導体素子を形成可能な有機半導体デバイス製造用インク組成物を提供することである。
 本発明者らは上記課題を解決するため鋭意検討した結果、特定のナフタレン化合物に対する剛直な主鎖骨格を有する有機半導体材料の溶解度が比較的高く、該有機半導体材料の単結晶形成プロセスに最適な溶質濃度でインク化が可能な溶剤として適していることを見出した。さらに、上述のナフタレン化合物の異性体含有率を低下させることにより、大きな単結晶を成長させて結晶粒界の少ない有機単結晶半導体素子を形成することができることを見出した。本発明はこの知見に基づいて完成させたものである。
 すなわち、本発明は、下記ナフタレン化合物(A)から選ばれる少なくとも1種の溶剤と、少なくとも1種類の溶質を含有することを特徴とする有機半導体デバイス製造用インク組成物を提供する。
 ナフタレン化合物(A):下記式(a)で表される化合物
Figure JPOXMLDOC01-appb-C000002
[式(a)中、Rは、水素原子、ハロゲン原子、下記群1から選ばれる置換基を有してもよいC1-20アルキル基、下記群1から選ばれる置換基を有してもよいC2-22アルケニル基、下記群1から選ばれる置換基を有してもよいC2-22アルキニル基、下記群1から選ばれる置換基を有してもよいC1-20アルコキシ基、下記群1から選ばれる置換基を有してもよいC1-20のアルキルチオ基、下記群1から選ばれる置換基を有してもよいC2-20アルキルカルボニル基、下記群1から選ばれる置換基を有してもよいC2-20アルコキシカルボニル基、下記群1から選ばれる置換基を有してもよいジ-又はモノ-C1-20アルキルアミノ基、下記群2から選ばれる置換基を有してもよいC6-20アリール基、下記群2から選ばれる置換基を有してもよい1価の複素環基、又は下記群2から選ばれる置換基を有してもよいC3-20シクロアルキル基を示す。
 上記群1は、ハロゲン原子、スルホニル基、ヒドロキシ基、アルデヒド基(-CHO)、カルボニル基、カルボキシル基、ニトロ基、アミノ基、スルホ基(-SO3H)、エーテル基、C1-20アルキルチオ基、ジ-又はモノ-C1-20アルキルアミノ基、C6-20アリール基、1価の複素環基、及びC3-20置換シリル基から選ばれる。
 上記群2は、上記群1から選ばれる置換基、上記群1から選ばれる置換基を有してもよいC1-20アルキル基、上記群1から選ばれる置換基を有してもよいC2-20アルケニル基、及び上記群1から選ばれる置換基を有してもよいC2-20アルキニル基から選ばれる。]
 前記の有機半導体デバイス製造用インク組成物において、Rは、ハロゲン原子、または群1から選ばれる置換基を有してもよいC1-20アルキル基であることが好ましい。
 前記の有機半導体デバイス製造用インク組成物において、前記ナフタレン化合物(A)は、1-クロロナフタレンおよび1-メチルナフタレンからなる群から選ばれる少なくとも1種であることが好ましい。
 前記の有機半導体デバイス製造用インク組成物において、前記ナフタレン化合物(A)の異性体の含有量が、該ナフタレン化合物(A)(100%)に対して、ガスクロマトグラフィーによるピーク面積の割合として2%以下であることが好ましい。
 前記の有機半導体デバイス製造用インク組成物において、前記溶質は、有機半導体材料であってもよい。
 前記の有機半導体デバイス製造用インク組成物において、前記溶質が、n型有機半導体材料であってもよい。
 前記の有機半導体デバイス製造用インク組成物は、前記溶質に加えて、第2の成分として、高分子化合物をさらに含んでいてもよい。
 前記の有機半導体デバイス製造用インク組成物は、ドロップキャスト法、インクジェット印刷法、エッジキャスト法もしくは、連続エッジキャスト法による有機単結晶半導体膜の作製に用いられてもよい。
 本発明の有機半導体デバイス製造用インク組成物は上記構成を有するため、剛直な主鎖骨格を有するような有機半導体材料を用いても塗布プロセスが可能な温度帯でインク濃度を実現できる。さらにナフタレン化合物の異性体含有率を上記範囲に低下させることにより、大きな単結晶を成長させて結晶粒界を少ない高性能の有機単結晶半導体素子を効率的に形成することができ、低コストで信頼性の高い有機単結晶半導体膜が効率的に形成可能となる。更に塗布プロセスが可能となるため、大面積に均一性の高い有機単結晶半導体膜が形成できるようになる。従って、今までに無い高性能なフレキシブルデバイスを有機薄膜トランジスタにより高効率、低コストで提供ができるようになる。
 具体的には、本発明の有機半導体デバイス製造用インク組成物を用いて、ドロップキャスト法、インクジェット印刷法、エッジキャスト法もしくは、連続エッジキャスト法等の塗布成膜法で有機単結晶半導体を形成することにより、電界効果移動度μp=10[cm2/Vs]以上のp型トランジスタとμn=0.1[cm2/Vs]以上のn型トランジスタを組み合わせた高性能な有機CMOS回路を搭載したフレキシブルデバイスを提供できるようになる。
有機薄膜トランジスタの一例の断面構造の模式図を示す図面である。 連続エッジキャスト法の一例の概念を示す図面である。
<有機半導体デバイス製造用インク組成物>
 本発明の有機半導体デバイス製造用インク組成物(以下、単に「本発明のインク組成物」と称する場合がある)は、下記ナフタレン化合物(A)から選ばれる少なくとも1種の溶剤と、少なくとも1種類の溶質を含有することを特徴とする。
 ナフタレン化合物(A):下記式(a)で表される化合物
Figure JPOXMLDOC01-appb-C000003
[式(a)中、Rは、水素原子、ハロゲン原子、下記群1から選ばれる置換基を有してもよいC1-20アルキル基、下記群1から選ばれる置換基を有してもよいC2-22アルケニル基、下記群1から選ばれる置換基を有してもよいC2-22アルキニル基、下記群1から選ばれる置換基を有してもよいC1-20アルコキシ基、下記群1から選ばれる置換基を有してもよいC1-20のアルキルチオ基、下記群1から選ばれる置換基を有してもよいC2-20アルキルカルボニル基、下記群1から選ばれる置換基を有してもよいC2-20アルコキシカルボニル基、下記群1から選ばれる置換基を有してもよいジ-又はモノ-C1-20アルキルアミノ基、下記群2から選ばれる置換基を有してもよいC6-20アリール基、下記群2から選ばれる置換基を有してもよい1価の複素環基、又は下記群2から選ばれる置換基を有してもよいC3-20シクロアルキル基を示す。
 上記群1は、ハロゲン原子、スルホニル基、ヒドロキシ基、アルデヒド基(-CHO)、カルボニル基、カルボキシル基、ニトロ基、アミノ基、スルホ基(-SO3H)、エーテル基、C1-20アルキルチオ基、ジ-又はモノ-C1-20アルキルアミノ基、C6-20アリール基、1価の複素環基、及びC3-20置換シリル基から選ばれる。
 上記群2は、上記群1から選ばれる置換基、上記群1から選ばれる置換基を有してもよいC1-20アルキル基、上記群1から選ばれる置換基を有してもよいC2-20アルケニル基、及び上記群1から選ばれる置換基を有してもよいC2-20アルキニル基から選ばれる。]
[ナフタレン化合物(A)]
 本発明のインク組成物は、溶剤として、上記式(a)で表される化合物であるナフタレン化合物(A)から選ばれる少なくとも1種を含む。ナフタレン化合物(A)は、剛直な主鎖骨格を有する有機半導体材料にも比較的高い溶解度を示し、該有機半導体材料の単結晶形成プロセスに最適な溶質濃度でインク化が可能な溶剤として適している。本発明のインク組成物は、1種のみのナフタレン化合物(A)を含有していてもよく、2種以上のナフタレン化合物(A)を含有していてもよい。
 式(a)中、Rは、水素原子、ハロゲン原子、上記群1から選ばれる置換基を有してもよいC1-20アルキル基、上記群1から選ばれる置換基を有してもよいC2-22アルケニル基、上記群1から選ばれる置換基を有してもよいC2-22アルキニル基、上記群1から選ばれる置換基を有してもよいC1-20アルコキシ基、上記群1から選ばれる置換基を有してもよいC1-20のアルキルチオ基、上記群1から選ばれる置換基を有してもよいC2-20アルキルカルボニル基、上記群1から選ばれる置換基を有してもよいC2-20アルコキシカルボニル基、上記群1から選ばれる置換基を有してもよいジ-又はモノ-C1-20アルキルアミノ基、上記群2から選ばれる置換基を有してもよいC6-20アリール基、上記群2から選ばれる置換基を有してもよい1価の複素環基、又は上記群2から選ばれる置換基を有してもよいC3-20シクロアルキル基を示す。
 上記「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。中でも、フッ素原子、塩素原子が好ましい。
 上記「C1-20アルキル基」としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1~20の直鎖状又は分岐鎖状アルキル基が挙げられる。
 上記「C2-22アルケニル基」としては、例えば、ビニル、1-プロペニル、2-プロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、3-メチル-2-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、4-メチル-3-ペンテニル、1-ヘキセニル、3-ヘキセニル、5-ヘキセニル、1-ヘプテニル、1-オクテニル、1-ノネニル、1-デセニル等の炭素数2~22の直鎖状又は分岐鎖状アルケニル基が挙げられる。
 上記「C2-22アルキニル基」としては、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニル、1-ヘプチニル、1-オクチニル、1-ノニニル、1-デシニル等の炭素数2~22の直鎖状又は分岐鎖状アルキニル基が挙げられる。
 上記「C1-20アルコキシ基」としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基等の炭素数1~20の直鎖状又は分岐鎖状アルコキシ基が挙げられる。
 上記「C1-20アルキルチオ基」としては、例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、n-ペンチルチオ基、イソペンチルチオ基、ネオペンチルチオ基、tert-ペンチルチオ基、n-ヘキシルチオ基、イソヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基等の炭素数1~20の直鎖状又は分岐鎖状アルキルチオ基が挙げられる。
 上記「C2-20アルキルカルボニル基」としては、例えば、アセチル基、プロピオニル基、n-ブチリル基、イソブチリル基、n-ブチルカルボニル基、イソブチルカルボニル基、sec-ブチルカルボニル基、tert-ブチルカルボニル基、n-ペンチルカルボニル基、イソペンチルカルボニル基、ネオペンチルカルボニル基、tert-ペンチルカルボニル基、n-ヘキシルカルボニル基、イソヘキシルカルボニル基、ヘプチルカルボニル基、オクチルカルボニル基、ノニルカルボニル基、デシルカルボニル基等の炭素数2~20の直鎖状又は分岐鎖状アルキルカルボニル基が挙げられる。
 上記「C2-20アルコキシカルボニル基」としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基、tert-ペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基、イソヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基等の炭素数2~20の直鎖状又は分岐鎖状アルコキシカルボニル基が挙げられる。
 上記「ジ-又はモノ-C1-20アルキルアミノ基」としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert-ブチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジプロピルアミノ基、N,N-ジイソプロピルアミノ基、N,N-ジブチルアミノ基、N,N-ジイソブチルアミノ基、N,N-ジtert-ブチルアミノ基、N-メチル-N-エチルアミノ基等の上記「C1-20アルキル基」でモノ又はジ置換されたアミノ基が挙げられる。
 上記「C6-20アリール基」としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、アセナフチレニル基、ビフェニリル基等の炭素数6~20のアリール基が挙げられる。
 上記「1価の複素環基」としては、例えば、環内に炭素原子と、酸素原子、硫黄原子および窒素原子から選ばれる1~4個のヘテロ原子とを有する5~20員(好ましくは5又は6員)の芳香族複素環基、非芳香族複素環基が挙げられる。
 上記「芳香族複素環基」としては、例えば、フリル基、チエニル基、ピリジル基、ピロリル基、イミダゾリル基、ピラゾリル基、チアゾリル基等の単環式芳香族複素環基;キノリル基、イソキノリル等の縮合芳香族複素環基等が挙げられる。
 上記「非芳香族複素環基」としては、例えば、ピペリジル基、モルホリニル基、ピペラジニル基、テトラヒドロフリル基等の単環式非芳香族複素環基;クロメニル基、テトラヒドロキノリニル基、テトラヒドロイソキノリニル基等の縮合非芳香族複素環基等が挙げられる。
 上記「C3-20シクロアルキル基」としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。
 上記「スルホニル基」としては、例えば、「C1-20アルキルスルホニル基」、「C6-20アリールスルホニル基」等が挙げられる。
 上記「C1-20アルキルスルホニル基」としては、メチルスルホニル基、エチルスルホニル基、n-プロピルスルホニル基、イソプロピルスルホニル基、n-ブチルスルホニル基、イソブチルスルホニル基、sec-ブチルスルホニル基、tert-ブチルスルホニル基、n-ペンチルスルホニル基、イソペンチルスルホニル基、ネオペンチルスルホニル基、tert-ペンチルスルホニル基、n-ヘキシルスルホニル基、イソヘキシルスルホニル基、ヘプチルスルホニル基、オクチルスルホニル基、ノニルスルホニル基、デシルスルホニル基等の炭素数1~20の直鎖状又は分岐鎖状アルキルスルホニル基が挙げられる。
 上記「C6-20アリールスルホニル基」としては、例えば、フェニルスルホニル基、ナフチルスルホニル基、アントリルスルホニル基、フェナントリルスルホニル基、アセナフチレニルスルホニル基、ビフェニリルスルホニル基等の炭素数6~20のアリールスルホニル基が挙げられる。
 上記「カルボニル基」としては、例えば、上述の「C2-20アルキルカルボニル基」、上述の「C2-20アルコキシカルボニル基」、「C7-20アリールカルボニル基」等が挙げられる。
 上記「C7-20アリールカルボニル基」としては、例えば、ベンゾイル基、ナフチルカルボニル基、アントリルカルボニル基、フェナントリルカルボニル基、アセナフチレニルカルボニル基、ビフェニリルカルボニル基等の炭素数7~20のアリールカルボニル基が挙げられる。
 上記「エーテル基」としては、例えば、上述の「C1-20アルコキシ基」、「C6-20アリールオキシ基」等が挙げられる。
 上記「C6-20アリールオキシ基」としては、例えば、フェノキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、アセナフチレニルオキシ基、ビフェニリルオキシ基等の炭素数6~20のアリールオキシ基が挙げられる。
 上記「C3-20置換シリル基」としては、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基、トリイソプロピルシリル基等の上記「C1-20アルキル基」及び上記「C6-20アリール基」から選ばれる1~3個(好ましくは3個)の置換基を有するシリル基が挙げられる。
 上記の「C1-20アルキル基」、「C2-22アルケニル基」、「C2-22アルキニル基」、「C1-20アルコキシ基」、「C1-20アルキルチオ基」、「C2-20アルキルカルボニル基」、「C2-20アルコキシカルボニル基」、及び「ジ-又はモノ-C1-20アルキルアミノ基」は、上述の群1から選ばれる置換基を有してもよく、上記の「C6-20アリール基」、「1価の複素環基」、及び「C3-20シクロアルキル基」は、上述の群2から選ばれる置換基を有してもよい。置換基の個数は、特に限定されず、1~3個が好ましい。上記置換基を2個以上有する場合、2個以上の置換基は同一であっても、異なっていてもよい。
 Rとしては、ナフタレン化合物(A)に対する溶質の溶解性や入手容易性の観点から、ハロゲン原子、上記群1から選ばれる置換基を有してもよいC1-20アルキル基、上記群1から選ばれる置換基を有してもよいC1-20アルコキシ基等が好ましく、ハロゲン原子、C1-20アルキル基、C1-20アルコキシ基等がより好ましく、フッ素原子、塩素原子、C1-6アルキル基(メチル基、エチル基等)、C1-6アルコキシ基(メトキシ基、エトキシ基等)がさらに好ましく、C1-6アルキル基(特に、メチル基等)、塩素原子が特に好ましい。
 一般に、ナフタレン化合物は原油精製の副産物として得られ、主に蒸留によって各化合物に分留、さらには誘導体化される。ナフタレン化合物の構造異性体は物性が極めて似通っているため分留、誘導体化においても分離が困難であるため、工業的に流通しているナフタレン化合物には数%の異性体が含まれている。ナフタレン化合物(A)としては、特に限定されないが、該ナフタレン化合物(A)の異性体の含有量が、ナフタレン化合物(A)(100%)に対して、ガスクロマトグラフィーによるピーク面積の割合として2%以下であることが好ましく、1.8%以下がより好ましく、1.5%以下がさらに好ましく、1.2%以下がさらに好ましく、1%以下がさらに好ましく、0.8%以下が特に好ましい。本発明のインク組成物の溶剤として、異性体の含有量が2%以下のナフタレン化合物(A)を用いることにより、大きな単結晶が成長しやすくなり、結晶粒界が少ない高性能な有機単結晶半導体素子を備える半導体デバイスが得られる傾向がある。
 ナフタレン化合物(A)の異性体としては、特に限定されないが、ナフタレン化合物(A)との分離が困難な異性体として位置異性体が挙げられ、具体的には、下記式(a')で表されるナフタレン化合物(A')が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(a')中、R'は、上記式(a)におけるRと同義である。ナフタレン化合物(A)は1-置換体(α-置換体)であり、ナフタレン化合物(A')は2-置換体(β-置換体)であり、両者は沸点などの物性が極めて近似するため、蒸溜などによって完全に分離することは困難であるが、公知の精密蒸溜(例えば、オールダーショー型蒸溜装置等)を行うことにより、ナフタレン化合物(A')の含有量を低減することができる。
 ナフタレン化合物(A)の異性体の含有量が低減すると、大きな単結晶が成長して、結晶粒界が少なくなるメカニズムは明らかではないが、以下のように推察できる。すなわち、1-置換体(α-置換体)はナフタレン環面に対して縦方向(α方向)に置換基を有しているために結晶しにくく、一般に室温で液状になりやすいのに対して(例えば、1-メチルナフタレンの融点:-22℃;1-クロロナフタレンの融点:-2. 5℃)、2-置換体(β-置換体)はナフタレン環面に対して平行方向(β方向)に置換基を有しているために結晶しやすく、一般に室温で固体状になりやすいため(例えば、2-メチルナフタレンの融点:34℃;2-クロロナフタレンの融点:59.5℃)、乾燥工程での結晶成長課程において2-置換体の固体成分が形成されて悪影響を及ぼしていると推察される。しかしながら、このメカニズムはあくまで推察であって、このメカニズムは本発明を限定するものではない。
 ナフタレン化合物(A)の異性体の含有量は、ガスクロマトグラフィーによるピーク面積の割合として測定することができる。ガスクロマトグラフィーの測定条件は、ナフタレン化合物(A)とその異性体を分離できるものである限り特に限定されず、例えば、後述の実施例に記載された条件を使用することができる。
 ナフタレン化合物(A)の分子量は、特に限定されないが、例えば250以下程度、好ましくは128~200、特に好ましくは130~180である。ナフタレン化合物(A)の分子量が250よりも高いと、ナフタレン化合物(A)が蒸散しにくくなり、有機単結晶半導体の製造効率が低下する場合がある。
 ナフタレン化合物(A)の沸点は、特に限定されないが、例えば300℃以下程度、好ましくは200~300℃、特に好ましくは210~280℃である。ナフタレン化合物(A)の沸点が300℃よりも高いと、ナフタレン化合物(A)が蒸散しにくくなり、有機単結晶半導体の製造効率が低下する場合がある。
 ナフタレン化合物(A)の、25℃におけるFedors法によるSP値は、例えば7.0~12.0[(cal/cm30.5]、好ましくは8.0~12.0[(cal/cm30.5]、特に好ましくは9.0~11.5[(cal/cm30.5]である。なお、Fedors法によるSP値は、Polym.Eng.Sci.,14[2],147-154(1974)に記載の方法により算出される値である。
 ナフタレン化合物(A)の好ましい具体例としては、1-ナフタレン酢酸、1-ナフタレンメタノール、1-ナフタレンエタノール、1-ビニルナフタレン、1-メチルナフタレン、1-エチルナフタレン、1-フルオロナフタレン、1-クロロナフタレン、1-ブロモナフタレン、1-ヨードナフタレン、1-メトキシナフタレン、1-エトキシナフタレン、1-(クロロメチル)ナフタレン、1-(2-ブロモエチル)ナフタレン、1-アセチルナフタレン、1-(アミノメチル)ナフタレン、1-(トリフルオロメチル)ナフタレン等が挙げられ、これらは1種を単独で、又は2種以上を組み合わせて使用することができる。なかでも、有機半導体材料の溶解性、有機単結晶半導体の成膜性等の観点から、1-クロロナフタレン、1-メチルナフタレン、1-エチルナフタレン、1-フルオロナフタレン、1-メトキシナフタレン等が好ましく、1-クロロナフタレン、1-メチルナフタレン、1-フルオロナフタレン、1-メトキシナフタレンがより好ましく、1-クロロナフタレン、1-メチルナフタレン、1-メトキシナフタレンがさらに好ましく、大きな単結晶が成長して結晶粒界を少なくできる観点から、1-クロロナフタレン、1-メチルナフタレンが特に好ましい。
 本発明のインク組成物は、ナフタレン化合物(A)以外の溶剤(他の溶剤)を含んでいてもよい。上記他の溶剤としては、一般的に電子材料用途に使用される溶剤であって、ナフタレン化合物(A)と相溶する溶剤等が挙げられる。上記他の溶剤は、1種又は2種以上含有してもよい。
 本発明のインク組成物に含まれる溶剤全量(100重量%)に占めるナフタレン化合物(A)の含有割合(2種以上を組み合わせて含有する場合はその総量)は、例えば50重量%以上(例えば50~100重量%)、好ましくは70重量%以上(例えば70~100重量%)、特に好ましくは80重量%以上(例えば80~100重量%)である。ナフタレン化合物(A)の含有量が上記範囲を下回ると、有機半導体材料の溶解性が低下する傾向がある。
[溶質]
 本発明のインク組成物に含まれる溶質としては、特に限定されないが、有機半導体材料が好ましい。
 上記有機半導体材料としては、公知の有機半導体材料を特に制限なく使用することができ、p型有機半導体材料、n型有機半導体材料を使用することができる。
 本発明のインク組成物に含まれる溶質としてのp型有機半導体材料としては、電界効果移動度等の観点から、剛直な主鎖骨格を有する化合物が好ましく、例えば、下記式(1-1)で表される化合物、下記式(1-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、X1、X2は各々独立に、酸素原子、硫黄原子、又はセレン原子であり、mは0又は1、n1、n2は各々独立に、0又は1である。R1、R2は、各々独立に、フッ素原子、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基であり、前記アルキル基が含有する水素原子の1又は2以上はフッ素原子で置換されていても良く、前記アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基が含有する水素原子の1又は2以上はフッ素原子又は炭素数1~10のアルキル基で置換されていても良い)
 X1、X2は、各々独立に、酸素原子、硫黄原子、又はセレン原子であり、なかでも高いキャリア移動度を示す点で酸素原子又は硫黄原子が好ましく、特に硫黄原子が好ましい。
 mは0又は1であり、好ましくは0である。
 n1、n2は、各々独立に、0又は1であり、溶解性に優れる点で0が好ましい。
 R1、R2におけるC1-20アルキル基としては、上記RにおけるC1-20アルキル基と同様の例を挙げることができる。本発明においては、なかでもC4-15アルキル基が好ましく、特に好ましくはC6-12アルキル基、最も好ましくはC6-10アルキル基である。
 R1、R2におけるC6-10アリール基としては、上記RにおけるにおけるC6-20アリール基のうち、炭素数が6~10のものを挙げることができる。なかでもフェニル基が好ましい。
 前記ピリジル基としては、例えば、2-ピリジル、3-ピリジル、4-ピリジル基等を挙げることができる。
 前記フリル基としては、例えば、2-フリル、3-フリル基等を挙げることができる。
 前記チエニル基としては、例えば、2-チエニル、3-チエニル基等を挙げることができる。
 前記チアゾリル基としては、例えば、2-チアゾリル基等を挙げることができる。
 前記アルキル基が含有する水素原子の1又は2以上はフッ素原子で置換されていても良い。例えば、アルキル基が含有する水素原子の少なくとも1つをフッ素原子で置換した基としては、例えば、トリフルオロメチル基等を挙げることができる。
 前記アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基が含有する水素原子の1又は2以上はフッ素原子又は炭素数1~10のアルキル基で置換されていても良く、前記炭素数1~10のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロビル、n-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-デシル基等の直鎖又は分岐鎖状のアルキル基を挙げることができる。なかでも、炭素数1~6のアルキル基が好ましく、特に炭素数1~3のアルキル基が好ましい。
 例えば、アリール基が含有する水素原子の少なくとも1つを炭素数1~10のアルキル基で置換した基としては、例えば、トリル基、キシリル基等を挙げることができる。また、アリール基が含有する水素原子の少なくとも1つをフッ素原子で置換した基としては、例えば、p-フルオロフェニル基、ペンタフルオロフェニル基等を挙げることができる。
 R1、R2としては、なかでも、高いキャリア移動度を有する点で、同一又は異なって、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基が好ましい。
 上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物のなかでも、特に、上記式(1-2)で表される化合物が、200℃を超える高温環境下でも結晶状態を保持することができ、熱安定性に優れる点で好ましい。
 本発明におけるp型有機半導体材料としては、特に、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記式中、R3、R4は、各々独立に、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基であり、上記R3、R4におけるC1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基と同様の例を挙げることができる。R3とR4は、なかでも、高いキャリア移動度を有する点で、同一の基であることが好ましく、特に、C1-20アルキル基、フェニル基、フリル基、又はチエニル基が好ましく、とりわけC1-20アルキル基(なかでもC4-15アルキル基が好ましく、特に好ましくはC6-12アルキル基、最も好ましくはC6-10アルキル基である)が好ましい。
 本発明におけるp型有機半導体材料としては、下記式(2-1)~(2-5)で表される化合物からなる群より選択される少なくとも1種の化合物が高いキャリア移動度を有する点で特に好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物は、国際公開第2014/136827号に記載の製造方法等により製造することができる。また、例えば、商品名「C10-DNBDT-NW」、「C6-DNBDT-NW」(以上、パイクリスタル(株)製)等の市販品を使用することもできる。
 上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物はカルコゲン原子による架橋部分を屈曲点としてベンゼン環が両翼に連なってN字型分子構造を形成した剛直な主鎖骨格の両末端のベンゼン環に置換基が導入された構成を有する。そのため、同程度の環数を有する直線型分子に比べてナフタレン化合物(A)に対する溶解性が高く、低温環境下でも析出し難い。
 本発明のインク組成物に含まれる溶質としてのn型有機半導体材料としては、電界効果移動度等の観点から、剛直な主鎖骨格を有する化合物が好ましく、例えば、下記式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
[式(3)中、A11及びA12は、各々独立に、-O-、-N(RN)-又は-P(RN)-を示す。B11~B18は、各々独立に、-N=又は-C(RM)=を示す。RN及びRMは水素原子又は置換基を示す。X11~X14は、各々独立に、酸素原子又は硫黄原子を示す。]
 式(3)中、は、A11及びA12は、それぞれ、-O-、-N(RN)-又は-P(RN)-を示す。A11及びA12は、それぞれ、-N(RN)-が好ましい。A11及びA12は、互いに同じでも異なっていてもよいが、同じであることが好ましく、いずれも-N(RN)-がより好ましい。
 RNは、水素原子又は置換基を示す。RNとして採りうる置換基としては、特に限定されない。例えば、下記置換基群Zから選択される基が挙げられる。
置換基群Z:
 ハロゲン原子(フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましい。)、アルキル基(好ましくは炭素数1(3)~40、より好ましくは1(3)~20、特に好ましくは4~20である。括弧内の数字はシクロアルキル基の場合の炭素数を表す。アルキル基としては、例えば、メチル、エチル、プロピル、2-メチルプロピル、ブチル、アミル、ペンチル、2,2-ジメチルプロピル、ヘキシル、1-メチルペンチル((1S)-1-メチルペンチル、(1R)-1-メチルペンチル)、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、2,6-ジメチルオクチル、イコシル、2-デシルテトラデシル、2-ヘキシルドデシル、2-エチルオクチル、2-デシルテトラデシル、2-ブチルデシル、1-オクチルノニル、2-エチルオクチル、2-オクチルデシル、2-オクチルドデシル、7-ヘキシルペンタデシル、2-オクチルテトラデシル、2-エチルヘキシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチル、ベンジル、p-クロロベンジル、2-フェニルエチル、3-フェニルプロピル、トリフルオロメチル、パーフルオロエチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、C51124-、3-アミノプロピル、4-アミノブチル、5-エトキシペンチル、(メタ)アクリロキシプロピル、(メタ)アクリロキシペンチル、4-ヒドロキシブチル、4-スルホブチル、10-ホスホノデシル、2-ヒドロキシエトキシメチル、2-イミダゾリルエトキシメチル、4-(N,N-ジメチルアミノ)ブチル)、アルケニル基(好ましくは炭素数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えば、ビニル、アリル、2-ブテニル、1-ペンテニル、4-ペンテニル等を含む)、アルキニル基(好ましくは炭素数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えば、プロパルギル、1-ペンチニル、トリメチルシリルエチニル、トリエチルシリルエチニル、トリ-i-プロピルシリルエチニル、2-p-プロピルフェニルエチニル等を含む)、アリール基(好ましくは炭素数6~20、より好ましくは6~12であり、例えば、フェニル、ナフチル、2,4,6-トリメチルフェニル、p-(t-ブチル)フェニル、4-メチル-2,6-ジプロピルフェニル、4-フルオロフェニル、4-トリフルオロメチルフェニル、p-ペンチルフェニル、3,4-ジペンチルフェニル、p-ヘプトキシフェニル、3,4-ジヘプトキシフェニル)、複素環基(ヘテロ環基ともいう。環構成原子として、少なくとも1個以上のヘテロ原子と、1~30個の炭素原子を含む。ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子が挙げられ、その数は、特に限定されないが、例えば、1~2個である。環構成炭素原子の数は、好ましくは3~20個であり、更に好ましくは3~12個である。複素環基としては、5員環若しくは6員環又はこれらの縮合環の基が好ましい。複素環基は芳香族複素環基(ヘテロアリール基)及び脂肪族複素環基を含む。例えば、チエニル、チアゾリル、イミダゾリル、ピリジル、ピリミジニル、キノリル、フラニル、セレノフェニル(C43Se)、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、2-ヘキシルフラニル、ピラニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは3~30、特に好ましくは3~24であり、例えば、トリメチルシリル、トリフェニルシリル、ジメチルフェニルシリル、などが挙げられる)、アルコキシ基(好ましくは炭素数1~20、より好ましくは1~12、特に好ましくは1~8であり、例えば、メトキシ、エトキシ、ブトキシ等を含む)、アミノ基(好ましくは炭素数0~20、より好ましくは0~10、特に好ましくは0~6であり、例えば、アミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、アニリノなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えばフェニルオキシ、2-ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えば、アセチル、ヘキサノイル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~12であり、例えば、メトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~20、より好ましくは7~16、特に好ましくは7~10であり、例えば、フェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えば、アセトキシ、ベンゾイルオキシ若しくは(メタ)アクリロイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アミノカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~12であり、ウレイド基等を含む。)、アルコキシ若しくはアリールオキシカルボニルアミノ基(好ましくは炭素数2(7)~20、より好ましくは2(7)~16、特に好ましくは2(7)~12である。括弧内の数字はアリールオキシカルボニルアミノ基の場合の炭素数を表す。例えば、メトキシカルボニルアミノ若しくはフェニルオキシカルボニルアミノなどが挙げられる。)、アルキル若しくはアリールスルホニルアミノ基、アルキルチオ基(好ましくは炭素数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えば、メチルチオ、エチルチオ、オクチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えば、フェニルチオ基などが挙げられる。)、アルキル若しくはアリールスルフィニル基、アルキル若しくはアリールスルホニル基、シリルオキシ基、ヘテロ環オキシ基、カルバモイル基、カルバモイルオキシ基、ヘテロ環チオ基、スルファモイル基、アリール若しくはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ヒドラジノ基、イミノ基、シアノ基、ヒドロキシ基、ニトロ基、メルカプト基、スルホ基、カルボキシ基、ヒドロキサム酸基、スルフィノ基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、ホスホノ基(-PO(OH)2)、スルファト基(-OSO3H)が挙げられる。
 中でも、RNとして採りうる、上記置換基群Zから選択される基としては、アルキル基、アリール基、アルケニル基、アルキニル基、ヘテロ環基又はシリル基が好ましく、アルキル基(好ましくは炭素数1~20)、アリール基(好ましくは炭素数6~20)又はヘテロアリール基(環構成原子として少なくとも1個以上の上記ヘテロ原子を含む。好ましくは5員環若しくは6員環又はこれらの縮合環の基である。好ましくは環構成炭素原子数が3~20である。)がより好ましく、アルキル基(特に好ましくは炭素数4~20)が更に好ましい。
 上述の、置換基群Zから選択される基は、更に置換基を有していてもよい。このような置換基としては、置換基群Zから選択される基が挙げられる。
 更に置換基を有する基(組み合わせてなる基ともいう)において、更に有していてもよい置換基数は、特に限定されないが、例えば、1~6個が好ましく、1~3個がより好ましい。
 組み合わせてなる基としては、特に限定されず、例えば、上記の、置換基群Zから選択される基として好ましい上記各基を、置換基群Zから選択される他の基で置換した基が挙げられる。具体的には、ハロゲン原子、アルキル基、アリール基、複素環基(ヘテロアリール基)、アルコキシ基(ヒドロキシアルコキシ基、ハロゲン化アルコキシ基、ヘテロアリールアルコキシ基を含む)、アミノ基、アシルオキシ基、ヒドロキシ基、スルファト基及びホスホノ基からなる群より選択される基を置換基として有するアルキル基、ハロゲン化アリール基若しくは(フッ化)アルキルアリール基、又は、シリル基を置換基として有するアルキニル基等が挙げられる。更には、式(3)で表される化合物から水素原子を1つ除去した基も挙げられる。
 より具体的には、上記置換基群Zにおいて例示した基、又は、下記例示化合物若しくは実施例で用いた化合物中の基が挙げられる。
 組み合わせてなる基としては、上記の中でも、ハロゲン原子を置換基として有するアルキル基(ハロゲン化アルキル基)又はアリール基を置換基として有するアルキル基が好ましく、フッ素原子を置換基として有するアルキル基(フッ化アルキル基)又はアリール基を置換基として有するアルキル基が更に好ましく、アリール基を置換基として有するアルキル基が特に好ましい。
 RNとして採りうる置換基としては、(無置換の)アルキル基、ハロゲン化アルキル基又はアリール基を置換基として有するアルキル基がより好ましい。
 A11及びA12がそれぞれRNを有する場合、2つのRNは互いに同一でも異なっていてもよい。
 式(3)において、B11~B18は、それぞれ、-N=又は-C(RM)=を示す。ここで、RMは水素原子又は置換基を示す。
 RMとして採りうる置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。置換基群Zから選択される基は、更に置換基を有していてもよい。このような置換基としては、置換基群Zから選択される基が挙げられる。更に置換基を有する基としては、RNとして採りうる、上述の組み合わせてなる基が挙げられ、具体的には、上記で挙げた基、更には、式(3)で表される化合物の炭素原子に結合したメチン基を有する基が挙げられる。
 RMとしては、水素原子、アルキル基、アルケニル基、アルコキシカルボニル基、アリール基、アルコキシ基、複素環基(特にヘテロアリール基)、アミノ基、ハロゲン原子、シアノ基、カルボキシ基、ニトロ基又はメルカプト基が好ましく、水素原子、アルキル基、アルケニル基、アリール基、アルコキシ基、複素環基(特にヘテロアリール基)、ハロゲン原子又はシアノ基がより好ましく、水素原子、アルキル基、アリール基、複素環基(特にヘテロアリール基)、ハロゲン原子又はシアノ基が特に好ましい。
 RMとして採りうる置換基は、環を形成していてもよい。この置換基が環を形成する態様としては、置換基同士が互いに結合して環を形成する態様と、複数の置換基が1つの原子を共有することにより、環を形成する態様とを含む。
 置換基同士が互いに結合して環を形成する態様としては、例えば、2つのビニル基が互いに結合して、RMが結合する炭素原子とともに、ベンゼン環を形成する態様が挙げられる。また、複数の置換基が1つの原子を共有することにより、環を形成する態様としては、例えば、2つの置換基が一体となって硫黄原子(-S-基)となる態様が挙げられる。
 B11~B18のうち少なくとも1つは-N=であることが好ましく、好ましくは1~4個が-N=であり、より好ましくは1個又は2個が-N=であり、特に好ましくは2個が-N=である。また、B11~B18の全てが-C(RM)=である態様も好ましい。
 -N=を採りうるBは、特に限定されず、B11~B18のいずれが-N=であってもよい。例えば、B12、B13、B16及びB17の少なくとも1個が-N=であることが好ましく、B12及びB16の一方若しくは両方が-N=であることがより好ましい。
 B11~B18として採りうる-N=は、その窒素原子が置換基を有していてもよい。例えば、N-オキシド基(N→O基)、対アニオンを有する塩等が挙げられる。
 式(3)において、X11~X14は、それぞれ、酸素原子又は硫黄原子を示し、酸素原子が好ましい。X11~X14は、いずれも、酸素原子であることがより好ましい。
 ここで、A11及びA12とX11~X14との組み合わせは、特に限定されないが、A11及びA12が-N(RN)-であり、X11~X14が酸素原子である組み合わせが好ましい。
 式(3)で表される化合物としては、下記式(3-1)~(3-5)で表される化合物からなる群より選択される少なくとも1種の化合物が高いキャリア移動度を有する点で特に好ましい。
式(3-1)で表される化合物:N,N'-ビス(2-フェニルエチル)ピレン-3,4,9,10-ジカルボジイミド
式(3-2)で表される化合物:N,N'-ビス(3-フェニルプロピル)ピレン-3,4,9,10-ジカルボジイミド
式(3-3)で表される化合物:N,N'-ビス(オクチル)ピレン-3,4,9,10-ジカルボジイミド(C8PDI)
式(3-4)で表される化合物:2,9-ビス(2,2,3,3,4,4,4-ヘプタフルオロブチル)-1,2,3,8,9,10-ヘキサヒドロ-1,3,8,10-テトラオキソアントラ[2,1,9-def:6,5,10-d'e'f']ジイソキノリン-5,12-ジカルボニトリル(PDI-FCN2(1,7))
式(3-5)で表される化合物:2,9-ビス[(1S)-1-メチルペンチル]-1,2,3,8,9,10-ヘキサヒドロ-1,3,8,10-テトラオキソアントラ[2,1,9-def:6,5,10-d'e'f']ジイソキノリン-5,12-ジカルボニトリル(PDI1MPCN2(1,7))
Figure JPOXMLDOC01-appb-C000009
 上記式(3)で表される化合物は、国際公開第2011/082234号、特開2018-6745号に記載の製造方法等により製造することができ、また、市販品を使用することもできる。
 上記式(3)で表される化合物は、剛直な主鎖骨格としてピリレンジイミド骨格の両末端のイミド窒素に置換基が導入された構成を有するため、ナフタレン化合物(A)に対する溶解性が高く、低温環境下でも析出し難い。
 本発明のインク組成物に含まれる溶質としてのn型有機半導体材料の他の例として、剛直な主鎖骨格としてナフタレンジイミド骨格を有する化合物も好ましく、例えば、下記式(4)で表される化合物、下記式(5)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
[前記式(4)中、A21およびA22はそれぞれ独立に、-N(RN1)-、-P(RN1)-、または-O-を表す。RN1は、水素原子または置換基を表す。複数のRN1はそれぞれ、同一でも異なっていてもよい。
 前記式(4)中、B21およびB22はそれぞれ独立に、-N=または-C(RM1)=を表す。RM1は、水素原子または置換基を表す。B21およびB22がいずれも-C(RM1)=である場合には、B21に含まれるRM1とB22に含まれるRM1が環を形成していてもよい。
 前記式(4)中、Ch21は、硫黄原子、スルフィニル基、スルホニル基、セレン原子、セレニニル基、セレノニル基、又は-B23-B24-で表される基を表す。B23およびB24はそれぞれ独立に、-N=または-C(RM2)=を表す。RM2は、水素原子または置換基を表す。B23およびB24がいずれも-C(RM2)=である場合には、B23に含まれるRM2とB24に含まれるRM2が環を形成していてもよい。
 前記式(4)中、X21、X22、X23およびX24はそれぞれ独立に、酸素原子または硫黄原子を表す。
 前記式(5)中、A31およびA32はそれぞれ独立に、-N(RN1)-、-P(RN1)-、または-O-を表す。RN1は、水素原子または置換基を表す。複数のRN1はそれぞれ、同一でも異なっていてもよい。
 前記式(5)中、B31およびB32はそれぞれ独立に、-N=または-C(RM1)=を表す。RM1は、水素原子または置換基を表す。B31およびB32がいずれも-C(RM1)=である場合には、B31に含まれるRM1とB32に含まれるRM1が環を形成していてもよい。
 前記式(5)中、Ch31は、硫黄原子、スルフィニル基、スルホニル基、セレン原子、セレニニル基またはセレノニル基を表す。
 前記式(5)中、X31、X32、X33およびX34はそれぞれ独立に、酸素原子または硫黄原子を表す。
 前記式(5)中、R31およびR32はそれぞれ独立に、水素原子または置換基を表す。]
 上記式(4)中、A21およびA22はそれぞれ独立に、-N(RN1)-、-P(RN1)-または-O-を表す。これらの中でも、キャリア移動度がより向上するという観点から、A21およびA22はそれぞれ独立に、-N(RN1)-または-P(RN1)-であることが好ましく、-N(RN1)-であることがより好ましい。
 RN1は、水素原子または置換基を表す。複数のRN1はそれぞれ、同一でも異なっていてもよい。RN1で示される置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。
 A21およびA22は、キャリア移動度がより向上するという観点から、同一の基であることが好ましい。
 なかでも、RN1は、水素原子、シリル基、複素環基、アリール基、アルキニル基、または、直鎖、分岐もしくは環状のアルキル基であることが好ましい。なお、水素原子を除く各基は、さらに上記置換基群Zから選択される置換基により置換されていてもよい。
 これらの中でも、RN1は、キャリア移動度がより向上するという観点から、炭素数1~20個の直鎖、分岐もしくは環状のアルキル基、炭素数6~20個のアリール基、または、炭素数3~20個のヘテロアリール基であることが好ましく、炭素数1~20の直鎖、分岐もしくは環状のアルキル基であることがより好ましい。なお、各基は、さらに上記置換基群Zから選択される置換基により置換されていてもよい。
 さらに、RN1は、キャリア移動度がより一層向上するという観点から、炭素数3~8個(好ましくは炭素数4~7個、より好ましくは炭素数5~6個)の環状のアルキル基(シクロアルキル基)であることがさらに好ましく、シクロヘキシル基であることが特に好ましい。
 式(4)中、B21およびB22はそれぞれ独立に、-N=または-C(RM1)=を表す。
 B21およびB22は、大気安定性がより向上するという観点から、両方が-C(RM1)=であること、または、一方が-N=であって他方が-C(RM1)=であることが好ましく、両方が-C(RM1)=であることがより好ましい。
 B21およびB22がいずれも-C(RM1)=である場合には、B21に含まれるRM1とB22に含まれるRM1が環を形成していてもよい。環を形成する場合には、芳香族複素環または芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。なお、B21に含まれるRM1とB22に含まれるRM1が環を形成する場合には、この環は、上記置換基群Zから選択される置換基を有していてもよく、置換基同士が結合してさらに環を形成していてもよい。
 RM1は、水素原子または置換基を表す。なお、式(4)中、RM1が複数存在する場合には、複数のRM1はそれぞれ、同一でも異なっていてもよい。RM1で示される置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。
 RM1は、これらの中でも、水素原子、ハロゲン原子、ハロゲン化アルキル基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、カルボキシ基、複素環基、または、アミノ基であることが好ましく、水素原子、ハロゲン原子、または、シアノ基であることがより好ましく、水素原子、または、シアノ基であることがさらに好ましい。
 特に、式(4)中、B21およびB22の少なくとも一方が-C(RM1)=である場合には、少なくとも1つのRM1が、ハロゲン原子、または、シアノ基であることが好ましく、シアノ基であることがより好ましい。これにより、大気安定性がより向上するためである。
 式(4)中、Ch21は、硫黄原子、スルフィニル基(-SO-)、スルホニル基(-SO2-)、セレン原子、セレニニル基(-SeO-)、セレノニル基(-SeO2-)、又は-B23-B24-で表される基を表す。B23およびB24はそれぞれ独立に、-N=または-C(RM2)=を表す。RM2は、水素原子または置換基を表す。B23およびB24がいずれも-C(RM2)=である場合には、B23に含まれるRM2とB24に含まれるRM2が環を形成していてもよい。
 B23およびB24は、大気安定性がより向上するという観点から、両方が-C(RM2)=であること、または、一方が-N=であって他方が-C(RM2)=であることが好ましく、両方が-C(RM2)=であることがより好ましい。
 B23およびB24がいずれも-C(RM2)=である場合には、B23に含まれるRM2とB24に含まれるRM2が環を形成していてもよい。環を形成する場合には、芳香族複素環または芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。なお、B23に含まれるRM2とB24に含まれるRM2が環を形成する場合には、この環は、上記置換基群Zから選択される置換基を有していてもよく、置換基同士が結合してさらに環を形成していてもよい。
 RM2は、水素原子または置換基を表す。なお、式(4)中、RM2が複数存在する場合には、複数のRM2はそれぞれ、同一でも異なっていてもよい。RM2として採りうる置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。
 Ch21は、キャリア移動度がより向上するという観点から、硫黄原子、セレン原子、又は-B23-B24-で表される基であることが好ましい。
 式(4)中、X21、X22、X23およびX24はそれぞれ独立に、酸素原子または硫黄原子を表すが、大気安定性がより向上するという観点から、X21、X22、X23およびX24がいずれも酸素原子であることが好ましい。
 式(5)中、A31およびA32はそれぞれ、上記式(4)におけるA21およびA22と同義であり、それぞれ独立に、-N(RN1)-、-P(RN1)-または-O-を表す。RN1は、水素原子または置換基を表す。複数のRN1はそれぞれ、同一でも異なっていてもよい。RN1で示される置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。
 また、式(5)におけるA31およびA32の好ましい態様についても、上記式(4)におけるA21およびA22の好ましい態様と同じである。
 式(5)中、B31およびB32はそれぞれ、上記式(4)におけるB21およびB22と同義であり、それぞれ独立に、-N=または-C(RM1)=を表す。RM1は、水素原子または置換基を表す。なお、式(5)中、RM1が複数存在する場合には、複数のRM1はそれぞれ、同一でも異なっていてもよい。RM1で示される置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。
 また、式(5)におけるB31およびB32の好ましい態様についても、上記式(4)におけるB21およびB22の好ましい態様と同じである。
 B31およびB32がいずれも-C(RM1)=である場合には、B31に含まれるRM1とB32に含まれるRM1が環を形成していてもよい。この場合の態様についても、上記式(4)と同様である。
 式(5)中、X31、X32、X33およびX34はそれぞれ、上記式(4)におけるX21、X22、X23およびX24と同義であり、それぞれ独立に、酸素原子または硫黄原子を表す。
 また、式(5)におけるX31、X32、X33およびX34の好ましい態様についても、上記式(4)におけるX21、X22、X23およびX24の好ましい態様と同じである。
 式(5)中、Ch31は、硫黄原子、スルフィニル基(-SO-)、スルホニル基(-SO2-)、セレン原子、セレニニル基(-SeO-)またはセレノニル基(-SeO2-)を表すが、キャリア移動度がより向上するという観点から、硫黄原子またはセレン原子であることが好ましい。
 式(5)中、R31およびR32は、それぞれ独立に、水素原子または置換基を表す。R31およびR32で示される置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。
 これらの中でも、R31およびR32は、キャリア移動度がより向上するという観点から、それぞれ独立に、水素原子、シアノ基、ハロゲン原子、シリル基、または、炭素数1~20個の直鎖、分岐または環状のアルキル基であることが好ましく、水素原子、メチル基、ハロゲン原子またはシアノ基であることがより好ましい。
 上記式(4)で表される化合物及び式(5)で表される化合物は、国際公開第2011/082234号、国際公開2017/022735号に記載の製造方法等により製造することができ、また、市販品を使用することもできる。
 上記式(4)で表される化合物又は式(5)で表される化合物は、剛直な主鎖骨格としてナフタレンジイミド骨格の両末端のイミド窒素に置換基が導入された構成を有するため、ナフタレン化合物(A)に対する溶解性が高く、低温環境下でも析出し難い。
[高分子化合物]
 本発明のインク組成物は、ナフタレン化合物(A)と上記溶質以外にも、高分子化合物を含んでいてもよい。高分子化合物としては、有機半導体材料の電気的特性に影響を与えない不活性な高分子から選択することが好ましく、例えば、エポキシ樹脂、アクリル樹脂、ポリスチレン樹脂、セルロース樹脂、ブチラール樹脂等が挙げられ、具体的には、PMMA(ポリメチルメタクリレート)、PS(ポリスチレン)、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、ポリ(2,3,4,5,6-ペンタフルオロスチレン)、PVP(ポリビニルフェノール)、BCB(ベンゾシクロブテン)、POSS(かご状オリゴシルセスキオキサン)、PTFEMA(ポリ(2,2,2-トリフルオロエチルメタクリレート))、P2VP(ポリ(2-ビニルピリジン))等から適宜選択することができる。後述のエッジキャスト法もしくは、連続エッジキャスト法では、溶解性の低い有機半導体材料を用いる場合には、上記高分子化合物を含有させた方が有機単結晶の面内均一性向上など成膜性を高める効果がある。更には、絶縁膜界面の影響を最小限に抑えることができ、どの様な絶縁膜表面でも高い性能を引き出せる場合がある。本明細書で言う成膜性とは、有機単結晶成膜成膜中のインク組成物温度、基板温度、塗布速度(単結晶成長スピード)、スリット温度、配管温度、インクタンク温度、スリットと基板間距離などの設定値において、それぞれ、低温かつ高速で成膜できる程、成膜性が良いということを指す。
 本発明のインク組成物が上記高分子化合物を含有する場合、その含有量は特に限定されないが、前記インク組成物100重量%に対して、0.01~20重量%が好ましく、0.1~10重量%がより好ましい。高分子化合物の含有量がこの範囲内にあることにより、本発明のインク組成物の成膜性が向上する傾向がある。
 本発明のインク組成物は、溶剤として上記ナフタレン化合物(A)と、溶質(特に、有機半導体材料)と、必要に応じて上記高分子化合物を含有する。ナフタレン化合物(A)、溶質、及び必要に応じて配合される高分子化合物は、何れも、1種を単独で、又は2種以上を組み合わせて使用することができる。
 本発明のインク組成物は、例えば、上記ナフタレン化合物(A)と、溶質と、必要に応じて配合される高分子化合物とを混合し、空気雰囲気、窒素雰囲気、又はアルゴン雰囲気下で、70~150℃程度の温度で0.1~5時間程度加熱することにより調製することができる。
 本発明のインク組成物全量におけるナフタレン化合物(A)の含有量(2種以上含有する場合はその総量)は、例えば99.999重量%以下である。その下限は、例えば90.000重量%、好ましくは93.000重量%、特に好ましくは95.000重量%であり、上限は、好ましくは99.990重量%である。
 本発明のインク組成物中の溶質(特に、有機半導体材料)の含有量(2種以上含有する場合はその総量)は、例えば、ナフタレン化合物(A)100重量部に対して、例えば0.02重量部以上、好ましくは0.03重量部以上、特に好ましくは0.04重量部以上である。溶質の含有量の上限は例えば1重量部、好ましくは0.5重量部、特に好ましくは0.1重量部である。
<有機薄膜トランジスタ>
 次に、図1、図2を参照して、本発明の有機半導体デバイス製造用インク組成物に用いた、有機単結晶半導体を備える有機薄膜トランジスタの構造およびその製造方法について説明する。
 図1に有機薄膜トランジスタの一例の断面構造の模式図を示す。前記有機薄膜トランジスタは、工程中のハンドリング用仮固定基板100(キャリア基板ともいう)上に可撓性を有する樹脂製基板101、導電性薄膜(ゲート電極)102、ゲート絶縁膜103、有機単結晶半導体薄膜104、導電性薄膜(ソース電極、ドレイン電極)105、オーミック接合させるための電荷注入層106、保護層107が形成されているものである。以下に、前記有機薄膜トランジスタの作製について簡単に説明する。
 最初に、ハンドリング用仮固定基板100上に仮固定された樹脂製基板101上に導電性薄膜102を形成し有機薄膜トランジスタのゲート電極とする。導電性薄膜102を形成する方法としては、例えば、スパッタリング法、真空蒸着法に代表されるPVD法、または、導電性材料を含むインクを用いた塗布法により導電性薄膜102を樹脂製基板101上に成膜した後、フォトリソグラフィー法により所定の形状にパターニングを実施することにより形成する方法が挙げられる。
 また、導電性薄膜102を形成する他の方法としては、例えば、有版印刷法または無版印刷法により、樹脂製基板101上に、所定の形状にパターニングされた導電性薄膜102を直接形成する方法が挙げられる。所定の形状にパターニングされた導電性薄膜102を直接形成することにより工程を簡略化することができる。
 また、めっき法により導電性薄膜102を形成してもよい。めっき法により導電性薄膜102を形成する方法としては、例えば、フォトリソグラフィー法、有版印刷法または無版印刷法により、あらかじめ所定の形状にパターニングされためっきプライマー層を樹脂製基板101上に形成しておき、無電解めっき法、または、無電解めっき法と電解めっき法との組合せにより、所定の位置に導電性薄膜102を形成する方法が挙げられる。
 導電性薄膜102の膜厚は特に限定されないが、20nm~1μmであることが好ましく、20nm~300nmであることがより好ましい。
 次に、樹脂製基板101および導電性薄膜102の上に、ゲート絶縁膜103を形成する。ゲート絶縁膜103としては、高い比誘電率を有する金属化合物に代表されるセラミックなどの強誘電体や高分子化合物を含有する有機絶縁膜が好ましい。ゲート絶縁膜103の膜厚は特に限定されないが、1nm~1μmであることが好ましく、10nm~600nmであることがより好ましく、10nm~200nmであることがさらに好ましい。
 次にゲート絶縁膜103上に、本発明のインク組成物を用いて、ドロップキャスト法、インクジェット印刷法、エッジキャスト法もしくは、連続エッジキャスト法によりトランジスタの形状にパターニングされてない有機単結晶半導体膜104'を形成する。エッジキャスト法や連続エッジキャスト法は、公知の方法(例えば、特開2015-185620等に記載されている方法)で実施することができる。図2に、連続エッジキャスト法により有機単結晶半導体膜を形成する方法の一例の概念図を示す。図2を簡単に説明すると、連続エッジキャスト装置上に基板を設置する基板ステージ200、連続エッジキャスト塗布・インク供給用のスリット201、インクタンク202を最低限備えており、インクタンク202を加圧することでインクを基板表面に供給しインクのメニスカス203を形成し、その後、塗布速度(単結晶成長スピード)、装置各部の加熱、基板の加熱、蒸発速度など全てのパラメータを細かく調整することで有機単結晶半導体膜104'を得る。ドロップキャスト法、インクジェット印刷法も、公知の方法で実施することができる。
 ドロップキャスト法、インクジェット印刷法、エッジキャスト法もしくは、連続エッジキャスト法で成膜されたトランジスタの形状にパターニングされてない有機単結晶半導体膜104'は、その後、フォトリソグラフィー法により所定の形状にパターニングされることにより有機単結晶半導体薄膜104となる。また、有機単結晶半導体薄膜104を形成した後に、モルフォロジーを制御するためや有機単結晶半導体薄膜104に含まれる溶媒を揮発させるための焼成処理を実施してもよい。有機単結晶半導体薄膜104の膜厚は特に限定されないが、1nm~1000nmであることが好ましく、1nm~100nmであることがより好ましく、1nm~50nmであることが更に好ましい。最良な膜は、3~6分子層以下の結晶膜で有るのがより好ましく、分子構造により最適な分子総数は変動する。
 次に、ゲート絶縁膜103および有機単結晶半導体薄膜104の上に、パターニングされた導電性薄膜105を形成する。この導電性薄膜105によって、有機薄膜トランジスタのソース電極およびドレイン電極が形成される。
 導電性薄膜105は、前述の導電性薄膜102と同様の方法で形成することができる。なお、導電性薄膜105の形成は、導電性薄膜102の形成と同じ方法で形成しても異なる方法で形成してもよい。また必要に応じて有機単結晶半導体薄膜104と導電性薄膜105の間に、有機単結晶半導体薄膜104と導電性薄膜105をオーミック接合させるための電荷注入層106を設けても良い。
 導電性薄膜105の膜厚(すなわち、有機薄膜トランジスタのソース電極およびドレイン電極の膜厚)は特に限定されないが、20nm~1μmであることが好ましく、20nm~600nmであることがより好ましく、20nm~500nmであることが更に好ましい。
 次に、ゲート絶縁膜103、有機単結晶半導体薄膜104と導電性薄膜105上に保護層107を形成する。保護層107を形成する方法としては、例えば、真空蒸着法に代表されるPVD法、ALD(atomic layer deposition)法に代表されるCVD法、保護層材料を含むインクを用いた塗布法により保護層107を成膜した後、フォトリソグラフィー法により所定の形状にパターニングを実施することにより形成する方法が挙げられる。また、保護層107を形成する他の方法としては、例えば、有版印刷法または無版印刷法により、所定の形状にパターニングされた保護層107を直接形成する方法が挙げられる。所定の形状にパターニングされた保護層107を直接形成することにより、保護層107を形成する工程を簡略化することができる。
 これらの中では、有版印刷法または無版印刷法により、所定の形状にパターニングされた保護層107を直接形成する方法が好ましい。更に別の方法として、レーザーアブレーションにより所定の箇所に穴を開けパターニングを実施しても良い。
 有版印刷法または無版印刷法により、所定の形状にパターニングされた保護層107を直接形成する場合、種々の保護層材料を含むインクを用いることができる。保護層材料を含むインクとしては、例えば、無機材料を含む分散インク、SOG(スピンオングラス)材料、低分子保護層材料を含むインク、高分子保護層材料を含むインクが挙げられるが、高分子保護層材料を含むインクが好ましい。
 保護膜107を形成する材料としては、例えば、上記のインクに含まれる材料、SOG材料のほか、前述のゲート絶縁膜103において例示した材料と同様のものが挙げられる。
 保護層107の膜厚は特に限定されないが、50nm~5μmであることが好ましく、500nm~3.0μmであることがより好ましい。
 最後に、仮固定基板100から可撓性の樹脂製基板101を剥離させることでフレキシブル基板上の有機薄膜トランジスタが完成する。可撓性の樹脂製基板101を剥離させる方法としては、レーザーリフトオフ法(LLO)を用いることができる。もしくは、予め仮固定基板100と可撓性の樹脂製基板101の間にフッ素系ポリマー、自己組織化単分子膜(SAMs)や微粘着性の接着剤などで剥離層や微粘着層を形成しておき完成後に物理的に剥離させる事も可能である。当然ながら、上記剥離層や微粘着層を形成した上で、最後にLLOで剥離しても良い。
 このようにして、有機薄膜トランジスタを作製することができる。
 本発明のインク組成物は、溶剤として上記ナフタレン化合物(A)を使用するため、比較的低温でも溶質(特に、有機半導体材料)を高濃度に溶解することができる。そのため、低温環境下(例えば20~50℃、好ましくは20~40℃)でも、上述のエッジキャスト法、連続エッジキャスト法等のウェットプロセスによる簡便な方法で容易に有機半導体デバイスの形成が可能であり、コストの大幅な削減が可能である。また、ガラス基板に比べて耐熱性は低いが、衝撃に強く、軽量且つフレキシブルなプラスチック基板上に有機半導体デバイスを直接形成することができ、衝撃に強く、軽量且つフレキシブルなディスプレイやコンピュータ機器を形成することができる。更に、本発明のインク組成物を基板上に塗布すると、組成物中に含まれる溶質(特に、有機半導体材料)が自己組織化作用により結晶化して、高いキャリア移動度(例えば0.1cm2/Vs以上、好ましくは1.0cm2/Vs以上、特に好ましくは4.0cm2/Vs以上、更にこのましくは5.0cm2/Vs以上、最も好ましくは7.0cm2/Vs以上)を有する有機半導体デバイスが得られる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
製造例1:1-クロロナフタレンの精製
 試薬メーカーより購入した粗1-クロロナフタレン(不純物とし2-クロロナフタレンを約12.0%含む)をオールダーショー型蒸留装置を用いて還流比30の条件で減圧蒸留を実施し、含まれる2-クロロナフタレン量がガスクロマトグラフィーの面積%で1-クロロナフタレンを100%とした相対評価を行った際に3%、1%、0.7%のものを調製した。ガスクロマトグラフィーには、下記測定条件にて、原液を直接導入する分析方法を使用した。
・装置:GC-2014((株)島津製作所製)
・カラム:HP-5;内径0.32mm;長さ60m(Agirent社製)
・インジェクション温度:250℃
・ディテクタ温度:300℃
・検出器:FID
・キャリアガス:He
・スプリット比:20:1
・温度:150~250℃(5℃/min)
製造例2:1-メチルナフタレンの精製
 試薬メーカーより購入した粗1-メチルナフタレン(不純物とし2-メチルナフタレンを約4.0%含む)をオールダーショー型蒸留装置を用いて還流比30の条件で減圧蒸留を実施し、含まれる2-メチルナフタレン量がガスクロマトグラフィーの面積%で1-メチルナフタレンを100%とした相対評価を行った際に3%、1%、0.7%のものを調製した。ガスクロマトグラフィーには、製造例1と同じ測定条件にて、原液を直接導入する分析方法を使用した。
実施例1
 2-クロロナフタレンを相対比3%含む1-クロロナフタレンに溶質としてN,N'-ビス(2-フェニルエチル)ピレン-3,4,9,10-ジカルボジイミド(上記式(3-1)で表される化合物、以下、化合物(3-1)という)を0.03wt%混合し、160℃で加熱溶解を行ったところ、化合物(3-1)は全て溶解した。得られた溶液を用いて、図2に示される連続エッジキャスト法で塗布、単結晶を作成した。作成した単結晶について10mm×10mmの範囲でランダムに10か所サンプリングし偏光顕微鏡観察し粒界の有無について観察を行い、以下の基準にて評価した。
 ◎:結晶粒界がほとんど観察されない。
 ○:結晶粒界がわずかに観察される。
 △:結晶粒界が観察される。
 ×:多くの結晶粒界が観察される。
 結果を表1に示す。
実施例2
 2-クロロナフタレンを相対比1%含む1-クロロナフタレンに溶質として化合物(3-1)を0.03wt%混合し、160℃で加熱溶解を行ったところ、化合物(3-1)は全て溶解した。得られた溶液を用いて、図2に示される連続エッジキャスト法で塗布、単結晶を作成した。作成した単結晶について10mm×10mmの範囲でランダムに10か所サンプリングし偏光顕微鏡観察し粒界の有無について観察を行い、上記の基準にて評価した。結果を表1に示す。
実施例3
 2-クロロナフタレンを相対比0.7%含む1-クロロナフタレンに溶質として化合物(3-1)を0.03wt%混合し、160℃で加熱溶解を行ったところ、化合物(3-1)は全て溶解した。得られた溶液を用いて、図2に示される連続エッジキャスト法で塗布、単結晶を作成した。作成した単結晶について10mm×10mmの範囲でランダムに10か所サンプリングし偏光顕微鏡観察し粒界の有無について観察を行い、上記の基準にて評価した。結果を表1に示す。
実施例4
 2-メチルナフタレンを相対比3%含む1-メチルナフタレンに溶質として化合物(3-1)を0.03wt%混合し、170℃で加熱溶解を行ったところ、化合物(3-1)は全て溶解した。得られた溶液を用いて、図2に示される連続エッジキャスト法で塗布、単結晶を作成した。作成した単結晶について10mm×10mmの範囲でランダムに10か所サンプリングし偏光顕微鏡観察し粒界の有無について観察を行い、上記の基準にて評価した。結果を表1に示す。
実施例5
 2-メチルナフタレンを相対比1%含む1-メチルナフタレンに溶質として化合物(3-1)を0.03wt%混合し、170℃で加熱溶解を行ったところ、化合物(3-1)は全て溶解した。得られた溶液を用いて、図2に示される連続エッジキャスト法で塗布、単結晶を作成した。作成した単結晶について10mm×10mmの範囲でランダムに10か所サンプリングし偏光顕微鏡観察し粒界の有無について観察を行い、上記の基準にて評価した。結果を表1に示す。
実施例6
 2-メチルナフタレンを相対比0.7%含む1-メチルナフタレンに溶質として化合物(3-1)を0.03wt%混合し、170℃で加熱溶解を行ったところ、化合物(3-1)は全て溶解した。得られた溶液を用いて、図2に示される連続エッジキャスト法で塗布、単結晶を作成した。作成した単結晶について10mm×10mmの範囲でランダムに10か所サンプリングし偏光顕微鏡観察し粒界の有無について、上記の基準にて観察を行い評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000011
 表1の結果より、ナフタレン化合物の異性体含有率が低いほど、結晶粒界が少なく、大きな単結晶が成長していることがわかる。
実施例7~12
 それぞれ実施例1~6で得られた溶液を用いて図1に示す有機薄膜トランジスタを作製した。得られた有機薄膜トランジスタとトランジスタ特性を測定し、以下の基準にて評価した。結果を表2に示す。
 ◎:キャリア移動度が、0.3cm2/Vs以上
 ○:キャリア移動度が、0.1cm2/Vs以上0.3cm2/Vs未満
 △:キャリア移動度が、0.05cm2/Vs以上0.1cm2/Vs未満
 ×:キャリア移動度が、0.05cm2/Vs未満
Figure JPOXMLDOC01-appb-T000012
 表2の結果より、ナフタレン化合物の異性体含有率が低いほど、キャリア移動度が向上し、高性能の半導体が形成されていることがわかる。
 上記で説明した本発明のバリエーションを以下に付記する。
[1]下記ナフタレン化合物(A)から選ばれる少なくとも1種の溶剤と、少なくとも1種類の溶質を含有することを特徴とする有機半導体デバイス製造用インク組成物。
 ナフタレン化合物(A):下記式(a)で表される化合物
Figure JPOXMLDOC01-appb-C000013
[式(a)中、Rは、水素原子、ハロゲン原子、下記群1から選ばれる置換基を有してもよいC1-20アルキル基、下記群1から選ばれる置換基を有してもよいC2-22アルケニル基、下記群1から選ばれる置換基を有してもよいC2-22アルキニル基、下記群1から選ばれる置換基を有してもよいC1-20アルコキシ基、下記群1から選ばれる置換基を有してもよいC1-20のアルキルチオ基、下記群1から選ばれる置換基を有してもよいC2-20アルキルカルボニル基、下記群1から選ばれる置換基を有してもよいC2-20アルコキシカルボニル基、下記群1から選ばれる置換基を有してもよいジ-又はモノ-C1-20アルキルアミノ基、下記群2から選ばれる置換基を有してもよいC6-20アリール基、下記群2から選ばれる置換基を有してもよい1価の複素環基、又は下記群2から選ばれる置換基を有してもよいC3-20シクロアルキル基を示す。
 上記群1は、ハロゲン原子、スルホニル基、ヒドロキシ基、アルデヒド基(-CHO)、カルボニル基、カルボキシル基、ニトロ基、アミノ基、スルホ基(-SO3H)、エーテル基、C1-20アルキルチオ基、ジ-又はモノ-C1-20アルキルアミノ基、C6-20アリール基、1価の複素環基、及びC3-20置換シリル基から選ばれる。
 上記群2は、上記群1から選ばれる置換基、上記群1から選ばれる置換基を有してもよいC1-20アルキル基、上記群1から選ばれる置換基を有してもよいC2-20アルケニル基、及び上記群1から選ばれる置換基を有してもよいC2-20アルキニル基から選ばれる。]
[2]Rが、ハロゲン原子、または群1から選ばれる置換基を有してもよいC1-20アルキル基である、[1]に記載の有機半導体デバイス製造用インク組成物。
[3]前記ナフタレン化合物(A)が、1-クロロナフタレンおよび1-メチルナフタレンからなる群から選ばれる少なくとも1種である、[1]又は[2]に記載の有機半導体デバイス製造用インク組成物。
[4]前記ナフタレン化合物(A)の異性体の含有量が、該ナフタレン化合物(A)(100%)に対して、ガスクロマトグラフィーによるピーク面積の割合として2%以下(例えば、1.8%以下、1.5%以下、1.2%以下、1%以下、又は0.8%以下)である、[1]~[3]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[5]前記ナフタレン化合物(A)の異性体が、上記式(a’)で表されるナフタレン化合物(A’)である、[4]に記載の有機半導体デバイス製造用インク組成物。
[6]前記ナフタレン化合物(A)の分子量が、250以下(例えば、128~200、又は130~180)である、[1]~[5]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[7]前記ナフタレン化合物(A)の沸点が、300℃以下(例えば、200~300℃、又は210~280℃)である、[1]~[6]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[8]前記ナフタレン化合物(A)の、25℃におけるFedors法によるSP値が、7.0~12.0[(cal/cm30.5](例えば、8.0~12.0[(cal/cm30.5]、又は9.0~11.5[(cal/cm30.5])である、[1]~[7]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[9]溶剤全量(100重量%)に占める前記ナフタレン化合物(A)の含有割合が、50重量%以上(例えば、70重量%以上、又は80重量%以上)である、[1]~[8]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[10]前記溶質が、有機半導体材料である、[1]~[9]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[11]前記溶質が、n型有機半導体材料である、[1]~[10]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[12]前記n型有機半導体材料が、上記式(3)で表される化合物である、[11]に記載の有機半導体デバイス製造用インク組成物。
[13]前記n型有機半導体材料が、上記式(3-1)~(3-5)で表される化合物からなる群より選択される少なくとも1種の化合物である、[11]に記載の有機半導体デバイス製造用インク組成物。
[14]前記n型有機半導体材料が、上記式(4)で表される化合物、及び上記式(5)で表される化合物からなる群より選択される少なくとも1種の化合物である、[11]に記載の有機半導体デバイス製造用インク組成物。
[15]前記溶質が、p型有機半導体材料である、[1]~[14]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[16]前記p型有機半導体材料が、上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物からなる群より選択される少なくとも1種の化合物である、[15]に記載の有機半導体デバイス製造用インク組成物。
[17]前記p型有機半導体材料が、上記式(2)で表される化合物である、[15]に記載の有機半導体デバイス製造用インク組成物。
[18]前記p型有機半導体材料が、上記式(2-1)~(2-5)で表される化合物からなる群より選択される少なくとも1種の化合物である、[15]に記載の有機半導体デバイス製造用インク組成物。
[19]前記溶質に加えて、第2の成分として、高分子化合物をさらに含む、[1]~[18]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[20]前記高分子化合物が、エポキシ樹脂、アクリル樹脂、ポリスチレン樹脂、セルロース樹脂、及びブチラール樹脂からなる群より選択される少なくとも1種の高分子化合物である、[19]に記載の有機半導体デバイス製造用インク組成物。
[21]前記高分子化合物の含有量が、前記インク組成物100重量%に対して、0.01~20重量%(例えば、0.1~10重量%)である、[19]又は[20]に記載の有機半導体デバイス製造用インク組成物。
[22]前記インク組成物全量におけるナフタレン化合物(A)の含有量が、99.999重量%以下(下限は、例えば90.000重量%、93.000重量%、又は95.000重量%であり、上限は、例えば99.990重量%)である、[1]~[21]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[22]前記溶質の含有量が、前記ナフタレン化合物(A)100重量部に対して、0.02重量部以上(例えば、0.03重量部以上、又は0.04重量部以上)であり、1重量部以下(例えば、0.5重量部以下、又は0.1重量部以下)である、[1]~[21]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
[23]ドロップキャスト法、インクジェット印刷法、エッジキャスト法もしくは、連続エッジキャスト法による有機単結晶半導体膜の作製に用いられる、[1]~[22]のいずれか1つに記載の有機半導体デバイス製造用インク組成物。
 本発明による有機半導体デバイス作製用インク組成物を用いて有機単結晶トランジスタを作製することで、高性能有機薄膜トランジスタを低コストかつ効率的に得る事が可能となる。特に、ドロップキャスト法、インクジェット印刷法、エッジキャスト法や連続エッジキャスト法と組み合わせることで、半導体材料が持つ性能を最大限引き出すことが可能となる。
100 ハンドリング用仮固定基板
101 樹脂製基板
102 導電性薄膜(ゲート電極)
103 ゲート絶縁膜
104 有機単結晶半導体薄膜
105 導電性薄膜(ソース電極、ドレイン電極)
106 オーミック接合させるための電荷注入層
107 保護層
200 連続エッジキャスト装置上に基板を設置する基板ステージ
201 連続エッジキャスト塗布・インク供給用のスリット
202 インクタンク
203 スリットと基板間に形成された有機デバイス製造用インク組成物のメニスカス

Claims (8)

  1.  下記ナフタレン化合物(A)から選ばれる少なくとも1種の溶剤と、少なくとも1種類の溶質を含有することを特徴とする有機半導体デバイス製造用インク組成物。
     ナフタレン化合物(A):下記式(a)で表される化合物
    Figure JPOXMLDOC01-appb-C000001
    [式(a)中、Rは、水素原子、ハロゲン原子、下記群1から選ばれる置換基を有してもよいC1-20アルキル基、下記群1から選ばれる置換基を有してもよいC2-22アルケニル基、下記群1から選ばれる置換基を有してもよいC2-22アルキニル基、下記群1から選ばれる置換基を有してもよいC1-20アルコキシ基、下記群1から選ばれる置換基を有してもよいC1-20のアルキルチオ基、下記群1から選ばれる置換基を有してもよいC2-20アルキルカルボニル基、下記群1から選ばれる置換基を有してもよいC2-20アルコキシカルボニル基、下記群1から選ばれる置換基を有してもよいジ-又はモノ-C1-20アルキルアミノ基、下記群2から選ばれる置換基を有してもよいC6-20アリール基、下記群2から選ばれる置換基を有してもよい1価の複素環基、又は下記群2から選ばれる置換基を有してもよいC3-20シクロアルキル基を示す。
     上記群1は、ハロゲン原子、スルホニル基、ヒドロキシ基、アルデヒド基(-CHO)、カルボニル基、カルボキシル基、ニトロ基、アミノ基、スルホ基(-SO3H)、エーテル基、C1-20アルキルチオ基、ジ-又はモノ-C1-20アルキルアミノ基、C6-20アリール基、1価の複素環基、及びC3-20置換シリル基から選ばれる。
     上記群2は、上記群1から選ばれる置換基、上記群1から選ばれる置換基を有してもよいC1-20アルキル基、上記群1から選ばれる置換基を有してもよいC2-20アルケニル基、及び上記群1から選ばれる置換基を有してもよいC2-20アルキニル基から選ばれる。]
  2.  Rが、ハロゲン原子、または群1から選ばれる置換基を有してもよいC1-20アルキル基である、請求項1に記載の有機半導体デバイス製造用インク組成物。
  3.  前記ナフタレン化合物(A)が、1-クロロナフタレンおよび1-メチルナフタレンからなる群から選ばれる少なくとも1種である、請求項1又は2に記載の有機半導体デバイス製造用インク組成物。
  4.  前記ナフタレン化合物(A)の異性体の含有量が、該ナフタレン化合物(A)(100%)に対して、ガスクロマトグラフィーによるピーク面積の割合として2%以下である、請求項1~3のいずれか1項に記載の有機半導体デバイス製造用インク組成物。
  5.  前記溶質が、有機半導体材料である、請求項1~4のいずれか1項に記載の有機半導体デバイス製造用インク組成物。
  6.  前記溶質が、n型有機半導体材料である、請求項1~5のいずれか1項に記載の有機半導体デバイス製造用インク組成物。
  7.  前記溶質に加えて、第2の成分として、高分子化合物をさらに含む、請求項1~6のいずれか1項に記載の有機半導体デバイス製造用インク組成物。
  8.  ドロップキャスト法、インクジェット印刷法、エッジキャスト法もしくは、連続エッジキャスト法による有機単結晶半導体膜の作製に用いられる、請求項1~7のいずれか1項に記載の有機半導体デバイス製造用インク組成物。
PCT/JP2019/035857 2018-09-19 2019-09-12 有機半導体デバイス製造用インク組成物 WO2020059626A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217010998A KR20210060538A (ko) 2018-09-19 2019-09-12 유기 반도체 디바이스 제조용 잉크 조성물
EP19863021.2A EP3855520A4 (en) 2018-09-19 2019-09-12 INK COMPOSITION FOR THE PRODUCTION OF AN ORGANIC SEMICONDUCTOR DEVICE
US17/271,096 US11702557B2 (en) 2018-09-19 2019-09-12 Ink composition for manufacturing organic semiconductor device
CN201980061317.7A CN112771684A (zh) 2018-09-19 2019-09-12 有机半导体器件制造用油墨组合物
JP2020548429A JP7404257B2 (ja) 2018-09-19 2019-09-12 有機半導体デバイス製造用インク組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018174905 2018-09-19
JP2018-174905 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059626A1 true WO2020059626A1 (ja) 2020-03-26

Family

ID=69888469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035857 WO2020059626A1 (ja) 2018-09-19 2019-09-12 有機半導体デバイス製造用インク組成物

Country Status (7)

Country Link
US (1) US11702557B2 (ja)
EP (1) EP3855520A4 (ja)
JP (1) JP7404257B2 (ja)
KR (1) KR20210060538A (ja)
CN (1) CN112771684A (ja)
TW (1) TW202035588A (ja)
WO (1) WO2020059626A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081424A (ja) * 2007-09-03 2009-04-16 Fujifilm Corp n型有機半導体単結晶を含む電子素子
WO2011082234A1 (en) 2009-12-29 2011-07-07 Polyera Corporation Thionated aromatic bisimides as organic semiconductors and devices incorporating them
WO2014136827A1 (ja) 2013-03-05 2014-09-12 Jnc株式会社 カルコゲン含有有機化合物およびその用途
JP2015185620A (ja) 2014-03-20 2015-10-22 パイクリスタル株式会社 有機半導体膜及びその製造方法
JP2015197395A (ja) * 2014-04-02 2015-11-09 株式会社デンソー 有機溶媒の検査方法
JP2016092056A (ja) * 2014-10-30 2016-05-23 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜、及び、有機半導体素子
WO2017022735A1 (ja) 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
JP2018006745A (ja) 2016-06-27 2018-01-11 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法
JP2018174905A (ja) 2017-04-18 2018-11-15 マルワ食産株式会社 Lps含有米糠エキスの製造方法及び米糠エキスを利用した健康食品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178156B2 (en) 2009-12-23 2015-11-03 Merck Patent Gmbh Compositions comprising polymeric binders
BR112014003548B1 (pt) * 2011-08-26 2021-11-30 Raynergy Tek Incorporation Formulação de semicondutor orgânico, seu uso e processo de preparação de um dispositivo eletrônico orgânico
KR20150127192A (ko) * 2013-03-08 2015-11-16 고쿠리츠다이가쿠호진 고베다이가쿠 유기 반도체 박막의 제조 방법
JP6235143B2 (ja) * 2014-07-18 2017-11-22 富士フイルム株式会社 有機半導体膜形成用組成物、及び、有機半導体素子の製造方法
US10454037B2 (en) * 2014-08-18 2019-10-22 Basf Se Organic semiconductor composition comprising a liquid medium
JP6301488B2 (ja) * 2014-09-30 2018-03-28 富士フイルム株式会社 有機半導体膜形成用組成物、並びに、有機半導体素子及びその製造方法
CA2962379A1 (en) 2014-10-14 2016-04-21 Toray Industries, Inc. Organic semiconductor composition, photovoltaic element, photoelectric conversion device, and method for manufacturing photovoltaic element
KR101687807B1 (ko) * 2014-10-27 2017-01-02 주식회사 엘지화학 유기 태양전지용 잉크 조성물 및 이를 이용한 유기 태양전지 제조방법
KR101815432B1 (ko) * 2014-11-13 2018-01-04 스미또모 가가꾸 가부시키가이샤 잉크 조성물 및 그것을 사용하여 제조한 광전 변환 소자

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081424A (ja) * 2007-09-03 2009-04-16 Fujifilm Corp n型有機半導体単結晶を含む電子素子
WO2011082234A1 (en) 2009-12-29 2011-07-07 Polyera Corporation Thionated aromatic bisimides as organic semiconductors and devices incorporating them
WO2014136827A1 (ja) 2013-03-05 2014-09-12 Jnc株式会社 カルコゲン含有有機化合物およびその用途
JP2015185620A (ja) 2014-03-20 2015-10-22 パイクリスタル株式会社 有機半導体膜及びその製造方法
JP2015197395A (ja) * 2014-04-02 2015-11-09 株式会社デンソー 有機溶媒の検査方法
JP2016092056A (ja) * 2014-10-30 2016-05-23 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜、及び、有機半導体素子
WO2017022735A1 (ja) 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
JP2018006745A (ja) 2016-06-27 2018-01-11 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法
JP2018174905A (ja) 2017-04-18 2018-11-15 マルワ食産株式会社 Lps含有米糠エキスの製造方法及び米糠エキスを利用した健康食品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154
See also references of EP3855520A4

Also Published As

Publication number Publication date
EP3855520A4 (en) 2022-06-22
US20210246325A1 (en) 2021-08-12
KR20210060538A (ko) 2021-05-26
TW202035588A (zh) 2020-10-01
CN112771684A (zh) 2021-05-07
US11702557B2 (en) 2023-07-18
JP7404257B2 (ja) 2023-12-25
JPWO2020059626A1 (ja) 2021-09-24
EP3855520A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
KR101410150B1 (ko) 전계 효과 트랜지스터
TWI735606B (zh) 有機薄膜電晶體、有機半導體膜、化合物、有機薄膜電晶體用組成物及有機薄膜電晶體的製造方法
WO2007119703A1 (ja) 結晶性有機半導体薄膜の製造方法、有機半導体薄膜、電子デバイスおよび薄膜トランジスタ
KR102072538B1 (ko) 유기 전자장치를 위한 페나센 화합물
JP5202545B2 (ja) チアゾロチアゾール誘導体を用いた有機トランジスタおよびその製造方法
JP5092269B2 (ja) 有機半導体薄膜および有機半導体デバイスの製造方法
WO2005122277A1 (ja) 有機薄膜トランジスタ
WO2008044302A1 (fr) Transistor organique
JP2012227518A (ja) 半導体組成物
US20070166645A1 (en) Chalcogenide precursor compound and method for preparing chalcogenide thin film using the same
JP4911486B2 (ja) 有機トランジスタ
TWI695006B (zh) 有機薄膜電晶體、有機薄膜電晶體的製造方法、有機薄膜電晶體用材料、有機薄膜電晶體用組成物、有機半導體膜、化合物
JP7404257B2 (ja) 有機半導体デバイス製造用インク組成物
KR20070080940A (ko) 칼코게나이드-cnt 하이브리드 박막 및 그 제조방법
JP6955804B2 (ja) 有機電界効果トランジスタに用いられる有機半導体用可溶性光切断性前駆体としてのdnttのスルホニウム塩及び関連化合物
JP5948742B2 (ja) 有機電子デバイス用組成物、有機電子デバイスの作製方法、有機電子デバイス及び電界効果トランジスタ
WO2020213460A1 (ja) 有機半導体デバイス製造用インク組成物
KR102345789B1 (ko) 유기 반도체 디바이스 제조용 조성물
WO2021163921A1 (zh) 新型化合物及其用途
JP5948741B2 (ja) 有機電子デバイス用組成物、有機電子デバイスの作製方法、有機電子デバイス及び電界効果トランジスタ
JP2014136700A (ja) 含フッ素化合物および該含フッ素化合物を用いた有機薄膜トランジスタ
JP2023116428A (ja) 含ハロゲン有機半導体材料
JP2013026591A (ja) 薄膜トランジスタ及びそれを用いた電子デバイス
JP2013026448A (ja) 薄膜トランジスタ及びそれを用いた電子デバイス
JP2009071020A (ja) 有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010998

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019863021

Country of ref document: EP

Effective date: 20210419