WO2018003701A1 - 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法 - Google Patents

有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2018003701A1
WO2018003701A1 PCT/JP2017/023233 JP2017023233W WO2018003701A1 WO 2018003701 A1 WO2018003701 A1 WO 2018003701A1 JP 2017023233 W JP2017023233 W JP 2017023233W WO 2018003701 A1 WO2018003701 A1 WO 2018003701A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound
organic thin
group
film transistor
Prior art date
Application number
PCT/JP2017/023233
Other languages
English (en)
French (fr)
Inventor
英治 福▲崎▼
渡邉 哲也
宇佐美 由久
征夫 谷
岡本 敏宏
純一 竹谷
Original Assignee
富士フイルム株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人東京大学 filed Critical 富士フイルム株式会社
Priority to EP17820058.0A priority Critical patent/EP3476845B1/en
Priority to CN201780038047.9A priority patent/CN109478595B/zh
Priority claimed from JP2017122786A external-priority patent/JP6555667B2/ja
Publication of WO2018003701A1 publication Critical patent/WO2018003701A1/ja
Priority to US16/224,903 priority patent/US11107996B2/en
Priority to US17/382,961 priority patent/US20210351363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to an organic thin film transistor, an organic semiconductor film, a compound, a composition for an organic thin film transistor, and a method for producing an organic thin film transistor.
  • a transistor is used in a display such as a liquid crystal display or an organic electroluminescence display, or a device using a logic circuit such as an RFID (radio frequency identifier: RF tag) or a memory.
  • a display such as a liquid crystal display or an organic electroluminescence display
  • a logic circuit such as an RFID (radio frequency identifier: RF tag) or a memory.
  • an organic thin film transistor having an organic semiconductor film is superior to an inorganic transistor having an inorganic semiconductor film because it can be reduced in weight or cost and is excellent in flexibility.
  • the organic compound that forms the organic semiconductor film include perylene bisimide (also referred to as thiolated perylene bisimide) obtained by converting at least one of carbonyl groups in an imide group into a thiocarbonyl group (Patent Document 1). ).
  • Non-Patent Document 1 describes a method for synthesizing perylene bisimide, which is a raw material for synthesizing thiolated
  • An object of the present invention is to provide an organic thin film transistor that maintains high carrier mobility even in the atmosphere and a method for manufacturing the same. Moreover, this invention makes it a subject to provide the composition for organic-semiconductor films, a compound, and organic thin-film transistor which can be preferably used for the organic thin-film transistor which shows said characteristic.
  • the present inventor can preferably use a compound represented by the specific formula (1) described later as an organic semiconductor in an organic thin film transistor, and further include the compound in an organic semiconductor film.
  • a compound represented by the specific formula (1) described later as an organic semiconductor in an organic thin film transistor, and further include the compound in an organic semiconductor film.
  • a 11 and A 12 each independently represent —O—, —N (R N ) —, or —P (R N ) —.
  • B 11 to B 18 each independently represent —N ⁇ or —C (R M ) ⁇ , and at least one of them is —N ⁇ .
  • R N and R M is a hydrogen atom or a substituent.
  • X 11 to X 14 each independently represents an oxygen atom or a sulfur atom.
  • ⁇ 3> The organic thin film transistor according to ⁇ 1> or ⁇ 2>, wherein X 11 to X 14 are all oxygen atoms.
  • ⁇ 4> The organic thin film transistor according to any one of ⁇ 1> to ⁇ 3>, wherein A 11 and A 12 are both —N (R N ) —, and RN represents a hydrogen atom or a substituent.
  • RN is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group containing 3 to 20 carbon atoms as ring-constituting atoms.
  • 4> The organic thin-film transistor as described in any one of 4>.
  • a compound represented by the following formula (2) A compound represented by the following formula (2).
  • a 11 and A 12 each independently represent —O—, —N (R N ) —, or —P (R N ) —.
  • R N represents a hydrogen atom or a substituent.
  • R 21 to R 26 each independently represents a hydrogen atom or a substituent.
  • X 11 to X 14 each independently represents an oxygen atom or a sulfur atom.
  • ⁇ 7> The compound according to ⁇ 6>, wherein X 11 to X 14 are all oxygen atoms.
  • X 11 to X 14 are all oxygen atoms.
  • ⁇ 8> The compound according to ⁇ 6> or ⁇ 7>, wherein A 11 and A 12 are both —N (R N ) —, and RN represents a hydrogen atom or a substituent.
  • RN is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group containing 3 to 20 carbon atoms as ring-constituting atoms.
  • ⁇ 8> The compound according to any one of ⁇ 10> A composition for an organic thin film transistor comprising the compound according to any one of ⁇ 6> to ⁇ 9> above.
  • a 11 and A 12 each independently represent —O—, —N (R N ) —, or —P (R N ) —.
  • B 11 to B 18 each independently represent —N ⁇ or —C (R M ) ⁇ , and at least one of them is —N ⁇ .
  • R N and R M is a hydrogen atom or a substituent.
  • X 11 to X 14 each independently represents an oxygen atom or a sulfur atom.
  • a method for producing an organic thin film transistor comprising a step of coating the composition for organic thin film transistor according to ⁇ 10> or ⁇ 11> on a substrate to form an organic semiconductor film.
  • the present invention can provide an organic thin film transistor that maintains high carrier mobility even in the atmosphere and a method for manufacturing the same. Moreover, this invention can provide the composition for organic-semiconductor films, a compound, and organic thin-film transistor which can be preferably used for the organic thin-film transistor which shows said characteristic.
  • FIG. 1 is a schematic cross-sectional view showing a bottom gate-bottom contact type organic thin film transistor which is an example of the organic thin film transistor of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a bottom gate-top contact type organic thin film transistor which is an example of the organic thin film transistor of the present invention.
  • FIG. 3 is a schematic view illustrating a preferred method for forming an organic semiconductor film in the method for producing an organic thin film transistor of the present invention.
  • FIG. 4 is a schematic diagram for explaining a preferred method of forming an organic semiconductor film in the method for producing an organic thin film transistor of the present invention.
  • FIG. 5 is a schematic view illustrating a preferred method for forming an organic semiconductor film in the method for producing an organic thin film transistor of the present invention.
  • FIG. 6 is a schematic view showing an example of a substrate and members preferably used in the method for producing an organic thin film transistor of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the indication of a compound includes its salt and its ion in addition to the compound itself. Moreover, what changed the structure in part within the range which does not impair the target effect is included. Moreover, about the compound which does not specify substituted or unsubstituted, the thing which has arbitrary substituents is included in the range which does not impair the target effect. The same applies to substituents, linking groups and the like (hereinafter referred to as substituents and the like).
  • the respective substituents may be the same unless otherwise specified. May be different. The same applies to the definition of the number of substituents and the like. Further, when a plurality of substituents and the like are adjacent (particularly adjacent), they may be connected to each other to form a ring unless otherwise specified. In the present invention, when the number of carbon atoms of a group is limited, the number of carbon atoms of this group means the total number of carbon atoms including substituents unless otherwise specified.
  • this group when a group can form a non-cyclic skeleton and a cyclic skeleton, this group includes a non-cyclic skeleton group and a cyclic skeleton group unless otherwise specified.
  • the alkyl group includes a linear alkyl group, a branched alkyl group, and a cyclic (cyclo) alkyl group.
  • the lower limit of the number of atoms of the group forming the cyclic skeleton is 3 or more, and preferably 5 or more, regardless of the lower limit of the number of atoms specifically described for the group.
  • the cycloalkyl group includes a bicycloalkyl group or a tricycloalkyl group.
  • the organic semiconductor film containing the compound of the present invention can impart high carrier mobility and durability for maintaining this carrier mobility even in the atmosphere to the organic thin film transistor. The reason is not clear in detail, but can be considered as follows.
  • the compound of the present invention has a structure in which at least one carbon atom forming the 3,4,9,10-perylene bisimide skeleton is substituted with a nitrogen atom, and an aromatic ring is further added to the perylene bisimide skeleton.
  • the orbital energy of the lowest empty orbit (LUMO) is less than ⁇ 4.0 eV. This is considered to improve the n-type semiconductor property.
  • LUMO lowest empty orbit
  • the organic semiconductor film decomposition of the compound of the present invention due to these can be effectively suppressed. Therefore, when the compound of the present invention is used in an organic thin film transistor, the carrier mobility can be improved to a high level, and the amount of decrease over time can be suppressed even in the atmosphere.
  • a non-luminescent organic semiconductor device means a device that is not intended to emit light.
  • Such devices include organic thin-film transistors that control the amount of current or voltage, organic photoelectric conversion elements that convert light energy into electric power (solid-state image sensors for photosensors, solar cells for energy conversion, etc.), thermal energy Organic thermoelectric conversion elements, gas sensors, organic rectifying elements, organic inverters, information recording elements and the like that convert electric power can be used.
  • the compound of the present invention is preferably used as an organic semiconductor material for organic thin film transistors.
  • a 11 and A 12 each represent —O—, —N (R N ) —, or —P (R N ) —.
  • a 11 and A 12 are each preferably —N (R N ) —.
  • a 11 and A 12 may be the same or different from each other, but are preferably the same, and more preferably —N (R N ) —.
  • R N represents a hydrogen atom or a substituent.
  • the substituents can take as R N, it is not particularly limited.
  • the group selected from the following substituent group Z is mentioned.
  • Substituent group Z A halogen atom (including a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom or a chlorine atom), an alkyl group (preferably having a carbon number of 1 (3) to 40, more preferably 1 (3) to 20, particularly preferably 4 to 20.
  • halogen atom including a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom or a chlorine atom
  • an alkyl group preferably having a carbon number of 1 (3) to 40, more preferably 1 (3) to 20, particularly preferably 4 to 20.
  • the number in parentheses represents the number of carbon atoms in the case of a cycloalkyl group, for example, methyl, ethyl, propyl, 2-methylpropyl, butyl, amyl, pentyl 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, 2,6-dimethyloctyl, icosyl, 2-decyltetradecyl, 2-hexyldecyl, 2- Ethyloctyl, 2-decyltetradecyl, 2-butyldecyl, 1-octylnonyl, 2- Tyloctyl, 2-octyldecyl, 2-octyldodecyl, 7-hexylpentadec
  • An aryl group (preferably having 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms such as phenyl, naphthyl, 2,4,6-trimethylphenyl, p- (t-butyl) phenyl, 4- Methyl-2,6-dipropylphenyl, 4-fluorophenyl, 4-trifluoromethylphenyl, p-pentylph It refers sulfonyl, 3,4 dipentyl phenyl, p- f script hydroxyphenyl, 3,4-Hye script hydroxyphenyl) also Hajime Tamaki (heterocyclic group.
  • the ring atoms include at least one or more heteroatoms and 1 to 30 carbon atoms.
  • the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, and the number thereof is not particularly limited, but is, for example, 1 to 2.
  • the number of carbon atoms constituting the ring is preferably 3-20, and more preferably 3-12.
  • the heterocyclic group is preferably a 5-membered ring or 6-membered ring or a group of condensed rings thereof.
  • the heterocyclic group includes an aromatic heterocyclic group (heteroaryl group) and an aliphatic heterocyclic group.
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms such as trimethylsilyl, triphenylsilyl, dimethylphenylsilyl, etc.), an alkoxy group (preferably The number of carbon atoms is 1 to 20, more preferably 1 to 12, particularly preferably 1 to 8, and includes, for example, methoxy, ethoxy, butoxy and the like, and amino groups (preferably having 0 to 20 carbon atoms, more preferably 0 to 0 carbon atoms).
  • aryloxy group preferably having 6 to 20 carbon atoms, more preferably 6 to 16, particularly preferably 6 to 12, and examples thereof include phenyloxy, 2-naphthyloxy and the like.
  • An acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms such as acetyl, hexanoyl, benzoyl, formyl, pivaloyl), alkoxy
  • a carbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group (preferably having carbon atoms) 7-20, more preferably 7-16, particularly preferably 7-10, for example, phenyloxycarbonyl, etc.), acyloxy groups (preferably having 2-20 carbon atoms, more preferably 2-16, Particularly preferred is 2 to 10, for example, acetoxy, benzoyloxy or (me ) Acryloyloxy, etc.), an acylamino group (preferably having 2 to 20 carbon atoms, more preferably
  • aminocarbonylamino group preferably having a carbon number of 2 to 20, more preferably 2 to 16, particularly preferably 2 to 12, including a ureido group
  • alkoxy or aryloxycarbonylamino group preferably having a carbon number of 2 (7) to 20, more preferably 2 (7) to 16, particularly preferably 2 (7) to 12.
  • the numbers in parentheses represent the number of carbon atoms in the case of an aryloxycarbonylamino group.
  • alkyl or arylsulfur A phonylamino group and an alkylthio group preferably having a carbon number of 1 to 20, more preferably 1 to 16, particularly preferably 1 to 12, and examples thereof include methylthio, ethylthio, octylthio and the like.
  • An arylthio group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms such as a phenylthio group), an alkyl or arylsulfinyl group, an alkyl or arylsulfonyl group Group, silyloxy group, heterocyclic oxy group, carbamoyl group, carbamoyloxy group, heterocyclic thio group, sulfamoyl group, aryl or heterocyclic azo group, imide group, phosphino group, phosphinyl group, phosphinyloxy group, phosphinyl Amino group, hydrazino group, imino group, cyano group, hydroxy group, nitro group, mercapto group, sulfo group, carboxy group, hydroxamic acid group, sulfino group, boronic acid group (-B (OH) 2 ), phosphat
  • R N may take as R N, as the group selected from the substituent group Z, an alkyl group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group or a silyl group preferably an alkyl group (preferably having a carbon number of 1 To 20), an aryl group (preferably having 6 to 20 carbon atoms) or a heteroaryl group (containing at least one or more of the above heteroatoms as ring-constituting atoms, preferably a 5-membered ring or 6-membered ring or a condensed ring thereof. More preferably an alkyl group (particularly preferably 4 to 20 carbon atoms).
  • the group selected from the substituent group Z described above may further have a substituent.
  • a substituent examples include a group selected from the substituent group Z.
  • the number of substituents that may be further included is not particularly limited, but is preferably 1 to 6, for example, and more preferably 1 to 3.
  • the group to be combined is not particularly limited, and examples thereof include a group obtained by substituting each of the above groups preferable as a group selected from the substituent group Z with another group selected from the substituent group Z. It is done.
  • halogen atom alkyl group, aryl group, heterocyclic group (heteroaryl group), alkoxy group (including hydroxyalkoxy group, halogenated alkoxy group, heteroarylalkoxy group), amino group, acyloxy group, hydroxy group
  • the group which removed one hydrogen atom from the compound represented by Formula (1) is also mentioned.
  • an alkyl group having a halogen atom as a substituent halogenated alkyl group
  • an alkyl group having an aryl group as a substituent is preferable
  • an alkyl group having a fluorine atom as a substituent a fluorine group
  • An alkyl group having an aryl group as a substituent, and an alkyl group having an aryl group as a substituent is particularly preferable.
  • the substituents can take as R N, (unsubstituted) alkyl group, more preferably an alkyl group having a halogenated alkyl group or an aryl group as a substituent.
  • a 11 and A 12 have each R N, 2 two R N may be the same or different from each other.
  • B 11 to B 18 each represent —N ⁇ or —C (R M ) ⁇ .
  • RM represents a hydrogen atom or a substituent, and is preferably a hydrogen atom.
  • the substituents can take as R M, is not particularly limited, for example, groups selected from the substituent group Z.
  • the group selected from the substituent group Z may further have a substituent. Examples of such a substituent include a group selected from the substituent group Z.
  • Further Examples of the group having a substituent can take as R N, include a group formed by combination of the above, specifically, the groups listed above, furthermore, the carbon of the compound represented by formula (1) And a group having a methine group bonded to an atom.
  • Substituents can take as R M may be bonded to form a ring.
  • the aspect in which the substituent forms a ring includes an aspect in which the substituents are bonded to each other to form a ring, and an aspect in which a plurality of substituents share one atom to form a ring.
  • the embodiments substituent each other to form a ring together for example, two vinyl groups bonded to each other together with the carbon atom to which R M is bonded, include embodiments to form a benzene ring.
  • a plurality of substituents share one atom to form a ring for example, an aspect in which two substituents are combined to form a sulfur atom (—S— group) can be mentioned.
  • the nitrogen atom may have a substituent.
  • X 11 to X 14 each represents an oxygen atom or a sulfur atom, preferably an oxygen atom. All of X 11 to X 14 are more preferably oxygen atoms.
  • the combination of A 11 and A 12 and X 11 to X 14 is not particularly limited, but A 11 and A 12 are —N (R N ) —, and X 11 to X 14 are oxygen atoms. A combination is preferred.
  • the compound represented by the formula (1) is preferably represented by the following formula (2).
  • a 11, A 12 and X 11 ⁇ X 14 is Zorezore have the same meanings as A 11, A 12 and X 11 ⁇ X 14 of formula (1), preference is also the same is there. Further, preferred combinations of A 11 , A 12 and X 11 to X 14 are also as described above.
  • R 21 to R 26 each represent a hydrogen atom or a substituent.
  • the substituents can take as R 21 ⁇ R 26, have the same meanings as the substituents can take as the R M, it is preferable also the same.
  • R M may be bonded to each other or bonded to a carbon atom forming an isoquinolinoquinoline skeleton to form a ring.
  • the compound of the present invention preferably has a molecular weight of 350 or more, more preferably 400 or more, and more preferably 500 or more in terms of improvement in carrier mobility, durability, and material stability. Further preferred. Further, from the viewpoint of solubility, the molecular weight is preferably 3000 or less, more preferably 2000 or less, and still more preferably 1000 or less.
  • the method for synthesizing the compound of the present invention is not particularly limited, and can be synthesized with reference to a usual method.
  • the synthesis method described in Non-Patent Document 1 or the synthesis method in Examples described later can be referred to.
  • composition for organic thin film transistors of the present invention contains the compound of the present invention, and is preferably used for forming the organic semiconductor film of the present invention.
  • the compound of this invention is as above-mentioned, and may be used individually by 1 type and may be used together 2 or more types.
  • the content rate of the said compound of the composition for organic thin-film transistors is not specifically limited, For example, it can represent with the content rate in solid content except the solvent mentioned later. As a content rate in solid content, it is preferable to set it as the same range as the content rate of the compound in the organic-semiconductor film mentioned later, for example.
  • the composition for organic thin film transistors may contain a binder polymer.
  • a binder polymer When this composition contains a binder polymer, an organic semiconductor film having high film quality can be obtained.
  • the binder polymer is not particularly limited, and examples thereof include polystyrene, poly ( ⁇ -methylstyrene), polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, and polymethyl.
  • examples thereof include an insulating polymer such as acrylate, cellulose, polyethylene, or polypropylene, or a copolymer thereof.
  • ethylene-propylene rubber acrylonitrile-butadiene rubber, hydrogenated nitrile rubber, fluororubber, perfluoroelastomer, tetrafluoroethylenepropylene copolymer, ethylene-propylene-diene copolymer, styrene- Butadiene rubber, polychloroprene, polyneoprene, butyl rubber, methylphenyl silicone resin, methylphenyl vinyl silicone resin, methyl vinyl silicone resin, fluorosilicone resin, acrylic rubber, ethylene acrylic rubber, chlorosulfonated polyethylene, chloropolyethylene, epichlorohydrin Copolymer, polyisoprene-natural rubber copolymer, polyisoprene rubber, styrene-isoprene block copolymer, polyester urethane copolymer, polyether Urethane copolymer, rubber and polyether ester thermoplastic elastomer or
  • a photoconductive polymer such as polyvinyl carbazole or polysilane, a conductive polymer such as polythiophene, polypyrrole, polyaniline, or polyparaphenylene vinylene, or Chemistry of Materials, 2014, 26, 647. And the like.
  • the binder polymer preferably has a structure that does not contain a polar group in consideration of charge mobility.
  • the polar group refers to a functional group having a hetero atom other than a carbon atom and a hydrogen atom.
  • the binder polymer having a structure not containing a polar group is preferably polystyrene or poly ( ⁇ -methylstyrene). Also preferred are semiconducting polymers.
  • the glass transition temperature of the binder polymer is not particularly limited, and is appropriately set depending on the application. For example, when imparting strong mechanical strength to the organic semiconductor film, it is preferable to increase the glass transition temperature. On the other hand, when providing flexibility to the organic semiconductor film, it is preferable to lower the glass transition temperature.
  • a binder polymer may be used individually by 1 type, and may be used together 2 or more types.
  • the content of the binder polymer in the organic thin film transistor composition is not particularly limited.
  • the content in the solid content is preferably in the same range as the content of the binder polymer in the organic semiconductor film described later. .
  • carrier mobility and durability resistance are further improved.
  • the weight average molecular weight of the binder polymer is not particularly limited, but is preferably 1,000 to 10 million, more preferably 3,000 to 5 million, and still more preferably 5,000 to 3 million.
  • the compound of the present invention may be uniformly mixed with the binder polymer, and a part or all of the compound of the present invention may be phase-separated. From the viewpoint of easy coating or uniform coating, it is preferable that the compound of the present invention and the binder polymer are uniformly mixed at least during coating.
  • the composition for organic thin film transistors may contain a solvent.
  • a solvent is not particularly limited as long as it dissolves or disperses the above-described compound, and includes an inorganic solvent or an organic solvent. Among these, an organic solvent is preferable.
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • the organic solvent is not particularly limited, but carbonized such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, amylbenzene, decalin, 1-methylnaphthalene, 1-ethylnaphthalene, 1,6-dimethylnaphthalene or tetralin.
  • Hydrogen solvent acetone, methyl ethyl ketone, methyl isobutyl ketone, ketone solvent such as cyclohexanone, acetophenone, propiophenone or butyrophenone, dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, 1,2-dichlorobenzene, 1 , 2,4-trichlorobenzene, halogenated hydrocarbon solvents such as chlorotoluene or 1-fluoronaphthalene, pyridine, picoline, Heterocyclic solvents such as norin, thiophene, 3-butylthiophene or thieno [2,3-b] thiophene, 2-chlorothiophene, 3-chlorothiophene, 2,5-dichlorothiophene, 3,4-dichlorothi
  • Halogenated heterocyclic solvents ethyl acetate, butyl acetate, amyl acetate, ester solvents such as 2-ethylhexyl acetate, ⁇ -butyrolactone or phenyl acetate, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, Ethyl cellosolve Or alcohol solvent such as ethylene glycol, dibutyl ether, tetrahydrofuran, dioxane, dimethoxyethane, anisole, ethoxybenzene, propoxybenzene, isopropoxybenzene, butoxybenzene, 2-methylanisole, 3-methylanisole, 4-methylanisole, 4- Ethylanisole, dimethylanisole (2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-, 3,6-) or 1,4-benzo Ether solvents
  • hydrocarbon solvents, ketone solvents, halogenated hydrocarbon solvents, heterocyclic solvents, halogenated heterocyclic solvents or ether solvents are preferred, and toluene, xylene, mesitylene, amylbenzene, tetralin, acetophenone, propiophenone, butyrophenone, di More chlorobenzene, anisole, ethoxybenzene, propoxybenzene, isopropoxybenzene, butoxybenzene, 2-methylanisole, 3-methylanisole, 4-methylanisole, 1-fluoronaphthalene, 3-chlorothiophene or 2,5-dibromothiophene
  • a solvent having a boiling point of 100 ° C. or higher among the above-mentioned solvents is preferable from the viewpoint of film quality and a crystal of the above-mentioned compound can be enlarged.
  • Solvents having a boiling point of 100 ° C. or higher include toluene, xylene, mesitylene, tetralin, acetophenone, propiophenone, butyrophenone, dichlorobenzene, anisole, ethoxybenzene, propoxybenzene, isopropoxybenzene, butoxybenzene, 2-methylanisole, 3 -Methylanisole or 4-methylanisole.
  • the solvent having a boiling point of 100 ° C. or higher is a non-halogen solvent (a solvent having no halogen atom in the molecule) from the viewpoint of environmental load and human toxicity.
  • the content of the solvent in the organic thin film transistor composition is preferably 90 to 99.9% by mass, more preferably 95 to 99.9% by mass, and 96 to 99.5% by mass. More preferably.
  • the composition for organic thin film transistors of the present invention may contain components other than the compound of the present invention and a solvent.
  • examples of such components include various additives.
  • an additive what is normally used for the composition for organic thin-film transistors can be used, without being restrict
  • a surfactant, an antioxidant, a crystallization control agent, a crystal orientation control agent, or the like can be given.
  • the surfactant and the antioxidant include those described in JP-A-2015-195362, paragraphs 0136 and 0137, and the description of this paragraph is preferably incorporated in the present specification as it is.
  • the additive content of the organic thin film transistor composition is not particularly limited.
  • the solid content may be in the same range as the additive content in the organic semiconductor film described later.
  • the solid content may be in the same range as the additive content in the organic semiconductor film described later.
  • the film forming property is excellent, and carrier mobility and heat resistance are further improved.
  • composition for an organic thin film transistor of the present invention preferably has a viscosity of 10 mPa ⁇ s or more from the viewpoint of printability.
  • the method for preparing the organic thin film transistor composition is not particularly limited, and a normal preparation method can be adopted.
  • the organic thin film transistor composition of the present invention can be prepared by appropriately stirring a predetermined amount of each component. If necessary, each component can be appropriately heated during or after stirring.
  • the heating temperature is not particularly limited, and is determined in the range of 150 to 40 ° C., for example. In the case of using a solvent, the temperature is determined within the above range and lower than the boiling point of the solvent.
  • the organic thin film transistor (also referred to as organic TFT) of the present invention which is a preferable embodiment among the above-described organic semiconductor devices using the compound of the present invention, will be described.
  • the organic TFT of the present invention includes the organic semiconductor film of the present invention described later.
  • the organic TFT of the present invention exhibits high carrier mobility, and is capable of effectively suppressing a decrease over time even in the atmosphere, and is stably driven.
  • the ambient temperature or humidity in the atmosphere is not particularly limited as long as it is the temperature or humidity in the use environment of the organic thin film transistor.
  • the temperature is room temperature (20 ° C.) and the humidity is 10 to 90 RH%. Can be mentioned.
  • the organic TFT of the present invention is preferably used as an organic field effect transistor (FET), and more preferably as an insulated gate FET in which a gate-channel is insulated.
  • FET organic field effect transistor
  • the thickness of the organic thin film transistor of the present invention is not particularly limited, but when making a thinner transistor, for example, the thickness of the entire transistor is preferably 0.1 to 0.5 ⁇ m.
  • the organic TFT of the present invention includes the organic semiconductor film (also referred to as an organic semiconductor layer or a semiconductor active layer) of the present invention, and can further include a source electrode, a drain electrode, a gate electrode, and a gate insulating film. .
  • the organic TFT of the present invention is provided on a substrate in contact with a gate electrode, an organic semiconductor film, a gate insulating film provided between the gate electrode and the organic semiconductor film, and the organic semiconductor film. And a source electrode and a drain electrode connected to each other.
  • an organic semiconductor film and a gate insulating film are provided adjacent to each other. If the organic thin-film transistor of this invention is provided with said each layer, it will not specifically limit about the structure.
  • the organic thin film transistor of the present invention is more preferably a bottom gate-bottom contact type or a bottom gate-top contact type (collectively referred to as a bottom gate type).
  • a bottom gate type a bottom gate-top contact type
  • FIG. 1 is a schematic cross-sectional view of a bottom gate-bottom contact type organic thin film transistor 10 which is an example of the organic thin film transistor of the present invention.
  • the organic thin film transistor 10 includes a substrate (base material) 1, a gate electrode 2, a gate insulating film 3, a source electrode 4A and a drain electrode 4B, an organic semiconductor film 5, and a sealing. Layer 6 in this order.
  • the substrate (base material), the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film, the sealing layer, and the respective manufacturing methods will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like which will be described later.
  • substrate is not restrict
  • the thickness of the substrate is not particularly limited. For example, it is preferably 10 mm or less, more preferably 2 mm or less, and particularly preferably 1.5 mm or less. On the other hand, it is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
  • the gate electrode As the gate electrode, a normal electrode used as the gate electrode of the organic TFT can be applied without particular limitation.
  • the material (electrode material) for forming the gate electrode is not particularly limited. For example, gold, silver, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, or other metals, InO 2 , conductive oxide such as SnO 2 or indium tin oxide (ITO), conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene or polydiacetylene, semiconductor such as silicon, germanium or gallium arsenide, or fullerene And carbon materials such as carbon nanotubes or graphite. Especially, the said metal is preferable and silver or aluminum is more preferable.
  • the thickness of the gate electrode is not particularly limited, but is preferably 20 to 200 nm.
  • the gate electrode may function as the substrate, and in this case, the substrate may not be provided.
  • a method for forming the gate electrode is not particularly limited.
  • coating or printing a thing is mentioned.
  • examples of the patterning method include printing methods such as inkjet printing, screen printing, offset printing or relief printing (flexographic printing), photolithography methods, mask vapor deposition methods, and the like.
  • the gate insulating film is not particularly limited as long as it is an insulating layer, and may be a single layer or a multilayer.
  • the material for forming the gate insulating film is not particularly limited.
  • examples thereof include polymers such as sol, polysilsesquioxane, epoxy resin or phenol resin, inorganic oxides such as silicon dioxide, aluminum oxide or titanium oxide, or nitrides such as silicon nitride.
  • the polymer is preferable in terms of compatibility with the organic semiconductor film, and the inorganic oxide, particularly silicon dioxide, is preferable in terms of film uniformity. These materials may be used alone or in combination of two or more.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1000 nm.
  • a method for forming the gate insulating film is not particularly limited. For example, a method of applying a composition for forming a gate insulating film containing the above material onto a substrate on which a gate electrode is formed, or vapor deposition or sputtering of the above material. Methods and the like.
  • the source electrode is an electrode through which a current flows from the outside through the wiring.
  • the drain electrode is an electrode that sends current to the outside through wiring.
  • the material for forming the source electrode and the drain electrode can be the same as the electrode material for forming the gate electrode described above. Among these, metals are preferable, and gold or silver is more preferable.
  • the thickness of a source electrode and a drain electrode is not specifically limited, 1 nm or more is preferable respectively and 10 nm or more is more preferable. Moreover, 500 nm or less is preferable and 300 nm or less is more preferable.
  • interval (gate length) between a source electrode and a drain electrode can be determined suitably, for example, 200 micrometers or less are preferable and 100 micrometers or less are especially preferable.
  • the gate width can be determined as appropriate, but is preferably 5000 ⁇ m or less, and particularly preferably 1000 ⁇ m or less.
  • the ratio between the gate width W and the gate length L is not particularly limited, but for example, the ratio W / L is preferably 10 or more, and more preferably 20 or more.
  • a method for forming the source electrode and the drain electrode is not particularly limited. For example, a method of vacuum-depositing or sputtering an electrode material on a substrate on which a gate electrode and a gate insulating film are formed, and applying an electrode forming composition. Or the method of printing etc. are mentioned. In the case of patterning, the patterning method is the same as the gate electrode method described above.
  • Organic semiconductor film The use of the organic semiconductor film of the present invention is not particularly limited, and examples thereof include organic semiconductor films included in each of the organic semiconductor devices described above.
  • the organic semiconductor film of the present invention is preferably used as an organic semiconductor film of an organic thin film transistor.
  • the organic semiconductor film of the present invention containing the above-described compound of the present invention is used as the organic semiconductor film.
  • the compound of the present invention contained in the organic semiconductor film may be one type or two or more types.
  • the carrier mobility is high, and the carrier mobility can be maintained even when used or stored (left) in the atmosphere.
  • the reason for this is not clear, but as described above, it is considered that the compound of the present invention exhibits low orbital energy of the lowest empty orbit.
  • the content of the compound of the present invention in the organic semiconductor film is not particularly limited and can be appropriately set. For example, it is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.
  • the upper limit can be 100 mass%.
  • the upper limit is preferably 90% by mass or less, and more preferably 80% by mass or less, for example.
  • the organic semiconductor film may contain the binder polymer described above in addition to the compound of the present invention.
  • the binder polymer may contain 1 type, and may contain 2 or more types.
  • the content of the compound of the present invention and the binder polymer is not particularly limited, but the compound of the present invention and the binder polymer are phase-separated from each other along the film thickness direction in terms of carrier mobility. It is preferable.
  • the content of the binder polymer in the organic semiconductor film is not particularly limited and can be set as appropriate. For example, it is preferably 90% by mass or less, and more preferably 70% by mass or less.
  • the lower limit can be 0% by mass or more, for example, preferably 10% by mass or more, and more preferably 20% by mass or more.
  • the organic semiconductor film may contain the above-described additives in addition to the compound of the present invention.
  • the additive may contain 1 type, and may contain 2 or more types.
  • the content of the additive in the organic semiconductor film is preferably 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less.
  • the thickness of the organic semiconductor film cannot be uniquely determined according to the applied organic thin film transistor, but is preferably 10 to 500 nm, and more preferably 20 to 200 nm.
  • This organic semiconductor film can be formed by applying the organic thin film transistor composition described above. Details will be described later.
  • the organic thin film transistor of the present invention is stably driven even in the atmosphere. Therefore, the entire organic thin film transistor may not be sealed (blocked) against the atmosphere (oxygen gas) or moisture (the sealing layer may not be provided). Further, the entire organic thin film transistor can be sealed with a metallic sealing can or a sealing agent for the purpose of stably driving over a long period of time.
  • a sealing agent composition for forming a sealing layer usually used for organic TFTs can be used.
  • the sealant include an inorganic material such as glass or silicon nitride, a polymer material such as parylene, or a low molecular material.
  • the sealing layer can be formed by an ordinary method such as coating and drying using the above-described sealing agent.
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view showing a bottom gate-top contact type organic thin film transistor 20 which is an example of the semiconductor element of the present invention.
  • the organic thin film transistor 20 includes a substrate 1, a gate electrode 2, a gate insulating film 3, an organic semiconductor film 5, a source electrode 4A and a drain electrode 4B, and a sealing layer 6. Have in this order.
  • the organic thin film transistor 20 is the same as the organic thin film transistor 10 except that the layer configuration (stacking mode) is different. Accordingly, the substrate, gate electrode, gate insulating film, source electrode, drain electrode, organic semiconductor film, and sealing layer are the same as those in the above-described bottom gate-bottom contact type organic thin film transistor, and thus description thereof is omitted. To do.
  • the manufacturing method of the organic thin-film transistor of this invention will not be specifically limited if it is a method which has the process of apply
  • any of the gate electrode, the gate insulating film, the source electrode and the drain electrode, and the sealing layer can be manufactured or formed by the method described above.
  • the coating of the organic thin film transistor composition on the substrate means not only an embodiment in which the organic thin film transistor composition is directly coated on the substrate, but also an organic layer above the substrate through another layer provided on the substrate. An embodiment in which a thin film transistor composition is applied is also included.
  • Another layer to be coated with the organic thin film transistor composition (a layer that is in contact with the organic semiconductor film and serves as a base of the organic semiconductor film) is inevitably determined by the structure of the organic thin film transistor.
  • the bottom gate type is a gate insulating film
  • the top gate type top gate-bottom contact type and top gate-top contact type
  • the substrate may be heated or cooled when forming the organic semiconductor film.
  • the temperature of the substrate is not particularly limited. For example, it is preferably set within the range of 0 to 200 ° C., more preferably set within the range of 15 to 100 ° C., and particularly preferably set within the range of 20 to 95 ° C.
  • the method for forming the organic semiconductor film is not particularly limited, and examples thereof include a vacuum process and a solution process, both of which are preferable.
  • the solution process is particularly preferred in the present invention.
  • vacuum process examples include physical vapor deposition such as vacuum deposition, sputtering, ion plating, or molecular beam epitaxy (MBE), or chemical vapor deposition such as plasma polymerization. (Chemical Vapor Deposition; CVD) method. Of these, vacuum deposition is preferred.
  • the composition for organic thin-film transistors containing the said solvent it is preferable to use the composition for organic thin-film transistors containing the said solvent.
  • the compound of the present invention is stable even in the atmosphere. Therefore, the solution process can be performed in the atmosphere, and furthermore, the composition for an organic thin film transistor of the present invention can be applied in a large area.
  • a usual method can be used as a coating method of the composition for organic thin film transistors in the solution process.
  • drop casting method, casting method, dip coating method, die coater method, roll coater method, bar coater method, spin coating method or other coating method ink jet method, screen printing method, gravure printing method, flexographic printing method
  • various printing methods such as an offset printing method or a microcontact printing method, or a method such as the Langmuir-Blodgett (LB) method.
  • LB Langmuir-Blodgett
  • a drop casting method, a casting method, a spin coating method, an ink jet method, a gravure printing method, a flexographic printing method, an offset printing method, or a micro contact printing method is preferable.
  • an inkjet method, a gravure printing method, a flexographic printing method, an offset printing method, or a microcontact printing method is preferable, and a flexographic printing method, a microcontact printing method, or an inkjet method is more preferable.
  • the organic thin film transistor composition coated on the substrate is preferably dried. More preferably, the drying is performed gradually.
  • the composition for an organic thin film transistor crystals of the compound of the present invention can be precipitated to form an organic semiconductor film.
  • the organic thin film transistor composition is dried on a heated substrate after being naturally dried or heated and then dried under reduced pressure.
  • the temperature of the substrate during natural drying or heat drying is preferably 20 to 100 ° C., more preferably 50 to 80 ° C.
  • the time for natural drying or heat drying is preferably 0.5 to 20 hours, and more preferably 1 to 10 hours.
  • the temperature during drying under reduced pressure is preferably 20 to 100 ° C., more preferably 40 to 80 ° C.
  • the drying time under reduced pressure is preferably 1 to 20 hours, and more preferably 2 to 10 hours.
  • the pressure during drying under reduced pressure is preferably 10 ⁇ 6 to 10 ⁇ 2 Pa, and more preferably 10 ⁇ 5 to 10 ⁇ 3 Pa.
  • the organic thin film transistor composition thus dried can be shaped, if necessary, into a predetermined shape or pattern.
  • a preferred method for forming an organic semiconductor film by a solution process is to form the organic thin film transistor composition of the present invention (also referred to as a coating solution in this process) in a plane on the substrate so as to be in contact with the substrate and a member disposed on the substrate. It is a method of dripping (coating) onto the part and drying the dropped coating liquid.
  • substrate and member used for a preferable solution process are mentioned later.
  • the substrate and the member disposed on the substrate are a state in which the distance between the substrate and a member not fixed to the substrate is kept constant, or a state in which the substrate and the member are in contact with each other. Is maintained.
  • the positional relationship between the substrate and the member may be stationary or moved. In terms of production efficiency, it is preferable to move the positional relationship, while in terms of film quality and crystal size of the obtained organic semiconductor film, it is preferable to make the positional relationship stationary.
  • the method of dropping the coating solution is not particularly limited.
  • dropping one drop of the coating solution or dropping two or more drops tends to produce a thin portion of the coating solution on the substrate. It is preferable in that the drying proceeds from the part.
  • the volume of one coating solution is preferably 0.01 to 0.2 mL, and more preferably 0.02 to 0.1 mL.
  • the contact angle (25 ° C.) of the coating solution with respect to the substrate is not particularly limited, but is preferably 0 to 90 °, and more preferably 10 to 20 °.
  • the contact angle is measured by measuring the angle between the droplet and the substrate 1 second after dropping the coating solution (solid content: 0.1% by mass, solvent: anisole).
  • the liquid volume is set to 1.0 ⁇ L or more, and the static contact angle is measured by a droplet method using a Teflon (registered trademark) needle.
  • Teflon registered trademark
  • the coating liquid preferably forms a meniscus with respect to the member, and more preferably has a concave meniscus in terms of film quality.
  • the method shown in FIG. 3 can be mentioned.
  • the substrate 42 and the member 43 are arranged at predetermined positions. Specifically, the substrate 42 and the member 43 are arranged in a state shown in FIG. 3A that shows a state before the coating liquid 41 is dropped onto the substrate 1. At this time, the distance between the substrate 42 and the member 43 not in contact with the substrate 42 is kept constant. The distance cannot be determined unconditionally depending on the coating amount or viscosity of the coating solution, and can be set appropriately.
  • FIG. 3 shows a state before the coating liquid 41 is dropped onto the substrate 1.
  • the coating liquid 41 is applied to a part of the surface of the substrate 42 (near the facing portion of the substrate 42 and the member 43) so as to contact both the substrate 42 and the member 43. Dripping. Thereafter, with the positional relationship between the substrate 42 and the member 43 being stationary (fixed), the coating liquid 41 is preferably dried as described above. This state is shown in FIG. The coating liquid 41 is dried and crystallized from the thin end portions (edges) toward the inside on the substrate 42. Thereby, the compound of this invention can be arrange
  • the method shown in FIG. 4 can be mentioned.
  • the substrate 42 and the member 43 are placed in contact.
  • the member 43 is arranged on the substrate 42 in a state shown in FIG. 4A showing a state before the coating liquid 41 is dropped on the substrate 42.
  • FIG. 4 (B1) and FIG. 4 (B2) a part of the surface of the substrate 42 so as to contact both the substrate 42 and the member 43 (near the contact portion between the substrate 42 and the member 43) )
  • the coating liquid 41 is dropped.
  • the coating liquid 41 preferably surrounds the contact portion.
  • FIG. 4B1 is a front view of the substrate coated with the coating liquid
  • FIG. 4B2 is a plan view of the substrate coated with the coating liquid.
  • Three-dimensional coordinates (X, Y, Z) are added to FIG. 4 (B1) and FIG. 4 (B2).
  • the coating liquid 41 is preferably dried as described above. This state is shown in FIG.
  • the coating solution 41 is dried and crystallized on the substrate 42 from the thin edge toward the inside.
  • the compound of this invention can be arrange
  • the member 43 is pulled up, for example, vertically from the substrate 42 and separated.
  • the organic semiconductor film 5 with good film quality can be obtained without leaving a trace of the member 43 in the formed crystal.
  • an organic semiconductor film made of the crystal of the compound of the present invention can be formed.
  • the method of applying the coating liquid while the substrate and the member are in contact with each other does not require a film quality and a mechanism for holding the member 43, and can maintain the distance (contact state) of the member 43 to the substrate.
  • FIG. 5 As another method of applying the coating liquid in a state where the substrate and the member are in contact with each other, there is a method shown in FIG. This method differs from the method shown in FIG. 4 in that the member 43 is moved relatively to promote crystallization of the compound of the present invention.
  • the substrate 42 and the member 43 are placed in contact. Specifically, the member 43 is arranged on the substrate 42 in a state shown in FIG. 5A showing a state before the coating liquid 41 is dropped on the substrate 42.
  • FIG. 5B the coating liquid 41 is applied to a part of the surface of the substrate 42 (near the contact portion between the substrate 42 and the member 43) so as to contact both the substrate 42 and the member 43. Dripping.
  • the coating liquid 41 surrounds the contact portion as shown in FIG. 4 (B2). Thereafter, the positional relationship between the substrate 42 and the member 43 is moved to dry the coating liquid 41. For example, the member 43 is moved relative to the substrate 42 in the direction of the arrow in the figure (the ⁇ X axis in FIG. 5C). This state is shown in FIG. The coating liquid 41 is dried and crystallized from the end (X-axis direction) opposite to the moving direction of the member 43 toward the moving direction ( ⁇ X-axis direction). Thereby, the compound of this invention can be arrange
  • the member 43 is pulled up, for example, vertically from the substrate 42 and separated. Thereby, an organic semiconductor film with good film quality can be obtained without leaving a trace of the member 43 in the formed crystal. Thus, an organic semiconductor film made of the crystal of the compound of the present invention can be formed.
  • the substrate used in the above-described preferable solution process corresponds to a substrate of an organic thin film transistor, and is preferably a substrate on which a gate insulating film is formed.
  • the member 43 used in the preferred solution process is not particularly limited, but the material is preferably an inorganic material such as glass, quartz, or silicon, or a plastic such as Teflon (registered trademark), polyethylene, or polypropylene. More preferably, it is glass.
  • the size of the member 43 is not particularly limited.
  • the lower limit of the length of one side (d or W in FIG. 6) on the surface facing the substrate 42 is preferably 0.1% or more with respect to the length of one side of the substrate 42. It is more preferably 1% or more, particularly preferably 10% or more, and particularly preferably 20% or more.
  • the upper limit of the length of one side is preferably 80% or less, more preferably 70% or less, and particularly preferably 50% or less with respect to the length of one side of the substrate 42. preferable.
  • the height of the member 43 (h in FIG. 6) is preferably 1 to 50 mm, and more preferably 5 to 20 mm.
  • the length ratio h / d in the member 43 is preferably 0.01 to 10, and more preferably 0.1 to 5 in view of the arrangement stability of the member 43.
  • the length ratio W / d is preferably 1 to 1000, and more preferably 5 to 100 in that the compound of the present invention can be crystallized in a wide range.
  • the organic semiconductor film of the present invention can be formed by precipitating crystals of the compound of the present invention. Whether or not crystals of the compound of the present invention were precipitated was determined by a polarizing microscope (trade name: Eclipse LV100N POL (transmission / reflection illumination type), manufactured by Nikon Corporation, eyepiece: magnification 10 times, objective lens: magnification 5 to 20 times. ) Can be confirmed by observing the organic semiconductor film.
  • a polarizing microscope trade name: Eclipse LV100N POL (transmission / reflection illumination type), manufactured by Nikon Corporation, eyepiece: magnification 10 times, objective lens: magnification 5 to 20 times.
  • organic thin film transistor is not particularly limited in its use, and can be used for, for example, electronic paper, a display device, a sensor, an electronic tag, and the like.
  • Me represents methyl
  • tBu represents t-butyl
  • DMSO dimethyl sulfoxide
  • Methyl cyanoacetate (133 g, 1.34 mol) was added to a solution of 1,5-dinitroanthraquinone 1-1 (50 g, 168 mmol) in dimethyl sulfoxide (600 mL) at room temperature (20 ° C.), and potassium tert-butoxide ( 150.6 g, 1.34 mol) was gradually added while paying attention to heat generation.
  • the mixed solution was heated to 50 ° C. and stirred for 3 hours.
  • the reaction solution was cooled to room temperature and then poured into 2 L of ice water to stop the reaction.
  • Me represents methyl
  • Me represents methyl
  • Et represents ethyl
  • DMAP 4-dimethylaminopyridine
  • Tf trifluoromethanesulfonyl
  • Me represents methyl
  • Et represents ethyl
  • Ph represents phenyl
  • Tf represents trifluoromethanesulfonyl
  • DMF dimethylformamide
  • Me represents methyl
  • NBS represents N-bromosuccinimide
  • Me represents methyl
  • Et represents ethyl
  • Ac represents acetyl
  • Xantphos represents 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene.
  • Me represents methyl
  • compound 1-7 (410 mg, 0.502 mmol), p-toluenesulfonic acid monohydrate (477 mg, 2.51 mmol), and 40 mL of o-dichlorobenzene were added, and the mixture was heated to 120 ° C. under an argon atmosphere. Heat and stir for 12 hours. Thereafter, the reaction solution was dried under reduced pressure to distill off the solvent. The solid content was dispersed in hexane, filtered, and washed with hexane to obtain compound 1-8 (194 mg, 0.263 mmol, yield 52%).
  • EtOAc represents ethyl acetate
  • Comparative compounds c1 and c2 shown below were prepared. Comparative compound c1 was synthesized with reference to the method described in Patent Document 1. Comparative compound c2 was synthesized with reference to the method described in Non-Patent Document 1.
  • Example 1 A bottom gate-top contact type organic thin film transistor 20 (however, having no sealing layer 6) having the structure shown in FIG. 2 was manufactured, and its characteristics were evaluated.
  • a SiO 2 thermal oxide film (thickness: 200 nm) is formed on the surface of an n-type silicon substrate (thickness: 0.4 mm, corresponding to the substrate 1 having the gate electrode 2) 1.
  • a substrate having a size size: 25 mm ⁇ 25 mm
  • the surface of the thermal oxide film (gate insulating film 3) of this substrate was cleaned with ultraviolet (UV) -ozone and then treated with ⁇ -phenethyltrimethoxysilane.
  • a glass member having a size of 10 mm long ⁇ 2 mm wide ⁇ 5 mm high was prepared. As shown in FIG. 4 (A), this member 43 is arranged in the center of the ⁇ -phenethyltrimethoxysilane treated surface of the substrate 1 in contact with the treated surface as shown in FIG. 4 (A). .
  • the substrate 1 (indicated by reference numeral 42 in FIG. 4) is heated to 50 ° C., and one drop of each of the coating liquids S1-1 to S1-5 and CS1-1 and CS1-2 prepared by the above method (herein) About 0.05 mL), using a pipette, as shown in FIG. 4A, in the vicinity of the contact portion between the substrate 42 and the member 43, contact the base material 42 and the member 43 with the member B. Dropped from the side. As shown in FIG. 4 (B1) and FIG. 4 (B2), the coating solution surrounds the contact portion and forms a concave meniscus at the interface with the member 43. The contact angle (25 ° C.) of the coating liquid 41 with respect to the substrate 42 was 10 °.
  • the coating liquid 41 is naturally dried while maintaining the state in which the substrate 42 and the member 43 are in contact with each other and in the state in which the positional relationship between the base 42 and the member 43 is stationary. Or it was heat-dried (temperature of the substrate 42: 100 ° C., drying time: 8 hours). Thereafter, the crystals of each compound were precipitated by drying under reduced pressure under a pressure of 10 ⁇ 3 Pa at 60 ° C. for 8 hours. Next, the member 43 was pulled up perpendicularly to the substrate 42 and separated from the substrate 42. Thus, the annular organic semiconductor film 5 having the uniform film thickness (film thickness: 10 to 50 nm) shown in FIG. 4D was formed. The compound content in the obtained organic semiconductor film 5 was 100% by mass.
  • the obtained organic semiconductor film 5 was confirmed by observation with a polarizing microscope Eclipse LV100N POL (transmission / reflective illumination type), manufactured by Nikon Corporation, eyepiece: magnification 10 times, objective lens: magnification 5 to 20 times, and compound 1 All the crystals of ⁇ 5 were precipitated.
  • a polarizing microscope Eclipse LV100N POL transmission / reflective illumination type
  • organic thin film transistors referred to as OTFTs
  • T1-1 to T1-5 for measuring FET characteristics
  • organic thin film transistors CT1-1 and CT1-2 for comparison were manufactured.
  • the carrier mobility ⁇ ini was calculated using the following formula representing I d . It was determined which of the following evaluation criteria included the calculated carrier mobility ⁇ ini .
  • the carrier mobility ⁇ ini is preferably as high as possible. In this test, it is preferably rank C or higher, more preferably rank B or higher, and still more preferably rank A.
  • I d (w / 2L) ⁇ C i (V g ⁇ V th ) 2
  • L represents the gate length
  • w represents the gate width
  • represents the carrier mobility
  • C i represents the capacitance per unit area of the gate insulating film
  • V g represents the gate voltage
  • V th represents the threshold voltage.
  • both the organic thin film transistors CT1-1 and CT1-2 did not function as organic thin film transistors because the carrier mobility ⁇ af after standing was not sufficient. That is, the organic thin film transistor CT1-1 has a small initial carrier mobility ⁇ ini and does not function as an organic thin film transistor.
  • the carrier mobility was lowered, and it did not function as an organic thin film transistor.
  • each of the organic thin film transistors T1-1 to T1-5 of the present invention includes an organic semiconductor film containing the compound of the present invention, has a high initial carrier mobility ⁇ ini , and is in the atmosphere. Even if left untreated, high carrier mobility ⁇ af was maintained. Thus, it was shown that the organic thin film transistor of the present invention has high carrier mobility and can be driven stably in the atmosphere for a long time.
  • the compounds 1 to 5 of the present invention all have the lowest orbital (LUMO) orbital energy of less than ⁇ 4.0 eV, and the use thereof is not particularly limited. It was confirmed that it can be preferably used as an organic semiconductor material.
  • LUMO lowest orbital
  • R N is an alkyl group (compounds 1, 4 and 5) and a halogenated alkyl group (compound 2).
  • Both carrier mobility ⁇ ini and ⁇ af showed high values (OTFT No. T1-1, 2, 4, and 5).
  • Example 2 A bottom gate-bottom contact type organic thin film transistor 10 (however, having no sealing layer 6) having the structure shown in FIG. 1 was manufactured, and its characteristics were evaluated.
  • a substrate for measuring FET characteristics was prepared.
  • This substrate has an SiO 2 film (thickness: 200 nm) as the gate insulating film 3 on the n-type silicon substrate 1 used in Example 1, and is further combed with chromium / gold on the gate insulating film 3.
  • the organic thin film transistor compositions S2-1 to S2-5 and CS2-1 and CS2-2 were cast on the FET characteristic measurement substrate heated to 90 ° C.
  • organic thin film transistors T2-1 to T2-5 and comparative organic thin film transistors CT2-1 and CT2-2 were manufactured, respectively.
  • Both the organic thin film transistors CT2-1 and CT2-2 have low carrier mobility ⁇ ini and ⁇ af and do not function as organic thin film transistors.
  • the organic thin film transistors T2-1 to T2-5 of the present invention are all bottom gate-bottom contact types in which the exposed area of the organic semiconductor film to the atmosphere is large. Containing the compound. Therefore, the initial carrier mobility ⁇ ini is high, and the high carrier mobility ⁇ af is maintained even when left in the atmosphere. As described above, the organic thin film transistor of the present invention has high carrier mobility and can be stably driven for a long time in the atmosphere. Further, the compounds 1 to 5 of the present invention can be preferably used as an organic semiconductor material for an organic thin film transistor exhibiting the above-described excellent characteristics.
  • a 11 and A 12 in Formula (1) is, -N having an alkyl group or a halogenated alkyl group as R N (R N) - a is a (Compound 1, 2, 4 and 5), the carrier moves Both the degrees ⁇ ini and ⁇ af showed high values.
  • Example 3 A bottom gate-bottom contact type organic thin film transistor 10 (however, having no sealing layer 6) having the structure shown in FIG. 1 was manufactured, and its characteristics were evaluated.
  • the organic thin film transistors T3-1 to T3-5 of the present invention are all of bottom gate-bottom contact type, but this organic semiconductor film contains the compound of the present invention and a binder polymer. .
  • the initial carrier mobility ⁇ ini is high, and the high carrier mobility ⁇ af is maintained even when left in the atmosphere.
  • the organic thin film transistor of the present invention has high carrier mobility and can be stably driven for a long time in the atmosphere.
  • the compounds 1 to 5 of the present invention can be preferably used as an organic semiconductor material for an organic thin film transistor exhibiting the above-described excellent characteristics. Further, it was confirmed that A 11 and A 12 in the formula (1) showed the same tendency as in Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明は、高いキャリア移動度を大気下においても維持する有機薄膜トランジスタ、及び、その製造方法を提供することを、課題とする。上記課題を解決するための手段は、特定の式で表される化合物を含有する有機半導体膜を備えた有機薄膜トランジスタ、これに好ましく用いることができる、有機半導体膜、化合物及び有機薄膜トランジスタ用組成物、並びに、上記有機薄膜トランジスタ用組成物を基板上に塗布して有機半導体膜を形成する工程を有する有機薄膜トランジスタの製造方法である。

Description

有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法
 本発明は、有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法に関する。
 液晶ディスプレイ若しくは有機エレクトロルミネッセンスディスプレイ等のディスプレイ、又は、RFID(radio frequency identifier:RFタグ)若しくはメモリ等の論理回路を用いる装置等には、トランジスタが利用されている。中でも、有機半導体膜を有する有機薄膜トランジスタは、軽量化又は低コスト化が可能で柔軟性にも優れることから、無機半導体膜を有する無機トランジスタに対して、優位性を備えている。
 上述の有機半導体膜を形成する有機化合物として、例えば、イミド基中のカルボニル基の少なくとも1つをチオカルボニル基に変換したペリレンビスイミド(チオン化ペリレンビスイミドともいう)が挙げられる(特許文献1)。非特許文献1には、チオン化ペリレンビスイミドの合成原料であるペリレンビスイミドの合成方法が記載されている。
国際公開第2011/082234号
Chemical Communications, 2012, 48, p.7961-7963
 上述のディスプレイ等は高性能化が急速に進展しており、それに搭載される有機薄膜トランジスタには、初期性能(キャリア移動度)の向上が求められている。また、上述のディスプレイ等には、低コスト化ないしはフレキシブル化の要請に応えるため、特殊な保護層ないしは封止層を設けなくても、大気下において安定して駆動し、高い性能を維持する特性(耐久性)が望まれている。
 しかし、特許文献1に記載の化合物を用いた有機薄膜トランジスタを含めて、従来の有機薄膜トランジスタにおいては、大気下において性能が大きく低下する傾向にあり、初期性能と耐久性との両立の点で、改善の余地があった。
 本発明は、高いキャリア移動度を大気下においても維持する有機薄膜トランジスタ、及び、その製造方法を提供することを、課題とする。また、本発明は、上記の特性を示す有機薄膜トランジスタに好ましく用いることができる、有機半導体膜、化合物及び有機薄膜トランジスタ用組成物を提供することを、課題とする。
 本発明者は、鋭意検討を重ねた結果、有機薄膜トランジスタにおいて、後述する特定の式(1)で表される化合物を有機半導体として好ましく用いることができること、更に、この化合物を有機半導体膜に含有させることにより、高いキャリア移動度を示し、大気下においてもその低下を抑えることができることを、見出した。本発明はこれらの知見に基づき、更に検討を重ね、完成されるに至ったものである。
 本発明の上記課題は下記の手段により解決された。
<1>下記式(1)で表される化合物を含有する有機半導体膜を備えた有機薄膜トランジスタ。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、
11及びA12は、各々独立に、-O-、-N(R)-又は-P(R)-を示す。B11~B18は、各々独立に、-N=又は-C(R)=を示し、少なくとも1つは-N=である。R及びRは水素原子又は置換基を示す。
11~X14は、各々独立に、酸素原子又は硫黄原子を示す。
<2>上記化合物が、下記式(2)で表される<1>に記載の有機薄膜トランジスタ。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、
11及びA12は、式(1)のA11及びA12と同義である。
11~X14は、式(1)のX11~X14と同義である。
21~R26は、各々独立に、水素原子又は置換基を示す。
<3>X11~X14が、いずれも、酸素原子である<1>又は<2>に記載の有機薄膜トランジスタ。
<4>A11及びA12が、いずれも、-N(R)-であり、Rが水素原子又は置換基を示す<1>~<3>のいずれか1つに記載の有機薄膜トランジスタ。
<5>Rが、炭素数1~20のアルキル基、炭素数6~20のアリール基、又は、環構成原子として3~20個の炭素原子を含むヘテロアリール基である<1>~<4>のいずれか1つに記載の有機薄膜トランジスタ。
<6>下記式(2)で表される化合物。
Figure JPOXMLDOC01-appb-C000007
 式(2)中、
11及びA12は、各々独立に、-O-、-N(R)-又は-P(R)-を示す。Rは水素原子又は置換基を示す。R21~R26は、各々独立に、水素原子又は置換基を示す。X11~X14は、各々独立に、酸素原子又は硫黄原子を示す。
<7>X11~X14が、いずれも、酸素原子である<6>に記載の化合物。
<8>A11及びA12が、いずれも、-N(R)-であり、Rが水素原子又は置換基を示す<6>又は<7>に記載の化合物。
<9>Rが、炭素数1~20のアルキル基、炭素数6~20のアリール基、又は、環構成原子として3~20個の炭素原子を含むヘテロアリール基である、<6>~<8>のいずれか1つに記載の化合物。
<10>上記<6>~<9>のいずれか1つに記載の化合物を含有する有機薄膜トランジスタ用組成物。
<11>バインダーポリマーを含有する<10>に記載の有機薄膜トランジスタ用組成物。
<12>下記式(1)で表される化合物を含有する有機半導体膜。
Figure JPOXMLDOC01-appb-C000008
 式(1)中、
11及びA12は、各々独立に、-O-、-N(R)-又は-P(R)-を示す。B11~B18は、各々独立に、-N=又は-C(R)=を示し、少なくとも1つは-N=である。R及びRは水素原子又は置換基を示す。
11~X14は、各々独立に、酸素原子又は硫黄原子を示す。
<13>上記<10>又は<11>に記載の有機薄膜トランジスタ用組成物を、基板上に塗布して、有機半導体膜を形成する工程を有する、有機薄膜トランジスタの製造方法。
 本発明は、高いキャリア移動度を大気下においても維持する有機薄膜トランジスタ、及び、その製造方法を提供することができる。また、本発明は、上記の特性を示す有機薄膜トランジスタに好ましく用いることができる、有機半導体膜、化合物及び有機薄膜トランジスタ用組成物を提供することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の有機薄膜トランジスタの一例であるボトムゲート-ボトムコンタクト型の有機薄膜トランジスタを示す断面模式図である。 図2は、本発明の有機薄膜トランジスタの一例であるボトムゲート-トップコンタクト型の有機薄膜トランジスタを示す断面模式図である。 図3は、本発明の有機薄膜トランジスタの製造方法における有機半導体膜を形成する好ましい方法を説明する概略図である。 図4は、本発明の有機薄膜トランジスタの製造方法における有機半導体膜を形成する好ましい方法を説明する概略図である。 図5は、本発明の有機薄膜トランジスタの製造方法における有機半導体膜を形成する好ましい方法を説明する概略図である。 図6は、本発明の有機薄膜トランジスタの製造方法に好ましく用いられる基板と部材の一例を示す概略図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、化合物の表示については、化合物そのものの他、その塩、そのイオンを含む。また、目的とする効果を損なわない範囲で、構造の一部を変化させたものを含む。
 また、置換又は無置換を明記していない化合物については、目的とする効果を損なわない範囲で、任意の置換基を有するものを含む。このことは、置換基、連結基等(以下、置換基等という)についても同様である。
 本明細書おいて、特定の符号で表示された置換基等が複数あるとき、又は、複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接(特に隣接)するとき、特段の断りがない限り、それらが互いに連結して環を形成してもよい。
 本発明において、基の炭素数が限定されている場合、この基の炭素数は、特段の断りがない限り、置換基を含めた全炭素数を意味する。
 本発明において、基が非環状骨格及び環状骨格を形成しうる場合、特段の断りがない限り、この基は、非環状骨格の基と環状骨格の基を含む。例えば、アルキル基は、直鎖アルキル基、分岐アルキル基及び環状(シクロ)アルキル基を含む。基が環状骨格を形成しうる場合、環状骨格を形成する基の原子数の下限は、この基について具体的に記載した原子数の下限にかかわらず、3以上であり、5以上が好ましい。上記シクロアルキル基は、ビシクロアルキル基又はトリシクロアルキル基等を含む。
 本発明の好ましい実施形態について以下に説明するが、本発明はこれに限定されない。
[式(1)で表される化合物]
 まず、本発明の、式(1)で表される化合物(以下、本発明の化合物ということがある。)について説明する。
 本発明の化合物を含有する有機半導体膜は、有機薄膜トランジスタに、高いキャリア移動度と、このキャリア移動度を大気下においても維持する耐久性を付与できる。その理由は、詳細には定かではないが、次のように考えられる。本発明の化合物は、3,4,9,10-ペリレンビスイミド骨格を形成する炭素原子の少なくとも1つを窒素原子に置換した構造を有しており、ペリレンビスイミド骨格に芳香族環を更に縮環させなくても(π共役系を拡張しなくても)、最低空軌道(LUMO)の軌道エネルギーが-4.0eV未満となる。これにより、n型半導体性が向上すると考えられる。また、大気下において、酸素ガス又は水分にさらされても、これらによる有機半導体膜の劣化(本発明の化合物の分解等)が効果的に抑えられると考えられる。そのため、本発明の化合物は、有機薄膜トランジスタに用いた場合に、キャリア移動度を高い水準に向上させることができ、しかも大気下においても経時による低下量を抑制できる。
 上述の特性ないしは作用を有する本発明の化合物は、その用途については、特に限定されず、例えば、非発光性の有機半導体デバイスに用いることができる。非発光性の有機半導体デバイスとは、発光することを目的としないデバイスを意味する。このようなデバイスとしては、電流量若しくは電圧量を制御する有機薄膜トランジスタ、光エネルギーを電力に変換する有機光電変換素子(光センサ用途の固体撮像素子、エネルギー変換用途の太陽電池等)、熱エネルギーを電力に変換する有機熱電変換素子、ガスセンサ、有機整流素子、有機インバータ、情報記録素子等が挙げられる。本発明の化合物は、後述するように、有機薄膜トランジスタの有機半導体材料として好ましく用いられる。
Figure JPOXMLDOC01-appb-C000009
 式(1)中、は、A11及びA12は、それぞれ、-O-、-N(R)-又は-P(R)-を示す。A11及びA12は、それぞれ、-N(R)-が好ましい。A11及びA12は、互いに同じでも異なっていてもよいが、同じであることが好ましく、いずれも-N(R)-がより好ましい。
 Rは、水素原子又は置換基を示す。
 Rとして採りうる置換基としては、特に限定されない。例えば、下記置換基群Zから選択される基が挙げられる。
置換基群Z
ハロゲン原子(フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましい。)、アルキル基(好ましくは炭素数1(3)~40、より好ましくは1(3)~20、特に好ましくは4~20である。括弧内の数字はシクロアルキル基の場合の炭素数を表す。アルキル基としては、例えば、メチル、エチル、プロピル、2-メチルプロピル、ブチル、アミル、ペンチル、2,2-ジメチルプロピル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、2,6-ジメチルオクチル、イコシル、2-デシルテトラデシル、2-ヘキシルドデシル、2-エチルオクチル、2-デシルテトラデシル、2-ブチルデシル、1-オクチルノニル、2-エチルオクチル、2-オクチルデシル、2-オクチルドデシル、7-ヘキシルペンタデシル、2-オクチルテトラデシル、2-エチルヘキシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチル、ベンジル、p-クロロベンジル、トリフルオロメチル、パーフルオロエチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、C11-、3-アミノプロピル、4-アミノブチル、5-エトキシペンチル、(メタ)アクリロキシプロピル、(メタ)アクリロキシペンチル、4-ヒドロキシブチル、4-スルホブチル、10-ホスホノデシル、2-ヒドロキシエトキシメチル、2-イミダゾリルエトキシメチル、4-(N,N-ジメチルアミノ)ブチル)、アルケニル基(好ましくは炭素数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えば、ビニル、アリル、2-ブテニル、1-ペンテニル、4-ペンテニル等を含む)、アルキニル基(好ましくは炭素数2~20、より好ましくは2~12、特に好ましくは2~8であり、例えば、プロパルギル、1-ペンチニル、トリメチルシリルエチニル、トリエチルシリルエチニル、トリ-i-プロピルシリルエチニル、2-p-プロピルフェニルエチニル等を含む)、アリール基(好ましくは炭素数6~20、より好ましくは6~12であり、例えば、フェニル、ナフチル、2,4,6-トリメチルフェニル、p-(t-ブチル)フェニル、4-メチル-2,6-ジプロピルフェニル、4-フルオロフェニル、4-トリフルオロメチルフェニル、p-ペンチルフェニル、3,4-ジペンチルフェニル、p-ヘプトキシフェニル、3,4-ジヘプトキシフェニル)、複素環基(ヘテロ環基ともいう。環構成原子として、少なくとも1個以上のヘテロ原子と、1~30個の炭素原子を含む。ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子が挙げられ、その数は、特に限定されないが、例えば、1~2個である。環構成炭素原子の数は、好ましくは3~20個であり、更に好ましくは3~12個である。複素環基としては、5員環若しくは6員環又はこれらの縮合環の基が好ましい。複素環基は芳香族複素環基(ヘテロアリール基)及び脂肪族複素環基を含む。例えば、チエニル、チアゾリル、イミダゾリル、ピリジル、ピリミジニル、キノリル、フラニル、セレノフェニル(CSe)、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、2-ヘキシルフラニル、ピラニルなどが挙げられる。)、
シリル基(好ましくは炭素数3~40、より好ましくは3~30、特に好ましくは3~24であり、例えば、トリメチルシリル、トリフェニルシリル、ジメチルフェニルシリル、などが挙げられる)、アルコキシ基(好ましくは炭素数1~20、より好ましくは1~12、特に好ましくは1~8であり、例えば、メトキシ、エトキシ、ブトキシ等を含む)、アミノ基(好ましくは炭素数0~20、より好ましくは0~10、特に好ましくは0~6であり、例えば、アミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、アニリノなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えばフェニルオキシ、2-ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えば、アセチル、ヘキサノイル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~12であり、例えば、メトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~20、より好ましくは7~16、特に好ましくは7~10であり、例えば、フェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えば、アセトキシ、ベンゾイルオキシ若しくは(メタ)アクリロイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アミノカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは2~16、特に好ましくは2~12であり、ウレイド基等を含む。)、アルコキシ若しくはアリールオキシカルボニルアミノ基(好ましくは炭素数2(7)~20、より好ましくは2(7)~16、特に好ましくは2(7)~12である。括弧内の数字はアリールオキシカルボニルアミノ基の場合の炭素数を表す。例えば、メトキシカルボニルアミノ若しくはフェニルオキシカルボニルアミノなどが挙げられる。)、アルキル若しくはアリールスルホニルアミノ、アルキルチオ基(好ましくは炭素数1~20、より好ましくは1~16、特に好ましくは1~12であり、例えば、メチルチオ、エチルチオ、オクチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好ましくは6~16、特に好ましくは6~12であり、例えば、フェニルチオ基などが挙げられる。)、アルキル若しくはアリールスルフィニル基、アルキル若しくはアリールスルホニル基、シリルオキシ基、ヘテロ環オキシ基、カルバモイル基、カルバモイルオキシ基、ヘテロ環チオ基、スルファモイル基、アリール若しくはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ヒドラジノ基、イミノ基、シアノ基、ヒドロキシ基、ニトロ基、メルカプト基、スルホ基、カルボキシ基、ヒドロキサム酸基、スルフィノ基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、ホスホノ基(-PO(OH))、スルファト基(-OSOH)が挙げられる。
 中でも、Rとして採りうる、上記置換基群Zから選択される基としては、アルキル基、アリール基、アルケニル基、アルキニル基、ヘテロ環基又はシリル基が好ましく、アルキル基(好ましくは炭素数1~20)、アリール基(好ましくは炭素数6~20)又はヘテロアリール基(環構成原子として少なくとも1個以上の上記ヘテロ原子を含む。好ましくは5員環若しくは6員環又はこれらの縮合環の基である。好ましくは環構成炭素原子数が3~20である。)がより好ましく、アルキル基(特に好ましくは炭素数4~20)が更に好ましい。
 上述の、置換基群Zから選択される基は、更に置換基を有していてもよい。このような置換基としては、置換基群Zから選択される基が挙げられる。
 更に置換基を有する基(組み合わせてなる基ともいう)において、更に有していてもよい置換基数は、特に限定されないが、例えば、1~6個が好ましく、1~3個がより好ましい。
 組み合わせてなる基としては、特に限定されず、例えば、上記の、置換基群Zから選択される基として好ましい上記各基を、置換基群Zから選択される他の基で置換した基が挙げられる。具体的には、ハロゲン原子、アルキル基、アリール基、複素環基(ヘテロアリール基)、アルコキシ基(ヒドロキシアルコキシ基、ハロゲン化アルコキシ基、ヘテロアリールアルコキシ基を含む)、アミノ基、アシルオキシ基、ヒドロキシ基、スルファト基及びホスホノ基からなる群より選択される基を置換基として有するアルキル基、ハロゲン化アリール基若しくは(フッ化)アルキルアリール基、又は、シリル基を置換基として有するアルキニル基等が挙げられる。更には、式(1)で表される化合物から水素原子を1つ除去した基も挙げられる。
 より具体的には、上記置換基群Zにおいて例示した基、又は、下記例示化合物若しくは実施例で用いた化合物中の基が挙げられる。
 組み合わせてなる基としては、上記の中でも、ハロゲン原子を置換基として有するアルキル基(ハロゲン化アルキル基)又はアリール基を置換基として有するアルキル基が好ましく、フッ素原子を置換基として有するアルキル基(フッ化アルキル基)又はアリール基を置換基として有するアルキル基が更に好ましく、アリール基を置換基として有するアルキル基が特に好ましい。
 Rとして採りうる置換基としては、(無置換の)アルキル基、ハロゲン化アルキル基又はアリール基を置換基として有するアルキル基がより好ましい。
 A11及びA12がそれぞれRを有する場合、2つのRは互いに同一でも異なっていてもよい。
 式(1)において、B11~B18は、それぞれ、-N=又は-C(R)=を示す。ここで、Rは水素原子又は置換基を示し、水素原子が好ましい。
 Rとして採りうる置換基としては、特に限定されないが、例えば、上記置換基群Zから選択される基が挙げられる。置換基群Zから選択される基は、更に置換基を有していてもよい。このような置換基としては、置換基群Zから選択される基が挙げられる。更に置換基を有する基としては、Rとして採りうる、上述の組み合わせてなる基が挙げられ、具体的には、上記で挙げた基、更には、式(1)で表される化合物の炭素原子に結合したメチン基を有する基が挙げられる。
 中でも、Rとして採りうる置換基としては、アルキル基、アルケニル基、アルコキシカルボニル基、アリール基、アルコキシ基、複素環基(特にヘテロアリール基)、アミノ基、ハロゲン原子、シアノ基、カルボキシ基、ニトロ基又はメルカプト基が好ましく、アルキル基、アルケニル基、アリール基、アルコキシ基、複素環基(特にヘテロアリール基)、ハロゲン原子又はシアノ基がより好ましく、アルキル基、アリール基、複素環基(特にヘテロアリール基)、ハロゲン原子又はシアノ基が特に好ましい。
 Rとして採りうる置換基は、環を形成していてもよい。この置換基が環を形成する態様としては、置換基同士が互いに結合して環を形成する態様と、複数の置換基が1つの原子を共有することにより、環を形成する態様とを含む。
 置換基同士が互いに結合して環を形成する態様としては、例えば、2つのビニル基が互いに結合して、Rが結合する炭素原子とともに、ベンゼン環を形成する態様が挙げられる。また、複数の置換基が1つの原子を共有することにより、環を形成する態様としては、例えば、2つの置換基が一体となって硫黄原子(-S-基)となる態様が挙げられる。
 B11~B18のうち少なくとも1つは-N=であり、好ましくは1~4個が-N=であり、より好ましくは1個又は2個が-N=であり、特に好ましくは2個が-N=である。
 -N=を採りうるBは、特に限定されず、B11~B18のいずれが-N=であってもよい。例えば、B12、B13、B16及びB17の少なくとも1個が-N=であることが好ましく、B12及びB16の一方若しくは両方が-N=であることがより好ましい。
 B11~B18として採りうる-N=は、その窒素原子が置換基を有していてもよい。例えば、N-オキシド基(N→O基)、対アニオンを有する塩等が挙げられる。
 式(1)において、X11~X14は、それぞれ、酸素原子又は硫黄原子を示し、酸素原子が好ましい。X11~X14は、いずれも、酸素原子であることがより好ましい。
 ここで、A11及びA12とX11~X14との組み合わせは、特に限定されないが、A11及びA12が-N(R)-であり、X11~X14が酸素原子である組み合わせが好ましい。
 式(1)で表される化合物は、下記式(2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(2)において、A11、A12及びX11~X14は、ぞれぞれ、式(1)のA11、12及びX11~X14と同義であり、好ましいものも同じである。また、A11、A12及びX11~X14の好ましい組み合わせも上記した通りである。
 R21~R26は、それぞれ、水素原子又は置換基を示す。R21~R26として採りうる置換基としては、上記Rとして採りうる置換基と同義であり、好ましいものも同じである。Rは、互いに結合して、又は、イソキノリノキノリン骨格を形成する炭素原子に結合して、環を形成してもよい。
 上記式(1)で表される化合物の具体例を以下及び実施例に示すが、本発明はこれらに限定されない。
 下記の具体例においては、A11及びA12がいずれも-N(R)-である化合物を示したが、下記具体例においては、A11及びA12(下記の具体例中のN-RN1及びN-RN2)の一方又は両方を、-O-又は-P(R)-に置換した化合物も挙げられる。ここで、-P(R)-中のRとしては、下記具体例におけるRN1又はRN2と同じ基が挙げられる。
 下記の具体例において、TIPSはトリイソプロピルシリルを示し、*は結合部を示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 本発明の化合物は、キャリア移動度の向上及び耐久性、更には材料安定性の点で、分子量が、350以上であることが好ましく、400以上であることがより好ましく、500以上であることが更に好ましい。また、溶解性の観点から、分子量は3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることが更に好ましい。
 本発明の化合物の合成方法は、特に限定されず、通常の方法を参照して、合成することができる。例えば、非特許文献1に記載の合成方法、又は、後述する実施例での合成方法を、参照することができる。
[有機薄膜トランジスタ用組成物]
 次に、本発明の有機薄膜トランジスタ用組成物について、説明する。
 この有機薄膜トランジスタ用組成物(有機半導体膜用組成物)は、本発明の化合物を含有し、本発明の有機半導体膜の形成に好ましく用いられる。
 <本発明の化合物>
 本発明の化合物は、上述の通りであり、1種単独で用いてもよいし、2種以上併用してもよい。
 有機薄膜トランジスタ用組成物の、上記化合物の含有率は、特に限定されず、例えば、後述する溶媒を除いた固形分中の含有率で表すことができる。固形分中の含有率としては、例えば、後述する有機半導体膜中の化合物の含有率と同じ範囲にすることが好ましい。
 <バインダーポリマー>
 有機薄膜トランジスタ用組成物は、バインダーポリマーを含有していてもよい。この組成物がバインダーポリマーを含有していると、膜質の高い有機半導体膜が得られる。
 このようなバインダーポリマーとしては、特に限定されず、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン若しくはポリプロピレンなどの絶縁性ポリマー、又は、これらの共重合体が挙げられる。これら以外にも、例えば、エチレン-プロピレンゴム、アクリロニトリル-ブタジエンゴム、水素化されたニトリルゴム、フッ素ゴム、パーフルオロエラストマー、テトラフルオロエチレンプロピレン共重合体、エチレン-プロピレン-ジエン共重合体、スチレン-ブタジエンゴム、ポリクロロプレン、ポリネオプレン、ブチルゴム、メチルフェニルシリコーン樹脂、メチルフェニルビニルシリコーン樹脂、メチルビニルシリコーン樹脂、フルオロシリコーン樹脂、アクリルゴム、エチレンアクリルゴム、クロロスルホン化ポリエチレン、クロロポリエチレン、エピクロロヒドリン共重合体、ポリイソプレン-天然ゴム共重合体、ポリイソプレンゴム、スチレン-イソプレンブロック共重合体、ポリエステルウレタン共重合体、ポリエーテルウレタン共重合体、ポリエーテルエステル熱可塑性エラストマー若しくはポリブタジエンゴム等のゴム、又は、熱可塑性エラストマー重合体が挙げられる。更には、例えば、ポリビニルカルバゾール若しくはポリシランなどの光伝導性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン若しくはポリパラフェニレンビニレンなどの導電性ポリマー、又は、Chemistry of Materials,2014,26,647.等に記載の半導体ポリマー等が挙げられる。
 バインダーポリマーは、電荷移動度を考慮すると、極性基を含まない構造を有することが好ましい。ここで、極性基とは、炭素原子及び水素原子以外のヘテロ原子を有する官能基をいう。極性基を含まない構造を有するバインダーポリマーとしては、上記の中でも、ポリスチレン又はポリ(α-メチルスチレン)が好ましい。また、半導体ポリマーも好ましい。
 バインダーポリマーのガラス転移温度は、特に限定されず、用途等に応じて適宜に設定される。例えば、有機半導体膜に強固な機械的強度を付与する場合、ガラス転移温度を高くすることが好ましい。一方、有機半導体膜にフレキシビリティーを付与する場合、ガラス転移温度を低くすることが好ましい。
 バインダーポリマーは、1種単独で用いてもよいし、2種以上併用してもよい。
 有機薄膜トランジスタ用組成物の、バインダーポリマーの含有率は、特に限定されず、例えば、固形分中の含有率としては、後述する有機半導体膜中のバインダーポリマーの含有率と同じ範囲にすることが好ましい。バインダーポリマーの含有率が上記範囲内にある有機薄膜トランジスタ用組成物を用いて有機薄膜トランジスタの有機半導体膜を形成すると、キャリア移動度及び耐久性耐が更に向上する。
 バインダーポリマーの重量平均分子量は、特に限定されないが、1,000~1,000万が好ましく、3,000~500万がより好ましく、5,000~300万が更に好ましい。
 有機薄膜トランジスタ用組成物において、本発明の化合物は、バインダーポリマーに対して、均一に混合していてもよく、本発明の化合物の一部又は全部が相分離していてもよい。塗布容易性又は塗布均一性の点で、少なくとも塗布時に、本発明の化合物とバインダーポリマーとが均一に混合していることが好ましい。
 <溶媒>
 有機薄膜トランジスタ用組成物は、溶媒を含有していてもよい。このような溶媒としては、上述の化合物を溶解又は分散させるものであれば特に限定されず、無機溶媒又は有機溶媒が挙げられる。中でも、有機溶媒が好ましい。溶媒は、1種単独で使用してもよいし、2種以上を併用してもよい。
 有機溶媒としては、特に限定されないが、ヘキサン、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、アミルベンゼン、デカリン、1-メチルナフタレン、1-エチルナフタレン、1,6-ジメチルナフタレン若しくはテトラリンなどの炭化水素溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン、プロピオフェノン若しくはブチロフェノンなどのケトン溶媒、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、1,2-ジクロロベンゼン、1,2,4-トリクロロベンゼン、クロロトルエン若しくは1-フルオロナフタレンなどのハロゲン化炭化水素溶媒、ピリジン、ピコリン、キノリン、チオフェン、3-ブチルチオフェン若しくはチエノ[2,3-b]チオフェン等の複素環溶媒、2-クロロチオフェン、3-クロロチオフェン、2,5-ジクロロチオフェン、3,4-ジクロロチオフェン、2-ブロモチオフェン、3-ブロモチオフェン、2,3-ジブロモチオフェン、2,4-ジブロモチオフェン、2,5-ジブロモチオフェン、3,4-ジブロモチオフェン若しくは3,4-ジクロロ-1,2,5-チアジアゾール等のハロゲン化複素環溶媒、酢酸エチル、酢酸ブチル、酢酸アミル、酢酸-2-エチルヘキシル、γ-ブチロラクトン若しくは酢酸フェニルなどのエステル溶媒、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ若しくはエチレングリコールなどのアルコール溶媒、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、アニソール、エトキシベンゼン、プロポキシベンゼン、イソプロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、4-エチルアニソール、ジメチルアニソール(2,3-、2,4-、2,5-、2,6-、3,4-、3,5-、3,6-のいずれか)若しくは1,4-ベンゾジオキサンなどのエーテル溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン若しくは1,3-ジメチル-2-イミダゾリジノン等のアミド若しくはイミド溶媒、ジメチルスルホキシドなどのスルホキシド溶媒、リン酸トリメチルなどのリン酸エステル溶媒、アセトニトリル若しくはベンゾニトリルなどのニトリル溶媒、ニトロメタン若しくはニトロベンゼンなどのニトロ溶媒が挙げられる。
 中でも、炭化水素溶媒、ケトン溶媒、ハロゲン化炭化水素溶媒、複素環溶媒、ハロゲン化複素環溶媒又はエーテル溶媒が好ましく、トルエン、キシレン、メシチレン、アミルベンゼン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、ジクロロベンゼン、アニソール、エトキシベンゼン、プロポキシベンゼン、イソプロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、1-フルオロナフタレン、3-クロロチオフェン又は2,5-ジブロモチオフェンがより好ましく、トルエン、キシレン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、アニソール、エトキシベンゼン、プロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、1-フルオロナフタレン、3-クロロチオフェン又は2,5-ジブロモチオフェンが特に好ましい。
 有機薄膜トランジスタ用組成物においては、上述の溶媒の中でも沸点が100℃以上の溶媒であることが、膜質の点、及び、上述の化合物の結晶を大きくできる点で、好ましい。
 沸点が100℃以上の溶媒としては、トルエン、キシレン、メシチレン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、ジクロロベンゼン、アニソール、エトキシベンゼン、プロポキシベンゼン、イソプロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール又は4-メチルアニソールが挙げられる。中でも、トルエン、キシレン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、アニソール、エトキシベンゼン、プロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール又は4-メチルアニソールがより好ましい。
 また、沸点が100℃以上の溶媒が非ハロゲン溶媒(分子中にハロゲン原子を有しない溶媒)であることが、環境負荷や人への毒性の点で、特に好ましい。
 有機薄膜トランジスタ用組成物中の、溶媒の含有率は、90~99.9質量%であることが好ましく、95~99.9質量%であることがより好ましく、96~99.5質量%であることが更に好ましい。
 <その他の成分>
 本発明の有機薄膜トランジスタ用組成物は、本発明の化合物及び溶媒以外の成分を含有してもよい。
 このような成分として、各種の添加剤等が挙げられる。
 添加剤としては、有機薄膜トランジスタ用組成物に通常用いられるものを特に制限されることなく、用いることができる。例えば、界面活性剤、酸化防止剤、結晶化制御剤又は結晶配向制御剤などが挙げられる。界面活性剤及び酸化防止剤としては、例えば、特開2015-195362号公報の段落番号0136及び0137の記載のものが挙げられ、この段落の記記載がそのまま本明細書に好ましく取り込まれる。
 有機薄膜トランジスタ用組成物の、添加剤の含有率は、特に限定されず、例えば、固形分中の含有率としては、後述する有機半導体膜中の、添加剤の含有率と同じ範囲にすることが好ましい。添加剤の含有率が上記範囲内にある有機薄膜トランジスタ用組成物を用いて機薄膜トランジスタの有機半導体膜を形成すると、膜形成性に優れ、キャリア移動度及び耐熱性がより向上する。
 本発明の有機薄膜トランジスタ用組成物は、粘度が10mPa・s以上であることが印刷適性の点で、好ましい。
<調製方法>
 有機薄膜トランジスタ用組成物の調製方法としては、特に制限されず、通常の調製方法を採用できる。例えば、所定量の各成分を適宜攪拌処理することにより、本発明の有機薄膜トランジスタ用組成物を調製することができる。
 必要により、各成分を適宜攪拌処理中又は後に加熱することもできる。加熱温度は、特に限定されず、例えば、150~40℃の範囲に決定される。溶媒を用いる場合は、上記範囲内であって溶媒の沸点未満の温度に決定される。
[有機薄膜トランジスタ]
 次に、本発明の化合物を用いた上述の有機半導体デバイスの中でも好ましい形態である、本発明の有機薄膜トランジスタ(有機TFTともいう)について、説明する。
 本発明の有機TFTは、後述する本発明の有機半導体膜を備えている。これにより、本発明の有機TFTは、高いキャリア移動度を示し、しかも大気下においても経時による低下を効果的に抑えられ、安定駆動する。
 本発明において、大気下での周辺温度又は湿度は、有機薄膜トランジスタの使用環境での温度又は湿度であれば特に限定されず、例えば温度としては室温(20℃)、湿度としては10~90RH%が挙げられる。
 本発明の有機TFTは、有機電界効果トランジスタ(Field Effect Transistor、FET)として用いられることが好ましく、ゲート-チャンネル間が絶縁されている絶縁ゲート型FETとして用いられることがより好ましい。
 本発明の有機薄膜トランジスタの厚さは、特に限定されないが、より薄いトランジスタとする場合には、例えば、トランジスタ全体の厚さを0.1~0.5μmとすることが好ましい。
 本発明の有機TFTは、本発明の有機半導体膜(有機半導体層又は半導体活性層ともいう)を有し、更に、ソース電極と、ドレイン電極と、ゲート電極と、ゲート絶縁膜を有することができる。
 本発明の有機TFTは、基板上に、ゲート電極と、有機半導体膜と、ゲート電極及び有機半導体膜の間に設けられたゲート絶縁膜と、有機半導体膜に接して設けられ、有機半導体膜を介して連結されたソース電極及びドレイン電極とを有する。この有機TFTにおいては、有機半導体膜とゲート絶縁膜が隣接して設けられる。
 本発明の有機薄膜トランジスタは、上記各層を備えていればその構造については特に限定されない。例えば、ボトムコンタクト型(ボトムゲート-ボトムコンタクト型及びトップゲート-ボトムコンタクト型)、又は、トップコンタクト型(ボトムゲート-トップコンタクト型及びトップゲート-トップコンタクト型)などのいずれの構造を有していてもよい。本発明の有機薄膜トランジスタは、より好ましくは、ボトムゲート-ボトムコンタクト型又はボトムゲート-トップコンタクト型(これらを総称してボトムゲート型という)である。
 以下、本発明の有機薄膜トランジスタの一例について、図面を参照して説明する。
 - ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ -
 図1は、本発明の有機薄膜トランジスタの一例であるボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ10の断面模式図である。
 この有機薄膜トランジスタ10は、図1に示されるように、基板(基材)1と、ゲート電極2と、ゲート絶縁膜3と、ソース電極4A及びドレイン電極4Bと、有機半導体膜5と、封止層6とを、この順で、有する。
 以下、基板(基材)、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層、並びに、それぞれの作製方法について詳述する。
 (基板)
 基板は、後述するゲート電極、ソース電極及びドレイン電極等を支持する役割を果たす。
 基板の種類は、特に制限されず、例えば、プラスチック基板、シリコン基板、ガラス基板又はセラミック基板等が挙げられる。中でも、各デバイスへの適用性及びコストの観点から、ガラス基板又はプラスチック基板であることが好ましい。
 基板の厚みは、特に限定されない。例えば、10mm以下であるのが好ましく、2mm以下であるのが更に好ましく、1.5mm以下であるのが特に好ましい。一方、0.01mm以上であるのが好ましく、0.05mm以上であるのが更に好ましい。
 (ゲート電極)
 ゲート電極は、有機TFTのゲート電極として用いられている通常の電極を特に制限されることなく適用できる。
 ゲート電極を形成する材料(電極材料)としては、特に限定されず、例えば、金、銀、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム若しくはナトリウム等の金属、InO、SnO若しくはインジウム錫酸化物(ITO)等の導電性の酸化物、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン若しくはポリジアセチレン等の導電性高分子、シリコン、ゲルマニウム若しくはガリウム砒素等の半導体、又は、フラーレン、カーボンナノチューブ若しくはグラファイト等の炭素材料等が挙げられる。中でも、上記金属が好ましく、銀又はアルミニウムがより好ましい。
 ゲート電極の厚みは、特に限定されないが、20~200nmであることが好ましい。
 ゲート電極は、上記基板として機能するものでもよく、この場合、上記基板はなくてもよい。
 ゲート電極を形成する方法は、特に限定されないが、例えば、基板上に、上述の電極材料を真空蒸着(以下単に、蒸着ともいう)又はスパッタする方法、上述の電極材料を含有する電極形成用組成物を塗布又は印刷する方法等が挙げられる。また、電極をパターニングする場合、パターニング方法としては、例えば、インクジェット印刷、スクリーン印刷、オフセット印刷若しくは凸版印刷(フレキソ印刷)等の印刷法、フォトリソグラフィー法又はマスク蒸着法等が挙げられる。
 (ゲート絶縁膜)
 ゲート絶縁膜は、絶縁性を有する層であれば特に限定されず、単層であってもよいし、多層であってもよい。
 ゲート絶縁膜を形成する材料としては、特に限定されず、例えば、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、メラミン樹脂、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルフォン、ポリベンゾキサゾール、ポリシルセスキオキサン、エポキシ樹脂若しくはフェノール樹脂等のポリマー、二酸化ケイ素、酸化アルミニウム若しくは酸化チタン等の無機酸化物、又は、窒化ケイ素等の窒化物等が挙げられる。中でも、有機半導体膜との相性の点では上記ポリマーであることが好ましく、膜の均一性の点では上記無機酸化物、特に二酸化ケイ素が好ましい。
 これらの材料は、1種単独で用いてもよいし、2種以上併用してもよい。
 ゲート絶縁膜の膜厚は、特に限定されないが、100~1000nmであることが好ましい。
 ゲート絶縁膜を形成する方法は、特に限定されないが、例えば、ゲート電極が形成された基板上に、上記材料を含有するゲート絶縁膜形成用組成物を塗布する方法、上記材料を蒸着又はスパッタする方法等が挙げられる。
 (ソース電極及びドレイン電極)
 本発明の有機TFTにおいて、ソース電極は、配線を通じて外部から電流が流入する電極である。また、ドレイン電極は、配線を通じて外部に電流を送り出す電極である。
 ソース電極及びドレイン電極を形成する材料は、上述したゲート電極を形成する電極材料と同じものを用いることができる。中でも、金属が好ましく、金又は銀がより好ましい。
 ソース電極及びドレイン電極の厚みは、特に限定されないが、それぞれ、1nm以上が好ましく、10nm以上がより好ましい。また、500nm以下が好ましく、300nm以下がより好ましい。
 ソース電極とドレイン電極との間の間隔(ゲート長)は、適宜に決定できるが、例えば、200μm以下が好ましく、100μm以下が特に好ましい。また、ゲート幅は、適宜に決定できるが、例えば、5000μm以下が好ましく、1000μm以下が特に好ましい。更に、ゲート幅Wとゲート長Lとの比は、特に限定されないが、例えば、比W/Lが10以上であることが好ましく、20以上であることがより好ましい。
 ソース電極及びドレイン電極を形成する方法は、特に限定されないが、例えば、ゲート電極とゲート絶縁膜とが形成された基板上に、電極材料を真空蒸着又はスパッタする方法、電極形成用組成物を塗布又は印刷する方法等が挙げられる。パターニングする場合、パターニングする方法は上述したゲート電極の方法と同じである。
 (有機半導体膜)
 本発明の有機半導体膜は、その用途については、特に限定されず、上述の各有機半導体デバイスが備える有機半導体膜を挙げることができる。本発明の有機半導体膜は、中でも、有機薄膜トランジスタの有機半導体膜として好ましく用いられる。以下、本発明の有機半導体膜を有機薄膜トランジスタの有機半導体膜として用いる場合について、説明する。
 本発明の有機TFTにおいて、有機半導体膜としては、上述の本発明の化合物を含有する本発明の有機半導体膜を用いる。有機半導体膜に含有される本発明の化合物は、1種でもよく、2種以上でもよい。
 有機半導体膜が本発明の化合物を含有すると、高いキャリア移動度が高く、しかも大気下において使用又は保存(放置)してもキャリア移動度を維持することができる。その理由は定かではないが、上述のように、本発明の化合物が、低い、最低空軌道の軌道エネルギーを示すためと考えられる。
 有機半導体膜中の、本発明の化合物の含有率は、特に限定されず適宜に設定できる。例えば、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。その上限は、100質量%とすることができる。この上限は、有機半導体膜がバインダーポリマー等を含有する場合、例えば、90質量%以下であることが好ましく、80質量%以下であることが更に好ましい。
 有機半導体膜は、本発明の化合物に加えて、上述したバインダーポリマーを含有していてもよい。バインダーポリマーは、1種を含有していてもよく、2種以上を含有していてもよい。
 有機半導体膜において、本発明の化合物とバインダーポリマーの含有状態は特に限定されないが、キャリア移動度の点で、膜厚方向に沿って、本発明の化合物とバインダーポリマーとが互いに相分離していることが好ましい。
 有機半導体膜中の、バインダーポリマーの含有率は、特に限定されず適宜に設定できる。例えば、90質量%以下が好ましく、70質量%以下であることがより好ましい。その下限は、0質量%以上とすることができ、例えば、10質量%以上であることが好ましく、20質量%以上であることがより好ましい。
 有機半導体膜は、本発明の化合物に加えて、上述の添加剤を含有していてもよい。添加剤は、1種を含有していてもよく、2種以上を含有していてもよい。
 有機半導体膜中の、添加剤の含有率は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
 有機半導体膜の膜厚は、適用される有機薄膜トランジスタに応じて一義的に決定することができないが、例えば、10~500nmが好ましく、20~200nmがより好ましい。
 この有機半導体膜は、上述した有機薄膜トランジスタ用組成物を塗布して形成することができる。詳細は後述する。
 (封止層)
 本発明の有機薄膜トランジスタは、上述のように、大気下においても安定駆動する。したがって、有機薄膜トランジスタ全体を大気(酸素ガス)又は水分に対して封止(遮断)しなくてもよい(封止層を設けなくてもよい)。更に長期間にわたって安定駆動させることを目的として、有機薄膜トランジスタ全体を金属性の封止缶又は封止剤で封止することができる。
 封止層には、有機TFTに通常用いられる封止剤(封止層形成用組成物)を用いることができる。封止剤としては、例えば、ガラス若しくは窒化ケイ素などの無機材料、パリレンなどの高分子材料、又は、低分子材料等が挙げられる。
 封止層は、上記封止剤を用いて、塗布乾燥等の通常の方法により、形成できる。
 封止層の膜厚は、特に限定されないが、0.2~10μmであることが好ましい。
 - ボトムゲート-トップコンタクト型有機薄膜トランジスタ -
 図2は、本発明の半導体素子の一例であるボトムゲート-トップコンタクト型の有機薄膜トランジスタ20を表す断面模式図である。
 有機薄膜トランジスタ20は、図2に示されるように、基板1と、ゲート電極2と、ゲート絶縁膜3と、有機半導体膜5と、ソース電極4A及びドレイン電極4Bと、封止層6とを、この順で、有する。
 有機薄膜トランジスタ20は、層構成(積層態様)が異なること以外は、有機薄膜トランジスタ10と同じである。したがって、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層については、上述の、ボトムゲート-ボトムコンタクト型有機薄膜トランジスタにおけるものと同じであるので、その説明を省略する。
[有機薄膜トランジスタの製造方法]
 本発明の有機薄膜トランジスタの製造方法は、本発明の有機薄膜トランジスタ用組成物を、基板上に塗布して、有機半導体膜を形成する工程を有する方法であれば、特に限定されない。
 ゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極、並びに、封止層は、いずれも、上記した方法で作製又は成膜することができる。
 以下、有機半導体膜を形成する工程について、説明する。
 この工程においては、上述した、本発明の有機薄膜トランジスタ用組成物を用いる。
 本発明において、有機薄膜トランジスタ用組成物を基板上に塗布するとは、有機薄膜トランジスタ用組成物を基板に直接塗布する態様のみならず、基板上に設けられた別の層を介して基板の上方に有機薄膜トランジスタ用組成物を塗布する態様も含むものとする。有機薄膜トランジスタ用組成物が塗布される別の層(有機半導体膜に接する、有機半導体膜の土台となる層)は、有機薄膜トランジスタの構造により必然的に定まる。例えば、ボトムゲート型の場合、ゲート絶縁膜であり、トップゲート型(トップゲート-ボトムコンタクト型及びトップゲート-トップコンタクト型)の場合、ソース電極又はドレイン電極である。
 有機半導体膜を形成する際に、基板を加熱又は冷却してもよい。基板の温度を変化させることで、膜質、又は、膜中における本発明の化合物のパッキングを制御することができる。
 基板の温度としては、特に限定されない。例えば、0~200℃の範囲内で設定されることが好ましく、15~100℃の範囲内で設定されることがより好ましく、20~95℃の範囲内で設定されることが特に好ましい。
 有機半導体膜を形成する方法は、特に限定されず、真空プロセス又は溶液プロセスが挙げられ、いずれも好ましい。本発明においては溶液プロセスが特に好ましい。
 真空プロセスとしては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、若しくは、分子ビームエピタキシー(Molecular Beam Epitaxy;MBE)法などの物理気相成長法、又は、プラズマ重合などの化学気相蒸着(Chemical Vapor Deposition;CVD)法が挙げられる。中でも、真空蒸着法が好ましい。
 溶液プロセスにおいては、上記溶媒を含有する有機薄膜トランジスタ用組成物を用いることが好ましい。
 本発明の化合物は、上述のように大気下においても安定である。したがって、溶液プロセスは大気下において行うことができ、更には、本発明の有機薄膜トランジスタ用組成物を大面積で塗布することができる。
 溶液プロセスにおける、有機薄膜トランジスタ用組成物の塗布方法としては、通常の方法を用いることができる。例えば、ドロップキャスト法、キャスト法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、若しくは、スピンコート法などの塗布法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、若しくは、マイクロコンタクト印刷法などの各種印刷法、又は、Langmuir-Blodgett(LB)法などの方法が挙げられる。中でも、ドロップキャスト法、キャスト法、スピンコート法、インクジェット法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法又はマイクロコンタクト印刷法が好ましい。後述する好ましい溶液プロセスにおいては、インクジェット法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法又はマイクロコンタクト印刷法が好ましく、フレキソグラフィー印刷法、マイクロコンタクト印刷法又はインクジェット法がより好ましい。
 溶液プロセスにおいては、好ましくは、基板上に塗布した有機薄膜トランジスタ用組成物を乾燥する。乾燥は徐々に行うことが更に好ましい。
 有機薄膜トランジスタ用組成物を乾燥することにより、本発明の化合物の結晶を析出させて、有機半導体膜を形成することができる。
 有機薄膜トランジスタ用組成物の乾燥は、加熱した基板上で、自然乾燥又は加熱乾燥させてから、減圧乾燥することが、膜質の点で、好ましい。自然乾燥又は加熱乾燥時の基板の温度は、20~100℃であることが好ましく、50~80℃であることがより好ましい。自然乾燥又は加熱乾燥の時間は0.5~20時間であることが好ましく、1~10時間であることがより好ましい。
 減圧乾燥時の温度は、20~100℃であることが好ましく、40~80℃であることがより好ましい。減圧乾燥時間は1~20時間であることが好ましく、2~10時間であることがより好ましい。減圧乾燥時の圧力は、10-6~10-2Paであることが好ましく、10-5~10-3Paであることがより好ましい。
 このようにして乾燥した有機薄膜トランジスタ用組成物を必要により整形等して、所定形状又はパターンとすることもできる。
 以下に、好ましい溶液プロセスについて、図面を参照して、説明する。
 好ましい溶液プロセスによる有機半導体膜の形成方法は、本発明の有機薄膜トランジスタ用組成物(このプロセスにおいて塗布液ともいう)を、基板及び基板上に配置した部材に接するように、基板の面内の一部に滴下(塗布)し、滴下した塗布液を乾燥させる方法である。好ましい溶液プロセスに用いられる基板及び部材については後述する。
 ここで、基板と、この基板上に配置される部材とは、基板と、これに固着していない部材との距離を一定の距離に保った状態、又は、基板と部材を接触させた状態を維持している。
 基板と部材とは上記状態を維持している限り、塗布液を滴下又は乾燥させる際に、基板と部材との位置関係を静止させてもよいし、動かしてもよい。生産効率の点で、位置関係を動かすことが好ましく、一方、得られる有機半導体膜の膜質及び結晶サイズの点では、位置関係を静止させることが好ましい。
 好ましい溶液プロセスにおいて塗布液の滴下方法は特に限定されない。例えば、塗布液を滴下するにあたり、塗布液を一滴滴下するか、二滴以上滴下する場合は一滴ずつ滴下することが、基板上で塗布液の膜厚が薄い部分が生じやすく、塗布液の端部から乾燥が進む点で、好ましい。塗布液を滴下する場合、塗布液一滴の容量は、0.01~0.2mLであることが好ましく、0.02~0.1mLであることがより好ましい。
 塗布液を、基板と部材の両方に接するように基板の面内の一部に滴下することにより、塗布液の端部における膜厚を薄くすることができる。
 塗布液の基板に対する接触角(25℃)は、特に限定されないが、0~90°であることが好ましく、10~20°であることがより好ましい。接触角の測定方法は、塗布液(固形分の濃度:0.1質量%、溶媒:アニソール)滴下後1秒後、液滴と基板との角度を測定する。具体的には、液量を1.0μL以上とし、テフロン(登録商標)針を使用して液滴法により、静的接触角を測定する。このようにして、同様に処理して得た異なる基板について、複数回(通常、5回)測定を行い、その平均値を算出し、その値を接触角とする。
 塗布液は、部材に対して、メニスカスを形成していることが好ましく、凹状のメニスカスを形成していることが膜質の点でより好ましい。
 基板と部材との距離を一定の距離に保った状態で塗布液を塗布する方法としては、図3に示される方法が挙げられる。この方法においては、まず、基板42と、部材43とを所定の位置に配置する。具体的には、塗布液41を基板1上に滴下する前の状態を示す図3(A)に示される状態に、基板42及び部材43を配置する。このとき、基板42と、基板42に接していない部材43との距離を一定の距離に保つ。距離としては、塗布液の塗布量又は粘度等により、一概に決定できず、適宜に設定できる。
 次いで、図3(B)に示されるように、基板42と部材43の両方に接するように、基板42の面内の一部(基板42と部材43との対向部近傍)に塗布液41を滴下する。
 その後、基板42と部材43との位置関係を静止(固定)させた状態で、塗布液41を、好ましくは上記のようにして、乾燥させる。この状態が図3(C)に示されている。塗布液41は、基板42上において膜厚が薄い両端部(端縁)から内部に向かって乾燥され、結晶化する。これにより、本発明の化合物を、サイズの大きな結晶として、所定の位置に配置することができる。
 塗布液41を乾燥させた後、部材43を基板42から引き離す。例えば、部材43を基板42に対して垂直に引き上げて、引き離す。これにより、形成された結晶に部材43の痕跡を残すことなく、膜質のよい有機半導体膜とすることができる。
 こうして、本発明の化合物の結晶からなる有機半導体膜を形成できる。
 基板と部材を接触させた状態で塗布液を塗布する方法としては、図4に示される方法が挙げられる。この方法においては、まず、基板42と部材43とを接触状態に配置する。具体的には、塗布液41を基板42上に滴下する前の状態を示す図4(A)に示される状態に、基板42上に部材43を配置する。次いで、図4(B1)及び図4(B2)に示されるように、基板42と部材43の両方に接するように、基板42の面内の一部(基板42と部材43との接触部近傍)に塗布液41を滴下する。このとき、図4(B2)に示されるように、塗布液41は接触部を囲繞していることが好ましい。図4(B1)は塗布液を塗布した基板の正面図であり、図4(B2)は塗布液を塗布した基板の平面図である。図4(B1)及び図4(B2)に、3次元座標(X,Y,Z)を加入した。
 その後、基板42と部材43との位置関係を静止(固定)させた状態で、塗布液41を、好ましくは上記のようにして、乾燥させる。この状態が図4(C)に示されている。塗布液41は、基板42上において膜厚が薄い端縁から内部に向かって乾燥され、結晶化する。これにより、本発明の化合物を、サイズの大きな結晶として、所定の位置に配置することができる。
 塗布液41を乾燥させた後、部材43を基板42から、例えば垂直に引き上げて、引き離す。これにより、図4(D)に示されるように、形成された結晶に部材43の痕跡を残すことなく、膜質のよい有機半導体膜5とすることができる。
 こうして、本発明の化合物の結晶からなる有機半導体膜を形成できる。
 基板と部材を接触させた状態で塗布液を塗布する方法は、膜質の点、及び、部材43を保持する機構が不要で、しかも基板に対する部材43の距離(接触状態)を保つことができる点で、基板と部材との距離を一定の距離に保った状態で塗布液を塗布する方法に対して、好ましい。
 基板と部材を接触させた状態で塗布液を塗布する別の方法として、図5に示される方法が挙げられる。この方法は、部材43を相対的に移動させて本発明の化合物の結晶化を促進する点で、図4に示される方法と異なる。
 図5に示される方法においては、まず、基板42と部材43とを接触状態に配置する。具体的には、塗布液41を基板42上に滴下する前の状態を示す図5(A)に示される状態に、基板42上に部材43を配置する。
 次いで、図5(B)に示されるように、基板42と部材43の両方に接するように、基板42の面内の一部(基板42と部材43との接触部近傍)に塗布液41を滴下する。このとき、塗布液41は、図4(B2)に示すように接触部を囲繞していることが好ましい。
 その後、基板42と部材43との位置関係を動かして、塗布液41を乾燥させる。例えば、基板42に対して部材43を、図中の矢印(図5(c)中の-X軸)方向に相対的に移動させる。この状態が図5(C)に示されている。塗布液41は、部材43の移動方向と逆側の端部(X軸方向)から移動方向(-X軸方向)に向かって乾燥され、結晶化する。これにより、本発明の化合物を、サイズの大きな結晶として、所定の位置に配置することができる。
 塗布液41を乾燥させた後、部材43を基板42から、例えば垂直に引き上げて、引き離す。これにより、形成された結晶に部材43の痕跡を残すことなく、膜質のよい有機半導体膜とすることができる。
 こうして、本発明の化合物の結晶からなる有機半導体膜を形成できる。
 上述の好ましい溶液プロセスに用いられる基板は、有機薄膜トランジスタの基板に相当し、好ましくは、ゲート絶縁膜が形成された基板である。
 上述の好ましい溶液プロセスに用いられる部材43としては、特に限定されないが、材質が、ガラス、石英若しくはシリコンなどの無機材料、又は、テフロン(登録商標)、ポリエチレン若しくはポリプロピレンなどのプラスチックであることが好ましく、ガラスであることがより好ましい。
 部材43のサイズは、特に限定されない。例えば、基板42に対面する面における一辺の長さ(図6におけるd又はW)は、その下限値が、基板42の一辺の長さに対して、0.1%以上であることが好ましく、1%以上であることがより好ましく、10%以上であることが特に好ましく、20%以上であることがより特に好ましい。また、上記一辺の長さの上限値は、基板42の一辺の長さに対して、80%以下であることが好ましく、70%以下であることがより好ましく、50%以下であることが特に好ましい。部材43の高さ(図6におけるh)は、1~50mmであることが好ましく、5~20mmであることがより好ましい。更に、部材43における長さ比h/dは、0.01~10であることが好ましく、部材43の配置安定性の点で、0.1~5であることがより好ましい。また、長さ比W/dは、1~1000であることが好ましく、本発明の化合物を広範囲で結晶化できる点で、5~100であることがより好ましい。
 このようにして、本発明の化合物の結晶を析出させて、本発明の有機半導体膜を形成できる。本発明の化合物の結晶が析出したか否かは、偏光顕微鏡(商品名:Eclipse LV100N POL(透過・反射照明タイプ)、ニコン社製、接眼レンズ:倍率10倍、対物レンズ:倍率5~20倍)を用いて、有機半導体膜を観察することで、確認することができる。
[有機薄膜トランジスタの用途]
 上述の有機薄膜トランジスタは、その用途については特に限定されず、例えば、電子ペーパー、ディスプレイデバイス、センサ、電子タグ等に使用することができる。
 本発明を実施例に基づき更に詳細に説明するが、本発明は下記実施例に限定されない。
[合成例]
 各例に用いた化合物1~5を以下に示す。
 各化合物の同定は、テトラメチルシランを内部標準とするH-NMR(400MHz)により、行った。溶媒として、CDCl、ジメチルスルホキシド(DMSO)-d6、又は、テトラクロロエタン-d2を用いた。
Figure JPOXMLDOC01-appb-C000026
<合成例1:化合物1の合成>
 下記スキームに従い、化合物1を合成した。
(化合物1-2:ジメチル-2,2’-(9,10-ジオキソ-9,10-ジヒドロアントラセン-1,5-ジイル)ビス(2-シアノアセテート)の合成)
Figure JPOXMLDOC01-appb-C000027
 上記スキーム中、Meはメチルを、tBuはt-ブチルを、DMSOはジメチルスルホキシドを、それぞれ、示す。
 室温(20℃)において、1,5-ジニトロアントラキノン1-1(50g,168mmol)のジメチルスルホキシド(600mL)溶液に、シアノ酢酸メチル(133g,1.34mol)を加え、更にカリウム-tert-ブトキシド(150.6g,1.34mol)を発熱に注意しながら徐々に加えた。混合溶液を50℃に加熱し、3時間撹拌した。反応溶液を、室温に冷却後、氷水2Lに注ぎ、反応を停止した。析出物をろ別し、シリカゲルカラムクロマトグラフィーで精製(展開溶媒=chlroform:ethylacetate=98:2(体積比))することにより、淡橙色固体として、化合物1-2(26.0g,64.6mmol,収率38%)を得た。
 H-NMR(CDCl) δ:8.44(dd,J=7.8,1.3Hz,2H),7.98(brd,J=7.8Hz,2H),7.90(t,J=7.8,2H),6.02(brs,2H),3.88(s,6H)
(化合物1-3:ジメチル-2,8-ジヒドロキシベンゾ[de]イソキノリノ[1,8-gh]キノリン-3,9-ジカルボキシレートの合成)
Figure JPOXMLDOC01-appb-C000028
 上記スキーム中、Meはメチルを示す。
 濃硫酸230mLに化合物1-2(23.0g,57.2mmol)を加えて、30分間撹拌した。得られた濃硫酸溶液を水1900mLに注ぎ、50℃に加熱し、20分撹拌した。得られた溶液に50w/v%の水酸化ナトリウム水溶液710mLを滴下し、更に80℃で10分加熱撹拌した。反応溶液を室温に冷却後、濃塩酸で中和した。析出物をろ別し、水とアセトンで洗浄し、茶色粉末として化合物1-3(20.0g,49.7mmol,収率87%)を得た。
 H-NMR(CDCl) δ:8.97(d,J=7.6Hz,2H),8.88(d,J=8.6Hz,2H),7.87(dd,J=8.6Hz,7.6Hz,2H),4.18(s,6H)
(化合物1-4:ジメチル-2,8-ビス(((トリフルオロメチル)スルホニル)オキシ)ベンゾ[de]イソキノリノ[1,8-gh]キノリン-3,9-ジカルボキシレートの合成)
Figure JPOXMLDOC01-appb-C000029
 上記スキーム中、Meはメチルを、Etはエチルを、DMAPは4-ジメチルアミノピリジンを、Tfはトリフルオロメタンスルホニルを、それぞれ、示す。
 反応容器に、化合物1-3(17.0g,42.3mmol)、4-ジメチルアミノピリジン(516mg,4.23mmol)、トリエチルアミン(12.8mL,93.1mmol)、及び、ジクロロメタン227mLを加え、アルゴン雰囲気下、-20℃に冷却した。そこへ、N-フェニルビス(トリフルオロメタンスルホンイミド)(31.7g,88.8mmol)を添加し、混合液を室温に戻した後、2時間撹拌した。反応溶液を減圧乾燥により濃縮し、酢酸エチルから再結晶させて、黄色固体として化合物1-4(20.0g,30.0mmol,収率71%)を得た。
 H-NMR(CDCl) δ:8.97(d,J=7.6Hz,2H),8.88(d,J=8.6Hz,2H),8.93(dd,J=8.6Hz,7.6Hz,2H),4.18(s,6H)
(化合物1-5:ジメチルベンゾ[de]イソキノリノ[1,8-gh]キノリン-3,9-ジカルボキシレートの合成)
Figure JPOXMLDOC01-appb-C000030
 上記スキーム中、Meはメチルを、Etはエチルを、Phはフェニルを、Tfはトリフルオロメタンスルホニルを、DMFはジメチルホルムアミドを、それぞれ、示す。
 反応容器に、化合物1-4(20.0g,30.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(3.47g,3.00mmol)、トリエチルアミン(25.1mL,180mmol)、ギ酸(6.79mL,180mmol)、及び、ジメチルホルムアミド250mLを加え、アルゴン雰囲気下、80℃に加熱し、2時間撹拌した。反応溶液を室温に冷却後、水1Lに注ぎ、反応を停止した。析出物をろ別し、水、アセトンで洗浄し、茶色固体として化合物1-5(9.17g,24.8mmol,収率83%)を得た。
 H-NMR(DMSO-d6) δ:9.30(s,2H),9.09(m,4H),7.96(dd,J=8.4Hz,7.6Hz,2H),4.06(s,6H)
(化合物1-6:ジメチル-4,10-ジブロモベンゾ[de]イソキノリノ[1,8-gh]キノリン-3,9-ジカルボキシレートの合成)
Figure JPOXMLDOC01-appb-C000031
 上記スキーム中、Meはメチルを、NBSはN-ブロモスクシンイミドを、それぞれ、示す。
 反応容器に、化合物1-5(4.00g,10.8mmol)の濃硫酸50mL溶液と、N-ブロモスクシンイミド(14.4g,81.0mmol)とを加え、50℃に加熱し、2.5時間撹拌した。その後、反応溶液を氷水500mLに注ぎ、反応を停止した。50w/v%の水酸化ナトリウム水溶液を滴下して中和した後、析出物をろ別し、水、アセトンで洗浄し、茶色固体として化合物1-6(2.70g,5.11mmol,収率47%)を得た。
 H-NMR(CDCl) δ:8.90(d,J=7.8Hz,2H),8.72(s,2H),8.18(d,J=8.4Hz,2H),4.04(s,6H)
(化合物1-7:3,9-ジメチル-4,10-ビス(2,4,6-トリクロロフェニル)ベンゾ[de]イソキノリノ[1,8-gh]キノリン-3,4,9,10-テトラカルボキシレートの合成)
Figure JPOXMLDOC01-appb-C000032
 上記スキーム中、Meはメチルを、Etはエチルを、Acはアセチルを、Xantphosは4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテンを、それぞれ、示す。
 化合物1-6(1.40g,2.65mmol)、ぎ酸2,4,6-トリクロロフェニル(2.53g,10.6mmol)、酢酸パラジウム(II)(59.5mg,0.265mmol)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(307mg,0.530mmol)、及び、トルエン13.7mLをシュレンク管に入れ、脱気、アルゴンガス置換を行った。アルゴン雰囲気下で、得られた溶液に、トリエチルアミン(1.47mL,10.6mmol)を加え、100℃に加熱し、12時間撹拌した。そして、反応溶液を室温に冷却後、水に加えた。有機層を酢酸エチルで抽出し、食塩水で洗浄し、減圧にて濃縮した。濃縮残渣を、シリカゲルカラムクロマトグラフィーで精製(展開溶媒=CHCl)することにより、淡黄色固体として化合物1-7(410mg,0.502mmol,収率22%)を得た。
 H-NMR(CDCl) δ:9.27(d,J=8Hz,2H),9.12(s,2H),8.93(d,J=8Hz,2H),7.46(s,4H),3.93(s,6H)
(化合物1-8の合成)
Figure JPOXMLDOC01-appb-C000033
 上記スキーム中、Meはメチルを示す。
 反応容器に、化合物1-7(410mg,0.502mmol)、p-トルエンスルホン酸一水和物(477mg,2.51mmol)、及び、o-ジクロロベンゼン40mLを加え、アルゴン雰囲気下、120℃に加熱し、12時間撹拌した。その後、反応溶液を減圧乾燥して溶媒を留去した。固形分をヘキサンに分散させた後にろ別し、ヘキサンで洗浄して化合物1-8(194mg,0.263mmol,収率52%)を得た。
 H-NMR(CDCl) δ:9.73(s,2H),9.38(d,J=7.6Hz,2H),8.95(d,J=7.6Hz,2H),7.65(d,J=7.8Hz,4H),7.07(d,J=7.6Hz,4H),2.31(s,6H)
(化合物1の合成)
Figure JPOXMLDOC01-appb-C000034
 上記スキーム中、Acはアセチルを示す。
 反応容器に、化合物1-8(110mg,0.149mmol)、シクロヘキシルアミン(5.8μL,0.328mmol)、無水酢酸亜鉛(II)(37.6mg,0.149mmol)、及び、キノリン8.8mLを加え、アルゴン雰囲気下、120℃に加熱し、6時間撹拌した。その後、反応溶媒をシリカゲルカラムクロマトグラフィーで精製(展開溶媒=chlroform:ethylacetate=98:5(体積比))し、更に再結晶精製(溶媒=クロロホルム)することにより、橙色固体として、化合物1(1.0mg,1.8μmol,収率1.2%)を得た。
 H-NMR(テトラクロロエタン-d2) δ:9.61(s,2H),9.24(d,J=7.8Hz,2H),8.81(d,J=7.8Hz,2H),5.00(tt,J=12.4Hz,4Hz,2H),2.52(qd,J=12.4Hz,3.6Hz,4H),1.91(brd,J=13.6HZ,4H),1.76(brd,J=13.2Hz,6H),1.50-1.23(m,6H)
<合成例2:化合物2の合成>
 下記スキームに従い、合成例1で得た化合物1-8を用いて、化合物2を合成した。
Figure JPOXMLDOC01-appb-C000035
 反応容器に、化合物1-8(150mg,0.203mmol)、1H,1H-ヘプタフルオロブチルアミン(108μL,0.812mmol)、プロピオン酸3mL、及び、o-ジクロロベンゼン9mLを加え、アルゴン雰囲気下、140℃に加熱し、6時間撹拌した。減圧下で、反応溶媒を留去後、濃縮残渣をシリカゲルカラムクロマトグラフィーで精製(展開溶媒=tetrachloroethane:butylacetate=90:10(体積比))し、更に再結晶精製(溶媒=テトラクロロエタン)することにより、橙色固体として化合物2(97mg,0.128mmol,収率63%)を得た。
 H-NMR(CDCl) δ:9.71(s,2H),9.35(d,J=8Hz,2H),8.92(d,J=8Hz,2H),5.00(t,J=15.2Hz,4H)
<合成例3:化合物3の合成>
 下記スキームに従い、合成例1で得た化合物1-8を用いて、化合物3を合成した。
Figure JPOXMLDOC01-appb-C000036
 反応容器に、化合物1-8(30mg,0.0412mmol)、p-フルオロアニリン(15.6μL,0.165mmol)、イソ吉草酸0.6mL、及び、o-ジクロロベンゼン3mLを加え、アルゴン雰囲気下、140℃に加熱し、6時間撹拌した。減圧下で、反応溶媒を留去後、濃縮残渣をシリカゲルカラムクロマトグラフィーで精製(展開溶媒=tetrachloroethane:butylacetate=90:10(体積比))し、更に再結晶精製(溶媒=テトラクロロエタン)することにより、橙色固体として化合物3(4.0mg,6.89μmol,収率14%)を得た。
 H-NMR(テトラクロロエタン-d2) δ:9.73(s,2H),9.39(d,J=8Hz,2H),8.92(d,J=8Hz,2H),7.39-7.26(m,8H)
<合成例4:化合物4の合成>
 下記スキームに従い、合成例1で得た化合物1-8を用いて、化合物4を合成した。
Figure JPOXMLDOC01-appb-C000037
 反応容器に、化合物1-8(100mg,0.135mmol)、n-オクチルアミン(89.2μL,0.540mmol)、及び、プロピオン酸8mLを加え、アルゴン雰囲気下、140℃に加熱し、6時間撹拌した。減圧下で、反応溶媒を留去後、濃縮残渣をシリカゲルカラムクロマトグラフィーで精製(展開溶媒=chlroform:ethylacetate=98:3(体積比))し、更に再結晶精製(溶媒=クロロホルム)することにより、橙色固体として化合物4(3.0mg,1.8μmol,収率3.6%)を得た。
 H-NMR(テトラクロロエタン-d2) δ:9.64(s,2H),9.28(d,J=8Hz,2H),8.84(d,J=8Hz,2H),4.16(t,J=8Hz,4H),1.73(m,4H),1.44-1.20(m,20H),0.87(t,J=7.0Hz,6H)
<合成例5:化合物5の合成>
(化合物1-9の合成)
 まず、下記スキームに従い、合成例1で得た化合物1-8を用いて、化合物1-9を合成した。
Figure JPOXMLDOC01-appb-C000038
 上記スキーム中、EtOAcは酢酸エチルを示す。
 化合物1-8(194mg、0.263mmol)を酢酸エチルに分散させた後にろ別し、酢酸エチルで洗浄して、化合物1-9(95mg、0.240mmol、収率91%)を得た。
 H-NMR(テトラクロロエタン-d2) δ:9.73(s,2H),9.39(d,J=8.0Hz,2H),8.94(d,J=8.0Hz,2H)
(化合物5の合成)
 下記スキームに従い、化合物1-9を用いて、化合物5を合成した。
Figure JPOXMLDOC01-appb-C000039
 反応容器に、化合物1-9(494mg,1.25mmol)、フェニルエチルアミン(350μL,2.77mmol)、プロピオン酸10mL、及び、o-ジクロロベンゼン40mLを加え、アルゴン雰囲気下、150℃に加熱し、15時間撹拌した。その後、反応液にメタノールを加えた後、析出物をろ別した。得られた粗精製物をシリカゲルカラムクロマトグラフィーで精製(展開溶媒=オルトジクロロベンゼン:酢酸エチル=98:2(体積比))し、更にテトラクロロエタンにて再結晶精製することにより、化合物5(88mg,0.15μmol,収率12%)を得た。
 H-NMR(テトラクロロエタン-d2) δ:9.73(s,2H),9.36(d,J=7.2Hz,2H),8.92(d,J=7.2Hz,2H),7.43-7.24(m、10H),4.52(t,J=8.0Hz,4H),3.15(t,J=8.0Hz,4H)
<比較のための化合物>
 下記に示す比較化合物c1及びc2を準備した。
 比較化合物c1は、特許文献1に記載の方法を参考にして、合成した。
 比較化合物c2は、非特許文献1に記載の方法を参考にして、合成した。
Figure JPOXMLDOC01-appb-C000040
<最低空軌道の軌道エネルギー>
 製造した化合物1~5並びに比較化合物c1及びc2の最低空軌道の軌道エネルギーを、以下のようにして、算出した。その結果を下記に示す。
    化合物1:-4.17eV
    化合物2:-4.18eV
    化合物3:-4.18eV
    化合物4:-4.17eV
    化合物5:-4.17eV
 比較化合物c1:-3.77eV
 比較化合物c2:-3.81eV
 算出方法及び条件:DFT法(密度汎関数理論)にて最低空軌道の軌道エネルギーを算出した。基底関数、汎関数は以下を使用した。
 B3LYP/6-31+G(d)//6-31G(d)
[実施例1]
 図2に示す構造を有する、ボトムゲート-トップコンタクト型の有機薄膜トランジスタ20(ただし、封止層6を有しない)を製造し、その特性を評価した。
 <有機薄膜トランジスタ用組成物の調製例>
 表1に示す化合物又は比較化合物を、溶媒としてのアニソールに、0.1質量%の濃度で溶解し、これを50℃に加熱して、有機薄膜トランジスタ用組成物(溶液、各表において組成物という)S1-1~S1-5並びにCS1-1及びCS1-2を調製した。
 <有機薄膜トランジスタの製造>
 FET特性測定用基板として、n型シリコン基板(厚さ:0.4mm、ゲート電極2を備えた基板1に相当する。)1の表面に、SiOの熱酸化膜(厚さ:200nm)を有する基板(サイズ:25mm×25mm)を準備した。この基板の熱酸化膜(ゲート絶縁膜3)の表面を、紫外線(UV)-オゾン洗浄した後、β-フェネチルトリメトキシシランで処理した。
 縦10mm×横2mm×高さ5mmのサイズを有するガラス製の部材を準備した。図4に示す部材43としてこの部材を、図4(A)に示すように、上記基板1のβ-フェネチルトリメトキシシラン処理面の中央部に、この処理面に接触させた状態で、配置した。
 次いで、基板1(図4において符号42で示す。)を50℃に加熱し、ここに上記の方法で調製した塗布液S1-1~S1-5並びにCS1-1及びCS1-2それぞれ1滴(約0.05mL)を、ピペットを用いて、図4(A)に示されるように、基板42と部材43との接触部の近傍に、基材42及び部材43に接するように、部材Bの側部から滴下した。塗布液は、図4(B1)及び図4(B2)に示されるように、上記接触部を囲繞し、部材43との界面において凹状のメニスカスを形成していた。塗布液41の基板42に対する接触角(25℃)は10°であった。
 図4(C)に示すように、基板42と部材43とを接触させた状態を維持しながら、また、基42と部材43との位置関係を静止させた状態で、塗布液41を自然乾燥ないしは加熱乾燥(基板42の温度:100℃、乾燥時間:8時間)させた。その後60℃で8時間、10-3Paの圧力下で減圧乾燥させることで、各化合物の結晶を析出させた。次いで、部材43を、基板42に対して垂直に引き上げて、基板42から引き離した。これにより、図4(D)に示す輪環状の、均一な上記膜厚(膜厚:10~50nm)を有する有機半導体膜5を形成した。得られた有機半導体膜5中の化合物の含有率は、いずれも、100質量%であった。
 得られた有機半導体膜5を偏光顕微鏡Eclipse LV100N POL(透過・反射照明タイプ)、ニコン社製、接眼レンズ:倍率10倍、対物レンズ:倍率5~20倍)による観察によって確認したところ、化合物1~5の結晶がいずれも析出していた。
 こうして得られた有機半導体膜5上に所定の開口を有するマスクを配置して、金を蒸着することにより、ソース電極4A及びドレイン電極4B(ともに厚さ:40nm、ゲート幅W=2mm、ゲート長L=50μm、比W/L=40)をそれぞれ形成した。このようにして、FET特性測定用の、有機薄膜トランジスタ(各表においてOTFTという)T1-1~T1-5並びに比較のための有機薄膜トランジスタCT1-1及びCT1-2をそれぞれ製造した。
 <有機薄膜トランジスタの評価>
 製造した各有機薄膜トランジスタについて、セミオートプローバー(ベクターセミコン社製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent社製、4156C)を用いて、1気圧の常圧大気下(温度:室温)でキャリア移動度を評価した。その結果を表1に示す。
 (キャリア移動度の評価)
1.製造後のキャリア移動度μini(初期キャリア移動度)の測定
 各有機薄膜トランジスタのソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を+20V~-100Vの範囲で変化させ、ドレイン電流Iを表す下記式を用いてキャリア移動度μini(cm/Vs)を算出した。算出したキャリア移動度μiniが、下記の評価基準のいずれに含まれるかを判定した。
 キャリア移動度μiniは高いほど好ましく、本試験において、ランクC以上であることが好ましく、ランクB以上であることがより好ましく、ランクAであることが更に好ましい。
 I=(w/2L)μC(V-Vth
 式中、Lはゲート長、wはゲート幅、μはキャリア移動度、Cはゲート絶縁膜の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧を、それぞれ、表す。
 - 評価基準 -
 A:1×10-1cm/Vs以上
 B:1×10-3cm/Vs以上1×10-1cm/Vs未満
 C:1×10-4cm/Vs以上1×10-3cm/Vs未満
 D:トランジスタとして駆動しなかった(電流が観測されなかった)
2.大気下での放置後のキャリア移動度μafの測定
 製造した各有機薄膜トランジスタを、常圧大気下(温度:室温、湿度:50RH%)に1週間放置した後に、上記1.製造後のキャリア移動度iniの測定と同様にして、放置後のキャリア移動度μafを測定して、評価した。
Figure JPOXMLDOC01-appb-T000041
 表1の結果から、以下のことが分かる。
 有機薄膜トランジスタCT1-1及びCT1-2は、いずれも、放置後のキャリア移動度μafが十分ではなく、有機薄膜トランジスタとして機能しないものであった。
 すなわち、有機薄膜トランジスタCT1-1は、初期キャリア移動度μiniが小さく、有機薄膜トランジスタとして機能しないものであった。また、有機薄膜トランジスタCT1-2は、大気下に1週間放置するとキャリア移動度が低下し、有機薄膜トランジスタとして機能しなくなった。
 これに対して、本発明の有機薄膜トランジスタT1-1~T1-5は、いずれも、本発明の化合物を含有する有機半導体膜を備えており、初期キャリア移動度μiniが高く、しかも大気下に放置しても高いキャリア移動度μafを維持していた。このように、本発明の有機薄膜トランジスタは、キャリア移動度が高く、大気下で長時間安定して駆動可能であることが示された。また、本発明の化合物1~5は、いずれも、最低空軌道(LUMO)の軌道エネルギーが-4.0eV未満であり、その用途については特に限定されないが、上述の優れた特性を示す有機薄膜トランジスタの有機半導体材料として好ましく使用できることが確認できた。
 特に、式(1)中のA11及びA12が-N(R)-である場合、Rがアルキル基(化合物1、4及び5)及びハロゲン化アルキル基(化合物2)であると、キャリア移動度μini及びμafがともに高い値を示した(OTFTNo.T1-1、2、4及び5)。
[実施例2]
 図1に示す構造を有する、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ10(ただし、封止層6を有しない)を製造し、その特性を評価した。
 <有機薄膜トランジスタ用組成物の調製例>
 表2に示す化合物又は比較化合物を、溶媒としてのアニソールに、0.1質量%の濃度で溶解し、これを100℃に加熱して、有機薄膜トランジスタ用組成物(溶液)S2-1~S2-5並びにCS2-1及びCS2-2を調製した。
 <有機薄膜トランジスタの製造>
 FET特性測定用基板を準備した。この基板は、実施例1で用いたn型シリコン基板1上に、ゲート絶縁膜3としてSiO膜(膜厚:200nm)を有し、更にこのゲート絶縁膜3上に、クロム/金によりくし型に配置されたソース電極4A及びドレイン電極4B(両電極の膜厚:40nm、ゲート幅W=100mm、ゲート長L=100μm)を有している。
 次いで、有機薄膜トランジスタ用組成物S2-1~S2-5並びにCS2-1及びCS2-2を、それぞれ、窒素雰囲気下、90℃に加熱した上記FET特性測定用基板上にキャストして、ソース電極及びドレイン電極上に有機半導体膜5を形成した。得られた有機半導体膜5中の化合物の含有率は、いずれも100質量%であった。また、得られた有機半導体膜5を偏光顕微鏡によって確認したところ、化合物1~5の結晶がいずれも析出していた。
 こうして、有機薄膜トランジスタT2-1~T2-5並びに比較のための有機薄膜トランジスタCT2-1及びCT2-2をそれぞれ製造した。
 <有機薄膜トランジスタの評価>
 製造した各有機薄膜トランジスタについて、実施例1と同様にして、キャリア移動度μini及びμafを評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000042
 表2の結果から、以下のことが分かる。
 有機薄膜トランジスタCT2-1及びCT2-2は、いずれも、キャリア移動度μini及びμafがともに小さく、有機薄膜トランジスタとして機能しないものであった。
 これに対して、本発明の有機薄膜トランジスタT2-1~T2-5は、いずれも、有機半導体膜の大気への露出面積が大きいボトムゲート-ボトムコンタクト型であるが、この有機半導体膜は本発明の化合物を含有している。そのため、初期キャリア移動度μiniが高く、しかも大気下に放置しても高いキャリア移動度μafを維持していた。このように、本発明の有機薄膜トランジスタは、キャリア移動度が高く、大気下で長時間安定して駆動可能であった。また、本発明の化合物1~5は、上述の優れた特性を示す有機薄膜トランジスタの有機半導体材料として好ましく使用できる。
 特に、式(1)中のA11及びA12が、Rとしてアルキル基又はハロゲン化アルキル基を有する-N(R)-であると(化合物1、2、4及び5)、キャリア移動度μini及びμafがともに高い値を示した。
[実施例3]
 図1に示す構造を有する、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ10(ただし、封止層6を有しない)を製造し、その特性を評価した。
 <有機薄膜トランジスタ用組成物の調製例>
 溶媒としてのアニソールに、表3に示す化合物又は比較化合物とポリ(α-メチルスチレン)とを、質量比1:1で合計濃度が0.1質量%となるように、溶解した。この液を100℃に加熱して、有機薄膜トランジスタ用組成物(溶液)S3-1~S3-5並びにCS3-1及びCS3-2を調製した。
 ポリ(α-メチルスチレン)の重量平均分子量は、20000であった。
 <有機薄膜トランジスタの製造>
 実施例2の有機薄膜トランジスタの製造において、有機薄膜トランジスタ用組成物S2-1~S2-5並びにCS2-1及びCS2-2に代えて有機薄膜トランジスタ用組成物S3-1~S3-5並びにCS3-1及びCS3-2をそれぞれ用いたこと以外は、実施例2と同様にして、有機薄膜トランジスタT3-1~T3-5並びに比較のための有機薄膜トランジスタCT3-1及びCT3-2をそれぞれ製造した。
 各有機薄膜トランジスタの有機半導体膜中の、本発明の化合物及びポリα-メチルスチレンの含有率は、それぞれ、50質量%であった。得られた有機半導体膜を偏光顕微鏡によって確認したところ、化合物1~5の結晶がいずれも析出していた。
 <有機薄膜トランジスタの評価>
 製造した各有機薄膜トランジスタについて、実施例1と同様にして、キャリア移動度μini及びμafを評価した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000043
 表3の結果から、以下のことが分かる。
 有機薄膜トランジスタCT3-1及びCT3-2は、いずれも、キャリア移動度μini及びμafがともに小さく、有機薄膜トランジスタとして機能しないものであった。
 これに対して、本発明の有機薄膜トランジスタT3-1~T3-5は、いずれも、ボトムゲート-ボトムコンタクト型であるが、この有機半導体膜は本発明の化合物とバインダーポリマーとを含有している。そのため、初期キャリア移動度μiniが高く、しかも大気下においても放置しても高いキャリア移動度μafを維持していた。このように、本発明の有機薄膜トランジスタは、キャリア移動度が高く、大気下で長時間安定して駆動可能であった。また、本発明の化合物1~5は、上述の優れた特性を示す有機薄膜トランジスタの有機半導体材料として、好ましく使用できる。
 更に、式(1)中のA11及びA12について、実施例2と同様の傾向を示すことが確認された。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年6月27日に日本国で特許出願された特願2016-126449、及び、2017年6月23日に日本国で特許出願された特願2017-122786に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
 1 基板
 2 ゲート電極
 3 ゲート絶縁膜
 4A ソース電極
 4B ドレイン電極
 5 有機半導体膜
 6 封止層
 10、20 有機薄膜トランジスタ
 41 塗布液
 42 基板
 43 部材

Claims (13)

  1.  下記式(1)で表される化合物を含有する有機半導体膜を備えた有機薄膜トランジスタ。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、
    11及びA12は、各々独立に、-O-、-N(R)-又は-P(R)-を示す。B11~B18は、各々独立に、-N=又は-C(R)=を示し、少なくとも1つは-N=である。R及びRは水素原子又は置換基を示す。
    11~X14は、各々独立に、酸素原子又は硫黄原子を示す。
  2.  前記化合物が、下記式(2)で表される請求項1に記載の有機薄膜トランジスタ。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、
    11及びA12は、前記式(1)のA11及びA12と同義である。
    11~X14は、前記式(1)のX11~X14と同義である。
    21~R26は、各々独立に、水素原子又は置換基を示す。
  3.  前記X11~X14が、いずれも、酸素原子である請求項1又は2に記載の有機薄膜トランジスタ。
  4.  前記A11及びA12が、いずれも、-N(R)-であり、Rが水素原子又は置換基を示す請求項1~3のいずれか1項に記載の有機薄膜トランジスタ。
  5.  前記Rが、炭素数1~20のアルキル基、炭素数6~20のアリール基、又は、環構成原子として3~20個の炭素原子を含むヘテロアリール基である請求項1~4のいずれか1項に記載の有機薄膜トランジスタ。
  6.  下記式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
     式(2)中、
    11及びA12は、各々独立に、-O-、-N(R)-又は-P(R)-を示す。Rは水素原子又は置換基を示す。R21~R26は、各々独立に、水素原子又は置換基を示す。X11~X14は、各々独立に、酸素原子又は硫黄原子を示す。
  7.  前記X11~X14が、いずれも、酸素原子である請求項6に記載の化合物。
  8.  前記A11及びA12が、いずれも、-N(R)-であり、Rが水素原子又は置換基を示す請求項6又は7に記載の化合物。
  9.  前記Rが、炭素数1~20のアルキル基、炭素数6~20のアリール基、又は、環構成原子として3~20個の炭素原子を含むヘテロアリール基である請求項6~8のいずれか1項に記載の化合物。
  10.  請求項6~9のいずれか1項に記載の化合物を含有する有機薄膜トランジスタ用組成物。
  11.  バインダーポリマーを含有する請求項10に記載の有機薄膜トランジスタ用組成物。
  12.  下記式(1)で表される化合物を含有する有機半導体膜。
    Figure JPOXMLDOC01-appb-C000004
     式(1)中、
    11及びA12は、各々独立に、-O-、-N(R)-又は-P(R)-を示す。B11~B18は、各々独立に、-N=又は-C(R)=を示し、少なくとも1つは-N=である。R及びRは水素原子又は置換基を示す。
    11~X14は、各々独立に、酸素原子又は硫黄原子を示す。
  13.  請求項10又は11に記載の有機薄膜トランジスタ用組成物を、基板上に塗布して、有機半導体膜を形成する工程を有する、有機薄膜トランジスタの製造方法。
PCT/JP2017/023233 2016-06-27 2017-06-23 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法 WO2018003701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17820058.0A EP3476845B1 (en) 2016-06-27 2017-06-23 Organic thin-film transistor, organic semiconductor film, compound, organic-thin-film-transistor composition, and organic-thin-film-transistor manufacturing method
CN201780038047.9A CN109478595B (zh) 2016-06-27 2017-06-23 有机薄膜晶体管、有机半导体膜、化合物、有机薄膜晶体管用组合物及有机薄膜晶体管的制造方法
US16/224,903 US11107996B2 (en) 2016-06-27 2018-12-19 Organic thin film transistor, organic semiconductor film, compound, organic thin film transistor-forming composition, and method of manufacturing organic thin film transistor
US17/382,961 US20210351363A1 (en) 2016-06-27 2021-07-22 Organic thin film transistor, organic semiconductor film, compound, organic thin film transistor-forming composition, and method of manufacturing organic thin film transistor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-126449 2016-06-27
JP2016126449 2016-06-27
JP2017-122786 2017-06-23
JP2017122786A JP6555667B2 (ja) 2016-06-27 2017-06-23 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/224,903 Continuation US11107996B2 (en) 2016-06-27 2018-12-19 Organic thin film transistor, organic semiconductor film, compound, organic thin film transistor-forming composition, and method of manufacturing organic thin film transistor

Publications (1)

Publication Number Publication Date
WO2018003701A1 true WO2018003701A1 (ja) 2018-01-04

Family

ID=60786794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023233 WO2018003701A1 (ja) 2016-06-27 2017-06-23 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法

Country Status (1)

Country Link
WO (1) WO2018003701A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146368A1 (ja) * 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー
WO2021054144A1 (ja) * 2019-09-20 2021-03-25 富士フイルム株式会社 環状イミド化合物の製造方法、組成物、化合物
CN113728449A (zh) * 2019-04-24 2021-11-30 富士胶片株式会社 组合物
EP3915976A4 (en) * 2019-01-23 2022-03-02 FUJIFILM Corporation CONNECTION AND METHOD OF CONNECTING

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179794A (ja) * 2007-11-20 2009-08-13 Toyota Motor Corp ポリペリナフタレン系高分子製造方法及びポリペリナフタレン系誘導体
JP2010500745A (ja) * 2006-08-11 2010-01-07 ビーエーエスエフ ソシエタス・ヨーロピア 空気安定性のnチャネルの有機半導体としてのペリレンジイミド誘導体の使用
WO2011082234A1 (en) 2009-12-29 2011-07-07 Polyera Corporation Thionated aromatic bisimides as organic semiconductors and devices incorporating them
WO2014100961A1 (en) * 2012-12-24 2014-07-03 Rhodia Operations Use of compounds of the perylene type as acceptors in photovoltaics
JP2015195362A (ja) 2014-03-26 2015-11-05 富士フイルム株式会社 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布液、有機トランジスタの製造方法、有機半導体膜の製造方法、非発光性有機半導体デバイス用有機半導体膜、有機半導体材料の合成方法
JP2016126449A (ja) 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 車両感知器異常検知装置、交通状況分析装置、車両感知器異常検知システム、交通状況分析システムおよびプログラム
JP2017122786A (ja) 2016-01-06 2017-07-13 セイコーエプソン株式会社 レンズアレイ基板、電気光学装置、電子機器、およびレンズアレイ基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500745A (ja) * 2006-08-11 2010-01-07 ビーエーエスエフ ソシエタス・ヨーロピア 空気安定性のnチャネルの有機半導体としてのペリレンジイミド誘導体の使用
JP2009179794A (ja) * 2007-11-20 2009-08-13 Toyota Motor Corp ポリペリナフタレン系高分子製造方法及びポリペリナフタレン系誘導体
WO2011082234A1 (en) 2009-12-29 2011-07-07 Polyera Corporation Thionated aromatic bisimides as organic semiconductors and devices incorporating them
WO2014100961A1 (en) * 2012-12-24 2014-07-03 Rhodia Operations Use of compounds of the perylene type as acceptors in photovoltaics
JP2015195362A (ja) 2014-03-26 2015-11-05 富士フイルム株式会社 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布液、有機トランジスタの製造方法、有機半導体膜の製造方法、非発光性有機半導体デバイス用有機半導体膜、有機半導体材料の合成方法
JP2016126449A (ja) 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 車両感知器異常検知装置、交通状況分析装置、車両感知器異常検知システム、交通状況分析システムおよびプログラム
JP2017122786A (ja) 2016-01-06 2017-07-13 セイコーエプソン株式会社 レンズアレイ基板、電気光学装置、電子機器、およびレンズアレイ基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL COMMUNICATIONS, vol. 48, 2012, pages 7961 - 7963

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146368A1 (ja) * 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー
CN111542939A (zh) * 2018-01-23 2020-08-14 富士胶片株式会社 有机半导体元件、有机半导体组合物、有机半导体膜、有机半导体膜的制造方法及用于这些的聚合物
JPWO2019146368A1 (ja) * 2018-01-23 2020-11-26 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー
US11011706B2 (en) 2018-01-23 2021-05-18 Fujifilm Corporation Organic semiconductor element, organic semiconductor composition, organic semiconductor film, method of manufacturing organic semiconductor film, and polymer using the same
EP3915976A4 (en) * 2019-01-23 2022-03-02 FUJIFILM Corporation CONNECTION AND METHOD OF CONNECTING
CN113728449A (zh) * 2019-04-24 2021-11-30 富士胶片株式会社 组合物
WO2021054144A1 (ja) * 2019-09-20 2021-03-25 富士フイルム株式会社 環状イミド化合物の製造方法、組成物、化合物
JPWO2021054144A1 (ja) * 2019-09-20 2021-03-25
CN114401966A (zh) * 2019-09-20 2022-04-26 富士胶片株式会社 环状酰亚胺化合物的制造方法、组合物、化合物

Similar Documents

Publication Publication Date Title
JP6555667B2 (ja) 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法
WO2018003701A1 (ja) 有機薄膜トランジスタ、有機半導体膜、化合物、有機薄膜トランジスタ用組成物及び有機薄膜トランジスタの製造方法
JP6465978B2 (ja) 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
US11011706B2 (en) Organic semiconductor element, organic semiconductor composition, organic semiconductor film, method of manufacturing organic semiconductor film, and polymer using the same
JP7316365B2 (ja) 化合物、組成物、膜、構造体及び電子デバイス
WO2015105060A1 (ja) 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用有機半導体膜および非発光性有機半導体デバイス用有機半導体膜の製造方法
JP6483265B2 (ja) 有機薄膜トランジスタ及びその製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、化合物、並びに、有機半導体膜
JP6033802B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
WO2020218293A1 (ja) 組成物
WO2021054144A1 (ja) 環状イミド化合物の製造方法、組成物、化合物
WO2020153121A1 (ja) 化合物、化合物の製造方法
JP7266697B2 (ja) 有機薄膜トランジスタ、ポリマー、組成物、有機半導体膜、化合物
WO2019176634A1 (ja) n型有機半導体材料、有機半導体膜形成用組成物、有機半導体膜及びその製造方法、有機薄膜トランジスタ及びその製造方法、並びに化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820058

Country of ref document: EP

Effective date: 20190128