WO2017110584A1 - 有機半導体デバイス製造用組成物 - Google Patents

有機半導体デバイス製造用組成物 Download PDF

Info

Publication number
WO2017110584A1
WO2017110584A1 PCT/JP2016/087064 JP2016087064W WO2017110584A1 WO 2017110584 A1 WO2017110584 A1 WO 2017110584A1 JP 2016087064 W JP2016087064 W JP 2016087064W WO 2017110584 A1 WO2017110584 A1 WO 2017110584A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solvent
organic semiconductor
semiconductor device
composition
Prior art date
Application number
PCT/JP2016/087064
Other languages
English (en)
French (fr)
Inventor
鈴木陽二
横尾健
赤井泰之
竹谷純一
Original Assignee
株式会社ダイセル
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 国立大学法人東京大学 filed Critical 株式会社ダイセル
Priority to KR1020187020638A priority Critical patent/KR20180098307A/ko
Priority to EP16878475.9A priority patent/EP3396727A4/en
Priority to CN201680075383.6A priority patent/CN108475728B/zh
Priority to US16/064,999 priority patent/US20190006603A1/en
Priority to JP2017558044A priority patent/JP6910030B2/ja
Publication of WO2017110584A1 publication Critical patent/WO2017110584A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a composition containing an N-shaped fused pi-conjugated molecule, which is an organic semiconductor material, in a state dissolved in a solvent, and relates to a composition used for producing an organic semiconductor device by a printing method.
  • This application claims the priority of Japanese Patent Application No. 2015-250363 for which it applied to Japan on December 22, 2015, and uses the content here.
  • Transistors are important semiconductor devices included in displays and computer equipment, and are currently manufactured using inorganic semiconductor materials such as polysilicon and amorphous silicon.
  • Thin film transistors using inorganic semiconductor materials are manufactured by plasma enhanced chemical vapor deposition (PECVD), sputtering, and the like.
  • PECVD plasma enhanced chemical vapor deposition
  • the manufacturing process temperature is high, the manufacturing equipment is expensive and expensive, and the large area thin film transistor.
  • the problem is that the characteristics tend to be non-uniform when the film is formed.
  • substrates that can be used are limited by the manufacturing process temperature, and glass substrates have been mainly used.
  • a glass substrate has high heat resistance, but is weak against impact, difficult to reduce in weight, and poor in flexibility. When a glass substrate is used, it is difficult to form a light and flexible transistor.
  • an organic semiconductor device can be manufactured at a low manufacturing process temperature by a simple method such as a coating method. Therefore, a plastic substrate having low heat resistance can be used, and a display or the like. This is because it is possible to reduce the weight, flexibility, and cost of the electronic device.
  • Patent Document 1 describes an N-shaped condensed pi-conjugated molecule as an organic semiconductor material. It is described that o-dichlorobenzene, 1,2-dimethoxybenzene or the like is used as a solvent for dissolving the organic semiconductor material.
  • the solvent has low solubility of the organic semiconductor material, and the organic semiconductor material is often insoluble or precipitates at a manufacturing process temperature of 50 ° C. or lower. Therefore, it has been difficult to form a film by applying the organic semiconductor composition obtained using the solvent onto a plastic substrate having low heat resistance by a printing method.
  • nozzles are easily clogged under heating conditions in ink jet printing, it is difficult to use a solvent that cannot maintain a dissolved state unless heated.
  • the solvent is highly toxic and harmful to health, it is difficult to use.
  • an object of the present invention is to provide an organic semiconductor device manufacturing composition that is excellent in solubility of an organic semiconductor material and can form an organic semiconductor device having high carrier mobility using a printing method in a low temperature environment. Is to provide.
  • the present inventors have found that when a compound represented by the following formula (a) is used as a solvent, dissolution of an N-shaped condensed pi-conjugated molecule, which is an organic semiconductor material, even at low temperatures. It has been found that an organic semiconductor device can be formed by a printing method on a plastic substrate that is excellent in heat resistance and lower in heat resistance than a glass substrate. Further, when a composition obtained by dissolving the organic semiconductor material with the solvent is applied on a substrate, the organic semiconductor material is crystallized by a self-organizing action, and an organic semiconductor device having high carrier mobility can be formed. I found it. The present invention has been completed based on these findings.
  • this invention provides the composition for organic-semiconductor device manufacture containing the following solvent (A) and the following organic-semiconductor material.
  • Solvent (A) Compound represented by the following formula (a) (In the formula, L represents a single bond, —O—, —NH—C ( ⁇ O) —NH—, —C ( ⁇ O) —, or —C ( ⁇ S) —), and k represents 0-2.
  • R 1 represents a C 1-20 alkyl group, C 2-20 alkenyl group, C 3-20 cycloalkyl group, —OR a group, —SR a group, —O (C ⁇ O) R a group, —R b O (C ⁇ O) R a group
  • R a is a C 1-7 alkyl group, C 6-10 aryl group, or a monovalent group in which two or more of the above groups are bonded via a single bond or a linking group
  • R b represents a C 1-7 alkylene group, a C 6-10 arylene group, or a divalent group in which two or more of the groups are bonded via a single bond or a linking group), or a substituted or non-substituted group
  • t represents an integer of 1 or more, and when t is an integer of 2 or more, t R 1 s may be the same or different, and t is 2 or more T integers, Two
  • R 2 and R 3 are the same or different and are a fluorine atom, a C 1-20 alkyl group, a C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group, and the hydrogen contained in the alkyl group
  • One or more of the atoms may be substituted with a fluorine atom, and one or more of the hydrogen atoms contained in the aryl group, pyridyl group, furyl group, thienyl group, and thiazolyl group are a fluorine atom or a carbon number of 1 Optionally substituted with up to 10 alkyl groups)
  • the solvent (A) also has a 5- to 7-membered cyclic ketone having a 5- to 7-membered cycloalkyl group or an alkyl group having 1 to 7 carbon atoms as a substituent; an alkyl having 1 to 3 carbon atoms
  • a condensed ring compound in which a benzene ring or a 5- to 7-membered alicyclic ring is condensed with a tetrahydrofuran ring which may have a group; an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms as a substituent Tetrahydrofuran, selected from the group consisting of 1,3-diC 1-3 alkyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone; and 3,4,5,11-tetrahydroacenaphthene
  • the composition for manufacturing an organic semiconductor device which is at least one compound.
  • the solvent (A) is selected from the group consisting of 2-cyclopentylcyclopentanone, 2-heptylcyclopentanone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, , 3-dihydrobenzofuran, 2,3-dihydro-2-methylbenzofuran, 2,5-dimethoxytetrahydrofuran, 2,5-dimethyltetrahydrofuran, and 3,4,5,11-tetrahydroacenaphthene
  • the composition for manufacturing an organic semiconductor device which is at least one compound.
  • the present invention also provides the above-mentioned composition for producing an organic semiconductor device, which further contains the following solvent (B).
  • Solvent (B) Compound having an SP value of 6.0 to 8.0 [(cal / cm 3 ) 0.5 ] at 25 ° C.
  • the present invention also provides the above-mentioned organic semiconductor device production, wherein the solvent (B) is at least one compound selected from the group consisting of alkanes having 6 to 18 carbon atoms and dialkyl ethers having 6 to 18 carbon atoms.
  • the solvent (B) is at least one compound selected from the group consisting of alkanes having 6 to 18 carbon atoms and dialkyl ethers having 6 to 18 carbon atoms.
  • a composition is provided.
  • the total content of the solvent (A) and the solvent (B) in the total amount of the solvent contained in the composition for producing an organic semiconductor device is 80% by weight or more, and the solvent (A) and the solvent (B ) Content ratio (the former / the latter; the weight ratio) is 100/0 to 75/25.
  • the present invention also provides the above-mentioned composition for producing an organic semiconductor device, wherein the organic semiconductor material is a compound represented by the following formula (2).
  • the organic semiconductor material is a compound represented by the following formula (2).
  • R 4 and R 5 are the same or different and are a C 1-20 alkyl group, a C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group
  • a composition for producing an organic semiconductor device comprising the following solvent (A) and the following organic semiconductor material.
  • Solvent (A) Compound represented by formula (a)
  • Organic semiconductor material At least one compound selected from compounds represented by formula (1-1) and compounds represented by formula (1-2)
  • Compound [2] The composition for producing an organic semiconductor device according to [1], wherein the solvent (A) has a molecular weight of 70 to 350.
  • the solvent (A) has a 5- to 7-membered cyclic ketone having a 5- to 7-membered cycloalkyl group or an alkyl group having 1 to 7 carbons as a substituent; has an alkyl group having 1 to 3 carbon atoms.
  • the composition for producing an organic semiconductor device according to any one of [1] to [3], which is a compound of: [5]
  • the solvent (A) is 2-cyclopentylcyclopentanone, 2-heptylcyclopentanone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 2,3- At least one selected from the
  • Solvent (B) Compound [7] whose SP value at 25 ° C. is 6.0 to 8.0 [(cal / cm 3 ) 0.5 ], wherein the solvent (B) is an alkane having 6 to 18 carbon atoms and carbon number
  • the composition for producing an organic semiconductor device according to [6] which is at least one compound selected from the group consisting of 6 to 18 dialkyl ethers.
  • the total content of the solvent (A) and the solvent (B) in the total amount of the solvent contained in the composition for producing an organic semiconductor device is 80% by weight or more, and the content of the solvent (A) and the solvent (B)
  • the organic semiconductor material is at least one compound selected from a compound represented by the formula (1-1) and a compound represented by the following formula (1-2): 9] The composition for manufacturing an organic semiconductor device according to any one of [9].
  • the organic semiconductor material is at least one compound selected from the group consisting of compounds represented by formulas (2-1) to (2-6) The composition for manufacturing an organic semiconductor device according to one.
  • the composition for manufacturing an organic semiconductor device of the present invention is excellent in solubility of an N-shaped fused ring conjugated molecule as an organic semiconductor material even under a low temperature environment, and does not cause insolubility or precipitation problems. Therefore, the heat resistance is lower than that of a glass substrate, but an organic semiconductor device can be directly formed on a lightweight and flexible plastic substrate that is resistant to impact, and a lightweight and flexible display or computer device that is resistant to impact can be formed. Can be formed. In addition, an organic semiconductor device can be manufactured using a printing method such as ink jet printing, and the cost can be significantly reduced. When the composition for manufacturing an organic semiconductor device of the present invention is applied on a substrate, the organic semiconductor material is crystallized by a self-organizing action, so that an organic semiconductor device having high crystallinity and high carrier mobility is formed. can do.
  • composition for manufacturing organic semiconductor devices contains the following organic semiconductor material and a solvent (A).
  • solvent (A) The solvent (A) in the present invention is a compound represented by the following formula (a).
  • the composition for manufacturing an organic semiconductor device of the present invention contains one or more compounds represented by the following formula (a).
  • L represents a single bond, —O—, —NH—C ( ⁇ O) —NH—, —C ( ⁇ O) —, or —C ( ⁇ S) —, and k represents 0-2. Indicates an integer.
  • R 1 is a substituent bonded to an atom constituting the ring in formula (a), and is a C 1-20 alkyl group, a C 2-20 alkenyl group, a C 3-20 cycloalkyl group, an —OR a group , —SR a group, —O (C ⁇ O) R a group, —R b O (C ⁇ O) R a group
  • R a is a C 1-7 alkyl group, C 6-10 aryl group, or 2 represents a monovalent group bonded through a single bond or a linking group
  • R b is a C 1-7 alkylene group, a C 6-10 arylene group, or two or more of the groups are a single bond or a linking group.
  • t represents an integer of 1 or more.
  • t R 1 s may be the same or different.
  • t is an integer of 2 or more, two or more groups selected from t R 1 are bonded together to form a ring together with one or more carbon atoms constituting the ring shown in the formula May be formed.
  • L is a single bond
  • t is an integer of 3 or more, and 3 or more groups selected from t R 1 are bonded to each other to form a ring represented by the formula 1 or 2
  • Two or more rings are formed with the above carbon atoms.
  • 3 to 20 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group (preferably 3 A cycloalkyl group having about 15 to 15 and particularly preferably 5
  • Perhydronaphthalen-1-yl group norbornyl group, adamantyl group, tricyclo [5.2.1.0 2,6 ] decan-8-yl group, tetracyclo [4.4.0.1 2,5 .
  • a bridged cyclic hydrocarbon group such as a 1,7,10 ] dodecan-3-yl group.
  • An alkylene group etc. can be mentioned.
  • the “monovalent group in which two or more of the groups are bonded via a single bond or a linking group” in R a is two or more groups selected from a C 1-7 alkyl group and a C 6-10 aryl group Is a group bonded through a single bond or a linking group.
  • the linking group include a carbonyl group (—CO—), an ether bond (—O—), an ester bond (—COO—), an amide bond (—CONH—), and a carbonate bond (—OCOO—). be able to.
  • the “divalent group in which two or more of the groups are bonded through a single bond or a linking group” in R b is two or more groups selected from a C 1-7 alkylene group and a C 6-10 arylene group. Is a group bonded through a single bond or a linking group.
  • Examples of the linking group include the same examples as the linking group in R a .
  • Examples of the substituted or unsubstituted amino group in R 1 include an amino group; a mono- or di (C 1-3 ) alkylamino group such as a methylamino, ethylamino, isopropylamino, dimethylamino, and diethylamino group. it can.
  • t is an integer of 2 or more
  • two or more groups selected from t R 1 are bonded to each other to form a ring together with one or more carbon atoms constituting the ring shown in the formula
  • the ring that may be formed include 5- to 7-membered alicyclic rings such as cyclopentane, cyclohexane, and cycloheptane, and benzene rings.
  • t is an integer of 3 or more, and 3 or more groups selected from t R 1 are bonded to each other to form one or more of the rings shown in the formula Two or more rings are formed together with the carbon atom. Therefore, when L is a single bond, the compound represented by the formula (a) is a condensed ring having three or more rings, and the condensed ring may further have a substituent R 1 .
  • the molecular weight of the compound represented by the formula (a) or the solvent (A) is, for example, about 350 or less, preferably 70 to 250, particularly preferably 80 to 200.
  • the SP value of the compound represented by formula (a) or the solvent (A) by the Fedors method at 25 ° C. is, for example, 7.0 to 11.0 [(cal / cm 3 ) 0.5 ], preferably 8 0.0-11.0 [(cal / cm 3 ) 0.5 ], particularly preferably 9.0-10.5 [(cal / cm 3 ) 0.5 ].
  • a 5- to 7-membered cycloalkyl group having 1 to 5 carbon atoms or a 5- to 7-membered cycloalkyl group as a substituent is among others.
  • Specific examples of the compound represented by the formula (a) (or solvent (A)) include C 1-7 (cyclo) alkylcyclopentanone (for example, 2-methylcyclopentanone, 2-ethylcyclopentanone). 2-propylcyclopentanone, 2-butylcyclopentanone, 2-pentylcyclopentanone, 2-cyclopentylcyclopentanone, 2-hexylcyclopentanone, 2-heptylcyclopentanone), C 1-7 (cyclo ) Alkylcyclohexanone (for example, 2-methylcyclohexanone, 2-ethylcyclohexanone, 2-propylcyclohexanone, 2-butylcyclohexanone, 2-pentylcyclohexanone, 4-pentylcyclohexanone, 2-hexylcyclohexanone, 2-heptylcyclohexanone), cyclohexylmethylamine Tellurium, cyclohexy
  • Examples of the compound represented by the formula (a) (or the solvent (A)) include 2-cyclopentylcyclopentanone, 2-heptylcyclopentanone, 1,3-dimethyl-3,4,5,6- Tetrahydro-2 (1H) -pyrimidinone, 2,3-dihydrobenzofuran, 2,3-dihydro-2-methylbenzofuran, 2,5-dimethoxytetrahydrofuran, 2,5-dimethyltetrahydrofuran, and 3,4,5,11- At least one compound selected from the group consisting of tetrahydroacenaphthene is preferred from the viewpoint of excellent solubility of the organic semiconductor material.
  • the content of the compound (or solvent (A)) represented by the formula (a) in the total amount (100% by weight) of the solvent contained in the composition for producing an organic semiconductor device (when containing two or more in combination) is, for example, 50% by weight or more (eg 50 to 100% by weight), preferably 70% by weight or more (eg 70 to 100% by weight), particularly preferably 80% by weight or more (eg 80 to 100% by weight). is there.
  • the content of the compound represented by the formula (a) (or the solvent (A)) is below the above range, the solubility of the organic semiconductor material tends to decrease.
  • the SP value by Fedors method at 25 ° C. is, for example, 6.0 to 8.0 [(cal / cm 3 ) 0.5 ] (especially 7.0 to 8.0 [(cal / cm 3 )). 0.5 ]) is preferred.
  • Examples of the solvent (B) include alkanes having 6 to 18 carbon atoms, dialkyl ethers having 6 to 18 carbon atoms, and the like.
  • alkane having 6 to 18 carbon atoms examples include linear or branched alkanes such as hexane, octane, 2-methyloctane, nonane, 2-methylnonane, decane, tetradecane, and octadecane (preferably having 8 to 12 carbon atoms).
  • examples thereof include ethers (preferably linear or branched dialkyl ethers having 10 to 14 carbon atoms, particularly preferably linear dialkyl ethers having 10 to 14 carbon atoms).
  • the mixing ratio (the former / the latter; the weight ratio) is, for example, 100/0 to 75/25, preferably 100/0 to 80/20.
  • the ratio of the solvent (B) is excessive, the solubility of the organic semiconductor material tends to be reduced.
  • it is the total amount. The same applies to the solvent (B).
  • the composition for manufacturing an organic semiconductor device of the present invention may further contain another solvent in addition to the solvent (A) and the solvent (B), but the total amount of the solvent contained in the composition for manufacturing an organic semiconductor device (
  • the proportion of the total content of the solvent (A) and the solvent (B) in 100% by weight is, for example, 50% by weight or more (for example, 50 to 100% by weight) %), Preferably 70% by weight or more (for example, 70 to 100% by weight), particularly preferably 80% by weight or more (for example, 80 to 100% by weight).
  • the content of the solvent other than the solvent (A) and the solvent (B) is, for example, 50% by weight or less, preferably 30% by weight or less of the total amount of the solvent (100% by weight) contained in the composition for manufacturing an organic semiconductor device. More preferably, it is 20% by weight or less, particularly preferably 10% by weight or less, and most preferably 5% by weight or less.
  • the composition for manufacturing an organic semiconductor device of the present invention contains a solvent (A) and, if necessary, a solvent (B), it has high organic semiconductor material solubility even at a relatively low temperature.
  • the solubility of the compound represented by the formula (1-1) or the following formula (1-2) at 40 ° C. is 100 parts by weight of the solvent (A) (solvent (A) and solvent (B) are used in combination.
  • solvent (A) and solvent (B) are used in combination.
  • 0.02 parts by weight or more, preferably 0.03 parts by weight or more, particularly preferably 0.04 parts by weight or more with respect to 100 parts by weight in total of the solvent (A) and the solvent (B) is there.
  • the upper limit of the solubility is, for example, 1 part by weight, preferably 0.5 part by weight, particularly preferably 0.1 part by weight.
  • the composition for manufacturing an organic semiconductor device of the present invention includes at least one compound selected from a compound represented by the following formula (1-1) and a compound represented by the following formula (1-2) as an organic semiconductor material. Containing. Wherein X 1 and X 2 are the same or different and are an oxygen atom, a sulfur atom or a selenium atom, m is 0 or 1, and n 1 and n 2 are the same or different and are 0 or 1.
  • R 2 and R 3 are the same or different and are a fluorine atom, a C 1-20 alkyl group, a C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group, and the hydrogen contained in the alkyl group
  • One or more of the atoms may be substituted with a fluorine atom, and one or more of the hydrogen atoms contained in the aryl group, pyridyl group, furyl group, thienyl group, and thiazolyl group are a fluorine atom or a carbon number of 1 Optionally substituted with up to 10 alkyl groups)
  • X 1 and X 2 are the same or different and are an oxygen atom, a sulfur atom, or a selenium atom, and among them, an oxygen atom or a sulfur atom is preferable in view of high carrier mobility, and a sulfur atom is particularly preferable.
  • M is 0 or 1, preferably 0.
  • n 1 and n 2 are the same or different and are 0 or 1, and 0 is preferable from the viewpoint of excellent solubility.
  • Examples of the C 1-20 alkyl group for R 2 and R 3 include the same examples as the C 1-20 alkyl group for R 1 .
  • a C 4-15 alkyl group is particularly preferred, a C 6-12 alkyl group is particularly preferred, and a C 6-10 alkyl group is most preferred.
  • Examples of the C 6-10 aryl group in R 2 and R 3 include the same examples as the C 6-10 aryl group in R 1 .
  • a phenyl group is particularly preferable.
  • Examples of the pyridyl group include a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group.
  • Examples of the furyl group include 2-furyl group and 3-furyl group.
  • Examples of the thienyl group include a 2-thienyl group and a 3-thienyl group.
  • Examples of the thiazolyl group include a 2-thiazolyl group.
  • One or more of the hydrogen atoms contained in the aryl group, pyridyl group, furyl group, thienyl group, and thiazolyl group may be substituted with an alkyl group having 1 to 10 carbon atoms.
  • the group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, and n-decyl group.
  • a linear or branched alkyl group can be mentioned.
  • an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is particularly preferable.
  • examples of the group in which at least one hydrogen atom contained in the aryl group is substituted with an alkyl group having 1 to 10 carbon atoms include a tolyl group and a xylyl group.
  • examples of the group in which at least one hydrogen atom contained in the aryl group is substituted with a fluorine atom include a p-fluorophenyl group and a pentafluorophenyl group.
  • R 2 and R 3 are the same or different from each other in that they have high carrier mobility, and are a C 1-20 alkyl group, a C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group. Groups are preferred.
  • the compounds represented by the above formula (1-1) and the compounds represented by the above formula (1-2) exceed 200 ° C.
  • the crystalline state can be maintained even in a high temperature environment, which is preferable in terms of excellent thermal stability.
  • a compound represented by the following formula (2) is particularly preferable.
  • R 4, R 5 are the same or different, is a C 1-20 alkyl group, C 6-10 aryl group, a pyridyl group, a furyl group, a thienyl group, or thiazolyl group, said R 2, R 3 Examples thereof are the same as those of C 1-20 alkyl group, C 6-10 aryl group, pyridyl group, furyl group, thienyl group, and thiazolyl group.
  • R 4 and R 5 are preferably the same group in that they have a high carrier mobility, and in particular, a C 1-20 alkyl group, a phenyl group, a furyl group, or a thienyl group is preferable.
  • a C 1-20 alkyl group (in particular, a C 4-15 alkyl group is preferable, a C 6-12 alkyl group is particularly preferable, and a C 6-10 alkyl group is most preferable) is preferable.
  • At least one compound selected from the group consisting of compounds represented by the following formulas (2-1) to (2-6) is particularly preferable in that it has a high carrier mobility. .
  • the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) can be produced by the production method described in International Publication No. 2014/136827.
  • commercially available products such as trade names “C 10 -DNBDT-NW” and “C 6 -DNBDT-NW” (above, manufactured by Pi Crystal Co., Ltd.) can also be used.
  • the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) form an N-shaped molecular structure in which the benzene ring is connected to both wings with the cross-linked portion by a chalcogen atom as a bending point.
  • a substituent is introduced into the benzene rings at both ends. Therefore, compared with a linear molecule having the same number of rings, the solubility in the solvent (A) or a mixture of the solvent (A) and the solvent (B) is high, and it is difficult to deposit even in a low temperature environment.
  • the composition for manufacturing an organic semiconductor device of the present invention may contain an organic semiconductor material other than the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2). Is occupied by the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) in the total amount (100% by weight) of the organic semiconductor material contained in the composition for producing an organic semiconductor device.
  • the ratio (the ratio occupied by the total amount when two or more kinds are contained) is, for example, 50% by weight or more (for example, 50 to 100% by weight), preferably 70% by weight or more (for example, 70 to 100% by weight), and particularly preferably 80% by weight. % By weight or more (for example, 80 to 100% by weight).
  • composition for producing organic semiconductor devices is represented by the above-mentioned solvent (A) (solvent (A) and solvent (B) as required) as a solvent and the formula (1-1) as an organic semiconductor material. And at least one compound selected from the compounds represented by formula (1-2). Any of the solvent and the organic semiconductor material can be used singly or in combination of two or more.
  • the composition for manufacturing an organic semiconductor device of the present invention includes, for example, the solvent (A) (solvent (A) and solvent (B), if necessary) and an organic semiconductor material, and an air atmosphere, a nitrogen atmosphere, Alternatively, it can be prepared by heating at a temperature of about 70 to 150 ° C. for about 0.1 to 5 hours in an argon atmosphere.
  • the content of the solvent in the total amount of the composition for producing an organic semiconductor device of the present invention is, for example, 99.999% by weight or less.
  • the lower limit is, for example, 90.000% by weight, preferably 93.000% by weight, particularly preferably 95.000% by weight, and the upper limit is preferably 99.990% by weight.
  • the content of the solvent (A) in the total amount of the composition for producing an organic semiconductor device of the present invention is, for example, 70 to 99.97% by weight.
  • the lower limit of the content of the solvent (A) is preferably 80% by weight, particularly preferably 85% by weight, and the upper limit is preferably 95% by weight, particularly preferably 92% by weight.
  • the content of the solvent (B) in the total amount of the composition for producing an organic semiconductor device of the present invention (the total amount when containing two or more types) is, for example, 0 to 30% by weight.
  • the lower limit of the content of the solvent (B) is preferably 5% by weight, particularly preferably 8% by weight, and the upper limit is preferably 20% by weight, particularly preferably 15% by weight.
  • the total amount when contained is, for example, 0.02 parts by weight or more, preferably 0.03 parts by weight or more, particularly preferably 0.04 parts by weight or more with respect to 100 parts by weight of the solvent.
  • the upper limit of the content of the organic semiconductor material is, for example, 1 part by weight, preferably 0.5 part by weight, particularly preferably 0.1 part by weight.
  • composition for manufacturing an organic semiconductor device of the present invention in addition to the solvent and the organic semiconductor material, components generally contained in the composition for manufacturing an organic semiconductor device (for example, epoxy resin, acrylic resin, cellulose resin, butyral) Resin etc.) can be blended as needed.
  • components generally contained in the composition for manufacturing an organic semiconductor device for example, epoxy resin, acrylic resin, cellulose resin, butyral) Resin etc.
  • the composition for manufacturing an organic semiconductor device of the present invention uses the solvent (A) (a solvent (A) and a solvent (B) as necessary) as a solvent, the formula ( 1-1) or a compound represented by formula (1-2) can be dissolved at a high concentration. Therefore, even in a low temperature environment (for example, 20 to 50 ° C., preferably 20 to 40 ° C.), an organic semiconductor device can be easily formed by a simple method using a wet process such as a printing method. Is possible. In addition, although it has lower heat resistance than glass substrates, it can withstand impacts and can directly form organic semiconductor devices on lightweight and flexible plastic substrates, forming impact-resistant, lightweight and flexible displays and computer equipment. can do.
  • the organic semiconductor material contained in the composition is crystallized by a self-organizing action, and high carrier mobility (for example, 0.2 cm 2 / Vs).
  • high carrier mobility for example, 0.2 cm 2 / Vs.
  • organic preferably 1.0 cm 2 / Vs or more, particularly preferably 4.0 cm 2 / Vs or more, more preferably not 5.0 cm 2 / Vs or more, and most preferably having a 7.0 cm 2 / Vs or higher
  • the solvent (A) and the solvent (B) are preferable from the viewpoint of excellent safety as compared with the conventionally used 1,2-dimethoxybenzene and o-dichlorobenzene.
  • Example 1 A solvent (1) was prepared by mixing 50 parts by weight of 2-cyclopentylcyclopentanone and 50 parts by weight of 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone. Under 25 ° C. environment, in a solvent (1), the "C 10 -DNBDT-NW" as an organic semiconductor material, and mixed as the organic semiconductor material concentration of 0.03 wt%, a nitrogen atmosphere, the light-shielding conditions And heated at 100 ° C. for 3 hours to obtain a composition for producing an organic semiconductor device. About the obtained composition for organic-semiconductor device manufacture, melt
  • Example 10 Under a 25 ° C. environment, “C 12 -DNBDT-NW” as an organic semiconductor material is mixed in 2,3-dihydrobenzofuran so that the concentration of the organic semiconductor material becomes 0.03% by weight. Under the conditions, the composition was heated at 100 ° C. for 3 hours to obtain a composition for producing an organic semiconductor device. About the obtained composition for organic-semiconductor device manufacture, melt
  • Comparative Examples 3 and 4 Except having used the solvent shown in Table 2, the composition for organic-semiconductor device manufacture was prepared like Example 10, and the solubility of organic-semiconductor material was evaluated.
  • Example 11 Under a 25 ° C. environment, “C 14 -DNBDT-NW” as an organic semiconductor material is mixed in 2,3-dihydrobenzofuran so that the concentration of the organic semiconductor material becomes 0.03% by weight. Under the conditions, the composition was heated at 100 ° C. for 3 hours to obtain a composition for producing an organic semiconductor device. About the obtained composition for organic-semiconductor device manufacture, melt
  • Comparative Examples 5 and 6 Except having used the solvent shown in Table 3, the composition for organic-semiconductor device manufacture was prepared like Example 11, and the solubility of organic-semiconductor material was evaluated.
  • Organic semiconductor materials and solvents used in the examples and comparative examples will be described below.
  • ⁇ Organic semiconductor materials> C 10 -DNBDT-NW: a compound represented by the following formula (2-3), trade name “C 10 -DNBDT-NW”, manufactured by Pi Crystal Co., Ltd.
  • C 12 -DNBDT-NW Compound represented by the following formula (2-4), trade name “C 12 -DNBDT-NW”, manufactured by Daicel Corporation
  • C 14 -DNBDT-NW Compound represented by the following formula (2-6), trade name “C 14 -DNBDT-NW”, manufactured by Daicel Corporation
  • CCPPAN 2-cyclopentylcyclopentanone, manufactured by Tokyo Chemical Industry Co., Ltd.
  • DMTHP 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, manufactured by Tokyo Chemical Industry Co., Ltd.
  • DHBF 2,3-dihydrobenzofuran, manufactured by Tokyo Chemical Industry Co., Ltd.
  • DMTHF 2,5-dimethyltetrahydrofuran, manufactured by Tokyo Chemical Industry Co., Ltd.
  • ⁇ solvent (B)> 2MOC 2-methyloctane, manufactured by Tokyo Chemical Industry Co., Ltd. 2MNO: 2-methylnonane, manufactured by Tokyo Chemical Industry Co., Ltd.
  • DHE hexyl ether, manufactured by Tokyo Chemical Industry Co., Ltd.
  • o-DCB o-dichlorobenzene, manufactured by Tokyo Chemical Industry Co., Ltd.
  • the composition for manufacturing an organic semiconductor device of the present invention is excellent in solubility of an N-shaped fused ring conjugated molecule as an organic semiconductor material even under a low temperature environment, and does not cause insolubility or precipitation problems. Therefore, the heat resistance is lower than that of a glass substrate, but an organic semiconductor device can be directly formed on a lightweight and flexible plastic substrate that is resistant to impact, and a lightweight and flexible display or computer device that is resistant to impact can be formed. Can be formed. In addition, an organic semiconductor device can be manufactured by using a printing method, and the cost can be greatly reduced. When the composition for manufacturing an organic semiconductor device of the present invention is applied on a substrate, the organic semiconductor material is crystallized by a self-organizing action, so that an organic semiconductor device having high crystallinity and high carrier mobility is formed. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Abstract

有機半導体材料の溶解性に優れ、低温環境下において、印刷法を用いて、高いキャリア移動度を有する有機半導体デバイスを形成することができる組成物を提供する。 本発明の有機半導体デバイス製造用組成物は、下記有機半導体材料と溶剤(A)を含有する。 有機半導体材料:N字型縮環パイ共役系分子 溶剤(A):下記式(a)で表される化合物。式中、Lは単結合、-O-、-NH-C(=O)-NH-、-C(=O)-、又は-C(=S)-を示し、kは0~2の整数を示す。R1はC1-20アルキル基、C2-20アルケニル基、C3-20シクロアルキル基、-ORa基、-SRa基、-O(C=O)Ra基、-RbO(C=O)Ra基、又は置換若しくは無置換アミノ基を示す。tは1以上の整数を示す。

Description

有機半導体デバイス製造用組成物
 本発明は、有機半導体材料であるN字型縮環パイ共役系分子を溶剤に溶解した状態で含有する組成物であって、印刷法により有機半導体デバイスを製造する用途に使用する組成物に関する。本願は、2015年12月22日に日本に出願した、特願2015-250363号の優先権を主張し、その内容をここに援用する。
 トランジスタはディスプレイやコンピュータ機器に含まれる重要な半導体デバイスであり、現在、ポリシリコンやアモルファスシリコン等の無機半導体材料を使用して製造されている。無機半導体材料を用いた薄膜トランジスタの製造は、プラズマ化学気相堆積法(PECVD)やスパッタ法等により行われ、製造プロセス温度が高いこと、製造装置が高額でありコストが嵩むこと、大面積の薄膜トランジスタを形成した際に特性が不均一になりやすいことが問題であった。また、製造プロセス温度により使用できる基板が制限され、ガラス基板が主に使用されてきた。しかし、ガラス基板は耐熱性は高いが衝撃に弱く軽量化が困難で柔軟性に乏しいため、ガラス基板を用いた場合は軽量でフレキシブルなトランジスタを形成することは困難であった。
 そこで、近年、有機半導体材料を利用した有機半導体デバイスに関する研究開発が盛んに行われている。有機半導体材料を使用すれば、塗布法等の簡便な方法により、低い製造プロセス温度で有機半導体デバイスを製造することが可能となるため、耐熱性の低いプラスチック基板を使用することができ、ディスプレイ等のエレクトロニクスデバイスの軽量化、フレキシブル化、低コスト化を実現することが可能となるからである。
 特許文献1には、有機半導体材料としてN字型縮環パイ共役系分子が記載されている。そして、前記有機半導体材料を溶解する溶剤としては、o-ジクロロベンゼン、1,2-ジメトキシベンゼン等を使用することが記載されている。しかし、前記溶剤は有機半導体材料の溶解性が低く、50℃以下の製造プロセス温度では有機半導体材料が不溶、若しくは析出することが多い。そのため、前記溶剤を使用して得られた有機半導体組成物を、耐熱性の低いプラスチック基板上へ、印刷法により塗布して膜形成することは困難であった。また、インクジェット印刷は加熱条件下ではノズルが詰まりやすくなるため、加熱しないと溶解状態を保持できない溶剤は、使用困難であった。更に、前記溶剤は毒性が強く、健康に対して有害である為、使用し難いという問題もあった。
国際公開第2014/136827号
 従って、本発明の目的は、有機半導体材料の溶解性に優れ、低温環境下において、印刷法を用いて、高いキャリア移動度を有する有機半導体デバイスを形成することができる有機半導体デバイス製造用組成物を提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、下記式(a)で表される化合物を溶剤として用いると、低温でも有機半導体材料であるN字型縮環パイ共役系分子の溶解性に優れ、ガラス基板に比べて耐熱性の低いプラスチック基板上にも、印刷法により有機半導体デバイスを形成することができることを見いだした。また、前記溶剤で前記有機半導体材料を溶解して得られる組成物を基板上に塗布すると、有機半導体材料が自己組織化作用により結晶化して、高いキャリア移動度を有する有機半導体デバイスを形成できることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、下記溶剤(A)と下記有機半導体材料を含有する有機半導体デバイス製造用組成物を提供する。
 溶剤(A):下記式(a)で表される化合物
Figure JPOXMLDOC01-appb-C000004
(式中、Lは単結合、-O-、-NH-C(=O)-NH-、-C(=O)-、又は-C(=S)-を示し、kは0~2の整数を示す。R1はC1-20アルキル基、C2-20アルケニル基、C3-20シクロアルキル基、-ORa基、-SRa基、-O(C=O)Ra基、-RbO(C=O)Ra基(RaはC1-7アルキル基、C6-10アリール基、又は前記基の2以上が単結合若しくは連結基を介して結合した1価の基を示し、RbはC1-7アルキレン基、C6-10アリーレン基、又は前記基の2以上が単結合若しくは連結基を介して結合した2価の基を示す)、又は置換若しくは無置換アミノ基を示す。tは1以上の整数を示し、tが2以上の整数である場合、t個のR1は同一であってもよく、異なっていてもよい。また、tが2以上の整数である場合、t個のR1から選択される2以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に環を形成していてもよい。但し、Lが単結合の場合、tは3以上の整数であり、t個のR1から選択される3以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に2個以上の環を形成する)
 有機半導体材料:下記式(1-1)で表される化合物、及び下記式(1-2)で表される化合物から選択される少なくとも1種の化合物
Figure JPOXMLDOC01-appb-C000005
(式中、X1、X2は同一又は異なって、酸素原子、硫黄原子、又はセレン原子であり、mは0又は1、n1、n2は同一又は異なって、0又は1である。R2、R3は同一又は異なって、フッ素原子、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基であり、前記アルキル基が含有する水素原子の1又は2以上はフッ素原子で置換されていても良く、前記アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基が含有する水素原子の1又は2以上はフッ素原子又は炭素数1~10のアルキル基で置換されていても良い)
 本発明は、また、溶剤(A)が、置換基として5~7員のシクロアルキル基又は炭素数1~7のアルキル基を有する、5~7員の環状ケトン;炭素数1~3のアルキル基を有していてもよい、ベンゼン環又は5~7員の脂環がテトラヒドロフラン環に縮合した縮合環化合物;置換基として炭素数1~3のアルキル基又は炭素数1~3のアルコキシ基を有するテトラヒドロフラン;1,3-ジC1-3アルキル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン;及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物である前記の有機半導体デバイス製造用組成物を提供する。
 本発明は、また、溶剤(A)が、2-シクロペンチルシクロペンタノン、2-ヘプチルシクロペンタノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、2,3-ジヒドロベンゾフラン、2,3-ジヒドロ-2-メチルベンゾフラン、2,5-ジメトキシテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物である前記の有機半導体デバイス製造用組成物を提供する。
 本発明は、また、更に、下記溶剤(B)を含有する前記の有機半導体デバイス製造用組成物を提供する。
 溶剤(B):25℃におけるSP値が6.0~8.0[(cal/cm30.5]である化合物
 本発明は、また、溶剤(B)が、炭素数6~18のアルカン、及び炭素数6~18のジアルキルエーテルからなる群より選択される少なくとも1種の化合物である前記の有機半導体デバイス製造用組成物を提供する。
 本発明は、また、有機半導体デバイス製造用組成物に含まれる溶剤全量に占める、溶剤(A)と溶剤(B)の合計含有量が80重量%以上であり、溶剤(A)と溶剤(B)の含有量の比(前者/後者;重量比)が、100/0~75/25である前記の有機半導体デバイス製造用組成物を提供する。
 本発明は、また、有機半導体材料が、下記式(2)で表される化合物である前記の有機半導体デバイス製造用組成物を提供する。
Figure JPOXMLDOC01-appb-C000006
(式中、R4、R5は同一又は異なって、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基である)
 すなわち、本発明は、下記に関する。
[1] 下記溶剤(A)と下記有機半導体材料を含有する有機半導体デバイス製造用組成物。
 溶剤(A):式(a)で表される化合物
 有機半導体材料:式(1-1)で表される化合物、及び式(1-2)で表される化合物から選択される少なくとも1種の化合物
[2] 溶剤(A)の分子量が70~350である、[1]に記載の有機半導体デバイス製造用組成物。
[3] 溶剤(A)の25℃におけるFedors法によるSP値が8.0~11.0[(cal/cm30.5]である、[1]又は[2]に記載の有機半導体デバイス製造用組成物。
[4] 溶剤(A)が、置換基として5~7員のシクロアルキル基又は炭素数1~7のアルキル基を有する、5~7員の環状ケトン;炭素数1~3のアルキル基を有していてもよい、ベンゼン環又は5~7員の脂環がテトラヒドロフラン環に縮合した縮合環化合物;置換基として炭素数1~3のアルキル基又は炭素数1~3のアルコキシ基を有するテトラヒドロフラン;1,3-ジC1-3アルキル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン;及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物である、[1]~[3]の何れか1つに記載の有機半導体デバイス製造用組成物。
[5] 溶剤(A)が、2-シクロペンチルシクロペンタノン、2-ヘプチルシクロペンタノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、2,3-ジヒドロベンゾフラン、2,3-ジヒドロ-2-メチルベンゾフラン、2,5-ジメトキシテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物である、[1]~[3]の何れか1つに記載の有機半導体デバイス製造用組成物。
[6] 更に、下記溶剤(B)を含有する、[1]~[5]の何れか1つに記載の有機半導体デバイス製造用組成物。
 溶剤(B):25℃におけるSP値が6.0~8.0[(cal/cm30.5]である化合物
[7] 溶剤(B)が、炭素数6~18のアルカン、及び炭素数6~18のジアルキルエーテルからなる群より選択される少なくとも1種の化合物である、[6]に記載の有機半導体デバイス製造用組成物。
[8] 有機半導体デバイス製造用組成物に含まれる溶剤全量に占める、溶剤(A)と溶剤(B)の合計含有量が80重量%以上であり、溶剤(A)と溶剤(B)の含有量の比(前者/後者;重量比)が、100/0~75/25である、[6]又は[7]に記載の有機半導体デバイス製造用組成物。
[9] 有機半導体デバイス製造用組成物に含まれる溶剤全量に占める溶剤(A)の割合が70重量%以上である、[1]~[8]の何れか1つに記載の有機半導体デバイス製造用組成物。
[10] 有機半導体材料が、式(1-1)で表される化合物、及び下記式(1-2)で表される化合物から選択される少なくとも1種の化合物である、[1]~[9]の何れか1つに記載の有機半導体デバイス製造用組成物。
[11] 有機半導体材料が、式(2)で表される化合物である、[1]~[9]の何れか1つに記載の有機半導体デバイス製造用組成物。
[12] 有機半導体材料が、式(2-1)~(2-6)で表される化合物からなる群より選択される少なくとも1種の化合物である、[1]~[9]の何れか1つに記載の有機半導体デバイス製造用組成物。
[13] 有機半導体デバイス製造用組成物全量における溶剤(A)の含有量が70~99.97重量%である、[1]~[12]の何れか1つに記載の有機半導体デバイス製造用組成物。
[14] 有機半導体デバイス製造用組成物全量における溶剤(B)の含有量が0~30重量%である、[6]~[13]の何れか1つに記載の有機半導体デバイス製造用組成物。
[15] 有機半導体材料の含有量が、溶剤(A)(溶剤(B)も含有する場合は、溶剤(A)と溶剤(B)の合計)100重量部に対して0.02重量部以上である、[1]~[14]の何れか1つに記載の有機半導体デバイス製造用組成物。
 本発明の有機半導体デバイス製造用組成物は、低温環境下でも、有機半導体材料であるN字型縮環パイ共役系分子の溶解性に優れ、不溶や析出の問題を生じない。そのため、ガラス基板に比べて耐熱性は低いが、衝撃に強く、軽量且つフレキシブルなプラスチック基板にも、有機半導体デバイスを直接形成することができ、衝撃に強く、軽量且つフレキシブルなディスプレイやコンピュータ機器を形成することができる。また、インクジェット印刷等の印刷法を用いて有機半導体デバイスを製造することが可能であり、コストの大幅な削減が可能である。
 そして、本発明の有機半導体デバイス製造用組成物を基板上に塗布すると有機半導体材料が自己組織化作用により結晶化するため、高い結晶性を有し、高いキャリア移動度を有する有機半導体デバイスを形成することができる。
 [有機半導体デバイス製造用組成物]
 本発明の有機半導体デバイス製造用組成物は、下記有機半導体材料と溶剤(A)を含有する。
 (溶剤(A))
 本発明における溶剤(A)は、下記式(a)で表される化合物である。本発明の有機半導体デバイス製造用組成物は、下記式(a)で表される化合物を1種又は2種以上含有する。
Figure JPOXMLDOC01-appb-C000007
 上記式中、Lは単結合、-O-、-NH-C(=O)-NH-、-C(=O)-、又は-C(=S)-を示し、kは0~2の整数を示す。R1は、式(a)中の環を構成する原子に結合する置換基であって、C1-20アルキル基、C2-20アルケニル基、C3-20シクロアルキル基、-ORa基、-SRa基、-O(C=O)Ra基、-RbO(C=O)Ra基(RaはC1-7アルキル基、C6-10アリール基、又は前記基の2以上が単結合若しくは連結基を介して結合した1価の基を示し、RbはC1-7アルキレン基、C6-10アリーレン基、又は前記基の2以上が単結合若しくは連結基を介して結合した2価の基を示す)、又は置換若しくは無置換アミノ基を示す。tは1以上の整数を示し、tが2以上の整数である場合、t個のR1は同一であってもよく、異なっていてもよい。また、tが2以上の整数である場合、t個のR1から選択される2以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に環を形成していてもよい。但し、Lが単結合の場合、tは3以上の整数であり、t個のR1から選択される3以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に2個以上の環を形成する。
 R1におけるC1-20(=炭素数1~20)アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロビル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-デシル基、n-ウンデシル基、n-テトラデシル基等の直鎖又は分岐鎖状のアルキル基を挙げることができる。
 R1におけるC2-20(=炭素数2~20)アルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基等の直鎖又は分岐鎖状のアルケニル基を挙げることができる。
 R1におけるC3-20(=炭素数3~20)シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の炭素数3~20(好ましくは3~15、特に好ましくは5~8)程度のシクロアルキル基;シクロペンテニル基、シクロへキセニル基等の炭素数3~20(好ましくは3~15、特に好ましくは5~8)程度のシクロアルケニル基;パーヒドロナフタレン-1-イル基、ノルボルニル基、アダマンチル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、テトラシクロ[4.4.0.12,5.17,10]ドデカン-3-イル基等の橋かけ環式炭化水素基等を挙げることができる。
 RaにおけるC1-7(=炭素数1~7)アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロビル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基等の直鎖又は分岐鎖状のアルキル基を挙げることができる。
 RaにおけるC6-10(=炭素数6~10)アリール基としては、例えば、フェニル基、ナフチル基、フルオレニル基、ビフェニリル基等を挙げることができる。
 RbにおけるC1-7(=炭素数1~7)アルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基などの直鎖又は分岐鎖状のアルキレン基等を挙げることができる。
 RbにおけるC6-10(=炭素数6~10)アリーレン基としては、例えば、フェニレン基等を挙げることができる。
 前記Raにおける「前記基の2以上が単結合若しくは連結基を介して結合した1価の基」とは、C1-7アルキル基及びC6-10アリール基から選択される2以上の基が単結合又は連結基を介して結合した基である。前記連結基としては、例えば、カルボニル基(-CO-)、エーテル結合(-O-)、エステル結合(-COO-)、アミド結合(-CONH-)、カーボネート結合(-OCOO-)等を挙げることができる。
 前記Rbにおける「前記基の2以上が単結合若しくは連結基を介して結合した2価の基」とは、C1-7アルキレン基及びC6-10アリーレン基から選択される2以上の基が単結合又は連結基を介して結合した基である。前記連結基としては、Raにおける連結基と同様の例を挙げることができる。
 R1における置換若しくは無置換アミノ基としては、例えば、アミノ基;メチルアミノ、エチルアミノ、イソプロピルアミノ、ジメチルアミノ、ジエチルアミノ基等のモノ又はジ(C1-3)アルキルアミノ基等を挙げることができる。
 tが2以上の整数である場合、t個のR1から選択される2個以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に環を形成していてもよく、前記形成していてもよい環としては、例えば、シクロペンタン、シクロヘキサン、シクロヘプタン等の5~7員の脂環、及びベンゼン環等を挙げることができる。
 Lが単結合の場合、tは3以上の整数であり、t個のR1から選択される3個以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に2個以上の環を形成する。従って、Lが単結合の場合、式(a)で表される化合物は3環以上の縮合環であり、前記縮合環は更に置換基R1を有していてもよい。
 式(a)で表される化合物、若しくは溶剤(A)の分子量としては、例えば350以下程度、好ましくは70~250、特に好ましくは80~200である。
 また、式(a)で表される化合物、若しくは溶剤(A)の、25℃におけるFedors法によるSP値は、例えば7.0~11.0[(cal/cm30.5]、好ましくは8.0~11.0[(cal/cm30.5]、特に好ましくは9.0~10.5[(cal/cm30.5]である。
 式(a)で表される化合物(若しくは、溶剤(A))としては、なかでも、置換基として5~7員のシクロアルキル基又は炭素数1~5のアルキル基を有する、5~7員の環状ケトン;炭素数1~3のアルキル基を有していてもよい、ベンゼン環又は5~7員の脂環がテトラヒドロフラン環に縮合した縮合環化合物;置換基として炭素数1~3のアルキル基又は炭素数1~3のアルコキシ基を有するテトラヒドロフラン;1,3-ジC1-3アルキル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン;及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物が好ましい。
 式(a)で表される化合物(若しくは、溶剤(A))の具体例としては、C1-7(シクロ)アルキルシクロペンタノン(例えば、2-メチルシクロペンタノン、2-エチルシクロペンタノン、2-プロピルシクロペンタノン、2-ブチルシクロペンタノン、2-ペンチルシクロペンタノン、2-シクロペンチルシクロペンタノン、2-ヘキシルシクロペンタノン、2-ヘプチルシクロペンタノン)、C1-7(シクロ)アルキルシクロヘキサノン(例えば、2-メチルシクロヘキサノン、2-エチルシクロヘキサノン、2-プロピルシクロヘキサノン、2-ブチルシクロヘキサノン、2-ペンチルシクロヘキサノン、4-ペンチルシクロヘキサノン、2-ヘキシルシクロヘキサノン、2-ヘプチルシクロヘキサノン)、シクロヘキシルメチルエーテル、シクロヘキシルアミン、2,5-ジメトキシテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、2,3-ジヒドロベンゾフラン、2,3-ジヒドロ-2-メチルベンゾフラン、2,3-ジヒドロ-3-メチルベンゾフラン、シクロヘキシルアセテート、ジヒドロターピニルアセテート、テトラヒドロフルフリルアセテート、ジプロピレングリコールシクロペンチルメチルエーテル、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、及び3,4,5,11-テトラヒドロアセナフテン等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。尚、前記「(シクロ)アルキル」は、アルキル又はシクロアルキルを示す。
 式(a)で表される化合物(若しくは、溶剤(A))としては、特に、2-シクロペンチルシクロペンタノン、2-ヘプチルシクロペンタノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、2,3-ジヒドロベンゾフラン、2,3-ジヒドロ-2-メチルベンゾフラン、2,5-ジメトキシテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物が、有機半導体材料の溶解性に優れる点で好ましい。
 有機半導体デバイス製造用組成物に含まれる溶剤全量(100重量%)に占める式(a)で表される化合物(若しくは、溶剤(A))の含有割合(2種以上を組み合わせて含有する場合はその総量)は、例えば50重量%以上(例えば50~100重量%)、好ましくは70重量%以上(例えば70~100重量%)、特に好ましくは80重量%以上(例えば80~100重量%)である。式(a)で表される化合物(若しくは、溶剤(A))の含有量が上記範囲を下回ると、有機半導体材料の溶解性が低下する傾向がある。
 (溶剤(B))
 本発明の有機半導体デバイス製造用組成物は、上記溶剤(A)以外にも、一般的に電子材料用途に使用される溶剤であって、上記溶剤(A)と相溶する溶剤(=溶剤(B))を1種又は2種以上含有してもよい。
 溶剤(B)としては、25℃におけるFedors法によるSP値が例えば6.0~8.0[(cal/cm30.5](とりわけ、7.0~8.0[(cal/cm30.5])である化合物が好ましい。
 溶剤(B)としては、例えば、炭素数6~18のアルカン、炭素数6~18のジアルキルエーテル等を挙げることができる。
 前記炭素数6~18のアルカンとしては、例えば、ヘキサン、オクタン、2-メチルオクタン、ノナン、2-メチルノナン、デカン、テトラデカン、オクタデカン等の直鎖又は分岐鎖状アルカン(好ましくは炭素数8~12の直鎖又は分岐鎖状アルカン、特に好ましくは炭素数8~12の分岐鎖状アルカン)を挙げることができる。
 前記炭素数6~18のジアルキルエーテルとしては、例えば、メチルヘキシルエーテル、ヘキシルエーテル(=ジヘキシルエーテル)、オクチルエーテル(=ジオクチルエーテル)、ビス(2-エチルヘキシル)エーテル等の直鎖又は分岐鎖状ジアルキルエーテル(好ましくは炭素数10~14の直鎖又は分岐鎖状ジアルキルエーテル、特に好ましくは炭素数10~14の直鎖状ジアルキルエーテル)を挙げることができる。
 溶剤(A)と溶剤(B)とを併用する場合、その混合比(前者/後者;重量比)は、例えば100/0~75/25、好ましくは100/0~80/20である。溶剤(B)の割合が過剰となると、有機半導体材料の溶解性が低下する傾向がある。尚、溶剤(A)として2種類以上の溶剤を組み合わせて使用する場合にはその合計量である。溶剤(B)についても同様である。
 本発明の有機半導体デバイス製造用組成物は、溶剤(A)と溶剤(B)以外にも更に他の溶剤を含有していても良いが、有機半導体デバイス製造用組成物に含まれる溶剤全量(100重量%)における溶剤(A)と溶剤(B)の合計含有量の占める割合(それぞれ、2種以上を組み合わせて含有する場合はその総量)は、例えば50重量%以上(例えば50~100重量%)、好ましくは70重量%以上(例えば70~100重量%)、特に好ましくは80重量%以上(例えば80~100重量%)である。従って、溶剤(A)、溶剤(B)以外の溶剤の含有量は、有機半導体デバイス製造用組成物に含まれる溶剤全量(100重量%)の、例えば50重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下、特に好ましくは10重量%以下、最も好ましくは5重量%以下である。
 本発明の有機半導体デバイス製造用組成物は溶剤(A)と必要に応じて溶剤(B)を含有するため、比較的低温でも高い有機半導体材料溶解性を有する。例えば、40℃における前記式(1-1)、又は下記式(1-2)で表される化合物の溶解度は、溶剤(A)100重量部(溶剤(A)と溶剤(B)とを併用する場合は、溶剤(A)と溶剤(B)の合計100重量部)に対して、例えば0.02重量部以上、好ましくは0.03重量部以上、特に好ましくは0.04重量部以上である。溶解度の上限は、例えば1重量部、好ましくは0.5重量部、特に好ましくは0.1重量部である。
 (有機半導体材料)
 本発明の有機半導体デバイス製造用組成物は、有機半導体材料として、下記式(1-1)で表される化合物、及び下記式(1-2)で表される化合物から選択される少なくとも1種を含有する。
Figure JPOXMLDOC01-appb-C000008
(式中、X1、X2は同一又は異なって、酸素原子、硫黄原子、又はセレン原子であり、mは0又は1、n1、n2は同一又は異なって、0又は1である。R2、R3は同一又は異なって、フッ素原子、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基であり、前記アルキル基が含有する水素原子の1又は2以上はフッ素原子で置換されていても良く、前記アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基が含有する水素原子の1又は2以上はフッ素原子又は炭素数1~10のアルキル基で置換されていても良い)
 X1、X2は同一又は異なって、酸素原子、硫黄原子、又はセレン原子であり、なかでも高いキャリア移動度を示す点で酸素原子又は硫黄原子が好ましく、特に硫黄原子が好ましい。
 mは0又は1であり、好ましくは0である。
 n1、n2は同一又は異なって、0又は1であり、溶解性に優れる点で0が好ましい。
 R2、R3におけるC1-20アルキル基としては、上記R1におけるC1-20アルキル基と同様の例を挙げることができる。本発明においては、なかでもC4-15アルキル基が好ましく、特に好ましくはC6-12アルキル基、最も好ましくはC6-10アルキル基である。
 R2、R3におけるC6-10アリール基としては、上記R1におけるC6-10アリール基と同様の例を挙げることができる。本発明においては、なかでもフェニル基が好ましい。
 前記ピリジル基としては、例えば、2-ピリジル基、3-ピリジル基、4-ピリジル基等を挙げることができる。
 前記フリル基としては、例えば、2-フリル基、3-フリル基等を挙げることができる。
 前記チエニル基としては、例えば、2-チエニル基、3-チエニル基等を挙げることができる。
 前記チアゾリル基としては、例えば、2-チアゾリル基等を挙げることができる。
 アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基が含有する水素原子の1又は2以上は炭素数1~10のアルキル基で置換されていても良く、前記炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロビル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-デシル基等の直鎖又は分岐鎖状のアルキル基を挙げることができる。なかでも、炭素数1~6のアルキル基が好ましく、特に炭素数1~3のアルキル基が好ましい。例えば、アリール基が含有する水素原子の少なくとも1つを炭素数1~10のアルキル基で置換した基としては、例えば、トリル基、キシリル基等を挙げることができる。
 また、アリール基が含有する水素原子の少なくとも1つをフッ素原子で置換した基としては、例えば、p-フルオロフェニル基、ペンタフルオロフェニル基等を挙げることができる。
 R2、R3としては、なかでも、高いキャリア移動度を有する点で、同一又は異なって、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基が好ましい。
 上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物のなかでも、特に、上記式(1-2)で表される化合物が、200℃を超える高温環境下でも結晶状態を保持することができ、熱安定性に優れる点で好ましい。
 本発明における有機半導体材料としては、特に、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式中、R4、R5は同一又は異なって、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基であり、上記R2、R3におけるC1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基と同様の例を挙げることができる。R4とR5は、なかでも、高いキャリア移動度を有する点で、同一の基であることが好ましく、特に、C1-20アルキル基、フェニル基、フリル基、又はチエニル基が好ましく、とりわけC1-20アルキル基(なかでもC4-15アルキル基が好ましく、特に好ましくはC6-12アルキル基、最も好ましくはC6-10アルキル基である)が好ましい。
 本発明における有機半導体材料としては、下記式(2-1)~(2-6)で表される化合物からなる群より選択される少なくとも1種の化合物が高いキャリア移動度を有する点で特に好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物は、国際公開第2014/136827号に記載の製造方法等により製造することができる。また、例えば、商品名「C10-DNBDT-NW」、「C6-DNBDT-NW」(以上、パイクリスタル(株)製)等の市販品を使用することもできる。
 上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物はカルコゲン原子による架橋部分を屈曲点としてベンゼン環が両翼に連なってN字型分子構造を形成し、両末端のベンゼン環に置換基が導入された構成を有する。そのため、同程度の環数を有する直線型分子に比べて上記溶剤(A)、又は溶剤(A)と溶剤(B)の混合物に対する溶解性が高く、低温環境下でも析出し難い。
 本発明の有機半導体デバイス製造用組成物は、上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物以外の有機半導体材料を含有していても良いが、有機半導体デバイス製造用組成物に含まれる有機半導体材料全量(100重量%)における上記式(1-1)で表される化合物、及び上記式(1-2)で表される化合物の占める割合(2種以上含有する場合はその総量の占める割合)は、例えば50重量%以上(例えば50~100重量%)、好ましくは70重量%以上(例えば70~100重量%)、特に好ましくは80重量%以上(例えば80~100重量%)である。
 [有機半導体デバイス製造用組成物]
 本発明の有機半導体デバイス製造用組成物は、溶剤として上記溶剤(A)(必要に応じて、溶剤(A)と溶剤(B))と、有機半導体材料として式(1-1)で表される化合物、及び式(1-2)で表される化合物から選択される少なくとも1種の化合物を含有する。溶剤及び有機半導体材料は、何れも、1種を単独で、又は2種以上を組み合わせて使用することができる。
 本発明の有機半導体デバイス製造用組成物は、例えば、上記溶剤(A)(必要に応じて、溶剤(A)と溶剤(B))と有機半導体材料とを混合し、空気雰囲気、窒素雰囲気、又はアルゴン雰囲気下で、70~150℃程度の温度で0.1~5時間程度加熱することにより調製することができる。
 本発明の有機半導体デバイス製造用組成物全量における溶剤の含有量(2種以上含有する場合はその総量)は、例えば99.999重量%以下である。その下限は、例えば90.000重量%、好ましくは93.000重量%、特に好ましくは95.000重量%であり、上限は、好ましくは99.990重量%である。
 本発明の有機半導体デバイス製造用組成物全量における溶剤(A)の含有量(2種以上含有する場合はその総量)は、例えば70~99.97重量%である。溶剤(A)の含有量の下限は、好ましくは80重量%、特に好ましくは85重量%であり、上限は、好ましくは95重量%、特に好ましくは92重量%である。
 本発明の有機半導体デバイス製造用組成物全量における溶剤(B)の含有量(2種以上含有する場合はその総量)は、例えば0~30重量%である。溶剤(B)の含有量の下限は、好ましくは5重量%、特に好ましくは8重量%であり、上限は、好ましくは20重量%、特に好ましくは15重量%である。
 本発明の有機半導体デバイス製造用組成物中の有機半導体材料(特に、式(1-1)で表される化合物、及び式(1-2)で表される化合物)の含有量(2種以上含有する場合はその総量)は、例えば、溶剤100重量部に対して、例えば0.02重量部以上、好ましくは0.03重量部以上、特に好ましくは0.04重量部以上である。有機半導体材料の含有量の上限は例えば1重量部、好ましくは0.5重量部、特に好ましくは0.1重量部である。
 本発明の有機半導体デバイス製造用組成物には、上記溶剤と有機半導体材料以外にも、一般的に有機半導体デバイス製造用組成物に含まれる成分(例えば、エポキシ樹脂、アクリル樹脂、セルロース樹脂、ブチラール樹脂等)を必要に応じて適宜配合することができる。
 本発明の有機半導体デバイス製造用組成物は、溶剤として上記溶剤(A)(必要に応じて溶剤(A)と溶剤(B))を使用するため、比較的低温でも有機半導体材料である式(1-1)、又は式(1-2)で表される化合物を高濃度に溶解することができる。そのため、低温環境下(例えば20~50℃、好ましくは20~40℃)でも、印刷法等のウェットプロセスによる簡便な方法で容易に有機半導体デバイスの形成が可能であり、コストの大幅な削減が可能である。また、ガラス基板に比べて耐熱性は低いが、衝撃に強く、軽量且つフレキシブルなプラスチック基板上に有機半導体デバイスを直接形成することができ、衝撃に強く、軽量且つフレキシブルなディスプレイやコンピュータ機器を形成することができる。更に、本発明の有機半導体デバイス製造用組成物を基板上に塗布すると、組成物中に含まれる有機半導体材料が自己組織化作用により結晶化して、高いキャリア移動度(例えば0.2cm2/Vs以上、好ましくは1.0cm2/Vs以上、特に好ましくは4.0cm2/Vs以上、更にこのましくは5.0cm2/Vs以上、最も好ましくは7.0cm2/Vs以上)を有する有機半導体デバイスが得られる。更にまた、溶剤(A)や溶剤(B)は、従来使用の1,2-ジメトキシベンゼンやo-ジクロロベンゼンと比べて安全性に優れる点でも好ましい。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1
 2-シクロペンチルシクロペンタノン50重量部と1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン50重量部とを混合して、溶剤(1)を調製した。
 25℃環境下、溶剤(1)中に、有機半導体材料としての「C10-DNBDT-NW」を、有機半導体材料濃度が0.03重量%となるように混合し、窒素雰囲気、遮光条件下、100℃で3時間加熱して、有機半導体デバイス製造用組成物を得た。得られた有機半導体デバイス製造用組成物について、有機半導体材料の溶解を目視で確認した。
 溶解が確認された有機半導体デバイス製造用組成物について、-10℃/時間の速さで冷却し、各温度での有機半導体材料の溶解を目視で確認し、有機半導体材料が析出した時点の温度(℃)から、溶剤(1)に対する「C10-DNBDT-NW」の溶解性を評価した。
 実施例2~9、比較例1、2
 表1に示した溶剤を使用した以外は実施例1と同様にして有機半導体デバイス製造用組成物を調製し、有機半導体材料の溶解性を評価した。
Figure JPOXMLDOC01-appb-T000011
 実施例10
 25℃環境下、2,3-ジヒドロベンゾフラン中に、有機半導体材料としての「C12-DNBDT-NW」を、有機半導体材料濃度が0.03重量%となるように混合し、窒素雰囲気、遮光条件下、100℃で3時間加熱して、有機半導体デバイス製造用組成物を得た。得られた有機半導体デバイス製造用組成物について、有機半導体材料の溶解を目視で確認した。
 溶解が確認された有機半導体デバイス製造用組成物について、-10℃/時間の速さで冷却し、各温度での有機半導体材料の溶解を目視で確認し、有機半導体材料が析出した時点の温度(℃)から、2,3-ジヒドロベンゾフランに対する「C12-DNBDT-NW」の溶解性を評価した。
 比較例3、4
 表2に示した溶剤を使用した以外は実施例10と同様にして有機半導体デバイス製造用組成物を調製し、有機半導体材料の溶解性を評価した。
Figure JPOXMLDOC01-appb-T000012
 実施例11
 25℃環境下、2,3-ジヒドロベンゾフラン中に、有機半導体材料としての「C14-DNBDT-NW」を、有機半導体材料濃度が0.03重量%となるように混合し、窒素雰囲気、遮光条件下、100℃で3時間加熱して、有機半導体デバイス製造用組成物を得た。得られた有機半導体デバイス製造用組成物について、有機半導体材料の溶解を目視で確認した。
 溶解が確認された有機半導体デバイス製造用組成物について、-10℃/時間の速さで冷却し、各温度での有機半導体材料の溶解を目視で確認し、有機半導体材料が析出した時点の温度(℃)から、2,3-ジヒドロベンゾフランに対する「C14-DNBDT-NW」の溶解性を評価した。
 比較例5、6
 表3に示した溶剤を使用した以外は実施例11と同様にして有機半導体デバイス製造用組成物を調製し、有機半導体材料の溶解性を評価した。
Figure JPOXMLDOC01-appb-T000013
 実施例及び比較例で使用した有機半導体材料と溶剤を以下に説明する。
<有機半導体材料>
・C10-DNBDT-NW:下記式(2-3)で表される化合物、商品名「C10-DNBDT-NW」、パイクリスタル(株)製
Figure JPOXMLDOC01-appb-C000014
・C12-DNBDT-NW:下記式(2-4)で表される化合物、商品名「C12-DNBDT-NW」、(株)ダイセル製
Figure JPOXMLDOC01-appb-C000015
・C14-DNBDT-NW:下記式(2-6)で表される化合物、商品名「C14-DNBDT-NW」、(株)ダイセル製
Figure JPOXMLDOC01-appb-C000016
<溶剤(A)>
・CPCPAN:2-シクロペンチルシクロペンタノン、東京化成工業(株)製
・DMTHP:1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、東京化成工業(株)製
・DHBF:2,3-ジヒドロベンゾフラン、東京化成工業(株)製
・DMTHF:2,5-ジメチルテトラヒドロフラン、東京化成工業(株)製
<溶剤(B)>
・2MOC:2-メチルオクタン、東京化成工業(株)製
・2MNO:2-メチルノナン、東京化成工業(株)製
・DHE:ヘキシルエーテル、東京化成工業(株)製
<その他の溶剤>
・DMOB:1,2-ジメトキシベンゼン、東京化成工業(株)製
・o-DCB:o-ジクロロベンゼン、東京化成工業(株)製
 本発明の有機半導体デバイス製造用組成物は、低温環境下でも、有機半導体材料であるN字型縮環パイ共役系分子の溶解性に優れ、不溶や析出の問題を生じない。そのため、ガラス基板に比べて耐熱性は低いが、衝撃に強く、軽量且つフレキシブルなプラスチック基板にも、有機半導体デバイスを直接形成することができ、衝撃に強く、軽量且つフレキシブルなディスプレイやコンピュータ機器を形成することができる。また、印刷法を用いて有機半導体デバイスを製造することが可能であり、コストの大幅な削減が可能である。
 そして、本発明の有機半導体デバイス製造用組成物を基板上に塗布すると有機半導体材料が自己組織化作用により結晶化するため、高い結晶性を有し、高いキャリア移動度を有する有機半導体デバイスを形成することができる。

Claims (7)

  1.  下記溶剤(A)と下記有機半導体材料を含有する有機半導体デバイス製造用組成物。
     溶剤(A):下記式(a)で表される化合物
    Figure JPOXMLDOC01-appb-C000001
    (式中、Lは単結合、-O-、-NH-C(=O)-NH-、-C(=O)-、又は-C(=S)-を示し、kは0~2の整数を示す。R1はC1-20アルキル基、C2-20アルケニル基、C3-20シクロアルキル基、-ORa基、-SRa基、-O(C=O)Ra基、-RbO(C=O)Ra基(RaはC1-7アルキル基、C6-10アリール基、又は前記基の2以上が単結合若しくは連結基を介して結合した1価の基を示し、RbはC1-7アルキレン基、C6-10アリーレン基、又は前記基の2以上が単結合若しくは連結基を介して結合した2価の基を示す)、又は置換若しくは無置換アミノ基を示す。tは1以上の整数を示し、tが2以上の整数である場合、t個のR1は同一であってもよく、異なっていてもよい。また、tが2以上の整数である場合、t個のR1から選択される2以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に環を形成していてもよい。但し、Lが単結合の場合、tは3以上の整数であり、t個のR1から選択される3以上の基は、互いに結合して、式中に示される環を構成する1又は2以上の炭素原子と共に2個以上の環を形成する)
     有機半導体材料:下記式(1-1)で表される化合物、及び下記式(1-2)で表される化合物から選択される少なくとも1種の化合物
    Figure JPOXMLDOC01-appb-C000002
    (式中、X1、X2は同一又は異なって、酸素原子、硫黄原子、又はセレン原子であり、mは0又は1、n1、n2は同一又は異なって、0又は1である。R2、R3は同一又は異なって、フッ素原子、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基であり、前記アルキル基が含有する水素原子の1又は2以上はフッ素原子で置換されていても良く、前記アリール基、ピリジル基、フリル基、チエニル基、及びチアゾリル基が含有する水素原子の1又は2以上はフッ素原子又は炭素数1~10のアルキル基で置換されていても良い)
  2.  溶剤(A)が、置換基として5~7員のシクロアルキル基又は炭素数1~7のアルキル基を有する、5~7員の環状ケトン;炭素数1~3のアルキル基を有していてもよい、ベンゼン環又は5~7員の脂環がテトラヒドロフラン環に縮合した縮合環化合物;置換基として炭素数1~3のアルキル基又は炭素数1~3のアルコキシ基を有するテトラヒドロフラン;1,3-ジC1-3アルキル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン;及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物である請求項1に記載の有機半導体デバイス製造用組成物。
  3.  溶剤(A)が、2-シクロペンチルシクロペンタノン、2-ヘプチルシクロペンタノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、2,3-ジヒドロベンゾフラン、2,3-ジヒドロ-2-メチルベンゾフラン、2,5-ジメトキシテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、及び3,4,5,11-テトラヒドロアセナフテンからなる群より選択される少なくとも1種の化合物である請求項1に記載の有機半導体デバイス製造用組成物。
  4.  更に、下記溶剤(B)を含有する請求項1~3の何れか1項に記載の有機半導体デバイス製造用組成物。
     溶剤(B):25℃におけるSP値が6.0~8.0[(cal/cm30.5]である化合物
  5.  溶剤(B)が、炭素数6~18のアルカン、及び炭素数6~18のジアルキルエーテルからなる群より選択される少なくとも1種の化合物である請求項4に記載の有機半導体デバイス製造用組成物。
  6.  有機半導体デバイス製造用組成物に含まれる溶剤全量に占める、溶剤(A)と溶剤(B)の合計含有量が80重量%以上であり、溶剤(A)と溶剤(B)の含有量の比(前者/後者;重量比)が、100/0~75/25である請求項4又は5に記載の有機半導体デバイス製造用組成物。
  7.  有機半導体材料が、下記式(2)で表される化合物である請求項1~6の何れか1項に記載の有機半導体デバイス製造用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R4、R5は同一又は異なって、C1-20アルキル基、C6-10アリール基、ピリジル基、フリル基、チエニル基、又はチアゾリル基である)
PCT/JP2016/087064 2015-12-22 2016-12-13 有機半導体デバイス製造用組成物 WO2017110584A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187020638A KR20180098307A (ko) 2015-12-22 2016-12-13 유기 반도체 디바이스 제조용 조성물
EP16878475.9A EP3396727A4 (en) 2015-12-22 2016-12-13 COMPOSITION FOR MANUFACTURING AN ORGANIC SEMICONDUCTOR DEVICE
CN201680075383.6A CN108475728B (zh) 2015-12-22 2016-12-13 有机半导体器件制造用组合物
US16/064,999 US20190006603A1 (en) 2015-12-22 2016-12-13 Composition for manufacturing organic semiconductor device
JP2017558044A JP6910030B2 (ja) 2015-12-22 2016-12-13 有機半導体デバイス製造用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-250363 2015-12-22
JP2015250363 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110584A1 true WO2017110584A1 (ja) 2017-06-29

Family

ID=59090268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087064 WO2017110584A1 (ja) 2015-12-22 2016-12-13 有機半導体デバイス製造用組成物

Country Status (7)

Country Link
US (1) US20190006603A1 (ja)
EP (1) EP3396727A4 (ja)
JP (1) JP6910030B2 (ja)
KR (1) KR20180098307A (ja)
CN (1) CN108475728B (ja)
TW (1) TWI775735B (ja)
WO (1) WO2017110584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163921A1 (zh) * 2020-02-19 2021-08-26 株式会社大赛璐 新型化合物及其用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102345789B1 (ko) * 2016-06-09 2022-01-03 주식회사 다이셀 유기 반도체 디바이스 제조용 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187275A1 (ja) * 2012-06-12 2013-12-19 株式会社ダイセル 有機トランジスタ製造用溶剤又は溶剤組成物
WO2014136827A1 (ja) 2013-03-05 2014-09-12 Jnc株式会社 カルコゲン含有有機化合物およびその用途
JP2015034281A (ja) * 2013-07-11 2015-02-19 セントラル硝子株式会社 紫外線遮蔽被膜付き板ガラスとその製造方法、及び紫外線遮蔽被膜付き板ガラスの被膜形成用塗布液
WO2015076171A1 (ja) * 2013-11-21 2015-05-28 株式会社ダイセル 有機トランジスタ製造用溶剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141787B2 (ja) * 2001-10-10 2008-08-27 セイコーエプソン株式会社 薄膜の形成方法、この方法に用いる溶液、電子デバイスの形成方法
JP6246150B2 (ja) * 2014-03-26 2017-12-13 富士フイルム株式会社 非発光性有機半導体デバイス用塗布液、有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、有機トランジスタの製造方法および有機半導体膜の製造方法の提供
JP6484700B2 (ja) * 2015-03-13 2019-03-13 富士フイルム株式会社 有機半導体膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、および、ディスプレイデバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187275A1 (ja) * 2012-06-12 2013-12-19 株式会社ダイセル 有機トランジスタ製造用溶剤又は溶剤組成物
WO2014136827A1 (ja) 2013-03-05 2014-09-12 Jnc株式会社 カルコゲン含有有機化合物およびその用途
JP2015034281A (ja) * 2013-07-11 2015-02-19 セントラル硝子株式会社 紫外線遮蔽被膜付き板ガラスとその製造方法、及び紫外線遮蔽被膜付き板ガラスの被膜形成用塗布液
WO2015076171A1 (ja) * 2013-11-21 2015-05-28 株式会社ダイセル 有機トランジスタ製造用溶剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396727A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163921A1 (zh) * 2020-02-19 2021-08-26 株式会社大赛璐 新型化合物及其用途
CN115135640A (zh) * 2020-02-19 2022-09-30 株式会社大赛璐 新型化合物及其用途

Also Published As

Publication number Publication date
EP3396727A4 (en) 2019-08-07
JPWO2017110584A1 (ja) 2018-12-13
KR20180098307A (ko) 2018-09-03
TWI775735B (zh) 2022-09-01
CN108475728A (zh) 2018-08-31
CN108475728B (zh) 2023-04-18
JP6910030B2 (ja) 2021-07-28
US20190006603A1 (en) 2019-01-03
TW201730234A (zh) 2017-09-01
EP3396727A1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP5975834B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP2019178160A (ja) ベンゾイソキノリノキノリン化合物及びその製造用化合物
TWI664163B (zh) 有機半導體膜形成用組成物、有機半導體膜及其製造方法、有機半導體元件及其製造方法以及有機半導體化合物
TWI698036B (zh) 有機薄膜電晶體、有機薄膜電晶體的製造方法、有機薄膜電晶體用材料、有機薄膜電晶體用組成物、有機半導體膜、化合物
JP6556844B2 (ja) 有機薄膜トランジスタ及びその製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、化合物、並びに、有機半導体膜
WO2017110584A1 (ja) 有機半導体デバイス製造用組成物
JP6568800B2 (ja) 有機トランジスタ製造用溶剤
WO2018003701A1 (ja) 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法
JP6561123B2 (ja) 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
KR20150023661A (ko) 유기 트랜지스터 제조용 용제 또는 용제 조성물
WO2015147266A1 (ja) 有機半導体膜形成用組成物
JP6979402B2 (ja) 有機半導体デバイス製造用組成物
JP2011134757A (ja) 有機半導体材料
WO2014091960A1 (ja) 有機トランジスタ製造用溶剤又は溶剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020638

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020638

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016878475

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878475

Country of ref document: EP

Effective date: 20180723