JP6424572B2 - 液体現像剤、及び印刷物 - Google Patents

液体現像剤、及び印刷物 Download PDF

Info

Publication number
JP6424572B2
JP6424572B2 JP2014226015A JP2014226015A JP6424572B2 JP 6424572 B2 JP6424572 B2 JP 6424572B2 JP 2014226015 A JP2014226015 A JP 2014226015A JP 2014226015 A JP2014226015 A JP 2014226015A JP 6424572 B2 JP6424572 B2 JP 6424572B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
resin
toner particles
liquid developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014226015A
Other languages
English (en)
Other versions
JP2016090843A (ja
Inventor
裕士 曽根田
裕士 曽根田
和昌 服部
和昌 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyo Ink Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyo Ink Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyo Ink Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2014226015A priority Critical patent/JP6424572B2/ja
Publication of JP2016090843A publication Critical patent/JP2016090843A/ja
Application granted granted Critical
Publication of JP6424572B2 publication Critical patent/JP6424572B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Developers In Electrophotography (AREA)

Description

本発明は、液体現像剤、及びそれを用いた印刷物に関する。
液体現像剤では、湿式下でトナー粒子の微粉砕及び分散を行うことから、乾式の粉体トナーと比べてトナー粒子の微細化が可能である。また、液体現像剤は、キャリアとして絶縁性液体のキャリア液を用いることからトナー粒子の画像形成装置内での飛散による問題等が生じることがない。そのため、液体現像剤を用いた画像形成装置は、高精細な画像の形成が可能であるという特徴を有している。
液体現像剤を用いた電子写真方式の画像形成装置では、キャリア液中に微細化されたトナー粒子を分散した現像剤が用いられている。感光体上に露光によって形成された静電潜像は、キャリア液中のトナー粒子を用いて現像される。現像後には、得られた静電潜像を紙などの記録媒体上に転写、乾燥、及び定着させて画像形成がなされる。
液体現像剤は、電気絶縁性のキャリア液中にトナー粒子を分散させたものであり、そのトナー粒子には着色性、定着性、帯電性、及び分散安定性が求められている。トナー粒子は着色剤、結着樹脂、及び分散剤などの添加剤で構成されており、優れた画像を得るためにはトナー粒子が安定して分散していることと、安定して帯電していることが望まれる(例えば特許文献1、2等参照)。
液体現像剤を用いた電子写真方式の画像形成装置では、有機感光体またはアモルファスシリコン感光体の潜像担持体の帯電装置として、非接触の帯電装置(スコロトロン帯電装置)を用いることが知られている。しかしながら、この帯電装置を使用すると、オゾンが発生してしまい、液体現像剤を含め、装置周辺の部材が酸化されやすくなる。特に液体現像剤に含まれる電気絶縁性のキャリア液は酸化されやすく、その酸化物が感光体表面などに付着・堆積することで、目的の静電潜像が形成されず、画像品質や連続印刷安定性が劣化するという問題が生じる。
特許文献3には、液体現像剤中に酸化防止剤を添加することが記載されており、帯電装置から発生するオゾンによるキャリア液の酸化は抑制されると考えられる。しかしながら、酸化防止剤を使用することで、トナー粒子が十分に帯電せず画像濃度が得られない、基材への定着性や保存安定性を阻害してしまうなど、性能劣化を招く問題があった。
電気絶縁性のキャリア液中にトナー粒子を均一に分散させ、より優れた保存安定性を維持するために、高分子分散剤の検討が行われてきた。しかしながら、トナー粒子を安定して分散させ、保存安定性を向上させると、画像出力時の定着プロセスにおいて、トナー粒子が溶融、接触、及び合一するために必要な熱量が多くなり、基材への定着性が低下する。また、不完全な溶融状態のトナー粒子の一部が熱圧着ローラー表面に付着し、次の紙に転移するというコールドオフセット現象が発生するなどの問題を引き起こす。したがって、定着性及び耐コールドオフセット性と、保存安定性とを両立させることは困難な課題であった。そこで、液体現像剤の定着性と保存安定性とを両立するために、定着性を阻害しにくい高分子分散剤の検討が行われてきた(例えば特許文献4参照)。しかしながら、高分子分散剤の影響によりトナー粒子の帯電性が低下し、十分な画像濃度が得られない、また、画像の長期安定性が低下し、発色性及び色再現性が損なわれるという問題があった。
特開平5−333607号公報 特表2007−505953号公報 特開2008−242039号公報 特開2009−145535号公報
このように、液体現像剤は、十分な画像濃度を得て、定着性と耐コールドオフセット性とを両立させ、保存安定性及び連続印刷安定性を得るためには改善の余地があった。この問題点を解決し、定着性、耐コールドオフセット性及び保存安定性に優れ、かつ、連続して良好な出力画像が得られる液体現像剤が求められている。
そこで、本発明の実施形態は、十分な画像濃度を得ることができ、定着性、耐コールドオフセット性、保存安定栄に優れ、連続して良好な画像が得られる連続印刷安定性を有した液体現像剤を提供することを目的とする。また、本発明の他の実施形態は、この液体現像剤を用いて得られた印刷物を提供することを目的とする。
本発明者らは、上記課題を解決するため鋭意検討した結果、以下に示す実施形態により上記課題を解決できることを見出し、本発明を完成するに至った。
本発明は、少なくとも、結着樹脂(A)、着色剤(B)、高分子分散剤(C)、及びキャリア液(D)からなる液体現像剤であって、
高分子分散剤(C)が、少なくとも、アミノ基を有するエチレン性不飽和単量体と、炭素数9〜24のアルキル基を含有するエチレン性不飽和単量体とを共重合してなり、
アミノ基を有するエチレン性不飽和単量体が、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジエチルアミノエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジエチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノスチレン、ジエチルアミノスチレン、tert−ブチルアミノエチル(メタ)アクリレート、および、テトラメチルピペリジニル(メタ)アクリレートからなる群から選ばれる1種以上であり、
高分子分散剤(C)のアミン価が30〜100mgKOH/gであり
キャリア液(D)が、脂肪族炭化水素であり、かつ該脂肪族炭化水素の第1級〜第3級の炭素総数に対して、第1級炭素の割合が55%以上であり、第2級炭素の割合が30%以下であり、
キャリア液(D)の乾点が、240〜320℃であることを特徴とする液体現像剤に関する。


本発明によれば、十分な画像濃度を得ることができ、定着性、耐コールドオフセット性、保存安定栄に優れ、連続して良好な画像が得られる連続印刷安定性を有した液体現像剤を提供することができる。また、本発明によれば、この液体現像剤を用いて連続して良好な印刷物を提供することができる。
以下、本発明を詳細に説明する。
本発明の実施形態である液体現像剤は、少なくとも、結着樹脂(A)、着色剤(B)、高分子分散剤(C)、及びキャリア液(D)からなる液体現像剤であって、高分子分散剤(C)が少なくとも、アミノ基を有するエチレン性不飽和単量体と、炭素数9〜24のアルキル基を含有するエチレン性不飽和単量体とを共重合してなり、アミン価が5〜150mgKOH/gであり、かつキャリア液(D)が脂肪族炭化水素であり、該脂肪族炭化水素の第1級〜第3級の炭素総数に対して、第1級炭素の割合が55%以上であり、第2級炭素の割合が30%以下であることが大きな特徴である。液体現像剤においては、結着樹脂(A)及び着色剤(B)は、トナー粒子として存在する。
キャリア液(D)の第1級〜第3級の炭素総数に対して、第1級炭素の割合が55%以上であり、第2級炭素の割合が30%以下であることで、キャリア液(D)の帯電装置より発生したオゾンによる酸化を抑制することができる。これは、キャリア液として多く用いられる炭化水素系溶剤の酸化反応メカニズムにおいて、様々な理論あるが、水素引き抜き反応が起こることで酸化が始まると言われている。つまり、水素引き抜き反応が起きにくいと、酸化されにくいという考え方である。炭素原子と結合した水素原子の引き抜きのされやすさは、C−H結合解離エネルギーにより決まり、それは炭素原子の級数によって異なる。第1級炭素では、101Kcal/molであり、第2級炭素では、98.5Kcal/molであり、第3級炭素では、96.5Kcal/molである。これは、第1級炭素に結合した水素原子が最も引き抜かれにくい、つまり最も酸化されにくく、一方で、第3級炭素に結合した水素原子が最も引き抜かれやすい、つまり、最も酸化されすいと考えられる。よって、キャリア液(D)に、このような考え方から選択された脂肪族炭化水素を用いることで、キャリア液(D)の酸化が抑制されることから、酸化物の付着・堆積がなく、十分な画像濃度を有し、色再現性及び発色性に優れた画像を得ることができ、連続印刷安定性に優れる。しかし、この種の脂肪族炭化水素は粘度が高く、高分子分散剤の溶解性が乏しいためか、トナー粒子の粉砕性が低下し、液体現像剤の生産性を低下させる、得られる液体現像剤の粘度が高く、網点再現性・保存安定性が得られないことが課題であった。
そこで、トナー粒子の粉砕性を向上させるために、高分子分散剤(C)が、アミノ基を有するエチレン性不飽和単量体を用いて得られ、好ましくは特定のアミン価を有することで、トナー粒子への高分子分散剤(C)の吸着率が高くなり、トナー粒子の粉砕性が向上し、トナー粒子の平均粒径が小さく、粘度の低い液体現像剤が効率よく得られ、網点再現性、発色性及び色再現性に優れた画像を得ることができる。また、長期にわたって安定した画像(複写機による印刷画像、プリンターによる印刷画像等)と優れた保存安定性を有する液体現像剤が得られる。さらに、高分子分散剤(C)が、炭素数9〜24のアルキル基を有するエチレン性不飽和単量体を用いて得られることによって、キャリア液(D)への溶解性が向上し、トナー粒子の優れた粉砕性及び分散安定性が得られる。
以下、本発明の実施形態である液体現像剤に含まれる結着樹脂(A)、着色剤(B)、高分子分散剤(C)、及びキャリア液(D)などについて詳細に説明する。
(トナー粒子)
液体現像剤に用いられるトナー粒子は、少なくとも結着樹脂(A)と着色剤(B)とを含み、加えて顔料分散剤、荷電制御剤などの添加剤を用いることも好ましい。また、高分子分散剤(C)については、キャリア液(D)中にトナー粒子を湿式分散させる際に添加することが好ましいが、トナー粒子作製時にトナー粒子中に添加して用いることもできる。
(結着樹脂(A))
一般的に、結着樹脂には顔料、染料などの着色剤をその樹脂中に均一分散させる機能と、紙などの基材へ定着する際のバインダーとしての機能がある。使用することのできる結着樹脂としては、ポリスチレン、ポリ−p−クロルスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン−p−クロルスチレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタレン共重合体、スチレン−(メタ)アクリル酸エステル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体などのスチレン系共重合体また架橋されたスチレン系共重合体;ポリ塩化ビニル、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール樹脂、テルペン樹脂、クマロンインデン樹脂、石油系樹脂などが挙げられる。
液体現像剤に用いられる結着樹脂(A)としては、顔料分散性、粉砕性、及び定着性の観点から、特にポリエステル樹脂(a−1)が好ましい。さらには、結着樹脂(A)は、各色の色材の色相を阻害しないために、無色、透明、白色、又は淡色を呈するものが好ましい。
ポリエステル樹脂(a−1)は熱可塑性ポリエステルであることが好ましく、2価又は3価以上のアルコール成分とカルボン酸などの酸成分との重縮合により得られるものであることが好ましい。
アルコール成分としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,4−ブテンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、ビスフェノールA、水素添加ビスフェノールA、1,4−ビス(ヒドロキシメチル)シクロヘキサン、下記一般式(2)で示されるビスフェノール誘導体等の2価のアルコール類;グリセロール、ジグリセロール、ソルビット、ソルビタン、ブタントリオール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール等の3価以上のアルコール類;等が挙げられる。これらは単独で又は2種以上の組み合わせで使用される。
一般式(2)



(式中、Rはエチレン基又はプロピレン基であり、x及びyはそれぞれ1以上の整数(好ましくは2または3)であり、かつx+yの平均値は2〜10である。)
酸成分としては、二価のカルボン酸として、フタル酸、テレフタル酸、イソフタル酸、無水フタル酸などのベンゼンジカルボン酸類又はその無水物;コハク酸、アジピン酸、セバシン酸、アゼライン酸などのアルキルジカルボン酸類又はその無水物;炭素数16〜18のアルキル基で置換されたコハク酸又はその無水物;フマル酸、マレイン酸、シトラコン酸、イタコン酸、グルタコン酸などの不飽和ジカルボン酸又はその無水物;シクロヘキサンジカルボン酸;ナフタレンジカルボン酸;ジフェノキシエタン−2,6−ジカルボン酸又はこれらの無水物;等が挙げられる。架橋成分として働く三価以上のカルボン酸としては、トリメリット酸、ピロメリット酸、ナフタレントリカルボン酸、ブタントリカルボン酸、ヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、オクタンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、又はこれらの無水物等が挙げられる。これらは単独で又は2種以上の組み合わせで使用される。
好ましいアルコール成分は、一般式(2)で示されるビスフェノール誘導体、エチレングリコール、ネオペンチルグリコール等である。好ましい酸成分は、フタル酸、テレフタル酸、イソフタル酸又はその無水物;コハク酸、n−ドデセニルコハク酸又はその無水物;フマル酸、マレイン酸、無水マレイン酸等のジカルボン酸類;トリメリット酸又はその無水物等のトリカルボン酸類である。
またポリエステル樹脂(a−1)の重縮合では、アンチモン、チタン、スズ、亜鉛及びマンガンより選ばれる少なくとも1種の金属化合物など公知慣用の反応触媒を用い、反応が促進されてもよい。反応触媒としては、具体的には、酸化ジ−n−ブチル錫、シュウ酸第一錫、三酸化アンチモン、チタンテトラブトキシド、酢酸マンガン、酢酸亜鉛等が挙げられる。これら反応触媒の添加量は得られるポリエステル樹脂(a−1)中の酸成分に対し、通常0.001〜0.5モル%程度の量が好ましい。
重縮合の方法としては、公知の塊状重合法を用いることができ、ポリエステル樹脂の分子量、軟化温度等を制御するには反応させるアルコール成分とカルボン酸の種類、モル比、さらには反応温度、反応時間、反応圧力、触媒等を調整すればよい。さらに、ポリエステル樹脂として市販品を用いることも可能である。例えば、ダイヤクロンER−502、ダイヤクロンER−508(いずれも三菱レイヨン社製)などがある。
さらには定着性及び粉砕性を向上させるために、結着樹脂(A)がポリエステル樹脂(a−1)と、スチレン樹脂、アクリル樹脂、及びスチレン−アクリル共重合樹脂からなる群から選択される少なくとも1種の樹脂(a−2)(以下、単に樹脂(a−2)ともいう。)とを含むことが好適である。スチレン−アクリル共重合樹脂は、スチレン系モノマーのうちの少なくとも1種類と、(メタ)アクリル酸及び(メタ)アクリル酸エステル類のうちの少なくとも1種類を重合させて得られる。樹脂(a−2)に用いられるスチレン系モノマーとしては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチクスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロルスチレン、3,4−ジクロルスチレンなどがある。
樹脂(a−2)に用いられる(メタ)アクリル酸エステル類としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2−クロルエチル、(メタ)アクリル酸フェニル、アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチルなどがある。好ましいスチレン系モノマーはスチレンである。また、好ましい(メタ)アクリル酸エステル類は(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル等である。
また、樹脂(a−2)の分子量をより大きくするために多官能性単量体を架橋剤として使用することができる。具体的には、ジビニルベンゼン、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどがある。
上記樹脂(a−2)は、懸濁重合法、溶液重合法、乳化重合法など公知の重合方法により得られる。例えば、スチレン−アクリル共重合樹脂の分子量、軟化温度を制御するには上記スチレン系モノマーと、(メタ)アクリル酸及び(メタ)アクリル酸エステル類の種類、モル比、さらには反応温度、反応時間、反応圧力、重合開始剤、架橋剤等を調整すればよい。さらにスチレン−アクリル共重合樹脂として市販品を用いることも可能である。例えば、アルマテックスCPR100、CPR200、CPR300、CPR600B(三井化学社製)などがある。
ポリエステル樹脂(a−1)及び樹脂(a−2)を混合して、より均一に分散された結着樹脂(A)を得るには、ポリエステル樹脂(a−1)と樹脂(a−2)とを溶融混練する方法;重合したポリエステル樹脂(a−1)と樹脂(a−2)のどちらか一方の樹脂の存在下において、もう一方の樹脂用のモノマーを加えて重合する方法などがある。より均一に分散された結着樹脂を得るには後者が望ましく、通常は塊状重合でポリエステル樹脂(a−1)を重縮合した後、得られたポリエステル樹脂(a−1)を溶剤に溶解させた系において、必要に応じて加熱しながら樹脂(a−2)を溶液重合にて合成し、脱溶媒する方法が好ましい。
さらに、特許第3531980号公報及び特開2006−178296号公報に記載の方法のような公知の方法により合成することも好ましい。
また、ポリエステル樹脂(a−1)と樹脂(a−2)とを個別に作製する場合、又は、市販のポリエステル樹脂と樹脂(a−2)とを用いる場合は、ポリエステル樹脂(a−1)と樹脂(a−2)を混合することにより結着樹脂(A)を得ることができる。このとき両者を溶剤中に溶解させて混合及び脱溶剤を行うか、溶融混練を行うかいずれの方法であってもよい。
さらに結着樹脂(A)に含まれるポリエステル樹脂(a−1)と樹脂(a−2)との質量比率[(a−2)/(a−1)]が1以下であることが好ましい。より好ましくは、質量比率が0.5以下である。質量比率が1を超えると、トナー粒子の粉砕性が低くなり、液体現像剤としての発色性及び保存安定性が低くなる場合がある。
(軟化温度(T4))
結着樹脂(A)の軟化温度は80〜140℃の範囲であることが好ましい。より好ましくは90℃〜130℃の範囲である。軟化温度は、株式会社島津製作所製「フローテスターCFT−500D」を用いて、開始温度40℃、昇温速度6.0℃/min、試験荷重20kgf、予熱時間300秒、ダイ穴径0.5mm、ダイ長さ1.0mmの条件にて、試料1.0gの4mmが流出したときの温度を軟化温度(T4)として測定したものである。
結着樹脂(A)の軟化温度が80℃以上であると混練時に軟化し過ぎることがなく、着色剤(B)の分散性が向上し、液体現像剤としての十分な画像濃度を得ることができる。さらには、画像出力時の定着プロセスにおいて、トナー粒子が溶融状態で熱圧着ローラーの表面と接触するため、トナー粒子の凝集力が基材と熱圧着ローラーの接着力より小さくなり、一部が完全に固着せず、熱圧着ローラー表面にトナー粒子が付着し、次の紙に転移するというホットオフセット現象が発生しにくくなる。さらに、軟化温度が140℃以下であると良好な定着性が得られ、また、粉砕性が向上し、発色性が高くなる。
(平均分子量)
結着樹脂(A)は、耐オフセット性、定着性、及び画質特性の点から、ゲルパーミエイションクロマトグラフィー(GPC)で測定される分子量において、重量平均分子量(Mw)が2,000〜100,000のものが好ましく、5,000〜50,000のものがより好ましい。結着樹脂(A)の重量平均分子量(Mw)が2,000以上であると、耐ホットオフセット性、色再現性、及び分散安定性が向上し、100,000以下であると定着性及び耐コールドオフセット性が向上する。また、結着樹脂(A)は、特定の低分子量の縮重合体成分と特定の高分子量の縮重合体成分とからなる2山の分子量分布曲線を有するタイプ、又は1山の単分子量分布曲線を有するタイプのいずれのものであってもよい。
さらに、ゲルパーミエイションクロマトグラフィー(GPC)で測定される分子量において、結着樹脂(A)の重量平均分子量(Mw)と数平均分子量(Mn)の比率Mw/Mnが、2〜20の範囲であることが好ましい。Mw/Mnが2を上回ると耐オフセット性が高くなると共に、非オフセット領域が広くなり低温定着性が向上する。Mw/Mnが20を下回ると、トナー粒子の粉砕性が高くなり、十分な画像濃度が得られ、発色性が高くなるなど、画像特性が向上する。
なお、上記GPCによる分子量及び分子量分布は、東ソー社製ゲルパーミエイションクロマトグラフィー(HLC−8220)を用い、次の条件で測定できる。40℃のヒートチャンバ中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフラン(THF)を毎分0.6mLの流速で流し、THFに溶解した試料溶液を10μL注入して測定する。試料の分子量測定にあたっては、試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。
検量線作成用の標準ポリスチレン試料としては、東ソー社製の分子量が102〜107程度のポリスチレンを10点用いる。検出器にはRI(屈折率)検出器を用いる。なお、カラムにはTSKgel SuperHM−M(東ソー社製)3本を用いる。
また測定用サンプルは以下のようにして作成する。試料をTHF中に入れ、数時間放置した後、充分に振とうし、試料の合一体がなくなるまでTHFと良く混合し、さらに12時間以上静置する。この時、THF中への放置時間が24時間以上となるようにする。その後、得られた溶液をサンプル処理フィルタを通過させ、GPC測定用の試料溶液とする。また、試料濃度は、樹脂成分が0.5〜5mg/mLとなるように調整する。
トナー粒子中に含まれる結着樹脂(A)の含有量は、トナー粒子100質量部に対して好ましくは60〜95質量部、より好ましくは70〜90質量部である。60質量部以上であると、定着性、耐オフセット性が向上し、95質量部以下であると着色剤(B)に対しての結着樹脂(A)の比率が小さくなり、トナー粒子としての着色力が向上し、画像濃度が高くなる。
(着色剤(B))
着色剤(B)としては、以下に示すイエロー、マゼンタ、シアン、及び黒の各有機顔料、有機染料、特にその造塩化合物;カーボンブラック;磁性体などが好適に用いられる。これらは単独で又は2種以上を混合して使用することができる。また、着色剤(B)はキャリア液(D)に対して不溶であることが好ましい。
イエローの着色剤としては、イエローの有機顔料、又はイエローの染料の造塩化合物を用いることが好ましい。イエローの有機顔料としては、ベンズイミダゾロン化合物、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、キノフタロン化合物、アゾ金属錯化合物、メチン化合物、アリルアミド化合物等が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、97、109、110、111、120、127、128、129、138、139、147、150、168、174、176、180、181、185、191等が好適に用いられる。中でもキノフタロン化合物、縮合アゾ化合物、又はベンズイミダゾロン化合物を用いることが好ましい。またイエローの染料の造塩化合物としては、酸性染料の造塩化合物、又は塩基性染料の造塩化合物が用いられる。酸性染料の造塩化合物としては、C.I.アシッドイエロー11又は23(タートラジン)と四級アンモニウム塩化合物とからなる造塩化合物を用いることが好ましい。四級アンモニウム塩を構成することでトナー粒子が安定した正帯電を保持することができる。
マゼンタの着色剤としては、マゼンタの有機顔料又はマゼンタの染料の造塩化合物を用いることが好ましい。マゼンタの有機顔料としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、ローダミンレーキ等の塩基性染料のレーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が用いられる。具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81、81:1、81:2、81:3、81:4、122、144、146、166、169、177、184、185、202、206、209、220、221、254、255、268、269等、C.I.ピグメントバイオレット1、19等が好適に用いられる。中でもキナクリドン化合物、ローダミンレーキ系顔料、ナフトール系顔料等を用いることが好ましい。具体的には、ナフトールAS(C.I.ピグメントレッド269等)、ローダミンレーキ(C.I.ピグメントレッド81、81:1、81:2、81:3、81:4、169等)、キナクリドン(C.I.ピグメントレッド122等)カーミン6B(C.I.ピグメントレッド57:1)が好ましい材料である。またキナクリドン顔料とモノアゾ顔料であるカーミン6B(C.I.ピグメントレッド57:1)とを併用したものは良好なマゼンタ色又は赤色を呈し好ましいものである。またマゼンタの染料の造塩化合物としては、ローダミン系酸性染料の造塩化合物又はローダミン系塩基性染料の造塩化合物が好ましく用いられる。塩基性染料の造塩化合物としては、C.I.ベーシックレッド1又は同ベーシックバイオレット10と、無色(色素の発色を阻害しない)の有機スルホン酸又は有機カルボン酸とからなる造塩化合物を用いることが好ましい。塩基性染料は良好な正帯電を呈することからトナー粒子が安定した正帯電を保持することができる。有機スルホン酸としては、ナフタレンスルホン酸、ナフトールスルホン酸、ナフチルアミンスルホン酸等が好ましく用いられる。有機カルボン酸としては、サリチル酸誘導体、高級脂肪酸等が好ましく用いられる。
シアンの着色剤としては、シアン、青色の有機顔料、シアン、青色染料の造塩化合物、シアン、青色染料の油溶性染料等を用いることが好ましい。シアンの有機顔料としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、15:6、60、62、66等が好適に用いられる。中でもC.I.ピグメントブルー15:3等の銅フタロシアニン化合物を用いることが好ましい。また前記有機顔料と併用する形態で、トリアリールメタン系の染料由来の化合物を用いることも好ましい。トリアリールメタン系色素は、良好な正帯電性を有することから帯電性のコントロール及び着色性の両方の観点から有効な材料である。特にC.I.ソルベントブルー124等のトリアリールメタン系油溶性染料又はトリアリールメタン系塩基性染料の造塩化合物は良好なものである。C.I.ソルベントブルー124としては、具体的にはクラリアント社製のCOPY BLUE PRは好ましい材料である。これはC.I.ベーシックレッド9(パラマゼンタ)とアニリンとを縮合させて得られたものである。さらに色相調整の目的で前記シアン又は青色の有機顔料、シアン又は青色染料の造塩化合物、シアン、青色染料の油溶性染料に加えて、緑色顔料を補色として使用することができる。緑色顔料としては、具体的にはC.I.ピグメントグリーン7、36等のハロゲン化フタロシアニン化合物が好ましい。
黒の着色剤としては、コスト及び取り扱いの点からもカーボンブラック、ペリレンブラック等の有機黒色顔料、並びに、ニグロシン染料、アゾ金属錯体染料等の有機黒色染料を用いることが好ましい。カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、バイオマス由来のカーボンブラックなどの各種いずれも使用できる。ファーネスブラックカーボン、バイオマスカーボンが、画像特性においてかぶり(白地部の地汚れ)が低減される効果があり好ましい。ニグロシン染料としては、ニグロシンベースを湿式粉砕等により微細化し、体積平均粒径を0.5〜2μmとしたものを用いることが好ましい。この微細化されたニグロシン染料は光沢を有するため、光沢のある黒色を得ることができる。またニグロシンの微細化は特開2006−171501等に記載の方法により得られるものである。また黒色着色剤としては、上記イエロー、マゼンタ、シアンの3色の着色剤を用いて黒色を得ることもできる。
さらに画像濃度が良好で、コントラストのある黒色を得るためには、黒の着色剤として黒色着色剤100質量部に対して、青色着色剤を1〜10質量部添加した着色剤を用いることが好ましい。青色着色剤としては、ハロゲンを含まない金属フタロシアニンブルー化合物、トリアリールメタン化合物、ジオキサジンバイオレット顔料等を用いることが好ましい。またフタロシアニンブルー化合物及びトリアリールメタン化合物は安定した正帯電性を有していることも良好な黒トナー粒子を得る上で有効である。具体的には、C.I.ピグメントブルー15:3、ビクトリアピュアブルーレーキ顔料(C.I.ピグメントブルー1)、C.I.ピグメントバイオレット23、C.I.ピグメントバイオレット19、トリアリールメタン系塩基性染料と実質的に無色の有機酸とからなる造塩化合物(C.I.ベーシックブルー7と有機酸との造塩化合物)、トリアリールメタン系油溶性染料等を用いることが好ましい。トリアリールメタン系色素は良好な正帯電を呈することでトナー粒子の帯電性制御に有効であり、中でも分散性に優れたトリアリールメタン系油溶性染料が好ましい。
トナー粒子中に含まれる着色剤(B)の含有量は、使用する結着樹脂(A)の種類により異なるが、通常、トナー粒子100質量部に対して5〜50質量部、好ましくは10〜30質量部である。
液体現像剤を用いたフルカラー画像を得る場合は、Y、M、C、及びBkの基本プロセス4色を用いることで、定着性及び発色性を活かした好ましい画像が得られる。それに加えて、バイオレット、グリーンなどの中間色を用いることができる。
(高分子分散剤(C))
一般的に、高分子分散剤(C)はトナー粒子が存在するキャリア液中に添加して、トナー粒子を均一に分散させ、現像特性を向上させる効果を有するものであるが、高分子分散剤(C)はキャリア液中に添加しても、トナー製造における混練の際にトナー粒子中に添加してもよい。キャリア液中に添加して、トナー粒子を分散させた場合、高分子分散剤(C)は、トナー粒子表面の結着樹脂部、特に優れた分散安定性の効果を発揮するポリエステル樹脂部に吸着していると推察される。このように、高分子分散剤(C)は、トナー粒子表面に吸着、あるいはトナー粒子内部に分散している状態で存在していることが好ましい。
高分子分散剤(C)は、少なくともアミノ基を有するエチレン性不飽和単量体と、炭素数9〜24のアルキル基とを有するエチレン性不飽和単量体より得られる。好適な高分子分散剤(C)の重合方法は、通常のアクリル樹脂の溶液重合である。アミノ基を有するエチレン性不飽和単量体の比率(仕込み量のモル比)として、好ましくは1〜50%であり、より好ましくは5〜35%であり、最も好ましくは10〜40%である。炭素数9〜24のアルキル基を有するエチレン性不飽和単量体の比率として、好ましくは50〜99%であり、より好ましくは65〜95%であり、最も好ましくは60〜90%である。
目的とする高分子分散剤(C)の分子量にあわせて、アミノ基を有するエチレン性不飽和単量体と、炭素数9〜24のアルキル基を有するエチレン性不飽和単量体と、一般式(1)で表されるエチレン性不飽和単量体と、任意に重合開始剤、連鎖移動剤等とを混合して加熱することで高分子分散剤(C)を得ることができる。反応温度は、40〜150℃、好ましくは50〜110℃である。
(重合開始剤)
高分子分散剤(C)の重合で使用する重合開始剤としては、特に限定されるものではないが、例えば、アゾ系化合物及び有機過酸化物を用いることができる。重合の際、全単量体100質量部に対して、任意に0.001〜5質量部の重合開始剤を使用することができる。
アゾ系化合物の例としては、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン1−カルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、4,4’−アゾビス(4−シアノバレリック酸)、2,2’−アゾビス(2−ヒドロキシメチルプロピオニトリル)、2,2’−[2−(2−イミダゾリン−2−イル)プロパン]等が挙げられる。
有機過酸化物の例としては、過酸化ベンゾイル、t−ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシビバレート、(3,5,5−トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド等が挙げられる。
これらの重合開始剤は、単独で又は2種類以上組み合わせて用いることができる。
(連鎖移動剤)
連鎖移動剤としては、メルカプタン系、チオグリコール系、β−メルカプトプロピオン酸系などのチオール系化合物;アリル水素を有するロジン系化合物又はテルペン系化合物などを用いることができる。連鎖移動剤を用いる場合、添加量は全単量体100質量部に対して0.01〜10.0質量部、好ましくは0.1〜5質量部である。
(重合溶剤)
高分子分散剤(C)の合成時には、公知の溶剤が好適に使用される。しかしながら、高分子分散剤(C)を液体現像剤に使用する場合、高分子分散剤(C)は、液体現像剤で使用するキャリア液(D)の溶剤に溶解した状態で取り出せるか、又は、固体として取り出せることが好ましい。キャリア液(D)中にトナー粒子を湿式分散させる際に高分子分散剤(C)を添加する場合、高分子分散剤(C)はキャリア液(D)に溶解していることが好ましく、高分子分散剤(C)をトナー粒子作製時にトナー粒子中に添加して用いる場合は、高分子分散剤(C)は固体であることが好ましい。キャリア液(D)に溶解した高分子分散剤(C)を得るには以下の3つの方法がある。一つ目の方法としては、液体現像トナーで使用するキャリア液(D)を合成溶剤として重合する。二つ目の方法としては、キャリア液(D)に置換できる溶剤中で重合し、その後、キャリア液(D)を加えて、重合に使用した溶剤だけを留去する。三つ目の方法としては、キャリア液(D)に置換できる溶剤とキャリア液(D)の混合溶液中で重合し、その後、キャリア液(D)以外の溶剤だけを留去する。そのため、重合開始剤としては、高分子分散剤(C)まで合成した後に液体現像剤に用いるキャリア液(D)に置換できる溶剤、又は溶剤留去できる溶剤を用いることが好ましい。
キャリア液(D)に溶剤置換できる溶剤としては、キャリア液(D)の沸点よりも低い溶剤が好ましい。例えば、酢酸エチル、酢酸n−プロピル、酢酸n−ブチル、酢酸イソブチル、トルエン、アセトン、ヘキサン、メチルエチルケトン、エタノール、プロパノール、ブタノール等が用いられる。これらの重合溶剤は、2種類以上混合して用いてもよい。その中でも重合温度、溶剤留去の簡便さ、溶剤の極性等の観点から、酢酸n−プロピル又はトルエンが特に好ましい。固体として取り出すには、高分子分散剤(C)の重合後に溶剤を留去する。留去できる溶剤としては、特に限定されるものは無いが、上記のような溶剤留去が容易な溶剤が好ましい。
(アミノ基を有するエチレン性不飽和単量体)
アミノ基を有するエチレン性不飽和単量体は、トナー粒子への高分子分散剤(C)の吸着率を高め、長期にわたって安定した画像と優れた保存安定性に寄与する。アミノ基を有するエチレン性不飽和単量体におけるアミノ基は特に限定されないが、2級アミノ基又は3級アミノ基であることが好ましく、3級アミノ基であることがより好ましい。なお、ここでのアミノ基には、アミド結合を構成するアミノ基は含まれないものとする。例えば、炭素数9〜24のアルキル基を有するエチレン不飽和単量体の例であるアルキル(メタ)アクリルアミド類では、アミノ基を有するエチレン性不飽和単量体が奏する効果を得ることができない。アミノ基を有するエチレン性不飽和単量体のうち、3級アミノ基を有するエチレン性不飽和単量体としては、例えば、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート等のN,N−ジアルキルアミノ基含有(メタ)アクリル酸エステル類;N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジエチルアミノエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジエチルアミノプロピル(メタ)アクリルアミド等のN,N−ジアルキルアミノ基含有(メタ)アクリルアミド類;ジメチルアミノスチレン、ジエチルアミノスチレン;等が挙げられる。
2級アミノ基を有するエチレン性不飽和単量体としては、例えば、tert−ブチルアミノエチル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート等が挙げられる。
これらのうち、分散性の観点から、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等が好ましい。アミノ基を有するエチレン性不飽和単量体は、2種類以上を併用しても良い。
高分子分散剤(C)のアミン価は5〜150mgKOH/gであることが好ましい。より好ましくは30〜100mgKOH/gである。アミン価が5mgKOH/g以上である場合、トナー粒子への吸着が十分であり、湿式粉砕での粉砕性が向上する。さらには、長期にわたる保管の際に、トナー粒子の凝集が防がれ、液体現像剤の粘度及びトナー粒子の平均粒径が保たれ、保存安定性が向上する。アミン価が150mgKOH/g以下である場合、トナー粒子の帯電性が高くなり、トナー粒子が基材へ転写されやすく、良好な画像濃度を得ることができる。さらには、キャリア液(D)への溶解性も高くなり、粉砕性が向上する。高分子分散剤(C)のアミン価はASTM D2074の方法に準拠し、測定した全アミン価(mgKOH/g)である。
(炭素数9〜24のアルキル基を有するエチレン性不飽和単量体)
また、炭素数9〜24のアルキル基を有するエチレン性不飽和単量体は、炭素数9〜24のアルキル基がキャリア液(D)への溶解性を高め、湿式粉砕におけるトナー粒子の粉砕性を向上させ、さらには、長期にわたる保管の際には、トナー粒子の凝集及び液体現像剤の粘度上昇を抑制し、優れた保存安定性の効果を発揮する。アルキル基の炭素数が9以上であると、キャリア液(D)への溶解性が高く、トナー粒子の分散安定性及び保存安定性が高くなる。アルキル基の炭素数が24以下であると、液体現像剤が基材へ定着する際に、アルキル基がトナー粒子の接触及び合一を阻害することなく、定着性の低下が起こらない。さらには、トナー粒子の帯電性が高くなり、トナー粒子が基材へ転写されやすく、十分な画像濃度を得ることが可能である。
また、9〜24のアルキル基は置換基を有しても良く、置換基としては、フェニル基、ナフチル基、ビフェニル基などの芳香族炭化水素基が挙げられる。なお、後述する一般式(1)で表されるエチレン性不飽和単量体は、炭素数9〜24のアルキル基を有するエチレン性不飽和単量体には含まれないものとする。一般式(1)で表されるエチレン性不飽和単量体は、炭素数が1〜22の炭化水素基を有するものであるが、一般式(1)で表されるエチレン性不飽和単量体によっては、炭素数9〜24のアルキル基を有するエチレン性不飽和単量体が奏する効果を得ることができない。
炭素数9〜24のアルキル基を有するエチレン不飽和単量体としては、例えば、ノニル(メタ)アクリレート、8−メチルノニル(メタ)アクリレート、2−メチルノニル(メタ)アクリレート、デシル(メタ)アクリレート、2−メチルデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、2−メチルウンデシル(メタ)アクリレート、9−メチルウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、2−メチルドデシル(メタ)アクリレート、11−メチルドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、2−メチルトリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、2−メチルテトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、2−メチルペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、2−メチルヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、2−メチルヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、2−メチルオクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、2−メチルノナデシル(メタ)アクリレート、イコシル(メタ)アクリレート、ヘンイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート、ターシャリブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素数9〜24のアルキル基を有するアルキル(メタ)アクリレート等の(メタ)アクリレート類;N−ノニル(メタ)アクリルアミド、N−(8−メチルノニル)(メタ)アクリルアミド、N−デシル(メタ)アクリルアミド、N,N−ジデシル(メタ)アクリルアミド、N−ウンデシル(メタ)アクリルアミド、N−(1−メチルウンデシル)(メタ)アクリルアミド、N−ドデシル(メタ)アクリルアミド、N,N−ジドデシル(メタ)アクリルアミド、N−トリデシル(メタ)アクリルアミド、N−(1−メチルトリデシル)(メタ)アクリルアミド、N−テトラデシル(メタ)アクリルアミド、N,N−ジテトラデシル(メタ)アクリルアミド、N−ペンタデシル(メタ)アクリルアミド、N−(1−メチルペンタデシル)(メタ)アクリルアミド、N−ヘキサデシル(メタ)アクリルアミド、N,N−ジヘキサデシル(メタ)アクリルアミド、N−ヘプタデシル(メタ)アクリルアミド、N−(1−メチルヘプタデシル(メタ))アクリルアミド、N−オクタデシル(メタ)アクリルアミド、N,N−ジオクタデシル(メタ)アクリルアミド、N−ノナデシル(メタ)アクリルアミド、N−イコシル(メタ)アクリルアミド、N−ヘンイコシル(メタ)アクリルアミド、N−ドコデシル(メタ)アクリルアミド等の炭素数9〜24のアルキル基を有するアルキル(メタ)アクリルアミド類;4−ノニルフェニル(メタ)アクリレート、4’−デシル−4−ビフェニリル(メタ)アクリレート、3−ペンタデシルフェニル(メタ)アクリレート、N−(10−フェニルデシル)(メタ)アクリルアミド、N−(4−ドデシルフェニル)(メタ)アクリルアミド、N−[2−(1−ナフチル)エチル]−N−ドデシル(メタ)アクリルアミド、N−[4−(1−ピレニル)ブチル]−N−ドデシル(メタ)アクリルアミド、N−オクタデシル−N−[2−(1−ナフチル)エチル](メタ)アクリルアミド等の芳香環と炭素数9〜24のアルキル基を有する(メタ)アクリレート及び(メタ)アクリルアミド類;1−ウンデセン、1−ドデセン、2−ドデセン、1−トリデセン、2−トリデセン、1−テトラデセン、2−テトラデセン、4−テトラデセン、1−ペンタデセン、2−ペンタデセン、4−ペンタデセン、1−ヘキサデセン、2−ヘキサデセン、4−ヘキサデセン、1−ヘプタデセン、2−ヘプタデセン、4−ヘプタデセン、1−オクタデセン、2−オクタデセン、4−オクタデセン、1−ドコセン、2−ドコセン、4−ドコセン等の炭素数9〜24のアルキル基を有するα−オレフィン類;等が例示できる。
これらのうち、分散性の観点から、炭素数9〜24のアルキル基を有するアルキル(メタ)アクリレート等の(メタ)アクリレート類が好ましい。炭素数9〜24のアルキル基としては、直鎖状アルキル基、分岐状アルキル基、及び環状アルキル基が挙げられ、好ましくは、直鎖状アルキル基又は分岐状アルキル基である。炭素数9〜24のアルキル基を有するエチレン性不飽和単量体は、2種類以上を併用しても良い。
(一般式(1)で表されるエチレン性不飽和単量体)
高分子分散剤(C)のうち、一般式(1)で表されるエチレン性不飽和単量体は、定着性の向上に有効である。一般式(1)で表されるエチレン性不飽和単量体を含むことで、結着樹脂(A)への相溶性が向上し、定着プロセスにおいて、トナー粒子の溶融状態が良化し、基材への定着性が向上する。また、溶融不足のトナー粒子が熱圧着ローラーに付着し、次の紙に転移するコールドオフセット現象を抑制する事ができる。 一般式(1)で表されるエチレン性不飽和単量体は、例えば、エチレンオキシドをアルキルアルコールにより開環重合した後、得られた反応物を、(メタ)アクリル酸メチルとエステル交換反応させる、もしくは(メタ)アクリル酸クロライドと反応させることにより得られる。
一般式(1)
CH2=C(R1)COO(AO)n2
(式中、R1はHまたはCH3、R2は水素または炭素数が1〜22の炭化水素基、nは1〜200の整数、Aは炭素数が2〜4のアルキレン基を表す。)
前記一般式(1)において、アルキレンオキサイド基(AO)は、炭素数2〜4のアルキレンオキサイド基であり、例えば、エチレンオキサイド基、プロピレンオキサイド基、又はブチレンオキサイド基が挙げられる。また、同一モノマー内に、炭素数が異なるアルキレンオキサイド基が存在していてもよい。
アルキレンオキサイド基数(n)は1〜200の整数であり、好ましくは1〜30の整数である。200以下である場合は、前述した、分子中に炭素数9〜24のアルキル基を有するエチレン不飽和単量体と十分な相溶性を得ることができる。R2は水素又は炭素数1〜22の炭化水素基である。炭素数22以下は、原料の入手が容易であり実用的である。炭素数1〜22の炭化水素基としては、置換又は無置換のものが選択でき、無置換のものが好ましく、無置換のアルキル基が好ましい。無置換のアルキル基としては、分岐を有するもの、有しないもの、いずれをも使用することができる。一般式(1)で表されるエチレン性不飽和単量体は、2種類以上を併用しても良い。なお、R2は、水素又は炭素数が1〜18の炭化水素基であることがさらに好ましい。
アルキレンオキサイド鎖を有する化合物としては、具体的には、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール−プロピレングリコール)モノ(メタ)アクリレート、ポリ(エチレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートモノメチルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノブチルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノオクチルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノベンジルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノフェニルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノドデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノテトラデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノヘキサデシルエーテル、ポリエチレングリコールモノ(メタ)アクリレートモノオクタデシルエーテル、ポリ(エチレングリコール−プロピレングリコール)モノ(メタ)アクリレートオクチルエーテル、ポリ(エチレングリコール−プロピレングリコール)モノ(メタ)アクリレートオクタデシルエーテル、ポリ(エチレングリコール−プロピレングリコール)モノ(メタ)アクリレートノニルフェニルエーテル等が挙げられる。また、これらは2種類以上を併用しても良い。
(その他の共重合可能な重合性単量体)
その他、重合性単量体として含んでいても良い不飽和化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の炭素数1〜8のアルキル基を有するアルキル(メタ)アクリレート等の(メタ)アクリレート類;N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N−tert−ブチル(メタ)アクリルアミド、N−イソペンチル(メタ)アクリルアミド、N−ネオペンチル(メタ)アクリルアミド、N−ヘキシル(メタ)アクリルアミド、N−イソヘキシル(メタ)アクリルアミド、N−n−ヘプチル(メタ)アクリルアミド、N−(6−メチルヘプチル)(メタ)アクリルアミド、N−オクチル(メタ)アクリルアミド、N−(7−メチルオクチル)(メタ)アクリルアミド等の(メタ)アクリルアミド類;1−ブテン、2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、4−エチル−2−ヘキセン、1−ヘプテン、2−ヘプテン、1−オクテン、2−オクテン、1−ノネン、2−ノネン、1−デセン、2−デセン等の炭素数1〜8のアルキル基を有するα−オレフィン類;等が例示できる。
さらに、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の環状アルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート等の芳香族環を有する(メタ)アクリレート類;スチレン、α−メチルスチレン、酢酸ビニル、(メタ)アクリル酸ビニル、又は(メタ)アクリル酸アリル等のビニル類が例示できる。上記以外の不飽和化合物も、物性に影響しない範囲で使用可能である。
また、高分子分散剤(C)の重量平均分子量(Mw)は、特定の範囲に限定されないが、トナー粒子を湿式分散させる際の分散性及び粉砕性を考慮すると、ゲルパーミエイションクロマトグラフィー(GPC)で測定される分子量において、500〜40,000であることが好ましく、2,000〜30,000であることがより好ましい。重量平均分子量(Mw)は前述の方法により測定することができる。
高分子分散剤(C)に対する一般式(1)で表されるエチレン性不飽和単量体の比率として、好ましくは1〜50質量%であり、より好ましくは5〜40質量%であり、最も好ましくは10〜30質量%である。
高分子分散剤(C)は、液体現像剤100質量部に対して、好ましくは0.1〜10質量部添加することができる。より好ましくは0.5〜5質量部の範囲である。0.1質量部以上であるとトナー粒子の分散性及び粉砕性が向上し、保存安定性が高くなる。添加量が10質量部以下である場合、トナー粒子の帯電性が上がることにより、十分な画像濃度が得られ、定着性も向上する。なお、トナー粒子中が高分子分散剤(C)を含有する場合、上記範囲は、トナー粒子中に含有された高分子分散剤(C)の量も含めた範囲であるとする。
(その他の分散剤)
分散剤として、本発明に用いる高分子分散剤(C)の他に、従来から液体現像剤に使用されている分散剤を用いてもよい。具体的には、ナフテン酸コバルト、ナフテン酸亜鉛、ナフテン酸銅、ナフテン酸マンガン、オクチル酸コバルト、オクチル酸ジルコニウム等の脂肪酸金属塩、レシチン、チタンキレート等の有機チタネート類のチタネートカップリング剤、アルコキシチタンポリマー、ポリヒドロキシチタンカルボキシレート化合物、チタンアルコキシド、コハク酸イミド化合物、ポリイミン化合物、フッ素含有シラン化合物、ピロリドン系化合物などが挙げられる。中でもチタンアルコキシド、コハク酸イミド化合物、フッ素含有シラン化合物、ピロリドン系化合物等を液体現像剤100質量部に対して、5質量部以下の範囲において適量混合して用いてもかまわない。この場合、分散剤を使用する形態としては、トナー粒子と同極性になる分散剤はトナー粒子に吸着させ、トナー粒子と逆極性になる分散剤はトナー粒子に吸着させず、キャリア液中に分散させる形態となる。またこのときに極性を議論する基準はキャリア液に対する極性となる。また、この挙動は実際に画像試験を行った上で見極めるものであり経験的に得られるものとなる。
(キャリア液(D))
液体現像剤に用いるキャリア液(D)としては、脂肪族炭化水素であり、かつ該脂肪族炭化水素の第1級〜第3級の炭素総数に対して、第1級炭素の割合が55%以上であり、第2級炭素の割合が30%以下であるものを使用する。この範囲、すなわち、第1級炭素の割合が55%以上であり、第2級炭素が30%以下である場合は、帯電装置により発生したオゾンに対する酸化耐性が十分であり、画像品質や連続印刷安定性の低下が起こらない。脂肪族炭化水素としては、直鎖状パラフィン系炭化水素、イソパラフィン系炭化水素、ナフテン系炭化水素等が挙げられる。これらの中でも、残留する芳香族炭化水素が極めて少ないパラフィン系炭化水素が好ましく、第1級炭素が多いイソパラフィン系炭化水素がさらに好ましい。更に、親油性を有し、化学的に安定して絶縁性を有するものが好ましい。また、キャリア液は、画像形成装置中で使用される物質又は装置、特に感光体等の現像プロセス用の部材及びその周辺部の部材に対して化学的に不活性であることが好ましい。
キャリア液(D)の蒸留範囲における乾点は、200〜360℃の範囲であることが好ましい。特に好ましくは、240〜320℃の範囲である。200℃以上であると、液体現像剤が常温で乾燥することなく、固形物が析出しないため、現像周りの規制ブレードに固着が生じることなく、画像汚染が起こらない。また360℃以下であると、キャリア液(D)の除去が容易であるため十分な定着性が得られる。ここで蒸留範囲における乾点は、ASTM D86、ASTM D1078、JIS K2254によって規定される方法によるものである。
またキャリア液(D)としては、カウリブタノール数値(KB値:ASTM D1133)が40以下であるものを使用することが好ましい。より好ましくは20〜30の範囲である。またアニリン点(JIS K2256)は60〜105℃、さらに好ましくは70〜95℃の範囲であることが安定したキャリア液を得る上で好ましい。カウリブタノール数値が40以下、あるいはアニリン点が60℃以上であると、溶媒としての溶解能力が低く、キャリア液がトナー粒子を溶解することがないため、トナー粒子の保存安定性及び色再現性が高くなる、キャリア液が着色して紙などの基材を汚してしまうなどの問題の発生を防ぐことができる。アニリン点が105℃以下であると、トナー粒子をキャリア液に分散させる際に添加する分散剤及び添加剤などとの相溶性が高く、分散性が向上し、十分な画像濃度を得ることができる。
キャリア液(D)の絶縁性を具体的に記すと、誘電定数が10以下、好ましくは1〜5であり、より好ましくは2〜3である。また同時にキャリア液体(D)の電気抵抗率は、好ましくは109Ω・cm以上、より好ましくは1010Ω・cm以上、特に好ましくは、1011〜1016Ω・cmの範囲である。ここで電気抵抗率は、川口電機製作所社製ユニバーサルエレクトロメーターMMA−II−17Dと液体用電極LP−05とを組み合わせて行うことができる。電気抵抗率が109Ω・cm以上の場合、トナー粒子の帯電性が高くなり、十分な画像濃度が得られる、色再現性及び発色性が向上する。
さらにキャリア液(D)の15℃における密度(JIS K2249)は、0.67〜0.9g/cm3の範囲であることが好ましい。より好ましくは、0.70〜0.85g/cm32の範囲である。この範囲は、トナー粒子と分散剤が安定して存在できるため、優れた定着性と画像濃度が得られる点で好ましい。またキャリア液(D)は、動粘度(ASTM D445)1〜25mm2/sの範囲であることが好ましい。特に好ましくは3〜15mm2/sの範囲である。この範囲は、現象時に帯電粒子を移動させることができ、また揮発性を十分有し、最終的な画像が形成された媒体から定着工程で容易にキャリア液を除去させることができる点で好ましい。動粘度が1mm2/s以上であると、液体現像剤の粘度が高くなるために現像ローラーへの転移性が高く、十分な画像濃度を得ることができる。さらに現像後のトナー粒子が移動を防ぎ、画像の精細性が向上する。また動粘度が25mm2/s以下であると、トナー粒子の流動性が向上し電気泳動が生じやすくなるため、十分な画像濃度を得ることができる。さらに紙などの基材への浸透性が高く、トナー粒子が定着する際のキャリア液除去が容易になり十分な定着性を得ることができる。特に、重ね合わせ画像での定着性が大きく向上する。
具体的に好ましいキャリア液体(D)は、特に商品名“シェルゾールTM”(Shell Chemicals社製)、“IPソルベント2028”(出光興産社製)のような分枝状パラフィン溶媒混合物、特にイソパラフィン系炭化水素であることが好ましい。
(その他の添加剤)
(顔料分散剤)
トナー粒子に内添する顔料分散剤としては、ポリアミン系の樹脂型分散剤ソルスパース24000SC、ソルスパース32000(ルーブリゾール社製)、アジスパーPB821(味の素ファインテクノ社製);アクリル共重合物の樹脂型分散剤BYK−116(ビックケミー社製)などを用いることができる。特に顔料濃度が高い着色マスターバッチを経て製造する場合は、マスターバッチ製造時に添加することが好ましい。顔料分散剤の添加量は、トナー粒子の分散性向上の点から、着色剤(B)100質量部に対して、好ましくは3質量部以上、更に好ましくは5質量部以上が良い。また、トナー粒子の粉砕性及び生産性向上の点から、着色剤(B)100質量部に対して、好ましくは40質量部以下、更に好ましくは30質量部以下が良い。
(色素誘導体)
トナー粒子においては、着色剤(B)の発色性を損なわない範囲で色素誘導体を用いることも可能である。色素誘導体としては、有機色素(有機顔料、有機染料)、アントラキノン、アクリドン、又はトリアジンに、塩基性置換基、酸性置換基、又は置換基を有していても良いフタルイミドメチル基を導入した化合物が挙げられる。中でも顔料誘導体が好ましく、その構造が、下記一般式(3)で示される化合物である。
P−Ln 一般式(3)
(ただし、Pは、有機顔料残基、アントラキノン残基、アクリドン残基又はトリアジン残基、Lは、塩基性置換基、酸性置換基、又は置換基を有していても良いフタルイミドメチル基、nは、1〜4の整数である)
Pの有機顔料残基を構成する有機顔料としては、例えば、ジケトピロロピロール系顔料;アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料;銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料;アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料;キナクリドン系顔料;ジオキサジン系顔料;ペリノン系顔料;ペリレン系顔料;チオインジゴ系顔料;イソインドリン系顔料;イソインドリノン系顔料;キノフタロン系顔料;
スレン系顔料;金属錯体系顔料等が挙げられる。
色素誘導体としては、例えば、特開昭63−305173号公報、特公昭57−15620号公報、特公昭59−40172号公報、特公昭63−17102号公報、特公平5−9469号公報等に記載されているものを使用でき、これらは単独で又は2種類以上を混合して用いることができる。色素誘導体の添加量は、分散性向上の点から、着色剤100質量部に対して、好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、耐熱性及び耐光性の点から、着色剤100質量部に対して、好ましくは4質量部以下、更に好ましくは1.5質量部以下である。
液体現像剤において色素誘導体は使用する着色剤(B)の種類によって適性添加量が異なるが、一般的には着色剤(B)100質量部に対して0.1質量部〜30質量部の範囲で用いることが好ましい。これにより、トナー粒子の分散安定性が保たれ、トナー粒子の帯電極性の安定性が維持できる。液体現像剤においては、トナー粒子が正帯電性を有することから、塩基性の色素誘導体を用いることが好ましい。
(荷電制御剤)
液体現像剤中のトナー粒子には、必要に応じて色相に支障を来たさない範囲で無色あるいは淡色の荷電制御剤が含有されてもよい。荷電制御剤は、現像されるべき静電潜像担持体上の静電荷像の極性に応じて、正荷電制御剤又は負荷電制御剤が用いられる。液体現像液中においては、トナー粒子は正帯電を呈することが好ましく、正荷電制御剤を通常用いるものである。
正荷電制御剤としては、4級アンモニウム塩化合物(例えば、トリブチルベンジルアンモニウム−1−ヒドロキシ−4−ナフトスルホン酸塩、テトラブチルベンジルアンモニウムテトラフルオロボレート)、4級アンモニウム塩有機錫オキサイド(例えば、ジブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイド)、ジオルガノスズボレート(例えば、ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレート)、アミノ基を有するポリマー等の電子供与性物質等を単独であるいは2種以上組み合わせて用いることができる。また前記述べたトリアリールメタン系色素も同様に正荷電制御剤として、用いることができる。
また上記荷電制御剤を用いる代わりに、樹脂系荷電制御剤を用いることもできる。正帯電用としては、一般式−{CH2−CH(C65)}a−{CH2−CH(COOC49)}b−{CH2−C(CH3)COOC24+CH3(C252 CH3(C64)SO3 -}c
(このうち4級アンモニウム塩部が3〜35質量部、スチレン及びアクリル部が97〜65質量部であり、それによりa、b及びcの値が決まる)で表される、4級アンモニウム塩を官能基としてスチレン−アクリル樹脂に共重合したスチレン−アクリル系ポリマーが挙げられる。具体的には、アクリル酸2−エチルヘキシル/アクリロイルアミノ−2−メチル−1−プロパンスルホン酸/スチレン共重合物、アクリル酸ブチル/N,N−ジエチル−N−メチル−2−(メタクリロイルオキシ)エチルアンモニウム=p−トルエンスルホナート/スチレン共重合物等である。これらは無色透明であることからカラートナーに用いるのに好適である。また樹脂系荷電制御剤は、通常、結着樹脂(A)100質量部に対して好ましくは1.0〜20質量部、より好ましくは2.0〜8質量部添加する。
(製造方法)
液体現像剤の製造方法について説明する。液体現像剤は、例えば、以下の5つのプロセスを経て得られることが好ましい。
(1)トナー粒子用の着色マスターバッチの作製
結着樹脂(A)と着色剤(B)とを、マスターバッチ中の着色剤(B)の濃度が10〜60質量部となる割合で、熱ロール等を用いて混練を行い、冷却後粗砕を行い、着色マスターバッチを得る。また結着樹脂(A)及び着色剤(B)に加えて、顔料分散剤、色素誘導体等を添加することもできる。
(2)トナー粒子用チップの作製(着色マスターバッチの希釈)
(1)で得た着色マスターバッチと結着樹脂(A)とを、スーパーミキサー等のミキサーで混合し、予備分散し、次いで溶融混練を行うことで、着色マスターバッチを結着樹脂(A)中に希釈、展開し、トナー粒子用のチップを得る。ここでの予備分散及び溶融混練を行う時点で、顔料分散剤、高分子分散剤(C)、荷電制御剤などを添加してもよい。さらにトナー粒子用のチップはハンマーミル、サンプルミル等の粗砕により10mm以下の粒径としておくことが好ましい。また、(1)及び(2)の工程は、統合することも可能であり、その場合は(1)の着色マスターバッチの工程を経ることなく、(2)の工程において、予備分散時に全ての材料を仕込み、トナー粒子用チップを作製すればよい。溶融混練としては、加圧ニーダー、バンバリーミキサー、1軸、2軸のエクストルーダー等の公知の混練機を用いることができる。
(3)トナー粒子の乾式粉砕
(2)で得られたトナー粒子用チップを微粉砕し、平均粒径で7μm以下とする。微粉砕は通常、ジェットミル等のジェット気流式粉砕機、ターボミル、クリプトロン等の機械式粉砕機を用いることが好ましい。
(4)トナー粒子の湿式粉砕
(3)で得た乾式粉砕されたトナー粒子を、キャリア液(D)と同一組成の溶媒に展開し、湿式粉砕機(分散機)を用いて、平均粒径で0.5〜4μm、好ましくは1〜3μmの範囲になるように粉砕を行う。またこの時にトナー粒子に吸着させる機能を有する高分子分散剤(C)を添加することも有効である。湿式粉砕及び分散工程を経て、分散剤はトナー粒子中に吸着し、帯電的にも安定化する。湿式粉砕(分散)を行う際は、粉砕時の温度が50℃を超えないように冷却することが望ましい。温度が50℃以下であると、トナー粒子が融着を起こすことなく、粒度分布の制御ができる。
トナー粒子の湿式粉砕を行うために使用することのできる湿式粉砕機としては、粉砕媒体を使用するものであり、容器駆動媒体ミル、媒体撹拌式ミル等が挙げられる。容器駆動媒体ミルとしては、転動ボールミル、振動ボールミル、遊星ボールミル、遠心流動化ミル等があり、また媒体撹拌式ミルとしては、塔式粉砕機、撹拌槽式ミル、流通槽式ミル(横型、縦型)、アニューラーミル等が挙げられる。上記いずれの装置においても、湿式粉砕による微細化は可能であるが、中でも、媒体撹拌式ミルを用いることが生産性、粉砕能力、粒度分布の制御等の点から好ましい。更にはその中でも、密閉型かつ水平型であり、マイクロビーズを充填しメディア(媒体)として用いる、横型の流通槽式ミルに分類される湿式粉砕機を用いることが、精密な湿式粉砕、分散を行う上で好ましい。具体的には、WAB社(シンマルエンタープライゼス社)製のダイノーミル(DYNO−MILL)、サンドミル等が挙げられる。水平型の湿式粉砕機は分散メディアが重力の影響をほとんど受けないため、粉砕機内で理想に近い均一な分布を得ることができる。また完全密閉型の構造を有することから泡立ち、溶剤の蒸発による収支の欠損などがなく安定した粉砕処理が可能である。
湿式粉砕機においては、粉砕性を決定づける大きな要因としては、粉砕メディアの種類、粉砕メディアの粒径、粉砕機内の分散メディアの充填率、アジテーターディスクの種類、粉砕される試料の溶液濃度、溶媒の種類等が挙げられる。中でも粉砕メディアの種類及びメディアの粒径が粉砕性に大きく寄与するものである。
粉砕メディアの種類としては、トナー粒子の粘度、比重、粉砕及び分散の要求粒度等に応じて、ガラスビーズ(SiO2 70〜80%、NaO 12〜16%等)、ジルコンビーズ(ZrO2 69%、SiO2 31%)、ジルコニアビーズ(ZrO2 95%以上)、アルミナ(Al23 90%以上)、チタニア(TiO2 77.7%、Al23 17.4%)、スチールボール等が使用可能であるが、中でも良好な粉砕性を得るためには、ジルコニアビーズ又はジルコンビーズを用いることが好ましい。また粉砕メディアの粒子径(直径)は0.1mm〜3.0mmの範囲において使用可能であるが、中でも0.3〜1.4mmの範囲であることが好ましい。0.1mm以上であると、粉砕機内の負荷を小さくすることができ、発熱によりトナー粒子が溶融してしまい粉砕が困難になることを防ぐことができる。3.0mm以下であると、十分な粉砕を行うことが可能である。分散メディアの充填率は、40〜85質量%であることが好ましい。85質量%以下であると、粉砕機内の負荷を小さくすることができ、発熱によりトナー粒子が溶融してしまい粉砕が困難になることを防ぐことができる。また40質量%以上であると、粉砕効率が向上するため微細化が容易である。またスラリー中のトナー粒子の濃度が高い場合(40〜50質量%の濃度)は充填率を40〜70質量%とするとよい。
湿式粉砕機内部のアジテーターディスクも粉砕性を制御に影響を及ぼす。ディスクの周速は、4〜16m/sであることが好ましい。4m/s以上であると粉砕時間が短縮できる。また、16m/s以下であると粉砕メディア(媒体)の接触による発熱が小さくなり、トナー粒子の融着が防止できる。アジテーターディスクの材質としては、焼入鋼、ステンレススチール、アルミナ、ジルコニア、ポリウレタン、ポリエチレン、エンジニアリングプラスティックなどが挙げられ、中でも、ジルコニアを用いることが好ましい。
また湿式粉砕機内壁のグライディングシリンダーの材質としては、特殊焼入鋼、ステンレススチール、アルミナ、ジルコニア、ZTA、ガラス、ポリエチレン等が挙げられる。中でもZTAと称されるジルコニア強化アルミナセラミックスを用いることが好ましい。
(5)液体現像剤の精製
(4)で得られた湿式粉砕を経たトナー粒子(少なくとも結着樹脂(A)及び着色剤(B)を含有する)、キャリア液(D)、及び高分子分散剤(C)を含んだ材料に、キャリア液(D)、必要に応じてさらに分散剤を加え、混合して、トナー粒子の濃度をコントロールした上で液体現像剤を精製する。高分子分散剤(C)は、(1)〜(5)のいずれの工程で加えてもよいが、(4)工程で得られた材料に、調製用のキャリア液(D)と共に添加することでトナー粒子が安定した状態で分散している液体現像剤を得ることができる。
(液体現像剤物性)
トナー粒子としては、平均粒径(D50)が0.5〜4μmであることが好ましく、1〜3μmがより好ましい。本発明において、粒径は、日機装社製レーザー回折散乱式粒度分析計マイクロトラックHRAを用いて測定したものであり、平均粒径(D50)は累積50パーセント径の値である。
また全トナー粒子に対して2μm以下の粒径を有するトナー粒子が50体積%以下含有され、1〜3μmの粒径を有するトナー粒子が5〜60体積%含有され、5μm以上の粒径を有するトナー粒子が35体積%以下であることが、発色性を得るための現像特性の点からより好ましい。2μm以下の粒径を有するトナー粒子が50体積%以下であると、高分子分散剤(C)のトナー粒子への吸着が高くなり、優れた保存安定性が得られる。さらにはトナー粒子の湿式粉砕において粉砕性が高くなり、液体現像剤の粘度制御が容易になる。5μm以上の粒径を有するトナー粒子が35体積%以下であると、十分な画像濃度が得られる、発色性及び色再現性が向上するといった効果がある。また1〜3μmの粒径を有するトナー粒子が5〜60体積%含有されることが、トナー粒子の分散安定性、長期にわたって優れた保存安定性を得るのに好ましい。
液体現像剤中のトナー粒子の濃度は液体現像剤100質量%に対して、10〜30質量%であることが好ましい。より好ましくは12〜25質量%である。10質量%以上であるとキャリア液(D)の除去が容易であり、トナー粒子の定着性が向上する。30質量%以下であると液体現像剤の粘度が低くなり、トナー粒子の移動性が向上し、十分な画像濃度が得られる。さらには、トナー粒子の凝集が弱くなり、保存安定性が高くなる。
液体現像剤における、高分子分散剤(C)のトナー粒子への高分子分散吸着率は、吸着率=(トナー粒子に吸着した分散剤の量)/(液体トナー中の分散剤含有量)で定義され、次のようにして測定できる。液体現像剤10gを秤量し、日立工機社製遠心機CR22Hにより19,000rpmにて20分間遠心分離を行う。分離した上澄み溶液を1g秤量し、オーブンにて160℃にて1時間かけてキャリア液(D)を揮発さる。残留した高分子分散剤(C)を秤量し、得られた値からトナー粒子への吸着率を算出する。吸着率は50%以上が好ましい。より好ましくは70%以上である。50%を上回ると、トナー粒子の分散安定性が高くなり、長期の保管においても、液体現像剤の平均粒径及び粘度の上昇が起こらず、安定した発色性及び色再現性を得ることができる。高分子分散剤(C)のトナー粒子への吸着率が50%以上とするには、高分子分散剤(C)のアミン価、エチレン性不飽和単量体のアルキル基の炭素数、一般式(1)で表されるアルキレンオキサイド基(AO)の炭素数、及びアルキレンオキサイド基数、及びR2の炭素数を制御する、さらには、それぞれの質量比率を制御すればよい。
また実施形態の液体現像剤の粘度(η)は5〜180mPa・sであることが好ましく、また、液体現像剤の電気抵抗率は1010〜1015Ω・cmであることが好ましい。液体現像剤の粘度(η)は、例えば東機産業社製のE型粘度計TV−22などを用いて測定することができる。液体現像剤中の固形分を25%に調整し、25℃に十分馴染ませた後、TV−22形粘度計に1°34’コーンをセットし、20rpmで1分経過後の粘度を測定して求めることができる。粘度(η)が5mPa・s以上であると現像後の画像の精細性が向上し、180mPa・s以下であると現像時のトナー粒子の移動性が高くなり高速現像が可能となる、十分な画像濃度が得られるといった効果がある。電気抵抗率は前記述べたキャリア液の測定法と同様に測定できる。1010Ω・cm以上であると感光体上の静電潜像の保持が容易になる。
液体現像剤の使用に際し、好ましく用いることのできる現像プロセスは、導電ゴムからなる現像ローラーに液体現像剤を供給し、LED露光されたアモルファスシリコン感光体を用いて転写前除電し、中間転写体を介して現像を行うことが好ましい。また感光体は表面電位+450〜550V、残留電位+50V以下、現像ローラーにかかるバイアスは+250〜450Vの範囲であることが好ましい。
液体現像剤で印刷する印刷基材は、特に限定はないが、一般的に用いられている、上質紙、塗工紙、PETシート、P Pシート、などが挙げられる。塗工紙としては、従来各種の用途で使用されている広汎な塗工紙が全て対象となり、具体的には、例えば、微塗工紙、軽量コート紙、コート紙、アート紙、マットコート紙、キャストコート紙等が挙げられ、これらの厚みや形状は何ら限定されない。特に塗工紙において、本実施形態の液体現像剤を用いることで、良好な画質が得られ、シャープな文字やバーコードを印刷することができる。これらは印刷基材の表面が滑らかであっても、凹凸のついたものであっても良いし、透明、半透明、又は不透明のいずれであっても良い。また、これらの印刷基材の2種以上を互いに張り合わせたものでも良い。更に印字面の反対側に剥離粘着層等を設けても良く、また、印字後、印字面に粘着層等を設けても良い。
液体現像剤で印刷された印刷物は、特に限定はないが、一般的商業用、紙器パッケージ、包装フィルム、シール、ラベル用途などに用いられる。例えば、一般商業用では、上質紙、塗工紙等を用いたカタログ、雑誌などの書籍類又は帳票類、紙器パッケージでは、コート紙、ボール紙等を用いた包装容器又は外箱、包装フィルムでは、PETシート、PPシート等を用いた軟包装容器などが挙げられる。
以下、本発明を実施例によりさらに具体的に説明するが、本発明の態様はこれらの実施例に限定されるものではない。なお以下については、「部」は特に断りのない限り全て「質量部」を表す。
また実施例においては以下に記載する材料を用いて行った。
(結着樹脂の合成例1)
還流冷却器、蒸留等、窒素ガス導入管、温度計、及び撹拌機を備え付けたフラスコに、表1に示す多価アルコールと、多塩基酸、及び、触媒として、ジブチル錫オキサイド2部を投入し、撹拌しながら窒素ガスを導入し、200℃まで加温し、反応系の温度を維持しながら4時間反応させた。さらに、減圧下で1時間反応させた。常圧に戻し、反応系の温度を100℃以下に下げ、重縮合を停止させ、ポリエステル樹脂である結着樹脂1を得た。
ビスフェノールAプロピレンオキサイド付加物:一般式(2)において、R=プロピレン基であり、x=y=2。
ビスフェノールAエチレンオキサイド付加物:一般式(2)において、R=エチレン基であり、x=y=2。
(結着樹脂の合成例2)
得られた結着樹脂1を等量のトルエンに入れて、加熱し溶解させた。撹拌しながら窒素ガスを導入し、トルエンの沸点までさらに加温し、表3に示すスチレン系モノマー、アクリル酸エステル類、更には重合開始剤としてジ−t−ブチルパーオキサイドを含む混合溶液を2時間かけて滴下しながら溶液重合を行った。滴下終了後、さらにトルエンの沸点温度で2時間反応させ、ジ−t−ブチルパーオキサイドを1部添加して重合を停止させた。次に180℃まで加温しトルエンを除去し、ポリエステル樹脂とスチレン−アクリル共重合樹脂を含む結着樹脂2を得た。
(結着樹脂の合成例3)
表2に記載した原料と仕込み量を用いた以外は合成例2と同様にして合成を行い、結着樹脂3を得た。
(結着樹脂の合成例4、5)
表3に記載した原料と仕込み量を用いた以外は合成例1と同様にして合成を行い、結着樹脂4、5を得た。
得られた結着樹脂1〜5の物性値を表4に示す。
(高分子分散剤の合成例1)
窒素ガス導入管、温度計、コンデンサー、及び撹拌機を備え付けた反応容器に、シェルゾールTM(Shell Chemicals社製)90.1部を仕込み、窒素ガスで置換した。反応容器内を110℃に加温して、N,N−ジメチルアミノエチルメタクリレート20.0部、ステアリルメタクリレート80.0部、さらに重合開始剤として2,2’−アゾビス(2−メチルプロピオン酸)ジメチル(V−601(和光純薬製))9.0部を含む混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、さらに110℃で3時間反応させた後、V−601(和光純薬製)0.9部を添加し、さらに110℃で1時間反応を続けて、高分子分散剤1の溶液を得た。高分子分散剤1の重量平均分子量(Mw)は7,000であった。これを1gサンプリングして、180℃で20分間加熱乾燥して不揮発分を測定した。高分子分散剤1の溶液に、高分子分散剤溶液の不揮発分が50質量%になるようにシェルゾールTMを加えた。これより、高分子分散剤1の不揮発分50質量%溶液を得た。
(高分子分散剤の合成例2〜4)
表5に記載した原料と仕込み量を用いた以外は高分子分散剤の合成例1と同様にして合成を行い、高分子分散剤2〜4の溶液を得た。各高分子分散剤のアミン価、及び重量平均分子量は表7に記載の通りであった。
(比較高分子分散剤の合成例1、2)
表6に記載した原料と仕込み量を用いた以外は合成例1と同様にして合成を行い、比較高分子分散剤1〜2の溶液を得た。各高分子分散剤のアミン価、及び重量平均分子量は表7に記載の通りであった。
表中
DM :N,N−ジメチルアミノエチルメタクリレート
AAm :アクリルアミド
STMA :ステアリルメタクリレート
C−1 :一般式(1)のR1=CH3、R2=CH3、n=9、A=エチレン基
BA :ブチルアクリレート
得られた高分子分散剤の物性値を表6に示す。
(着色剤)
シアン着色剤
C.I.ピグメントブルー15:3(銅フタロシアニンブルー)
Lionol Blue FG7919(トーヨーカラー社製)
マゼンタ着色剤
C.I.ピグメントレッド122(キナクリドンマゼンタ)
Hostaperm Pink E(クラリアント社製)
C.I.ピグメントレッド57:1(カーミン6B)
Permanent Rubine L6B(クラリアント社製)
イエロー着色剤
C.I.ピグメントイエロー180(ベンズイミダゾロンイエロー)
Novoperm Yellow P−HG(クラリアント社製)
ブラック着色剤
カーボンブラック
NIPEX150(オリオン・エンジニアドカーボンズデグサ社製)
青色成分として上記C.I.ピグメントブルー15:3を添加
(顔料分散剤)
ソルスパース24000SC 酸価:25mgKOH/g
塩基性樹脂型分散剤(ポリアミン系樹脂)
(キャリア液の炭素級数)
キャリア液は、1H―NMR測定によって、脂肪族炭化水素の第1級〜第3級までの炭素総数の中での割合を導くことができる。1H―NMR測定はすべて、JEOL社製のJNM−ECX400Pを用いて行った(400MHz、溶媒:クロロホルム−d、標準物質:テトラメチルシラン)。具体的には、1H―NMRのケミカルシフトが、0.6〜1.0ppmと、1.0〜1.45ppmと、1.45〜1.8ppmの範囲で積分値を出し、それぞれ第1級、第2級、第3級炭素に結合した水素数と算出され、その総和におけるそれぞれの炭素級数の水素数の割合が算出される。その水素数の割合算出値を、それぞれの級数の炭素に結合する水素数(例えば、第1級なら水素数は3、第2級なら水素数は2、第3級なら水素数は1)で割り、その総和におけるそれぞれの炭素級数の炭素数割合を算出する。
キャリア液(D)について、1H−NMR測定により算出された脂肪族炭化水素の第1級〜第3級までの炭素総数の中での割合、乾点を表7に示す。
C.I.ピグメントブルー15:3
(Lionol Blue FG7919) 18質量部
結着樹脂1 80質量部
ソルスパース24000SC 2質量部
上記材料(合計5kg)を20Lの容積を有するヘンシェルミキサーで混合(3,000rpm、3分)した後、二軸混練押出機(PCM30)で供給量6kg/hr、吐出温度145℃にて溶融混練を行い、更にロール温度140℃の3本ロールにて混練を行った。冷却固化した後ハンマーミルで粗粉砕し、次いでI式ジェットミル(IDS−2型)で微粉砕し平均粒径5.0μmのシアン粉砕品1を得た。
さらに、シアン粉砕品1−−25質量部
シェルゾールTM−−−−−72質量部
高分子分散剤1−−−−−− 3質量部
を秤量し、十分に撹拌、混合し、シェルゾールTM溶液中にシアン粉砕品1を分散させた(スラリー濃度は25質量%)。このシアン粉砕品1を分散させたスラリーを、媒体撹拌式ミルである湿式粉砕機、ダイノーミルマルチラボ(シンマルエンタープライゼス社製、容量1.4L)を用いて循環運転を60分行い、湿式粉砕を行った。
このときの湿式粉砕の条件は以下の通りであった。アジテーターディスク(材質:ジルコニア)周速10m/s、シリンダーZTA、メディア(材質:ジルコニア)直径1.25mm、充填率70%、溶液流量45kg/h、冷却水5L/min、圧力0.1Kg/cm260分間湿式粉砕を行った後、スラリーを取り出し、目開き33μm(SUS304製)のメッシュを通過させ、液体現像剤1C(シアントナー粒子1を含む)を得た。シアントナー粒子1の粒度分布の確認を行ったところ、平均粒径(D50)が2.6μmであった。液体現像剤1Cの粘度(η)は50mPa・sであった。
表4、表6及び表7に示す原料を実施例1と同様の方法を用いて、それぞれトナー粉砕品、及び液体現像剤を作製した。粒径は、日機装社製レーザー回折散乱式粒度分析計マイクロトラックHRAを用いて、溶剤にはエクソールD80(ExxsolTM)(エクソンモービルコーポレーション)を用いて、また、23℃50%RHの環境条件下で測定したものであり、平均粒径(D50)は累積50パーセント径の値である。液体現像剤の粘度(η)は、東機産業社製のE型粘度計TV−22を用いて測定した。液体現像剤中の固形分を25%に調整し、25℃に十分馴染ませた後、TV−22形粘度計に1°34’コーンをセットし、20rpmで1分経過後の粘度を測定して求めた。
実写試験は、市販の液体現像複写機(Savin870:セイビン社製)を改造したものを用いて、23℃/50%RHの環境条件下で、アモルファスシリコン感光体を用い、感光体表面電位を+450〜500V、残留電位+50V以下、現像ローラーのバイアスを+250〜450Vに設定し、初期から3000枚の画像試験を行った。画像濃度及び定着率の評価には、500枚目の画像を用い、耐コールドオフセット性の評価には、2900枚目以降の画像を用いた。また、連続印刷安定性については、500枚目と3000枚目の画像品質を確認した。このとき画像作製は各色単色で出力を行い、紙は王子製紙製OKトップコート、熱圧着は速度30m/min、160℃の条件にて行った。
(画像濃度)
まず、画像濃度はグレタグマクベス濃度計(D−196)にて測定した。ここで、各色の濃度値は、イエローが1.2以上、マゼンタ及びシアンが1.4以上、ブラックが1.6以上の濃度値であれば、実用上好ましい。より好ましくは、イエローが1.3以上、マゼンタ及びシアンが1.5以上、ブラックが1.7以上である。
(画像品質)
画像品質は、10センチx10センチの100%ベタ画像部分について、帯電装置のオゾン発生による感光体等への酸化物の付着による、画像スジの発生を目視にて評価した。
〇:画像スジの発生が無い
△:画像スジが発生している
×:画像スジが多く発生している
(定着率)
定着率は、1センチ×1センチのベタ部分を出力した印字画像を用いて、出力時の画像濃度ID(ID1)を測定した。その後印字物にメンディングテープ(3M社製スコッチ810)を貼り、1kgの円柱状の真鍮錘を転がし1往復させた。その後メンディングテープを取り除き、再び画像濃度ID(ID2)を測定し、(ID2)/(ID1)x100を計算した値を定着率(%)として求めた。ここでは定着率が80%以上であれば実用上好ましく、90%以上であればより好ましいものである。
(耐コールドオフセット性)
耐コールドオフセット性については、上記液体現像複写機にて出力した後、10枚の出力画像を、順に外部定着機にて速度30m/min、ニップ厚6mmで連続して熱圧着させ、10枚目の出力画像を熱圧着した際に、当該10枚目の出力画像(紙)に再転移したトナー像が存在するかを確認した。再転移したトナー像が存在しなくなる温度を、4段階のランクに分け評価を行った。ここでは熱圧着ロール温度が140℃未満であれば、実用上好ましく、120℃未満であればより好ましいものである。
A:熱圧着ロール温度が120℃未満
B:熱圧着ロール温度が120℃以上、140℃未満
C:熱圧着ロール温度が140℃以上、160℃未満
D:熱圧着ロール温度が160℃以上
(保存安定性)
液体現像剤の保存安定性は次のようにして評価した。得られた液体現像剤を25℃50%の恒温恒湿雰囲気下に3ヶ月静置した。静置3ヶ月後の液体現像剤の平均粒径(D50)及び粘度(η)を測定し、試験開始前の値から上昇した割合にて評価した。
平均粒径(D50)
A:試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.1未満
B:試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.1以上1.2未満
C:試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.2以上
ここでは試験後の平均粒径(D50)/試験前の平均粒径(D50)が1.2未満であれば、実用上好ましく、1.1未満であればより好ましいものである。
粘度(η)
A:試験後の粘度(η)/試験前の粘度(η)が1.1未満
B:試験後の粘度(η)/試験前の粘度(η)が1.1以上1.4未満
C:試験後の粘度(η)/試験前の粘度(η)が1.4以上
ここでは試験後の粘度(η)/試験前の粘度(η)が1.4未満であれば、実用上好ましく、1.1未満であればより好ましいものである。
詳細な液体現像剤の物性値及び試験結果を表10に示す。
比較例1では、高分子分散剤(C)が炭素数9〜24のアルキル基を含有する単量体を含まないことから、キャリアへの溶解性、立体反発力が低下し、粉砕性、保存安定性が低下した。比較例2では、高分子分散剤(C)がアミノ基を有するエチレン性不飽和単量体を含まないことから、トナー粒子への吸着力が低下し、粉砕性、保存安定性が低下した。比較例3〜10では、キャリア液(D)の第1級炭素の割合が55%以上でないか、第2級炭素の割合が30%以下でないため、キャリア液(D)がオゾンにより酸化され、画像スジが発生してしまう。これに対して、実施例1〜13の液体現像剤は、画像濃度、定着率、耐コールドオフセット性、保存安定性が良好で、画像スジの発生がなく、連続印刷安定性も優れている。また、実施例5では画像濃度と定着率において、実施例7では粉砕性と保存安定性について、実施例8では粉砕性、画像濃度、定着率、保存安定性に、特に優れている。また、画像濃度、定着性、コールドオフセット性、連続印刷安定性が優れていることで、長期にわたって画像品質の優れた印刷物が得られた。
本発明の実施形態である液体現像剤は、色再現性・発色性などの画像品質、連続印刷安定性、保存安定性に優れ、電子写真法、静電記録法等を利用して画像の形成がなされる電子複写機、プリンター、オンデマンド印刷機等における静電潜像を現像するために用いられる液体現像剤として好ましく用いることができる。

Claims (6)

  1. 少なくとも、結着樹脂(A)、着色剤(B)、高分子分散剤(C)、及びキャリア液(D)からなる液体現像剤であって、
    高分子分散剤(C)が、少なくとも、アミノ基を有するエチレン性不飽和単量体と、炭素数9〜24のアルキル基を含有するエチレン性不飽和単量体とを共重合してなり、
    アミノ基を有するエチレン性不飽和単量体が、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジエチルアミノエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジエチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノスチレン、ジエチルアミノスチレン、tert−ブチルアミノエチル(メタ)アクリレート、および、テトラメチルピペリジニル(メタ)アクリレートからなる群から選ばれる1種以上であり、
    高分子分散剤(C)のアミン価が30〜100mgKOH/gであり
    ャリア液(D)が、脂肪族炭化水素であり、かつ該脂肪族炭化水素の第1級〜第3級の炭素総数に対して、第1級炭素の割合が55%以上であり、第2級炭素の割合が30%以下であり、
    キャリア液(D)の乾点が、240〜320℃であることを特徴とする液体現像剤。
  2. 高分子分散剤(C)の重量平均分子量Mwが、500≦Mw≦40000であり、下記一般式(1)のエチレン性不飽和単量体を含む単量体を共重合してなることを特徴とする請求項に記載の液体現像剤。
    一般式(1)
    CH2=C(R1)COO(AO)n2
    (式中、R1はHまたはCH3、R2は水素または炭素数が1〜22の炭化水素基、nは1〜200の整数、Aは炭素数が2〜4のアルキレン基を表す。)
  3. 結着樹脂(A)の重量平均分子量Mwが、2000≦Mw≦100000であることを特徴とする請求項1または2に記載の液体現像剤。
  4. 結着樹脂(A)が、ポリエステル樹脂とスチレン樹脂、もしくは、アクリル樹脂、もしくは、スチレン−アクリル共重合樹脂からなる群から選ばれる樹脂とを含むことを特徴とする、請求項1〜3いずれかに記載の液体現像剤。
  5. ポリエステル樹脂(a−1)と、スチレン樹脂、もしくは、アクリル樹脂、もしくは、スチレン−アクリル共重合樹脂からなる群から選ばれる樹脂(a−2)との質量比率[(a−2)/(a−1)]が、1以下であることを特徴とする請求項記載の液体現像剤。
  6. 印刷基材に、請求項1〜5いずれかに記載の液体現像剤を印刷することを特徴とする印刷物の製造方法。
JP2014226015A 2014-11-06 2014-11-06 液体現像剤、及び印刷物 Expired - Fee Related JP6424572B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226015A JP6424572B2 (ja) 2014-11-06 2014-11-06 液体現像剤、及び印刷物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226015A JP6424572B2 (ja) 2014-11-06 2014-11-06 液体現像剤、及び印刷物

Publications (2)

Publication Number Publication Date
JP2016090843A JP2016090843A (ja) 2016-05-23
JP6424572B2 true JP6424572B2 (ja) 2018-11-21

Family

ID=56019551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226015A Expired - Fee Related JP6424572B2 (ja) 2014-11-06 2014-11-06 液体現像剤、及び印刷物

Country Status (1)

Country Link
JP (1) JP6424572B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033500A1 (ja) 2015-08-27 2017-03-02 花王株式会社 液体現像剤
JP6512045B2 (ja) * 2015-09-10 2019-05-15 東洋インキScホールディングス株式会社 液体現像剤用高分子分散剤、液体現像剤、及び印刷物
JP6774156B2 (ja) 2016-10-17 2020-10-21 花王株式会社 液体現像剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220813A (ja) * 1995-02-16 1996-08-30 Minolta Co Ltd 電子写真用液体現像剤
JPH08220812A (ja) * 1995-02-16 1996-08-30 Minolta Co Ltd 電子写真用液体現像剤
JPH09218540A (ja) * 1996-02-09 1997-08-19 Nippon Paint Co Ltd 液体現像剤
WO2010106873A1 (ja) * 2009-03-19 2010-09-23 コニカミノルタホールディングス株式会社 湿式現像剤
JP2012058389A (ja) * 2010-09-07 2012-03-22 Konica Minolta Holdings Inc 液体現像剤
JP2012078575A (ja) * 2010-10-01 2012-04-19 Konica Minolta Holdings Inc 液体現像剤
JP2013113972A (ja) * 2011-11-28 2013-06-10 Konica Minolta Business Technologies Inc 液体現像剤
CN104813236B (zh) * 2012-10-17 2019-04-26 东洋油墨Sc控股株式会社 液体显影剂用高分子分散剂、液体显影剂以及印刷物
JP5970674B2 (ja) * 2012-10-31 2016-08-17 東洋インキScホールディングス株式会社 液体現像剤
JP2014132324A (ja) * 2012-12-07 2014-07-17 Toyo Ink Sc Holdings Co Ltd 液体現像剤

Also Published As

Publication number Publication date
JP2016090843A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
JP5971347B2 (ja) 液体現像剤の製造方法
JP5824721B2 (ja) 液体現像剤の製造方法
JP5970674B2 (ja) 液体現像剤
JP2015145985A (ja) 液体現像剤、及び印刷物
JP5870654B2 (ja) 液体現像剤
JP2012185359A (ja) 液体現像剤
JP2016180927A (ja) ブラック液体現像剤、及びそれを用いた印刷物
JP2017134137A (ja) 黒色液体現像剤、及びそれを用いて得られる印刷物
JP2014132324A (ja) 液体現像剤
JP6424572B2 (ja) 液体現像剤、及び印刷物
JP2013205622A (ja) 液体現像剤
JP5975132B1 (ja) 液体現像剤セット、及びそれを用いた印刷物
JP2011027845A (ja) 静電荷像現像用液体現像剤
JP6161772B1 (ja) ホワイト液体現像剤及びその製造方法、またそれを用いた印刷物
JP6512045B2 (ja) 液体現像剤用高分子分散剤、液体現像剤、及び印刷物
JP2013205623A (ja) 液体現像剤
WO2017142065A1 (ja) 液体現像剤、及びそれを用いた印刷物の製造方法
JP6592865B1 (ja) 液体現像剤用高分子分散剤、液体現像剤、及び印刷物
JP2019117300A (ja) 液体現像剤、およびそれを用いた印刷物
JP6248731B2 (ja) 液体現像剤、及び印刷物
JP6248745B2 (ja) 液体現像剤セット、及びそれを用いた印刷物
JP2016142789A (ja) 液体現像剤セット、及びそれを用いた印刷物
JP2015184496A (ja) 液体現像剤、及びそれを用いた印刷物
JP2019211498A (ja) 液体現像剤、及び印刷物
WO2018131422A1 (ja) 液体現像剤、及び印刷物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R151 Written notification of patent or utility model registration

Ref document number: 6424572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees