WO2014061747A1 - 液体現像剤用高分子分散剤、液体現像剤、及び印刷物 - Google Patents

液体現像剤用高分子分散剤、液体現像剤、及び印刷物 Download PDF

Info

Publication number
WO2014061747A1
WO2014061747A1 PCT/JP2013/078218 JP2013078218W WO2014061747A1 WO 2014061747 A1 WO2014061747 A1 WO 2014061747A1 JP 2013078218 W JP2013078218 W JP 2013078218W WO 2014061747 A1 WO2014061747 A1 WO 2014061747A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin
toner particles
liquid developer
acrylate
Prior art date
Application number
PCT/JP2013/078218
Other languages
English (en)
French (fr)
Inventor
裕士 曽根田
和昌 服部
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to JP2014542175A priority Critical patent/JP5971347B2/ja
Priority to US14/436,777 priority patent/US9523938B2/en
Priority to EP13846615.6A priority patent/EP2911004B1/en
Priority to CN201380054222.5A priority patent/CN104813236B/zh
Publication of WO2014061747A1 publication Critical patent/WO2014061747A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • G03G9/131Developers with toner particles in liquid developer mixtures characterised by polymer components obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/125Developers with toner particles in liquid developer mixtures characterised by the liquid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • G03G9/132Developers with toner particles in liquid developer mixtures characterised by polymer components obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • Embodiments described herein relate generally to a polymer dispersant for a liquid developer, a liquid developer, and a printed matter.
  • the toner particles are finely pulverized and dispersed under a wet condition, the toner particles can be made finer than a dry powder toner. Further, since the liquid developer uses an insulating liquid carrier liquid as a carrier, there is no problem due to scattering of toner particles in the image forming apparatus. Therefore, an image forming apparatus using a liquid developer has a feature that a high-definition image can be formed.
  • an electrophotographic image forming apparatus using a liquid developer, a developer in which fine toner particles are dispersed in a carrier liquid is used.
  • the electrostatic latent image formed on the photoreceptor by exposure is developed using toner particles in a carrier liquid. After development, the obtained electrostatic latent image is transferred, dried and fixed on a recording medium such as paper to form an image.
  • the liquid developer is obtained by dispersing toner particles in an electrically insulating carrier liquid, and the toner particles are required to have colorability, fixing property, charging property, and dispersion stability.
  • the toner particles are composed of additives such as a colorant, a binder resin, and a dispersant. In order to obtain an excellent image, the toner particles are stably dispersed and charged stably. (For example, refer to Patent Documents 1 and 2).
  • the liquid developer has a room for improvement in obtaining a sufficient image density, achieving both storage stability, fixing property and cold offset resistance, and excellent image quality. was there. There is a need for a liquid developer that solves this problem, has excellent fixability and cold offset resistance, and has excellent storage stability over a long period of time and has a good output image.
  • an embodiment of the present invention provides a polymer dispersant for a liquid developer that can obtain an excellent image density, is excellent in fixability and cold offset resistance, and has excellent storage stability over a long period of time. With the goal.
  • another embodiment of the present invention is capable of obtaining an excellent image density, excellent in fixability and cold offset resistance, and excellent in storage stability over a long period of time, and obtained using the same.
  • the purpose is to provide printed materials.
  • An embodiment of the present invention is represented by at least an ethylenically unsaturated monomer having an amino group, an ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms, and the following general formula (1).
  • the present invention relates to a polymer dispersant for a liquid developer obtained by copolymerization with an ethylenically unsaturated monomer.
  • Another embodiment of the present invention is a liquid developer containing at least a binder resin (A), a colorant (B), a polymer dispersant (C), and a carrier liquid (D),
  • the polymer dispersant (C) relates to a liquid developer that is the polymer dispersant.
  • other embodiment of this invention is related with the printed matter obtained using the said liquid developer.
  • the disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2012-230222 filed on Oct. 17, 2012, the disclosure of which is incorporated herein by reference.
  • a polymer dispersant for a liquid developer that can obtain an excellent image density, has excellent fixability and cold offset resistance, and has excellent storage stability over a long period of time. Can do. Further, according to another embodiment of the present invention, a liquid developer capable of obtaining an excellent image density, excellent in fixability and cold offset resistance, and excellent in storage stability over a long period of time, and using the same The obtained printed matter can be provided.
  • the polymer dispersant according to an embodiment of the present invention includes at least an ethylenically unsaturated monomer having an amino group, an ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms, a general formula ( The main feature is that it is copolymerized with the ethylenically unsaturated monomer represented by 1).
  • the liquid developer according to another embodiment of the present invention contains at least a binder resin (A), a colorant (B), a polymer dispersant (C), and a carrier liquid (D).
  • the molecular dispersant (C) is the polymer dispersant.
  • the binder resin (A) and the colorant (B) are present as toner particles.
  • the polymer dispersant (C) is obtained by using an ethylenically unsaturated monomer having an amino group, and preferably has a specific amine value so that the polymer dispersant (C) is adsorbed onto the toner particles.
  • the ratio is increased, and a liquid developer having a stable image (printed image by a copying machine, printed image by a printer, etc.) and excellent storage stability over a long period of time can be obtained.
  • the adsorption rate of the polymer dispersant (C) to the toner particles is high, the pulverizability of the toner particles is improved, and a liquid developer having a small average particle diameter and low viscosity can be obtained efficiently. In addition, an image excellent in color development and color reproducibility can be obtained.
  • the polymer dispersant (C) is obtained using an ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms, the solubility in the carrier liquid (D) is improved, and the toner Excellent grindability and dispersion stability of the particles can be obtained. Further, since the polymer dispersant (C) is obtained using the ethylenically unsaturated monomer represented by the general formula (1), the compatibility with the binder resin (A) is increased, and the toner particles When the toner is fixed on the substrate, the polymer dispersant (C) can obtain excellent fixing properties and offset resistance without hindering contact and coalescence of the toner particles, and a sufficient image density. And an image excellent in color reproducibility and color developability can be obtained.
  • polymer dispersant (C) a polymer dispersant (hereinafter referred to as polymer dispersant (C)) according to an embodiment of the present invention, a binder resin (A) included in a liquid developer according to an embodiment of the present invention, and a colorant. (B), carrier liquid (D), etc. are demonstrated in detail.
  • the toner particles used in the liquid developer include at least the binder resin (A) and the colorant (B), and it is also preferable to use additives such as a pigment dispersant and a charge control agent.
  • the polymer dispersant (C) is preferably added when the toner particles are wet-dispersed in the carrier liquid (D), but can also be added to the toner particles when the toner particles are prepared.
  • Binder resin (A) In general, the binder resin has a function of uniformly dispersing a colorant such as a pigment or a dye in the resin and a function as a binder when fixing to a substrate such as paper. Binder resins that can be used include homopolymers of styrene such as polystyrene, poly-p-chlorostyrene, polyvinyltoluene and the like; and styrene-p-chlorostyrene copolymers, styrene-vinyltoluene copolymers.
  • Styrene-vinyl naphthalene copolymer Styrene-vinyl naphthalene copolymer, styrene- (meth) acrylic acid ester copolymer, styrene- ⁇ -chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ether copolymer, Styrene copolymers such as styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer, and crosslinked Styrene copolymer; Polyvinyl chloride , Phenolic resin, natural modified phenolic resin, natural resin
  • a polyester resin (a-1) is particularly preferable from the viewpoints of pigment dispersibility, grindability, and fixability. Furthermore, the binder resin (A) preferably exhibits a colorless, transparent, white, or light color so as not to inhibit the hue of the color material of each color.
  • the polyester resin (a-1) is preferably a thermoplastic polyester, and is preferably obtained by polycondensation of a divalent or trivalent or higher alcohol component and an acid component such as a carboxylic acid.
  • Ethylene glycol 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,4-butenediol, diethylene glycol, triethylene glycol 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, bisphenol A, hydrogenated bisphenol A, 1,4-bis (hydroxymethyl) cyclohexane, Dihydric alcohols such as bisphenol derivatives represented by the general formula (2); Trihydric or higher alcohols such as glycerol, diglycerol, sorbit, sorbitan, butanetriol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol; Et
  • R is an ethylene group or a propylene group
  • x and y are each an integer of 1 or more, and the average value of x + y is 2 to 10.
  • Benzene dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, phthalic anhydride, or anhydrides thereof; Alkyl dicarboxylic acids such as succinic acid, adipic acid, sebacic acid and azelaic acid or anhydrides thereof; Succinic acid substituted with an alkyl group having 16 to 18 carbon atoms or an anhydride thereof; Unsaturated dicarboxylic acids such as fumaric acid, maleic acid, citraconic acid, itaconic acid, glutaconic acid or their anhydrides; Cyclohexanedicarboxylic acid; naphthalenedicarboxylic acid; diphenoxyethane-2,6-dicarboxylic acid or anhydride thereof; Etc.
  • Trivalent or higher carboxylic acids that function as crosslinking components include trimellitic acid, pyromellitic acid, naphthalenetricarboxylic acid, butanetricarboxylic acid, hexanetricarboxylic acid, tetra (methylenecarboxyl) methane, octanetetracarboxylic acid, benzophenonetetracarboxylic acid, Or these anhydrides etc. are mentioned. These are used alone or in combination of two or more.
  • Preferred alcohol components include bisphenol A added with alkylene oxide (preferably 2 to 3 moles), ethylene glycol, neopentyl glycol, and the like.
  • Preferred acid components include phthalic acid, terephthalic acid, isophthalic acid or anhydrides thereof; succinic acid, n-dodecenyl succinic acid or anhydrides thereof; dicarboxylic acids such as fumaric acid, maleic acid, maleic anhydride; trimellitic acid or anhydride thereof Tricarboxylic acids such as products.
  • the reaction may be promoted using a known and usual reaction catalyst such as at least one metal compound selected from antimony, titanium, tin, zinc and manganese.
  • a known and usual reaction catalyst such as at least one metal compound selected from antimony, titanium, tin, zinc and manganese.
  • the reaction catalyst include di-n-butyltin oxide, stannous oxalate, antimony trioxide, titanium tetrabutoxide, manganese acetate, and zinc acetate.
  • the addition amount of these reaction catalysts is usually preferably about 0.001 to 0.5 mol% with respect to the acid component in the obtained polyester resin (a-1).
  • the polycondensation method a known bulk polymerization method can be used, and in order to control the molecular weight, softening temperature, etc. of the polyester resin, the kind of alcohol component and carboxylic acid to be reacted, molar ratio, reaction temperature, reaction What is necessary is just to adjust time, reaction pressure, a catalyst, etc. Furthermore, it is also possible to use a commercial item as a polyester resin. Examples include Diacron ER-502 and Diacron ER-508 (both manufactured by Mitsubishi Rayon Co., Ltd.).
  • the binder resin (A) is at least selected from the group consisting of polyester resin (a-1), styrene resin, acrylic resin, and styrene-acrylic copolymer resin.
  • One type of resin (a-2) (hereinafter also simply referred to as resin (a-2)) is preferably contained.
  • the styrene-acrylic copolymer resin is obtained by polymerizing at least one of styrene monomers and at least one of (meth) acrylic acid and (meth) acrylic acid esters.
  • Styrene monomers used for the resin (a-2) include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p -N-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, p -Methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, and the like.
  • Examples of the (meth) acrylic acid esters used for the resin (a-2) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) Isobutyl acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, 2-chloroethyl (meth) acrylate, Examples include phenyl (meth) acrylate, dimethylaminoethyl acrylate, and diethylaminoethyl (meth) acrylate.
  • a preferred styrenic monomer is styrene.
  • Preferred (meth) acrylic acid esters are butyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • a polyfunctional monomer can be used as a crosslinking agent. Specifically, divinylbenzene, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri ( And (meth) acrylate.
  • the resin (a-2) can be obtained by a known polymerization method such as a suspension polymerization method, a solution polymerization method, or an emulsion polymerization method.
  • a known polymerization method such as a suspension polymerization method, a solution polymerization method, or an emulsion polymerization method.
  • the type, molar ratio, reaction temperature, reaction time of the styrene monomer, (meth) acrylic acid and (meth) acrylic acid ester The reaction pressure, polymerization initiator, crosslinking agent, etc. may be adjusted.
  • a commercially available product can be used as the styrene-acrylic copolymer resin.
  • the polyester resin (a-1) and the resin (a-2) are produced separately, or when a commercially available polyester resin and the resin (a-2) are used, the polyester resin (a-1) And the resin (a-2) are mixed to obtain the binder resin (A).
  • it may be either a method in which both are dissolved in a solvent and mixing and desolvation are performed, or melt kneading is performed.
  • the mass ratio [(a-2) / (a-1)] of the polyester resin (a-1) and the resin (a-2) contained in the binder resin (A) is preferably 1 or less. More preferably, the mass ratio is 0.5 or less. When the mass ratio exceeds 1, the pulverizability of the toner particles is lowered, and the color developability and storage stability as a liquid developer are lowered.
  • the softening temperature of the binder resin (A) is preferably in the range of 80 to 140 ° C. More preferably, it is in the range of 90 ° C to 130 ° C.
  • the softening temperature was “Flow Tester CFT-500D” manufactured by Shimadzu Corporation, starting temperature 40 ° C., heating rate 6.0 ° C./min, test load 20 kgf, preheating time 300 seconds, die hole diameter 0.5 mm. The temperature when 4 mm of 1.0 g of the sample flows out under the condition of the die length of 1.0 mm is measured as the softening temperature (T4).
  • the softening temperature of the binder resin (A) is lower than 80 ° C.
  • the binder resin (A) is too soft at the time of kneading, the dispersibility of the colorant (B) is lowered, and it becomes difficult to obtain a sufficient image density as a liquid developer.
  • the toner particles come into contact with the surface of the thermocompression roller in a molten state, so the cohesive force of the toner particles is smaller than the adhesive force between the substrate and the thermocompression roller, and part of it is completely The toner particles adhere to the surface of the thermocompression roller and transfer to the next paper, and a hot offset phenomenon is likely to occur.
  • the softening temperature is higher than 140 ° C., it is difficult to obtain good fixability, and there are cases where problems such as lowering of pulverizability and lowering of color developability may occur.
  • the binder resin (A) has a weight average molecular weight (Mw) of 2,000 to 100 in terms of molecular weight measured by gel permeation chromatography (GPC) in terms of offset resistance, fixability, and image quality characteristics. 5,000 are preferred, and 5,000 to 50,000 are more preferred. When the weight average molecular weight (Mw) of the binder resin (A) is smaller than 2,000, the hot offset resistance, color reproducibility, and dispersion stability may be deteriorated. When the weight average molecular weight (Mw) is larger than 100,000, the fixing property and Cold offset resistance may be reduced.
  • Mw weight average molecular weight
  • the binder resin (A) is a type having a molecular weight distribution curve of two peaks comprising a specific low molecular weight condensation polymer component and a specific high molecular weight condensation polymer component, or a single molecular weight distribution curve. Any of the types having
  • the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the binder resin (A) is in the range of 2 to 15. It is preferable that When Mw / Mn is less than 2, the offset resistance is lowered, the non-offset region is narrowed, and the low-temperature fixability is sometimes lowered. When Mw / Mn exceeds 15, the pulverizability of the toner particles becomes low, and there are cases where the image characteristics are deteriorated such that a sufficient image density cannot be obtained and the color developability is lowered.
  • the molecular weight and molecular weight distribution by GPC can be measured under the following conditions using, for example, gel permeation chromatography (HLC-8220) manufactured by Tosoh Corporation.
  • HLC-8220 gel permeation chromatography
  • the column is stabilized in a 40 ° C. heat chamber, tetrahydrofuran (THF) as a solvent is allowed to flow through the column at this temperature at a flow rate of 0.6 mL / min, and 10 ⁇ L of a sample solution dissolved in THF is injected for measurement.
  • THF tetrahydrofuran
  • the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve prepared from several types of monodisperse polystyrene standard samples and the number of counts.
  • ten polystyrenes having a molecular weight of about 10 2 to 10 7 manufactured by Tosoh Corporation are used.
  • An RI (refractive index) detector is used as the detector.
  • three TSKgel SuperHM-M manufactured by Tosoh Corporation are used for the column.
  • the measurement sample is created as follows. Place the sample in THF and let stand for several hours, then shake well, mix well with THF until the sample is no longer united, and let stand for more than 12 hours. At this time, the standing time in THF is set to be 24 hours or longer. Thereafter, the obtained solution is passed through a sample processing filter to obtain a sample solution for GPC measurement. The sample concentration is adjusted so that the resin component is 0.5 to 5 mg / mL.
  • the content of the binder resin (A) contained in the toner particles is preferably 60 to 95 parts by mass, more preferably 70 to 90 parts by mass with respect to 100 parts by mass of the toner particles. If the amount is less than 60 parts by mass, the fixability and offset resistance may decrease. If the amount exceeds 95 parts by mass, the ratio of the binder resin (A) to the colorant (B) increases, and toner particles As a result, the coloring power may decrease, and the image density may decrease.
  • Colorant (B) yellow, magenta, cyan, and black organic pigments and organic dyes shown below, in particular, salt-forming compounds thereof; carbon black; magnetic substances are preferably used. These can be used alone or in admixture of two or more.
  • the colorant (B) is preferably insoluble in the carrier liquid (D).
  • yellow organic pigment As the yellow colorant, it is preferable to use a yellow organic pigment or a salt forming compound of a yellow dye.
  • yellow organic pigments include benzimidazolone compounds, condensed azo compounds, isoindolinone compounds, anthraquinone compounds, quinophthalone compounds, azo metal complex compounds, methine compounds, and allylamide compounds.
  • C.I. I. Pigment Yellow 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 138, 139, 147, 150, 168, 174, 176, 180, 181, 191 and the like are preferably used.
  • a quinophthalone compound a condensed azo compound, or a benzimidazolone compound.
  • a salt forming compound of yellow dye a salt forming compound of acidic dye or a salt forming compound of basic dye is used.
  • the salt forming compound of the acid dye include C.I. I. It is preferable to use a salt-forming compound comprising acid yellow 11 or 23 (tartrazine) and a quaternary ammonium salt compound. By constituting the quaternary ammonium salt, the toner particles can maintain a stable positive charge.
  • magenta colorant it is preferable to use a salt-forming compound of a magenta organic pigment or a magenta dye.
  • magenta organic pigments condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinones, quinacridone compounds, lake compounds of basic dyes such as rhodamine lakes, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds are used. Specifically, C.I. I.
  • Pigment Red 2, 3, 5, 6, 7, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81, 81: 1, 81: 2, 81: 3, 81: 4, 122, 144, 146, 166, 169, 177, 184, 185, 202, 206, 209, 220, 221, 254, 255, 268, 269, etc., C.I. I. Pigment violet 1, 19 and the like are preferably used.
  • quinacridone compounds, rhodamine lake pigments, naphthol pigments, and the like are preferably used.
  • naphthol AS (CI Pigment Red 269 etc.), rhodamine lake (CI Pigment Red 81, 81: 1, 81: 2, 81: 3, 81: 4, 169 etc.), quinacridone (C.I. Pigment Red 122 etc.) Carmine 6B (C.I. Pigment Red 57: 1) is a preferred material.
  • a combination of a quinacridone pigment and a monoazo pigment Carmine 6B (CI Pigment Red 57: 1) is preferable because it exhibits a good magenta or red color.
  • a salt-forming compound of a magenta dye a salt-forming compound of a rhodamine-based acidic dye or a salt-forming compound of a rhodamine-based basic dye is preferably used.
  • the salt forming compound of the basic dye include C.I. I. It is preferable to use a salt-forming compound comprising Basic Red 1 or Basic Violet 10 and colorless (does not inhibit coloring of the pigment) organic sulfonic acid or organic carboxylic acid. Since the basic dye exhibits a good positive charge, the toner particles can maintain a stable positive charge.
  • organic sulfonic acid naphthalenesulfonic acid, naphtholsulfonic acid, naphthylaminesulfonic acid and the like are preferably used.
  • organic carboxylic acid salicylic acid derivatives, higher fatty acids and the like are preferably used.
  • cyan and blue organic pigments As the cyan colorant, it is preferable to use cyan and blue organic pigments, cyan and blue dye salt forming compounds, cyan and blue dye oil-soluble dyes, and the like.
  • cyan organic pigment copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, basic dye lake compounds, and the like can be used. Specifically, C.I. I. Pigment Blue 1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 60, 62, 66 and the like are preferably used. Among them, C.I. I. It is preferable to use a copper phthalocyanine compound such as CI Pigment Blue 15: 3.
  • Triarylmethane dyes are effective materials in terms of both charge control and colorability because they have good positive chargeability.
  • C.I. I. A triarylmethane oil-soluble dye such as Solvent Blue 124 or a salt-forming compound of a triarylmethane basic dye is good.
  • C. I. As the solvent blue 124, specifically, COPY BLUE PR manufactured by Clariant is a preferable material. This is C.I. I. It was obtained by condensing Basic Red 9 (paramagenta) and aniline.
  • a green pigment can be used as a complementary color.
  • Specific examples of the green pigment include C.I. I. Halogenated phthalocyanine compounds such as CI Pigment Green 7 and 36 are preferred.
  • organic black pigments such as carbon black and perylene black, and organic black dyes such as nigrosine dyes and azo metal complex dyes
  • carbon black any of various types such as furnace black, channel black, acetylene black, carbon black derived from biomass can be used.
  • Furnace black carbon and biomass carbon are preferable because they have an effect of reducing fog (background stain on the white background) in image characteristics.
  • nigrosine dye it is preferable to use a nigrosine base that is refined by wet pulverization or the like and has a volume average particle size of 0.5 to 2 ⁇ m.
  • Nigrosine refinement can be obtained by the method described in JP-A-2006-171501. Further, as the black colorant, black can be obtained using the above three colorants of yellow, magenta, and cyan.
  • a colorant in which 1 to 10 parts by mass of a blue colorant is added to 100 parts by mass of the black colorant as a black colorant.
  • the blue colorant it is preferable to use a halogen-free metal phthalocyanine blue compound, a triarylmethane compound, a dioxazine violet pigment, or the like.
  • the phthalocyanine blue compound and the triarylmethane compound have a stable positive charging property, which is effective in obtaining good black toner particles.
  • Pigment violet 23, C.I. I. Pigment Violet 19 a salt-forming compound composed of a triarylmethane-based basic dye and a substantially colorless organic acid (a salt-forming compound of CI Basic Blue 7 and an organic acid), a triarylmethane-based oil-soluble dye Etc. are preferably used.
  • Triarylmethane dyes are effective in controlling the chargeability of toner particles by exhibiting good positive charge, and among them, triarylmethane oil-soluble dyes having excellent dispersibility are preferred.
  • the content of the colorant (B) contained in the toner particles varies depending on the type of the binder resin (A) used, but is usually 5 to 40 parts by mass, preferably 10 to 10 parts by mass with respect to 100 parts by mass of the toner particles. 30 parts by mass.
  • a preferable image utilizing the fixability and color developability can be obtained by using four basic process colors of Y, M, C, and Bk.
  • intermediate colors such as violet and green can be used.
  • Polymer dispersant (C) Generally, a dispersant is added to a carrier liquid containing toner particles to uniformly disperse the toner particles and improve development characteristics.
  • the polymer dispersant (C) is a carrier. It may be added in the liquid or in the toner particles during kneading in the toner production.
  • the polymer dispersant (C) is adsorbed on the binder resin portion on the toner particle surface, particularly on the polyester resin portion that exhibits excellent dispersion stability. It is inferred that Thus, the polymer dispersant (C) is preferably present in a state of being adsorbed on the surface of the toner particles or dispersed inside the toner particles.
  • the polymer dispersant (C) is an ethylenically unsaturated monomer having at least an amino group, an ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms, and represented by the general formula (1). It is a copolymer obtained from a copolymerizable polymerizable monomer containing an ethylenically unsaturated monomer.
  • a suitable polymerization method for the polymer dispersant (C) is solution polymerization of a normal acrylic resin.
  • the ratio of the ethylenically unsaturated monomer having an amino group is preferably 1 to 50%, more preferably 5 to 40%, and most preferably 10 to 30%. .
  • the ratio of the ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms is preferably 5 to 90%, more preferably 20 to 80%, and most preferably 40 to 70%.
  • the ratio of the ethylenically unsaturated monomer represented by the general formula (1) is preferably 1 to 50%, more preferably 5 to 40%, and most preferably 10 to 30%.
  • an ethylenically unsaturated monomer having an amino group an ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms, and a general formula
  • the polymer dispersant (C) can be obtained by mixing and heating the ethylenically unsaturated monomer represented by (1) and optionally a polymerization initiator, a chain transfer agent or the like.
  • the reaction temperature is 40 to 150 ° C., preferably 50 to 110 ° C.
  • Polymerization initiator Although it does not specifically limit as a polymerization initiator used by superposition
  • azo compounds examples include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane 1-carbonitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate) ), 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-hydroxymethylpropionitrile), 2,2′-azobis [2- (2-imidazolin-2-yl) ) Propane] and the like.
  • organic peroxides examples include benzoyl peroxide, t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di (2-ethoxyethyl) peroxy
  • examples thereof include dicarbonate, t-butyl peroxyneodecanoate, t-butyl peroxybivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide and the like.
  • These polymerization initiators can be used alone or in combination of two or more.
  • Chain transfer agent As the chain transfer agent, mercaptan-based, thioglycol-based, ⁇ -mercaptopropionic acid-based thiol-based compounds; allyl hydrogen-containing rosin-based compounds or terpene-based compounds can be used.
  • the addition amount is 0.01 to 10.0 parts by mass, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of all monomers.
  • Polymerization solvent In the synthesis of the polymer dispersant (C), a known solvent is preferably used. However, when the polymer dispersant (C) is used as a liquid developer, the polymer dispersant (C) can be taken out in a state dissolved in the solvent of the carrier liquid (D) used in the liquid developer, or It is preferable that it can be taken out as a solid. When the polymer dispersant (C) is added when the toner particles are wet-dispersed in the carrier liquid (D), the polymer dispersant (C) is preferably dissolved in the carrier liquid (D).
  • the polymer dispersant (C) is preferably a solid.
  • the carrier liquid (D) used in the liquid developing toner is polymerized using a synthetic solvent.
  • polymerization is performed in a solvent that can be replaced with the carrier liquid (D), and then the carrier liquid (D) is added, and only the solvent used for the polymerization is distilled off.
  • polymerization is performed in a mixed solution of a solvent that can be replaced with the carrier liquid (D) and the carrier liquid (D), and then only the solvent other than the carrier liquid (D) is distilled off. Therefore, as the polymerization initiator, it is preferable to use a solvent that can be replaced with the carrier liquid (D) used for the liquid developer after the synthesis to the polymer dispersant (C) or a solvent that can be distilled off.
  • a solvent having a boiling point lower than that of the carrier liquid (D) is preferable.
  • ethyl acetate, n-propyl acetate, n-butyl acetate, isobutyl acetate, toluene, acetone, hexane, methyl ethyl ketone, ethanol, propanol, butanol and the like are used. Two or more kinds of these polymerization solvents may be mixed and used.
  • n-propyl acetate or toluene is particularly preferable from the viewpoints of polymerization temperature, ease of solvent evaporation, solvent polarity, and the like.
  • the solvent is distilled off after the polymerization of the polymer dispersant (C).
  • the solvent that can be distilled off is not particularly limited, but a solvent that can be easily distilled off as described above is preferable.
  • the ethylenically unsaturated monomer having an amino group increases the adsorption rate of the polymer dispersant (C) to the toner particles, and contributes to a stable image and excellent storage stability over a long period of time.
  • the amino group in the ethylenically unsaturated monomer having an amino group is not particularly limited, but is preferably a secondary amino group or a tertiary amino group, and more preferably a tertiary amino group.
  • the amino group here does not include an amino group constituting an amide bond.
  • alkyl (meth) acrylamides which are examples of an ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms, cannot obtain the effect exhibited by an ethylenically unsaturated monomer having an amino group.
  • the ethylenically unsaturated monomer having an amino group as the ethylenically unsaturated monomer having a tertiary amino group, for example, N, N such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, etc.
  • N such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, etc.
  • N such as N, N-dimethylaminoethyl (meth) acrylamide, N, N-diethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethylaminopropyl (meth) acrylamide -(Meth) acrylamides containing dialkylamino groups; Dimethylaminostyrene, diethylaminostyrene; Etc.
  • Examples of the ethylenically unsaturated monomer having a secondary amino group include tert-butylaminoethyl (meth) acrylate and tetramethylpiperidinyl (meth) acrylate.
  • N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide and the like are preferable from the viewpoint of dispersibility.
  • Two or more types of ethylenically unsaturated monomers having an amino group may be used in combination.
  • the amine value of the polymer dispersant (C) is preferably 5 to 150 mgKOH / g. More preferably, it is 30 to 100 mgKOH / g.
  • the amine value is lower than 5 mgKOH / g, the adsorption to the toner particles is weak and the pulverizability in wet pulverization may be lowered.
  • the toner particles aggregate, the viscosity of the liquid developer and the average particle size of the toner particles may increase, and the storage stability may decrease.
  • the amine value is higher than 150 mgKOH / g, the chargeability of the toner particles becomes low, the toner particles are hardly transferred to the substrate, and a good image density may not be obtained.
  • the amine value of the polymer dispersant (C) is the total amine value (mgKOH / g) measured according to the method of ASTM D2074.
  • the alkyl group having 9 to 24 carbon atoms enhances the solubility in the carrier liquid (D), and the pulverizability of the toner particles in wet pulverization. Furthermore, during storage for a long period of time, aggregation of toner particles and increase in viscosity of the liquid developer are suppressed, and an excellent storage stability effect is exhibited.
  • the solubility in the carrier liquid (D) is low, and the dispersion stability and storage stability of the toner particles are low.
  • the carbon number of the alkyl group is larger than 24, when the liquid developer is fixed to the substrate, the long alkyl group hinders contact and coalescence of the toner particles, and the fixing property is lowered. Furthermore, the chargeability of the toner particles is lowered, causing the toner particles to be difficult to be transferred to the base material and causing a problem that a sufficient image density cannot be obtained.
  • the alkyl group of 9 to 24 may have a substituent, and examples of the substituent include aromatic hydrocarbon groups such as a phenyl group, a naphthyl group, and a biphenyl group.
  • the ethylenically unsaturated monomer represented by the general formula (1) described later is not included in the ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms.
  • the ethylenically unsaturated monomer represented by the general formula (1) has a hydrocarbon group having 1 to 22 carbon atoms, but the ethylenically unsaturated monomer represented by the general formula (1). Depending on the body, the effect of the ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms cannot be obtained.
  • Examples of the ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms include: Nonyl (meth) acrylate, 8-methylnonyl (meth) acrylate, 2-methylnonyl (meth) acrylate, decyl (meth) acrylate, 2-methyldecyl (meth) acrylate, undecyl (meth) acrylate, 2-methylundecyl (meth) Acrylate, 9-methylundecyl (meth) acrylate, dodecyl (meth) acrylate, 2-methyldodecyl (meth) acrylate, 11-methyldodecyl (meth) acrylate, tridecyl (meth) acrylate, 2-methyltridecyl (meth) Acrylate, tetradecyl (meth) acrylate, 2-methyltetradecyl (meth) acrylate, pentadecyl (me
  • (meth) acrylates such as alkyl (meth) acrylate having an alkyl group having 9 to 24 carbon atoms are preferable.
  • the alkyl group having 9 to 24 carbon atoms include a linear alkyl group, a branched alkyl group, and a cyclic alkyl group, and a linear alkyl group or a branched alkyl group is preferable.
  • Two or more ethylenically unsaturated monomers having an alkyl group having 9 to 24 carbon atoms may be used in combination.
  • the ethylenically unsaturated monomer represented by the general formula (1) is effective in improving the fixing property. If the ethylenically unsaturated monomer represented by the general formula (1) is not included, the compatibility with the binder resin (A) is lowered, and in the fixing process, the molten state of the toner particles becomes incomplete. Fixability to the material is reduced. In addition, a cold offset phenomenon in which toner particles that are insufficiently melted adhere to the thermocompression roller and transfer to the next paper tends to occur.
  • the ethylenically unsaturated monomer represented by the general formula (1) is, for example, ring-opening polymerization of ethylene oxide with alkyl alcohol, and then the obtained reaction product is transesterified with methyl (meth) acrylate. Alternatively, it can be obtained by reacting with (meth) acrylic acid chloride.
  • CH 2 C (R 1 ) COO (AO) n R 2 (Wherein R 1 represents H or CH 3 , R 2 represents hydrogen or a hydrocarbon group having 1 to 22 carbon atoms, n represents an integer of 1 to 200, and A represents an alkylene group having 2 to 4 carbon atoms). )
  • the alkylene oxide group (AO) is an alkylene oxide group having 2 to 4 carbon atoms, and examples thereof include an ethylene oxide group, a propylene oxide group, and a butylene oxide group. Moreover, the alkylene oxide group from which carbon number differs may exist in the same monomer.
  • the number (n) of alkylene oxide groups is an integer of 1 to 200, preferably an integer of 1 to 30. If it exceeds 200, sufficient compatibility with the above-described ethylenically unsaturated monomer having an alkyl group having 9 to 24 carbon atoms may not be obtained.
  • R 2 is hydrogen or a hydrocarbon group having 1 to 22 carbon atoms. A carbon number of 23 or more is not practical because the raw material is expensive.
  • a substituted or unsubstituted group can be selected, an unsubstituted group is preferred, and an unsubstituted alkyl group is preferred.
  • R 2 is more preferably hydrogen or a hydrocarbon group having 1 to 18 carbon atoms.
  • the compound having an alkylene oxide chain examples include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, and poly (ethylene glycol-propylene glycol) mono (meta).
  • an unsaturated compound that may be included as a polymerizable monomer for example, Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, pentyl (meth) acrylate, Alkyl (meth) acrylates having an alkyl group of 1 to 8 carbon atoms such as isoamyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, etc.
  • (Meth) acrylates N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N-tert-butyl (meth) acrylamide, N-isopentyl (meth) acrylamide, N-neopentyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-isohexyl (meth) acrylamide, Nn-heptyl (meth) acrylamide, N- (6-methylheptyl) (meth) acrylamide, N-octyl (Meth) acrylamides such as (meth) acrylamide and N- (7-methyloctyl) (meth) acrylamide; 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 4-ethyl-2-hexen
  • Cyclic alkyl (meth) acrylates such as cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate;
  • (Meth) acrylates having an aromatic ring such as benzyl (meth) acrylate; Examples thereof include vinyls such as styrene, ⁇ -methylstyrene, vinyl acetate, vinyl (meth) acrylate, and allyl (meth) acrylate.
  • Unsaturated compounds other than those described above can also be used as long as they do not affect the physical properties.
  • the weight average molecular weight (Mw) of the polymer dispersant (C) is not limited to a specific range, but in consideration of dispersibility and pulverization properties when the toner particles are wet-dispersed, gel permeation chromatography (The molecular weight measured by GPC) is preferably 500 to 40,000, and more preferably 2,000 to 30,000. The weight average molecular weight (Mw) can be measured by the method described above.
  • the polymer dispersant (C) is preferably added in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the liquid developer. More preferably, it is in the range of 0.1 to 5 parts by mass. When the amount is less than 0.1 part by mass, the dispersibility and pulverization property of the toner particles may be lowered, and the storage stability may be lowered. It is possible to improve the dispersibility and grindability of the toner particles by changing the dispersion method and lengthening the dispersion time, but this causes an increase in the viscosity of the liquid developer, thereby reducing the transferability and color developability. It may be a cause.
  • the addition amount is more than 10 parts by mass, the chargeability of the toner particles is lowered, and there may be a problem that a sufficient image density cannot be obtained and the fixing property is lowered.
  • the toner particles contain the polymer dispersant (C)
  • the above range is a range including the amount of the polymer dispersant (C) contained in the toner particles.
  • a dispersant in addition to the polymer dispersant (C) used in the present invention, a dispersant conventionally used in a liquid developer may be used.
  • fatty acid metal salts such as cobalt naphthenate, zinc naphthenate, copper naphthenate, manganese naphthenate, cobalt octylate and zirconium octylate, titanate coupling agents of organic titanates such as lecithin and titanium chelate, alkoxy
  • titanium polymers polyhydroxy titanium carboxylate compounds, titanium alkoxides, succinimide compounds, polyimine compounds, fluorine-containing silane compounds, and pyrrolidone compounds.
  • titanium alkoxide, a succinimide compound, a fluorine-containing silane compound, a pyrrolidone-based compound, and the like may be mixed and used in an appropriate amount within a range of 5 parts by mass or less with respect to 100 parts by mass of the liquid developer.
  • the dispersant is used in such a manner that the dispersant having the same polarity as the toner particles is adsorbed on the toner particles, and the dispersant having the opposite polarity to the toner particles is not adsorbed on the toner particles and dispersed in the carrier liquid. It becomes a form to make it.
  • the standard for discussing the polarity is the polarity with respect to the carrier liquid. In addition, this behavior is determined after an actual image test and is obtained empirically.
  • the carrier liquid (D) used for the liquid developer is preferably an aliphatic hydrocarbon.
  • the aliphatic hydrocarbon include linear paraffin hydrocarbons, isoparaffin hydrocarbons, and naphthene hydrocarbons. Among these, paraffinic hydrocarbons with very little residual aromatic hydrocarbon are preferable. Further, those having lipophilic properties, chemically stable and insulating properties are preferred.
  • the carrier liquid is preferably chemically inert with respect to a substance or apparatus used in the image forming apparatus, in particular, a member for a development process such as a photosensitive member and its peripheral part.
  • the dry point of the carrier liquid (D) in the distillation range is preferably in the range of 200 to 360 ° C. Particularly preferred is a range of 240 to 340 ° C.
  • the temperature is lower than 200 ° C., the liquid developer is dried at room temperature, solid matter is precipitated, and the regulation blade around the development is fixed, which may cause image contamination.
  • the temperature is higher than 360 ° C., it may be difficult to remove the carrier liquid (D) and the fixability may be lowered.
  • the dry point in the distillation range is determined by the method defined by ASTM D86, ASTM D1078, and JIS K2254.
  • a carrier liquid (D) it is preferable to use what has a Kauri butanol numerical value (KB value: ASTM D1133) 30 or less. More preferably, it is in the range of 20-30.
  • the aniline point (JIS K2256) is preferably in the range of 60 to 105 ° C., more preferably 70 to 95 ° C., in order to obtain a stable carrier liquid.
  • the Kauributanol value exceeds 30 or the aniline point is lower than 60 ° C., the solubility as a solvent is high and the carrier liquid dissolves the toner particles, so the storage stability and color reproducibility of the toner particles are low.
  • the carrier liquid may be colored to contaminate a substrate such as paper.
  • the aniline point exceeds 105 ° C., the compatibility with the dispersant and additives added when dispersing the toner particles in the carrier liquid is low, causing problems such as poor dispersion and insufficient image density. There is a case.
  • the dielectric constant is 5 or less, preferably 1 to 5, and more preferably 1 to 3.
  • the electric resistivity of the carrier liquid (D) is preferably 10 9 ⁇ ⁇ cm or more, more preferably 10 10 ⁇ ⁇ cm or more, and particularly preferably 10 10 to 10 16 ⁇ ⁇ cm.
  • the electrical resistivity can be determined by combining a universal electrometer MMA-II-17D manufactured by Kawaguchi Electric Manufacturing Co., Ltd. and a liquid electrode LP-05.
  • the electrical resistivity is less than 10 9 ⁇ ⁇ cm, the chargeability of the toner particles becomes low, a sufficient image density cannot be obtained, and color reproducibility and color developability may be lowered.
  • the density (JIS K2249) at 15 ° C. of the carrier liquid (D) is preferably in the range of 0.67 to 0.9 g / cm 3 . More preferably, it is in the range of 0.70 to 0.85 g / cm 3 . This range is preferable because toner particles and a dispersant can exist stably, and thus excellent fixing properties and image density can be obtained.
  • the carrier liquid (D) preferably has a kinematic viscosity (ASTM D445) in the range of 1 to 25 mm 2 / s. The range of 3 to 15 is particularly preferable.
  • This range is preferable in that the charged particles can be moved at the time of the phenomenon, and have sufficient volatility, and the carrier liquid can be easily removed from the medium on which the final image is formed in the fixing step.
  • the kinematic viscosity is less than 1 mm 2 / s, the viscosity of the liquid developer becomes low, so the transferability to the developing roller is low, and a sufficient image density may not be obtained. Further, since the toner particles after development are likely to move, the fineness of the image may be easily lost.
  • the kinematic viscosity is larger than 25 mm 2 / s, the fluidity of the toner particles cannot be obtained and electrophoresis is difficult to occur, and a sufficient image density may not be obtained.
  • the permeability to a substrate such as paper is low, it is difficult to remove the carrier liquid when the toner particles are fixed, and sufficient fixability may not be obtained. In particular, the fixability in a superimposed image may be greatly reduced.
  • carrier liquids (D) are especially branched paraffin solvent mixtures such as “Isopar TM M” (Exxon Mobil Corporation), in particular isoparaffinic hydrocarbons or “ Naphthenic hydrocarbons such as Exol D110 “,” Exsol D130 “(Exxsol TM ) (Exxon Mobil Corporation) are preferred.
  • pigment dispersant As the pigment dispersant internally added to the toner particles, polyamine-based resin type dispersant Solsperse 24000SC, Solsperse 32000 (manufactured by Abyssia), Azisper PB821 (manufactured by Ajinomoto Fine-Techno Co., Ltd.); acrylic copolymer resin-type dispersant BYK -116 (manufactured by Big Chemie) can be used.
  • polyamine-based resin type dispersant Solsperse 24000SC Solsperse 32000 (manufactured by Abyssia), Azisper PB821 (manufactured by Ajinomoto Fine-Techno Co., Ltd.); acrylic copolymer resin-type dispersant BYK -116 (manufactured by Big Chemie)
  • the addition amount of the pigment dispersant is preferably 3 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the colorant (B) from the viewpoint of improving the dispersibility of the toner particles. Further, from the viewpoint of improving the pulverization property and productivity of the toner particles, the amount is preferably 40 parts by mass or less, more preferably 30 parts by mass or less with respect to 100 parts by mass of the colorant (B).
  • the toner particles it is also possible to use a dye derivative as long as the color developability of the colorant (B) is not impaired.
  • the dye derivative include a compound in which a basic substituent, an acidic substituent, or an optionally substituted phthalimidomethyl group is introduced into an organic dye (organic pigment, organic dye), anthraquinone, acridone, or triazine. Can be mentioned. Of these, pigment derivatives are preferred, and the structure is a compound represented by the following general formula (3).
  • P-Ln General formula (3) (However, P is an organic pigment residue, anthraquinone residue, acridone residue or triazine residue, L is a basic substituent, an acidic substituent, or an optionally substituted phthalimidomethyl group, n is an integer of 1 to 4)
  • the organic pigment constituting the organic pigment residue of P include, for example, diketopyrrolopyrrole pigments; azo pigments such as azo, disazo and polyazo; phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine and metal-free phthalocyanine
  • Anthraquinone pigments such as aminoanthraquinone, diaminodianthraquinone, anthrapyrimidine, flavantron, anthanthrone, indanthrone, pyranthrone, violanthrone; quinacridone pigments; dioxazine pigments; perinone pigments; pery
  • the dye derivative examples are described in JP-A-63-305173, JP-B-57-15620, JP-B-59-40172, JP-B-63-17102, JP-B-5-9469, and the like. What is currently used can be used, These can be used individually or in mixture of 2 or more types.
  • the addition amount of the pigment derivative is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the colorant from the viewpoint of improving dispersibility. Further, from the viewpoint of heat resistance and light resistance, it is preferably 4 parts by mass or less, more preferably 1.5 parts by mass or less, with respect to 100 parts by mass of the colorant.
  • the appropriate addition amount of the dye derivative varies depending on the type of the colorant (B) to be used, but is generally in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the colorant (B). It is preferable to use in. Thereby, the dispersion stability of the toner particles is maintained, and the stability of the charging polarity of the toner particles can be maintained. In the liquid developer, it is preferable to use a basic dye derivative since the toner particles have positive chargeability.
  • the toner particles in the liquid developer may contain a colorless or light-color charge control agent as long as the hue does not hinder the hue.
  • a positive charge control agent or a negative charge control agent is used according to the polarity of the electrostatic image on the electrostatic latent image carrier to be developed.
  • the toner particles are preferably positively charged, and a positive charge control agent is usually used.
  • quaternary ammonium salt compounds for example, tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylbenzylammonium tetrafluoroborate
  • quaternary ammonium salt organotin oxide for example, dibutyltin) Oxide, dioctyltin oxide, dicyclohexyltin oxide), diorganotin borate (eg, dibutyltin borate, dioctyltin borate, dicyclohexyltin borate), an electron donating substance such as a polymer having an amino group, or a combination of two or more thereof
  • the triarylmethane dye described above can also be used as a positive charge control agent.
  • a resin charge control agent can be used.
  • a resin charge control agent for positive charging, General formula- ⁇ CH 2 -CH (C 6 H 5 ) ⁇ a- ⁇ CH 2 -CH (COOC 4 H 9 ) ⁇ b- ⁇ CH 2 -C (CH 3 ) COOC 2 H 4 N + CH 3 (C 2 H 5 ) 2 CH 3 (C 6 H 4 ) SO 3 ⁇ ⁇ c
  • a quaternary ammonium salt represented by (the quaternary ammonium salt part is 3 to 35 parts by mass, the styrene and acrylic parts are 97 to 65 parts by mass, thereby determining the values of a, b and c)
  • the functional group include a styrene-acrylic polymer copolymerized with a styrene-acrylic resin.
  • the resin charge control agent is usually added in an amount of preferably 1.0 to 20 parts by weight, more preferably 2.0 to 8 parts by weight, based on 100 parts by weight of the binder resin (A).
  • the liquid developer is preferably obtained, for example, through the following five processes.
  • toner particle chips (dilution of colored master batch)
  • the colored masterbatch obtained in (1) and the binder resin (A) are mixed with a mixer such as a super mixer, preliminarily dispersed, and then melt-kneaded, whereby the colored masterbatch is bound to the binder resin (A).
  • a mixer such as a super mixer
  • a pigment dispersant, a polymer dispersant (C), a charge control agent, and the like may be added.
  • the toner particle chip has a particle size of 10 mm or less by rough crushing with a hammer mill, a sample mill or the like.
  • the steps (1) and (2) can be integrated. In that case, all steps during the preliminary dispersion in the step (2) without passing through the coloring masterbatch step (1).
  • the material may be charged to produce a toner particle chip.
  • a known kneader such as a pressure kneader, a Banbury mixer, a uniaxial or biaxial extruder can be used.
  • the toner particle chip obtained in (2) is finely pulverized to an average particle size of 7 ⁇ m or less.
  • a jet airflow pulverizer such as a jet mill or a mechanical pulverizer such as a turbo mill or a kryptron.
  • the dry pulverized toner particles obtained in (3) are developed in a solvent having the same composition as that of the carrier liquid (D), and the average particle size is measured using a wet pulverizer (disperser). Is pulverized to a range of 0.5 to 4 ⁇ m, preferably 1 to 3 ⁇ m. At this time, it is also effective to add a polymer dispersant (C) having a function of adsorbing the toner particles. Through the wet pulverization and dispersion steps, the dispersant is adsorbed in the toner particles and stabilized in terms of charging.
  • the temperature during pulverization does not exceed 50 ° C. If the temperature exceeds 50 ° C., the toner particles may be fused, and the particle size distribution may not be controlled.
  • a pulverization medium As a wet pulverizer that can be used for wet pulverization of toner particles, a pulverization medium is used, and examples thereof include a container drive medium mill and a medium stirring mill.
  • the container drive medium mill include a rolling ball mill, a vibration ball mill, a planetary ball mill, a centrifugal fluidizing mill, and the like. Vertical type), annular mill and the like.
  • miniaturization by wet pulverization is possible, but among them, the use of a medium stirring mill is preferable from the viewpoint of productivity, pulverization ability, control of particle size distribution, and the like.
  • a wet pulverizer classified as a horizontal distribution tank type mill which is sealed and horizontal, is filled with microbeads and used as a medium (medium), enables precise wet pulverization and dispersion. It is preferable in carrying out.
  • Specific examples include a dyno mill (DYNO-MILL) and a sand mill manufactured by WAB (Shinmaru Enterprises).
  • WAB Shinmaru Enterprises
  • the horizontal type wet pulverizer since the dispersion medium is hardly affected by gravity, a uniform distribution close to ideal can be obtained in the pulverizer. Further, since it has a completely sealed structure, there is no loss of balance due to foaming or evaporation of the solvent, and stable pulverization is possible.
  • the major factors that determine the pulverization properties are the type of pulverization media, the particle size of the pulverization media, the filling rate of the dispersion media in the pulverizer, the type of agitator disk, the concentration of the sample to be pulverized, the solvent Types are listed. Among these, the type of pulverized media and the particle size of the media greatly contribute to pulverization.
  • the types of grinding media include glass beads (SiO 2 70 to 80%, NaO 12 to 16%, etc.), zircon beads (ZrO 2 69%) depending on the viscosity, specific gravity, and required particle size of grinding and dispersion of the toner particles. , SiO 2 31%), zirconia beads (ZrO 2 95% or more), alumina (Al 2 O 3 90% or more), titania (TiO 2 77.7%, Al 2 O 3 17.4%), steel balls, etc. However, it is preferable to use zirconia beads or zircon beads in order to obtain good grindability.
  • the particle diameter (diameter) of the pulverization media can be used in the range of 0.1 mm to 3.0 mm, with the range of 0.3 to 1.4 mm being preferred. If it is smaller than 0.1 mm, the load in the pulverizer increases, and the toner particles may melt due to heat generation, making pulverization difficult. Moreover, when larger than 3.0 mm, sufficient grinding
  • the filling rate of the dispersion medium is preferably 40 to 85% by mass. If it exceeds 85 mass%, the load in the pulverizer increases, and the toner particles may melt due to heat generation, which may make pulverization difficult.
  • the filling rate is preferably set to 40 to 70% by mass.
  • the agitator disk inside the wet grinder also affects the control of grindability.
  • the peripheral speed of the disk is preferably 4 to 16 m / s, and if it is less than 4 m / s, it takes time to grind. On the other hand, if it is higher than 16 m / s, heat is generated due to contact with the pulverized media (medium), and the toner particles may be fused.
  • the material of the agitator disk include hardened steel, stainless steel, alumina, zirconia, polyurethane, polyethylene, and engineering plastic. Among them, zirconia is preferably used.
  • the material of the grinding cylinder on the inner wall of the wet pulverizer includes special hardened steel, stainless steel, alumina, zirconia, ZTA, glass, polyethylene and the like. Among them, it is preferable to use zirconia reinforced alumina ceramics called ZTA.
  • the toner particles (containing at least the binder resin (A) and the colorant (B)) obtained by the wet pulverization obtained in (4), the carrier liquid (D), and the dispersant are used.
  • a carrier liquid (D) and, if necessary, a dispersant are further added to and mixed with the contained material, and the liquid developer is purified while controlling the concentration of toner particles.
  • the polymer dispersant (C) may be added in any of the steps (1) to (5), but it should be added to the material obtained in the step (4) together with the carrier liquid (D) for preparation.
  • a liquid developer in which toner particles are stably dispersed can be obtained.
  • the toner particles preferably have an average particle diameter (D50) of 0.5 to 4 ⁇ m, more preferably 1 to 3 ⁇ m.
  • D50 average particle diameter
  • the particle size is measured using a laser diffraction scattering particle size analyzer Microtrac HRA manufactured by Nikkiso Co., Ltd., and the average particle size (D50) is a cumulative 50 percent diameter value.
  • the toner particles having a particle size of 2 ⁇ m or less with respect to all the toner particles are contained in an amount of 50% by volume or less, the toner particles having a particle size of 1 to 3 ⁇ m are contained in an amount of 5 to 60% by volume, and the particle size is 5 ⁇ m or more.
  • the toner particles are more preferably 35% by volume or less from the viewpoint of development characteristics for obtaining color developability.
  • the polymer dispersant (C) may be less adsorbed on the toner particles, and excellent storage stability may not be obtained.
  • the pulverizability becomes low, and it may be difficult to control the viscosity of the liquid developer. If the amount of toner particles having a particle size of 5 ⁇ m or more exceeds 35% by volume, there may be problems such as insufficient image density and poor color development and color reproducibility. Further, the toner particles having a particle diameter of 1 to 3 ⁇ m are preferably contained in an amount of 5 to 60% by volume in order to obtain dispersion stability of the toner particles and excellent storage stability over a long period of time.
  • the concentration of toner particles in the liquid developer is preferably 10 to 30% by mass with respect to 100% by mass of the liquid developer. More preferably, it is 12 to 25% by mass.
  • the amount is less than 10% by mass, it is difficult to remove the carrier liquid (D), and the fixability of the toner particles may be lowered.
  • the amount is more than 30% by mass, the viscosity of the liquid developer increases, the mobility of toner particles decreases, and a sufficient image density may not be obtained. Further, the toner particles may be strongly aggregated and the storage stability may be lowered.
  • adsorption rate (amount of dispersant adsorbed on the toner particles) / (dispersant content in the liquid toner).
  • the residual polymer dispersant (C) is weighed, and the adsorption rate to the toner particles is calculated from the obtained value.
  • the adsorption rate is preferably 50% or more. More preferably, it is 70% or more. If it is less than 50%, the dispersion stability of the toner particles is low, and the average particle diameter and viscosity of the liquid developer increase in long-term storage, and stable color development and color reproducibility may not be obtained.
  • the number of carbon atoms of the alkylene oxide group (AO) represented by (1), the number of alkylene oxide groups, and the number of carbon atoms of R 2 may be controlled, and further the respective mass ratios may be controlled.
  • the viscosity ( ⁇ ) of the liquid developer of the embodiment is preferably 5 to 180 mPa ⁇ s, and the electrical resistivity of the liquid developer is preferably 10 10 to 10 15 ⁇ ⁇ cm.
  • the viscosity ( ⁇ ) of the liquid developer can be measured using, for example, an E-type viscometer TV-22 manufactured by Toki Sangyo Co., Ltd. After adjusting the solid content in the liquid developer to 25% and fully acclimatizing to 25 ° C, set the 1 ° 34 'cone in the TV-22 viscosity type and measure the viscosity after 1 minute at 20 rpm. Can be obtained.
  • the viscosity ( ⁇ ) is less than 5 mPa ⁇ s, the fineness of the image after development is lacking, and if it exceeds 180 mPa ⁇ s, the mobility of toner particles during development is reduced and high-speed development is not possible, and sufficient image density is obtained. Problems such as inability to occur.
  • the electrical resistivity can be measured in the same manner as in the carrier liquid measurement method described above. If it is 10 10 ⁇ ⁇ cm or less, there is a tendency that the electrostatic latent image on the photoreceptor cannot be retained.
  • the development process that can be preferably used in the use of the liquid developer is to supply the liquid developer to a developing roller made of conductive rubber, remove the charge before transfer using an amorphous silicon photoconductor exposed to LED, and remove the intermediate transfer member. It is preferable to perform development via the substrate.
  • the photoreceptor preferably has a surface potential of +450 to 550 V, a residual potential of +50 V or less, and the bias applied to the developing roller is preferably in the range of +250 to 450 V.
  • the printing base material to be printed with the liquid developer is not particularly limited, and examples include generally used fine paper, coated paper, PET sheet, P-P sheet, and the like.
  • coated paper all widely used coated papers that have been used for various purposes in the past are all targeted.
  • fine coated paper, lightweight coated paper, coated paper, art paper, mat coated paper And cast coated paper, and the thickness and shape thereof are not limited at all.
  • good image quality can be obtained, and sharp characters and barcodes can be printed.
  • These may have a smooth surface of the printing substrate, may have irregularities, or may be transparent, translucent, or opaque. Further, two or more of these printing substrates may be bonded to each other.
  • a peeling adhesive layer or the like may be provided on the opposite side of the printing surface, and an adhesive layer or the like may be provided on the printing surface after printing.
  • the printed matter printed with the liquid developer is not particularly limited, but is used for general commercial use, paper packaging, packaging films, seals, labels, and the like.
  • catalogs using high-quality paper, coated paper, etc., books or forms such as magazines in paper container packages, packaging containers or outer boxes using coated paper, cardboard, etc., in packaging films , Flexible packaging containers using PET sheets, PP sheets and the like.
  • part means “part by mass” unless otherwise specified.
  • Binder Resin Synthesis Example 2 As in Synthesis Example 1, the polyhydric alcohol and polybasic acid shown in Table 2 and 2 parts of dibutyltin oxide as a catalyst were introduced, nitrogen gas was introduced with stirring, and the reaction system was heated to 180 ° C. The reaction was continued for 7 hours while maintaining the temperature of. Furthermore, it was made to react under reduced pressure for 1 hour. The pressure was returned to normal pressure, the temperature of the reaction system was lowered to 100 ° C. or less, and polycondensation was stopped to obtain a binder resin 2 which was a polyester resin.
  • Binder Resin Synthesis Example 3 The obtained binder resin 1 was put in an equal amount of toluene and heated to be dissolved. Nitrogen gas was introduced with stirring, and the mixture was further heated to the boiling point of toluene, and a mixed solution containing styrene monomers, acrylate esters, and di-t-butyl peroxide as a polymerization initiator shown in Table 3 was added. Solution polymerization was carried out while dropping over time. After completion of the dropwise addition, the reaction was further continued at the boiling point of toluene for 2 hours, and 1 part of di-t-butyl peroxide was added to terminate the polymerization. Next, the mixture was heated to 180 ° C. to remove toluene, and a binder resin 3 containing a polyester resin and a styrene-acrylic copolymer resin was obtained.
  • Binder Resin Synthesis Examples 4 and 5 Synthesis was performed in the same manner as in Synthesis Example 3 except that the raw materials and preparation amounts shown in Table 3 were used, and binder resins 4 and 5 were obtained.
  • Binder Resin Synthesis Examples 6 to 9 Synthesis was performed in the same manner as in Synthesis Example 1 except that the raw materials and preparation amounts shown in Table 4 were used, and binder resins 6 to 9 were obtained.
  • Table 5 shows the physical property values of the obtained binder resins 1 to 9.
  • a mixture containing 9.0 parts of Koto Pure Chemical Co., Ltd. was dropped over 2 hours to carry out a polymerization reaction. After completion of the dropwise addition, the mixture was further reacted at 110 ° C.
  • Synthesis Examples 2 to 8 of polymer dispersant Synthesis was performed in the same manner as in Synthesis Example 1 except that the raw materials and preparation amounts shown in Table 6 were used, and solutions of polymer dispersants 2 to 8 were obtained.
  • the amine value and weight average molecular weight of each polymer dispersant were as shown in Table 7.
  • DM N, N-dimethylaminoethyl methacrylate
  • DMAPAA N, N-dimethylaminopropylacrylamide
  • STMA stearyl methacrylate
  • LMA lauryl methacrylate
  • 2-EHA 2-ethylhexyl acrylate
  • Table 7 shows the physical property values of the obtained polymer dispersant.
  • Cyan colorant C.I. I. Pigment Blue 15: 3 (copper phthalocyanine blue) Lionol Blue FG7919 (Toyo Color) Magenta colorant C.I. I. Pigment Red 122 (Quinacridone Magenta) Hosterperm Pink E (manufactured by Clariant) C. I. Pigment Red 57: 1 (Kermin 6B) Permanent Rubin L6B (manufactured by Clariant) Yellow colorant C.I. I. Pigment Yellow 180 (Benz Imidazolone Yellow) Novoperm Yellow P-HG (manufactured by Clariant) Black colorant carbon black NIPEX150 (Degussa) As the blue component, C.I. I. Pigment Blue 15: 3 added
  • Example 1 C. I. Pigment Blue 15: 3 (Lionol Blue FG7919) 18 parts by weight binder resin 1 80 parts by weight Solsperse 24000SC 2 parts by weight
  • the above materials (total 5 kg) were mixed in a Henschel mixer having a volume of 20 L (3,000 rpm, 3 minutes) and then biaxially kneaded. Melting and kneading were performed with an extruder (PCM30) at a supply rate of 6 kg / hr and a discharge temperature of 145 ° C., and further, kneading was performed with three rolls having a roll temperature of 140 ° C.
  • PCM30 extruder
  • Cyan pulverized product 1 25 parts by mass Exol D130 72 parts by mass Polymeric dispersant 1 3 parts by mass were weighed, sufficiently stirred and mixed to disperse Cyan pulverized product 1 in the Exol D130 solution (slurry concentration was 25 masses). %).
  • the slurry in which the cyan pulverized product 1 is dispersed is subjected to a circulation operation for 60 minutes by using a wet pulverizer which is a medium agitating mill and a Dino Mill Multilab (manufactured by Shinmaru Enterprises Co., Ltd., capacity 1.4 L), and wet pulverization is performed. went.
  • the wet pulverization conditions at this time were as follows.
  • toner pulverized products and liquid developers were produced, respectively.
  • the particle size was measured using a Nikkiso Co., Ltd. laser diffraction scattering particle size analyzer Microtrac HRA, the solvent using Exol D80 (Exxsol TM ) (Exxon Mobil Corporation), and 23 ° C., 50% RH.
  • the average particle size (D50) is a cumulative 50 percent diameter value
  • the viscosity ( ⁇ ) of the liquid developer is an E-type viscometer TV-22 manufactured by Toki Sangyo Co., Ltd.
  • the image density was measured with a Gretag Macbeth densitometer (D-196).
  • D-196 Gretag Macbeth densitometer
  • the density value of each color is 1.2 or more for yellow, 1.4 or more for magenta and cyan, and 1.6 or more for black. More preferably, yellow is 1.3 or more, magenta and cyan are 1.5 or more, and black is 1.7 or more.
  • thermocompression resistance With respect to cold offset resistance, after being output by the above liquid developing copier, ten output images are sequentially thermocompression bonded by an external fixing device at a speed of 30 m / min and a nip thickness of 6 mm. When the output image was thermocompression bonded, it was confirmed whether or not there was a re-transferred toner image on the tenth output image (paper). The temperature at which the re-transferred toner image does not exist was evaluated in four ranks. Here, if the thermocompression-bonding roll temperature is less than 140 ° C, it is practically preferable, and if it is less than 120 ° C, it is more preferable.
  • Thermocompression roll temperature is less than 120 ° C
  • Thermocompression roll temperature is 120 ° C or more and less than 140 ° C
  • Thermocompression roll temperature is 140 ° C or more and less than 160 ° C
  • Thermocompression roll temperature is 160 ° C or more
  • the storage stability of the liquid developer was evaluated as follows. The obtained liquid developer was allowed to stand in a constant temperature and humidity atmosphere at 25 ° C. and 50% for 3 months. The average particle diameter (D50) and viscosity ( ⁇ ) of the liquid developer after 3 months of standing were measured and evaluated at a rate increased from the value before the start of the test.
  • D50 average particle diameter
  • viscosity
  • B average particle diameter after test (D50) / average particle diameter before test (D50) is 1. 1 or more and less than 1.2
  • C average particle diameter after test (D50) / average particle diameter before test (D50) is 1.2 or more
  • average particle diameter after test (D50) / average particle diameter before test If (D50) is less than 1.2, it is practically preferable, and if it is less than 1.1, it is more preferable.
  • B viscosity after testing ( ⁇ ) / viscosity before testing ( ⁇ ) is 1.1 or more and less than 1.4
  • C The viscosity after the test ( ⁇ ) / the viscosity before the test ( ⁇ ) is 1.4 or more
  • the viscosity after the test ( ⁇ ) / the viscosity before the test ( ⁇ ) is less than 1.4, which is practically preferable. If it is less than 1.1, it is more preferable.
  • Comparative Examples 1, 4 to 6 since the ethylenically unsaturated monomer represented by the general formula (1) was not included, the toner particles did not melt and the fixing rate and cold offset resistance were lowered. In Comparative Examples 2 and 3, sufficient image density and stability could not be obtained due to low grindability and dispersion stability.
  • the liquid developer using the polymer dispersant (C) has practical areas of image density, fixing rate, cold offset resistance, and storage stability. Further, among liquid developers using cyan toner, it was found that Examples 13 to 15 were particularly excellent in terms of image density and fixing rate. In addition, a printed matter having excellent color developability and color reproducibility was obtained because of excellent density, fixability, and cold offset property.
  • the polymer dispersant for a liquid developer according to an embodiment of the present invention is excellent in color reproducibility, color developability, storage stability, fixing property, cold offset resistance, and utilizes electrophotography, electrostatic recording method, etc.
  • it can be preferably used as a polymer dispersant used for developing an electrostatic latent image in an electronic copying machine, a printer, an on-demand printing machine or the like where an image is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Liquid Developers In Electrophotography (AREA)

Abstract

 本発明の実施形態は、少なくとも、アミノ基を有するエチレン性不飽和単量体と、炭素数9~24のアルキル基を有するエチレン性不飽和単量体と、下記一般式(1)で表されるエチレン性不飽和単量体とを共重合してなる、液体現像剤用の高分子分散剤に関する。 一般式(1) CH=C(R)COO(AO) (式中、RはH又はCH、Rは水素又は炭素数が1~22の炭化水素基、nは1~200の整数、Aは炭素数が2~4のアルキレン基を表す。)

Description

液体現像剤用高分子分散剤、液体現像剤、及び印刷物
 本発明の実施形態は、液体現像剤用高分子分散剤、液体現像剤、及び印刷物に関する。
 液体現像剤では、湿式下でトナー粒子の微粉砕及び分散を行うことから、乾式の粉体トナーと比べてトナー粒子の微細化が可能である。また、液体現像剤は、キャリアとして絶縁性液体のキャリア液を用いることからトナー粒子の画像形成装置内での飛散による問題等が生じることがない。そのため、液体現像剤を用いた画像形成装置は、高精細な画像の形成が可能であるという特徴を有している。
 液体現像剤を用いた電子写真方式の画像形成装置では、キャリア液中に微細化されたトナー粒子を分散した現像剤が用いられている。感光体上に露光によって形成された静電潜像は、キャリア液中のトナー粒子を用いて現像される。現像後には、得られた静電潜像を紙などの記録媒体上に転写、乾燥、及び定着させて画像形成がなされる。
 液体現像剤は、電気絶縁性のキャリア液中にトナー粒子を分散させたものであり、そのトナー粒子には着色性、定着性、帯電性、及び分散安定性が求められている。トナー粒子は着色剤、結着樹脂、及び分散剤などの添加剤で構成されており、優れた画像を得るためにはトナー粒子が安定して分散していることと、安定して帯電していることが望まれる(例えば特許文献1、2等参照)。
 電気絶縁性のキャリア液中にトナー粒子を均一に分散させ、より優れた保存安定性を維持するために、分散剤の検討が行われてきた。しかしながら、トナー粒子を安定して分散させ、保存安定性を向上させると、画像出力時の定着プロセスにおいて、トナー粒子が溶融、接触、及び合一するために必要な熱量が多くなり、基材への定着性が低下する。また、不完全な溶融状態のトナー粒子の一部が熱圧着ローラー表面に付着し、次の紙に転移するというコールドオフセット現象が発生するなどの問題を引き起こす。したがって、定着性及び耐コールドオフセット性と、保存安定性とを両立させることは困難な課題であった。そこで、液体現像剤の定着性と保存安定性とを両立するために、定着性を阻害しにくい高分子分散剤の検討が行われてきた(例えば特許文献3参照)。
 しかしながら、高分子分散剤の影響によりトナー粒子の帯電性が低下し、十分な画像濃度が得られない、また、画像の長期安定性が低下し、発色性及び色再現性が損なわれるという問題があった。
特開平5-333607号公報 特表2007-505953号公報 特開2009-145535号公報
 このように、液体現像剤は、十分な画像濃度を得て、保存安定性と、定着性及び耐コールドオフセット性とを両立させ、画像の高画質化に優れたものとすることにおいて改善の余地があった。この問題点を解決し、定着性及び耐コールドオフセット性に優れ、かつ、長期にわたって優れた保存安定性を有する、出力画像の良好な液体現像剤が求められている。
 そこで、本発明の実施形態は、優れた画像濃度を得ることができ、定着性及び耐コールドオフセット性に優れ、長期にわたって保存安定性に優れた液体現像剤用の高分子分散剤を提供することを目的とする。また、本発明の他の実施形態は、優れた画像濃度を得ることができ、定着性及び耐コールドオフセット性に優れ、長期にわたって保存安定性に優れた液体現像剤、及びこれを用いて得られた印刷物を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、以下に示す実施形態により上記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の実施形態は、少なくとも、アミノ基を有するエチレン性不飽和単量体と、炭素数9~24のアルキル基を有するエチレン性不飽和単量体と、下記一般式(1)で表されるエチレン性不飽和単量体とを共重合してなる、液体現像剤用の高分子分散剤に関する。
一般式(1)
CH=C(R)COO(AO)
(式中、RはH又はCH、Rは水素又は炭素数が1~22の炭化水素基、nは1~200の整数、Aは炭素数が2~4のアルキレン基を表す。)
 また、本発明の他の実施形態は、少なくとも、結着樹脂(A)、着色剤(B)、高分子分散剤(C)、及びキャリア液(D)を含有する液体現像剤であって、高分子分散剤(C)が、上記高分子分散剤である液体現像剤に関する。
 さらに、本発明の他の実施形態は、上記液体現像剤を用いて得られる印刷物に関する。
 本願の開示は、2012年10月17日に出願された特願2012-230222号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
 本発明の実施形態によれば、優れた画像濃度を得ることができ、定着性及び耐コールドオフセット性に優れ、長期にわたって保存安定性に優れた液体現像剤用の高分子分散剤を提供することができる。また、本発明の他の実施形態によれば、優れた画像濃度を得ることができ、定着性及び耐コールドオフセット性に優れ、長期にわたって保存安定性に優れた液体現像剤、及びこれを用いて得られた印刷物を提供することができる。
 以下、本発明を詳細に説明する。
 本発明の実施形態である高分子分散剤は、少なくとも、アミノ基を有するエチレン性不飽和単量体と、炭素数9~24のアルキル基を有するエチレン性不飽和単量体と、一般式(1)で表されるエチレン性不飽和単量体とを共重合してなることが大きな特徴である。また、本発明の他の実施形態である液体現像剤は、少なくとも、結着樹脂(A)、着色剤(B)、高分子分散剤(C)、及びキャリア液(D)を含有し、高分子分散剤(C)が前記高分子分散剤であることを特徴とする。液体現像剤においては、結着樹脂(A)及び着色剤(B)は、トナー粒子として存在する。
 高分子分散剤(C)が、アミノ基を有するエチレン性不飽和単量体を用いて得られ、好ましくは特定のアミン価を有することで、トナー粒子への高分子分散剤(C)の吸着率が高くなり、長期にわたって安定した画像(複写機による印刷画像、プリンターによる印刷画像等)と優れた保存安定性を有する液体現像剤が得られる。また、高分子分散剤(C)のトナー粒子への吸着率が高いことから、トナー粒子の粉砕性が向上し、トナー粒子の平均粒径が小さく、粘度の低い液体現像剤が効率よく得られ、発色性及び色再現性に優れた画像を得ることができる。
 さらに、高分子分散剤(C)が、炭素数9~24のアルキル基を有するエチレン性不飽和単量体を用いて得られることによって、キャリア液(D)への溶解性が向上し、トナー粒子の優れた粉砕性及び分散安定性が得られる。また、高分子分散剤(C)が、一般式(1)で表されるエチレン性不飽和単量体を用いて得られることによって、結着樹脂(A)との相溶性が高まり、トナー粒子が基材へ定着する際に、高分子分散剤(C)がトナー粒子の接触及び合一を阻害することなく、優れた定着性及び耐オフセット性を得ることができると共に、十分な画像濃度を有し、色再現性及び発色性に優れた画像を得ることができる。
 以下、本発明の実施形態である高分子分散剤(以下、高分子分散剤(C)という)、並びに、本発明の実施形態である液体現像剤に含まれる結着樹脂(A)、着色剤(B)、及びキャリア液(D)などについて詳細に説明する。
 (トナー粒子)
 液体現像剤に用いられるトナー粒子は、少なくとも結着樹脂(A)と着色剤(B)とを含み、加えて顔料分散剤、荷電制御剤などの添加剤を用いることも好ましい。また、高分子分散剤(C)については、キャリア液(D)中にトナー粒子を湿式分散させる際に添加することが好ましいが、トナー粒子作製時にトナー粒子中に添加して用いることもできる。
 (結着樹脂(A))
 一般的に、結着樹脂には顔料、染料などの着色剤をその樹脂中に均一分散させる機能と、紙などの基材へ定着する際のバインダーとしての機能がある。
 使用することのできる結着樹脂としては、ポリスチレン、ポリ-p-クロルスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン-p-クロルスチレン共重合体、スチレン-ビニルトルエン共重合体、スチレン-ビニルナフタレン共重合体、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-α-クロルメタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、スチレン-ビニルメチルエーテル共重合体、スチレン-ビニルエチルエーテル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-アクリロニトリル-インデン共重合体などのスチレン系共重合体また架橋されたスチレン系共重合体;ポリ塩化ビニル、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール樹脂、テルペン樹脂、クマロンインデン樹脂、石油系樹脂などが挙げられる。
 液体現像剤に用いられる結着樹脂(A)としては、顔料分散性、粉砕性、及び定着性の観点から、特にポリエステル樹脂(a-1)が好ましい。さらには、結着樹脂(A)は、各色の色材の色相を阻害しないために、無色、透明、白色、又は淡色を呈するものが好ましい。
 ポリエステル樹脂(a-1)は熱可塑性ポリエステルであることが好ましく、2価又は3価以上のアルコール成分とカルボン酸などの酸成分との重縮合により得られるものであることが好ましい。
 アルコール成分としては、
 エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,4-ブテンジオール、ジエチレングリコール、トリエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサンジオール、ビスフェノールA、水素添加ビスフェノールA、1,4-ビス(ヒドロキシメチル)シクロヘキサン、下記一般式(2)で示されるビスフェノール誘導体等の2価のアルコール類;
 グリセロール、ジグリセロール、ソルビット、ソルビタン、ブタントリオール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール等の3価以上のアルコール類;
等が挙げられる。
 これらは単独で又は2種以上の組み合わせで使用される。
Figure JPOXMLDOC01-appb-C000001
(式中、Rはエチレン基又はプロピレン基であり、x及びyはそれぞれ1以上の整数であり、かつx+yの平均値は2~10である。)
 酸成分としては、二価のカルボン酸として、
 フタル酸、テレフタル酸、イソフタル酸、無水フタル酸などのベンゼンジカルボン酸類又はその無水物;
 コハク酸、アジピン酸、セバシン酸、アゼライン酸などのアルキルジカルボン酸類又はその無水物;
 炭素数16~18のアルキル基で置換されたコハク酸又はその無水物;
フマル酸、マレイン酸、シトラコン酸、イタコン酸、グルタコン酸などの不飽和ジカルボン酸又はその無水物;
 シクロヘキサンジカルボン酸;ナフタレンジカルボン酸;ジフェノキシエタン-2,6-ジカルボン酸又はこれらの無水物;
等が挙げられる。
 架橋成分として働く三価以上のカルボン酸としては、トリメリット酸、ピロメリット酸、ナフタレントリカルボン酸、ブタントリカルボン酸、ヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、オクタンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、又はこれらの無水物等が挙げられる。
 これらは単独で又は2種以上の組み合わせで使用される。
 好ましいアルコール成分は、ビスフェノールAにアルキレンオキサイド(好ましくは2~3モル)を付加させたもの、エチレングリコール、ネオペンチルグリコール等である。好ましい酸成分は、フタル酸、テレフタル酸、イソフタル酸又はその無水物;コハク酸、n-ドデセニルコハク酸又はその無水物;フマル酸、マレイン酸、無水マレイン酸等のジカルボン酸類;トリメリット酸又はその無水物等のトリカルボン酸類である。
 またポリエステル樹脂(a-1)の重縮合では、アンチモン、チタン、スズ、亜鉛及びマンガンより選ばれる少なくとも1種の金属化合物など公知慣用の反応触媒を用い、反応が促進されてもよい。反応触媒としては、具体的には、酸化ジ-n-ブチル錫、シュウ酸第一錫、三酸化アンチモン、チタンテトラブトキシド、酢酸マンガン、酢酸亜鉛等が挙げられる。これら反応触媒の添加量は得られるポリエステル樹脂(a-1)中の酸成分に対し、通常0.001~0.5モル%程度の量が好ましい。
 重縮合の方法としては、公知の塊状重合法を用いることができ、ポリエステル樹脂の分子量、軟化温度等を制御するには反応させるアルコール成分とカルボン酸の種類、モル比、さらには反応温度、反応時間、反応圧力、触媒等を調整すればよい。さらに、ポリエステル樹脂として市販品を用いることも可能である。例えば、ダイヤクロンER-502、ダイヤクロンER-508(いずれも三菱レイヨン社製)などがある。
 さらには定着性及び粉砕性を向上させるために、結着樹脂(A)がポリエステル樹脂(a-1)と、スチレン樹脂、アクリル樹脂、及びスチレン-アクリル共重合樹脂からなる群から選択される少なくとも1種の樹脂(a-2)(以下、単に樹脂(a-2)ともいう。)とを含むことが好適である。
 スチレン-アクリル共重合樹脂は、スチレン系モノマーのうちの少なくとも1種類と、(メタ)アクリル酸及び(メタ)アクリル酸エステル類のうちの少なくとも1種類を重合させて得られる。
 樹脂(a-2)に用いられるスチレン系モノマーとしては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチクスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロルスチレン、3,4-ジクロルスチレンなどがある。
 樹脂(a-2)に用いられる(メタ)アクリル酸エステル類としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2-クロルエチル、(メタ)アクリル酸フェニル、アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチルなどがある。
 好ましいスチレン系モノマーはスチレンである。また、好ましい(メタ)アクリル酸エステル類は(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル等である。
 また、樹脂(a-2)の分子量をより大きくするために多官能性単量体を架橋剤として使用することができる。具体的には、ジビニルベンゼン、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどがある。
 上記樹脂(a-2)は、懸濁重合法、溶液重合法、乳化重合法など公知の重合方法により得られる。例えば、スチレン-アクリル共重合樹脂の分子量、軟化温度を制御するには上記スチレン系モノマーと、(メタ)アクリル酸及び(メタ)アクリル酸エステル類の種類、モル比、さらには反応温度、反応時間、反応圧力、重合開始剤、架橋剤等を調整すればよい。さらにスチレン-アクリル共重合樹脂として市販品を用いることも可能である。例えば、アルマテックスCPR100、CPR200、CPR300、CPR600B(三井化学社製)などがある。
 ポリエステル樹脂(a-1)及び樹脂(a-2)を混合して、より均一に分散された結着樹脂(A)を得るには、ポリエステル樹脂(a-1)と樹脂(a-2)とを溶融混練する方法;重合したポリエステル樹脂(a-1)と樹脂(a-2)のどちらか一方の樹脂の存在下において、もう一方の樹脂用のモノマーを加えて重合する方法などがある。より均一に分散された結着樹脂を得るには後者が望ましく、通常は塊状重合でポリエステル樹脂(a-1)を重縮合した後、得られたポリエステル樹脂(a-1)を溶剤に溶解させた系において、必要に応じて加熱しながら樹脂(a-2)を溶液重合にて合成し、脱溶媒する方法が好ましい。
 さらに、特許第3531980号公報及び特開2006-178296号公報に記載の方法のような公知の方法により合成することも好ましい。
 また、ポリエステル樹脂(a-1)と樹脂(a-2)とを個別に作製する場合、又は、市販のポリエステル樹脂と樹脂(a-2)とを用いる場合は、ポリエステル樹脂(a-1)と樹脂(a-2)を混合することにより結着樹脂(A)を得ることができる。このとき両者を溶剤中に溶解させて混合及び脱溶剤を行うか、溶融混練を行うかいずれの方法であってもよい。
 さらに結着樹脂(A)に含まれるポリエステル樹脂(a-1)と樹脂(a-2)との質量比率[(a-2)/(a-1)]が1以下であることが好ましい。より好ましくは、質量比率が0.5以下である。質量比率が1を超えると、トナー粒子の粉砕性が低くなり、液体現像剤としての発色性及び保存安定性が低くなる。
  (軟化温度(T4))
 結着樹脂(A)の軟化温度は80~140℃の範囲であることが好ましい。より好ましくは90℃~130℃の範囲である。軟化温度は、株式会社島津製作所製「フローテスターCFT-500D」を用いて、開始温度40℃、昇温速度6.0℃/min、試験荷重20kgf、予熱時間300秒、ダイ穴径0.5mm、ダイ長さ1.0mmの条件にて、試料1.0gの4mmが流出したときの温度を軟化温度(T4)として測定したものである。
 結着樹脂(A)の軟化温度が80℃よりも低いと混練時に軟化し過ぎてしまい、着色剤(B)の分散性が低下し、液体現像剤としての十分な画像濃度が得られにくくなる場合がある。さらには、画像出力時の定着プロセスにおいて、トナー粒子が溶融状態で熱圧着ローラーの表面と接触するため、トナー粒子の凝集力が基材と熱圧着ローラーの接着力より小さくなり、一部が完全に固着せず、熱圧着ローラー表面にトナー粒子が付着し、次の紙に転移するというホットオフセット現象が発生しやすくなる。対して、軟化温度が140℃より高いと良好な定着性が得られにくい、また、粉砕性が低下し、発色性が低くなるなどの問題が発生する場合がある。
  (平均分子量)
 結着樹脂(A)は、耐オフセット性、定着性、及び画質特性の点から、ゲルパーミエイションクロマトグラフィー(GPC)で測定される分子量において、重量平均分子量(Mw)が2,000~100,000のものが好ましく、5,000~50,000のものがより好ましい。結着樹脂(A)の重量平均分子量(Mw)が2,000より小さくなると、耐ホットオフセット性、色再現性、及び分散安定性が低下する場合があり、100,000より大きくなると定着性及び耐コールドオフセット性が低くなる場合がある。
 また、結着樹脂(A)は、特定の低分子量の縮重合体成分と特定の高分子量の縮重合体成分とからなる2山の分子量分布曲線を有するタイプ、又は1山の単分子量分布曲線を有するタイプのいずれのものであってもよい。
 さらに、ゲルパーミエイションクロマトグラフィー(GPC)で測定される分子量において、結着樹脂(A)の重量平均分子量(Mw)と数平均分子量(Mn)の比率Mw/Mnが、2~15の範囲であることが好ましい。Mw/Mnが2を下回ると耐オフセット性が低くなると共に、非オフセット領域が狭くなり低温定着性が低下する場合がある。Mw/Mnが15を超えると、トナー粒子の粉砕性が低くなり、十分な画像濃度が得られない、発色性が低くなるなど、画像特性が低下する場合がある。
 なお、上記GPCによる分子量及び分子量分布は、例えば、東ソー社製ゲルパーミエイションクロマトグラフィー(HLC-8220)を用い、次の条件で測定できる。
 40℃のヒートチャンバ中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフラン(THF)を毎分0.6mLの流速で流し、THFに溶解した試料溶液を10μL注入して測定する。試料の分子量測定にあたっては、試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。
 検量線作成用の標準ポリスチレン試料としては、東ソー社製の分子量が10~10程度のポリスチレンを10点用いる。検出器にはRI(屈折率)検出器を用いる。なお、カラムにはTSKgel SuperHM-M(東ソー社製)3本を用いる。
 また測定用サンプルは以下のようにして作成する。試料をTHF中に入れ、数時間放置した後、充分に振とうし、試料の合一体がなくなるまでTHFと良く混合し、さらに12時間以上静置する。この時、THF中への放置時間が24時間以上となるようにする。その後、得られた溶液をサンプル処理フィルタを通過させ、GPC測定用の試料溶液とする。また、試料濃度は、樹脂成分が0.5~5mg/mLとなるように調整する。
 トナー粒子中に含まれる結着樹脂(A)の含有量は、トナー粒子100質量部に対して好ましくは60~95質量部、より好ましくは70~90質量部である。60質量部未満であると、定着性、耐オフセット性が低下する場合があり、95質量部を超えると着色剤(B)に対しての結着樹脂(A)の比率が多くなり、トナー粒子としての着色力が低下し、画像濃度が低下する場合がある。
 (着色剤(B))
 着色剤(B)としては、以下に示すイエロー、マゼンタ、シアン、及び黒の各有機顔料、有機染料、特にその造塩化合物;カーボンブラック;磁性体などが好適に用いられる。これらは単独で又は2種以上を混合して使用することができる。また、着色剤(B)はキャリア液(D)に対して不溶であることが好ましい。
 イエローの着色剤としては、イエローの有機顔料、又はイエローの染料の造塩化合物を用いることが好ましい。
 イエローの有機顔料としては、ベンズイミダゾロン化合物、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、キノフタロン化合物、アゾ金属錯化合物、メチン化合物、アリルアミド化合物等が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、97、109、110、111、120、127、128、129、138、139、147、150、168、174、176、180、181、191等が好適に用いられる。中でもキノフタロン化合物、縮合アゾ化合物、又はベンズイミダゾロン化合物を用いることが好ましい。
 またイエローの染料の造塩化合物としては、酸性染料の造塩化合物、又は塩基性染料の造塩化合物が用いられる。酸性染料の造塩化合物としては、C.I.アシッドイエロー11又は23(タートラジン)と四級アンモニウム塩化合物とからなる造塩化合物を用いることが好ましい。四級アンモニウム塩を構成することでトナー粒子が安定した正帯電を保持することができる。
 マゼンタの着色剤としては、マゼンタの有機顔料又はマゼンタの染料の造塩化合物を用いることが好ましい。
 マゼンタの有機顔料としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、ローダミンレーキ等の塩基性染料のレーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が用いられる。具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81、81:1、81:2、81:3、81:4、122、144、146、166、169、177、184、185、202、206、209、220、221、254、255、268、269等、C.I.ピグメントバイオレット1、19等が好適に用いられる。中でもキナクリドン化合物、ローダミンレーキ系顔料、ナフトール系顔料等を用いることが好ましい。具体的には、ナフトールAS(C.I.ピグメントレッド269等)、ローダミンレーキ(C.I.ピグメントレッド81、81:1、81:2、81:3、81:4、169等)、キナクリドン(C.I.ピグメントレッド122等)カーミン6B(C.I.ピグメントレッド57:1)が好ましい材料である。
 またキナクリドン顔料とモノアゾ顔料であるカーミン6B(C.I.ピグメントレッド57:1)とを併用したものは良好なマゼンタ色又は赤色を呈し好ましいものである。
 またマゼンタの染料の造塩化合物としては、ローダミン系酸性染料の造塩化合物又はローダミン系塩基性染料の造塩化合物が好ましく用いられる。塩基性染料の造塩化合物としては、C.I.ベーシックレッド1又は同ベーシックバイオレット10と、無色(色素の発色を阻害しない)の有機スルホン酸又は有機カルボン酸とからなる造塩化合物を用いることが好ましい。塩基性染料は良好な正帯電を呈することからトナー粒子が安定した正帯電を保持することができる。有機スルホン酸としては、ナフタレンスルホン酸、ナフトールスルホン酸、ナフチルアミンスルホン酸等が好ましく用いられる。有機カルボン酸としては、サリチル酸誘導体、高級脂肪酸等が好ましく用いられる。
 シアンの着色剤としては、シアン、青色の有機顔料、シアン、青色染料の造塩化合物、シアン、青色染料の油溶性染料等を用いることが好ましい。
 シアンの有機顔料としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、15:6、60、62、66等が好適に用いられる。中でもC.I.ピグメントブルー15:3等の銅フタロシアニン化合物を用いることが好ましい。
 また前記有機顔料と併用する形態で、トリアリールメタン系の染料由来の化合物を用いることも好ましい。トリアリールメタン系色素は、良好な正帯電性を有することから帯電性のコントロール及び着色性の両方の観点から有効な材料である。特にC.I.ソルベントブルー124等のトリアリールメタン系油溶性染料又はトリアリールメタン系塩基性染料の造塩化合物は良好なものである。C.I.ソルベントブルー124としては、具体的にはクラリアント社製のCOPY BLUE PRは好ましい材料である。これはC.I.ベーシックレッド9(パラマゼンタ)とアニリンとを縮合させて得られたものである。
 さらに色相調整の目的で前記シアン又は青色の有機顔料、シアン又は青色染料の造塩化合物、シアン、青色染料の油溶性染料に加えて、緑色顔料を補色として使用することができる。緑色顔料としては、具体的にはC.I.ピグメントグリーン7、36等のハロゲン化フタロシアニン化合物が好ましい。
 黒の着色剤としては、コスト及び取り扱いの点からもカーボンブラック、ペリレンブラック等の有機黒色顔料、並びに、ニグロシン染料、アゾ金属錯体染料等の有機黒色染料を用いることが好ましい。
 カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、バイオマス由来のカーボンブラックなどの各種いずれも使用できる。ファーネスブラックカーボン、バイオマスカーボンが、画像特性においてかぶり(白地部の地汚れ)が低減される効果があり好ましい。
 ニグロシン染料としては、ニグロシンベースを湿式粉砕等により微細化し、体積平均粒径を0.5~2μmとしたものを用いることが好ましい。この微細化されたニグロシン染料は光沢を有するため、光沢のある黒色を得ることができる。またニグロシンの微細化は特開2006-171501等に記載の方法により得られるものである。
 また黒色着色剤としては、上記イエロー、マゼンタ、シアンの3色の着色剤を用いて黒色を得ることもできる。
 さらに画像濃度が良好で、コントラストのある黒色を得るためには、黒の着色剤として黒色着色剤100質量部に対して、青色着色剤を1~10質量部添加した着色剤を用いることが好ましい。青色着色剤としては、ハロゲンを含まない金属フタロシアニンブルー化合物、トリアリールメタン化合物、ジオキサジンバイオレット顔料等を用いることが好ましい。またフタロシアニンブルー化合物及びトリアリールメタン化合物は安定した正帯電性を有していることも良好な黒トナー粒子を得る上で有効である。具体的には、C.I.ピグメントブルー15:3、ビクトリアピュアブルーレーキ顔料(C.I.ピグメントブルー1)、C.I.ピグメントバイオレット23、C.I.ピグメントバイオレット19、トリアリールメタン系塩基性染料と実質的に無色の有機酸とからなる造塩化合物(C.I.ベーシックブルー7と有機酸との造塩化合物)、トリアリールメタン系油溶性染料等を用いることが好ましい。
 トリアリールメタン系色素は良好な正帯電を呈することでトナー粒子の帯電性制御に有効であり、中でも分散性に優れたトリアリールメタン系油溶性染料が好ましい。
 トナー粒子中に含まれる着色剤(B)の含有量は、使用する結着樹脂(A)の種類により異なるが、通常、トナー粒子100質量部に対して5~40質量部、好ましくは10~30質量部である。
 液体現像剤を用いたフルカラー画像を得る場合は、Y、M、C、及びBkの基本プロセス4色を用いることで、定着性及び発色性を活かした好ましい画像が得られる。それに加えて、バイオレット、グリーンなどの中間色を用いることができる。
 (高分子分散剤(C))
 一般的に、分散剤はトナー粒子が存在するキャリア液中に添加して、トナー粒子を均一に分散させ、現像特性を向上させる効果を有するものであるが、高分子分散剤(C)はキャリア液中に添加しても、トナー製造における混練の際にトナー粒子中に添加してもよい。キャリア液中に添加して、トナー粒子を分散させた場合、高分子分散剤(C)は、トナー粒子表面の結着樹脂部、特に優れた分散安定性の効果を発揮するポリエステル樹脂部に吸着していると推察される。
 このように、高分子分散剤(C)は、トナー粒子表面に吸着、あるいはトナー粒子内部に分散している状態で存在していることが好ましい。
 高分子分散剤(C)は、少なくともアミノ基を有するエチレン性不飽和単量体と、炭素数9~24のアルキル基を有するエチレン性不飽和単量体と、一般式(1)で表されるエチレン性不飽和単量体とを含む共重合可能な重合性単量体より得られる共重合体である。好適な高分子分散剤(C)の重合方法は、通常のアクリル樹脂の溶液重合である。
 アミノ基を有するエチレン性不飽和単量体の比率(仕込み量のモル比)として、好ましくは1~50%であり、より好ましくは5~40%であり、最も好ましくは10~30%である。炭素数9~24のアルキル基を有するエチレン性不飽和単量体の比率として、好ましくは5~90%であり、より好ましくは20~80%であり、最も好ましくは40~70%である。一般式(1)で表されるエチレン性不飽和単量体の比率として、好ましくは1~50%であり、より好ましくは5~40%であり、最も好ましくは10~30%である。
 目的とする高分子分散剤(C)の分子量にあわせて、アミノ基を有するエチレン性不飽和単量体と、炭素数9~24のアルキル基を有するエチレン性不飽和単量体と、一般式(1)で表されるエチレン性不飽和単量体と、任意に重合開始剤、連鎖移動剤等とを混合して加熱することで高分子分散剤(C)を得ることができる。反応温度は、40~150℃、好ましくは50~110℃である。
  (重合開始剤)
 高分子分散剤(C)の重合で使用する重合開始剤としては、特に限定されるものではないが、例えば、アゾ系化合物及び有機過酸化物を用いることができる。重合の際、全単量体100質量部に対して、任意に0.001~5質量部の重合開始剤を使用することができる。
 アゾ系化合物の例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノバレリック酸)、2,2’-アゾビス(2-ヒドロキシメチルプロピオニトリル)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]等が挙げられる。
 有機過酸化物の例としては、過酸化ベンゾイル、t-ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシビバレート、(3,5,5-トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド等が挙げられる。
 これらの重合開始剤は、単独で又は2種類以上組み合わせて用いることができる。
  (連鎖移動剤)
 連鎖移動剤としては、メルカプタン系、チオグリコール系、β-メルカプトプロピオン酸系などのチオール系化合物;アリル水素を有するロジン系化合物又はテルペン系化合物などを用いることができる。連鎖移動剤を用いる場合、添加量は全単量体100質量部に対して0.01~10.0質量部、好ましくは0.1~5質量部である。
  (重合溶剤)
 高分子分散剤(C)の合成時には、公知の溶剤が好適に使用される。しかしながら、高分子分散剤(C)を液体現像剤に使用する場合、高分子分散剤(C)は、液体現像剤で使用するキャリア液(D)の溶剤に溶解した状態で取り出せるか、又は、固体として取り出せることが好ましい。キャリア液(D)中にトナー粒子を湿式分散させる際に高分子分散剤(C)を添加する場合、高分子分散剤(C)はキャリア液(D)に溶解していることが好ましく、高分子分散剤(C)をトナー粒子作製時にトナー粒子中に添加して用いる場合は、高分子分散剤(C)は固体であることが好ましい。
 キャリア液(D)に溶解した高分子分散剤(C)を得るには以下の3つの方法がある。
 一つ目の方法としては、液体現像トナーで使用するキャリア液(D)を合成溶剤として重合する。
 二つ目の方法としては、キャリア液(D)に置換できる溶剤中で重合し、その後、キャリア液(D)を加えて、重合に使用した溶剤だけを留去する。
 三つ目の方法としては、キャリア液(D)に置換できる溶剤とキャリア液(D)の混合溶液中で重合し、その後、キャリア液(D)以外の溶剤だけを留去する。
 そのため、重合開始剤としては、高分子分散剤(C)まで合成した後に液体現像剤に用いるキャリア液(D)に置換できる溶剤、又は溶剤留去できる溶剤を用いることが好ましい。
 キャリア液(D)に溶剤置換できる溶剤としては、キャリア液(D)の沸点よりも低い溶剤が好ましい。例えば、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、トルエン、アセトン、ヘキサン、メチルエチルケトン、エタノール、プロパノール、ブタノール等が用いられる。これらの重合溶剤は、2種類以上混合して用いてもよい。その中でも重合温度、溶剤留去の簡便さ、溶剤の極性等の観点から、酢酸n-プロピル又はトルエンが特に好ましい。
 固体として取り出すには、高分子分散剤(C)の重合後に溶剤を留去する。留去できる溶剤としては、特に限定されるものは無いが、上記のような溶剤留去が容易な溶剤が好ましい。
  (アミノ基を有するエチレン性不飽和単量体)
 アミノ基を有するエチレン性不飽和単量体は、トナー粒子への高分子分散剤(C)の吸着率を高め、長期にわたって安定した画像と優れた保存安定性に寄与する。アミノ基を有するエチレン性不飽和単量体におけるアミノ基は特に限定されないが、2級アミノ基又は3級アミノ基であることが好ましく、3級アミノ基であることがより好ましい。なお、ここでのアミノ基には、アミド結合を構成するアミノ基は含まれないものとする。例えば、炭素数9~24のアルキル基を有するエチレン不飽和単量体の例であるアルキル(メタ)アクリルアミド類では、アミノ基を有するエチレン性不飽和単量体が奏する効果を得ることができない。
 アミノ基を有するエチレン性不飽和単量体のうち、3級アミノ基を有するエチレン性不飽和単量体としては、例えば、
 N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート等のN,N-ジアルキルアミノ基含有(メタ)アクリル酸エステル類;
 N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド等のN,N-ジアルキルアミノ基含有(メタ)アクリルアミド類;
 ジメチルアミノスチレン、ジエチルアミノスチレン;
等が挙げられる。
 2級アミノ基を有するエチレン性不飽和単量体としては、例えば、tert-ブチルアミノエチル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート等が挙げられる。
 これらのうち、分散性の観点から、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等が好ましい。アミノ基を有するエチレン性不飽和単量体は、2種類以上を併用しても良い。
 高分子分散剤(C)のアミン価は5~150mgKOH/gであることが好ましい。より好ましくは30~100mgKOH/gである。アミン価が5mgKOH/gより低い場合、トナー粒子への吸着が弱く、湿式粉砕での粉砕性が低くなる場合がある。さらには、長期にわたる保管の際には、トナー粒子が凝集し、液体現像剤の粘度及びトナー粒子の平均粒径が大きくなり、保存安定性が低下する場合がある。アミン価が150mgKOH/gより高い場合、トナー粒子の帯電性が低くなり、トナー粒子が基材へ転写されにくく、良好な画像濃度が得られない場合がある。さらには、キャリア液(D)への溶解性が低くなり、粉砕性が低くなる場合がある。また、高分子分散剤(C)のアミン価はASTM D2074の方法に準拠し、測定した全アミン価(mgKOH/g)である。
  (炭素数9~24のアルキル基を有するエチレン性不飽和単量体)
 また、炭素数9~24のアルキル基を有するエチレン性不飽和単量体は、炭素数9~24のアルキル基がキャリア液(D)への溶解性を高め、湿式粉砕におけるトナー粒子の粉砕性を向上させ、さらには、長期にわたる保管の際には、トナー粒子の凝集及び液体現像剤の粘度上昇を抑制し、優れた保存安定性の効果を発揮する。アルキル基の炭素数が9より小さいと、キャリア液(D)への溶解性が低く、トナー粒子の分散安定性及び保存安定性が低くなる。アルキル基の炭素数が24より大きいと、液体現像剤が基材へ定着する際に、長いアルキル基がトナー粒子の接触及び合一を阻害し、定着性が低下する。さらには、トナー粒子の帯電性が低くなり、トナー粒子が基材へ転写されにくく、十分な画像濃度が得られないなどの問題を引き起こす。
 また、9~24のアルキル基は置換基を有しても良く、置換基としては、フェニル基、ナフチル基、ビフェニル基などの芳香族炭化水素基が挙げられる。なお、後述する一般式(1)で表されるエチレン性不飽和単量体は、炭素数9~24のアルキル基を有するエチレン性不飽和単量体には含まれないものとする。一般式(1)で表されるエチレン性不飽和単量体は、炭素数が1~22の炭化水素基を有するものであるが、一般式(1)で表されるエチレン性不飽和単量体によっては、炭素数9~24のアルキル基を有するエチレン性不飽和単量体が奏する効果を得ることができない。
 炭素数9~24のアルキル基を有するエチレン不飽和単量体としては、例えば、
 ノニル(メタ)アクリレート、8-メチルノニル(メタ)アクリレート、2-メチルノニル(メタ)アクリレート、デシル(メタ)アクリレート、2-メチルデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、2-メチルウンデシル(メタ)アクリレート、9-メチルウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、2-メチルドデシル(メタ)アクリレート、11-メチルドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、2-メチルトリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、2-メチルテトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、2-メチルペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、2-メチルヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、2-メチルヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、2-メチルオクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、2-メチルノナデシル(メタ)アクリレート、イコシル(メタ)アクリレート、ヘンイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート、ターシャリブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素数9~24のアルキル基を有するアルキル(メタ)アクリレート等の(メタ)アクリレート類;
 N-ノニル(メタ)アクリルアミド、N-(8-メチルノニル)(メタ)アクリルアミド、N-デシル(メタ)アクリルアミド、N,N-ジデシル(メタ)アクリルアミド、N-ウンデシル(メタ)アクリルアミド、N-(1-メチルウンデシル)(メタ)アクリルアミド、N-ドデシル(メタ)アクリルアミド、N,N-ジドデシル(メタ)アクリルアミド、N-トリデシル(メタ)アクリルアミド、N-(1-メチルトリデシル)(メタ)アクリルアミド、N-テトラデシル(メタ)アクリルアミド、N,N-ジテトラデシル(メタ)アクリルアミド、N-ペンタデシル(メタ)アクリルアミド、N-(1-メチルペンタデシル)(メタ)アクリルアミド、N-ヘキサデシル(メタ)アクリルアミド、N,N-ジヘキサデシル(メタ)アクリルアミド、N-ヘプタデシル(メタ)アクリルアミド、N-(1-メチルヘプタデシル(メタ))アクリルアミド、N-オクタデシル(メタ)アクリルアミド、N,N-ジオクタデシル(メタ)アクリルアミド、N-ノナデシル(メタ)アクリルアミド、N-イコシル(メタ)アクリルアミド、N-ヘンイコシル(メタ)アクリルアミド、N-ドコデシル(メタ)アクリルアミド等の炭素数9~24のアルキル基を有するアルキル(メタ)アクリルアミド類;
 4-ノニルフェニル(メタ)アクリレート、4’-デシル-4-ビフェニリル(メタ)アクリレート、3-ペンタデシルフェニル(メタ)アクリレート、N-(10-フェニルデシル)(メタ)アクリルアミド、N-(4-ドデシルフェニル)(メタ)アクリルアミド、N-[2-(1-ナフチル)エチル]-N-ドデシル(メタ)アクリルアミド、N-[4-(1-ピレニル)ブチル]-N-ドデシル(メタ)アクリルアミド、N-オクタデシル-N-[2-(1-ナフチル)エチル](メタ)アクリルアミド等の芳香環と炭素数9~24のアルキル基を有する(メタ)アクリレート及び(メタ)アクリルアミド類;
 1-ウンデセン、1-ドデセン、2-ドデセン、1-トリデセン、2-トリデセン、1-テトラデセン、2-テトラデセン、4-テトラデセン、1-ペンタデセン、2-ペンタデセン、4-ペンタデセン、1-ヘキサデセン、2-ヘキサデセン、4-ヘキサデセン、1-ヘプタデセン、2-ヘプタデセン、4-ヘプタデセン、1-オクタデセン、2-オクタデセン、4-オクタデセン、1-ドコセン、2-ドコセン、4-ドコセン等の炭素数9~24のアルキル基を有するα-オレフィン類;
等が例示できる。
 これらのうち、分散性の観点から、炭素数9~24のアルキル基を有するアルキル(メタ)アクリレート等の(メタ)アクリレート類が好ましい。炭素数9~24のアルキル基としては、直鎖状アルキル基、分岐状アルキル基、及び環状アルキル基が挙げられ、好ましくは、直鎖状アルキル基又は分岐状アルキル基である。炭素数9~24のアルキル基を有するエチレン性不飽和単量体は、2種類以上を併用しても良い。
  (一般式(1)で表されるエチレン性不飽和単量体)
 高分子分散剤(C)のうち、一般式(1)で表されるエチレン性不飽和単量体は、定着性の向上に有効である。一般式(1)で表されるエチレン性不飽和単量体を含まないと、結着樹脂(A)への相溶性が低下し、定着プロセスにおいて、トナー粒子の溶融状態が不完全となり、基材への定着性が低下する。また、溶融不足のトナー粒子が熱圧着ローラーに付着し、次の紙に転移するコールドオフセット現象が発生しやすくなる。
 一般式(1)で表されるエチレン性不飽和単量体は、例えば、エチレンオキシドをアルキルアルコールにより開環重合した後、得られた反応物を、(メタ)アクリル酸メチルとエステル交換反応させる、もしくは(メタ)アクリル酸クロライドと反応させることにより得られる。
一般式(1)
CH=C(R)COO(AO)
(式中、RはH又はCH、Rは水素又は炭素数が1~22の炭化水素基、nは1~200の整数、Aは炭素数が2~4のアルキレン基を表す。)
 前記一般式(1)において、アルキレンオキサイド基(AO)は、炭素数2~4のアルキレンオキサイド基であり、例えば、エチレンオキサイド基、プロピレンオキサイド基、又はブチレンオキサイド基が挙げられる。また、同一モノマー内に、炭素数が異なるアルキレンオキサイド基が存在していてもよい。
 アルキレンオキサイド基数(n)は1~200の整数であり、好ましくは1~30の整数である。200を超える場合は、前述した、分子中に炭素数9~24のアルキル基を有するエチレン不飽和単量体との十分な相溶性が得られない場合がある。
 Rは水素又は炭素数1~22の炭化水素基である。炭素数23以上では、原料が高価であるため実用的ではない。炭素数1~22の炭化水素基としては、置換又は無置換のものが選択でき、無置換のものが好ましく、無置換のアルキル基が好ましい。無置換のアルキル基としては、分岐を有するもの、有しないもの、いずれをも使用することができる。一般式(1)で表されるエチレン性不飽和単量体は、2種類以上を併用しても良い。
 なお、Rは、水素又は炭素数が1~18の炭化水素基であることがさらに好ましい。
 アルキレンオキサイド鎖を有する化合物としては、具体的には、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール-プロピレングリコール)モノ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートモノメチルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノブチルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノオクチルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノベンジルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノフェニルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノドデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノテトラデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノヘキサデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノオクタデシルエーテル、ポリ(エチレングリコール-プロピレングリコール)モノ(メタ)アクリレートオクチルエーテル、ポリ(エチレングリコール-プロピレングリコール)モノ(メタ)アクリレートオクタデシルエーテル、ポリ(エチレングリコール-プロピレングリコール)モノ(メタ)アクリレートノニルフェニルエーテル等が挙げられる。また、これらは2種類以上を併用しても良い。
  (その他の共重合可能な重合性単量体)
 その他、重合性単量体として含んでいても良い不飽和化合物としては、例えば、
 メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の炭素数1~8のアルキル基を有するアルキル(メタ)アクリレート等の(メタ)アクリレート類;
 N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-tert-ブチル(メタ)アクリルアミド、N-イソペンチル(メタ)アクリルアミド、N-ネオペンチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-イソヘキシル(メタ)アクリルアミド、N-n-ヘプチル(メタ)アクリルアミド、N-(6-メチルヘプチル)(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、N-(7-メチルオクチル)(メタ)アクリルアミド等の(メタ)アクリルアミド類;
 1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、4-エチル-2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテン、1-ノネン、2-ノネン、1-デセン、2-デセン等の炭素数1~8のアルキル基を有するα-オレフィン類;
等が例示できる。
 さらに、
 シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の環状アルキル(メタ)アクリレート類;
 ベンジル(メタ)アクリレート等の芳香族環を有する(メタ)アクリレート類;
 スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アクリル酸ビニル、又は(メタ)アクリル酸アリル等のビニル類が例示できる。
 上記以外の不飽和化合物も、物性に影響しない範囲で使用可能である。
 また、高分子分散剤(C)の重量平均分子量(Mw)は、特定の範囲に限定されないが、トナー粒子を湿式分散させる際の分散性及び粉砕性を考慮すると、ゲルパーミエイションクロマトグラフィー(GPC)で測定される分子量において、500~40,000であることが好ましく、2,000~30,000であることがより好ましい。重量平均分子量(Mw)は前述の方法により測定することができる。
 高分子分散剤(C)は、液体現像剤100質量部に対して、好ましくは0.1~10質量部添加することができる。より好ましくは0.1~5質量部の範囲である。0.1質量部より少ないとトナー粒子の分散性及び粉砕性が低下し、保存安定性が低くなる場合がある。分散方法の変更、分散時間を長くすることなどで、トナー粒子の分散性及び粉砕性を向上させることも可能であるが、それにより液体現像剤の粘度上昇を引き起こし、転写性及び発色性を低下させる原因となる場合がある。添加量が10質量部より多い場合、トナー粒子の帯電性が下がり、十分な画像濃度が得られない、定着性が低下するなどの問題を引き起こす場合がある。なお、トナー粒子中が高分子分散剤(C)を含有する場合、上記範囲は、トナー粒子中に含有された高分子分散剤(C)の量も含めた範囲であるとする。
 (その他の分散剤)
 分散剤として、本発明に用いる高分子分散剤(C)の他に、従来から液体現像剤に使用されている分散剤を用いてもよい。具体的には、ナフテン酸コバルト、ナフテン酸亜鉛、ナフテン酸銅、ナフテン酸マンガン、オクチル酸コバルト、オクチル酸ジルコニウム等の脂肪酸金属塩、レシチン、チタンキレート等の有機チタネート類のチタネートカップリング剤、アルコキシチタンポリマー、ポリヒドロキシチタンカルボキシレート化合物、チタンアルコキシド、コハク酸イミド化合物、ポリイミン化合物、フッ素含有シラン化合物、ピロリドン系化合物などが挙げられる。中でもチタンアルコキシド、コハク酸イミド化合物、フッ素含有シラン化合物、ピロリドン系化合物等を液体現像剤100質量部に対して、5質量部以下の範囲において適量混合して用いてもかまわない。
 この場合、分散剤を使用する形態としては、トナー粒子と同極性になる分散剤はトナー粒子に吸着させ、トナー粒子と逆極性になる分散剤はトナー粒子に吸着させず、キャリア液中に分散させる形態となる。またこのときに極性を議論する基準はキャリア液に対する極性となる。また、この挙動は実際に画像試験を行った上で見極めるものであり経験的に得られるものとなる。
 (キャリア液(D))
 液体現像剤に用いるキャリア液(D)としては、脂肪族系炭化水素であることが好ましい。脂肪族系炭化水素としては、直鎖状パラフィン系炭化水素、イソパラフィン系炭化水素、ナフテン系炭化水素等が挙げられる。これらの中でも、残留する芳香族系炭化水素が極めて少ないパラフィン系炭化水素が好ましい。また親油性を有し、化学的に安定して絶縁性を有するものが好ましい。また、キャリア液は、画像形成装置中で使用される物質又は装置、特に感光体等の現像プロセス用の部材及びその周辺部の部材に対して化学的に不活性であることが好ましい。
 キャリア液(D)の蒸留範囲における乾点は、200~360℃の範囲であることが好ましい。特に好ましくは、240~340℃の範囲である。200℃よりも低いと、液体現像剤が常温で乾燥し、固形物が析出してしまい、さらに現像周りの規制ブレードに固着が生じ、画像汚染を引き起こしてしまう場合がある。また360℃よりも高いと、キャリア液(D)の除去が困難になり定着性が低くなってしまう場合がある。
 ここで蒸留範囲における乾点は、ASTM D86、ASTM D1078、JIS K2254によって規定される方法によるものである。
 またキャリア液(D)としては、カウリブタノール数値(KB値:ASTM D1133)が30以下であるものを使用することが好ましい。より好ましくは20~30の範囲である。またアニリン点(JIS K2256)は60~105℃、さらに好ましくは70~95℃の範囲であることが安定したキャリア液を得る上で好ましい。
 カウリブタノール数値が30を超える、あるいはアニリン点が60℃より低いと、溶媒としての溶解能力が高く、キャリア液がトナー粒子を溶解してしまうため、トナー粒子の保存安定性及び色再現性が低くなる、キャリア液が着色して紙などの基材を汚してしまうなどの問題が発生する場合がある。アニリン点が105℃を超えると、トナー粒子をキャリア液に分散させる際に添加する分散剤及び添加剤などとの相溶性が低く、分散不良、十分な画像濃度が得られないなどの問題が発生する場合がある。
 キャリア液(D)の絶縁性を具体的に記すと、誘電定数が5以下、好ましくは1~5であり、より好ましくは1~3である。
 また同時にキャリア液体(D)の電気抵抗率は、好ましくは10Ω・cm以上、より好ましくは1010Ω・cm以上、特に好ましくは、1010~1016Ω・cmの範囲である。ここで電気抵抗率は、川口電機製作所社製ユニバーサルエレクトロメーターMMA-II-17Dと液体用電極LP-05とを組み合わせて行うことができる。電気抵抗率が10Ω・cm未満の場合、トナー粒子の帯電性が低くなり、十分な画像濃度が得られず、色再現性及び発色性が低くなる場合がある。
 さらにキャリア液(D)の15℃における密度(JIS K2249)は、0.67~0.9g/cmの範囲であることが好ましい。より好ましくは、0.70~0.85g/cmの範囲である。この範囲は、トナー粒子と分散剤が安定して存在できるため、優れた定着性と画像濃度が得られる点で好ましい。
 またキャリア液(D)は、動粘度(ASTM D445)1~25mm/sの範囲であることが好ましい。特に好ましくは3~15の範囲である。この範囲は、現象時に帯電粒子を移動させることができ、また揮発性を十分有し、最終的な画像が形成された媒体から定着工程で容易にキャリア液を除去させることができる点で好ましい。
 動粘度が1mm/sよりも小さいと、液体現像剤の粘度が低くなるために現像ローラーへの転移性が低く、十分な画像濃度が得られない場合がある。さらに現像後のトナー粒子が移動しやすくなるために画像の精細性が崩れやすくなる場合がある。また動粘度が25mm/sよりも大きいと、トナー粒子の流動性が得られずに電気泳動が生じにくく、十分な画像濃度が得られない場合がある。さらに紙などの基材への浸透性が低く、トナー粒子が定着する際のキャリア液除去が困難になり十分な定着性が得られない場合がある。特に、重ね合わせ画像での定着性は大きく低下する場合がある。
 具体的に好ましいキャリア液体(D)は、特に商品名“アイソパーM”(IsoparTM M)(エクソン モービル コーポレーション(Exxon Mobil Corporation))のような分枝状パラフィン溶媒混合物、特にイソパラフィン系炭化水素又は“エクソールD110”、“エクソールD130”(ExxsolTM)(エクソン モービル コーポレーション(Exxon Mobil Corporation))のようなナフテン系炭化水素であることが好ましい。
 (その他の添加剤)
  (顔料分散剤)
 トナー粒子に内添する顔料分散剤としては、ポリアミン系の樹脂型分散剤ソルスパース24000SC、ソルスパース32000(アビシア社製)、アジスパーPB821(味の素ファインテクノ社製);アクリル共重合物の樹脂型分散剤BYK-116(ビックケミー社製)などを用いることができる。特に顔料濃度が高い着色マスターバッチを経て製造する場合は、マスターバッチ製造時に添加することが好ましい。
 顔料分散剤の添加量は、トナー粒子の分散性向上の点から、着色剤(B)100質量部に対して、好ましくは3質量部以上、更に好ましくは5質量部以上が良い。また、トナー粒子の粉砕性及び生産性向上の点から、着色剤(B)100質量部に対して、好ましくは40質量部以下、更に好ましくは30質量部以下が良い。
  (色素誘導体)
 トナー粒子においては、着色剤(B)の発色性を損なわない範囲で色素誘導体を用いることも可能である。
 色素誘導体としては、有機色素(有機顔料、有機染料)、アントラキノン、アクリドン、又はトリアジンに、塩基性置換基、酸性置換基、又は置換基を有していても良いフタルイミドメチル基を導入した化合物が挙げられる。
 中でも顔料誘導体が好ましく、その構造が、下記一般式(3)で示される化合物である。
P-Ln    一般式(3)
(ただし、
Pは、有機顔料残基、アントラキノン残基、アクリドン残基又はトリアジン残基、
Lは、塩基性置換基、酸性置換基、又は置換基を有していても良いフタルイミドメチル基、
nは、1~4の整数である)
 Pの有機顔料残基を構成する有機顔料としては、例えば、ジケトピロロピロール系顔料;アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料;銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料;アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料;キナクリドン系顔料;ジオキサジン系顔料;ペリノン系顔料;ペリレン系顔料;チオインジゴ系顔料;イソインドリン系顔料;イソインドリノン系顔料;キノフタロン系顔料;スレン系顔料;金属錯体系顔料等が挙げられる。
 色素誘導体としては、例えば、特開昭63-305173号公報、特公昭57-15620号公報、特公昭59-40172号公報、特公昭63-17102号公報、特公平5-9469号公報等に記載されているものを使用でき、これらは単独で又は2種類以上を混合して用いることができる。
 色素誘導体の添加量は、分散性向上の点から、着色剤100質量部に対して、好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、耐熱性及び耐光性の点から、着色剤100質量部に対して、好ましくは4質量部以下、更に好ましくは1.5質量部以下である。
 液体現像剤において色素誘導体は使用する着色剤(B)の種類によって適性添加量が異なるが、一般的には着色剤(B)100質量部に対して0.1質量部~30質量部の範囲で用いることが好ましい。これにより、トナー粒子の分散安定性が保たれ、トナー粒子の帯電極性の安定性が維持できる。
 液体現像剤においては、トナー粒子が正帯電性を有することから、塩基性の色素誘導体を用いることが好ましい。
  (荷電制御剤)
 液体現像剤中のトナー粒子には、必要に応じて色相に支障を来たさない範囲で無色あるいは淡色の荷電制御剤が含有されてもよい。荷電制御剤は、現像されるべき静電潜像担持体上の静電荷像の極性に応じて、正荷電制御剤又は負荷電制御剤が用いられる。
 液体現像液中においては、トナー粒子は正帯電を呈することが好ましく、正荷電制御剤を通常用いるものである。
 正荷電制御剤としては、4級アンモニウム塩化合物(例えば、トリブチルベンジルアンモニウム-1-ヒドロキシ-4-ナフトスルホン酸塩、テトラブチルベンジルアンモニウムテトラフルオロボレート)、4級アンモニウム塩有機錫オキサイド(例えば、ジブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイド)、ジオルガノスズボレート(例えば、ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレート)、アミノ基を有するポリマー等の電子供与性物質等を単独であるいは2種以上組み合わせて用いることができる。また前記述べたトリアリールメタン系色素も同様に正荷電制御剤として、用いることができる。
 また上記荷電制御剤を用いる代わりに、樹脂系荷電制御剤を用いることもできる。
正帯電用としては、
一般式 -{CH-CH(C)}a-{CH-CH(COOC)}b-{CH-C(CH)COOCCH(C2 CH(C)SO }c
(このうち4級アンモニウム塩部が3~35質量部、スチレン及びアクリル部が97~65質量部であり、それによりa、b及びcの値が決まる)で表される、4級アンモニウム塩を官能基としてスチレン-アクリル樹脂に共重合したスチレン-アクリル系ポリマーが挙げられる。
 具体的には、アクリル酸2-エチルヘキシル/アクリロイルアミノ-2-メチル-1-プロパンスルホン酸/スチレン共重合物、アクリル酸ブチル/N,N-ジエチル-N-メチル-2-(メタクリロイルオキシ)エチルアンモニウム=p-トルエンスルホナート/スチレン共重合物等である。これらは無色透明であることからカラートナーに用いるのに好適である。また樹脂系荷電制御剤は、通常、結着樹脂(A)100質量部に対して好ましくは1.0~20質量部、より好ましくは2.0~8質量部添加する。
 (製造方法)
 液体現像剤の製造方法について説明する。
液体現像剤は、例えば、以下の5つのプロセスを経て得られることが好ましい。
(1)トナー粒子用の着色マスターバッチの作製
 結着樹脂(A)と着色剤(B)とを、マスターバッチ中の着色剤(B)の濃度が10~60質量部となる割合で、熱ロール等を用いて混練を行い、冷却後粗砕を行い、着色マスターバッチを得る。また結着樹脂(A)及び着色剤(B)に加えて、顔料分散剤、色素誘導体等を添加することもできる。
(2)トナー粒子用チップの作製(着色マスターバッチの希釈)
 (1)で得た着色マスターバッチと結着樹脂(A)とを、スーパーミキサー等のミキサーで混合し、予備分散し、次いで溶融混練を行うことで、着色マスターバッチを結着樹脂(A)中に希釈、展開し、トナー粒子用のチップを得る。ここでの予備分散及び溶融混練を行う時点で、顔料分散剤、高分子分散剤(C)、荷電制御剤などを添加してもよい。さらにトナー粒子用のチップはハンマーミル、サンプルミル等の粗砕により10mm以下の粒径としておくことが好ましい。
 また、(1)及び(2)の工程は、統合することも可能であり、その場合は(1)の着色マスターバッチの工程を経ることなく、(2)の工程において、予備分散時に全ての材料を仕込み、トナー粒子用チップを作製すればよい。溶融混練としては、加圧ニーダー、バンバリーミキサー、1軸、2軸のエクストルーダー等の公知の混練機を用いることができる。
(3)トナー粒子の乾式粉砕
 (2)で得られたトナー粒子用チップを微粉砕し、平均粒径で7μm以下とする。微粉砕は通常、ジェットミル等のジェット気流式粉砕機、ターボミル、クリプトロン等の機械式粉砕機を用いることが好ましい。
(4)トナー粒子の湿式粉砕
 (3)で得た乾式粉砕されたトナー粒子を、キャリア液(D)と同一組成の溶媒に展開し、湿式粉砕機(分散機)を用いて、平均粒径で0.5~4μm、好ましくは1~3μmの範囲になるように粉砕を行う。またこの時にトナー粒子に吸着させる機能を有する高分子分散剤(C)を添加することも有効である。湿式粉砕及び分散工程を経て、分散剤はトナー粒子中に吸着し、帯電的にも安定化する。
 湿式粉砕(分散)を行う際は、粉砕時の温度が50℃を超えないように冷却することが望ましい。温度が50℃を超えてしまうと、トナー粒子が融着を起こしてしまい、粒度分布の制御ができなくなる場合がある。
 トナー粒子の湿式粉砕を行うために使用することのできる湿式粉砕機としては、粉砕媒体を使用するものであり、容器駆動媒体ミル、媒体撹拌式ミル等が挙げられる。容器駆動媒体ミルとしては、転動ボールミル、振動ボールミル、遊星ボールミル、遠心流動化ミル等があり、また媒体撹拌式ミルとしては、塔式粉砕機、撹拌槽式ミル、流通槽式ミル(横型、縦型)、アニューラーミル等が挙げられる。
 上記いずれの装置においても、湿式粉砕による微細化は可能であるが、中でも、媒体撹拌式ミルを用いることが生産性、粉砕能力、粒度分布の制御等の点から好ましい。更にはその中でも、密閉型かつ水平型であり、マイクロビーズを充填しメディア(媒体)として用いる、横型の流通槽式ミルに分類される湿式粉砕機を用いることが、精密な湿式粉砕、分散を行う上で好ましい。
 具体的には、WAB社(シンマルエンタープライゼス社)製のダイノーミル(DYNO-MILL)、サンドミル等が挙げられる。水平型の湿式粉砕機は分散メディアが重力の影響をほとんど受けないため、粉砕機内で理想に近い均一な分布を得ることができる。また完全密閉型の構造を有することから泡立ち、溶剤の蒸発による収支の欠損などがなく安定した粉砕処理が可能である。
 湿式粉砕機においては、粉砕性を決定づける大きな要因としては、粉砕メディアの種類、粉砕メディアの粒径、粉砕機内の分散メディアの充填率、アジテーターディスクの種類、粉砕される試料の溶液濃度、溶媒の種類等が挙げられる。中でも粉砕メディアの種類及びメディアの粒径が粉砕性に大きく寄与するものである。
 粉砕メディアの種類としては、トナー粒子の粘度、比重、粉砕及び分散の要求粒度等に応じて、ガラスビーズ(SiO 70~80%、NaO 12~16%等)、ジルコンビーズ(ZrO 69%、SiO 31%)、ジルコニアビーズ(ZrO 95%以上)、アルミナ(Al 90%以上)、チタニア(TiO 77.7%、Al 17.4%)、スチールボール等が使用可能であるが、中でも良好な粉砕性を得るためには、ジルコニアビーズ又はジルコンビーズを用いることが好ましい。
 また粉砕メディアの粒子径(直径)は0.1mm~3.0mmの範囲において使用可能であるが、中でも0.3~1.4mmの範囲であることが好ましい。0.1mmよりも小さいと、粉砕機内の負荷が大きくなり、発熱によりトナー粒子が溶融してしまい粉砕が困難になってしまう場合がある。また3.0mmよりも大きいと、十分な粉砕を行うことができない場合がある。分散メディアの充填率は、40~85質量%であることが好ましい。85質量%を超えてしまうと、粉砕機内の負荷が大きくなり、発熱によりトナー粒子が溶融してしまい粉砕が困難になってしまう場合がある。また40質量%未満になってしまうと、粉砕効率が低下してしまい微細化が困難になってしまう場合がある。またスラリー中のトナー粒子の濃度が高い場合(40~50質量%の濃度)は充填率を40~70質量%とするとよい。
 湿式粉砕機内部のアジテーターディスクも粉砕性を制御に影響を及ぼす。ディスクの周速は、4~16m/sであることが好ましく、4m/sよりも小さいと粉砕に時間がかかってしまう。また、16m/sよりも大きいと粉砕メディア(媒体)の接触により発熱してしまい、トナー粒子が融着する場合がある。アジテーターディスクの材質としては、焼入鋼、ステンレススチール、アルミナ、ジルコニア、ポリウレタン、ポリエチレン、エンジニアリングプラスティックなどが挙げられ、中でも、ジルコニアを用いることが好ましい。
 また湿式粉砕機内壁のグライディングシリンダーの材質としては、特殊焼入鋼、ステンレススチール、アルミナ、ジルコニア、ZTA、ガラス、ポリエチレン等が挙げられる。中でもZTAと称されるジルコニア強化アルミナセラミックスを用いることが好ましい。
(5)液体現像剤の精製
 (4)で得られた湿式粉砕を経たトナー粒子(少なくとも結着樹脂(A)及び着色剤(B)を含有する)、キャリア液(D)、及び分散剤を含んだ材料に、キャリア液(D)、必要に応じてさらに分散剤を加え、混合して、トナー粒子の濃度をコントロールした上で液体現像剤を精製する。
 高分子分散剤(C)は、(1)~(5)のいずれの工程で加えてもよいが、(4)工程で得られた材料に、調製用のキャリア液(D)と共に添加することでトナー粒子が安定した状態で分散している液体現像剤を得ることができる。
 (液体現像剤物性)
 トナー粒子としては、平均粒径(D50)が0.5~4μmであることが好ましく、1~3μmがより好ましい。本発明において、粒径は、日機装社製レーザー回折散乱式粒度分析計マイクロトラックHRAを用いて測定したものであり、平均粒径(D50)は累積50パーセント径の値である。
 また全トナー粒子に対して2μm以下の粒径を有するトナー粒子が50体積%以下含有され、1~3μmの粒径を有するトナー粒子が5~60体積%含有され、5μm以上の粒径を有するトナー粒子が35体積%以下であることが、発色性を得るための現像特性の点からより好ましい。2μm以下の粒径を有するトナー粒子が50体積%よりも多くなると、高分子分散剤(C)のトナー粒子への吸着が低くなり、優れた保存安定性が得られない場合がある。さらにはトナー粒子の湿式粉砕において粉砕性が低くなり、液体現像剤の粘度制御が困難になる場合がある。5μm以上の粒径を有するトナー粒子が35体積%よりも多くなると、十分な画像濃度が得られない、発色性及び色再現性が低下するなどの問題を引き起こす場合がある。また1~3μmの粒径を有するトナー粒子が5~60体積%含有されることが、トナー粒子の分散安定性、長期にわたって優れた保存安定性を得るのに好ましい。
 液体現像剤中のトナー粒子の濃度は液体現像剤100質量%に対して、10~30質量%であることが好ましい。より好ましくは12~25質量%である。10質量%より少ないとキャリア液(D)の除去が難しく、トナー粒子の定着性が低くなる場合がある。30質量%より多いと液体現像剤の粘度が高くなり、トナー粒子の移動性が低下し、十分な画像濃度が得られない場合がある。さらには、トナー粒子の凝集が強くなり、保存安定性が低くなる場合がある。
 液体現像剤における、高分子分散剤(C)のトナー粒子への高分子分散吸着率は、吸着率=(トナー粒子に吸着した分散剤の量)/(液体トナー中の分散剤含有量)で定義され、次のようにして測定できる。
 液体現像剤10gを秤量し、日立工機社製遠心機CR22Hにより19,000rpmにて20分間遠心分離を行う。分離した上澄み溶液を1g秤量し、オーブンにて160℃にて1時間かけてキャリア液(D)を揮発さる。残留した高分子分散剤(C)を秤量し、得られた値からトナー粒子への吸着率を算出する。
 吸着率は50%以上が好ましい。より好ましくは70%以上である。50%を下回ると、トナー粒子の分散安定性が低く、長期の保管において、液体現像剤の平均粒径及び粘度が上昇し、安定した発色性及び色再現性が得られない場合がある。
 高分子分散剤(C)のトナー粒子への吸着率が50%以上とするには、高分子分散剤(C)のアミン価、エチレン性不飽和単量体のアルキル基の炭素数、一般式(1)で表されるアルキレンオキサイド基(AO)の炭素数、及びアルキレンオキサイド基数、及びRの炭素数を制御する、さらには、それぞれの質量比率を制御すればよい。
 また実施形態の液体現像剤の粘度(η)は5~180mPa・sであることが好ましく、また、液体現像剤の電気抵抗率は1010~1015Ω・cmであることが好ましい。
 液体現像剤の粘度(η)は、例えば東機産業社製のE型粘度計TV-22などを用いて測定することができる。液体現像剤中の固形分を25%に調整し、25℃に十分馴染ませた後、TV-22形粘度形に1°34’コーンをセットし、20rpmで1分経過後の粘度を測定して求めることができる。粘度(η)が5mPa・sより小さくなると現像後の画像の精細性に欠け、180mPa・sを超えると現像時のトナー粒子の移動性が低くなり高速現像が出来ない、十分な画像濃度が得られないなどの問題が発生する場合がある。
 電気抵抗率は前記述べたキャリア液の測定法と同様に測定できる。1010Ω・cm以下であると感光体上の静電潜像が保持できなくなる傾向がある。
 液体現像剤の使用に際し、好ましく用いることのできる現像プロセスは、導電ゴムからなる現像ローラーに液体現像剤を供給し、LED露光されたアモルファスシリコン感光体を用いて転写前除電し、中間転写体を介して現像を行うことが好ましい。また感光体は表面電位+450~550V、残留電位+50V以下、現像ローラーにかかるバイアスは+250~450Vの範囲であることが好ましい。
 液体現像剤で印刷する印刷基材は、特に限定はないが、一般的に用いられている、上質紙、塗工紙、PETシート、P Pシート、などが挙げられる。塗工紙としては、従来各種の用途で使用されている広汎な塗工紙が全て対象となり、具体的には、例えば、微塗工紙、軽量コート紙、コート紙、アート紙、マットコート紙、キャストコート紙等が挙げられ、これらの厚みや形状は何ら限定されない。特に塗工紙において、本実施形態の液体現像剤を用いることで、良好な画質が得られ、シャープな文字やバーコードを印刷することができる。これらは印刷基材の表面が滑らかであっても、凹凸のついたものであっても良いし、透明、半透明、又は不透明のいずれであっても良い。また、これらの印刷基材の2種以上を互いに張り合わせたものでも良い。更に印字面の反対側に剥離粘着層等を設けても良く、また、印字後、印字面に粘着層等を設けても良い。
 液体現像剤で印刷された印刷物は、特に限定はないが、一般的商業用、紙器パッケージ、包装フィルム、シール、ラベル用途などに用いられる。例えば、一般商業用では、上質紙、塗工紙等を用いたカタログ、雑誌などの書籍類又は帳票類、紙器パッケージでは、コート紙、ボール紙等を用いた包装容器又は外箱、包装フィルムでは、PETシート、PPシート等を用いた軟包装容器などが挙げられる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明の態様はこれらの実施例に限定されるものではない。なお以下については、「部」は特に断りのない限り全て「質量部」を表す。
 また実施例においては以下に記載する材料を用いて行った。
 (結着樹脂の合成例1)
 還流冷却器、蒸留等、窒素ガス導入管、温度計、及び撹拌機を備え付けたフラスコに、表1に示す多価アルコール、多塩基酸、及び、触媒としてジブチル錫オキサイド2部を投入し、撹拌しながら窒素ガスを導入し、200℃まで加温し、反応系の温度を維持しながら4時間反応させた。さらに、減圧下で1時間反応させた。常圧に戻し、反応系の温度を100℃以下に下げ、重縮合を停止させ、ポリエステル樹脂である結着樹脂1を得た。
Figure JPOXMLDOC01-appb-T000002
 ビスフェノールAプロピレンオキサイド付加物:一般式(2)において、R=プロピレン基であり、x=y=2である化合物。
 ビスフェノールAエチレンオキサイド付加物:一般式(2)において、R=エチレン基であり、x=y=2である化合物。
 (結着樹脂の合成例2)
 合成例1と同様に、表2に示す多価アルコール、多塩基酸、及び、触媒としてジブチル錫オキサイド2部を投入し、撹拌しながら窒素ガスを導入し、180℃まで加温し、反応系の温度を維持しながら7時間反応させた。さらに、減圧下で1時間反応させた。常圧に戻し、反応系の温度を100℃以下に下げ、重縮合を停止させ、ポリエステル樹脂である結着樹脂2を得た。
Figure JPOXMLDOC01-appb-T000003
(結着樹脂の合成例3)
 得られた結着樹脂1を等量のトルエンに入れて、加熱し溶解させた。撹拌しながら窒素ガスを導入し、トルエンの沸点までさらに加温し、表3に示すスチレン系モノマー、アクリル酸エステル類、更には重合開始剤としてジ-t-ブチルパーオキサイドを含む混合溶液を2時間かけて滴下しながら溶液重合を行った。滴下終了後、さらにトルエンの沸点温度で2時間反応させ、ジ-t-ブチルパーオキサイドを1部添加して重合を停止させた。次に180℃まで加温しトルエンを除去し、ポリエステル樹脂とスチレン-アクリル共重合樹脂を含む結着樹脂3を得た。
 (結着樹脂の合成例4、5)
 表3に記載した原料と仕込み量を用いた以外は合成例3と同様にして合成を行い、結着樹脂4及び5を得た。
Figure JPOXMLDOC01-appb-T000004
 (結着樹脂の合成例6~9)
 表4に記載した原料と仕込み量を用いた以外は合成例1と同様にして合成を行い、結着樹脂6~9を得た。
Figure JPOXMLDOC01-appb-T000005
 得られた結着樹脂1~9の物性値を表5に示す。
Figure JPOXMLDOC01-appb-T000006
(高分子分散剤の合成例1)
 窒素ガス導入管、温度計、コンデンサー、及び撹拌機を備え付けた反応容器に、エクソールD110(ナフテン系炭化水素溶剤、エクソンモービル製)90.1部を仕込み、窒素ガスで置換した。反応容器内を110℃に加温して、N,N-ジメチルアミノエチルメタクリレート20.0部、ステアリルメタクリレート60.0部、ポリエチレングリコールモノ(メタ)アクリレートモノメチルエーテル(一般式(1)中、R=CH、R=CH、n=9、A=エチレン基)20.0部、さらに重合開始剤として2,2’-アゾビス(2-メチルプロピオン酸)ジメチル(V-601(和光純薬製))9.0部を含む混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、さらに110℃で3時間反応させた後、V-601(和光純薬製)0.9部を添加し、さらに110℃で1時間反応を続けて、高分子分散剤1の溶液を得た。高分子分散剤1の重量平均分子量(Mw)は7,000であった。
 これを1gサンプリングして、180℃で20分間加熱乾燥して不揮発分を測定した。高分子分散剤1の溶液に、高分子分散剤溶液の不揮発分が50質量%になるようにエクソールD110を加えた。これより、高分子分散剤1の不揮発分50質量%溶液を得た。
(高分子分散剤の合成例2~8)
 表6に記載した原料と仕込み量を用いた以外は合成例1と同様にして合成を行い、高分子分散剤2~8の溶液を得た。各高分子分散剤のアミン価及び重量平均分子量は表7に記載の通りであった。
(比較高分子分散剤の合成例1~3)
 表6に記載した原料と仕込み量を用いた以外は合成例1と同様にして合成を行い、比較高分子分散剤1~3の溶液を得た。各高分子分散剤のアミン価及び重量平均分子量は表7に記載の通りであった。
Figure JPOXMLDOC01-appb-T000007
表中
DM    :N,N-ジメチルアミノエチルメタクリレート
DMAPAA:N,N-ジメチルアミノプロピルアクリルアミド
STMA  :ステアリルメタクリレート
LMA   :ラウリルメタクリレート
2-EHA :2-エチルヘキシルアクリレート
C-1:一般式(1)のR=CH、R=CH、n=9、A=エチレン基
C-2:一般式(1)のR=CH、R=H、n=9、A=プロピレン基
C-3:一般式(1)のR=CH、R=CH、n=24、A=エチレン基
C-4:一般式(1)のR=CH、R=C1837、n=30、A=エチレン基
C-5:一般式(1)のR=CH、R=CH、n=2、A=エチレン基
 得られた高分子分散剤の物性値を表7に示す。
Figure JPOXMLDOC01-appb-T000008
 (着色剤)
シアン着色剤
C.I.ピグメントブルー15:3(銅フタロシアニンブルー)
  Lionol Blue FG7919(トーヨーカラー社製)
マゼンタ着色剤
C.I.ピグメントレッド122(キナクリドンマゼンタ)
  Hostaperm Pink E(クラリアント社製)
C.I.ピグメントレッド57:1(カーミン6B)
  Permanent Rubine L6B(クラリアント社製)
イエロー着色剤
C.I.ピグメントイエロー180(ベンズイミダゾロンイエロー)
  Novoperm Yellow P-HG(クラリアント社製)
ブラック着色剤
カーボンブラック
  NIPEX150(デグサ社製)
  青色成分として上記C.I.ピグメントブルー15:3を添加
 (顔料分散剤)
ソルスパース24000SC  酸価:25mgKOH/g
  塩基性樹脂型分散剤(ポリアミン系樹脂)
 (キャリア液)
エクソールD130 ナフテン系炭化水素 (エクソンモービル社製)
  乾点:313℃  アニリン点:89℃  動粘度:6.12mm/s
  密度:0.824g/cm
 [実施例1]
C.I.ピグメントブルー15:3
(Lionol Blue FG7919)         18質量部
結着樹脂1                        80質量部
ソルスパース24000SC                 2質量部
 上記材料(合計5kg)を20Lの容積を有するヘンシェルミキサーで混合(3,000rpm、3分)した後、二軸混練押出機(PCM30)で供給量6kg/hr、吐出温度145℃にて溶融混練を行い、更にロール温度140℃の3本ロールにて混練を行った。冷却固化した後ハンマーミルで粗粉砕し、次いでI式ジェットミル(IDS-2型)で微粉砕し平均粒径5.0μmのシアン粉砕品1を得た。
 さらに、
シアン粉砕品1                      25質量部
エクソールD130                    72質量部
高分子分散剤1                       3質量部
を秤量し、十分に撹拌、混合し、エクソールD130溶液中にシアン粉砕品1を分散させた(スラリー濃度は25質量%)。
 このシアン粉砕品1を分散させたスラリーを、媒体撹拌式ミルである湿式粉砕機、ダイノーミル マルチラボ(シンマルエンタープライゼス社製、容量1.4L)を用いて循環運転を60分行い、湿式粉砕を行った。
 このときの湿式粉砕の条件は以下の通りであった。
アジテーターディスク(材質:ジルコニア)周速 10m/s、シリンダー ZTA、メディア(材質:ジルコニア)直径 1.25mm、充填率 70%、溶液流量 45kg/h、冷却水 5L/min、圧力 0.1Kg/cm
 60分間湿式粉砕を行った後、スラリーを取り出し、目開き33μm(SUS304製)のメッシュを通過させ、液体現像剤1C(シアントナー粒子1を含む)を得た。シアントナー粒子1の粒度分布の確認を行ったところ、平均粒径(D50)が2.6μmであった。液体現像剤1Cの粘度(η)は50mPa・sであった。
 表8及び表9に示す原料を実施例1と同様の方法を用いて、それぞれトナー粉砕品、及び液体現像剤を作製した。粒径は、日機装社製レーザー回折散乱式粒度分析計マイクロトラックHRAを用いて、溶剤にはエクソールD80(ExxsolTM)(エクソン モービル コーポレーション(Exxon Mobil Corporation)を用いて、また、23℃50%RHの環境条件下で測定したものであり、平均粒径(D50)は累積50パーセント径の値である。液体現像剤の粘度(η)は、東機産業社製のE型粘度計TV-22を用いて測定した。液体現像剤中の固形分を25%に調整し、25℃に十分馴染ませた後、TV-22形粘度形に1°34’コーンをセットし、20rpmで1分経過後の粘度を測定して求めた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 実写試験は、市販の液体現像複写機(Savin870:セイビン社製)を改造したものを用いて、23℃/50%RHの環境条件下で、アモルファスシリコン感光体を用い、感光体表面電位を+450~500V、残留電位+50V以下、現像ローラーのバイアスを+250~450Vに設定し、初期から1000枚の画像試験を行った。画像濃度及び定着率の評価には、1000枚目の画像を用い、耐コールドオフセット性の評価には、951枚目以降の画像を用いた。このとき画像作製は各色単色で出力を行い、紙は王子製紙製OKトップコート、熱圧着は速度30m/min、160℃の条件にて行った。
(画像濃度)
 まず、画像濃度はグレタグマクベス濃度計(D-196)にて測定した。ここで、各色の濃度値は、イエローが1.2以上、マゼンタ及びシアンが1.4以上、ブラックが1.6以上の濃度値であれば、実用上好ましい。より好ましくは、イエローが1.3以上、マゼンタ及びシアンが1.5以上、ブラックが1.7以上である。
(定着率)
 定着率は、1センチ×1センチのベタ部分を出力した印字画像を用いて、出力時の画像濃度ID(ID)を測定した。その後印字物にメンディングテープ(3M社製スコッチ810)を貼り、1kgの円柱状の真鍮錘を転がし1往復させた。その後メンディングテープを取り除き、再び画像濃度ID(ID)を測定し、(ID)/(ID)x100を計算した値を定着率(%)として求めた。ここでは定着率が80%以上であれば実用上好ましく、90%以上であればより好ましいものである。
(耐コールドオフセット性)
 耐コールドオフセット性については、上記液体現像複写機にて出力した後、10枚の出力画像を、順に外部定着機にて速度30m/min、ニップ厚6mmで連続して熱圧着させ、10枚目の出力画像を熱圧着した際に、当該10枚目の出力画像(紙)に再転移したトナー像が存在するかを確認した。再転移したトナー像が存在しなくなる温度を、4段階のランクに分け評価を行った。ここでは熱圧着ロール温度が140℃未満であれば、実用上好ましく、120℃未満であればより好ましいものである。
A:熱圧着ロール温度が120℃未満
B:熱圧着ロール温度が120℃以上、140℃未満
C:熱圧着ロール温度が140℃以上、160℃未満
D:熱圧着ロール温度が160℃以上
(保存安定性)
 液体現像剤の保存安定性は次のようにして評価した。
 得られた液体現像剤を25℃50%の恒温恒湿雰囲気下に3ヶ月静置した。静置3ヶ月後の液体現像剤の平均粒径(D50)及び粘度(η)を測定し、試験開始前の値から上昇した割合にて評価した。
平均粒径(D50)
A:試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.1未満
B:試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.1以上1.2未満
C:試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.2以上
 ここでは試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.2未満であれば、実用上好ましく、1.1未満であればより好ましいものである。
粘度(η)
A:試験後の粘度(η)/試験前の粘度(η)が1.1未満
B:試験後の粘度(η)/試験前の粘度(η)が1.1以上1.4未満
C:試験後の粘度(η)/試験前の粘度(η)が1.4以上
 ここでは試験後の粘度(η)/試験前の粘度(η)が1.4未満であれば、実用上好ましく、1.1未満であればより好ましいものである。
 詳細な液体現像剤の物性値及び試験結果を表10に示す。
Figure JPOXMLDOC01-appb-T000011
 比較例1、4~6では、一般式(1)で表されるエチレン性不飽和単量体を含まないことから、トナー粒子の溶融が進まず、定着率及び耐コールドオフセット性が低下した。比較例2、3では、粉砕性及び分散安定性が低いことから、十分な画像濃度と安定性が得られなかった。
 これに対して、高分子分散剤(C)を用いた液体現像剤は、画像濃度、定着率、耐コールドオフセット性、及び保存安定性が実用可能領域であった。また、シアントナーを用いた液体現像剤の中では、特に実施例13~15が画像濃度と定着率の点で優れていることが分かった。また、濃度、定着性、コールドオフセット性が優れていることで、発色性、色再現性に優れた印刷物が得られた。
 本発明の実施形態である液体現像剤用の高分子分散剤は、色再現性、発色性、保存安定性、定着性、耐コールドオフセット性に優れ、電子写真法、静電記録法等を利用して画像の形成がなされる電子複写機、プリンター、オンデマンド印刷機等における静電潜像を現像するために用いられる高分子分散剤として好ましく用いることができる。

Claims (9)

  1.  少なくとも、アミノ基を有するエチレン性不飽和単量体と、炭素数9~24のアルキル基を有するエチレン性不飽和単量体と、下記一般式(1)で表されるエチレン性不飽和単量体とを共重合してなる、液体現像剤用の高分子分散剤。
    一般式(1)
    CH=C(R)COO(AO)
    (式中、RはH又はCH、Rは水素又は炭素数が1~22の炭化水素基、nは1~200の整数、Aは炭素数が2~4のアルキレン基を表す。)
  2.  重量平均分子量Mwが500≦Mw≦40,000であり、かつ、アミン価が5~150mgKOH/gである請求項1に記載の高分子分散剤。
  3.  少なくとも、結着樹脂(A)、着色剤(B)、高分子分散剤(C)、及びキャリア液(D)を含有する液体現像剤であって、高分子分散剤(C)が、請求項1又は2に記載の高分子分散剤である液体現像剤。
  4.  結着樹脂(A)が、少なくともポリエステル樹脂を含み、かつ、軟化温度が80~140℃である請求項3に記載の液体現像剤。
  5.  結着樹脂(A)の重量平均分子量Mwが、2,000≦Mw≦100,000である請求項3又は4に記載の液体現像剤。
  6.  結着樹脂(A)が、ポリエステル樹脂(a-1)と、スチレン樹脂、アクリル樹脂、及びスチレン-アクリル共重合樹脂からなる群から選択される少なくとも1種の樹脂(a-2)とを含む請求項3~5いずれかに記載の液体現像剤。
  7.  ポリエステル樹脂(a-1)と、スチレン樹脂、アクリル樹脂、及びスチレン-アクリル共重合樹脂からなる群から選択される少なくとも1種の樹脂(a-2)との質量比率[(a-2)/(a-1)]が、1以下である請求項6に記載の液体現像剤。
  8.  キャリア液(D)が、脂肪族系炭化水素である請求項3~7いずれかに記載の液体現像剤。
  9.  請求項3~8いずれかに記載の液体現像剤を用いて得られる印刷物。
PCT/JP2013/078218 2012-10-17 2013-10-17 液体現像剤用高分子分散剤、液体現像剤、及び印刷物 WO2014061747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014542175A JP5971347B2 (ja) 2012-10-17 2013-10-17 液体現像剤の製造方法
US14/436,777 US9523938B2 (en) 2012-10-17 2013-10-17 Polymeric dispersant for liquid developer, liquid developer, and printed matter
EP13846615.6A EP2911004B1 (en) 2012-10-17 2013-10-17 Polymeric dispersant for liquid developers, liquid developer, and printed matter
CN201380054222.5A CN104813236B (zh) 2012-10-17 2013-10-17 液体显影剂用高分子分散剂、液体显影剂以及印刷物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012230222 2012-10-17
JP2012-230222 2012-10-17

Publications (1)

Publication Number Publication Date
WO2014061747A1 true WO2014061747A1 (ja) 2014-04-24

Family

ID=50488307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078218 WO2014061747A1 (ja) 2012-10-17 2013-10-17 液体現像剤用高分子分散剤、液体現像剤、及び印刷物

Country Status (5)

Country Link
US (1) US9523938B2 (ja)
EP (1) EP2911004B1 (ja)
JP (1) JP5971347B2 (ja)
CN (1) CN104813236B (ja)
WO (1) WO2014061747A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090843A (ja) * 2014-11-06 2016-05-23 東洋インキScホールディングス株式会社 液体現像剤、及び印刷物
JP5975132B1 (ja) * 2015-03-19 2016-08-23 東洋インキScホールディングス株式会社 液体現像剤セット、及びそれを用いた印刷物
EP3098657A1 (en) * 2015-05-27 2016-11-30 Canon Kabushiki Kaisha Ultraviolet-curable liquid developer and method of producing same
JP6161772B1 (ja) * 2016-07-29 2017-07-12 東洋インキScホールディングス株式会社 ホワイト液体現像剤及びその製造方法、またそれを用いた印刷物
WO2019230481A1 (ja) * 2018-05-31 2019-12-05 花王株式会社 液体現像剤

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357751B2 (ja) * 2013-10-02 2018-07-18 東洋インキScホールディングス株式会社 溶剤系インクジェットインキ
US10120297B2 (en) * 2015-06-25 2018-11-06 Kao Corporation Liquid developer
CN107924149B (zh) * 2015-09-07 2021-06-15 三菱化学株式会社 调色剂用母料及其制造方法、调色剂及其制造方法
JP2017223791A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 液体現像剤及び該液体現像剤の製造方法
WO2023211908A1 (en) * 2022-04-27 2023-11-02 Kemira Oyj Thermal initiators for polymerizations in mineral oil and methods

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715620B2 (ja) 1976-04-30 1982-03-31
JPS5940172B2 (ja) 1977-10-28 1984-09-28 東洋インキ製造株式会社 フタロシアニン顔料組成物
JPS6317102B2 (ja) 1979-10-26 1988-04-12 Toyo Ink Mfg Co
JPS63305173A (ja) 1987-06-05 1988-12-13 Toyo Ink Mfg Co Ltd 顔料分散剤
JPH03188469A (ja) * 1989-09-28 1991-08-16 Fuji Photo Film Co Ltd 非水系分散剤および静電写真用液体現像剤
JPH059469B2 (ja) 1983-10-18 1993-02-05 Toyo Ink Mfg Co
JPH05333607A (ja) 1992-05-29 1993-12-17 Toyo Ink Mfg Co Ltd 静電荷現像用液体現像剤
JPH0611909A (ja) * 1992-06-25 1994-01-21 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JPH09218540A (ja) * 1996-02-09 1997-08-19 Nippon Paint Co Ltd 液体現像剤
JPH09311506A (ja) * 1996-05-17 1997-12-02 Nippon Paint Co Ltd 液体現像剤及びその製造方法
JP2002258543A (ja) * 2001-03-05 2002-09-11 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JP2003005455A (ja) * 2001-06-20 2003-01-08 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JP2003029469A (ja) * 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JP3531980B2 (ja) 1993-09-03 2004-05-31 花王株式会社 トナー用結着樹脂及びそれを含有する正帯電性トナー
JP2005025197A (ja) * 2003-06-30 2005-01-27 Samsung Electronics Co Ltd ウェット電子写真用トナー組成物,ウェット電子写真用トナー組成物の製造方法,および電子写真画像形成方法
JP2006171501A (ja) 2004-12-17 2006-06-29 Toyo Ink Mfg Co Ltd 静電荷像現像用乾式トナー及びその製造方法
JP2006178296A (ja) 2004-12-24 2006-07-06 Dainippon Ink & Chem Inc 液体トナー用ポリエステル系樹脂組成物および液体トナー
JP2007505953A (ja) 2003-09-18 2007-03-15 リサーチ ラボラトリーズ オブ オーストラリアプロプライエタリイ リミテッド マーキング液体の調製方法およびそれによって製造された生成物
JP2009145535A (ja) 2007-12-13 2009-07-02 Konica Minolta Business Technologies Inc 湿式現像剤
JP2013130791A (ja) * 2011-12-22 2013-07-04 Toyo Ink Sc Holdings Co Ltd 液体現像剤
JP2013205623A (ja) * 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd 液体現像剤

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085966A (en) 1989-09-28 1992-02-04 Fuji Photo Film Co., Ltd. Non-aqueous dispersing agent and liquid developing agent for electrostatic photography
JPH03271752A (ja) * 1990-03-22 1991-12-03 Konica Corp 電子写真用液体現像剤
US5342725A (en) 1992-06-23 1994-08-30 Fuji Photo Film Co., Ltd. Liquid developer for electrostatic photography
JPH0830040A (ja) * 1994-07-18 1996-02-02 Nippon Paint Co Ltd 液体現像剤及びその製造方法
JPH08220813A (ja) * 1995-02-16 1996-08-30 Minolta Co Ltd 電子写真用液体現像剤
US6326449B1 (en) 2000-01-20 2001-12-04 The Sherwin-Williams Company Polymer dispersants
US6203961B1 (en) * 2000-06-26 2001-03-20 Xerox Corporation Developer compositions and processes
JP4098153B2 (ja) 2003-05-14 2008-06-11 株式会社リコー 静電潜像現像用トナーと、これを用いる画像形成方法、装置及びプロセスカートリッジ
US20060286475A1 (en) * 2005-06-17 2006-12-21 Kabushiki Kaisha Toshiba Developing agent and image forming apparatus using the same
JP4940701B2 (ja) * 2006-02-27 2012-05-30 セイコーエプソン株式会社 液体現像剤
JP5277677B2 (ja) * 2008-03-19 2013-08-28 セイコーエプソン株式会社 液体現像剤および画像形成装置
JP4812845B2 (ja) * 2009-02-17 2011-11-09 シャープ株式会社 カプセルトナーの製造方法
WO2011129058A1 (ja) * 2010-04-16 2011-10-20 三洋化成工業株式会社 非水系樹脂粒子分散液
JP2012185359A (ja) * 2011-03-07 2012-09-27 Toyo Ink Sc Holdings Co Ltd 液体現像剤
JP5655716B2 (ja) * 2011-06-13 2015-01-21 コニカミノルタ株式会社 液体現像剤
JP2013072983A (ja) * 2011-09-27 2013-04-22 Fuji Xerox Co Ltd 液体現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置、および画像形成方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715620B2 (ja) 1976-04-30 1982-03-31
JPS5940172B2 (ja) 1977-10-28 1984-09-28 東洋インキ製造株式会社 フタロシアニン顔料組成物
JPS6317102B2 (ja) 1979-10-26 1988-04-12 Toyo Ink Mfg Co
JPH059469B2 (ja) 1983-10-18 1993-02-05 Toyo Ink Mfg Co
JPS63305173A (ja) 1987-06-05 1988-12-13 Toyo Ink Mfg Co Ltd 顔料分散剤
JPH03188469A (ja) * 1989-09-28 1991-08-16 Fuji Photo Film Co Ltd 非水系分散剤および静電写真用液体現像剤
JPH05333607A (ja) 1992-05-29 1993-12-17 Toyo Ink Mfg Co Ltd 静電荷現像用液体現像剤
JPH0611909A (ja) * 1992-06-25 1994-01-21 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JP3531980B2 (ja) 1993-09-03 2004-05-31 花王株式会社 トナー用結着樹脂及びそれを含有する正帯電性トナー
JPH09218540A (ja) * 1996-02-09 1997-08-19 Nippon Paint Co Ltd 液体現像剤
JPH09311506A (ja) * 1996-05-17 1997-12-02 Nippon Paint Co Ltd 液体現像剤及びその製造方法
JP2002258543A (ja) * 2001-03-05 2002-09-11 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JP2003005455A (ja) * 2001-06-20 2003-01-08 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JP2003029469A (ja) * 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 静電写真用液体現像剤
JP2005025197A (ja) * 2003-06-30 2005-01-27 Samsung Electronics Co Ltd ウェット電子写真用トナー組成物,ウェット電子写真用トナー組成物の製造方法,および電子写真画像形成方法
JP2007505953A (ja) 2003-09-18 2007-03-15 リサーチ ラボラトリーズ オブ オーストラリアプロプライエタリイ リミテッド マーキング液体の調製方法およびそれによって製造された生成物
JP2006171501A (ja) 2004-12-17 2006-06-29 Toyo Ink Mfg Co Ltd 静電荷像現像用乾式トナー及びその製造方法
JP2006178296A (ja) 2004-12-24 2006-07-06 Dainippon Ink & Chem Inc 液体トナー用ポリエステル系樹脂組成物および液体トナー
JP2009145535A (ja) 2007-12-13 2009-07-02 Konica Minolta Business Technologies Inc 湿式現像剤
JP2013130791A (ja) * 2011-12-22 2013-07-04 Toyo Ink Sc Holdings Co Ltd 液体現像剤
JP2013205623A (ja) * 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd 液体現像剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2911004A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090843A (ja) * 2014-11-06 2016-05-23 東洋インキScホールディングス株式会社 液体現像剤、及び印刷物
JP5975132B1 (ja) * 2015-03-19 2016-08-23 東洋インキScホールディングス株式会社 液体現像剤セット、及びそれを用いた印刷物
EP3098657A1 (en) * 2015-05-27 2016-11-30 Canon Kabushiki Kaisha Ultraviolet-curable liquid developer and method of producing same
US9880482B2 (en) 2015-05-27 2018-01-30 Canon Kabushiki Kaisha Ultraviolet-curable liquid developer and method of producing same
JP6161772B1 (ja) * 2016-07-29 2017-07-12 東洋インキScホールディングス株式会社 ホワイト液体現像剤及びその製造方法、またそれを用いた印刷物
WO2018020957A1 (ja) * 2016-07-29 2018-02-01 東洋インキScホールディングス株式会社 ホワイト液体現像剤及びその製造方法、並びにそれを用いた印刷物
WO2019230481A1 (ja) * 2018-05-31 2019-12-05 花王株式会社 液体現像剤

Also Published As

Publication number Publication date
US20150268579A1 (en) 2015-09-24
JPWO2014061747A1 (ja) 2016-09-05
CN104813236B (zh) 2019-04-26
CN104813236A (zh) 2015-07-29
JP5971347B2 (ja) 2016-08-17
EP2911004B1 (en) 2017-08-02
EP2911004A1 (en) 2015-08-26
EP2911004A4 (en) 2016-06-29
US9523938B2 (en) 2016-12-20

Similar Documents

Publication Publication Date Title
JP5971347B2 (ja) 液体現像剤の製造方法
JP5824721B2 (ja) 液体現像剤の製造方法
JP5970674B2 (ja) 液体現像剤
JP2015145985A (ja) 液体現像剤、及び印刷物
JP5870654B2 (ja) 液体現像剤
JP2012185359A (ja) 液体現像剤
JP2017134137A (ja) 黒色液体現像剤、及びそれを用いて得られる印刷物
JP2016180927A (ja) ブラック液体現像剤、及びそれを用いた印刷物
JP2014132324A (ja) 液体現像剤
JP2013205622A (ja) 液体現像剤
JP6424572B2 (ja) 液体現像剤、及び印刷物
JP5975132B1 (ja) 液体現像剤セット、及びそれを用いた印刷物
JP6161772B1 (ja) ホワイト液体現像剤及びその製造方法、またそれを用いた印刷物
JP6512045B2 (ja) 液体現像剤用高分子分散剤、液体現像剤、及び印刷物
JP2013205623A (ja) 液体現像剤
JP6592865B1 (ja) 液体現像剤用高分子分散剤、液体現像剤、及び印刷物
WO2017142065A1 (ja) 液体現像剤、及びそれを用いた印刷物の製造方法
JP6248731B2 (ja) 液体現像剤、及び印刷物
JP6248745B2 (ja) 液体現像剤セット、及びそれを用いた印刷物
JP2016142789A (ja) 液体現像剤セット、及びそれを用いた印刷物
JP2019117300A (ja) 液体現像剤、およびそれを用いた印刷物
JP2019211498A (ja) 液体現像剤、及び印刷物
JP2015184496A (ja) 液体現像剤、及びそれを用いた印刷物
WO2018131422A1 (ja) 液体現像剤、及び印刷物の製造方法
JP2001075306A (ja) トナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14436777

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013846615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013846615

Country of ref document: EP