WO2021163921A1 - 新型化合物及其用途 - Google Patents

新型化合物及其用途 Download PDF

Info

Publication number
WO2021163921A1
WO2021163921A1 PCT/CN2020/075847 CN2020075847W WO2021163921A1 WO 2021163921 A1 WO2021163921 A1 WO 2021163921A1 CN 2020075847 W CN2020075847 W CN 2020075847W WO 2021163921 A1 WO2021163921 A1 WO 2021163921A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
organic semiconductor
atom
group
Prior art date
Application number
PCT/CN2020/075847
Other languages
English (en)
French (fr)
Inventor
岑鼎海
池田大次
横尾健
赤井泰之
冈本敏宏
黑泽忠法
竹谷纯一
Original Assignee
株式会社大赛璐
国立大学法人东京大学
岑鼎海
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大赛璐, 国立大学法人东京大学, 岑鼎海 filed Critical 株式会社大赛璐
Priority to EP20919948.8A priority Critical patent/EP4108657A4/en
Priority to CN202080096972.9A priority patent/CN115135640A/zh
Priority to KR1020227031698A priority patent/KR20220143703A/ko
Priority to US17/800,692 priority patent/US20230128569A1/en
Priority to JP2022549389A priority patent/JP2023519108A/ja
Priority to PCT/CN2020/075847 priority patent/WO2021163921A1/zh
Priority to TW110103488A priority patent/TW202138375A/zh
Publication of WO2021163921A1 publication Critical patent/WO2021163921A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to novel compounds and their uses. More specifically, it relates to a novel compound and a manufacturing method thereof, an organic semiconductor solution composition containing the compound, an organic semiconductor film formed from the organic semiconductor solution composition, and an organic thin film transistor having the organic semiconductor film.
  • organic semiconductor materials have attracted much attention, and they have the following advantages: because they can be processed at a lower temperature than inorganic semiconductor materials, manufacturing costs can be reduced, and flexible substrate devices can be large-screened through solution processes, so Various organic semiconductor materials are actively researched and developed.
  • acene compounds such as pentacene and tetracene are organic semiconductor materials with high carrier mobility, but they have problems of chemical stability and poor solubility in solvents.
  • Patent Document 1 proposes an organic compound whose chemical stability is improved by substituting a part of the acene skeleton with sulfur, selenium, etc.
  • Patent Document 2 proposes an organic compound that improves solubility by introducing substituents into the acene skeleton Of organic compounds.
  • Patent Document 3 shows that organic compounds containing a thiophene structure and a furan structure in the basic skeleton, and introducing substituents such as alkyl groups, and having a non-linear molecular structure with low symmetry, show high carrier mobility. And showed that it has further improved chemical stability and solubility.
  • Patent Document 1 International Publication No. WO2006/077888
  • Patent Document 2 International Publication No. WO2005/080304
  • Patent Document 3 International Publication No. WO2013/125599
  • the subject of the present invention is to provide a compound that is excellent in chemical stability, has high solubility in solvents, and exhibits excellent carrier mobility.
  • the subject of the present invention is to provide a method for producing the above-mentioned compound.
  • the subject of the present invention is to provide an organic semiconductor solution composition containing the above-mentioned compound.
  • the subject of the present invention is to provide an organic semiconductor film formed from the above-mentioned organic semiconductor solution composition.
  • the subject of the present invention is to provide an organic thin film transistor having the above-mentioned organic semiconductor film.
  • the inventors conducted research based on the idea of degenerating the highest occupied orbital (HOMO, Highest Occupied Molecular Orbital) and the next orbital (NHOMO, Next Highest Occupied Molecular Orbital) of HOMO, so as to show
  • HOMO highest occupied orbital
  • NHOMO Next Highest Occupied Molecular Orbital
  • HOMO highest occupied orbital
  • NHOMO Next Highest Occupied Molecular Orbital
  • the present invention provides a compound represented by the following formula (1) (also referred to as an organic semiconductor material in some cases).
  • X 1 is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom
  • X 2 and X 3 are the same or different, and are a carbon atom, an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom.
  • R 1 and R 2 are the same or different and are a hydrogen atom or an organic group
  • R 3 to R 10 are the same or different and are a hydrogen atom, a halogen atom or an organic group.
  • R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 8 and R 9 , and R 9 and R 10 are optionally bonded to each other to form a ring together with adjacent carbon atoms.
  • the double line containing the dashed line represents a single bond or a double bond.
  • the present invention provides a compound represented by the following formula (1').
  • X 1 is a sulfur atom
  • X 2 and X 3 is any one of a carbon atom
  • the other is a sulfur atom
  • R 1' and R 2 ' are the same or different, Organic groups.
  • the present invention provides a method for producing the above-mentioned compound, which method includes a step of obtaining a compound represented by formula (1-5) from a compound represented by formula (1-4).
  • the present invention provides an organic semiconductor solution composition containing the above-mentioned compound and at least one solvent.
  • the present invention provides an organic semiconductor film formed from the above-mentioned organic semiconductor solution composition.
  • the present invention provides an organic thin film transistor having the above-mentioned organic semiconductor film.
  • the compound of the present invention has excellent chemical stability and high solubility in solvents, and therefore can form a large-area and highly uniform organic semiconductor film by coating and printing the organic semiconductor solution composition.
  • the organic semiconductor film of the present invention exhibits excellent carrier mobility, and therefore can realize a high-performance organic thin film transistor.
  • FIG. 1 is a schematic cross-sectional view of a top contact/bottom gate type organic thin film transistor.
  • the compound of the present invention the method of producing the compound, the organic semiconductor solution composition containing the compound (organic semiconductor material), the organic semiconductor film formed from the organic semiconductor solution composition, and the organic thin film having the organic semiconductor film Transistor is explained.
  • the compound of the present invention is represented by formula (1).
  • X 1 is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom
  • X 2 and X 3 are the same or different, and are a carbon atom, an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom.
  • R 1 and R 2 are the same or different and are a hydrogen atom or an organic group
  • R 3 to R 10 are the same or different and are a hydrogen atom, a halogen atom or an organic group.
  • R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 8 and R 9 , and R 9 and R 10 are optionally bonded to each other to form a ring together with adjacent carbon atoms.
  • X 1 in the formula (1) is preferably a sulfur atom or a selenium atom, and from the viewpoint of further improving chemical stability, it is more preferably a sulfur atom.
  • X 2 and X 3 in formula (1) from the viewpoint of showing higher carrier mobility, it is preferable that one is a sulfur atom or a selenium atom, and the other is a carbon atom, and more preferably X 2 is a sulfur atom and X 3 is a carbon atom.
  • the organic groups of R 1 and R 2 in the above formula (1) are preferably alkyl groups having 1 to 40 carbon atoms, alkenyl groups having 2 to 22 carbon atoms, alkynyl groups having 2 to 22 carbon atoms, and carbon atoms.
  • These groups optionally have substituents.
  • the alkyl group of R 1 and R 2 is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, more preferably 3 to 20 carbon atoms, and even more preferably 5 to 15 carbon atoms.
  • the alkenyl group of R 1 and R 2 is preferably a linear or branched alkenyl group having 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, and even more preferably 2 to 8 carbon atoms.
  • vinyl 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 3-methyl -2-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 3- Hexenyl, 5-hexenyl, 1-heptenyl, 1-octenyl, 1-nonenyl, 1-decenyl and the like.
  • the alkynyl group for R 1 and R 2 is preferably a linear or branched alkynyl group having 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, and even more preferably 2 to 8 carbon atoms.
  • Examples include: ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-heptynyl, 1- Octynyl, 1-nonynyl, 1-decynyl, trimethylsilylethynyl, triethylsilylethynyl, triisopropylsilylethynyl, 2-
  • the aryl group for R 1 and R 2 is preferably an aryl group having 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms, and examples thereof include phenyl, naphthyl, anthryl, phenanthryl, and acenaphthylene Alkenyl, biphenyl, 2,4,6-trimethylphenyl, p-tert-butylphenyl, 4-methyl-2,6-dipropylphenyl, 4-fluorophenyl, 4-trimethylphenyl Fluoromethylphenyl, p-pentylphenyl, 3,4-dipentylphenyl, p-heptyloxyphenyl, 3,4-diheptyloxyphenyl, etc.
  • the cycloalkyl group of R 1 and R 2 is preferably a cyclic alkyl group having 3 to 20 carbon atoms, more preferably 4 to 20 carbon atoms, and examples thereof include cyclopropyl, cyclobutyl, and cyclopentan Cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, adamantyl, etc.
  • the alkoxy group of R 1 and R 2 is preferably a linear or branched alkane having 1 to 18 carbon atoms, more preferably 1 to 12 carbon atoms, and even more preferably 1 to 8 carbon atoms.
  • the oxy group includes, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentoxy, Isopentyloxy, neopentyloxy, tert-pentyloxy, n-hexyloxy, isohexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, etc.
  • Examples of the monovalent heterocyclic group of R 1 and R 2 include 5 to 22 members (preferably 5- or 6-membered) aromatic heterocyclic group and aliphatic heterocyclic group.
  • aromatic heterocyclic groups examples include: monocyclic aromatic heterocyclic groups (furyl, 2-hexylfuryl, thienyl, pyridyl, pyrimidinyl, pyrrolyl, imidazolyl, pyrazolyl, thiazole Group, benzothiazolyl, benzo Azolyl, benzimidazolyl, selenophenyl, etc.), condensed aromatic heterocyclic groups (quinolinyl, isoquinolinyl, etc.), etc.
  • aliphatic heterocyclic group examples include: monocyclic aliphatic heterocyclic group (piperidinyl, morpholinyl, piperazinyl, tetrahydrofuranyl, etc.), condensed aliphatic heterocyclic group (benzopyran Group, tetrahydroquinolinyl, tetrahydroisoquinolinyl, etc.) and the like.
  • R 1 and R 2 examples include halogen atoms (fluorine atoms, etc.), cyano groups, hydroxyl groups, nitro groups, acyl groups (hexanoyl, benzoyl, etc.), and alkoxy groups (butyryl).
  • halogen atom in the above formula (1) examples include a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • a fluorine atom is preferred from the viewpoint of exhibiting higher carrier mobility.
  • the organic groups of R 3 to R 10 in the above formula (1) are the same as the above R 1 and R 2 , and among them, an alkyl group having 1 to 40 carbon atoms, an aryl group having 6 to 20 carbon atoms, or An alkoxy group having 1 to 20 carbon atoms.
  • R 3 to R 10 as a contiguous combination, R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 8 and R 9 , and R 9 and R 10 are optionally bonded respectively and further To form a ring.
  • the above-mentioned ring may be an aromatic ring or a non-aromatic ring.
  • the 5-membered ring containing X 2 , X 3 and the double line including the dashed line in formula (1) when two of the double lines including the dashed line are single bonds, it is a non-aromatic ring, and when one is a double bond , Is an aromatic ring, preferably an aromatic ring.
  • the compound of the present invention has high solubility in solvents through the introduction of a flexible dinaphthochalcogenophene structure and substituents. Therefore, the following organic semiconductor solution composition can be prepared at a desired concentration, and can be suitably used in the coating method/ Manufacture of organic semiconductor films by simple solution processes such as printing methods.
  • the compound of the present invention has excellent chemical stability, so it can also be used for organic semiconductor films made by vapor-phase processes such as vacuum vapor deposition, MBE (Molecular Beam Epitaxy), sputtering, laser vapor deposition, vapor transmission growth method, etc. Manufacturing.
  • vapor-phase processes such as vacuum vapor deposition, MBE (Molecular Beam Epitaxy), sputtering, laser vapor deposition, vapor transmission growth method, etc. Manufacturing.
  • the compound of the present invention stably exhibits excellent carrier mobility. The reason is not fully understood. It is speculated that the energy levels of HOMO and NHOMO are very close due to the 5-membered heterocyclic structure at both ends. NHOMO and HOMO also contribute to the overlap of ⁇ electron orbitals.
  • the compound represented by the formula (1') is preferred from the viewpoint that the solubility to the solvent and the overlap of the orbital can be appropriately compatible.
  • X 1 , X 2 and X 3 are respectively the same as in formula (1), R 1'and R 2'are the same or different organic groups, and the double line containing the dashed line represents a single bond or a double key.
  • R 1' and R 2 ' is an organic group is preferably an alkyl carbon atoms, having 1 to 40 carbon atoms, alkenyl group having 2 to 22 carbon atoms, an alkynyl group having 2 to 22 , An aryl group having 6 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a monovalent heterocyclic group.
  • R 1' and R 2 ' is an alkyl group, alkenyl group, alkynyl group, aryl group, monovalent heterocyclic group, a cycloalkyl group, an alkoxy group, and are optionally substituted with
  • the group is the same as R 1 and R 2 in the above formula (1).
  • X 1 is a sulfur atom
  • any one of X 2 and X 3 is a carbon atom
  • the other is a sulfur atom
  • R 1'and R 2' are the same or different organic groups.
  • X 1 is a sulfur atom
  • X 2 is a sulfur atom
  • X 3 is a carbon atom
  • R 1'and R 2' The same or different organic groups.
  • R 1 'and R 2' is a organic group having a carbon number alkyl group having 1 to 40 carbon atoms in the aryl group having 6 to 20, or a monovalent heterocyclic group, an aryl A group or a monovalent heterocyclic group has the same meaning as in the above formula (1').
  • the compound represented by the above formula (1) of the present invention can be produced, for example, through the following steps: cross-coupling a compound represented by the following formula (1-1) and a compound represented by the following formula (1-2) to obtain the following The step of epoxidizing the formyl group of the compound represented by the formula (1-3) to obtain the compound represented by the following formula (1-4); by forming a condensed ring A step of obtaining a compound represented by the following formula (1-5) from the compound represented by the formula (1-4); and a step of introducing a substituent to the compound represented by the formula (1-5).
  • the compound represented by the formula (1-4) can be produced, for example, through the following steps: the compound represented by the formula (1-1) and the compound represented by the formula (1-2) are cross-coupled to obtain the formula (1-3) A step of converting the formyl group of the compound represented by formula (1-3) into an epoxy group.
  • X 1 , X 2 , X 3 and the double line containing the dotted line respectively represent the same content as in the formula (1),
  • A represents an organosulfonyloxy group, and
  • B represents a boronic acid group (-B(OH) 2 ).
  • organic sulfonyloxy group examples include methanesulfonyloxy, p-toluenesulfonyloxy, trifluoromethanesulfonyloxy, camphorsulfonyloxy, etc. Among them, trifluoromethanesulfonyloxy is preferred. base.
  • the above B may be a borate group (boronic acid pinacol ester group, diisopropyl borate group, propylene glycol borate group, etc.).
  • the compound represented by the formula (1-1) is cross-coupled with the compound represented by the formula (1-2) under normal Suzuki-Miyaura coupling conditions United.
  • the compound represented by the formula (1-1) can be, for example, 5-halobenzofuran, 5-halobenzothiophene, etc. as starting materials, and methoxy substitution with halogen atoms, 4-formylation, methoxy It is synthesized by well-known methods such as group deprotection and organosulfonyloxylation.
  • the compound represented by the formula (1-2) can be synthesized by a known method of esterifying the boronic acid group, for example, by reacting furan, thiophene, etc., with diborane to introduce a boronic acid group (-B(OH) 2 ). In addition, it can also be obtained as a commercially available product.
  • the compound represented by the formula (1-4) can be formed by ringing the formyl group of the compound represented by the formula (1-3) in the presence of a sulfur ylide obtained by reacting a metal hydroxide with a sulfonium compound or a sulfonium oxide compound in the system It is obtained by oxidation reaction.
  • the sulfonium compound examples include trimethylsulfonium bromide (Me 3 SBr), trimethylsulfonium chloride (Me 3 SCl), and trimethylsulfonium iodide (Me 3 SI).
  • the sulfonium oxide compound examples include bromotrimethylsulfonium oxide (Me 3 OSBr), chlorotrimethylsulfonium oxide (Me 3 OSCl), and iodotrimethylsulfonium oxide (Me 3 OSI). These compounds may be used alone or in combination of two or more kinds.
  • the reaction temperature (solution temperature) of the reaction for converting a formyl group to an epoxy group is preferably 0 to 100°C, and more preferably 50 to 80°C.
  • the reaction time is usually 1 to 50 hours, preferably 1 to 25 hours.
  • KOH, NaOH, etc. are mentioned, for example. These compounds may be used alone or in combination of two or more kinds.
  • the amount of the base catalyst used is preferably 1-10 mol relative to 1 mol of the compound represented by formula (1-3).
  • the amount of Me 3 SI used is preferably 2 to 4 mol relative to 1 mol of the compound represented by formula (1-3).
  • a condensed ring having an aromatic 6-membered ring is formed in the presence of a Lewis acid catalyst, and the aromatic 6-membered ring includes the compound represented by the formula (1-4) The carbon that constitutes the epoxy group.
  • X 1 , X 2 , X 3 and the double line including the broken line respectively represent the same content as in the formula (1).
  • the reaction temperature (solution temperature) is preferably 0 to 120°C, more preferably 20 to 100°C.
  • the reaction time is usually 1 to 100 hours, preferably 1 to 50 hours.
  • Lewis acid catalysts examples include indium (III) chloride, aluminum (III) chloride, and thallium (III) chloride. These compounds may be used alone or in combination of two or more kinds.
  • the amount of the Lewis catalyst used is preferably 0.1 to 2 mol relative to 1 mol of the compound represented by formula (1-1).
  • the compound represented by the above formula (1) can be introduced into the compound represented by the formula (1-5) by using a known aromatic substitution reaction or a known cross-coupling reaction to introduce the halogen atoms and organic groups of R 1 to R 10 of the above formula And get.
  • the above formula (1 ') of the present invention may be a compound represented by the same manner as the above-mentioned R 1' is introduced into the compound represented by the above formula (1-5), and R 2 'is an organic group obtained.
  • the above formula (1 ') a compound of the present invention can be similarly expressed by introducing the compound represented by the above formula (1-5) above R 1' and R 2 'is an organic group obtained by the above formula ( 1-5)
  • the compound represented is, for example, 4-formyl-5-trifluoromethylsulfonyloxybenzothiophene is used as the compound represented by the above formula (1-1), and 2,5-diboronic acid thiophene is used as Obtained from the compound represented by the above formula (1-2).
  • reaction to obtain the compounds represented by the aforementioned formulas (1), (1'), (1"), and the aforementioned formulas (1-1) to (1-5) is preferably carried out in the presence of a solvent.
  • solvents examples include water, alcohol solvents (methanol, ethanol, isopropanol, butyl cellosolve, etc.), nitrogen-containing solvents (acetonitrile, N-methyl-2-pyrrolidone, and N,N-dimethylformamide).
  • halogenated hydrocarbon solvents (dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.), ether solvents (diethyl ether, tert-butyl methyl ether, tetrahydrofuran, 1,4 -two Alkane, dimethoxyethane, dichloromethyl methyl ether, etc.), glycol solvents (ethylene glycol, propylene glycol monomethyl ether-2-acetate, etc.), aromatic hydrocarbon solvents (benzene, toluene, dichloromethane, etc.) Toluene, anisole, etc.), ketone solvents (methyl isobutyl ketone, acetone, etc.), ester solvents (ethyl acetate, ethyl lactate, ⁇ -butyrolactone, etc.). These compounds may be used alone or in combination of two or more kinds.
  • the compounds represented by formulas (1-1) to (1-5) obtained in each reaction can be purified by known purification methods such as column chromatography and recrystallization, and then used in the next reaction, or can be in the form of a crude product. Used directly in the next reaction.
  • the organic semiconductor solution composition of the present invention contains the above-mentioned compound (organic semiconductor material) and a solvent.
  • An organic semiconductor material may be used individually by 1 type, and may be used in combination of 2 or more types.
  • solvents for example, aliphatic hydrocarbon solvents (pentane, hexane, heptane, etc.), halogenated hydrocarbon solvents (dichloromethane, chloroform, 1,2-dichloroethane, etc.), ether solvents (two Ethyl ether, tert-butyl methyl ether, tetrahydrofuran, two Alkane, etc.), alcohol solvents (methanol, ethanol, isopropanol, butyl cellosolve, etc.), ester solvents (ethyl acetate, ethyl lactate, ⁇ -butyrolactone, etc.), ketone solvents (methyl isobutyl ketone, Acetone, etc.), nitrogen-containing solvents (acetonitrile, N-methyl-2-pyrrolidone, N,N-dimethylformamide, etc.), sulfur-containing solvents (dimethyl sulfoxide, etc.),
  • the boiling point of the above-mentioned solvent is preferably 20 to 120°C, more preferably 20 to 100°C.
  • the water content of the solvent used in the composition of the present invention is preferably 0.25% by weight or less.
  • the water content is preferably 0.15% by weight or less, and more preferably 0.05% by weight or less. It should be noted that the water content can be measured by Karl Fischer method.
  • the organic semiconductor solution composition of the present invention may contain, if necessary, a polymer compound as a binder in addition to the above-mentioned organic semiconductor material and the above-mentioned solvent.
  • the following edge casting method or continuous edge casting method can be used for high-speed film formation, etc., to improve the composition of the organic semiconductor solution The film-forming properties of the material.
  • the polymer compound optionally contained in the organic semiconductor of the present invention preferably does not affect the electrical properties of the organic semiconductor material.
  • examples include epoxy resin, melamine resin, phenol resin, polyurethane resin, acrylic resin (polymethyl methacrylate). , Poly(2,2,2-trifluoroethyl methacrylate), etc.), polystyrene resin (polystyrene, poly- ⁇ methylstyrene, polyvinylphenol, polypentafluorostyrene, etc.), fiber Plain resin, butyral resin (polyvinyl butyral, etc.), polyvinyl resin (polyvinyl alcohol, polyvinyl acetate, poly(2-vinylpyridine), polyvinyl chloride, polyvinylidene chloride, etc.) Polytetrafluoroethylene, etc.), benzocyclobutene resin, silicone resin (cage oligomeric silsesquioxane, etc.), polyolefin resin (polyethylene,
  • the organic semiconductor solution composition of the present invention contains the above-mentioned polymer compound
  • its content is, for example, preferably 0.01 to 20% by weight, and more preferably 0.1 to 10% by weight in 100% by weight of the organic semiconductor solution composition.
  • the content of the polymer compound is within this range, the film-forming properties of the organic semiconductor solution composition tend to improve.
  • the content of the solvent in the total amount of the organic semiconductor solution composition of the present invention is, for example, preferably 99.999% by weight or less, more preferably 99.990% by weight or less, and still more preferably 99.900% by weight or less.
  • the lower limit is, for example, preferably 90% by weight or more, more preferably 93% by weight or more, and even more preferably 95% by weight or more.
  • the content of the solute (especially the organic semiconductor material) in the organic semiconductor solution composition of the present invention is, for example, preferably 0.02 parts by weight or more, and more preferably 0.03 parts by weight relative to 100 parts by weight of the solvent. Part by weight or more, more preferably 0.04 part by weight or more.
  • the upper limit is preferably 1 part by weight or less, more preferably 0.5 part by weight or less, and even more preferably 0.1 part by weight or less.
  • the organic semiconductor solution composition of the present invention can be prepared, for example, by mixing the above-mentioned solvent, the above-mentioned solute, and a polymer compound blended as necessary, and heating the composition in air, nitrogen or argon atmosphere at 30-200°C for 0.1-5 Hours to prepare.
  • the organic semiconductor solution composition of the present invention can be prepared at various concentrations, and the crystalline state of the organic semiconductor film formed thereby can be arbitrarily within a wide range from crystalline to amorphous. Variety.
  • the carrier mobility also changes. Therefore, the crystalline state of the organic semiconductor film can be arbitrarily adjusted by using the organic semiconductor solution composition of the present invention, and therefore the carrier mobility of the organic semiconductor film can be stably reproduced.
  • the organic semiconductor film of the present invention can be formed by coating or printing the above-mentioned organic semiconductor solution composition of the present invention on a substrate and drying.
  • coating methods for example, coating methods (drop coating method, spin coating method, dip coating method, blade coating method, edge casting method, continuous edge Casting method, etc.), printing method (screen printing method, inkjet printing method, mask printing method, offset printing method, flexographic printing method, micro contact printing method, offset printing method, gravure printing method, relief printing method, etc.) Wait.
  • coating methods drop coating method, spin coating method, dip coating method, blade coating method, edge casting method, continuous edge Casting method, etc.
  • printing method screen printing method, inkjet printing method, mask printing method, offset printing method, flexographic printing method, micro contact printing method, offset printing method, gravure printing method, relief printing method, etc.
  • edge casting methods, continuous edge casting methods, and the like are preferred.
  • the substrate on which the organic semiconductor solution composition can be coated or printed for example, glass, metals (gold, copper, silver, etc.), inorganic substances (crystalline silicon substrates, amorphous silicon substrates, etc.), resins (three Acetyl cellulose resin, norbornene resin, polyester resin, polyvinyl resin, polyolefin resin, etc.).
  • a resin substrate is preferable.
  • Drying can be performed, for example, by heating at 20 to 200°C for 0.5 to 24 hours under normal pressure or reduced pressure. Heating may be performed on the organic semiconductor solution composition or on the substrate.
  • the organic semiconductor film of the present invention may be heat-treated after formation.
  • the thickness of the organic semiconductor film is preferably 1 to 1000 nm, more preferably 1 to 100 nm, and even more preferably 1 to 50 nm.
  • the organic semiconductor film of the present invention may be used after being peeled from the base material after being formed, or may be used as it is formed on a substrate or the like.
  • the organic semiconductor film of the present invention may be patterned into a predetermined shape by photolithography or the like after being uniformly coated by the above-mentioned coating method, or may be printed into a pattern of a predetermined shape by the above-mentioned printing method.
  • the organic thin film transistor of the present invention has the organic semiconductor film of the present invention as a semiconductor layer.
  • the organic thin film transistor of the present invention has a gate electrode, an organic semiconductor film (semiconductor layer), a gate insulating film provided between the gate electrode and the organic semiconductor film (semiconductor layer) on a substrate, and a gate insulating film provided with the organic semiconductor film (semiconductor layer).
  • a source electrode and a drain electrode that are in contact with each other and connected together through an organic semiconductor film (semiconductor layer).
  • the organic semiconductor film and the gate insulating film are provided adjacent to each other.
  • the organic thin film transistor of the present invention only needs to have the above-mentioned layers, and its structure is not particularly limited.
  • it may be a bottom contact type (bottom contact/bottom gate type, bottom contact/top gate type), or a top contact type (top contact type). Any structure such as contact/bottom gate type, top contact/top gate type), etc., of which the top contact/bottom gate type is preferred.
  • FIG. 1 A schematic cross-sectional view of a top contact/bottom gate type as a preferred example is shown in FIG. 1.
  • the top contact/bottom gate type organic thin film transistor 10 has a substrate 100, a conductive film (gate electrode) 101, a gate insulating film 102, an organic semiconductor film 103, a source electrode 104A, a drain electrode 104B, and a protective layer 105.
  • Examples of uses of the organic thin film transistor of the present invention include electronic paper, display devices, sensors, electronic tags, sensors, and the like.
  • An organic thin-film transistor manufactured by the following method was produced, and one semiconductor parameter analyzer (manufactured by Agilent, 4156C) connected to a semi-auto probe (manufactured by Vector Semiconductor, AX-2000) was used to evaluate one The carrier mobility under atmospheric pressure (temperature: room temperature).
  • I d is derived, and the following related to the drain current I d is used
  • the formula calculates the carrier mobility ⁇ (cm 2 /Vs).
  • I d (W/2L) ⁇ C i (V g -V th ) 2
  • L represents the gate length
  • W represents the gate width
  • represents the carrier mobility
  • C i represents the average capacitance per unit area of the gate insulating film
  • V g represents the gate voltage
  • V th represents the threshold voltage
  • the following compound C10-TBNT was synthesized, and the carrier mobility was evaluated.
  • the compound C10-TBNT was synthesized through the following steps.
  • MeONa sodium methoxide
  • DMF N,N-dimethylformamide
  • DCM dichloromethane
  • BBr 3 represents boron tribromide
  • Tf 2 O represents trifluoromethanesulfonic anhydride
  • Tf represents trifluoromethylsulfonyl
  • DMAP represents dimethyl propionamide
  • MeCN represents acetonitrile
  • Indium trichloride (870 mg, 3.93 mmol) was added to a 2 L three-necked flask, and heated with a hot air gun for 30 minutes under reduced pressure.
  • Compound 1h (3.40 g, 7.86 mmol) was added thereto, and argon replacement was performed three times, and then 1300 mL of dichloromethane was added.
  • the suspension was refluxed and stirred for 48 hours. After cooling to room temperature (28°C), 500 mL of water was poured, and the mixture was extracted 4 times with 500 mL of dichloromethane, and concentrated under reduced pressure to obtain a brown solid.
  • PdCl 2 (dppf) ⁇ CH 2 Cl 2 represents [1,1'-bis(diphenylphosphine)ferrocene] palladium dichloride dichloromethane complex.
  • Ultraviolet-ozone cleaning is performed on the surface of the thermal oxide film of an n-type silicon substrate (20mm ⁇ 20mm, thickness 0.4mm) with a thermal oxide film (silicon oxide film) with a thickness of 500nm on the surface, using ⁇ -phenethyltrimethoxysilane To process.
  • the above-mentioned liquid film was heated under normal pressure at a substrate temperature of 110°C for 2 hours, and further heated at 80°C under reduced pressure (10 -3 Pa) for 12 hours, and dried to precipitate the crystals of compound C10-TBNT. , By removing the glass components, a uniform thickness of a ring-shaped organic semiconductor film (50nm film thickness) is formed on the substrate.
  • the gate width (W) is 110 ⁇ m
  • the gate length (L) is 100 ⁇ m
  • the ratio (W/L) is 1.1).
  • the carrier mobility of the compound C10-TBNT was evaluated by the above method, and the result was 2.2 cm 2 /Vs.
  • the carrier mobility is 6.6 cm 2 /Vs.
  • the following comparative compound 1 was synthesized according to the synthesis method described in Patent Document 3 (International Publication No. WO2013/125599), and the carrier mobility was evaluated in the same manner as in Example 1, and it was 1.0 cm 2 /Vs.
  • the organic semiconductor solution composition containing the compound of the present invention in an inkjet printing method or an edge casting method, a high-performance organic semiconductor film and an organic thin film transistor can be obtained at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供化学稳定性优异、对溶剂具有高溶解性、且显示出优异的载流子迁移率的化合物。所述化合物为下述式(1)表示的化合物。[式(1)中,X1、X2、X3、R1~R10如说明书中所定义。(I)

Description

新型化合物及其用途 技术领域
本发明涉及新型化合物及其用途。更具体而言,涉及新型化合物及其制造方法、包含该化合物的有机半导体溶液组合物、由该有机半导体溶液组合物形成的有机半导体膜、以及具有该有机半导体膜的有机薄膜晶体管。
背景技术
近年来,有机半导体材料备受关注,其具有如下优点:由于能够在比无机半导体材料更低温下进行加工,因此可以削减制造成本,且能够通过溶液工艺实现柔性基板设备等的大屏幕化,因此正在对各种有机半导体材料积极地进行研究开发。
一直以来,已知并五苯、并四苯等并苯化合物是具有高载流子迁移率的有机半导体材料,但存在化学稳定性、对溶剂的溶解性差的问题。
专利文献1提出了一种通过将并苯骨架的一部分取代为硫、硒等而改善了化学稳定性的有机化合物,专利文献2提出了一种通过在并苯骨架导入取代基而改善了溶解性的有机化合物。
另外,专利文献3中示出:基本骨架中包含噻吩结构、呋喃结构、且导入了烷基等取代基、具有对称性低的非直线型分子结构的有机化合物显示出高载流子迁移率,并且显示出具有进一步改善后的化学稳定性和溶解性。
然而,对于目前为止的有机半导体材料而言,伴随温度变化的晶体结构中分子的运动、有机半导体膜中存在的晶界、以及由对有机半导体膜施加的外力造成的变形部分等会产生的分子间的偏移,由此导致半导体特性(载流子迁移率等)容易降低,仍有进一步改进的余地。
现有技术文献
专利文献
专利文献1:国际公开WO2006/077888号
专利文献2:国际公开WO2005/080304号
专利文献3:国际公开WO2013/125599号
发明内容
发明要解决的课题
即,本发明的课题在于提供一种化学稳定性优异、具有对溶剂的高溶解性、且显示出优异的载流子迁移率的化合物。
另外,本发明的课题在于提供一种上述化合物的制造方法。另外,本发明的课题在于提供一种包含上述化合物的有机半导体溶液组合物。
另外,本发明的课题在于提供一种由上述有机半导体溶液组合物形成的有机半导体膜。
另外,本发明的课题在于提供一种具有上述有机半导体膜的有机薄膜晶体管。
解决课题的方法
本发明人等为了解决上述课题,基于如下想法进行了研究:使最高占据轨道(HOMO、Highest Occupied Molecular Orbital)和HOMO的下一轨道(NHOMO、Next Highest Occupied Molecular Orbital)发生简并,使得显示出不同的轨道形状的二个π电子轨道能够有助于轨道的重叠时,载流子迁移率提高,分子间的偏移的影响也减小。其结果发现,特定的dinaphthochalcogenophene型的稠环化合物显示出高的载流子迁移率。本发明是基于这些见解而完成的。
即,本发明提供下述式(1)表示的化合物(有时也称为有机半导体材料)。
[化学式1]
Figure PCTCN2020075847-appb-000001
[式(1)中,X 1为氧原子、硫原子、硒原子或碲原子,X 2及X 3相同或不同,为碳原子、氧原子、硫原子、硒原子或碲原子。但是,不包括X 2及X 3同时为碳原子的情况。R 1及R 2相同或不同,为氢原子或有机基团,R 3~R 10相同或不同,为氢原子、卤原子或有机基团。R 3和R 4、R 5和R 6、R 7和R 8、R 8和R 9、以及R 9和R 10任选分别相互键合而与邻接的碳原子一起形成环。包含虚线的双线表示单键或双键。]
另外,本发明提供下述式(1’)表示的化合物。
[化学式2]
Figure PCTCN2020075847-appb-000002
[式(1’)中,X 1、X 2及X 3分别与式(1)中的含义相同,R 1’及R 2’为相同或不同的有机基团。包含虚线的双线表示单键或双键。]
在上述式(1’)中,优选X 1为硫原子,X 2及X 3中的任一者为碳原子、且另一者为硫原子,R 1’及R 2’为相同或不同的有机基团。
另外,本发明提供上述化合物的制造方法,该方法包括:由式(1-4)表示的化合物得到式(1-5)表示的化合物的工序。
[化学式3]
Figure PCTCN2020075847-appb-000003
[式(1-4)、(1-5)中,X 1、X 2、X 3及包含虚线的双线分别表示与式(1)中相同的内容。]
另外,本发明提供一种有机半导体溶液组合物,其含有上述化合物和至少1种溶剂。
另外,本发明提供一种有机半导体膜,其是由上述有机半导体溶液组合物形成的。
另外,本发明提供一种有机薄膜晶体管,其具有上述有机半导体膜。
发明的效果
本发明的化合物的化学稳定性优异、对溶剂具有高溶解性,因此可以通过有机半导体溶液组合物的涂布、印刷来形成大面积且均匀性高的有机半导体膜。
本发明的有机半导体膜显示出优异的载流子迁移率,因此可以实现高性能的有机薄膜晶体管。
附图说明
图1是顶接触/底栅型的有机薄膜晶体管的剖面示意图。
符号说明
10    有机薄膜晶体管
100   基板
101   导电性膜(栅电极)
102   栅绝缘膜
103   有机半导体膜
104A  导电性膜(源电极)
104B  导电性膜(漏电极)
105   保护膜
具体实施方式
以下,对本发明的化合物、该化合物的制造方法、包含该化合物(有机半导体材料)的有机半导体溶液组合物、由该有机半导体溶液组合物形成的有机半导体膜、以及具有该有机半导体膜的有机薄膜晶体管进行说明。
[化合物]
本发明的化合物由式(1)表示。
[化学式4]
Figure PCTCN2020075847-appb-000004
式(1)中,X 1为氧原子、硫原子、硒原子或碲原子,X 2及X 3相同或不同,为碳原子、氧原子、硫原子、硒原子或碲原子。但是,不包括X 2和X 3同时为碳原子的情况。R 1及R 2相同或不同,为氢原子或有机基团,R 3~R 10相同或不同,为氢原子、卤原子或有机基团。R 3和R 4、R 5和R 6、R 7和R 8、R 8和R 9、以及R 9和R 10任选分别相互键合而与邻接的碳原子一起形成环。
从显示出更高的载流子迁移率的观点考虑,式(1)中的X 1优选为硫原子或硒原子,从进一步提高化学稳定性的观点考虑,更优选为硫原子。
对于式(1)中的X 2及X 3而言,从显示出更高的载流子迁移率的观点考虑,优选一者为硫原子或硒原子、且另一者为碳原子,更优选X 2为硫原子且X 3为碳原子。
上述式(1)中的R 1及R 2的有机基团优选为碳原子数1~40的烷基、碳原子数2~22的烯基、碳原子数2~22的炔基、碳原子数6~20的芳基、碳原子数3~40的环烷基、碳原子数1~20的烷氧基、或者1价的杂环基,更优选为碳原子数1~40的烷基、碳原子数6~20的芳基、或者1价的杂环基。这些基团任选具有取代基。
作为上述R 1及R 2的烷基,优选为碳原子数1~20、更优选为碳原子数3~20、进一步优选为碳原子数5~15的直链状或支链状的烷基,可以列举例如:甲基、乙基、丙基、2-甲基丙基、丁基、戊基、2,2-二甲基丙基、己基、1-甲基戊基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、2,6-二甲基辛基、二十烷基、2-癸基十四烷基、2-己基十二烷基、2-乙基辛基、2-癸基十四烷基、2-丁基癸基、1-辛基壬基、2-乙基辛基、2-辛基癸基、2-辛基十二烷基、7-己基十五烷基、2-辛基十四烷基、2-乙基己基等。
作为上述R 1及R 2的烯基,优选为碳原子数2~18、更优选为碳原子数2~12、进一步优选为碳原子数2~8的直链状或支链状的烯基,可以列举例如:乙烯基、1-丙烯基、2-丙烯基、2-甲基-1-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、3-甲基-2-丁烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、4-甲基-3-戊烯基、1-己烯基、3-己烯基、5-己烯基、1-庚烯基、1-辛烯基、1-壬烯基、1-癸烯基等。
作为上述R 1及R 2的炔基,优选为碳原子数2~18、更优选为碳原子数2~12、进一步优选为碳原子数2~8的直链状或支链状的炔基,可以列举例如:乙炔基、1-丙炔基、2-丙炔基、1-丁炔基、2-丁炔基、3-丁炔基、1-戊炔基、2-戊炔基、3-戊炔基、4-戊炔基、1-己炔基、2-己炔基、3-己炔基、4-己炔基、5-己炔基、1-庚炔基、1-辛炔基、1-壬炔基、1-癸炔基、三甲基甲硅烷基乙炔基、三乙基甲硅烷基乙炔基、三异丙基甲硅烷基乙炔基、2-对丙基苯基乙炔基等。
作为上述R 1及R 2的芳基,优选为碳原子数6~18、更优选为碳原子数6~14的芳基,可以列举例如:苯基、萘基、蒽基、菲基、苊烯基、联苯基、2,4,6-三甲基苯基、对叔丁基苯基、4-甲基-2,6-二丙基苯基、4-氟苯基、4-三氟甲基苯基、对戊基苯基、3,4-二戊基苯基、对庚氧基苯基、3,4-二庚氧基苯基等。
作为上述R 1及R 2的环烷基,优选为碳原子数3~20、更优选为碳原子数4~20的环状烷基,可以列举例如:环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基、环癸基、金刚烷基等。
作为上述R 1及R 2的烷氧基,优选为碳原子数1~18、更优选为碳 原子数1~12、进一步优选为碳原子数1~8的直链状或支链状的烷氧基,可以列举例如:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、正戊氧基、异戊氧基、新戊氧基、叔戊氧基、正己氧基、异己氧基、庚氧基、辛氧基、壬氧基、癸氧基等。
作为上述R 1及R 2的1价杂环基,可以列举例如:环内具有碳原子和选自氧原子、硫原子及氮原子中的1~4个杂原子的5~22元(优选为5或6元)芳香族杂环基、脂肪族杂环基。
作为上述芳香族杂环基,可以列举例如:单环式芳香族杂环基(呋喃基、2-己基呋喃基、噻吩基、吡啶基、嘧啶基、吡咯基、咪唑基、吡唑基、噻唑基、苯并噻唑基、苯并
Figure PCTCN2020075847-appb-000005
唑基、苯并咪唑基、硒代苯基等)、稠合芳香族杂环基(喹啉基、异喹啉基等)等。
作为上述脂肪族杂环基,可以列举例如:单环式脂肪族杂环基(哌啶基、吗啉基、哌嗪基、四氢呋喃基等)、稠合脂肪族杂环基(苯并吡喃基、四氢喹啉基、四氢异喹啉基等)等。
作为上述R 1及R 2任选具有的取代基,可以列举例如:卤原子(氟原子等)、氰基、羟基、硝基、酰基(己酰基、苯甲酰基等)、烷氧基(丁氧基等)、芳氧基(苯氧基等)、甲硅烷氧基、杂环氧基、酰氧基、氨基甲酰氧基、氨基、苯胺基、酰基氨基、氨基羰基氨基(脲基)、烷氧基羰基氨基及芳氧基羰基氨基、烷基磺酰基氨基及芳基磺酰基氨基、巯基、烷基硫基及芳基硫基(甲硫基、辛硫基等)、杂环硫基、氨基磺酰基、磺基、烷基亚磺酰基及芳基亚磺酰基、烷基磺酰基及芳基磺酰基、烷氧基羰基及芳氧基羰基、氨基甲酰基、芳基偶氮基及杂环偶氮基、酰亚胺基、膦基、亚膦酰基、亚膦酰氧基、亚膦酰基氨基、磷酰基、甲硅烷基(二三甲基甲硅烷氧基甲基丁氧基等)、肼基、脲基、硼酸基(-B(OH) 2)、磷酸基(-OPO(OH) 2)、硫酸基(-OSO 3H)、其它公知的取代基。
作为上述式(1)中的卤原子,可以列举氟原子、氯原子、溴原子或碘原子,其中,从显示出更高的载流子迁移率的观点考虑,优选为氟原子。
上述式(1)中的R 3~R 10的有机基团与上述R 1及R 2相同,其中,优选为碳原子数1~40的烷基、碳原子数6~20的芳基、或碳原子数1~20的烷氧基。
另外,它们任选具有的取代基也与上述R 1及R 2相同。
在上述R 3~R 10中,作为邻接的组合,R 3和R 4、R 5和R 6、R 7和R 8、R 8和R 9、以及R 9和R 10任选分别键合并进一步形成环。上述的环可以是芳香环,也可以是非芳香环。
对于式(1)中的含有X 2、X 3及包含虚线的双线的5元环而言,包含虚线的双线中的两者为单键时,是非芳香环,一者为双键时,是芳香环,优选为芳香环。
本发明的化合物通过弯曲性的dinaphthochalcogenophene型结构和取代基的导入而对溶剂具有高溶解性,因此能够以希望的浓度制备下述的有机半导体溶液组合物,可以合适地用于利用涂布法/印刷法等简便的溶液工艺进行的有机半导体膜的制造。
本发明的化合物的化学稳定性优异,因此也可以用于利用真空蒸镀法、MBE(Molecular Beam Epitaxy)法、溅射法、激光蒸镀法、气相传输生长法等气相工艺进行的有机半导体膜的制造。
另外,本发明的化合物稳定地显示出优异的载流子迁移率。其原因尚不完全清楚,推测是由于两端具有5元杂环的结构而使HOMO与NHOMO的能级非常接近,NHOMO也和HOMO一起有助于π电子轨道的重叠。
在本发明的化合物中,从能够适度兼顾对溶剂的溶解性和轨道的重叠的观点考虑,优选式(1’)表示的化合物。
[化学式5]
Figure PCTCN2020075847-appb-000006
式(1’)中,X 1、X 2及X 3分别与式(1)中相同,R 1’及R 2’为相同或 不同的有机基团,包含虚线的双线表示单键或双键。
上述式(1’)中的R 1’及R 2’的有机基团优选为碳原子数1~40的烷基、碳原子数2~22的烯基、碳原子数2~22的炔基、碳原子数6~20的芳基、碳原子数3~20的环烷基、碳原子数1~20的烷氧基、或者1价的杂环基。
上述式(1’)中的R 1’及R 2’的烷基、烯基、炔基、芳基、1价的杂环基、环烷基、烷氧基、以及它们任选具有的取代基与上述式(1)中的R 1及R 2相同。
上述式(1’)中的X 1、X 2、X 3及包含虚线的双线的内容与上述式(1)中的相同。
在上述式(1’)表示的化合物中,更优选为如下化合物:X 1为硫原子,X 2及X 3中的任一者为碳原子、且另一者为硫原子,R 1’及R 2’为相同或不同的有机基团。
在上述式(1’)表示的化合物中,更优选为如下式(1”)表示的化合物:X 1为硫原子,X 2为硫原子,X 3为碳原子,R 1’及R 2’为相同或不同的有机基团。
[化学式6]
Figure PCTCN2020075847-appb-000007
上述式(1”)中的R 1’及R 2’的有机基团为碳原子数1~40的烷基、碳原子数6~20的芳基、或1价的杂环烷基、芳基或1价的杂环基,与上述式(1’)中的含义相同。
[化合物的制造方法]
本发明的上述式(1)表示的化合物例如可以经过以下工序来制造:使下述式(1-1)表示的化合物与下述式(1-2)表示的化合物进行交叉偶联而得到下述式(1-3)表示的化合物,然后将该式(1-3)表示的化合物的甲酰基环氧化而得到下述式(1-4)表示的化合物的工序;通过形成稠 环而由该式(1-4)表示的化合物得到下述式(1-5)表示的化合物的工序;以及,向该式(1-5)表示的化合物导入取代基的工序。
(交叉偶联、甲酰基的环氧化)
式(1-4)表示的化合物例如可以经过以下工序来制造:使式(1-1)表示的化合物与式(1-2)表示的化合物进行交叉偶联而得到式(1-3)表示的化合物,然后使式(1-3)表示的化合物的甲酰基转变为环氧基的工序。
[化学式7]
Figure PCTCN2020075847-appb-000008
在式(1-1)~(1-4)中,X 1、X 2、X 3及包含虚线的双线分别表示与式(1)中相同的内容,A表示有机磺酰氧基,B表示硼酸基(-B(OH) 2)。
作为有机磺酰氧基,可以列举:甲磺酰氧基、对甲苯磺酰氧基、三氟甲基磺酰氧基、樟脑磺酰氧基等,其中,优选为三氟甲基磺酰氧基。
上述B可以为硼酸酯基(硼酸频哪醇酯基、硼酸二异丙酯基、硼酸丙二醇酯基等)。
在得到式(1-3)表示的化合物的工序中,在通常的铃木-宫浦偶联的条件下使式(1-1)表示的化合物与式(1-2)表示的化合物进行交叉偶联。
式(1-1)表示的化合物例如可以将5-卤代苯并呋喃、5-卤代苯并噻吩等作为起始原料,使用卤原子的甲氧基取代、4位甲酰化、甲氧基脱保护、有机磺酰氧基化等公知的方法来合成。
式(1-2)表示的化合物例如可以使呋喃、噻吩等与乙硼烷反应而导入硼酸基(-B(OH) 2),并根据需要通过将硼酸基酯化的公知方法来合成。另外,也可以以市售品的形式获得。
式(1-4)表示的化合物可以通过在金属氢氧化物与锍化合物或氧化锍化合物在体系内反应而得到的硫叶立德的存在下将式(1-3)表示的化合物的甲酰基进行环氧化的反应来得到。
作为锍化合物,可以列举例如:三甲基溴化锍(Me 3SBr)、三甲基氯化锍(Me 3SCl)及三甲基碘化锍(Me 3SI)等,作为氧化锍化合物,可以列举例如:溴代三甲基氧化锍(Me 3OSBr)、氯代三甲基氧化锍(Me 3OSCl)及碘代三甲基氧化锍(Me 3OSI)等。这些化合物可以单独使用,也可以组合使用2种以上。
将甲酰基转变为环氧基的反应的反应温度(溶液温度)优选为0~100℃,更优选为50~80℃。反应时间通常为1~50小时,优选为1~25小时。
作为碱催化剂,可以列举例如:KOH、NaOH等。这些化合物可以单独使用,也可以组合使用2种以上。
相对于式(1-3)表示的化合物1mol,碱催化剂的用量优选为1~10mol。
相对于式(1-3)表示的化合物1mol,Me 3SI的用量优选为2~4mol。
(稠环的形成)
在得到式(1-5)表示的化合物的工序中,在路易斯酸催化剂的存在下形成具有芳香族6元环的稠环,所述芳香族6元环包含式(1-4)表示的化合物中构成环氧基的碳。
[化学式8]
Figure PCTCN2020075847-appb-000009
式(1-4)、(1-5)中,X 1、X 2、X 3及包含虚线的双线分别表示与式(1)中相同的内容。
反应温度(溶液温度)优选为0~120℃,更优选为20~100℃。反应时间通常为1~100小时,优选为1~50小时。
作为路易斯酸催化剂,可以列举例如:氯化铟(III)、氯化铝(III)、氯化铊(III)等。这些化合物可以单独使用,也可以组合使用2种以上。
相对于式(1-1)表示的化合物1mol,路易斯催化剂的用量优选为0.1~2mol。
(取代基的导入)
上述式(1)表示的化合物可以通过使用公知的芳香族取代反应、公知的交叉偶联反应将上述式的R 1~R 10的卤原子、有机基团导入式(1-5)表示的化合物而得到。
本发明的上述式(1’)表示的化合物可以同样地通过将上述的R 1’及R 2’的有机基团导入上述式(1-5)表示的化合物而得到。
本发明的上述式(1”)表示的化合物也可以同样地通过将上述的R 1’及R 2’的有机基团导入上述式(1-5)表示的化合物而得到,所述上述式(1-5)表示的化合物例如是使用4-甲酰-5-三氟甲基磺酰氧基苯并噻吩作为上述式(1-1)表示的化合物、并使用2,5-二硼酸噻吩作为上述式(1-2)表示的化合物而得到的。
得到上述式(1)、(1’)、(1”)、及上述式(1-1)~(1-5)表示的化合物的反应优选在溶剂存在下进行。
作为溶剂,可以列举例如:水、醇溶剂(甲醇、乙醇、异丙醇、丁基溶纤剂等)、含氮溶剂(乙腈、N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺等)、卤代烃溶剂(二氯甲烷、氯仿、1,2-二氯乙烷、氯苯、二氯苯等)、醚溶剂(二乙基醚、叔丁基甲基醚、四氢呋喃、1,4-二
Figure PCTCN2020075847-appb-000010
烷、二甲氧基乙烷、二氯甲基甲基醚等)、二醇溶剂(乙二醇、丙二醇单甲醚-2-乙酸酯等)、芳香族烃溶剂(苯、甲苯、二甲苯、苯甲醚等)、酮溶剂(甲基异丁基酮、丙酮等)、酯溶剂(乙酸乙酯、乳酸乙酯、γ-丁内酯等)。这些化合物可以单独使用,也可以组合使用2种以上。
另外,各反应中得到的式(1-1)~(1-5)表示的化合物可以通过柱色谱、重结晶等公知的纯化方法进行纯化后用于下一反应,也可以以粗产物的状态直接用于下一反应。
[有机半导体溶液组合物]
本发明的有机半导体溶液组合物含有上述化合物(有机半导体材料)和溶剂。有机半导体材料可以单独使用1种,也可以组合使用2种以上。
(溶剂)
作为上述溶剂,可以列举例如:脂肪族烃溶剂(戊烷、己烷、庚烷等)、卤代烃溶剂(二氯甲烷、氯仿、1,2-二氯乙烷等)、醚溶剂(二乙基醚、叔丁基甲基醚、四氢呋喃、二
Figure PCTCN2020075847-appb-000011
烷等)、醇溶剂(甲醇、乙醇、异丙醇、丁基溶纤剂等)、酯溶剂(乙酸乙酯、乳酸乙酯、γ-丁内酯等)、酮溶剂(甲基异丁基酮、丙酮等)、含氮溶剂(乙腈、N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺等)、含硫溶剂(二甲基亚砜等)、卤代芳香族烃溶剂(氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、1-氯萘、2-氯萘、4-氯联苯等)、芳香族烃溶剂(苯、甲苯、二甲苯等)、脂环族烃溶剂(环己烷、环戊酮、环己酮等)等有机溶剂。
上述溶剂的沸点优选为20~120℃,更优选为20~100℃。
本发明的组合物中使用的溶剂的含水率优选为0.25重量%以下。本发明的组合物中的含水率高的情况下,由于抑制结晶化、水分捕获载流子而具有载流子迁移率降低的倾向。上述含水率优选为0.15重量%以下,进一步优选为0.05重量%以下。需要说明的是,含水率可以通过卡尔-费休法进行测定。
本发明的有机半导体溶液组合物除了上述有机半导体材料和上述溶剂以外,还可以根据需要包含作为粘合剂的高分子化合物。
如果包含高分子化合物,则即使在使用溶解性低的有机半导体材料的情况下,也可以在下述的边缘浇铸(edge cast)法或连续边缘浇铸法中以高速成膜等,提高有机半导体溶液组合物的成膜性。
(高分子化合物)
本发明的有机半导体中任选包含的高分子化合物优选不对有机半导体材料的电特性造成影响,可以列举例如:环氧树脂、三聚氰胺树脂、酚醛树脂、聚氨酯树脂、丙烯酸树脂(聚甲基丙烯酸甲酯、聚(甲基丙烯酸2,2,2-三氟乙酯)等)、聚苯乙烯树脂(聚苯乙烯、聚α甲基苯乙烯、聚乙烯基苯酚、聚五氟苯乙烯等)、纤维素树脂、缩丁醛树脂(聚乙烯醇缩丁醛等)、聚乙烯基树脂(聚乙烯醇、聚乙酸乙烯酯、聚(2-乙烯基吡啶)、聚氯乙烯、聚偏二氯乙烯、聚四氟乙烯等)、苯并环丁烯树脂、有机硅树脂(笼状低聚倍半硅氧烷等)、聚烯烃树脂(聚乙烯、聚丙烯、聚环烯烃等)、聚酰胺树脂、聚酯树脂、聚碳酸酯树脂等。
在本发明的有机半导体溶液组合物包含上述高分子化合物的情况下,其含量在上述有机半导体溶液组合物100重量%中例如优选为0.01~20重量%,更优选为0.1~10重量%。在高分子化合物的含量为该范围内时,具有有机半导体溶液组合物的成膜性提高的倾向。
本发明的有机半导体溶液组合物总量中的溶剂的含量(含有2种以上时为其总量)例如优选为99.999重量%以下,更优选为99.990重量%以下,进一步优选为99.900重量%以下。作为下限,例如优选为90重量%以上,更优选为93重量%以上,进一步优选为95重量%以上。
本发明的有机半导体溶液组合物中的溶质(特别是有机半导体材料)的含量(含有2种以上时为其总量)例如相对于溶剂100重量份例如优选为0.02重量份以上,更优选为0.03重量份以上,进一步优选为0.04重量份以上。作为上限,优选为1重量份以下,更优选为0.5重量份以下,进一步优选为0.1重量份以下。
本发明的有机半导体溶液组合物例如可以通过将上述溶剂、上述溶质、以及根据需要而配合的高分子化合物进行混合、并在空气、氮气或氩气气氛围中以30~200℃加热0.1~5小时来制备。
对于对溶剂具有优异的溶解性的上述有机半导体材料,可以以各种浓度制备本发明的有机半导体溶液组合物,由此形成的有机半导体膜的结晶状态可以在结晶至非晶的宽范围内任意变化。有机半导体膜的结晶状态变化时,载流子迁移率也变化。因此,可以通过使用本发 明的有机半导体溶液组合物来任意调整有机半导体膜的结晶状态,因此可以稳定地再现有机半导体膜的载流子迁移率。
[有机半导体膜]
本发明的有机半导体膜可以通过将上述的本发明的有机半导体溶液组合物涂布或印刷在基材上并干燥而形成。
作为将有机半导体溶液组合物涂布或印刷在基材上的方法,可以列举例如:涂布法(滴涂法、旋涂法、浸涂法、刮板涂布法、边缘浇铸法、连续边缘浇铸法等)、印刷法(丝网印刷法、喷墨印刷法、掩模印刷法、胶版印刷法、柔版印刷法、微接触印刷法、平版印刷法、凹版印刷法、凸版印刷法等)等。其中,从容易以低成本得到大面积的有机单晶半导体膜的观点考虑,优选为边缘浇铸法、连续边缘浇铸法等。
作为能够涂布或印刷有机半导体溶液组合物的基材的原材料,可以列举例如:玻璃、金属(金、铜、银等)、无机物质(结晶硅基板、非晶硅基板等)、树脂(三乙酰纤维素树脂、降冰片烯树脂、聚酯树脂、聚乙烯基树脂、聚烯烃树脂等)等。
其中,从能够以低成本得到大面积的有机半导体膜的观点考虑,优选为树脂基板。
干燥例如可以通过在常压下或减压下、以20~200℃加热0.5~24小时来实施。加热可以对有机半导体溶液组合物进行,也可以对基板进行。
另外,为了控制晶体结构、挥发溶剂,本发明的有机半导体膜可以在形成后进行热处理。
有机半导体膜的膜厚优选为1~1000nm,更优选为1~100nm,进一步优选为1~50nm。
本发明的有机半导体膜可以在形成后从基材上剥离使用,也可以直接以形成在基板等上的状态使用。
本发明的有机半导体膜可以在通过上述涂布法均匀涂布后利用 光刻法等将图案形成为给定的形状,也可以通过上述印刷法印刷成给定形状的图案。
[有机薄膜晶体管]
本发明的有机薄膜晶体管具有本发明的有机半导体膜作为半导体层。
本发明的有机薄膜晶体管在基板上具有栅电极、有机半导体膜(半导体层)、设置在栅电极及有机半导体膜(半导体层)之间的栅绝缘膜、以及设置成与有机半导体膜(半导体层)相接且通过有机半导体膜(半导体层)连接在一起的源电极及漏电极。在该有机薄膜晶体管中,有机半导体膜与栅绝缘膜邻接设置。
本发明的有机薄膜晶体管只要具备上述各层即可,对其结构没有特别限定,例如,可以为底接触型(底接触/底栅型、底接触/顶栅型)、或顶接触型(顶接触/底栅型、顶接触/顶栅型)等任意结构,其中,优选为顶接触/底栅型。
将作为优选例的顶接触/底栅型的剖面示意图示于图1。
顶接触/底栅型有机薄膜晶体管10具有基板100、导电性膜(栅电极)101、栅绝缘膜102、有机半导体膜103、源电极104A、漏电极104B、保护层105。
作为本发明的有机薄膜晶体管的用途,可以列举例如:电子纸、显示装置、传感器、电子标签、传感器等。
实施例
以下,通过实施例对本发明更具体地进行说明,但本发明并不限定于这些实施例。
合成实施例及比较例的化合物,对载流子迁移率进行了评价。
<载流子迁移率的评价方法>
制作通过下述方法制造的有机薄膜晶体管,使用连接了半自动探针器(Semi-auto Prober)(Vector Semiconductor公司制造、AX-2000)的 半导体参数分析仪(Agilent公司制造、4156C)评价了1个大气压的常压大气下(温度:室温)的载流子迁移率。
通过在有机薄膜晶体管的源电极-漏电极之间施加-150V的电压、并使栅极电压在-5V~-150V的范围变化,从而导出I d,使用与漏极电流I d相关的下述式计算出载流子迁移率μ(cm 2/Vs)。
I d=(W/2L)μC i(V g-V th) 2
式中,L表示栅极长度,W表示栅极宽度,μ表示载流子迁移率,C i表示栅绝缘膜的平均每单位面积的电容,V g表示栅极电压,V th表示阈值电压。
<化合物的鉴定>
实施例的化合物及各中间化合物的鉴定通过以四甲基硅烷作为内标的 1H-NMR(400MHz)来进行。作为溶剂,使用了氘代氯仿(CDCl 3)或1,1,2,2-四氯乙烷-d2(CDCl 2CDCl 2)。
[实施例1]
合成下述化合物C10-TBNT,对载流子迁移率进行了评价。
<合成法>
经过下述工序合成了化合物C10-TBNT。
(中间化合物1b的合成)
[化学式9]
Figure PCTCN2020075847-appb-000012
在上述反应式中,MeONa表示甲醇钠,DMF表示N,N-二甲基甲酰胺。
在氩气氛围中、室温(28℃)下,向5-溴苯并噻吩1a(50.0g、235mmol)的N,N-二甲基甲酰胺和甲醇的混合溶剂(300mL、DMF/MeOH=250mL/50mL)溶液中加入甲醇钠(19.0g、352mmol),一 边搅拌,一边升温至110℃。在110℃下进一步加入溴化铜(3.37g、23.5mmol),在110℃下将悬浮液搅拌5小时。将悬浮液冷却至室温后,倾注氯化铵水溶液100mL使反应停止。用乙酸乙酯对其进行萃取,用硫酸钠干燥后进行减压浓缩,得到了红色油。通过柱色谱对其进行纯化(展开溶剂=石油醚∶乙酸乙酯=10∶1(体积比)),以白色固体的形式得到了化合物1b(34.0g、207mmol、收率38%)。
1H-NMR(CDCl 3、室温)δ:7.74(d、1H、J=8.4Hz)、7.44(d、1H、J=5.6Hz)、7.28(d、1H、J=2.4Hz)、7.26(d、1H、J=5.6Hz)、7.02(dd、1H、J 1=2.4Hz、J 2=8.4Hz)、3.88(s,3H)
(中间化合物1c的合成)
[化学式10]
Figure PCTCN2020075847-appb-000013
在上述反应式中,DCM表示二氯甲烷。
在氩气氛围中、-40℃下,向化合物1b(10.0g、60.9mmol)的二氯甲烷(600mL)溶液中加入四氯化锡(1mol/L二氯甲烷溶液、124mL、124mmol),进一步加入二氯甲基甲基醚(8.3mL、91.3mmol),在-70~-50℃下将混合液搅拌3小时。然后,搅拌至室温并放置。将混合液冷却至0℃后,倾注碳酸氢钙水溶液500mL,搅拌2小时至不产生气体。用二氯甲烷对其进行萃取,减压浓缩后得到了红色固体。通过柱色谱对其进行纯化(展开溶剂=石油醚∶乙酸乙酯=50∶1(体积比)),以红色固体的形式得到了化合物1c(9.8g、51.2mmol、收率84%)。
1H-NMR(CDCl 3、室温)δ:10.74(s、1H)、8.42(d、1H、J=4.8Hz)、8.03(d、1H、J=9.2Hz)、7.68(d、1H、J=5.2Hz)、7.09(d、1H、J=8.8Hz)、4.00(s,3H)
(中间化合物1d的合成)
[化学式11]
Figure PCTCN2020075847-appb-000014
在上述反应式中,BBr 3表示三溴化硼。
在氩气氛围中、室温(28℃)下,向化合物1c(19.5g、101mmol)的二氯甲烷(1000mL)溶液中加入三溴化硼(12mL、122mmol),在室温(28℃)下将混合液搅拌12小时。将混合液冷却至0℃后,倾注水500mL,搅拌2小时。用二氯甲烷和乙酸乙酯对其进行萃取,减压浓缩后得到了红色固体。通过柱色谱对其进行纯化(展开溶剂=二氯甲烷),以红色固体的形式得到了化合物1d(16.9g、94.9mmol、收率84%)。
1H-NMR(CDCl 3、室温)δ:10.55(s、1H)、7.07(d、1H、J=9.2Hz)、7.71-7.78(m、2H)、7.02(d、1H、J=8.8Hz)
(中间化合物1e的合成)
[化学式12]
Figure PCTCN2020075847-appb-000015
在上述反应式中,Tf 2O表示三氟甲磺酸酐,Tf表示三氟甲基磺酰基,DMAP表示二甲基丙酰胺。
在氩气氛围中、-10℃下,向化合物1d(10.6g、59.5mmol)和二甲基丙酰胺(18.2g、149mmol)的二氯甲烷(600mL)溶液中加入三氟甲磺酸酐(52mL、30.9mmol),在室温(28℃)下将混合液搅拌30分钟。向混合液倾注0℃的水200mL,使反应停止。用1mol/L盐酸350mL将其清洗2次,并用饱和食盐水300mL清洗2次,用硫酸钠干燥,然后减压浓缩,以荧光固体的形式得到了化合物1e。
1H-NMR(CDCl 3、室温)δ:10.61(s、1H)、8.45(d、1H、J=5.4Hz)、8.19(d、1H、J=8.4Hz)、7.87(d、1H、J=5.4Hz)、7.40(d、1H、J=8.4Hz)
(中间化合物1g的合成)
[化学式13]
Figure PCTCN2020075847-appb-000016
向1L三颈烧瓶中加入化合物1e(49.3mmol)、化合物1f(3.68g、21.4mmol)、磷酸三钾(17.1g、64.3mmol)、以及1,4-二
Figure PCTCN2020075847-appb-000017
烷600mL和水60mL的混合溶剂,进行3次氩气置换后,加入四(三苯基膦)钯(11.4g、9.86mmol),在110℃下将混合液搅拌12小时。将混合液冷却至室温(28℃),然后倾注氯化铵水溶液200mL,用乙酸乙酯萃取,进行减压浓缩,得到了黄色固体。用混合溶剂(石油醚∶乙酸乙酯=10∶1(体积比))对其进行清洗,过滤,以黄色固体的形式得到了化合物1g(15.3g)。
1H-NMR(CDCl 3、室温)δ:10.43(s、1H)、8.50(d、2H、J=5.4Hz)、8.16(d、2H、J=8.2Hz)、7.78(d、2H、J=5.4Hz)、7.61(d、2H、J=8.2Hz)、7.17(s,2H)
(中间化合物1h的合成)
[化学式14]
Figure PCTCN2020075847-appb-000018
在上述反应式中,MeCN表示乙腈。
向2L三颈烧瓶中加入化合物1g(31.1mmol)、氢氧化钾(粉末、9.6g、171mmol)、三甲基碘化锍(19.1g、93.4mmol),进行30分钟氩 气置换后,加入丙烯腈1600mL。在65~70℃下将悬浮液搅拌12小时。冷却至室温(28℃),然后,通过过滤从悬浮液中去除未反应的氢氧化钾,倾注水1000mL,用二氯甲烷500mL萃取4次,用硫酸钠进行干燥后,进行减压浓缩,得到了棕色固体。通过柱色谱对其进行纯化(展开溶剂=石油醚∶乙酸乙酯=10∶1(体积比)),以棕色固体的形式得到了化合物1h(8.1g、18.7mmol、收率60%)。
1H-NMR(CDCl 3、室温)δ:7.87-7.90(m、4H)、7.55(d、1H、J=5.6Hz)、7.49(d、1H、J=8.4Hz)、7.15(s、2H)、4.45-4.46(m、1H)、3.15-3.17(m、1H)、2.83-2.86(m、1H)
(化合物1i的合成)
[化学式15]
Figure PCTCN2020075847-appb-000019
向2L三颈烧瓶中加入三氯化铟(870mg、3.93mmol),在减压下用热风枪加热30分钟。向其中加入化合物1h(3.40g、7.86mmol),进行3次氩气置换,然后加入二氯甲烷1300mL。使悬浮液回流并搅拌48小时。冷却至室温(28℃)后,倾注水500mL,用二氯甲烷500mL萃取4次,进行减压浓缩,得到了棕色固体。用甲醇300mL将其清洗3次,用水300mL清洗2次,用甲醇300mL清洗3次,进行减压干燥,得到了灰色固体1i(3.05g、7.70mmol、收率98%)。
1H-NMR(CDCl 2CDCl 2、120℃)δ:8.39-8.50(m、4H)、8.08-8.22(m、6H)、7.68-7.73(m、2H)
(中间化合物1j的合成)
[化学式16]
Figure PCTCN2020075847-appb-000020
1)向1L三颈烧瓶中加入化合物1i(4.56g、11.5mmol),在氩气氛围中干燥30分钟,然后加入四氢呋喃(吸水率低于50ppm)600mL,冷却至-60℃后,加入正丁基锂(1.6mol/L己烷溶液、25.1mL、40mmol),在-60℃下将混合液搅拌30分钟。在混合液从棕色变为绿色后,升温至-10℃,搅拌30分钟,再次冷却至-60℃,搅拌2小时。
2)通过 1H-NMH确认已经锂化后,向混合液中加入1,2-二溴-1,1,2,2-四氯乙烷(13.0g、40mmol),在-60℃下搅拌12小时。升温至室温(28℃)后,倾注水200mL,用乙酸乙酯萃取,进行减压浓缩,得到了棕色固体。用甲醇300mL将其清洗3次,用水300mL清洗2次,用甲醇300mL清洗2次,用二氯甲烷100mL清洗1次,进行减压干燥,以灰色固体的形式得到了化合物1j(6.04g、10.9mmol、收率95%)。
1H-NMR(CDCl 2CDCl 2、120℃)δ:7.9-8.5(m、10H)
(化合物C10-TBNT的合成)
[化学式17]
Figure PCTCN2020075847-appb-000021
在上述反应式中,PdCl 2(dppf)·CH 2Cl 2表示[1,1’-双(二苯基膦)二 茂铁]二氯化钯二氯甲烷络合物。
1)在氩气氛围中、0℃下,向正癸基溴化镁(0.73mol/L四氢呋喃溶液、1.85mL、1.35mmol)的甲苯(23mL)溶液中加入氯化锌(1.0mol/L四氢呋喃溶液、1.44mL、1.44mmol),并向其中加入氯化锂(0.5mol/L四氢呋喃溶液、2.88mL、1.44mml),在0℃下搅拌20分钟,得到了无色透明的锌试剂溶液。
2)在室温(28℃)下,向锌试剂溶液中加入化合物1j(250mg、0.451mmol)和[1,1’-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(29.5mg、0.0361mmol),搅拌并升温至100℃,进一步搅拌2小时。缓慢冷却至室温(28℃)后,倾注甲醇使固体析出并滤除,进行减压干燥,得到了粗产物。向粗产物中加入邻二氯苯140mL,加热至120℃,制成溶液,使其通过硅胶柱进行纯化,进一步通过重结晶对其进行纯化(重结晶溶剂=邻二氯苯、在80℃下加热溶解后,缓慢冷却至28℃),以乳白色固体的形式得到了化合物C10-TBNT(218g、0.321mmol、收率71%)。
1H-NMR(CDCl 2CDCl 2、100℃)δ:8.35(d、2H、J=8.7Hz、ArH)、8.32(d、2H、J=8.7、Hz、ArH)、8.06(d、2H、J=8.7、Hz、ArH)、7.95(d、2H、J=8.7、Hz、ArH)、7.73(s,2H、ArH)、3.04(t、4H、J=7.3、Hz、Ar-CH 2)、1.82-1.89(m、4H、Ar-CH 2-CH 2)、1.29-1.57(m、28H、Ar-CH 2-CH 2-C 7H 14)、0.88(t、6H、J=7.1Hz、CH 3)
<有机薄膜晶体管的制作>
在邻二氯苯中混合0.1重量%的上述化合物C10-TBNT,在120℃下加热3小时,制备了有机半导体溶液组合物。
对表面具有厚度500nm的热氧化膜(氧化硅膜)的n型硅基板(20mm×20mm、厚度0.4mm)的热氧化膜的表面进行紫外线-臭氧清洗,利用β-苯乙基三甲氧基硅烷进行处理。
在上述基板的β-苯乙基三甲氧基硅烷处理面的中央以密合状态放置玻璃制部件(10mm×2mm、厚度5mm),将基板加热至50℃,使用移液管从玻璃部件的侧部滴加1滴(约0.05mL)上述有机半导体溶 液组合物,形成包围玻璃部件且具有凹状弯液面(meniscus)的液膜。
将上述液膜在常压下、以基板温度110℃加热2小时,进一步在减压下(10 -3Pa)、以80℃加热12小时,进行干燥,使化合物C10-TBNT的结晶析出,然后,通过去除玻璃部件,基板上形成了均匀厚度的环状有机半导体膜(膜厚50nm)。
遮蔽上述有机半导体膜,蒸镀四氰代二甲基苯醌(Tetracyanoquinodimethane)(厚度2nm),接着蒸镀金(厚度40nm),由此得到了场效应晶体管特性测定用的有机薄膜晶体管(对于源电极及漏电极,栅极宽度(W)110μm、栅极长度(L)100μm、比值(W/L)1.1)。
<载流子迁移率的评价>
对于得到的有机薄膜晶体管,通过上述方法对化合物C10-TBNT的载流子迁移率进行了评价,结果为2.2cm 2/Vs。
[实施例2]
由与实施例1同样地得到的化合物1j合成了下述化合物C9-TBNT,与实施例1同样地对载流子迁移率进行了评价。
(化合物C9-TBNT的合成)
[化学式18]
Figure PCTCN2020075847-appb-000022
1)在氩气氛围中、0℃下,向正壬基溴化镁(0.7mol/L四氢呋喃溶液、2.29mL、1.62mmol)的甲苯(27mL)溶液中加入氯化锌(1.0mol/L四氢呋喃溶液、1.73mL、1.73mmol),并向其中加入氯化锂(0.5mol/L四氢呋喃溶液、3.46mL、1.73mmol),在0℃下搅拌20分钟,得到了 无色透明的锌试剂溶液。
2)在室温(28℃)下,向锌试剂溶液中加入化合物1j(300mg、0.541mmol)和[1,1’-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(35.4mg、0.0433mmol),搅拌并升温至100℃,进一步搅拌3小时。缓慢冷却至室温(28℃)后,倾注甲醇使固体析出并滤除,进行减压干燥,得到了粗产物。向粗产物加入邻二氯苯360mL,加热至120℃,制成溶液,使其通过硅胶柱进行纯化,进一步通过重结晶对其进行纯化(重结晶溶剂=邻二氯苯、在80℃下加热溶解后,缓慢冷却至28℃),以乳白色固体的形式得到了化合物C9-TBNT(256g、0.378mmol、收率70%)。
1H-NMR(CDCl 2CDCl 2、100℃)δ:8.35(d、2H、J=8.7Hz、ArH)、8.32(d、2H、J=8.7、Hz、ArH)、8.06(d、2H、J=8.7、Hz、ArH)、7.95(d、2H、J=8.7、Hz、ArH)、7.73(s,2H、ArH)、3.04(t、4H、J=7.6、Hz、Ar-CH 2)、1.82-1.89(m、4H、Ar-CH 2-CH 2)、1.30-1.56(m、24H、Ar-CH 2-CH 2-C 6H 12)、0.89(t、6H、J=6.4Hz、CH 3)
对于化合物C9-TBNT,载流子迁移率为6.6cm 2/Vs。
[比较例1]
按照专利文献3(国际公开WO2013/125599号)中记载的合成法合成下述的比较化合物1,与实施例1同样地对载流子迁移率进行了评价,为1.0cm 2/Vs。
[化学式19]
Figure PCTCN2020075847-appb-000023
根据以上可知,实施例1、2的有机半导体材料显示出比比较例1的有机半导体材料更优异的载流子迁移率。
工业实用性
通过将含有本发明的化合物的有机半导体溶液组合物用于喷墨印刷法、边缘浇铸法,能够以低成本得到高性能的有机半导体膜及有机薄膜晶体管。

Claims (7)

  1. 一种化合物,其由式(1)表示,
    Figure PCTCN2020075847-appb-100001
    式(1)中,X 1为氧原子、硫原子、硒原子或碲原子,X 2及X 3相同或不同,为碳原子、氧原子、硫原子、硒原子或碲原子,但不包括X 2及X 3同时为碳原子的情况,R 1及R 2相同或不同,为氢原子或有机基团,R 3~R 10相同或不同,为氢原子、卤原子或有机基团,R 3和R 4、R 5和R 6、R 7和R 8、R 8和R 9、以及R 9和R 10任选分别相互键合而形成环,包含虚线的双线表示单键或双键。
  2. 根据权利要求1所述的化合物,其由式(1’)表示,
    Figure PCTCN2020075847-appb-100002
    式(1’)中,X 1、X 2及X 3分别与式(1)中的含义相同,R 1’及R 2’为相同或不同的有机基团,包含虚线的双线表示单键或双键。
  3. 根据权利要求2所述的化合物,其中,式(1’)中,X 1为硫原子,X 2及X 3中的任一者为碳原子、且另一者为硫原子,R 1’及R 2’为相同或不同的有机基团。
  4. 权利要求1~3中任一项所述的化合物的制造方法,该方法包括:
    由式(1-4)表示的化合物得到式(1-5)表示的化合物的工序,
    Figure PCTCN2020075847-appb-100003
    式(1-4)、(1-5)中,X 1、X 2、X 3及包含虚线的双线分别表示与式(1)中相同的内容。
  5. 一种有机半导体溶液组合物,其含有权利要求1~3中任一项所述的化合物和至少1种溶剂。
  6. 一种有机半导体膜,其是由权利要求5所述的有机半导体溶液组合物形成的。
  7. 一种有机薄膜晶体管,其具有权利要求6所述的有机半导体膜。
PCT/CN2020/075847 2020-02-19 2020-02-19 新型化合物及其用途 WO2021163921A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20919948.8A EP4108657A4 (en) 2020-02-19 2020-02-19 NEW CONNECTION AND USE THEREOF
CN202080096972.9A CN115135640A (zh) 2020-02-19 2020-02-19 新型化合物及其用途
KR1020227031698A KR20220143703A (ko) 2020-02-19 2020-02-19 신규한 화합물 및 그 용도
US17/800,692 US20230128569A1 (en) 2020-02-19 2020-02-19 Novel compound and application thereof
JP2022549389A JP2023519108A (ja) 2020-02-19 2020-02-19 新規な化合物及びその用途
PCT/CN2020/075847 WO2021163921A1 (zh) 2020-02-19 2020-02-19 新型化合物及其用途
TW110103488A TW202138375A (zh) 2020-02-19 2021-01-29 新穎化合物及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075847 WO2021163921A1 (zh) 2020-02-19 2020-02-19 新型化合物及其用途

Publications (1)

Publication Number Publication Date
WO2021163921A1 true WO2021163921A1 (zh) 2021-08-26

Family

ID=77390384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075847 WO2021163921A1 (zh) 2020-02-19 2020-02-19 新型化合物及其用途

Country Status (7)

Country Link
US (1) US20230128569A1 (zh)
EP (1) EP4108657A4 (zh)
JP (1) JP2023519108A (zh)
KR (1) KR20220143703A (zh)
CN (1) CN115135640A (zh)
TW (1) TW202138375A (zh)
WO (1) WO2021163921A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080304A1 (ja) 2004-02-25 2005-09-01 Asahi Kasei Kabushiki Kaisha ポリアセン化合物及び有機半導体薄膜
WO2006077888A1 (ja) 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
WO2013125599A1 (ja) 2012-02-22 2013-08-29 Jnc株式会社 新規なカルコゲン含有有機化合物およびその用途
CN103570653A (zh) * 2012-08-01 2014-02-12 三星显示有限公司 杂环化合物及包含它的有机发光元件和有机发光显示装置
CN105102462A (zh) * 2013-03-05 2015-11-25 捷恩智株式会社 含有氧族元素的有机化合物及其用途
WO2017110584A1 (ja) * 2015-12-22 2017-06-29 株式会社ダイセル 有機半導体デバイス製造用組成物
CN109071783A (zh) * 2016-03-29 2018-12-21 国立大学法人东京大学 新型有机高分子及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082927B2 (ja) * 2014-03-26 2017-02-22 富士フイルム株式会社 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布液、有機トランジスタの製造方法、有機半導体膜の製造方法、非発光性有機半導体デバイス用有機半導体膜、有機半導体材料の合成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080304A1 (ja) 2004-02-25 2005-09-01 Asahi Kasei Kabushiki Kaisha ポリアセン化合物及び有機半導体薄膜
WO2006077888A1 (ja) 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
WO2013125599A1 (ja) 2012-02-22 2013-08-29 Jnc株式会社 新規なカルコゲン含有有機化合物およびその用途
CN104125951A (zh) * 2012-02-22 2014-10-29 捷恩智株式会社 新颖的含硫族元素有机化合物及其用途
CN103570653A (zh) * 2012-08-01 2014-02-12 三星显示有限公司 杂环化合物及包含它的有机发光元件和有机发光显示装置
CN105102462A (zh) * 2013-03-05 2015-11-25 捷恩智株式会社 含有氧族元素的有机化合物及其用途
WO2017110584A1 (ja) * 2015-12-22 2017-06-29 株式会社ダイセル 有機半導体デバイス製造用組成物
CN109071783A (zh) * 2016-03-29 2018-12-21 国立大学法人东京大学 新型有机高分子及其制造方法

Also Published As

Publication number Publication date
TW202138375A (zh) 2021-10-16
EP4108657A1 (en) 2022-12-28
KR20220143703A (ko) 2022-10-25
EP4108657A4 (en) 2023-11-08
US20230128569A1 (en) 2023-04-27
CN115135640A (zh) 2022-09-30
JP2023519108A (ja) 2023-05-10

Similar Documents

Publication Publication Date Title
TWI583676B (zh) 含硫族元素有機化合物與其製造方法、有機半導體材料、有機半導體膜及有機場效應電晶體
TWI427067B (zh) 〔1〕苯並噻吩並〔3,2-b〕〔1〕苯並噻吩化合物和製備彼之方法和使用彼之有機電子裝置
TWI600648B (zh) 含有氧族元素的有機化合物、其製造方法及其用途
JP5581596B2 (ja) 有機半導体材料
JP6080870B2 (ja) 溶液プロセス用有機半導体材料及び有機半導体デバイス
JP5894263B2 (ja) 有機半導体材料
TWI534121B (zh) 含有脫離取代基之化合物,有機半導體材料,含有該材料之有機半導體膜,含有該膜之有機電子裝置,製造膜狀產品之方法,π電子共軛化合物及製備該π電子共軛化合物的方法
TWI492950B (zh) 含有離去取代基之化合物,由該化合物形成之有機半導體材料,有機電子裝置,使用該有機半導體材料之有機薄膜電晶體及顯示裝置,用於製造類薄膜產物的方法、π電子共軛化合物,以及用於製造該π電子共軛化合物的方法
TW200906840A (en) Process for preparing substituted pentacenes
TW201002722A (en) Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
CN107266469B (zh) 稠合杂芳族化合物及其中间体的合成方法、稠合杂芳族化合物及其中间体、和电子器件
KR20120090939A (ko) 치환된 벤조찰코게노아센 화합물, 그 화합물을 함유하는 박막 및 그 박막을 함유하는 유기 반도체 장치
JP2013220996A (ja) ジチエノベンゾジチオフェン誘導体、ドロップキャスト製膜用溶液および有機半導体層
KR20200061888A (ko) 화합물, 유기 박막, 박막 트랜지스터 및 전자 소자
WO2021163921A1 (zh) 新型化合物及其用途
TW201631118A (zh) 有機半導體元件及其製造方法、有機半導體膜形成用組合物以及有機半導體膜的製造方法
KR102564943B1 (ko) 유기 화합물, 유기 박막 및 전자 소자
JP6364876B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP6093493B2 (ja) クリセン化合物を使用した有機半導体デバイス。
JP7494456B2 (ja) ビフェニレン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2018008885A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2018043947A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
TW202100516A (zh) 有機半導體裝置製造用墨水組成物
US10707424B2 (en) Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound and intermediate therefor and synthetic method of intermediate
JP6780365B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549389

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031698

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020919948

Country of ref document: EP

Effective date: 20220919