WO2019230481A1 - 液体現像剤 - Google Patents

液体現像剤 Download PDF

Info

Publication number
WO2019230481A1
WO2019230481A1 PCT/JP2019/019942 JP2019019942W WO2019230481A1 WO 2019230481 A1 WO2019230481 A1 WO 2019230481A1 JP 2019019942 W JP2019019942 W JP 2019019942W WO 2019230481 A1 WO2019230481 A1 WO 2019230481A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid developer
mass
less
amino group
group
Prior art date
Application number
PCT/JP2019/019942
Other languages
English (en)
French (fr)
Inventor
山田 達也
邦泰 加納
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201980028792.4A priority Critical patent/CN112041755A/zh
Priority to EP19810099.2A priority patent/EP3805862A1/en
Priority to US16/971,102 priority patent/US20200379367A1/en
Publication of WO2019230481A1 publication Critical patent/WO2019230481A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • G03G9/132Developers with toner particles in liquid developer mixtures characterised by polymer components obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/125Developers with toner particles in liquid developer mixtures characterised by the liquid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • G03G9/131Developers with toner particles in liquid developer mixtures characterised by polymer components obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/135Developers with toner particles in liquid developer mixtures characterised by stabiliser or charge-controlling agents

Definitions

  • the present invention relates to a liquid developer used for developing a latent image formed in, for example, electrophotography, electrostatic recording method, electrostatic printing method and the like.
  • the electrophotographic developer includes a dry developer using toner particles made of a material containing a colorant and a binder resin in a dry state, and a liquid developer in which toner particles are dispersed in an insulating liquid.
  • the toner particles are dispersed in the insulating liquid in oil, the particle size can be reduced as compared with the dry developer. Therefore, since a high-quality printed matter that surpasses offset printing can be obtained, it is suitable for commercial printing applications. In recent years, there has been an increasing demand for higher speeds, and toner particles need to be rapidly developed by electrophoresis. Therefore, low viscosity and high charge of liquid developers are required. In addition, when toner with insufficient developability and cleanability accumulates on the roller, filming occurs, and image quality and the like deteriorate when printing for a long time. Therefore, a highly chargeable toner is also required from the viewpoint of suppressing filming and obtaining good printing durability.
  • Patent Document 1 has an object to provide a liquid developer having a small particle size, low viscosity, excellent storage stability and excellent low-temperature fixability while suppressing elution of the binder resin in the insulating liquid.
  • a polyester resin P having a glass transition temperature of 35 ° C.
  • R in the monomer B 2 the monomer B1 carbon number of 1 to 9 alkyl group or an alkenyl group having 2 to 9 carbon atoms
  • the monomer R 2 is an alkyl or alkenyl group having 10 to 22 carbon atoms
  • a liquid developer having a molar ratio (monomer B1 / monomer B2) of 0 to 0.1 and an amine value of 150 mgKOH / g or less is disclosed.
  • Patent Document 2 it is an object to provide a liquid developer capable of obtaining an excellent image density, excellent in fixability and cold offset resistance, and excellent in storage stability over a long period of time.
  • a liquid developer comprising a molecular dispersant (C) and a carrier liquid (D), wherein the toner particles comprise a binder resin (A) and a colorant (B); and
  • the binder resin (A) comprises a crystalline resin (A-1) and an amorphous resin (A-2), and the polymer dispersant (C) is an ethylene having an amino group.
  • Polymeric Dispersant (C) which is obtained by copolymerizing a polymerizable unsaturated monomer and an ethylenically unsaturated monomer containing an alkyl group having 9 to 24 carbon atoms and has an amine value of 5 to 150 mgKOH / g
  • a liquid developer characterized by the above is disclosed.
  • An object of the present invention is to provide a liquid developer, which has at least colored particles composed of a resin and a colored substance, and a liquid serving as a dispersion medium thereof, and causes the colored particles to adhere to a latent image on a latent image carrier.
  • a liquid developer for developing the latent image 1 part by weight of the colored particles having a charge opposite to that of the colored particles is used as a dispersion promoting substance for promoting the dispersion of the colored particles in the liquid.
  • a liquid developer characterized in that it is contained in the liquid in a proportion of 0.05 to 20 parts by weight based on the above is disclosed.
  • the present invention [1] A liquid developer containing toner particles containing a binder resin and a colorant, an amino group-containing copolymer, and an insulating liquid, wherein the binder resin contains a polyester resin,
  • the group-containing copolymer comprises a monomer A having an amino group and formula (I):
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms
  • R 2 represents an optionally substituted hydrocarbon group having 1 to 22 carbon atoms
  • It is a polymer with monomer B represented by Requirement 1:
  • the amine value of the amino group-containing copolymer is 165 mgKOH / g or more and the conductivity of the liquid developer is 5.0 ⁇ 10 ⁇ 9 S / m or less
  • Requirement 2 the liquid developer is Further, a liquid developer satisfying that it contains an acid compound, and [2] a toner particle containing a binder resin and a colorant, an amino group-containing copolymer, and a composition containing an insulating liquid.
  • the binder resin contains a polyester resin
  • the amino group-containing copolymer is a polymer of a monomer A having an amino group and a monomer B represented by the formula (I)
  • Requirement 1 The amine value of the amino group-containing copolymer is 165 mgKOH / g or more and the conductivity of the liquid developer is 5.0 ⁇ 10 ⁇ 9 S / m or less
  • Requirement 2 the liquid developer is Further, the present invention relates to the use of the composition as a liquid developer satisfying that it contains an acid compound.
  • the liquid developer has insufficient viscosity reduction, chargeability and storage stability, and it is difficult to perform high-speed printing while maintaining good printing durability.
  • a polyester resin widely used as a binder resin has an acid group and thus is easily negatively charged, and there is a problem in chargeability when used for a positively chargeable liquid developer.
  • the present invention relates to a liquid developer containing a polyester resin and having a small particle size, low viscosity, excellent storage stability and positive chargeability.
  • the liquid developer of the present invention exhibits the effect of having a small particle size, low viscosity, excellent storage stability and positive chargeability even when it contains a polyester resin.
  • the liquid developer of the present invention contains toner particles containing a binder resin including a polyester resin and a colorant and an insulating liquid, and further contains an amino group-containing copolymer having a high amine value as a dispersant.
  • the amine value of the amino group-containing copolymer is 165 mgKOH / g or more and the conductivity of the liquid developer is 5.0 ⁇ 10 ⁇ 9 S / m or less
  • Requirement 2 the liquid developer is Furthermore, it is satisfactory to contain an acid compound, and it is excellent in small particle size, low viscosity, storage stability and positive chargeability.
  • the reason for such an effect is not clear, but is considered as follows.
  • the amino group-containing copolymer is likely to be adsorbed to the toner particles containing the polyester resin by acid-base interaction. Furthermore, it is considered that the particles are positively charged by supplying protons from the acid monomer or the like contained in the polyester resin to the amino group of the dispersant adsorbed on the toner.
  • the high amine-value amino group-containing copolymer has many amino groups in the molecule and easily accepts protons, so that the positive chargeability is considered to be improved.
  • the high amine-value amino group-containing copolymer has high adsorptivity to toner particles, the amount of free dispersant is small and an increase in electrical conductivity can be suppressed, and the viscosity and storage stability are excellent. Further, when the requirement 2 is satisfied, that is, when an acid compound is further present in the system, the particles are obtained by supplying protons from the acid compound to the amino groups of the amino group-containing copolymer adsorbed on the toner particles. It is considered that the positive chargeability of the toner is improved.
  • the amino group-containing copolymer in the present invention has a carbon chain, and therefore, when adsorbed to the toner, the portion of the carbon chain having a high affinity with the insulating liquid spreads, and the toner particles The three-dimensional repulsive force is expressed. Thereby, aggregation of toner particles and thickening of the liquid developer can be suppressed, and the liquid developer of the present invention is considered to have a small particle size, low viscosity, and excellent storage stability.
  • the liquid developer satisfying requirement 1 is referred to as aspect A
  • the liquid developer satisfying requirement 2 is referred to as aspect B.
  • the binder resin includes a polyester resin.
  • the polyester resin is not particularly limited, and examples thereof include a polyester resin or a composite resin containing a polyester resin and another resin such as a styrene resin.
  • the polyester resin is preferably a polycondensate of an alcohol component containing a divalent or higher alcohol and a carboxylic acid component containing a divalent or higher carboxylic acid compound.
  • divalent alcohol for example, an aliphatic diol having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, or a formula (II):
  • OR and RO are oxyalkylene groups, R is an ethylene and / or propylene group, x and y represent the average number of added moles of alkylene oxide, each being a positive number, The sum value is 1 or more, preferably 1.5 or more, and 16 or less, preferably 8 or less, more preferably 6 or less, and further preferably 4 or less)
  • the alkylene oxide adduct of bisphenol A represented by these, bisphenol A, hydrogenated bisphenol A, etc. are mentioned.
  • the aliphatic diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and the like. Among these, carbon number of 3 or more An aliphatic diol having a hydroxyl group bonded to 5 or less secondary carbon atoms is preferred.
  • 1,2-propanediol or an alkylene oxide adduct of bisphenol A represented by the formula (II) is preferable.
  • the content of 1,2-propanediol or the alkylene oxide adduct of bisphenol A represented by the formula (II) is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol in the alcohol component.
  • the mol% or more is preferably 95 mol% or more, more preferably 100 mol%.
  • the total content of both is preferably within the above range.
  • trivalent or higher alcohol examples include trivalent or higher alcohol having 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms. Specific examples include sorbitol, 1,4-sorbitan, pentaerythritol, glycerol, trimethylolpropane, and the like.
  • divalent carboxylic acid compound examples include dicarboxylic acids having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, anhydrides thereof, or alkyl groups. Examples thereof include derivatives such as alkyl esters having 1 to 3 carbon atoms.
  • dicarboxylic acid include aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid, fumaric acid, maleic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, and alkyl having 1 to 20 carbon atoms.
  • aliphatic dicarboxylic acids such as succinic acid substituted with a group or an alkenyl group having 2 to 20 carbon atoms.
  • the carboxylic acid component is preferably terephthalic acid and / or fumaric acid from the viewpoint of improving the low-temperature fixability of the toner and from the viewpoint of improving the storage stability by improving the dispersion stability of the toner particles.
  • the content of terephthalic acid or fumaric acid in the carboxylic acid component is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, and preferably 95 mol% or less, more Preferably it is 93 mol% or less, More preferably, it is 90 mol% or less.
  • the total content of both is preferably within the above range.
  • Examples of the trivalent or higher carboxylic acid compound include 4 to 20 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 7 to 15 carbon atoms, still more preferably 8 to 12 carbon atoms, Preferable examples include trivalent or higher carboxylic acids having 9 to 10 carbon atoms, anhydrides thereof, and derivatives such as alkyl esters having an alkyl group having 1 to 3 carbon atoms. Specific examples include 1,2,4-benzenetricarboxylic acid (trimellitic acid), 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), and acid anhydrides thereof.
  • the content of the trivalent or higher carboxylic acid compound is preferably 1 mol% or more, more preferably 2 mol% or more, in the carboxylic acid component, from the viewpoint of the adsorptivity of the amino group-containing copolymer to the toner particles. More preferably 3 mol% or more, and from the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability, it is preferably 30 mol% or less, more preferably 25 mol% or less, and even more preferably 20 mol%. % Or less.
  • carboxylic acid component may contain an acid-modified product of an ⁇ -olefin polymer.
  • a monovalent alcohol may be contained in the alcohol component, and a monovalent carboxylic acid compound in the carboxylic acid component may be appropriately contained from the viewpoint of adjusting the molecular weight and softening point of the polyester resin.
  • the equivalent ratio (COOH group / OH group) of the carboxylic acid component and the alcohol component in the polyester resin is preferably 0.6 or more, more preferably 0.7 or more, and even more preferably 0.75 or more. Yes, and preferably 1.1 or less, more preferably 1.05 or less, and still more preferably 1 or less.
  • the polyester resin is, for example, an alcohol component and a carboxylic acid component in an inert gas atmosphere, preferably in the presence of an esterification catalyst, and if necessary, in the presence of an esterification cocatalyst, a polymerization inhibitor, etc. It can be produced by polycondensation at a temperature of 130 ° C. or higher, more preferably 170 ° C. or higher, and preferably 250 ° C. or lower, more preferably 240 ° C. or lower.
  • esterification catalyst examples include tin compounds such as dibutyltin oxide and tin (II) 2-ethylhexanoate, and titanium compounds such as titanium diisopropylate bistriethanolamate, and tin compounds are preferred.
  • the amount of the esterification catalyst used is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 1.5 parts by mass or less, more preferably 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component. The amount is preferably 1 part by mass or less.
  • esterification promoter include gallic acid.
  • the amount of esterification promoter used is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and preferably 0.5 parts by mass or less, with respect to 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component. More preferably, it is 0.1 parts by mass or less.
  • the polymerization inhibitor include t-butylcatechol.
  • the amount of the polymerization inhibitor used is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and preferably 0.5 parts by mass or less, more preferably 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component. Preferably it is 0.1 mass part or less.
  • the polyester resin may be a polyester resin modified to such an extent that the properties are not substantially impaired.
  • the modified polyester resin include grafting or blocking with phenol, urethane, epoxy or the like by the method described in JP-A-11-133668, JP-A-10-239903, JP-A-8-20636, and the like.
  • a urethane-modified polyester resin obtained by extending the polyester resin with urethane by a polyisocyanate compound is preferable.
  • the composite resin is preferably a composite resin containing the polyester resin and a styrene resin.
  • the styrene resin is an addition polymer of a raw material monomer containing at least styrene or a styrene derivative such as ⁇ -methylstyrene, vinyltoluene (hereinafter, styrene and styrene derivatives are collectively referred to as “styrene compound”).
  • the content of the styrene compound, preferably styrene, is preferably 50% by mass or more, more preferably 70% by mass from the viewpoint of improving the storage stability by improving the dispersion stability of the toner particles in the styrene resin raw material monomer. More preferably, it is 80% by mass or more, and from the viewpoint of improving the low-temperature fixability of the toner and from the viewpoint of improving wet grindability, it is preferably 95% by mass or less, more preferably 93% by mass or less, and still more preferably. Is 90% by mass or less.
  • the styrene resin may contain (meth) acrylic acid alkyl ester having an alkyl group having 7 or more carbon atoms as a raw material monomer.
  • (meth) acrylic acid alkyl esters include 2-ethylhexyl (meth) acrylate, (iso) octyl (meth) acrylate, (iso) decyl (meth) acrylate, (iso) stearyl (meth) acrylate, and the like. Can be mentioned. It is preferable to use one or more of these.
  • “(iso)” means to include both when this group is present and when it is not present, and is normal when these groups are not present. It shows that.
  • (Meth) acrylic acid” refers to acrylic acid, methacrylic acid, or both.
  • the content of the (meth) acrylic acid alkyl ester having 7 or more carbon atoms is preferably 5% by mass or more from the viewpoint of improving the low-temperature fixability of the toner and the wet grindability in the raw material monomer of the styrene resin. More preferably, it is 7% by mass or more, more preferably 10% by mass or more, and from the viewpoint of improving the storage stability by improving the dispersion stability of the toner particles, preferably 50% by mass or less, more preferably 30% by mass or less, more preferably 20% by mass or less.
  • the carbon number of the alkyl group in the (meth) acrylic acid alkyl ester as the raw material monomer for the styrene resin is preferably 7 or more, more preferably 8 or more, and storage. From the viewpoint of stability, it is preferably 12 or less, more preferably 10 or less.
  • carbon number of this alkyl ester means carbon number derived from the alcohol component which comprises ester.
  • Raw material monomers for styrene resins include raw material monomers other than styrene compounds and (meth) acrylic acid alkyl esters, for example, ethylenically unsaturated monoolefins such as ethylene and propylene; diolefins such as butadiene; and halovinyls such as vinyl chloride.
  • Vinyl esters such as vinyl acetate and vinyl propionate; ethylenic monocarboxylic acid esters such as dimethylaminoethyl (meth) acrylate; vinyl ethers such as methyl vinyl ether; vinylidene halides such as vinylidene chloride; N-vinyl pyrrolidone; N-vinyl compounds such as
  • the addition polymerization reaction of the raw material monomer of the styrene resin can be performed, for example, in the presence of a polymerization initiator such as dicumyl peroxide, a polymerization inhibitor, a crosslinking agent, in the presence of an organic solvent or in the absence of a solvent.
  • a polymerization initiator such as dicumyl peroxide, a polymerization inhibitor, a crosslinking agent
  • the temperature condition is preferably 110 ° C. or higher, more preferably 140 ° C. or higher, and preferably 200 ° C. or lower, more preferably 170 ° C. or lower.
  • xylene, toluene, methyl ethyl ketone, acetone or the like can be used.
  • the amount of the organic solvent used is preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the raw material monomer of the styrene resin.
  • the composite resin can react with both the polyester resin raw material monomer and the styrenic resin raw material monomer via both reactive monomers.
  • a resin in which a styrene resin is chemically bonded is preferable.
  • Both reactive monomers have at least one functional group selected from the group consisting of a hydroxyl group, a carboxy group, an epoxy group, a primary amino group and a secondary amino group in the molecule, preferably a hydroxyl group and / or a carboxy group.
  • Group more preferably a compound having a carboxy group and an ethylenically unsaturated bond, more preferably at least one selected from the group consisting of acrylic acid, methacrylic acid, fumaric acid, maleic acid and maleic anhydride, From the viewpoint of the reactivity of the polycondensation reaction and the addition polymerization reaction, at least one selected from the group consisting of acrylic acid, methacrylic acid and fumaric acid is more preferable.
  • a polyvalent carboxylic acid compound having an ethylenically unsaturated bond such as fumaric acid functions as a raw material monomer for the polyester resin.
  • fumaric acid or the like is not a bireactive monomer but a raw material monomer for a polyester resin.
  • the both reactive monomers may be one or more (meth) acrylic acid esters selected from acrylic acid esters and methacrylic acid esters having an alkyl group with 6 or less carbon atoms.
  • the (meth) acrylic acid ester is preferably a (meth) acrylic acid alkyl ester from the viewpoint of reactivity to transesterification, and the alkyl group preferably has 2 or more carbon atoms, more preferably 3 or more carbon atoms, and preferably Is 6 or less, more preferably 4 or less.
  • the alkyl group may have a substituent such as a hydroxyl group.
  • (meth) acrylic acid alkyl ester examples include methyl (meth) acrylate, ethyl (meth) acrylate, (iso) propyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ( Examples include meth) acrylic acid (iso or tertiary) butyl, hexyl (meth) acrylate, and the like.
  • “(iso or tertiary)” means to include both the case where these groups are present and the case where these groups are not present. When these groups are not present, it is normal. Indicates.
  • the acrylate ester is preferably an alkyl acrylate ester having 2 to 6 carbon atoms in the alkyl group, more preferably butyl acrylate, and the methacrylic acid ester preferably has a carbon number in the alkyl group.
  • the alkyl ester is 2 or more and 6 or less, more preferably butyl methacrylate.
  • the amount of both reactive monomers used is preferably at least 1 mol from the viewpoint of enhancing the dispersibility of the styrene resin and the polyester resin and improving the durability of the toner with respect to a total of 100 mol of the alcohol component of the polyester resin. More preferably, it is 2 mol or more, and from the viewpoint of low-temperature fixability, it is preferably 30 mol or less, more preferably 20 mol or less, and even more preferably 10 mol or less. Further, the amount of both reactive monomers used is preferably from the viewpoint of improving the durability of the toner by increasing the dispersibility of the styrene resin and the polyester resin with respect to a total of 100 parts by mass of the raw material monomers of the styrene resin.
  • the polymerization initiator is included in the total of the raw material monomers of the styrene resin.
  • the composite resin obtained using the both reactive monomers is preferably produced by the following method. Both reactive monomers are preferably used in the addition polymerization reaction together with the raw material monomer of the styrenic resin from the viewpoint of improving the durability of the toner and improving the low temperature fixability and heat resistant storage stability of the toner.
  • step (i) A method of performing a step (B) of an addition polymerization reaction using a raw material monomer of a styrenic resin and an amphoteric monomer after the step (A) of the polycondensation reaction using the raw material monomer of the polyester resin.
  • the step (A) is carried out under the reaction temperature conditions suitable for the reaction, the reaction temperature is lowered, and the step (B) is carried out under the temperature conditions suitable for the addition polymerization reaction.
  • the styrene resin raw material monomer and the both reactive monomers are preferably added to the reaction system at a temperature suitable for the addition polymerization reaction. Both reactive monomers undergo an addition polymerization reaction and also a polyester resin.
  • the reaction temperature is raised again, and if necessary, a raw material monomer of a trivalent or higher valent polyester resin to be a crosslinking agent is added to the reaction system, and the polycondensation reaction or both reactions in the step (A).
  • the reaction with the functional monomer can be further advanced.
  • Step (ii) Method of performing the step (A) of the polycondensation reaction using the raw material monomer of the polyester resin after the step (B) of the addition polymerization reaction using the raw material monomer of the styrene resin and the both reactive monomers.
  • Step (B) is carried out under the reaction temperature conditions suitable for the step, the reaction temperature is raised, and the polycondensation reaction of step (A) is carried out under the temperature conditions suitable for the polycondensation reaction. Both reactive monomers are involved in the polycondensation reaction as well as the addition polymerization reaction.
  • the raw material monomer for the polyester resin may be present in the reaction system during the addition polymerization reaction, or may be added to the reaction system under temperature conditions suitable for the polycondensation reaction. In the former case, the progress of the polycondensation reaction can be controlled by adding an esterification catalyst at a temperature suitable for the polycondensation reaction.
  • step (iii) The step (A) of the polycondensation reaction using the raw material monomer of the polyester resin and the step (B) of the addition polymerization reaction using the raw material monomer and both reactive monomers of the styrenic resin are performed under the conditions that proceed in parallel.
  • the step (A) and the step (B) are performed in parallel under the reaction temperature conditions suitable for the addition polymerization reaction, the reaction temperature is increased, and under the temperature conditions suitable for the polycondensation reaction, If necessary, it is preferable to further add a raw material monomer of a trivalent or higher valent polyester resin to be a crosslinking agent to the polymerization system and further perform the polycondensation reaction in step (A).
  • a radical polymerization inhibitor can be added to advance only the polycondensation reaction. Both reactive monomers are involved in the polycondensation reaction as well as the addition polymerization reaction.
  • a polycondensation resin polymerized in advance may be used instead of the step (A) in which the polycondensation reaction is performed.
  • the mixture containing the raw material monomer of the polyester resin is mixed with the mixture containing the raw material monomer of the polyester resin. It can also be made to react by dripping.
  • the methods (i) to (iii) are preferably performed in the same container.
  • the mass ratio of the styrene resin to the polyester resin (styrene resin / polyester resin) in the composite resin is preferably 3/97 or more, more preferably 7/93 or more, and still more preferably 10 from the viewpoint of pulverizability of the toner particles. From the viewpoint of dispersion stability of the toner particles, it is preferably 45/55 or less, more preferably 40/60 or less, further preferably 35/65 or less, further preferably 30/70 or less, Preferably it is 25/75 or less.
  • the mass of the polyester resin is an amount obtained by subtracting the amount (calculated value) of the reaction water dehydrated by the polycondensation reaction from the mass of the raw material monomer of the polyester resin to be used. This amount is included in the raw material monomer amount of the polyester resin.
  • the amount of the styrene resin is the total amount of the raw material monomer of the styrene resin and the polymerization initiator.
  • the softening point of the polyester resin is preferably 70 ° C. or higher, more preferably 75 ° C. or higher from the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability, and improves the low-temperature fixability of the toner. From the viewpoint of achieving the above, it is preferably 160 ° C. or lower, more preferably 130 ° C. or lower, further preferably 120 ° C. or lower, and further preferably 110 ° C. or lower.
  • the glass transition temperature of the polyester-based resin is preferably 40 ° C. or higher, more preferably 45 ° C. or higher from the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability, and improves the low-temperature fixability. From the viewpoint, it is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 60 ° C. or lower.
  • the acid value of the polyester resin is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, and even more preferably 15 mgKOH / g or more from the viewpoint of improving the chargeability of the toner. From the viewpoint of improving properties and storage stability, it is preferably 70 mgKOH / g or less, more preferably 50 mgKOH / g or less, still more preferably 40 mgKOH / g or less, and even more preferably 20 mgKOH / g or less.
  • the acid value of the polyester resin is changed by changing the equivalent ratio of the carboxylic acid component and the alcohol component, changing the reaction time during resin production, or changing the content of the carboxylic acid compound having a valence of 3 or more. Can be adjusted.
  • the content of the polyester resin is preferably 90% by mass or more, more preferably 95% by mass or more, and more preferably 100% by mass, that is, only the polyester resin is used in the binder resin.
  • other resins than the polyester resin may be contained.
  • resins other than polyester resins include polystyrene, styrene-propylene copolymer, styrene-butadiene copolymer, styrene-vinyl chloride copolymer, styrene-vinyl acetate copolymer, and styrene-maleic acid copolymer.
  • a styrene resin an epoxy resin, a rosin-modified maleic acid resin, which is a homopolymer or copolymer containing styrene or a styrene substitution product such as a styrene-acrylic acid ester copolymer, a styrene-methacrylic acid ester copolymer, Examples thereof include one or more selected from resins such as polyethylene resins, polypropylene resins, polyurethane resins, silicone resins, phenol resins, aliphatic or alicyclic hydrocarbon resins.
  • dyes and pigments used as toner colorants can be used.
  • the toner particles may be either black toner or color toner.
  • the content of the colorant is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and still more preferably 15 parts by mass or more, with respect to 100 parts by mass of the binder resin, from the viewpoint of improving the image density.
  • the binder resin is 100 mass.
  • the amount is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 50 parts by mass or less, and still more preferably 30 parts by mass or less.
  • the toner particles include a release agent, a charge control agent, a charge control resin, a magnetic powder, a fluidity improver, a conductivity modifier, a reinforcing filler such as a fibrous substance, and an antioxidant.
  • An additive such as an agent and a cleaning property improver may be appropriately contained.
  • a toner raw material containing a binder resin and a colorant is melt-kneaded, and the resulting melt-kneaded product is pulverized, preferably wet-pulverized, an aqueous binder resin dispersion and an aqueous system.
  • examples thereof include a method in which the colorant dispersion is mixed and the binder resin particles and the colorant particles are united, or a method in which the aqueous binder resin dispersion and the colorant are stirred at high speed.
  • a method of pulverizing, preferably wet pulverizing, after melt-kneading the toner raw material is preferable.
  • the toner raw material containing a binder resin, a colorant, an additive used as necessary is preferably mixed in advance with a mixer such as a Henschel mixer, a super mixer, or a ball mill, and then supplied to a kneader.
  • a Henschel mixer is more preferable.
  • melt kneading of the toner raw material can be performed using a known kneader such as a closed kneader, a uniaxial or biaxial kneader, a continuous open roll type kneader.
  • a known kneader such as a closed kneader, a uniaxial or biaxial kneader, a continuous open roll type kneader.
  • an open roll kneader is preferable from the viewpoint of improving the dispersibility of the colorant and improving the yield of the toner particles after pulverization.
  • the open roll type kneader means a machine in which the melt-kneading part is not sealed and is opened, and the heat of kneading generated during the melt-kneading can be easily dissipated.
  • the open roll type kneader used in the present invention comprises a plurality of raw material supply ports and a kneaded product discharge port provided along the axial direction of the roll, and from the viewpoint of production efficiency, a continuous open roll type kneader. It is preferable that
  • toner particles can be obtained through a pulverization step and, if necessary, a classification step.
  • the grinding process may be divided into multiple stages.
  • the melt-kneaded product may be coarsely pulverized to about 1 to 5 mm, and then finely pulverized.
  • Examples of a pulverizer that is suitably used for coarse pulverization include an atomizer and a rotoplex, but a hammer mill or the like may also be used.
  • examples of the pulverizer suitably used for fine pulverization include a fluidized bed jet mill, an airflow jet mill, and a mechanical mill.
  • classifiers used in the classification process include airflow classifiers, inertia classifiers, and sieve classifiers. In addition, you may repeat a grinding
  • the volume median particle size (D 50 ) of the toner particles obtained in this step is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and preferably 15 ⁇ m from the viewpoint of improving the productivity of the wet pulverization step described later. Below, more preferably 12 ⁇ m or less.
  • the volume-median particle size (D 50 ) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% calculated from the smaller particle size.
  • the toner particles are preferably further refined by wet pulverization or the like after mixing with an amino group-containing copolymer, an insulating liquid, and in the aspect B, further with an acid compound.
  • the amino group-containing copolymer in the present invention includes a monomer A having an amino group and a formula (I):
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, preferably a methyl group
  • R 2 is a hydrocarbon group having 1 to 22 carbon atoms which may have a substituent. And preferably represents an alkyl group having 1 to 22 carbon atoms or an alkenyl group having 2 to 22 carbon atoms) It is a polymer with the monomer B represented by these.
  • R 3 and R 4 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, which are bonded to each other to form a ring structure.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a methyl group
  • R 6 represents a linear or branched alkylene group having 2 to 4 carbon atoms
  • Preferred acids for obtaining the acid neutralized product include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, maleic acid, fumaric acid, citric acid, tartaric acid, adipic acid, sulfamic acid, toluenesulfonic acid, lactic acid, pyrrolidone- Examples thereof include 2-carboxylic acid and succinic acid.
  • Preferred quaternizing agents for obtaining the quaternary ammonium salts include alkyl halides such as methyl chloride, ethyl chloride, methyl bromide and methyl iodide, dimethyl sulfate, diethyl sulfate, di-n-propyl sulfate and the like.
  • alkyl halides such as methyl chloride, ethyl chloride, methyl bromide and methyl iodide, dimethyl sulfate, diethyl sulfate, di-n-propyl sulfate and the like.
  • the general alkylating agent of these is mentioned.
  • R 3 and R 4 are each independently preferably a linear or branched alkyl group having 1 to 4 carbon atoms, and NR 3 R 4 is preferably a tertiary amino group.
  • Specific examples of R 3 and R 4 include a methyl group, an ethyl group, a propyl group, and an isopropyl group, and a methyl group is preferable.
  • R 6 examples include an ethylene group, a propylene group, and a butylene group, and an ethylene group is preferable.
  • monomers having a tertiary amino group in formula (III) include (meth) acrylic acid esters having a dialkylamino group and dialkylamino groups ( And (meth) acrylamide.
  • (meth) acrylic acid ester includes both acrylic acid ester and methacrylic acid ester
  • (meth) acrylamide includes both acrylamide and methacrylamide.
  • Examples of (meth) acrylic acid ester having a dialkylamino group include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, diisopropylaminoethyl (meth) acrylate, dibutylaminoethyl ( And at least one selected from the group consisting of (meth) acrylate, diisobutylaminoethyl (meth) acrylate, and di-t-butylaminoethyl (meth) acrylate.
  • Examples of (meth) acrylamide having a dialkylamino group include dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, dipropylaminopropyl (meth) acrylamide, diisopropylaminopropyl (meth) acrylamide, and dibutylaminopropyl (meth). Examples thereof include one or more selected from the group consisting of acrylamide, diisobutylaminopropyl (meth) acrylamide, and di-t-butylaminopropyl (meth) acrylamide.
  • a (meth) acrylic acid ester having a dialkylamino group is preferable from the viewpoints of small particle size, low viscosity, storage stability, and low-temperature fixability, and dimethylaminoethyl (meth) acrylate or diethylaminoethyl (meth) ) Acrylate is more preferred.
  • the monomer B is represented by the formula (I), and in the formula (I), the number of carbon atoms of the alkyl group and alkenyl group represented by R 2 is reduced in viscosity, storage stability, and low temperature. From the viewpoint of fixability, it is preferably 10 or more, more preferably 12 or more, and from the viewpoint of adsorptivity to toner particles, it is 22 or less, preferably 20 or less.
  • the alkyl group or alkenyl group of R 2 may be linear or branched, and may have a substituent such as a hydroxyl group.
  • the monomer B preferably includes at least the monomer B2 in which R 2 is an alkyl group or an alkenyl group having 10 to 22 carbon atoms.
  • R 2 is a monomer B1 that is an alkyl group having 1 to 9 carbon atoms or an alkenyl group having 2 to 9 carbon atoms, and monomer B2 that is an alkyl group or alkenyl group having 10 to 22 carbon atoms
  • the molar ratio (monomer B1 / monomer B2) is preferably 0.1 or less, more preferably 0.07 or less, still more preferably 0.05 or less, and still more preferably 0.03 or less, from the viewpoints of viscosity reduction, storage stability, and low-temperature fixability. More preferably, it is 0.01 or less, 0 or more, preferably 0.
  • the monomer B examples include methyl (meth) acrylate, ethyl (meth) acrylate, (iso) propyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (iso or tertiary) butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (iso) octyl (meth) acrylate, (iso) nonyl (meth) acrylate, (iso) decyl (meth) acrylate, (iso) undecyl (meth) acrylate, (iso) dodecyl (meth) ) Acrylate, (iso) tridecyl (meth) acrylate, (iso) tetradecyl (meth) acrylate, (iso) pentadecyl (meth) acrylate, (iso) hexadecyl (meth) acrylate
  • the mass ratio of the monomer A and the monomer B is preferably 50/50 or more from the viewpoint of improving the chargeability of the toner, and improves the dispersion stability of the toner particles. From the viewpoint of improving storage stability and increasing the resistance of the liquid developer, it is preferably 80/20 or less, more preferably 70/30 or less, and even more preferably 60/40 or less.
  • the mass ratio of the monomer A and the monomer B is preferably 20/80 or more, more preferably 35/65 or more, and further preferably 45 /, from the viewpoint of improving the chargeability of the toner. From the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability, and from the viewpoint of increasing the resistance of the liquid developer, it is preferably 80/20 or less, more preferably 65/35 or less. More preferably, it is 55/45 or less.
  • the total content of monomer A and monomer B in all monomers used in the amino group-containing copolymer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Is 100% by mass or less, more preferably 100% by mass.
  • the polymerization of monomer A and monomer B is performed by heating to about 40 to 140 ° C. in a solvent in the presence of a polymerization initiator such as 2,2′-azobis (2,4-dimethylvaleronitrile). Can be made.
  • a polymerization initiator such as 2,2′-azobis (2,4-dimethylvaleronitrile).
  • the amine value of the amino group-containing copolymer in the embodiment A is 165 mgKOH / g or more, preferably 170 mgKOH / g or more, and improves the dispersion stability of the toner particles. From the viewpoint of improving storage stability and increasing the resistance of the liquid developer, it is preferably 300 mgKOH / g or less, more preferably 250 mgKOH / g or less, and still more preferably 200 mgKOH / g or less.
  • the amine value of the amino group-containing copolymer in the embodiment B is preferably 80 mgKOH / g or more, more preferably 130 mgKOH / g or more, further preferably 150 mgKOH / g or more, from the viewpoint of improving the chargeability of the toner. From the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability, and from the viewpoint of increasing the resistance of the liquid developer, it is preferably 300 mgKOH / g or less, more preferably 250 mgKOH / g or less, further preferably 200 mgKOH / g or less.
  • the number average molecular weight of the amino group-containing copolymer is preferably 2,000 or more, more preferably 2,500 or more, further preferably 3,000 or more, and further preferably, from the viewpoint of low viscosity and low temperature fixability. From the same viewpoint, it is preferably 10,000 or less, more preferably 9,000 or less, and further preferably 8,000 or less.
  • the weight average molecular weight of the amino group-containing copolymer is preferably 5,000 or more, more preferably 10,000 or more, and further preferably 12,000 or more, from the viewpoints of low viscosity and low-temperature fixability. Therefore, it is preferably 100,000 or less, more preferably 50,000 or less, and still more preferably 20,000 or less.
  • the content of the amino group-containing copolymer in aspect A is preferably 1 part by mass or more, more preferably from the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability with respect to 100 parts by mass of the toner particles. Is 3 parts by mass or more, more preferably 4 parts by mass or more, and preferably 10 parts by mass or less, more preferably 8 parts by mass from the viewpoint of improving the chargeability of the toner and increasing the resistance of the liquid developer. Hereinafter, it is more preferably 7 parts by mass or less.
  • the content of the amino group-containing copolymer in the embodiment B is preferably 1 part by mass or more, more preferably from the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability with respect to 100 parts by mass of the toner particles.
  • it is more preferably 7 parts by mass or less, and still more preferably 5 parts by mass or less.
  • the liquid developer of the present invention contains the amino group-containing copolymer as a dispersant, and the liquid developer is a dispersant other than the amino group-containing copolymer as long as the effects of the present invention are not impaired.
  • the content of the amino group-containing copolymer is preferably 25% by mass or more, more preferably 40% by mass or more, more preferably 55% by mass or more, more preferably It is 70% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, further preferably 95% by mass or more, further preferably 97% by mass or more, and further preferably 100% by mass.
  • dispersants examples include polyallylamine, olefin / vinyl pyrrolidone copolymer, aliphatic amine and salts thereof.
  • the content of the dispersant used in the present invention is preferably 1 part by mass or more, more preferably 2 parts from the viewpoint of improving the dispersion stability of the toner particles and improving the storage stability with respect to 100 parts by mass of the toner particles. More than 3 parts by weight, more preferably 3 parts by weight or more, more preferably 4 parts by weight or more, from the viewpoint of improving the chargeability of the toner, and from the viewpoint of increasing the resistance of the liquid developer, preferably 10 parts by weight or less, More preferred is 8.5 parts by mass or less, and further preferred is 7 parts by mass or less.
  • the liquid developer of aspect B further contains an acid compound.
  • the acid compound in the embodiment B is not particularly limited, but an organic compound having an acid group is preferable, and an organic compound having a carboxy group is more preferable.
  • the organic compound having a carboxy group include fatty acids, aliphatic dicarboxylic acids and anhydrides thereof, aromatic monocarboxylic acids, aromatic dicarboxylic acids and anhydrides thereof, polymer compounds having a carboxy group and anhydrides thereof, Examples thereof include a polymer compound having a carboxy group and a reaction product of the anhydride thereof and a polymer compound having a basic nitrogen-containing group.
  • a fatty acid, an aliphatic dicarboxylic acid and an anhydride thereof, or a polymer compound having a carboxy group and an anhydride thereof are preferable, and a polymer compound having a carboxy group and an anhydride thereof are more preferable.
  • fatty acids aliphatic dicarboxylic acids and their anhydrides, aromatic monocarboxylic acids, aromatic dicarboxylic acids and their anhydrides, from the viewpoint of improving the chargeability of the toner and from the viewpoint of increasing the resistance of the liquid developer, Fatty acids are preferred.
  • the number of carbon atoms of the fatty acid is preferably 8 or more, more preferably 12 or more, and still more preferably 16 or more, from the viewpoint of solubility in the insulating liquid and high resistance of the liquid developer. From the viewpoint of the solubility of the toner and the low viscosity of the liquid developer, it is preferably 24 or less, more preferably 22 or less, and still more preferably 20 or less.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, but in the present invention, an unsaturated fatty acid is preferable from the viewpoint of improving the solubility in an insulating liquid and the chargeability of the toner.
  • unsaturated fatty acid include oleic acid, linoleic acid, erucic acid, myristoleic acid, palmitoleic acid, linolenic acid and the like.
  • Examples of the polymer compound having a carboxy group include a polymer of a hydroxycarboxylic acid having 12 or more carbon atoms, a polymer of a dibasic acid having 2 to 22 carbon atoms and a diol having 2 to 22 carbon atoms, and a carbon having a carboxy group.
  • Examples thereof include a polymer of alkyl (meth) acrylate having several 16 or more, and a polyolefin having a carboxy group obtained by reacting a polyolefin and a carboxylic acid compound.
  • a polymer of hydroxycarboxylic acid having 12 or more carbon atoms a polymer of hydroxycarboxylic acid having 12 to 24 carbon atoms, preferably 16 to 24 carbon atoms is preferable, such as a polymer of 12-hydroxystearic acid, etc. Is mentioned.
  • Examples of the polymer of a dibasic acid having 2 to 22 carbon atoms and a diol having 2 to 22 carbon atoms include, for example, a polymer of ethylene glycol and sebacic acid, a polymer of 1,4-butanediol and fumaric acid, 1 1,6-hexanediol and fumaric acid polymer, 1,10-decanediol and sebacic acid polymer, 1,12-dodecanediol and 1,12-dodecanedioic acid polymer, and the like.
  • a polymer of alkyl (meth) acrylate having 16 or more carbon atoms a polymer of alkyl (meth) acrylate having 16 to 24 carbon atoms is preferable.
  • polystyrene resin examples include polyethylene, polypropylene, polybutylene, polyisobutene, polymethylpentene, polytetradecene, polyhexadecene, polyoctadecene, polyeicosene, polydocosene and the like.
  • carboxylic acid compounds include fumaric acid, maleic acid, ethanoic acid, propanoic acid, butanoic acid, succinic acid, oxalic acid, malonic acid, tartaric acid, their anhydrides, or alkyl esters having 1 to 3 carbon atoms. Etc.
  • the number average molecular weight of the polymer compound having a carboxy group is preferably 500 or more, more preferably 700 or more, still more preferably 900 or more, from the viewpoint of dispersibility of the toner particles, and the dispersant is added to the toner particles. From the viewpoint of adsorptivity, it is preferably 5,000 or less, more preferably 4,000 or less, and still more preferably 3,000 or less.
  • polyolefin having a carboxy group obtained by reacting a polyolefin and a carboxylic acid compound polyisobutene succinic anhydride having a number average molecular weight of 500 to 5,000 is preferred.
  • Basic nitrogen-containing groups include amino groups (—NH 2 , —NHR, —NHRR ′), amide groups (—C ( ⁇ O) —NRR ′), imide groups (—N (COR) 2 ), and nitro groups. (—NO 2 ), imino group ( ⁇ NH), cyano group (—CN), azo group (—N ⁇ N—), diazo group ( ⁇ N 2 ), and azide group (—N 3 ) At least one selected is preferred.
  • R and R ′ represent a hydrocarbon group having 1 to 5 carbon atoms. From the viewpoint of the adsorptivity of the dispersant to the toner particles, amino groups and / or imino groups are preferable, and from the viewpoint of chargeability of the toner particles, imino groups are more preferable.
  • polymer compound having a basic nitrogen-containing group examples include polyalkyleneimines such as polyethyleneimine, polyaminoalkyl methacrylates such as polyallylamine and polydimethylaminoethyl methacrylate, and the like.
  • the number average molecular weight of the polymer compound having a basic nitrogen-containing group is preferably 500 or more, more preferably 700 or more, and still more preferably 900 or more. From the viewpoint of adsorptivity to particles, it is preferably 6,000 or less, more preferably 5,000 or less, and still more preferably 4,000 or less.
  • Mass ratio of polymer compound having basic nitrogen-containing group and polymer compound having carboxy group and anhydride thereof in reaction product (polymer compound having basic nitrogen-containing group / polymer having carboxyl group and anhydride thereof)
  • the compound is preferably 3/97 or more, more preferably 5/95 or more from the viewpoint of adsorptivity to toner particles, and preferably 20/80 from the viewpoint of dispersion stability of the toner particles. Or less, more preferably 15/85 or less.
  • the content of the acid compound is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the toner particles from the viewpoint of improving the chargeability of the toner and improving the dispersion stability of the toner particles and improving the storage stability. More preferably, it is 1 part by mass or more, more preferably 1.5 parts by mass or more, and preferably 8 parts by mass or less, more preferably from the viewpoint of improving the chargeability of the toner and increasing the resistance of the liquid developer. 6 parts by mass or less, more preferably 5 parts by mass or less.
  • the mass ratio of the amino group-containing copolymer to the acid compound is preferably from the viewpoint of improving the chargeability of the toner and increasing the resistance of the liquid developer. 20/80 or more, more preferably 30/70 or more, and even more preferably 40/60 or more, and from the viewpoint of improving the chargeability of the toner, and improving the dispersion stability of the toner particles and improving the storage stability. From the viewpoint, it is preferably 95/5 or less, more preferably 90/10 or less, further preferably 70/30 or less, and further preferably 60/40 or less.
  • the liquid developer of aspect B contains the amino group-containing copolymer as a dispersant. Accordingly, the liquid developer may contain other dispersant for liquid developer as long as the effects of the present invention are not impaired, but the content of the amino group-containing copolymer is Preferably it is 80 mass% or more, More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more, More preferably, it is 97 mass% or more, More preferably, it is 100 mass%.
  • the insulating liquid in the present invention means a liquid in which electricity hardly flows.
  • the conductivity of the insulating liquid is preferably 1.0 ⁇ 10 ⁇ 10 S / m or less, more preferably 7.0. ⁇ 10 ⁇ 11 S / m or less, more preferably 5.0 ⁇ 10 ⁇ 11 S / m or less, and preferably 1.0 ⁇ 10 ⁇ 13 S / m or more.
  • the insulating liquid examples include hydrocarbon-based insulating liquids such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbons, polysiloxanes, vegetable oils, and the like.
  • hydrocarbon-based insulating liquids such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbons, polysiloxanes, vegetable oils, and the like.
  • the high amine value amino group-containing copolymer is easy to be adsorbed to toner particles, particularly in a nonpolar insulating liquid, so that the amount of free dispersant that does not adsorb to the toner is reduced, and the increase in conductivity can be suppressed. Therefore, the insulating liquid is preferably nonpolar.
  • the insulating liquid in the present invention may contain a hydrocarbon-based insulating liquid from the viewpoint of improving the storage stability by improving the dispersion stability of the toner particles.
  • the hydrocarbon-based insulating liquid is preferably an acyclic hydrocarbon-based insulating liquid from the viewpoint of reducing the conductivity of the liquid developer and improving the storage stability by improving the dispersion stability of the toner particles.
  • the content of the acyclic hydrocarbon-based insulating liquid is preferably 50% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, in the insulating liquid. Preferably it is 100 mass%.
  • the acyclic hydrocarbon-based insulating liquid an aliphatic hydrocarbon-based solvent is preferable, and polyisobutene is more preferable from the viewpoint of dispersion stability and chargeability.
  • polyisobutene is obtained by polymerizing isobutene by a known method, for example, a cationic polymerization method using a catalyst, and then hydrogenating the terminal double bond.
  • the degree of polymerization of polyisobutene is preferably 8 or less, more preferably 6 or less, still more preferably 5 or less, and even more preferably 4 or less, from the viewpoint of improving the low-temperature fixability of the toner. Further, from the viewpoint of suppressing charger contamination, it is preferably 2 or more, more preferably 3 or more.
  • Examples of commercially available insulating liquids containing polyisobutene include “NAS-3”, “NAS-4”, “NAS-5H” (all of which are manufactured by NOF Corporation). One or more of these can be combined.
  • the content of the hydrocarbon-based insulating liquid is preferably 5% by mass or more, more preferably 20% by mass or more, further preferably 40% by mass or more, further preferably 60% by mass or more, more preferably in the insulating liquid. 80% by mass or more, more preferably 90% by mass or more.
  • the boiling point of the insulating liquid is preferably 120 ° C. or higher, more preferably 140 ° C. or higher, from the viewpoint of improving the film formability by suppressing the thickening of the liquid developer on the roller. More preferably, it is 160 ° C. or higher, more preferably 180 ° C. or higher, more preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and from the viewpoint of further improving the low-temperature fixability of the toner, From the viewpoint of further improving the properties and obtaining toner particles having a small particle size, it is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, and further preferably 260 ° C. or lower. When two or more insulating liquids are combined, the boiling point of the combined insulating liquid mixture is preferably within the above range.
  • the viscosity at 25 ° C. of the insulating liquid is preferably 1 mPa ⁇ s or more, more preferably from the viewpoint of improving the developability and suppressing the increase of the viscosity of the liquid developer on the roller to improve the film formability.
  • the liquid developer is obtained by mixing toner particles with a dispersant and an insulating liquid and dispersing them in the insulating liquid. From the viewpoint of reducing the particle size of the toner particles, it is preferable to disperse the toner particles in an insulating liquid and then wet pulverize to obtain a liquid developer.
  • wet pulverization may be performed after mixing the toner particles, the amino group-containing copolymer, the acid compound, and the insulating liquid. From the step of mixing the toner particles, the amino group-containing copolymer and the insulating liquid to obtain a toner particle dispersion, wet pulverizing the obtained toner particle dispersion, and then mixing the acid compound. It is preferable to obtain a liquid developer.
  • a method of mixing the toner particles, the dispersant, and the insulating liquid a method of stirring with a stirring and mixing device is preferable.
  • the stirring and mixing device is not particularly limited, but a high-speed stirring and mixing device is preferable from the viewpoint of improving the productivity and storage stability of the toner particle dispersion.
  • Despa manufactured by Asada Tekko Co., Ltd.
  • T K. Homomixer T K. Homomixer
  • TK. Homo Disper TK. Robomix (all of which are manufactured by PRIMIX Co., Ltd.)
  • CLEARMIX manufactured by M Technique Co., Ltd.
  • KD Mill manufactured by KD International
  • the toner particles are preliminarily dispersed by mixing with a high-speed agitating and mixing apparatus to obtain a toner particle dispersion, and the productivity of the liquid developer by the next wet pulverization is improved.
  • the solid content concentration of the toner particle dispersion is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 33% by mass or more. From the viewpoint of improving the property and improving the storage stability, it is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • the content of the toner particles in the toner particle dispersion subjected to wet pulverization is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, from the viewpoint of high-speed printability with respect to 100 parts by mass of the insulating liquid.
  • the wet pulverization is a method in which the toner particles dispersed in the insulating liquid are mechanically pulverized in a state of being dispersed in the insulating liquid.
  • a generally used stirring and mixing device such as an anchor blade
  • high speed stirring and mixing devices such as Despa (manufactured by Asada Tekko Co., Ltd.), TK homomixer (manufactured by Primix Co., Ltd.), pulverizers or kneaders such as roll mills, bead mills, kneaders and extruders Etc.
  • Despa manufactured by Asada Tekko Co., Ltd.
  • TK homomixer manufactured by Primix Co., Ltd.
  • pulverizers or kneaders such as roll mills, bead mills, kneaders and extruders Etc.
  • a plurality of these devices can be combined.
  • the use of a bead mill is used from the viewpoint of reducing the particle size of the toner particles, improving the storage stability of the toner particles by improving the dispersion stability of the toner particles, and reducing the viscosity of the dispersion. preferable.
  • the solid concentration of the liquid developer is preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more, and the dispersion stability of the toner particles. From the viewpoint of improving the storage stability by improving the content, it is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • the content of the toner particles in the liquid developer is preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more from the viewpoint of high-speed printing, and the dispersion stability of the toner particles From the viewpoint of safety, it is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • the volume median particle size (D 50 ) of the toner particles in the liquid developer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and even more preferably 1.5 ⁇ m or more. From the viewpoint of improving the image quality of the liquid developer, it is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 2.5 ⁇ m or less.
  • the content of the insulating liquid in the liquid developer is preferably 50% by mass or more, more preferably 55% by mass or more, further preferably 60% by mass or more, from the viewpoint of dispersion stability of the toner particles, and From the viewpoint of high-speed printing, it is preferably 90% by mass or less, more preferably 85% by mass or less, further preferably 80% by mass or less, and further preferably 75% by mass or less.
  • the viscosity at 25 ° C. of the liquid developer when the solid content concentration is 25% by mass is 50 mPa ⁇ s or less, preferably 45 mPa ⁇ s or less, more preferably from the viewpoint of improving the fixability of the liquid developer.
  • 40 mPa ⁇ s or less more preferably 35 mPa ⁇ s or less, more preferably 25 mPa ⁇ s or less, and from the viewpoint of improving the storage stability by improving the dispersion stability of the toner particles, preferably 3 mPa ⁇ s or more More preferably, it is 5 mPa ⁇ s or more, more preferably 6 mPa ⁇ s or more, and further preferably 7 mPa ⁇ s or more.
  • the conductivity of the liquid developer of the embodiment A is 5.0 ⁇ 10 ⁇ 9 S / m or less, preferably 1.0 ⁇ 10 ⁇ 10 S / m or less, more preferably 7.0 ⁇ 10 ⁇ 11 from the viewpoint of storage stability.
  • Glass transition temperature of resin Using a differential scanning calorimeter “DSC210” (manufactured by Seiko Denshi Kogyo Co., Ltd.), 0.01 to 0.02 g of a sample is weighed into an aluminum pan, heated to 200 ° C, and the temperature is reduced to 0 at a rate of 10 ° C / min Cool to ° C. Next, the sample is heated at a heating rate of 10 ° C./min, and the endothermic peak is measured.
  • the glass transition temperature is defined as the temperature at the intersection of the base line extension below the maximum peak temperature of endotherm and the tangent line indicating the maximum slope from the peak rising portion to the peak apex.
  • sample dispersion was added to 100 mL of the electrolyte so that the particle size of 30,000 particles could be measured in 20 seconds, and 30,000 particles were measured. Determine the median particle size (D 50 ).
  • the calibration curve at this time includes several types of monodisperse polystyrene (A-500 (5.0 ⁇ 10 2 ), A-1000 (1.01 ⁇ 10 3 ), A-2500 (2.63 ⁇ 10 3 ) manufactured by Tosoh Corporation, A-5000 (5.97 ⁇ 10 3 ), F-1 (1.02 ⁇ 10 4 ), F-2 (1.81 ⁇ 10 4 ), F-4 (3.97 ⁇ 10 4 ), F-10 (9.64 ⁇ 10 4 ), F-20 (1.90 ⁇ 10 5 ), F-40 (4.27 ⁇ 10 5 ), F-80 (7.06 ⁇ 10 5 ), F-128 (1.09 ⁇ 10 6 )) prepared as standard samples are used. The molecular weight is shown in parentheses. Measuring device: HLC-8220GPC (manufactured by Tosoh Corporation) Analysis column: TSKgel GMHXL + TSKgel G3000HXL (manufactured by Tosoh Corporation)
  • the calibration curve at this time includes several types of monodisperse polystyrene (A-500 (5.0 ⁇ 10 2 ), A-5000 (5.97 ⁇ 10 3 ), F-2 (1.81 ⁇ 10 4 ) manufactured by Tosoh Corporation, Use F-10 (9.64 ⁇ 10 4 ) and F-40 (4.27 ⁇ 10 5 )) as standard samples.
  • A-500 5.0 ⁇ 10 2
  • A-5000 5.97 ⁇ 10 3
  • F-2 (1.81 ⁇ 10 4
  • F-40 4.27 ⁇ 10 5
  • the molecular weight is shown in parentheses.
  • Measuring device HLC-8220GPC (manufactured by Tosoh Corporation)
  • the calibration curve at this time includes several types of monodisperse polystyrene (A-500 (5.0 ⁇ 10 2 ), A-1000 (1.01 ⁇ 10 3 ), A-2500 (2.63 ⁇ 10 3 ) manufactured by Tosoh Corporation, A-5000 (5.97 ⁇ 10 3 ), F-1 (1.02 ⁇ 10 4 ), F-2 (1.81 ⁇ 10 4 ), F-4 (3.97 ⁇ 10 4 ), F-10 (9.64 ⁇ 10 4 ), Use F-20 (1.90 ⁇ 10 5 ), F-40 (4.27 ⁇ 10 5 ), F-80 (7.06 ⁇ 10 5 ), F-128 (1.09 ⁇ 10 6 )) as standard samples.
  • the molecular weight is shown in parentheses.
  • Measuring device HLC-8220GPC (manufactured by Tosoh Corporation)
  • Analytical column: GMHXL + G3000HXL manufactured by Tosoh Corporation
  • the calibration curve at this time includes several types of monodisperse polystyrene (A-500 (5.0 ⁇ 10 2 ), A-5000 (5.97 ⁇ 10 3 ), F-2 (1.81 ⁇ 10 4 ) manufactured by Tosoh Corporation, Use F-10 (9.64 ⁇ 10 4 ) and F-40 (4.27 ⁇ 10 5 )) as standard samples.
  • A-500 5.0 ⁇ 10 2
  • A-5000 5.97 ⁇ 10 3
  • F-2 (1.81 ⁇ 10 4
  • F-40 4.27 ⁇ 10 5
  • the molecular weight is shown in parentheses.
  • Measuring device HLC-8220GPC (manufactured by Tosoh Corporation)
  • Example B series The molecular weight distribution is measured by the gel permeation chromatography (GPC) method shown below to determine the number average molecular weight.
  • GPC gel permeation chromatography
  • Solid content concentration of toner particle dispersion and liquid developer 10 parts by mass of the sample is diluted with 90 parts by mass of hexane, and is rotated for 20 minutes at a rotational speed of 25,000 r / min using a centrifuge “3-30KS” (manufactured by Sigma). After standing, the supernatant is removed by decantation, diluted with 90 parts by mass of hexane, and centrifuged again under the same conditions. After removing the supernatant by decantation, the lower layer is dried in a vacuum dryer at 0.5 kPa and 40 ° C. for 8 hours, and the solid content concentration is calculated from the following formula.
  • volume-median Particle Size (D 50 ) of Toner Particles in Liquid Developer Using a laser diffraction / scattering particle size measuring device “Mastersizer 2000” (Malvern), add Isopar L (ExxonMobil, isoparaffin, viscosity 1 mPa ⁇ s at 25 ° C.) to the measurement cell, and then the scattering intensity.
  • the volume-median particle size (D 50 ) is measured under the conditions of a particle refractive index of 1.58 (imaginary part 0.1) and a dispersion medium refractive index of 1.42 at a concentration of 5 to 15%.
  • Resin production example 1 Polyester resin raw material monomers other than fumaric acid and trimellitic anhydride shown in Table A-1, esterification catalyst and esterification co-catalyst, 10 L capacity four equipped with nitrogen introduction tube, dehydration tube, stirrer and thermocouple The flask was placed in a one-necked flask and heated to 230 ° C. using a mantle heater, then reacted at 230 ° C. for 8 hours, further reduced to 8.3 kPa and reacted for 1 hour.
  • the temperature was lowered to 170 ° C., and the raw material monomer of styrene resin, the bireactive monomer and the polymerization initiator shown in Table A-1 were added dropwise over 1 hour using a dropping funnel. After aging the addition polymerization reaction for 1 hour while maintaining at 170 ° C, the temperature was raised to 210 ° C, the raw material monomer of the styrene resin was removed at 8.3 kPa for 1 hour, and the reaction of both reactive monomers and the polyester part was performed. went. Further, at 210 ° C., trimellitic anhydride, fumaric acid and 5 g of polymerization inhibitor were added, and the reaction was carried out until the softening point shown in Table A-1 was reached. The composite resin having the physical properties shown in Table A-1 (Resin A) was obtained.
  • Resin production example 2 The polyester resin raw material monomers and esterification catalyst shown in Table A-1 were placed in a 10 L four-necked flask equipped with a nitrogen introduction tube, a dehydration tube, a stirrer and a thermocouple, and heated to 180 ° C. using a mantle heater. After raising the temperature, the temperature was raised to 220 ° C. over 10 hours and reacted at 220 ° C. The reaction was further continued at 8.3 kPa until the softening point shown in Table A-1 was reached, to obtain a polyester resin (resin B) having the physical properties shown in Table A-1.
  • Resin production example 3 Raw material monomers of polyester resin other than trimellitic anhydride shown in Table A-1, esterification catalyst and polymerization inhibitor are placed in a 10 L four-necked flask equipped with a nitrogen introduction tube, a dehydration tube, a stirrer and a thermocouple. Using a mantle heater, the temperature was raised from 180 ° C. to 200 ° C. over 1 hour, reacted at 200 ° C., trimellitic anhydride was added, and the softening points shown in Table A-1 at 200 ° C. A polyester resin (resin C) having the physical properties shown in Table A-1 was obtained by carrying out the reaction until the pH reached.
  • Resin production example 4 The alcohol components shown in Table A-1 were put into a 10-liter four-necked flask equipped with a dehydration tube equipped with a nitrogen introduction tube, a stirrer, and a thermocouple, and the temperature was raised to 100 ° C. Was added, the temperature was raised to 160 ° C., an esterification catalyst and an esterification cocatalyst were added, and the mixture was reacted at 235 ° C. for 10 hours, and then reacted at 235 ° C. and 8.0 kPa for 1 hour.
  • polyisobutene succinic anhydride (Dover, H1000, Mw: 1538) was added and again subjected to a polycondensation reaction at 235 ° C. for 5 hours, and further in Table A-1 at 235 ° C. and 8.0 kPa. The reaction was carried out until the softening point shown was reached, and a polyester resin (resin D) having the physical properties shown in Table A-1 was obtained.
  • Example of production of amino group-containing copolymer 100 g of a solvent (methyl ethyl ketone) was placed in a 2 L four-necked flask equipped with a condenser, a nitrogen inlet, a stirrer, and a thermocouple, and the inside of the reaction vessel was replaced with nitrogen gas. .
  • the inside of the reaction vessel was heated to 80 ° C., and a mixture of the raw material monomer and the polymerization initiator shown in Table A-2 was dropped over 2 hours to carry out a polymerization reaction. After completion of the dropwise addition, the mixture was further reacted at 80 ° C. for 3 hours.
  • the solvent was distilled off at 80 ° C. to obtain amino group-containing copolymers (dispersants A to C, E, F) having the physical properties shown in Table A-2.
  • a continuous two-open roll kneader “NIDEX” manufactured by Nippon Coke Industries Co., Ltd., roll outer diameter: 14 cm, effective roll length: 55 cm) was used.
  • the operating conditions of the continuous two-open roll type kneader are: high rotation side roll (front roll) rotation speed 75r / min (circumferential speed 32.4m / min), low rotation side roll (back roll) rotation speed 35r / min ( The peripheral speed was 15.0 m / min), and the roll clearance at the end of the kneaded product supply port was 0.1 mm.
  • the heating medium temperature and cooling medium temperature in the roll are 90 ° C.
  • the feed rate of the raw material mixture to the kneader was 10 kg / h, and the average residence time in the kneader was about 3 minutes.
  • the kneaded product obtained above was rolled and cooled with a cooling roll, and then roughly pulverized to about 1 mm using a hammer mill.
  • the obtained coarsely pulverized product was finely pulverized and classified by an airflow jet mill “IDS” (manufactured by Nippon Pneumatic Co., Ltd.) to obtain toner particles having a volume median particle size (D 50 ) of 10 ⁇ m.
  • the obtained toner particle dispersion was rotated with a 6-cylinder sand mill “TSG-6” (manufactured by IMEX Co., Ltd.) using zirconia beads having a diameter of 0.8 mm at a volume filling rate of 60% by volume.
  • Wet pulverization was performed at 1300 r / min (circumferential speed 4.8 m / sec) until the volume-median particle size (D 50 ) shown in Table A-4 was reached.
  • the beads were removed by filtration, and then diluted by adding 44 parts by mass of the insulating liquid shown in Table A-4 to 100 parts by mass of the filtrate to adjust the solid content concentration to 25% by mass, as shown in Table A-4.
  • a liquid developer having physical properties was obtained.
  • Comparative Example 2 Example 1 except that the amount of insulating liquid used was changed to 60.8 parts by mass, and the amount of dispersant D used was changed to 4.2 parts by mass (effective part 6 parts by mass with respect to 100 parts by mass of toner particles). Thus, a liquid developer having the physical properties shown in Table A-4 and having a solid content concentration adjusted to 25% by mass was obtained.
  • Test Example 1 [storage stability] 5 g of liquid developer was placed in a 10 mL screw tube and stored in a constant temperature bath at 40 ° C. for 15 hours. The volume-median particle size (D 50 ) of the toner particles before and after storage was measured, and the storage stability was evaluated from the value (%) of D 50 after storage / D 50 ⁇ 100 before storage. The results are shown in Table A-4. The closer the value is to 100%, the better the storage stability.
  • Test Example 2 [Positive Charging] In a Teflon (registered trademark) container (outer dimensions W: 6.3cm x D4cm x H6.3cm, inner dimensions: W5cm x D1.1cm x H5cm), two electrodes (stainless steel, W4cm x D0.5 cm ⁇ H5 cm) was inserted (distance between electrodes 0.1 cm). 2.5 g of liquid developer was injected between the two electrodes, and a DC voltage of ⁇ 250 V was applied to both electrodes for 60 seconds using a DC power supply “TMK1.5-50” (manufactured by Takasago Seisakusho). Both electrodes were extracted and dried at 0.5 kPa and 100 ° C.
  • TMK1.5-50 manufactured by Takasago Seisakusho
  • the liquid developers in Examples 1 to 7 have a small particle size, low viscosity, and excellent storage stability and positive chargeability.
  • the liquid developer of Comparative Example 1 in which the molar ratio of the monomer A in the amino group-containing copolymer is small and the amine value is low shows negative chargeability instead of positive chargeability.
  • the developer also has insufficient positive chargeability.
  • the liquid developer of Comparative Example 2 which has an amino group but contains a dispersant that is not a predetermined amino group-containing copolymer exhibits a stronger negative chargeability than Comparative Example 1. I understand that.
  • the liquid developer of Comparative Example 3 has high electrical conductivity and lacks storage stability.
  • Resin production example 1 Polyester resin raw material monomers other than fumaric acid and trimellitic anhydride shown in Table B-1, esterification catalyst and esterification co-catalyst, 10L capacity four equipped with nitrogen introduction tube, dehydration tube, stirrer and thermocouple The flask was placed in a one-necked flask and heated to 230 ° C. using a mantle heater, then reacted at 230 ° C. for 8 hours, further reduced to 8.3 kPa and reacted for 1 hour.
  • the temperature was lowered to 170 ° C., and the raw material monomer of styrene resin, the bireactive monomer, and the polymerization initiator shown in Table B-1 were added dropwise by a dropping funnel over 1 hour. After aging the addition polymerization reaction for 1 hour while maintaining at 170 ° C, the temperature was raised to 210 ° C, the raw material monomer of the styrene resin was removed at 8.3 kPa for 1 hour, and the reaction of both reactive monomers and the polyester part was performed. went. Further, at 210 ° C., trimellitic anhydride, fumaric acid and 5 g of polymerization inhibitor were added, and the reaction was carried out until the softening point shown in Table B-1 was reached. The composite resin having the physical properties shown in Table B-1 (Resin A) was obtained.
  • Resin production example 2 The polyester resin raw material monomer and esterification catalyst shown in Table B-1 were placed in a 10 L four-necked flask equipped with a nitrogen introduction tube, a dehydration tube, a stirrer and a thermocouple, and heated to 180 ° C. using a mantle heater. After raising the temperature, the temperature was raised to 220 ° C. over 10 hours and reacted at 220 ° C. The reaction was further performed at 8.3 kPa until the softening point shown in Table B-1 was reached, to obtain a polyester resin (resin B) having the physical properties shown in Table B-1.
  • Resin production example 3 Raw material monomer of ester resin other than trimellitic anhydride shown in Table B-1, esterification catalyst and polymerization inhibitor are put into a 10 L four-necked flask equipped with a nitrogen introduction tube, a dehydration tube, a stirrer and a thermocouple. Using a mantle heater, the temperature was raised from 180 ° C to 200 ° C over 1 hour, reacted at 200 ° C, trimellitic anhydride was added, and the softening points shown in Table B-1 at 200 ° C A polyester resin (resin C) having physical properties shown in Table B-1 was obtained.
  • Example of production of amino group-containing copolymer 100 g of a solvent (methyl ethyl ketone) was placed in a 2 L four-necked flask equipped with a condenser, a nitrogen inlet, a stirrer, and a thermocouple, and the inside of the reaction vessel was replaced with nitrogen gas. .
  • the inside of the reaction vessel was heated to 80 ° C., and a mixture of the raw material monomer and the polymerization initiator shown in Table B-2 was added dropwise over 2 hours to carry out the polymerization reaction. After completion of the dropwise addition, the mixture was further reacted at 80 ° C. for 3 hours.
  • the solvent was distilled off at 80 ° C. to obtain amino group-containing copolymers (copolymers A to D) having the physical properties shown in Table B-2.
  • Examples 1, 3-5, 10 80 parts by weight of the binder resin shown in Table B-5 and 20 parts by weight of the colorant “ECB-301” (manufactured by Dainichi Seika Kogyo Co., Ltd., phthalocyanine blue 15: 3) were previously used in a 20 L Henschel mixer. The mixture was stirred and mixed for 3 minutes at a rotational speed of 1500 r / min (circumferential speed 21.6 m / sec) and then melt-kneaded under the following conditions.
  • a continuous two-open roll kneader “NIDEX” manufactured by Nippon Coke Industries Co., Ltd., roll outer diameter: 14 cm, effective roll length: 55 cm) was used.
  • the operating conditions of the continuous two-open roll type kneader are: high rotation side roll (front roll) rotation speed 75r / min (circumferential speed 32.4m / min), low rotation side roll (back roll) rotation speed 35r / min ( The peripheral speed was 15.0 m / min), and the roll clearance at the end of the kneaded product supply port was 0.1 mm.
  • the heating medium temperature and cooling medium temperature in the roll are 90 ° C.
  • the feed rate of the raw material mixture to the kneader was 10 kg / h, and the average residence time in the kneader was about 3 minutes.
  • the kneaded product obtained above was rolled and cooled with a cooling roll, and then roughly pulverized to about 1 mm using a hammer mill.
  • the obtained coarsely pulverized product was finely pulverized and classified by an airflow jet mill “IDS” (manufactured by Nippon Pneumatic Co., Ltd.) to obtain toner particles having a volume median particle size (D 50 ) of 10 ⁇ m.
  • the obtained toner particle dispersion was rotated with a 6-cylinder sand mill “TSG-6” (manufactured by IMEX Co., Ltd.) using zirconia beads having a diameter of 0.8 mm at a volume filling rate of 60% by volume.
  • Wet grinding was performed at 1300 r / min (circumferential speed 4.8 m / sec) until the volume-median particle size (D 50 ) shown in Table B-5 was reached.
  • the beads were removed by filtration, and then diluted by adding 44 parts by mass of the insulating liquid shown in Table B-5 to 100 parts by mass of the filtrate to adjust the solid content concentration to 25% by mass, as shown in Table B-5.
  • a liquid developer having physical properties was obtained.
  • Example 2 is the same as Example 1 except that the amount of the insulating liquid used was changed to 62.9 parts by mass, and the amount of the amino group-containing copolymer used was changed to 0.7 parts by mass (2 parts by mass with respect to 100 parts by mass of toner particles). Similarly, a liquid developer having the physical properties shown in Table B-5 and having a solid content concentration adjusted to 25% by mass was obtained.
  • Example 6 and 7 Except for changing the amount of the insulating liquid used to 62.9 parts by mass and the amount of the acid compound used to 0.7 parts by mass (2 parts by mass with respect to 100 parts by mass of the toner particles), the same as in Example 1, A liquid developer having the physical properties shown in Table B-5 and having a solid content concentration adjusted to 25% by mass was obtained.
  • Example 8 The amount of insulating liquid used is 63.6 parts by mass, the amount of amino group-containing copolymer used is 1.05 parts by mass (3 parts by mass with respect to 100 parts by mass of toner particles), and the amount of acid compound used is 0.35 parts by mass (The liquid development having the physical properties shown in Table B-5 was adjusted in the same manner as in Example 1 except that the amount was changed to 1 part by weight per 100 parts by weight of toner particles). An agent was obtained.
  • Example 9 The amount of insulating liquid used is 62.72 parts by weight, the amount of amino group-containing copolymer used is 1.75 parts by weight (5 parts by weight with respect to 100 parts by weight of toner particles), and the amount of acid compound used is 0.53 parts by weight (The liquid development having the physical properties shown in Table B-5 was adjusted in the same manner as in Example 1 except that the amount was changed to 1.5 parts by mass with respect to 100 parts by mass of toner particles). An agent was obtained.
  • Example 11 A liquid developer was obtained in the same manner as in Example 2 except that the addition timing of the acid compound was changed when the toner particles were prepared. That is, the toner particles were mixed with an insulating liquid and an amino group-containing copolymer, wet pulverized, and then the solid content concentration of the toner particle dispersion was adjusted to 25% by mass. Thereafter, 1 part by weight of an acid compound (4 parts by weight with respect to 100 parts by weight of toner particles) is added to 100 parts by weight of the toner particle dispersion, and the mixture is stirred for 12 hours with a ball mill and has the physical properties shown in Table B-5. A liquid developer was obtained.
  • Comparative Example 1 The amount of insulating liquid used was changed to 62.9 parts by mass, the amount of amino group-containing copolymer used was changed to 2.1 parts by mass (6 parts by mass with respect to 100 parts by mass of toner particles), and no acid compound was used. In the same manner as in Example 1, a liquid developer having the physical properties shown in Table B-5 having a solid content concentration adjusted to 25% by mass was obtained.
  • Comparative Example 2 The amount of insulating liquid used was changed to 60.8 parts by mass, and the amount of acid compound A used was changed to 4.2 parts by mass (effective part 6 parts by mass with respect to 100 parts by mass of toner particles).
  • a liquid developer having the physical properties shown in Table B-5 was obtained in the same manner as in Example 1, except that the solid content concentration was adjusted to 25% by mass.
  • Test Example 1 [storage stability] The storage stability was evaluated by the same method as in Test Example 1 of Example A series. The results are shown in Table B-5.
  • Test Example 2 [Positive Charging] The storage stability was evaluated by the same method as in Test Example 2 of Example A series. The results are shown in Table B-5.
  • the liquid developers in Examples 1 to 11 have a small particle size, low viscosity, and excellent storage stability and positive chargeability.
  • the liquid developer of Comparative Example 1 containing no acid compound shows negative chargeability instead of positive chargeability.
  • the liquid developer of Comparative Example 2 that does not contain the predetermined amino group-containing copolymer but contains an acid compound having an amino group exhibits a stronger negative chargeability than Comparative Example 1. I understand that.
  • the liquid developer of the present invention is suitably used for developing a latent image formed by, for example, electrophotography, electrostatic recording method, electrostatic printing method and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Developers In Electrophotography (AREA)

Abstract

結着樹脂及び着色剤を含有するトナー粒子、アミノ基含有共重合体、及び絶縁性液体を含有する液体現像剤であって、前記結着樹脂がポリエステル系樹脂を含有し、前記アミノ基含有共重合体が、アミノ基を有するモノマーAと、式(I): 【化1】 (式中、R1は水素原子又は炭素数1以上5以下の炭化水素基、R2は、置換基を有していてもよい、炭素数1以上22以下の炭化水素基を示す) で表されるモノマーBとの重合物であり、 要件1:前記アミノ基含有共重合体のアミン価が165mgKOH/g以上であり、液体現像剤の導電率が5.0×10-9S/m以下であること、又は 要件2:液体現像剤が、さらに酸化合物を含有すること を充足する、液体現像剤。本発明の液体現像剤は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像等に好適に用いられるものである。

Description

液体現像剤
 本発明は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像に用いられる液体現像剤に関する。
 電子写真用現像剤には、着色剤及び結着樹脂を含む材料からなるトナー粒子を乾式状態で用いる乾式現像剤と、トナー粒子が絶縁性液体中に分散した液体現像剤がある。
 液体現像剤ではトナー粒子が絶縁性液体中に油中分散しているので、乾式現像剤と比べて小粒径化が可能である。従って、オフセット印刷を凌駕する高画質の印字物を得ることができるので、商業印刷用途に適している。また、近年、高速化への要求が高まっており、トナー粒子が速やかに電気泳動により現像される必要があることから、液体現像剤の低粘度化や高帯電化が求められている。また、現像性やクリーニング性が不十分なトナーがローラー上に蓄積するとフィルミングが発生し、長時間印刷時に画質等の悪化を招く。従って、フィルミングを抑制し良好な耐刷性を得るという観点からも、高帯電性のトナーが求められる。
 特許文献1には、絶縁性液体中への結着樹脂の溶出を抑制しつつ、小粒径、低粘度かつ保存安定性と低温定着性に優れた液体現像剤を提供することを課題として、結着樹脂と顔料とを含有するトナー粒子が分散剤の存在下で、絶縁性液体中に分散してなる液体現像剤であって、前記結着樹脂が、炭素数2以上6以下の脂肪族ジオールを70モル%以上100モル%以下含有するアルコール成分と、カルボン酸成分とを含む原料モノマーを重縮合して得られた、ガラス転移温度が35℃以上のポリエステル樹脂Pを含み、前記分散剤が、アミノ基を有するモノマーAと、特定の構造を有するモノマーBとを重合してなる共重合体を含み、該モノマーAと該モノマーBのモル比(モノマーA/モノマーB)が2/98以上50/50以下であり、該モノマーBにおける、R2が、炭素数が1以上9以下のアルキル基又は炭素数2以上9以下のアルケニル基であるモノマーB1と、R2が、炭素数が10以上22以下のアルキル基又はアルケニル基であるモノマーB2のモル比(モノマーB1/モノマーB2)が0以上0.1以下であり、アミン価が150mgKOH/g以下である液体現像剤が開示されている。
 特許文献2には、優れた画像濃度を得ることができ、定着性及び耐コールドオフセット性に優れ、長期にわたって保存安定性に優れた液体現像剤を提供することを課題として、トナー粒子と、高分子分散剤(C)と、キャリア液(D)とを含んでなる液体現像剤であって、前記トナー粒子が、結着樹脂(A)と着色剤(B)とを含んでなり、かつ、前記結着樹脂(A)が、結晶性樹脂(A-1)と非結晶性樹脂(A-2)とを含んでなり、かつ、前記高分子分散剤(C)が、アミノ基を有するエチレン性不飽和単量体と炭素数9~24のアルキル基を含有するエチレン性不飽和単量体とを共重合してなり、アミン価が5~150mgKOH/gである高分子分散剤(C)であることを特徴とする液体現像剤が開示されている。
 特許文献3には、揮発ガスの発生によって取り扱い性を悪化させることなく、有色粒子の分散不均一化による現像濃度ムラ、液量不足による転写不良、液量過多による定着不良を何れも抑えることができる液体現像剤を提供することを課題として、少なくとも樹脂及び有色物質からなる有色粒子と、これの分散媒となる液体とを有し、潜像担持体上の潜像に該有色粒子を付着させて該潜像を現像する液体現像剤において、上記液体中における上記有色粒子の分散を促進する分散促進物質として、該有色粒子とは逆極性の電荷を帯びるものを、1重量部の該有色粒子に対して0.05~20重量部の割合で該液体中に含有せしめたことを特徴とする液体現像剤が開示されている。
特開2017-010011号公報 特開2015-145985号公報 特開2004-302436号公報
 本発明は、
〔1〕 結着樹脂及び着色剤を含有するトナー粒子、アミノ基含有共重合体、及び絶縁性液体を含有する液体現像剤であって、前記結着樹脂がポリエステル系樹脂を含有し、前記アミノ基含有共重合体が、アミノ基を有するモノマーAと、式(I):
Figure JPOXMLDOC01-appb-C000003
(式中、R1は水素原子又は炭素数1以上5以下の炭化水素基、R2は、置換基を有していてもよい、炭素数1以上22以下の炭化水素基を示す)
で表されるモノマーBとの重合物であり、
要件1:前記アミノ基含有共重合体のアミン価が165mgKOH/g以上であり、液体現像剤の導電率が5.0×10-9S/m以下であること、又は
要件2:液体現像剤が、さらに酸化合物を含有すること
を充足する、液体現像剤、並びに
〔2〕 結着樹脂及び着色剤を含有するトナー粒子、アミノ基含有共重合体、及び絶縁性液体を含有する組成物であって、前記結着樹脂がポリエステル系樹脂を含有し、前記アミノ基含有共重合体が、アミノ基を有するモノマーAと、式(I)で表されるモノマーBとの重合物であり、
要件1:前記アミノ基含有共重合体のアミン価が165mgKOH/g以上であり、液体現像剤の導電率が5.0×10-9S/m以下であること、又は
要件2:液体現像剤が、さらに酸化合物を含有すること
を充足する、組成物の液体現像剤としての使用
に関する。
発明の詳細な説明
 しかしながら、従来の技術では、液体現像剤の低粘度化や帯電性及び保存安定性が不十分であり、良好な耐刷性を維持しつつ高速印刷を行うことが困難である。特に、結着樹脂として汎用されているポリエステル系樹脂は、酸基を有するため負帯電化しやすく、正帯電性の液体現像剤に用いるには、帯電性に課題がある。
 本発明は、ポリエステル系樹脂を含み、小粒径、低粘度かつ保存安定性及び正帯電性に優れる液体現像剤に関する。
 本発明の液体現像剤は、ポリエステル系樹脂を含んでいても、小粒径、低粘度かつ保存安定性及び正帯電性に優れるという効果を奏するものである。
 本発明の液体現像剤は、ポリエステル系樹脂を含む結着樹脂及び着色剤を含有するトナー粒子と絶縁性液体を含有し、さらに、分散剤としてアミン価の高いアミノ基含有共重合体を含有するものであり、
要件1:前記アミノ基含有共重合体のアミン価が165mgKOH/g以上であり、液体現像剤の導電率が5.0×10-9S/m以下であること、又は
要件2:液体現像剤が、さらに酸化合物を含有すること
を充足し、小粒径、低粘度かつ保存安定性及び正帯電性に優れるものである。
 このような効果を奏する理由は定かではないが、以下のように考えられる。
 アミノ基含有共重合体は、ポリエステル系樹脂を含有するトナー粒子に対し酸塩基相互作用により吸着しやすい。さらに、トナーに吸着した分散剤のアミノ基に対し、ポリエステル系樹脂に含まれる酸モノマー等からプロトンが供給されることで粒子が正帯電性を帯びると考えられる。
 要件1を充足する場合には、高アミン価のアミノ基含有共重合体は分子内に多くのアミノ基を有しプロトンを受容しやすいため、正帯電性が改善すると考えられる。さらに、高アミン価のアミノ基含有共重合体はトナー粒子への吸着性が高いため、遊離分散剤が少なく導電率の上昇を抑制することができ、低粘度かつ保存安定性が優れる。
 また、要件2を充足する場合、即ち、さらに酸化合物が系内に存在する場合、トナー粒子に吸着したアミノ基含有共重合体のアミノ基に対し、酸化合物からプロトンが供給されることで粒子の正帯電性が改善すると考えられる。
 さらに、本発明におけるアミノ基含有共重合体は、後述に示すように、炭素鎖を有するため、トナーに吸着した際には絶縁性液体と親和性の高い炭素鎖の部分が拡がり、トナー粒子間の立体反発力を発現する。それにより、トナー粒子の凝集や液体現像剤の増粘を抑制することができ、本発明の液体現像剤は、小粒径、低粘度かつ保存安定性に優れると考えられる。
 以降、要件1を充足する液体現像剤を態様A、要件2を充足する液体現像剤を態様Bという。
 結着樹脂は、ポリエステル系樹脂を含む。
 ポリエステル系樹脂としては、特に限定されるものではないが、例えば、ポリエステル樹脂、又はポリエステル樹脂とスチレン系樹脂等の他の樹脂とを含有する複合樹脂等が挙げられる。
 ポリエステル樹脂は、2価以上のアルコールを含むアルコール成分と2価以上のカルボン酸系化合物を含むカルボン酸成分との重縮合物が好ましい。
 2価のアルコールとしては、例えば、炭素数2以上20以下、好ましくは炭素数2以上15以下の脂肪族ジオールや、式(II):
Figure JPOXMLDOC01-appb-C000004
(式中、OR及びROはオキシアルキレン基であり、Rはエチレン及び/又はプロピレン基であり、x及びyはアルキレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、xとyの和の値は、1以上、好ましくは1.5以上であり、そして、16以下、好ましくは8以下、より好ましくは6以下、さらに好ましくは4以下である)
で表されるビスフェノールAのアルキレンオキサイド付加物、ビスフェノールA、水素添加ビスフェノールA等が挙げられる。脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等が挙げられ、これらの中では、炭素数3以上5以下の第二級炭素原子に結合した水酸基を有する脂肪族ジオールが好ましい。
 アルコール成分としては、トナーの粉砕性を向上させて小粒径のトナー粒子を得る観点、トナーの低温定着性を向上させる観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、1,2-プロパンジオール又は式(II)で表されるビスフェノールAのアルキレンオキサイド付加物が好ましい。1,2-プロパンジオール又は式(II)で表されるビスフェノールAのアルキレンオキサイド付加物の含有量は、アルコール成分中、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上、さらに好ましくは95モル%以上、さらに好ましくは100モル%である。1,2-プロパンジオール及び式(II)で表されるビスフェノールAのアルキレンオキサイド付加物が併用されている場合は、両者の総含有量が、上記範囲内であることが好ましい。
 3価以上のアルコールとしては、炭素数3以上20以下、好ましくは炭素数3以上10以下の3価以上のアルコールが挙げられる。具体的には、ソルビトール、1,4-ソルビタン、ペンタエリスリトール、グリセロール、トリメチロールプロパン等が挙げられる。
 2価のカルボン酸系化合物としては、例えば、炭素数3以上30以下、好ましくは炭素数3以上20以下、より好ましくは炭素数3以上10以下のジカルボン酸、それらの無水物、又はアルキル基の炭素数が1以上3以下のアルキルエステル等の誘導体等が挙げられる。ジカルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸や、フマル酸、マレイン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、炭素数1以上20以下のアルキル基又は炭素数2以上20以下のアルケニル基で置換されたコハク酸等の脂肪族ジカルボン酸等が挙げられる。
 カルボン酸成分としては、トナーの低温定着性を向上させる観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、テレフタル酸及び/又はフマル酸が好ましい。テレフタル酸又はフマル酸の含有量は、カルボン酸成分中、好ましくは40モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上であり、そして、好ましくは95モル%以下、より好ましくは93モル%以下、さらに好ましくは90モル%以下である。テレフタル酸及びフマル酸が併用されている場合は、両者の総含有量が、上記範囲内であることが好ましい。
 3価以上のカルボン酸系化合物としては、例えば、炭素数4以上20以下、好ましくは炭素数6以上20以下、より好ましくは炭素数7以上15以下、さらに好ましくは炭素数8以上12以下、さらに好ましくは炭素数9以上10以下の3価以上のカルボン酸、それらの無水物、又はアルキル基の炭素数が1以上3以下のアルキルエステル等の誘導体等が挙げられる。具体的には、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、1,2,4,5-ベンゼンテトラカルボン酸(ピロメリット酸)、又はそれらの酸無水物等が挙げられる。
 3価以上のカルボン酸系化合物の含有量は、トナー粒子へのアミノ基含有共重合体の吸着性の観点から、カルボン酸成分中、好ましくは1モル%以上、より好ましくは2モル%以上、さらに好ましくは3モル%以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは30モル%以下、より好ましくは25モル%以下、さらに好ましくは20モル%以下である。
 また、カルボン酸成分には、α-オレフィンの重合体の酸変性物が含まれていてもよい。
 なお、アルコール成分には1価のアルコールが、カルボン酸成分には1価のカルボン酸系化合物が、ポリエステル樹脂の分子量及び軟化点を調整する観点から、適宜含有されていてもよい。
 ポリエステル樹脂におけるカルボン酸成分とアルコール成分との当量比(COOH基/OH基)は、ポリエステル樹脂の軟化点を調整する観点から、好ましくは0.6以上、より好ましくは0.7以上、さらに好ましくは0.75以上であり、そして、好ましくは1.1以下、より好ましくは1.05以下、さらに好ましくは1以下である。
 ポリエステル樹脂は、例えば、アルコール成分とカルボン酸成分とを不活性ガス雰囲気中、好ましくはエステル化触媒の存在下、さらに必要に応じて、エステル化助触媒、重合禁止剤等の存在下、好ましくは130℃以上、より好ましくは170℃以上、そして、好ましくは250℃以下、より好ましくは240℃以下の温度で重縮合させて製造することができる。
 エステル化触媒としては、酸化ジブチル錫、2-エチルヘキサン酸錫(II)等の錫化合物、チタンジイソプロピレートビストリエタノールアミネート等のチタン化合物等が挙げられ、錫化合物が好ましい。エステル化触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、そして、好ましくは1.5質量部以下、より好ましくは1質量部以下である。エステル化助触媒としては、没食子酸等が挙げられる。エステル化助触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、そして、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。重合禁止剤としては、t-ブチルカテコール等が挙げられる。重合禁止剤の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、そして、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。
 なお、本発明において、ポリエステル樹脂は、実質的にその特性を損なわない程度に変性されたポリエステル樹脂であってもよい。変性されたポリエステル樹脂としては、例えば、特開平11-133668号公報、特開平10-239903号公報、特開平8-20636号公報等に記載の方法によりフェノール、ウレタン、エポキシ等によりグラフト化やブロック化したポリエステル樹脂が挙げられるが、変性されたポリエステル樹脂のなかでは、ポリエステル樹脂をポリイソシアネート化合物でウレタン伸長したウレタン変性ポリエステル樹脂が好ましい。
 複合樹脂としては、前記ポリエステル樹脂とスチレン系樹脂とを含有する複合樹脂が好ましい。
 スチレン系樹脂は、少なくとも、スチレン、又はα-メチルスチレン、ビニルトルエン等のスチレン誘導体(以下、スチレンとスチレン誘導体をまとめて「スチレン化合物」という)を含む原料モノマーの付加重合体である。
 スチレン化合物、好ましくはスチレンの含有量は、スチレン樹脂の原料モノマー中、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上であり、そして、トナーの低温定着性を向上させる観点及び湿式粉砕性を向上させる観点から、好ましくは95質量%以下、より好ましくは93質量%以下、さらに好ましくは90質量%以下である。
 また、スチレン系樹脂は、原料モノマーとしてアルキル基の炭素数が7以上の(メタ)アクリル酸アルキルエステルを含んでも良い。(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸(イソ)オクチル、(メタ)アクリル酸(イソ)デシル、(メタ)アクリル酸(イソ)ステアリル等が挙げられる。これらの1種又は2種以上を用いることが好ましい。なお、本明細書において、「(イソ)」は、この基が存在している場合とそうでない場合の双方を含むことを意味し、これらの基が存在していない場合には、ノルマルであることを示す。また、「(メタ)アクリル酸」は、アクリル酸、メタクリル酸、又はその両者を示す。
 炭素数が7以上の(メタ)アクリル酸アルキルエステルの含有量は、スチレン樹脂の原料モノマー中、トナーの低温定着性を向上させる観点及び湿式粉砕性を向上させる観点から、好ましくは5質量%以上、より好ましくは7質量%以上、さらに好ましくは10質量%以上であり、そして、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。
 スチレン系樹脂の原料モノマーとしての(メタ)アクリル酸アルキルエステルにおけるアルキル基の炭素数は、トナーの低温定着性を向上させる観点から、好ましくは7以上、より好ましくは8以上であり、そして、保存安定性の観点から、好ましくは12以下、より好ましくは10以下である。なお、該アルキルエステルの炭素数は、エステルを構成するアルコール成分由来の炭素数をいう。
 スチレン樹脂の原料モノマーには、スチレン化合物及び(メタ)アクリル酸アルキルエステル以外の原料モノマー、例えば、エチレン、プロピレン等のエチレン性不飽和モノオレフィン類;ブタジエン等のジオレフィン類;塩化ビニル等のハロビニル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;(メタ)アクリル酸ジメチルアミノエチル等のエチレン性モノカルボン酸エステル;メチルビニルエーテル等のビニルエーテル類;ビニリデンクロリド等のビニリデンハロゲン化物;N-ビニルピロリドン等のN-ビニル化合物類等が含まれていてもよい。
 スチレン系樹脂の原料モノマーの付加重合反応は、例えば、ジクミルパーオキサイド等の重合開始剤、重合禁止剤、架橋剤等の存在下、有機溶媒存在下又は無溶媒下で行うことができるが、温度条件としては、好ましくは110℃以上、より好ましくは140℃以上であり、そして、好ましくは200℃以下、より好ましくは170℃以下である。
 付加重合反応の際に有機溶媒を使用する場合、キシレン、トルエン、メチルエチルケトン、アセトン等を用いることができる。有機溶媒の使用量は、スチレン系樹脂の原料モノマー100質量部に対して、10質量部以上50質量部以下が好ましい。
 本発明において、複合樹脂は、トナー粒子の分散安定性及び粉砕性の観点から、ポリエステル樹脂の原料モノマー及びスチレン系樹脂の原料モノマーのいずれとも反応し得る、両反応性モノマーを介してポリエステル樹脂とスチレン系樹脂が化学結合した樹脂が好ましい。
 両反応性モノマーは、分子内に、水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基からなる群より選ばれた少なくとも1種の官能基、好ましくは水酸基及び/又はカルボキシ基、より好ましくはカルボキシ基と、エチレン性不飽和結合とを有する化合物が好ましく、アクリル酸、メタクリル酸、フマル酸、マレイン酸及び無水マレイン酸からなる群より選ばれた少なくとも1種がより好ましく、重縮合反応及び付加重合反応の反応性の観点から、アクリル酸、メタクリル酸及びフマル酸からなる群より選ばれた少なくとも1種がさらに好ましい。但し、重合禁止剤と共に用いた場合は、フマル酸等のエチレン性不飽和結合を有する多価カルボン酸系化合物は、ポリエステル樹脂の原料モノマーとして機能する。この場合、フマル酸等は両反応性モノマーではなく、ポリエステル樹脂の原料モノマーである。
 また、両反応性モノマーは、アルキル基の炭素数が6以下であるアクリル酸エステル及びメタクリル酸エステルから選ばれた1種又は2種以上の(メタ)アクリル酸エステルであってもよい。
 (メタ)アクリル酸エステルは、エステル交換に対する反応性の観点から、(メタ)アクリル酸アルキルエステルが好ましく、アルキル基の炭素数は、好ましくは2以上、より好ましくは3以上であり、そして、好ましくは6以下、より好ましくは4以下である。アルキル基は、水酸基等の置換基を有していてもよい。
 (メタ)アクリル酸アルキルエステルとしては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸(イソ)プロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸(イソ又はターシャリー)ブチル、(メタ)アクリル酸ヘキシル等が挙げられる。なお、「(イソ又はターシャリー)」は、これらの基が存在している場合とそうでない場合の双方を含むことを意味し、これらの基が存在していない場合には、ノルマルであることを示す。
 本発明において、アクリル酸エステルは、好ましくはアルキル基の炭素数が2以上6以下であるアクリル酸アルキルエステル、より好ましくはアクリル酸ブチルであり、メタクリル酸エステルは、好ましくはアルキル基の炭素数が2以上6以下であるメタクリル酸アルキルエステル、より好ましくはメタクリル酸ブチルである。
 両反応性モノマーの使用量は、ポリエステル樹脂のアルコール成分の合計100モルに対して、スチレン系樹脂とポリエステル樹脂との分散性を高め、トナーの耐久性を向上させる観点から、好ましくは1モル以上、より好ましくは2モル以上であり、そして、低温定着性の観点から、好ましくは30モル以下、より好ましくは20モル以下、さらに好ましくは10モル以下である。
 また、両反応性モノマーの使用量は、スチレン系樹脂の原料モノマーの合計100質量部に対して、スチレン系樹脂とポリエステル樹脂との分散性を高め、トナーの耐久性を向上させる観点から、好ましくは1質量部以上、より好ましくは2質量部以上であり、そして、低温定着性の観点から、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは10質量部以下である。ここで、スチレン系樹脂の原料モノマーの合計に重合開始剤は含める。
 両反応性モノマーを用いて得られる複合樹脂は、具体的には、以下の方法により製造することが好ましい。両反応性モノマーは、トナーの耐久性を向上させる観点、トナーの低温定着性及び耐熱保存性を向上させる観点から、スチレン系樹脂の原料モノマーとともに付加重合反応に用いることが好ましい。
(i) ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)の後に、スチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)を行う方法
 この方法では、重縮合反応に適した反応温度条件下で工程(A)を行い、反応温度を低下させ、付加重合反応に適した温度条件下で工程(B)を行う。スチレン系樹脂の原料モノマー及び両反応性モノマーは、付加重合反応に適した温度で反応系内に添加することが好ましい。両反応性モノマーは付加重合反応すると共にポリエステル樹脂とも反応する。
 工程(B)の後に、再度反応温度を上昇させ、必要に応じて架橋剤となる3価以上のポリエステル樹脂の原料モノマー等を反応系に添加し、工程(A)の重縮合反応や両反応性モノマーとの反応をさらに進めることができる。
(ii) スチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)の後に、ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)を行う方法
 この方法では、付加重合反応に適した反応温度条件下で工程(B)を行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、工程(A)の重縮合反応を行う。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
 ポリエステル樹脂の原料モノマーは、付加重合反応時に反応系内に存在してもよく、重縮合反応に適した温度条件下で反応系内に添加してもよい。前者の場合は、重縮合反応に適した温度でエステル化触媒を添加することで重縮合反応の進行を調節できる。
(iii) ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)とスチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)とを、並行して進行する条件で反応を行う方法
 この方法では、付加重合反応に適した反応温度条件下で工程(A)と工程(B)とを並行して行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、必要に応じて架橋剤となる3価以上のポリエステル樹脂の原料モノマーを重合系に添加し、工程(A)の重縮合反応をさらに行うことが好ましい。その際、重縮合反応に適した温度条件下では、ラジカル重合禁止剤を添加して重縮合反応だけを進めることもできる。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
 上記(i)の方法においては、重縮合反応を行う工程(A)の代わりに、予め重合した重縮合系樹脂を用いてもよい。上記(iii)の方法において、工程(A)と工程(B)を並行して進行する際には、ポリエステル樹脂の原料モノマーを含有した混合物中に、スチレン系樹脂の原料モノマーを含有した混合物を滴下して反応させることもできる。
 上記(i)~(iii)の方法は、同一容器内で行うことが好ましい。
 複合樹脂におけるスチレン系樹脂とポリエステル樹脂の質量比(スチレン系樹脂/ポリエステル樹脂)は、トナー粒子の粉砕性の観点から、好ましくは3/97以上、より好ましくは7/93以上、さらに好ましくは10/90以上であり、そして、トナー粒子の分散安定性の観点から、好ましくは45/55以下、より好ましくは40/60以下、さらに好ましくは35/65以下、さらに好ましくは30/70以下、さらに好ましくは25/75以下である。なお、上記の計算において、ポリエステル樹脂の質量は、用いられるポリエステル樹脂の原料モノマーの質量から、重縮合反応により脱水される反応水の量(計算値)を除いた量であり、両反応性モノマーの量は、ポリエステル樹脂の原料モノマー量に含める。また、スチレン系樹脂の量は、スチレン系樹脂の原料モノマーと重合開始剤の合計量である。
 ポリエステル系樹脂の軟化点は、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは70℃以上、より好ましくは75℃以上であり、そして、トナーの低温定着性を向上させる観点から、好ましくは160℃以下、より好ましくは130℃以下、さらに好ましくは120℃以下、さらに好ましくは110℃以下である。
 ポリエステル系樹脂のガラス転移温度は、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは40℃以上、より好ましくは45℃以上であり、そして、低温定着性を向上させる観点から、好ましくは80℃以下、より好ましくは70℃以下、さらに好ましくは60℃以下である。
 ポリエステル系樹脂の酸価は、トナーの帯電性を向上させる観点から、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上、さらに好ましくは15mgKOH/g以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは70mgKOH/g以下、より好ましくは50mgKOH/g以下、さらに好ましくは40mgKOH/g以下、さらに好ましくは20mgKOH/g以下である。ポリエステル系樹脂の酸価は、カルボン酸成分とアルコール成分の当量比を変化させる、樹脂製造時の反応時間を変化させる、又は3価以上のカルボン酸系化合物の含有量を変化させる等の方法で調整することができる。
 ポリエステル系樹脂の含有量は、結着樹脂中、90質量%以上が好ましく、95質量%以上がより好ましく、100質量%、即ち、ポリエステル系樹脂のみを用いることがさらに好ましい。ただし、本発明の効果が損なわれない範囲において、ポリエステル系樹脂以外の他の樹脂を含有してもよい。ポリエステル系樹脂以外の樹脂としては、例えば、ポリスチレン、スチレン-プロピレン共重合体、スチレン-ブタジエン共重合体、スチレン-塩化ビニル共重合体、スチレン-酢酸ビニル共重合体、スチレン-マレイン酸共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体等のスチレンもしくはスチレン置換体を含む単重合体又は共重合体であるスチレン系樹脂、エポキシ系樹脂、ロジン変性マレイン酸樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、フェノール系樹脂、脂肪族又は脂環式炭化水素樹脂等の樹脂から選ばれる1種又は2種以上が挙げられる。
 着色剤としては、トナー用着色剤として用いられている染料、顔料等を使用することができる。例えば、カーボンブラック、フタロシアニンブルー、パーマネントブラウンFG、ブリリアントファーストスカーレット、ピグメントグリーンB、ローダミン-Bベース、ソルベントレッド49、ソルベントレッド146、ソルベントブルー35、キナクリドン、カーミン6B、イソインドリン、ジスアゾエロー等が挙げられる。なお、本発明において、トナー粒子は、黒トナー、カラートナーのいずれであってもよい。
 着色剤の含有量は、画像濃度を向上させる観点から、結着樹脂100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、さらに好ましくは15質量部以上であり、そして、トナーの粉砕性を向上させて小粒径にできる観点、低温定着性を向上させる観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、結着樹脂100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、さらに好ましくは50質量部以下、さらに好ましくは30質量部以下である。
 トナー粒子は、結着樹脂及び着色剤に加えて、離型剤、荷電制御剤、荷電制御樹脂、磁性粉、流動性向上剤、導電性調整剤、繊維状物質等の補強充填剤、酸化防止剤、クリーニング性向上剤等の添加剤を適宜含有していてもよい。
 トナー粒子の製造方法としては、結着樹脂及び着色剤を含有するトナー原料を溶融混練し、得られた溶融混練物を粉砕、好ましくは湿式粉砕して得る方法、水系結着樹脂分散液と水系着色剤分散液を混合し結着樹脂粒子と着色剤粒子を合一させる方法、又は水系結着樹脂分散液と着色剤を高速攪拌する方法等が挙げられる。現像性及び定着性を向上させる観点から、トナー原料を溶融混練した後に粉砕、好ましくは湿式粉砕する方法が好ましい。
 先ず、結着樹脂、着色剤、必要に応じて用いる添加剤等を含有するトナー原料は、あらかじめヘンシェルミキサー、スーパーミキサー、ボールミル等の混合機で混合した後、混練機に供給することが好ましく、結着樹脂中での着色剤の分散性を向上させる観点から、ヘンシェルミキサーがより好ましい。
 次いで、トナー原料の溶融混練は、密閉式ニーダー、一軸もしくは二軸の混練機、連続式オープンロール型混練機等の公知の混練機を用いて行うことができる。本発明の製造方法においては、着色剤の分散性を向上させる観点、及び粉砕後のトナー粒子の収率を向上させる観点から、オープンロール型混練機が好ましい。
 オープンロール型混練機とは、溶融混練部が密閉されておらず開放されているものをいい、溶融混練の際に発生する混練熱を容易に放熱することができる。本発明で使用するオープンロール型混練機は、ロールの軸方向に沿って設けられた複数の原料供給口と混練物排出口を備えており、生産効率の観点から、連続式オープンロール型混練機であることが好ましい。
 次いで、溶融混練物を粉砕が可能な程度に冷却した後、粉砕工程、及び必要に応じて分級工程等を経て、トナー粒子を得ることができる。
 粉砕工程は、多段階に分けてもよい。例えば、溶融混練物を、約1~5mmに粗粉砕した後、さらに微粉砕してもよい。また、粉砕工程時の生産性を向上させるために、溶融混練物を疎水性シリカ等の無機微粒子と混合した後、粉砕してもよい。
 粗粉砕に好適に用いられる粉砕機としては、例えば、アトマイザー、ロートプレックス等が挙げられるが、ハンマーミル等を用いてもよい。また、微粉砕に好適に用いられる粉砕機としては、流動層式ジェットミル、気流式ジェットミル、機械式ミル等が挙げられる。
 分級工程に用いられる分級機としては、気流式分級機、慣性式分級機、篩式分級機等が挙げられる。なお、必要に応じて粉砕工程と分級工程とを繰り返してもよい。
 この工程で得られるトナー粒子の体積中位粒径(D50)は、後述の湿式粉砕工程の生産性を向上させる観点から、好ましくは3μm以上、より好ましくは4μm以上であり、そして好ましくは15μm以下、より好ましくは12μm以下である。なお、体積中位粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。なお、トナー粒子は、アミノ基含有共重合体、絶縁性液体、及び態様Bにおいてはさらに酸化合物と混合後、湿式粉砕等によりさらに微細化されることが好ましい。
 本発明におけるアミノ基含有共重合体は、アミノ基を有するモノマーAと、式(I):
Figure JPOXMLDOC01-appb-C000005
(式中、R1は水素原子又は炭素数1以上5以下の炭化水素基、好ましくはメチル基、R2は、置換基を有していてもよい、炭素数1以上22以下の炭化水素基、好ましくは炭素数1以上22以下のアルキル基又は炭素数2以上22以下のアルケニル基を示す)
で表されるモノマーBとの重合物である。
 アミノ基を有するモノマーAとしては、式(III):
   CH2=C(R5)COYR6NR34   (III)
(式中、R3及びR4は、それぞれ独立して、水素原子、又は炭素数1以上4以下の直鎖もしくは分岐鎖のアルキル基を示し、それらは互いに結合して環構造を形成していてもよく、R5は、水素原子又は炭素数1以上5以下のアルキル基、好ましくはメチル基を示し、R6は、炭素数2以上4以下の直鎖又は分岐のアルキレン基を示し、Yは-O-又は-NH-を示す)
で表されるアミノ基を有するモノマー、又はこのモノマーの酸中和物(3級アミン塩)もしくは4級アンモニウム塩が好ましい。上記の酸中和物を得るための好ましい酸としては、塩酸、硫酸、硝酸、酢酸、ギ酸、マレイン酸、フマル酸、クエン酸、酒石酸、アジピン酸、スルファミン酸、トルエンスルホン酸、乳酸、ピロリドン-2-カルボン酸、コハク酸等が挙げられる。上記第4級アンモニウム塩を得るための好ましい4級化剤としては、塩化メチル、塩化エチル、臭化メチル、ヨウ化メチル等のハロゲン化アルキル、硫酸ジメチル、硫酸ジエチル、硫酸ジ-n-プロピル等の一般的なアルキル化剤が挙げられる。
 式(III)において、R3及びR4は、それぞれ独立して、炭素数1以上4以下の直鎖又は分岐鎖のアルキル基が好ましく、NR34は3級アミノ基が好ましい。R3及びR4の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられ、メチル基が好ましい。
 R6としては、エチレン基、プロピレン基、ブチレン基等が挙げられ、エチレン基が好ましい。
 式(III)においてNR34が3級アミノ基であるモノマー(3級アミノ基を有するモノマー)の具体例としては、ジアルキルアミノ基を有する(メタ)アクリル酸エステル、ジアルキルアミノ基を有する(メタ)アクリルアミド等が挙げられる。なお、「(メタ)アクリル酸エステル」は、アクリル酸エステルとメタクリル酸エステル、「(メタ)アクリルアミド」は、アクリルアミドとメタクリルアミドの双方の場合を含むことを示す。
 ジアルキルアミノ基を有する(メタ)アクリル酸エステルとしては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジイソプロピルアミノエチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、ジイソブチルアミノエチル(メタ)アクリレート、及びジt-ブチルアミノエチル(メタ)アクリレートからなる群から選ばれる1種以上等が挙げられる。
 ジアルキルアミノ基を有する(メタ)アクリルアミドとしては、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、ジプロピルアミノプロピル(メタ)アクリルアミド、ジイソプロピルアミノプロピル(メタ)アクリルアミド、ジブチルアミノプロピル(メタ)アクリルアミド、ジイソブチルアミノプロピル(メタ)アクリルアミド、及びジt-ブチルアミノプロピル(メタ)アクリルアミドからなる群から選ばれる1種以上等が挙げられる。
 これらの中では、ジアルキルアミノ基を有する(メタ)アクリル酸エステルが、小粒径、低粘度、保存安定性、及び低温定着性の観点から好ましく、ジメチルアミノエチル(メタ)アクリレート又はジエチルアミノエチル(メタ)アクリレートがより好ましい。
 モノマーBは、前記式(I)で表されるものであり、前記式(I)において、R2で表されるアルキル基及びアルケニル基の炭素数は、低粘度化、保存安定性、及び低温定着性の観点から、好ましくは10以上、より好ましくは12以上であり、トナー粒子への吸着性の観点から、22以下、好ましくは20以下である。R2のアルキル基又はアルケニル基は、直鎖であっても分岐鎖であってもよく、水酸基等の置換基を有していてもよい。
 従って、モノマーBは、R2が、炭素数が10以上22以下のアルキル基又はアルケニル基であるモノマーB2を少なくとも含むことが好ましい。
 モノマーBにおいて、R2が、炭素数が1以上9以下のアルキル基又は炭素数2以上9以下のアルケニル基であるモノマーB1と炭素数が10以上22以下のアルキル基又はアルケニル基であるモノマーB2のモル比(モノマーB1/モノマーB2)は、低粘度化、保存安定性、及び低温定着性の観点から、好ましくは0.1以下、より好ましくは0.07以下、さらに好ましくは0.05以下、さらに好ましくは0.03以下、さらに好ましくは0.01以下であり、0以上、好ましくは0である。
 モノマーBの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(イソ)プロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、(イソ又はターシャリー)ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、(イソ)オクチル(メタ)アクリレート、(イソ)ノニル(メタ)アクリレート、(イソ)デシル(メタ)アクリレート、(イソ)ウンデシル(メタ)アクリレート、(イソ)ドデシル(メタ)アクリレート、(イソ)トリデシル(メタ)アクリレート、(イソ)テトラデシル(メタ)アクリレート、(イソ)ペンタデシル(メタ)アクリレート、(イソ)ヘキサデシル(メタ)アクリレート、(イソ)ヘプタデシル(メタ)アクリレート、(イソ)オクタデシル(メタ)アクリレート、(イソ)ノナデシル(メタ)アクリレート、(イソ)イコシル(メタ)アクリレート、(イソ)エイコシル(メタ)アクリレート、(イソ)ヘンイコシル(メタ)アクリレート、(イソ)ドコシル(メタ)アクリレート等が挙げられる。これらの1種又は2種以上を用いることができる。ここで、「(イソ又はターシャリー)」、「(イソ)」は、これらの基が存在している場合とそうでない場合の双方を含むことを意味し、これらの基が存在していない場合には、ノルマルであることを示す。また、「(メタ)アクリレート」は、アクリレートとメタクリレートの双方の場合を含むことを示す。
 態様AにおけるモノマーAとモノマーBの質量比(モノマーA/モノマーB)は、トナーの帯電性を向上させる観点から、好ましくは50/50以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは80/20以下、より好ましくは70/30以下、さらに好ましくは60/40以下である。
 態様BにおけるモノマーAとモノマーBの質量比(モノマーA/モノマーB)は、トナーの帯電性を向上させる観点から、好ましくは20/80以上、より好ましくは35/65以上、さらに好ましくは45/55以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは80/20以下、より好ましくは65/35以下、さらに好ましくは55/45以下である。
 アミノ基含有共重合体に用いられる全モノマー中のモノマーAとモノマーBの合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、好ましくは100質量%以下、より好ましくは100質量%である。
 モノマーAとモノマーBの重合は、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等の重合開始剤の存在下、溶媒中で、40~140℃程度に加熱して、反応させることができる。
 態様Aにおけるアミノ基含有共重合体のアミン価は、トナーの帯電性を向上させる観点から、165mgKOH/g以上であり、好ましくは170mgKOH/g以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは300mgKOH/g以下、より好ましくは250mgKOH/g以下、さらに好ましくは200mgKOH/g以下である。
 態様Bにおけるアミノ基含有共重合体のアミン価は、トナーの帯電性を向上させる観点から、好ましくは80mgKOH/g以上、より好ましくは130mgKOH/g以上、さらに好ましくは150mgKOH/g以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは300mgKOH/g以下、より好ましくは250mgKOH/g以下、さらに好ましくは200mgKOH/g以下である。
 また、アミノ基含有共重合体の数平均分子量は、いずれの態様でも、低粘度化及び低温定着性の観点から、好ましくは2,000以上、より好ましくは2,500以上、さらに好ましくは3,000以上、さらに好ましくは3,500以上であり、同様の観点から、好ましくは10,000以下、より好ましくは9,000以下、さらに好ましくは8,000以下である。
 アミノ基含有共重合体の重量平均分子量は、いずれの態様でも、低粘度化及び低温定着性の観点から、好ましくは5,000以上、より好ましくは10,000以上、さらに好ましくは12,000以上であり、同様の観点から、好ましくは100,000以下、より好ましくは50,000以下、さらに好ましくは20,000以下である。
 態様Aにおけるアミノ基含有共重合体の含有量は、トナー粒子100質量部に対して、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは4質量部以上であり、トナーの帯電性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは7質量部以下である。
 態様Bにおけるアミノ基含有共重合体の含有量は、トナー粒子100質量部に対して、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上であり、トナーの帯電性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは10質量部以下、より好ましくは8.5質量部以下、より好ましくは7質量部以下、さらに好ましくは5質量部以下である。
 本発明の液体現像剤は、前記のアミノ基含有共重合体を分散剤として含有し、液体現像剤には、本発明の効果を損なわない範囲で、前記アミノ基含有共重合体以外の分散剤が含まれていてもよいが、アミノ基含有共重合体の含有量は、分散剤中、好ましくは25質量%以上、より好ましくは40質量%以上、より好ましくは55質量%以上、より好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは97質量%以上であり、さらに好ましくは100質量%である。
 他の分散剤としては、例えば、ポリアリルアミン、オレフィン/ビニルピロリドン共重合体、脂肪族アミン及びその塩類等が挙げられる。
 本発明で用いられる分散剤の含有量は、トナー粒子100質量部に対して、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは1質量部以上、より好ましくは2質量部以上、より好ましくは3質量部以上、さらに好ましくは4質量部以上であり、トナーの帯電性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは10質量部以下、より好ましくは8.5質量部以下、さらに好ましくは7質量部以下である。
 態様Bの液体現像剤は、さらに、酸化合物を含有する。
 態様Bにおける酸化合物としては、特に限定されるものではないが、酸基を有する有機化合物が好ましく、カルボキシ基を有する有機化合物がより好ましい。カルボキシ基を有する有機化合物としては、例えば、脂肪酸、脂肪族ジカルボン酸及びその無水物、芳香族モノカルボン酸、芳香族ジカルボン酸及びその無水物、カルボキシ基を有する高分子化合物及びその無水物、前記カルボキシ基を有する高分子化合物及びその無水物と塩基性窒素含有基を有する高分子化合物との反応物等が挙げられる。中でも、脂肪酸、脂肪族ジカルボン酸及びその無水物、又は、カルボキシ基を有する高分子化合物及びその無水物が好ましく、カルボキシ基を有する高分子化合物及びその無水物がより好ましい。
 脂肪酸、脂肪族ジカルボン酸及びその無水物、芳香族モノカルボン酸、芳香族ジカルボン酸及びその無水物の中では、トナーの帯電性を向上させる観点、及び液体現像剤の高抵抗化の観点から、脂肪酸が好ましい。脂肪酸の炭素数は、絶縁性液体への溶解性や液体現像剤の高抵抗化の観点から、好ましくは8以上、より好ましくは12以上、さらに好ましくは16以上であり、そして、絶縁性液体への溶解性や液体現像剤の低粘度化の観点から、好ましくは24以下、より好ましくは22以下、さらに好ましくは20以下である。
 脂肪酸は、飽和脂肪酸であっても不飽和脂肪酸であってもよいが、本発明では、絶縁性液体への溶解性やトナーの帯電性を向上させる観点から、不飽和脂肪酸が好ましい。不飽和脂肪酸としては、オレイン酸、リノール酸、エルカ酸、ミリストレイン酸、パルミトレイン酸、リノレン酸等が挙げられる。
 カルボキシ基を有する高分子化合物としては、炭素数12以上のヒドロキシカルボン酸の重合体、炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体、カルボキシ基を有する炭素数16以上のアルキル(メタ)アクリレートの重合体、ポリオレフィンとカルボン酸系化合物とを反応させて得られるカルボキシ基を有するポリオレフィン等が挙げられる。
 炭素数12以上のヒドロキシカルボン酸の重合体としては、炭素数12以上24以下、好ましくは炭素数16以上24以下のヒドロキシカルボン酸の重合体が好ましく、例えば、12-ヒドロキシステアリン酸の重合体等が挙げられる。
 炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体としては、例えば、エチレングリコールとセバシン酸の重合体、1,4-ブタンジオールとフマル酸の重合体、1,6-ヘキサンジオールとフマル酸の重合体、1,10-デカンジオールとセバシン酸の重合体、1,12-ドデカンジオールと1,12-ドデカン二酸の重合体等が挙げられる。
 炭素数16以上のアルキル(メタ)アクリレートの重合体としては、炭素数16以上24以下のアルキル(メタ)アクリレートの重合体が好ましく、例えば、ヘキサデシルメタクリレートの重合体、オクタデシルメタクリレートの重合体、ドコシルメタクリレートの重合体等が挙げられる。
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリイソブテン、ポリメチルペンテン、ポリテトラデセン、ポリヘキサデセン、ポリオクタデセン、ポリエイコセン、ポリドコセン等が挙げられる。カルボン酸系化合物としては、フマル酸、マレイン酸、エタン酸、プロパン酸、ブタン酸、コハク酸、シュウ酸、マロン酸、酒石酸、それらの無水物、又はそれらの炭素数1以上3以下のアルキルエステル等が挙げられる。
 カルボキシ基を有する高分子化合物の数平均分子量は、トナー粒子の分散性の観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは900以上であり、そして、分散剤のトナー粒子への吸着性の観点から、好ましくは5,000以下、より好ましくは4,000以下、さらに好ましくは3,000以下である。ポリオレフィンとカルボン酸系化合物とを反応させて得られるカルボキシ基を有するポリオレフィンとしては、数平均分子量が500~5,000のポリイソブテン無水コハク酸等が好ましい。
 塩基性窒素含有基としては、アミノ基(-NH2、-NHR、-NHRR’)、アミド基(-C(=O)-NRR’)、イミド基(-N(COR)2)、ニトロ基(-NO2)、イミノ基(=NH)、シアノ基(-CN)、アゾ基(-N=N-)、ジアゾ基(=N2)、及びアジ基(-N3)からなる群より選ばれた少なくとも1種が好ましい。ここで、R、R’は炭素数1~5の炭化水素基を表す。分散剤のトナー粒子への吸着性の観点からは、アミノ基及び/又はイミノ基が好ましく、トナー粒子の帯電性の観点からは、イミノ基がより好ましい。
 塩基性窒素含有基を有する高分子化合物の具体例としては、ポリエチレンイミン等のポリアルキレンイミン、ポリアリルアミン、ポリジメチルアミノエチルメタクリレート等のポリアミノアルキルメタクリレート等が挙げられる。
 塩基性窒素含有基を有する高分子化合物の数平均分子量は、トナー粒子の分散性の観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは900以上であり、そして、分散剤のトナー粒子への吸着性の観点から、好ましくは6,000以下、より好ましくは5,000以下、さらに好ましくは4,000以下である。
 反応物における塩基性窒素含有基を有する高分子化合物とカルボキシ基を有する高分子化合物及びその無水物の質量比(塩基性窒素含有基を有する高分子化合物/カルボキシ基及びその無水物を有する高分子化合物)は、トナー粒子への吸着性の観点から、好ましくは3/97以上であり、より好ましくは5/95以上であり、そして、トナー粒子の分散安定性の観点から、好ましくは20/80以下であり、より好ましくは15/85以下である。
 酸化合物の含有量は、トナー粒子100質量部に対して、トナーの帯電性を向上させる観点、及びトナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは0.5質量部以上、より好ましくは1質量部以上、さらに好ましくは1.5質量部以上であり、トナーの帯電性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは8質量部以下、より好ましくは6質量部以下、さらに好ましくは5質量部以下である。
 また、アミノ基含有共重合体と酸化合物の質量比(アミノ基含有共重合体/酸化合物)は、トナーの帯電性を向上させる観点、及び液体現像剤の高抵抗化の観点から、好ましくは20/80以上、より好ましくは30/70以上、さらに好ましくは40/60以上であり、そして、トナーの帯電性を向上させる観点、及びトナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは95/5以下、より好ましくは90/10以下、さらに好ましくは70/30以下、さらに好ましくは60/40以下である。
 態様Bの液体現像剤は、前記のアミノ基含有共重合体を分散剤として含有する。従って、液体現像剤には、本発明の効果を損なわない範囲で、他の液体現像剤用分散剤が含まれていてもよいが、アミノ基含有共重合体の含有量は、分散剤中、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは97質量%以上であり、さらに好ましくは100質量%である。
 本発明における絶縁性液体とは、電気が流れにくい液体のことを意味するが、本発明においては、絶縁性液体の導電率は、好ましくは1.0×10-10S/m以下、より好ましくは7.0×10-11S/m以下、さらに好ましくは5.0×10-11S/m以下であり、そして、好ましくは1.0×10-13S/m以上である。
 絶縁性液体としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素系絶縁性液体、ハロゲン化炭化水素、ポリシロキサン、植物油等が挙げられる。また、前記高アミン価のアミノ基含有共重合体は、特に非極性の絶縁性液体中で、トナー粒子に吸着しやすいため、トナーに吸着しない遊離分散剤が減少し導電率の上昇を抑制できることから、絶縁性液体は非極性であることが好ましい。本発明における絶縁性液体は、これらの観点に加えて、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、絶縁性液体は、炭化水素系絶縁性液体を含有することが好ましい。炭化水素系絶縁性液体としては、液体現像剤の導電率を低くする観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、非環状炭化水素系絶縁性液体が好ましい。非環状炭化水素系絶縁性液体の含有量は、絶縁性液体中、好ましくは50質量%以上、より好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは100質量%である。非環状炭化水素系絶縁性液体としては、脂肪族炭化水素系溶媒が好ましく、分散安定性及び帯電性の観点から、ポリイソブテンがより好ましい。
 本発明においてポリイソブテンとは、イソブテンを公知の方法、例えば触媒を用いたカチオン重合法によって重合した後、末端の二重結合に水素添加を行って得られるものである。
 ポリイソブテンの重合度は、トナーの低温定着性を向上させる観点から、好ましくは8以下、より好ましくは6以下、さらに好ましくは5以下、さらに好ましくは4以下である。また、チャージャー汚染を抑制する観点から、好ましくは2以上、より好ましくは3以上である。
 ポリイソブテンを含有する絶縁性液体の市販品としては、「NAS-3」、「NAS-4」、「NAS-5H」(以上、いずれも日油(株)製)等が挙げられる。これらのうちの1種又は2種以上を組み合わせることができる。
 炭化水素系絶縁性液体の含有量は、絶縁性液体中、好ましくは5質量%以上、より好ましくは20質量%以上、さらに好ましくは40質量%以上、さらに好ましくは60質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上である。
 絶縁性液体、好ましくは炭化水素系絶縁性液体の沸点は、液体現像剤のローラー上での増粘を抑制し成膜性を向上させる観点から、好ましくは120℃以上、より好ましくは140℃以上、さらに好ましくは160℃以上、さらに好ましくは180℃以上、さらに好ましくは200℃以上、さらに好ましくは220℃以上であり、そして、トナーの低温定着性をより向上させる観点、湿式粉砕時にトナーの粉砕性をより向上させて小粒径のトナー粒子を得る観点から、好ましくは300℃以下、より好ましくは280℃以下、さらに好ましくは260℃以下である。絶縁性液体を2種以上組み合わせる場合には、組み合わせた絶縁性液体混合物の沸点が上記範囲内であることが好ましい。
 絶縁性液体の25℃における粘度は、現像性を向上させる観点、及び液体現像剤のローラー上での増粘を抑制し成膜性を向上させる観点から、好ましくは1mPa・s以上、より好ましくは1.5mPa・s以上であり、そして、好ましくは100mPa・s以下、より好ましくは50mPa・s以下、さらに好ましくは20mPa・s以下、さらに好ましくは10mPa・s以下、さらに好ましくは5mPa・s以下である。
 液体現像剤は、トナー粒子を分散剤及び絶縁性液体と混合し、絶縁性液体中に分散させて得られる。トナー粒子の粒径を小さくする観点から、トナー粒子を絶縁性液体中に分散させた後、湿式粉砕して液体現像剤を得ることが好ましい。なお、態様Bの液体現像剤の製造においては、トナー粒子、アミノ基含有共重合体、酸化合物及び絶縁性液体を混合後、湿式粉砕を行ってもよいが、トナーの帯電性を向上させる観点から、トナー粒子、アミノ基含有共重合体及び絶縁性液体を混合してトナー粒子分散液を得る工程、得られたトナー粒子分散液を湿式粉砕した後に、酸化合物を混合する工程を含む方法により液体現像剤を得ることが好ましい。
 トナー粒子、分散剤、及び絶縁性液体の混合方法としては、攪拌混合装置により攪拌する方法等が好ましい。
 撹拌混合装置は、特に限定されないが、トナー粒子分散液の生産性及び保存安定性を向上させる観点から、高速攪拌混合装置が好ましく、具体的には、デスパ(浅田鉄工(株)製)、T.K.ホモミクサー、T.K.ホモディスパー、T.K.ロボミックス(以上、いずれもプライミクス(株)製)、クレアミックス(エム・テクニック(株)製)、ケイディーミル(ケイディー・インターナショナル社製)等が好ましい。
 高速攪拌混合装置による混合によって、トナー粒子が予備分散され、トナー粒子分散液を得ることができ、次の湿式粉砕による液体現像剤の生産性が向上する。
 トナー粒子分散液の固形分濃度は、画像濃度を向上させる観点から、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは33質量%以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
 湿式粉砕に供するトナー粒子分散液中のトナー粒子の含有量は、絶縁性液体100質量部に対して、高速印刷性の観点から、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは30質量部以上、さらに好ましくは40質量部以上、さらに好ましくは50質量部以上であり、そして、分散安定性の向上の観点から、好ましくは100質量部以下、より好ましくは80質量部以下、さらに好ましくは70質量部以下、さらに好ましくは60質量部以下である。
 湿式粉砕とは、絶縁性液体中に分散させたトナー粒子を、絶縁性液体に分散した状態で機械的に粉砕処理する方法である。
 使用する装置としては、例えば、アンカー翼等の一般に用いられている撹拌混合装置を用いることができる。撹拌混合装置の中では、デスパ(浅田鉄工(株)製)、T.K.ホモミクサー(プライミクス(株)製)等の高速攪拌混合装置、ロールミル、ビーズミル、ニーダー、エクストルーダ等の粉砕機又は混練機等が挙げられる。これらの装置は複数を組み合わせることもできる。
 これらの中では、トナー粒子の粒径を小さくする観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点、及びその分散液の粘度を低減する観点から、ビーズミルの使用が好ましい。
 液体現像剤の固形分濃度は、画像濃度を向上させる観点から、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、そして、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
 液体現像剤中のトナー粒子の含有量は、高速印刷の観点から、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、そして、トナー粒子の分散安定性の観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
 液体現像剤中のトナー粒子の体積中位粒径(D50)は、液体現像剤の粘度を低減する観点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは1.5μm以上であり、そして、液体現像剤の画質を向上させる観点から、好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは2.5μm以下である。
 液体現像剤中の絶縁性液体の含有量は、トナー粒子の分散安定性の観点から、好ましくは50質量%以上、より好ましくは55質量%以上、さらに好ましくは60質量%以上であり、そして、高速印刷の観点から、好ましくは90質量%以下、より好ましくは85質量%以下、さらに好ましくは80質量%以下、さらに好ましくは75質量%以下である。
 固形分濃度が25質量%である場合の液体現像剤の25℃における粘度は、液体現像剤の定着性を向上させる観点から、50mPa・s以下であり、好ましくは45mPa・s以下、より好ましくは40mPa・s以下、さらに好ましくは35mPa・s以下、さらに好ましくは25mPa・s以下であり、そして、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは3mPa・s以上、より好ましくは5mPa・s以上、さらに好ましくは6mPa・s以上、さらに好ましくは7mPa・s以上である。
 態様Aの液体現像剤の導電率は、保存安定性の観点から、5.0×10-9S/m以下であり、好ましくは1.0×10-10S/m以下、より好ましくは7.0×10-11S/m以下であり、より好ましくは5.0×10-11S/m以下であり、そして、好ましくは1.0×10-13S/m以上である。
 以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。樹脂等の物性は、以下の方法により測定した。
〔樹脂の軟化点〕
 フローテスター「CFT-500D」((株)島津製作所製)を用い、1gの試料を昇温速度6℃/minで加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出す。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とする。
〔樹脂のガラス転移温度〕
 示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料0.01~0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却する。次に試料を昇温速度10℃/minで昇温し、吸熱ピークを測定する。吸熱の最高ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とする。
〔樹脂の酸価〕
 JIS K0070:1992の方法により測定する。但し、測定溶媒のみJIS K0070の規定のエタノールとエーテルの混合溶媒から、アセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))に変更する。
〔絶縁性液体と混合する前のトナー粒子の体積中位粒径〕
測定機:コールターマルチサイザーII(ベックマン・コールター(株)製)
アパチャー径:100μm
解析ソフト:コールターマルチサイザーアキュコンプ バージョン 1.19(ベックマン・コールター(株)製)
電解液:アイソトンII(ベックマン・コールター(株)製)
分散液:電解液にエマルゲン109P(花王(株)製、ポリオキシエチレンラウリルエーテル、HLB(グリフィン):13.6)を溶解して5質量%に調整したもの
分散条件:前記分散液5mLに測定試料10mgを添加し、超音波分散機(機械名:(株)エスエヌディー製US-1、出力:80W)にて1分間分散させる。その後、前記電解液25mLを添加し、さらに、超音波分散機にて1分間分散させて、試料分散液を調製する。
測定条件:前記電解液100mLに、3万個の粒子の粒径を20秒間で測定できる濃度となるように、前記試料分散液を加え、3万個の粒子を測定し、その粒度分布から体積中位粒径(D50)を求める。
〔アミノ基含有共重合体の数平均分子量(Mn)及び重量平均分子量(Mw)〕
 以下の方法により、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量(Mn)及び重量平均分子量(Mw)を求める。
(1) 試料溶液の調製
 濃度が0.5g/100mLになるように、分散剤をテトラヒドロフランに溶解させる。次いで、この溶液をポアサイズ2μmのフッ素樹脂フィルター「FP-200」(住友電気工業社製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量分布測定
 下記の測定装置と分析カラムを用い、溶離液としてテトラヒドロフランを、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(5.0×102)、A-1000(1.01×103)、A-2500(2.63×103)、A-5000(5.97×103)、F-1(1.02×104)、F-2(1.81×104)、F-4(3.97×104)、F-10(9.64×104)、F-20(1.90×105)、F-40(4.27×105)、F-80(7.06×105)、F-128(1.09×106))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:TSKgel GMHXL+TSKgel G3000HXL(東ソー(株)製)
〔実施例Aシリーズの分散剤Dの重量平均分子量(Mw)〕
 ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、重量平均分子量を求める。
(1) 試料溶液の調製
 濃度が0.2g/100mLになるように、分散剤(分散剤溶液から希釈溶媒を留去)をクロロホルムに溶解させる。次いで、この溶液を孔径0.20μmのPTFEタイプメンブレンフィルター「DISMIC-25JP」(東洋濾紙(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
 下記の測定装置と分析カラムを用い、溶離液として100mmol/LのファーミンDM2098(花王(株)製)のクロロホルム溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μlを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(5.0×102)、A-5000(5.97×103)、F-2(1.81×104)、F-10(9.64×104)、F-40(4.27×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:K-804L(昭和電工(株)製)
〔アミノ基含有共重合体、実施例Aシリーズの分散剤D、及び実施例Bシリーズの酸化合物Aのアミン価〕
 ASTM D2074の方法により測定する。但し、試料の溶解溶媒にはクロロホルムを用い、滴定溶液には0.1mol/L過塩素酸酢酸標準溶液を用いる。
〔酸化合物の平均分子量Mn〕(実施例Bシリーズ)
<PIBSAの数平均分子量(Mn)>
(1) 試料溶液の調製
 濃度が0.5g/100mLになるように、試料をテトラヒドロフランに溶解させる。次いで、この溶液をポアサイズ2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量分布測定
 下記の測定装置と分析カラムを用い、溶離液としてテトラヒドロフランを、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(5.0×102)、A-1000(1.01×103)、A-2500(2.63×103)、A-5000(5.97×103)、F-1(1.02×104)、F-2(1.81×104)、F-4(3.97×104)、F-10(9.64×104)、F-20(1.90×105)、F-40(4.27×105)、F-80(7.06×105)、F-128(1.09×106))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:GMHXL+G3000HXL(東ソー(株)製)
<酸化合物A、Bの数平均分子量(Mn)及び重量平均分子量(Mw)>(実施例Bシリーズ)
 以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量(Mn)及び重量平均分子量(Mw)を求める。
(1) 試料溶液の調製
 濃度が0.2g/100mLになるように、分散剤をクロロホルムに溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
 下記の測定装置と分析カラムを用い、溶離液として1.00mmol/LのファーミンDM2098(花王(株)製)のクロロホルム溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(5.0×102)、A-5000(5.97×103)、F-2(1.81×104)、F-10(9.64×104)、F-40(4.27×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:K-804L(昭和電工(株)製)
〔塩基性窒素含有基を有する高分子化合物の数平均分子量(Mn)〕(実施例Bシリーズ)
 以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量を求める。
(1) 試料溶液の調製
 濃度が0.2g/100mLになるように、試料を0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液に溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
 下記の測定装置と分析カラムを用い、溶離液として0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の標準プルラン(昭和電工(株)製のP-5(5.9×103)、P-50(4.73×104)、P-200(2.12×105)、P-800(7.08×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8320GPC(東ソー(株)製)
分析カラム:α+α-M+α-M(東ソー(株)製)
〔絶縁性液体及び液体現像剤の導電率〕
 試料25gを40mL容のガラス製サンプル管「スクリューNo.7」((株)マルエム製)に入れ、非水系導電率計「DT-700」(Dispersion Technology社製)を用いて、電極を絶縁性液体に浸し、25℃で20回測定を行って平均値を算出し、導電率を測定する。数値が小さいほど高抵抗であることを示す。
〔絶縁性液体の沸点〕
 示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料6.0~8.0mgをアルミパンに計量し、昇温速度10℃/minで350℃まで昇温し、吸熱ピークを測定する。最も高温側の吸熱ピークを沸点とする。
〔絶縁性液体及び液体現像剤の25℃における粘度〕
 10mL容のスクリュー管に測定液を6~7mL入れ、回転振動式粘度計「ビスコメイトVM-10A-L」((株)セコニック製、検出端子:チタン製、φ8mm)を用い、検出端子の先端部の15mm上に液面が来る位置にスクリュー管を固定し、25℃にて粘度を測定する。
〔トナー粒子分散液及び液体現像剤の固形分濃度〕
 試料10質量部をヘキサン90質量部で希釈し、遠心分離装置「3-30KS」(シグマ社製)を用いて、回転数25,000r/minにて、20分間回転させる。静置後、上澄み液をデカンテーションにて除去した後、90質量部のヘキサンで希釈し、同様の条件で再び遠心分離を行う。上澄み液をデカンテーションにて除去した後、下層を真空乾燥機にて0.5kPa、40℃にて8時間乾燥させ、以下の式より固形分濃度を計算する。
Figure JPOXMLDOC01-appb-M000006
〔液体現像剤中のトナー粒子の体積中位粒径(D50)〕
 レーザー回折/散乱式粒径測定装置「マスターサイザー2000」(マルバーン社製)を用いて、測定用セルにアイソパーL(エクソンモービル社製、イソパラフィン、25℃における粘度1mPa・s)を加え、散乱強度が5~15%になる濃度で、粒子屈折率1.58(虚数部0.1)、分散媒屈折率1.42の条件にて、体積中位粒径(D50)を測定する。
<実施例Aシリーズ>
樹脂製造例1
 表A-1に示すフマル酸及び無水トリメリット酸以外のポリエステル樹脂の原料モノマー、エステル化触媒及びエステル化助触媒を、窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、マントルヒーターを用いて、230℃に昇温した後、230℃にて8時間反応させ、さらに8.3kPaに減圧して1時間反応させた。
 170℃に降温し、表A-1に示すスチレン系樹脂の原料モノマー、両反応性モノマー及び重合開始剤を滴下ロートにより1時間かけて滴下した。170℃に保持したまま1時間付加重合反応を熟成させた後、210℃に昇温し、8.3kPaにて1時間スチレン系樹脂の原料モノマーの除去及び、両反応性モノマーとポリエステル部位の反応を行った。
 さらに、210℃にて、無水トリメリット酸、フマル酸及び重合禁止剤5gを添加し、表A-1に示す軟化点に達するまで反応を行って、表A-1に示す物性を有する複合樹脂(樹脂A)を得た。
樹脂製造例2
 表A-1に示すポリエステル樹脂の原料モノマー及びエステル化触媒を、窒素導入管、脱水管、攪拌機及び熱電対を装備した10L容の四つ口フラスコに入れ、マントルヒーターを用いて、180℃に昇温した後、220℃まで10時間かけて昇温を行い、220℃にて反応させた。さらに8.3kPaにて、表A-1に示す軟化点に達するまで反応を行って、表A-1に示す物性を有するポリエステル樹脂(樹脂B)を得た。
樹脂製造例3
 表A-1に示す無水トリメリット酸以外のポリエステル樹脂の原料モノマー、エステル化触媒及び重合禁止剤を窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、マントルヒーターを用いて、180℃から200℃まで1時間かけて昇温し、200℃にて反応させた後、無水トリメリット酸を添加し、200℃にて表A-1に示す軟化点に達するまで反応を行って、表A-1に示す物性を有するポリエステル樹脂(樹脂C)を得た。
樹脂製造例4
 表A-1に示すアルコール成分を、窒素導入管を装備した脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ、100℃に昇温した後、表A-1に示すテレフタル酸を添加し、160℃まで昇温し、エステル化触媒とエステル化助触媒を添加し、235℃で10時間反応させた後、235℃、8.0kPaにて1時間反応させた。160℃まで冷却し、ポリイソブテン無水コハク酸(Dover社製、H1000、Mw:1538)を添加し、再度、235℃で5時間重縮合反応させ、さらに235℃、8.0kPaにて表A-1に示す軟化点に達するまで反応を行って、表A-1に示す物性を有するポリエステル樹脂(樹脂D)を得た。
Figure JPOXMLDOC01-appb-T000007
アミノ基含有共重合体の製造例
 溶媒(メチルエチルケトン)100gを、冷却管、窒素導入管、撹拌機及び熱電対を装備した2L容の四つ口フラスコに入れ、窒素ガスで反応容器内を置換した。反応容器内を80℃に加温して、表A-2に示す原料モノマーと重合開始剤の混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、80℃でさらに3時間反応させた。80℃で溶媒を留去し、表A-2に示す物性を有するアミノ基含有共重合体(分散剤A~C、E、F)を得た。
Figure JPOXMLDOC01-appb-T000008
実施例1~7及び比較例1、3、4
 表A-4に示す結着樹脂80質量部及び着色剤「ECB-301」(大日精化工業(株)製、フタロシアニンブルー15:3)20質量部を、予め20L容のヘンシェルミキサーを使用し、回転数1500r/min(周速度21.6m/sec)で3分間攪拌混合後、以下に示す条件で溶融混練した。
〔溶融混練条件〕
 連続式二本オープンロール型混練機「ニーデックス」(日本コークス工業(株)製、ロール外径:14cm、有効ロール長:55cm)を使用した。連続式二本オープンロール型混練機の運転条件は、高回転側ロール(フロントロール)回転数75r/min(周速度32.4m/min)、低回転側ロール(バックロール)回転数35r/min(周速度15.0m/min)、混練物供給口側端部のロール間隙0.1mmであった。ロール内の加熱媒体温度及び冷却媒体温度は、高回転側ロールの原料投入側が90℃及び混練物排出側が85℃であり、低回転側ロールの原料投入側が35℃及び混練物排出側が35℃であった。また、原料混合物の上記混練機への供給速度は10kg/h、上記混練機中の平均滞留時間は約3分間であった。
 上記で得られた混練物を冷却ロールで圧延冷却した後、ハンマーミルを用いて1mm程度に粗粉砕した。得られた粗粉砕物を気流式ジェットミル「IDS」(日本ニューマチック(株)製)により微粉砕及び分級し、体積中位粒径(D50)が10μmのトナー粒子を得た。
 得られたトナー粒子35質量部と表A-4に示す絶縁性液体62.2質量部、表A-4に示す分散剤2.1質量部(トナー粒子100質量部に対して6質量部)を1L容のポリエチレン製容器に入れ、「T.K.ロボミックス」(プライミクス(株)製)を用いて、氷冷下、回転数7000r/minにて30分間攪拌を行い、固形分濃度36質量%のトナー粒子分散液を得た。
 次に、得られたトナー粒子分散液を、直径0.8mmのジルコニアビーズを用いて、体積充填率60体積%にて、6筒式サンドミル「TSG-6」(アイメックス(株)製)で回転数1300r/min(周速度4.8m/sec)にて表A-4に示す体積中位粒径(D50)になるまで湿式粉砕した。ビーズをろ過により除去した後、ろ液100質量部に対し表A-4に示す絶縁性液体44質量部を加えて希釈し、固形分濃度を25質量%に調整した、表A-4に示す物性を有する液体現像剤を得た。
比較例2
 絶縁性液体の使用量を60.8質量部に、分散剤Dの使用量を4.2質量部(トナー粒子100質量部に対して有効分6質量部)に、それぞれ変更した以外は、実施例1と同様にして、固形分濃度を25質量%に調整した、表A-4に示す物性を有する液体現像剤を得た。
 実施例及び比較例で用いた絶縁性液体の詳細は下記の通り。
Figure JPOXMLDOC01-appb-T000009
試験例1〔保存安定性〕
 液体現像剤5gを10mL容のスクリュー管に入れ、40℃の恒温槽にて15時間保存した。保存前後のトナー粒子の体積中位粒径(D50)を測定し、保存後のD50/保存前のD50×100の値(%)から保存安定性を評価した。結果を表A-4に示す。数値が100%に近いほど保存安定性に優れることを示す。
試験例2〔正帯電性〕
 テフロン(登録商標)製容器(外寸W:6.3cm×D4cm×H6.3cm、内寸:W5cm×D1.1cm×H5cm)に、あらかじめ質量を測定した2枚の電極(ステンレス鋼製、W4cm×D0.5cm×H5cm)を挿入した(電極間距離0.1cm)。液体現像剤2.5gを2枚の電極間に注入し、直流電源装置「TMK1.5-50」(高砂製作所社製)を用いて両極に±250Vの直流電圧を60秒間印加した。両電極を抜き出し、真空乾燥機にて0.5kPa、100℃にて15分間乾燥させ、乾燥後の各電極の質量を測定した。正負極それぞれについて(乾燥後の電極の質量)-(電圧印加前の電極の質量)の値を求め、各電極に付着したトナー粒子の質量とした。結果を表A-4に示す。負極上のトナー粒子の質量が大きく、正極上のトナー粒子の質量が小さいほど正帯電性に優れることを示す。
Figure JPOXMLDOC01-appb-T000010
 以上の結果より、実施例1~7に液体現像剤は、小粒径、低粘度であり、保存安定性及び正帯電性にも優れていることが分かる。これに対し、アミノ基含有共重合体におけるモノマーAのモル比が少なく、アミン価の低い比較例1の液体現像剤は、正帯電性ではなく負帯電性を示しており、比較例4の液体現像剤も正帯電性が不十分である。また、アミノ基を有しているものの、所定のアミノ基含有共重合体ではない分散剤を含有している比較例2の液体現像剤は、比較例1よりもさらに強い負帯電性を示していることが分かる。比較例3の液体現像剤は、導電率が高く保存安定性に欠けている。
<実施例Bシリーズ>
樹脂製造例1
 表B-1に示すフマル酸及び無水トリメリット酸以外のポリエステル樹脂の原料モノマー、エステル化触媒及びエステル化助触媒を、窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、マントルヒーターを用いて、230℃に昇温した後、230℃にて8時間反応させ、さらに8.3kPaに減圧して1時間反応させた。
 170℃に降温し、表B-1に示すスチレン系樹脂の原料モノマー、両反応性モノマー及び重合開始剤を滴下ロートにより1時間かけて滴下した。170℃に保持したまま1時間付加重合反応を熟成させた後、210℃に昇温し、8.3kPaにて1時間スチレン系樹脂の原料モノマーの除去及び、両反応性モノマーとポリエステル部位の反応を行った。
 さらに、210℃にて、無水トリメリット酸、フマル酸及び重合禁止剤5gを添加し、表B-1に示す軟化点に達するまで反応を行って、表B-1に示す物性を有する複合樹脂(樹脂A)を得た。
樹脂製造例2
 表B-1に示すポリエステル樹脂の原料モノマー及びエステル化触媒を、窒素導入管、脱水管、攪拌機及び熱電対を装備した10L容の四つ口フラスコに入れ、マントルヒーターを用いて、180℃に昇温した後、220℃まで10時間かけて昇温を行い、220℃にて反応させた。さらに8.3kPaにて、表B-1に示す軟化点に達するまで反応を行って、表B-1に示す物性を有するポリエステル樹脂(樹脂B)を得た。
樹脂製造例3
 表B-1に示す無水トリメリット酸以外のポリエステル樹脂の原料モノマー、エステル化触媒及び重合禁止剤を窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、マントルヒーターを用いて、180℃から200℃まで1時間かけて昇温し、200℃にて反応させた後、無水トリメリット酸を添加し、200℃にて表B-1に示す軟化点に達するまで反応を行って、表B-1に示す物性を有するポリエステル樹脂(樹脂C)を得た。
Figure JPOXMLDOC01-appb-T000011
アミノ基含有共重合体の製造例
 溶媒(メチルエチルケトン)100gを、冷却管、窒素導入管、撹拌機及び熱電対を装備した2L容の四つ口フラスコに入れ、窒素ガスで反応容器内を置換した。反応容器内を80℃に加温して、表B-2に示す原料モノマーと重合開始剤の混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、80℃でさらに3時間反応させた。80℃で溶媒を留去し、表B-2に示す物性を有するアミノ基含有共重合体(共重合体A~D)を得た。
Figure JPOXMLDOC01-appb-T000012
酸化合物の製造例
 表B-3に示すポリアルキレンイミンを冷却管、窒素導入管、撹拌機、脱水管及び熱電対を装備した2L容の四つ口フラスコに入れ、窒素ガスで反応容器内を置換した。撹拌しながら、表B-3に示すポリイソブテン無水コハク酸(PIBSA)をキシレンに溶解した溶液を25℃で1時間かけて滴下した。滴下終了後、30分間25℃で保持した。その後、反応容器内を150℃に加温して1時間保持した後、160℃に昇温して1時間保持した。160℃で8.3kPaに減圧して溶剤を留去し、IR分析からPIBSA由来の酸無水物のピーク(1780cm-1)が消失し、イミド結合由来のピーク(1700cm-1)が生じた時点を反応終点として、表B-3に示す物性を有する酸化合物(酸化合物B)を得た。
Figure JPOXMLDOC01-appb-T000013
実施例1、3~5、10
 表B-5に示す結着樹脂80質量部及び着色剤「ECB-301」(大日精化工業(株)製、フタロシアニンブルー15:3)20質量部を、予め20L容のヘンシェルミキサーを使用し、回転数1500r/min(周速度21.6m/sec)で3分間攪拌混合後、以下に示す条件で溶融混練した。
〔溶融混練条件〕
 連続式二本オープンロール型混練機「ニーデックス」(日本コークス工業(株)製、ロール外径:14cm、有効ロール長:55cm)を使用した。連続式二本オープンロール型混練機の運転条件は、高回転側ロール(フロントロール)回転数75r/min(周速度32.4m/min)、低回転側ロール(バックロール)回転数35r/min(周速度15.0m/min)、混練物供給口側端部のロール間隙0.1mmであった。ロール内の加熱媒体温度及び冷却媒体温度は、高回転側ロールの原料投入側が90℃及び混練物排出側が85℃であり、低回転側ロールの原料投入側が35℃及び混練物排出側が35℃であった。また、原料混合物の上記混練機への供給速度は10kg/h、上記混練機中の平均滞留時間は約3分間であった。
 上記で得られた混練物を冷却ロールで圧延冷却した後、ハンマーミルを用いて1mm程度に粗粉砕した。得られた粗粉砕物を気流式ジェットミル「IDS」(日本ニューマチック(株)製)により微粉砕及び分級し、体積中位粒径(D50)が10μmのトナー粒子を得た。
 得られたトナー粒子35質量部と表B-5に示す絶縁性液体62.2質量部、表B-5に示すアミノ基含有共重合体1.4質量部(トナー粒子100質量部に対して4質量部)、表B-5に示す酸化合物1.4質量部(トナー粒子100質量部に対して4質量部)を1L容のポリエチレン製容器に入れ、「T.K.ロボミックス」(プライミクス(株)製)を用いて、氷冷下、回転数7000r/minにて30分間攪拌を行い、固形分濃度36質量%のトナー粒子分散液を得た。
 次に、得られたトナー粒子分散液を、直径0.8mmのジルコニアビーズを用いて、体積充填率60体積%にて、6筒式サンドミル「TSG-6」(アイメックス(株)製)で回転数1300r/min(周速度4.8m/sec)にて表B-5に示す体積中位粒径(D50)になるまで湿式粉砕した。ビーズをろ過により除去した後、ろ液100質量部に対し表B-5に示す絶縁性液体44質量部を加えて希釈し、固形分濃度を25質量%に調整した、表B-5に示す物性を有する液体現像剤を得た。
実施例2
 絶縁性液体の使用量を62.9質量部に、アミノ基含有共重合体の使用量を0.7質量部(トナー粒子100質量部に対して2質量部)に、それぞれ変更した以外は、実施例1と同様にして、固形分濃度を25質量%に調整した、表B-5に示す物性を有する液体現像剤を得た。
実施例6、7
 絶縁性液体の使用量を62.9質量部に、酸化合物の使用量を0.7質量部(トナー粒子100質量部に対して2質量部)に、それぞれ変更した以外は、実施例1と同様にして、固形分濃度を25質量%に調整した、表B-5に示す物性を有する液体現像剤を得た。
実施例8
 絶縁性液体の使用量を63.6質量部に、アミノ基含有共重合体の使用量を1.05質量部(トナー粒子100質量部に対して3質量部)に、酸化合物の使用量を0.35質量部(トナー粒子100質量部に対して1質量部)に、それぞれ変更した以外は、実施例1と同様にして、固形分濃度を25質量%に調整した、表B-5に示す物性を有する液体現像剤を得た。
実施例9
 絶縁性液体の使用量を62.72質量部に、アミノ基含有共重合体の使用量を1.75質量部(トナー粒子100質量部に対して5質量部)に、酸化合物の使用量を0.53質量部(トナー粒子100質量部に対して1.5質量部)に、それぞれ変更した以外は、実施例1と同様にして、固形分濃度を25質量%に調整した、表B-5に示す物性を有する液体現像剤を得た。
実施例11
 トナー粒子の調製時に、酸化合物の添加時期を変更した以外は、実施例2と同様にして液体現像剤を得た。
 即ち、トナー粒子を絶縁性液体及びアミノ基含有共重合体と混合し、湿式粉砕を行った後、トナー粒子分散液の固形分濃度を25質量%に調整した。その後、トナー粒子分散液100質量部に対して酸化合物を1質量部(トナー粒子100質量部に対して4質量部)添加し、ボールミルで12時間攪拌し、表B-5に示す物性を有する液体現像剤を得た。
比較例1
 絶縁性液体の使用量を62.9質量部に、アミノ基含有共重合体の使用量を2.1質量部(トナー粒子100質量部に対して6質量部)に変更し、酸化合物を使用しなかった以外は、実施例1と同様にして、固形分濃度を25質量%に調整した、表B-5に示す物性を有する液体現像剤を得た。
比較例2
 絶縁性液体の使用量を60.8質量部に、酸化合物Aの使用量を4.2質量部(トナー粒子100質量部に対して有効分6質量部)に、それぞれ変更し、アミノ基含有共重合体を使用しなかった以外は、実施例1と同様にして、固形分濃度を25質量%に調整した、表B-5に示す物性を有する液体現像剤を得た。
 実施例及び比較例で用いた絶縁性液体の詳細は下記の通り。
Figure JPOXMLDOC01-appb-T000014
試験例1〔保存安定性〕
 実施例Aシリーズの試験例1と同じ方法により保存安定性を評価した。結果を表B-5に示す。
試験例2〔正帯電性〕
 実施例Aシリーズの試験例2と同じ方法により保存安定性を評価した。結果を表B-5に示す。
Figure JPOXMLDOC01-appb-T000015
 以上の結果より、実施例1~11に液体現像剤は、小粒径、低粘度であり、保存安定性及び正帯電性にも優れていることが分かる。これに対し、酸化合物を含有していない比較例1の液体現像剤は、正帯電性ではなく負帯電性を示している。また、所定のアミノ基含有共重合体を含有していないが、アミノ基を有する酸化合物を含有している比較例2の液体現像剤は、比較例1よりもさらに強い負帯電性を示していることが分かる。
 本発明の液体現像剤は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像等に好適に用いられるものである。

Claims (16)

  1.  結着樹脂及び着色剤を含有するトナー粒子、アミノ基含有共重合体、及び絶縁性液体を含有する液体現像剤であって、前記結着樹脂がポリエステル系樹脂を含有し、前記アミノ基含有共重合体が、アミノ基を有するモノマーAと、式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又は炭素数1以上5以下の炭化水素基、R2は、置換基を有していてもよい、炭素数1以上22以下の炭化水素基を示す)
    で表されるモノマーBとの重合物であり、
    要件1:前記アミノ基含有共重合体のアミン価が165mgKOH/g以上であり、液体現像剤の導電率が5.0×10-9S/m以下であること、又は
    要件2:液体現像剤が、さらに酸化合物を含有すること
    を充足する、液体現像剤。
  2.  アミノ基を有するモノマーAが、式(III):
       CH2=C(R5)COYR6NR34   (III)
    (式中、R3及びR4は、それぞれ独立して、水素原子、又は炭素数1以上4以下の直鎖もしくは分岐鎖のアルキル基を示し、それらは互いに結合して環構造を形成していてもよく、R5は、水素原子又は炭素数1以上5以下のアルキル基を示し、R6は、炭素数2以上4以下の直鎖又は分岐のアルキレン基を示し、Yは-O-又は-NH-を示す)
    で表されるアミノ基を有するモノマー、又はこのモノマーの酸中和物もしくは4級アンモニウム塩である、請求項1記載の液体現像剤。
  3.  液体現像剤が分散剤を含有し、アミノ基含有共重合体を、分散剤中、25質量%以上含む、請求項1又は2記載の液体現像剤。
  4.  ポリエステル系樹脂が、ポリエステル樹脂、又はポリエステル樹脂とスチレン系樹脂とを含有する複合樹脂である、請求項1~3いずれか記載の液体現像剤。
  5.  ポリエステル系樹脂の酸価が、5mgKOH/g以上70mgKOH/g以下である、請求項1~4いずれか記載の液体現像剤。
  6.  絶縁性液体が、炭化水素系絶縁性液体を含有する、請求項1~5いずれか記載の液体現像剤。
  7.  絶縁性液体が、非環状炭化水素系絶縁性液体を50質量%以上含有する、請求項1~5いずれか記載の液体現像剤。
  8.  要件2を充足する態様において、モノマーAとモノマーBの質量比(モノマーA/モノマーB)が、20/80以上80/20以下である、請求項1~7いずれか記載の液体現像剤。
  9.  要件2において、酸化合物が、脂肪酸、脂肪族ジカルボン酸及びその無水物、芳香族モノカルボン酸、芳香族ジカルボン酸及びその無水物、カルボキシ基を有する高分子化合物及びその無水物、又は前記カルボキシ基を有する高分子化合物及びその無水物と塩基性窒素含有基を有する高分子化合物との反応物である、請求項1~8いずれか記載の液体現像剤。
  10.  要件2を充足する態様において、アミノ基含有共重合体と酸化合物の質量比(アミノ基含有共重合体/酸化合物)が、30/70以上90/10未満である、請求項1~9いずれか記載の液体現像剤。
  11.  要件1において、アミノ基含有共重合体のアミン価が165mgKOH/g以上300mgKOH/g以下である、請求項1~10いずれか記載の液体現像剤。
  12.  要件2を充足する態様において、アミノ基含有共重合体のアミン価が80mgKOH/g以上である、請求項1~11いずれか記載の液体現像剤。
  13.  要件2を充足する態様において、アミノ基含有共重合体のアミン価が150mgKOH/g以上300mgKOH/g以下である、請求項1~11いずれか記載の液体現像剤。
  14.  アミノ基含有共重合体の重量平均分子量が、5,000以上100,000以下である、請求項1~13いずれか記載の液体現像剤。
  15.  絶縁性液体の導電率が、1.0×10-10S/m以下1.0×10-13S/m以上である、請求項1~14いずれか記載の液体現像剤。
  16.  結着樹脂及び着色剤を含有するトナー粒子、アミノ基含有共重合体、及び絶縁性液体を含有する組成物であって、前記結着樹脂がポリエステル系樹脂を含有し、前記アミノ基含有共重合体が、アミノ基を有するモノマーAと、式(I):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は水素原子又は炭素数1以上5以下の炭化水素基、R2は、置換基を有していてもよい、炭素数1以上22以下の炭化水素基を示す)
    で表されるモノマーBとの重合物であり、
    要件1:前記アミノ基含有共重合体のアミン価が165mgKOH/g以上であり、液体現像剤の導電率が5.0×10-9S/m以下であること、又は
    要件2:液体現像剤が、さらに酸化合物を含有すること
    を充足する、組成物の液体現像剤としての使用。
PCT/JP2019/019942 2018-05-31 2019-05-20 液体現像剤 WO2019230481A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980028792.4A CN112041755A (zh) 2018-05-31 2019-05-20 液体显影剂
EP19810099.2A EP3805862A1 (en) 2018-05-31 2019-05-20 Liquid developer
US16/971,102 US20200379367A1 (en) 2018-05-31 2019-05-20 Liquid developer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-105015 2018-05-31
JP2018105016 2018-05-31
JP2018-105016 2018-05-31
JP2018105015 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230481A1 true WO2019230481A1 (ja) 2019-12-05

Family

ID=68698594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019942 WO2019230481A1 (ja) 2018-05-31 2019-05-20 液体現像剤

Country Status (5)

Country Link
US (1) US20200379367A1 (ja)
EP (1) EP3805862A1 (ja)
JP (1) JP2019211767A (ja)
CN (1) CN112041755A (ja)
WO (1) WO2019230481A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261717A1 (ja) * 2019-06-28 2020-12-30 花王株式会社 液体現像剤の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820636A (ja) 1994-07-07 1996-01-23 Mitsubishi Rayon Co Ltd トナー用架橋ポリエステル樹脂
JPH10239903A (ja) 1997-02-27 1998-09-11 Sanyo Chem Ind Ltd 静電荷像現像用トナーバインダー
JPH11133668A (ja) 1997-10-31 1999-05-21 Sanyo Chem Ind Ltd トナーバインダー
JP2001031900A (ja) * 1999-05-20 2001-02-06 Hitachi Maxell Ltd 分散液組成物及びその製造方法
JP2004302436A (ja) 2003-03-20 2004-10-28 Ricoh Co Ltd 液体現像剤及び画像形成装置
WO2009041634A1 (ja) * 2007-09-28 2009-04-02 Sakata Inx Corp. 液体現像剤の製造方法
JP2012072317A (ja) * 2010-09-29 2012-04-12 Sekisui Plastics Co Ltd 架橋(メタ)アクリル酸エステル系着色樹脂粒子及びそのシリコーンオイル分散体
JP2013205622A (ja) * 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd 液体現像剤
WO2014061747A1 (ja) * 2012-10-17 2014-04-24 東洋インキScホールディングス株式会社 液体現像剤用高分子分散剤、液体現像剤、及び印刷物
JP2015145985A (ja) 2014-02-04 2015-08-13 東洋インキScホールディングス株式会社 液体現像剤、及び印刷物
JP2016180927A (ja) * 2015-03-25 2016-10-13 東洋インキScホールディングス株式会社 ブラック液体現像剤、及びそれを用いた印刷物
JP2017010011A (ja) 2015-06-25 2017-01-12 花王株式会社 液体現像剤
JP2017054044A (ja) * 2015-09-10 2017-03-16 東洋インキScホールディングス株式会社 液体現像剤用高分子分散剤、液体現像剤、及び印刷物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329911A (ja) * 1996-06-10 1997-12-22 Minolta Co Ltd 正帯電性トナー
JP5054934B2 (ja) * 2006-05-25 2012-10-24 キヤノン株式会社 現像ローラー、電子写真装置用プロセスカートリッジ及び電子写真装置
JP2013164478A (ja) * 2012-02-09 2013-08-22 Ricoh Co Ltd 静電荷像現像用トナー、並びに該静電荷像現像用トナーを用いた二成分現像剤及び画像形成装置
JP2016188993A (ja) * 2015-03-27 2016-11-04 東洋インキScホールディングス株式会社 カラーフィルタ用着色組成物、およびカラーフィルタ
JP6292179B2 (ja) * 2015-06-24 2018-03-14 京セラドキュメントソリューションズ株式会社 液体現像剤

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820636A (ja) 1994-07-07 1996-01-23 Mitsubishi Rayon Co Ltd トナー用架橋ポリエステル樹脂
JPH10239903A (ja) 1997-02-27 1998-09-11 Sanyo Chem Ind Ltd 静電荷像現像用トナーバインダー
JPH11133668A (ja) 1997-10-31 1999-05-21 Sanyo Chem Ind Ltd トナーバインダー
JP2001031900A (ja) * 1999-05-20 2001-02-06 Hitachi Maxell Ltd 分散液組成物及びその製造方法
JP2004302436A (ja) 2003-03-20 2004-10-28 Ricoh Co Ltd 液体現像剤及び画像形成装置
WO2009041634A1 (ja) * 2007-09-28 2009-04-02 Sakata Inx Corp. 液体現像剤の製造方法
JP2012072317A (ja) * 2010-09-29 2012-04-12 Sekisui Plastics Co Ltd 架橋(メタ)アクリル酸エステル系着色樹脂粒子及びそのシリコーンオイル分散体
JP2013205622A (ja) * 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd 液体現像剤
WO2014061747A1 (ja) * 2012-10-17 2014-04-24 東洋インキScホールディングス株式会社 液体現像剤用高分子分散剤、液体現像剤、及び印刷物
JP2015145985A (ja) 2014-02-04 2015-08-13 東洋インキScホールディングス株式会社 液体現像剤、及び印刷物
JP2016180927A (ja) * 2015-03-25 2016-10-13 東洋インキScホールディングス株式会社 ブラック液体現像剤、及びそれを用いた印刷物
JP2017010011A (ja) 2015-06-25 2017-01-12 花王株式会社 液体現像剤
JP2017054044A (ja) * 2015-09-10 2017-03-16 東洋インキScホールディングス株式会社 液体現像剤用高分子分散剤、液体現像剤、及び印刷物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261717A1 (ja) * 2019-06-28 2020-12-30 花王株式会社 液体現像剤の製造方法

Also Published As

Publication number Publication date
JP2019211767A (ja) 2019-12-12
US20200379367A1 (en) 2020-12-03
CN112041755A (zh) 2020-12-04
EP3805862A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6096966B2 (ja) 液体現像剤
JP6314282B1 (ja) 液体現像剤の製造方法
WO2018043327A1 (ja) 液体現像剤
JP6202740B2 (ja) 液体現像剤
JP6986409B2 (ja) 乾式現像剤
WO2019230481A1 (ja) 液体現像剤
JP6507069B2 (ja) 液体現像剤
JP6000491B1 (ja) 液体現像剤
JP6822902B2 (ja) 液体現像剤
JP6986941B2 (ja) 液体現像剤
JP6845681B2 (ja) 液体現像剤
JP6831233B2 (ja) 液体現像剤
JP2020177190A (ja) 液体現像剤
JP2021039180A (ja) 液体現像剤
JP2019101110A (ja) 液体現像剤
JP2019066685A (ja) 液体現像剤
JP2022083282A (ja) 液体現像剤
JP2022039494A (ja) 液体現像剤
WO2019107381A1 (ja) 液体現像剤
JP2021173957A (ja) 液体現像剤
JP2019086689A (ja) 液体現像剤
JP2019117242A (ja) 液体現像剤
JP2018101008A (ja) 液体現像剤
JP2019012220A (ja) 液体現像剤の製造方法
JP2018205484A (ja) 液体現像剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810099

Country of ref document: EP

Effective date: 20210111