JP2022039494A - 液体現像剤 - Google Patents

液体現像剤 Download PDF

Info

Publication number
JP2022039494A
JP2022039494A JP2020144553A JP2020144553A JP2022039494A JP 2022039494 A JP2022039494 A JP 2022039494A JP 2020144553 A JP2020144553 A JP 2020144553A JP 2020144553 A JP2020144553 A JP 2020144553A JP 2022039494 A JP2022039494 A JP 2022039494A
Authority
JP
Japan
Prior art keywords
polyester resin
less
mass
resin
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020144553A
Other languages
English (en)
Inventor
優里 南日
Yuri Nannichi
寛 有田
Hiroshi Arita
邦泰 加納
Kunihiro Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2020144553A priority Critical patent/JP2022039494A/ja
Publication of JP2022039494A publication Critical patent/JP2022039494A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】耐擦過性に優れた液体現像剤に関すること。【解決手段】結着樹脂及び着色剤を含有するトナー粒子と絶縁性液体を含有する液体現像剤であって、前記結着樹脂が、非晶質ポリエステル系樹脂APと、エチレングリコールを50モル%以上含有するアルコール成分と炭素数が12以上16以下の長鎖脂肪族ジカルボン酸系化合物を50モル%以上含有するカルボン酸成分との重縮合物である結晶性ポリエステル樹脂CPとを含有する、液体現像剤。【選択図】なし

Description

本発明は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像に用いられる液体現像剤に関する。
液体現像剤に求められる特性の1つに、耐擦過性がある。耐擦過性は、耐摩耗性や定着画像の擦りによる画像の傷や色移りの発生に対して耐久性を有することを意味する。
特許文献1には、低温定着性と保存安定性及び画像堅牢性とを両立する液体現像剤にも用いられるトナー粒子として、共役ジエン及び前記共役ジエンに隣接した電子供与基を含む共役ジエン構造とマレイミド環との間のディールス・アルダー反応により形成された架橋部位を有する架橋樹脂、を含むトナー粒子が開示されている。
特許文献2には、低温定着性および耐熱性に優れ、ドキュメントの耐傷性の低下を防止可能な液体現像剤として、樹脂と着色剤とを含むトナー粒子が絶縁性液体中に分散されてなる液体現像剤であって、前記樹脂がウレタン変性ポリエステル樹脂である第1樹脂と、前記第1樹脂とは異なる第2樹脂とを含む液体現像剤が開示されている。
特開2017-62352号公報 特開2015-60142号公報
本発明は、耐擦過性に優れた液体現像剤に関する。
本発明は、結着樹脂及び着色剤を含有するトナー粒子と絶縁性液体を含有する液体現像剤であって、前記結着樹脂が、非晶質ポリエステル系樹脂APと、エチレングリコールを50モル%以上含有するアルコール成分と炭素数が12以上16以下の長鎖脂肪族ジカルボン酸系化合物を50モル%以上含有するカルボン酸成分との重縮合物である結晶性ポリエステル樹脂CPとを含有する、液体現像剤に関する。
本発明の液体現像剤は、耐擦過性において優れた効果を奏するものである。
本発明の液体現像剤は、結着樹脂及び着色剤を含有するトナー粒子と絶縁性液体を含有し、結着樹脂が非晶質ポリエステル系樹脂APと結晶性ポリエステル樹脂CPとを含有し、該結晶性ポリエステル樹脂CPが、エチレングリコールを50モル%以上含有するアルコール成分と炭素数が12以上16以下の長鎖脂肪族ジカルボン酸系化合物を50モル%以上含有するカルボン酸成分との重縮合物である点に大きな特徴を有するものであり、耐擦過性において優れた効果を奏するものである。
本発明の効果が奏される理由は定かではないが、エチレングリコールを主成分として含有するアルコール成分と炭素数12以上16以下の長鎖脂肪族ジカルボン酸系化合物を主成分として含有するカルボン酸成分との重縮合により得られる結晶性ポリエステル樹脂CPは、結晶性が高く、かつ疎水的である。そのため、非晶質ポリエステル系樹脂と混合しても、高い結晶性を維持することが可能であり、擦過に耐え得る高結晶な塗膜層(画像)が得られるものと推察される。
非晶質ポリエステル系樹脂APは、2価以上のアルコールを含むアルコール成分と2価以上のカルボン酸系化合物を含むカルボン酸成分との重縮合物である非晶質ポリエステル樹脂を含む。
なお、樹脂の結晶性は、軟化点と示差走査熱量計による吸熱の最大ピーク温度との比、即ち[軟化点/吸熱の最大ピーク温度]の値で定義される結晶性指数によって表わされる。結晶性樹脂は、結晶性指数が0.6以上、好ましくは0.7以上、より好ましくは0.9以上であり、そして、1.4以下、好ましくは1.2以下、より好ましくは1.1以下の樹脂である。
一方、非晶質樹脂は、吸熱ピークが観測されないか、観測される場合は、結晶性指数が1.4を超える、好ましくは1.5を超える、より好ましくは1.6以上の樹脂であるか、または、0.6未満、好ましくは0.5以下の樹脂である。
樹脂の結晶性は、原料モノマーの種類とその比率、及び製造条件(例えば、反応温度、反応時間、冷却速度)等により調整することができる。なお、吸熱の最大ピーク温度とは、観測される吸熱ピークのうち、ピーク面積が最大のピークの温度を指す。結晶性樹脂においては、吸熱の最大ピーク温度を融点とする。
2価のアルコールとしては、例えば、脂肪族ジオール、好ましくは炭素数2以上20以下、より好ましくは炭素数2以上15以下の脂肪族ジオールや、式(I):
Figure 2022039494000001
(式中、OR及びROはオキシアルキレン基であり、Rはエチレン基及び/又はプロピレン基であり、x及びyはアルキレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、xとyの和の値は、1以上、好ましくは1.5以上であり、そして、16以下、好ましくは8以下、より好ましくは6以下、さらに好ましくは4以下である)
で表されるビスフェノールAのアルキレンオキサイド付加物、ビスフェノールA、水素添加ビスフェノールA等が挙げられる。脂肪族ジオールとして、具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等が挙げられる。
アルコール成分としては、トナーの耐久性の観点から、式(I)で表されるビスフェノールAのアルキレンオキサイド付加物が好ましい。式(I)で表されるビスフェノールAのアルキレンオキサイド付加物の含有量は、アルコール成分中、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、さらに好ましくは95モル%以上、さらに好ましくは100モル%である。
2価のカルボン酸系化合物としては、例えば、炭素数3以上30以下、好ましくは炭素数3以上20以下、より好ましくは炭素数3以上10以下のジカルボン酸、それらの無水物、又はアルキル基の炭素数が1以上3以下のアルキルエステル等の誘導体等が挙げられる。ジカルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸や、フマル酸、マレイン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、炭素数1以上20以下のアルキル基又は炭素数2以上20以下のアルケニル基で置換されたコハク酸等の脂肪族ジカルボン酸等が挙げられる。
3価以上のカルボン酸系化合物としては、例えば、炭素数4以上20以下、好ましくは炭素数6以上20以下の3価以上のカルボン酸、それらの無水物、又はアルキル基の炭素数が1以上3以下のアルキルエステル等の誘導体等が挙げられる。具体的には、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、1,2,4,5-ベンゼンテトラカルボン酸(ピロメリット酸)、又はそれらの酸無水物等が挙げられる。
3価以上のカルボン酸系化合物の含有量は、トナー粒子への塩基性分散剤の吸着性の観点から、好ましくは1モル%以上、より好ましくは5モル%以上、さらに好ましくは10モル%以下であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは30モル%以下、より好ましくは25モル%以下、さらに好ましくは20モル%以下である。
なお、アルコール成分には1価のアルコールが、カルボン酸成分には1価のカルボン酸系化合物が、ポリエステル樹脂の分子量及び軟化点を調整する観点から、適宜含有されていてもよい。
非晶質ポリエステル樹脂におけるカルボン酸成分とアルコール成分との当量比(COOH基/OH基)は、ポリエステル樹脂の軟化点を調整する観点から、好ましくは0.6以上、より好ましくは0.7以上、さらに好ましくは0.75以上であり、そして、好ましくは1.2以下、より好ましくは1.15以下である。
非晶質ポリエステル樹脂は、例えば、アルコール成分とカルボン酸成分とを不活性ガス雰囲気中、好ましくはエステル化触媒の存在下、さらに必要に応じて、エステル化助触媒、重合禁止剤等の存在下、好ましくは130℃以上、より好ましくは170℃以上、そして、好ましくは250℃以下、より好ましくは240℃以下の温度で重縮合させて製造することができる。
エステル化触媒としては、酸化ジブチル錫、2-エチルヘキサン酸錫(II)等の錫化合物、チタンジイソプロピレートビストリエタノールアミネート等のチタン化合物等が挙げられ、錫化合物が好ましい。エステル化触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、そして、好ましくは1.5質量部以下、より好ましくは1質量部以下である。エステル化助触媒としては、没食子酸等が挙げられる。エステル化助触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、そして、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。重合禁止剤としては、tert-ブチルカテコール等が挙げられる。重合禁止剤の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、そして、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。
なお、本発明において、非晶質ポリエステル樹脂は、実質的にその特性を損なわない程度に変性されたポリエステル樹脂であってもよい。変性されたポリエステル樹脂としては、例えば、特開平11-133668号公報、特開平10-239903号公報、特開平8-20636号公報等に記載の方法によりフェノール、ウレタン、エポキシ等によりグラフト化やブロック化したポリエステル樹脂が挙げられる。
本発明において、非晶質ポリエステル系樹脂は、トナー粒子の分散安定性及び粉砕性の観点から、2価以上のアルコールを含むアルコール成分と2価以上のカルボン酸系化合物を含むカルボン酸成分との重縮合物である非晶質ポリエステル樹脂とスチレン系樹脂とを有する非晶質複合樹脂であることが好ましい。
スチレン系樹脂は、少なくとも、スチレン、又はα-メチルスチレン、ビニルトルエン等のスチレン誘導体(以下、スチレンとスチレン誘導体をまとめて「スチレン化合物」という)を含む原料モノマーの付加重合体である。
スチレン化合物、好ましくはスチレンの含有量は、スチレン系樹脂の原料モノマー中、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは100質量%である。
スチレン系樹脂の原料モノマーには、スチレン化合物以外の原料モノマー、例えば、(メタ)アクリル酸アルキルエステル;エチレン、プロピレン等のエチレン性不飽和モノオレフィン類;ブタジエン等のジオレフィン類;塩化ビニル等のハロビニル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;(メタ)アクリル酸アルキルエステル(メタ)アクリル酸ジメチルアミノエチル等のエチレン性モノカルボン酸エステル;メチルビニルエーテル等のビニルエーテル類;ビニリデンクロリド等のビニリデンハロゲン化物;N-ビニルピロリドン等のN-ビニル化合物類等が含まれていてもよい。
スチレン系樹脂の原料モノマーの付加重合反応は、例えば、ジブチルパーオキサイド等の重合開始剤、重合禁止剤、架橋剤等の存在下、有機溶媒存在下又は無溶媒下で行うことができるが、温度条件としては、好ましくは110℃以上、より好ましくは140℃以上であり、そして、好ましくは200℃以下、より好ましくは170℃以下である。
付加重合反応の際に有機溶媒を使用する場合、キシレン、トルエン、メチルエチルケトン、アセトン等を用いることができる。有機溶媒の使用量は、スチレン系樹脂の原料モノマー100質量部に対して、10質量部以上50質量部以下が好ましい。
本発明において、複合樹脂は、粉砕性の観点から、非晶質ポリエステル樹脂の原料モノマー及びスチレン系樹脂の原料モノマーのいずれとも反応し得る、両反応性モノマーを介して非晶質ポリエステル樹脂とスチレン系樹脂が化学結合した樹脂が好ましい。
両反応性モノマーは、分子内に、水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基からなる群より選ばれた少なくとも1種の官能基、好ましくは水酸基及び/又はカルボキシ基、より好ましくはカルボキシ基と、エチレン性不飽和結合とを有する化合物が好ましく、アクリル酸、メタクリル酸、フマル酸、マレイン酸及び無水マレイン酸からなる群より選ばれた少なくとも1種がより好ましく、重縮合反応及び付加重合反応の反応性の観点から、アクリル酸、メタクリル酸及びフマル酸からなる群より選ばれた少なくとも1種がさらに好ましい。但し、重合禁止剤と共に用いた場合は、フマル酸等のエチレン性不飽和結合を有する多価カルボン酸系化合物は、非晶質ポリエステル樹脂の原料モノマーとして機能する。この場合、フマル酸等は両反応性モノマーではなく、非晶質ポリエステル樹脂の原料モノマーである。
両反応性モノマーの使用量は、非晶質ポリエステル樹脂のアルコール成分の合計100モルに対して、スチレン系樹脂と非晶質ポリエステル樹脂との分散性を高め、トナーの耐久性を向上させる観点から、好ましくは1モル以上、より好ましくは2モル以上であり、そして、低温定着性の観点から、好ましくは30モル以下、より好ましくは20モル以下、さらに好ましくは10モル以下である。
また、両反応性モノマーの使用量は、スチレン系樹脂の原料モノマーの合計100質量部に対して、スチレン系樹脂と非晶質ポリエステル樹脂との分散性を高め、トナーの耐久性を向上させる観点から、好ましくは1質量部以上、より好ましくは2質量部以上であり、そして、低温定着性の観点から、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは15質量部以下である。ここで、スチレン系樹脂の原料モノマーの合計には重合開始剤を含める。
両反応性モノマーを用いて得られる複合樹脂は、具体的には、以下の方法により製造することが好ましい。両反応性モノマーは、トナーの耐久性を向上させる観点、トナーの低温定着性及び耐熱保存性を向上させる観点から、スチレン系樹脂の原料モノマーとともに付加重合反応に用いることが好ましい。
(i) 非晶質ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)の後に、スチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)を行う方法
この方法では、重縮合反応に適した反応温度条件下で工程(A)を行い、反応温度を低下させ、付加重合反応に適した温度条件下で工程(B)を行う。スチレン系樹脂の原料モノマー及び両反応性モノマーは、付加重合反応に適した温度で反応系内に添加することが好ましい。両反応性モノマーは付加重合反応すると共に非晶質ポリエステル樹脂とも反応する。
工程(B)の後に、再度反応温度を上昇させ、必要に応じて架橋剤となる3価以上の非晶質ポリエステル樹脂の原料モノマー等を反応系に添加し、工程(A)の重縮合反応や両反応性モノマーとの反応をさらに進めることができる。
(ii) スチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)の後に、非晶質ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)を行う方法
この方法では、付加重合反応に適した反応温度条件下で工程(B)を行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、工程(A)の重縮合反応を行う。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
非晶質ポリエステル樹脂の原料モノマーは、付加重合反応時に反応系内に存在してもよく、重縮合反応に適した温度条件下で反応系内に添加してもよい。前者の場合は、重縮合反応に適した温度でエステル化触媒を添加することで重縮合反応の進行を調節できる。
(iii) 非晶質ポリエステル樹脂の原料モノマーによる重縮合反応の工程(A)とスチレン系樹脂の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)とを、並行して進行する条件で反応を行う方法
この方法では、付加重合反応に適した反応温度条件下で工程(A)と工程(B)とを並行して行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、必要に応じて架橋剤となる3価以上の非晶質ポリエステル樹脂の原料モノマーを重合系に添加し、工程(A)の重縮合反応をさらに行うことが好ましい。その際、重縮合反応に適した温度条件下では、ラジカル重合禁止剤を添加して重縮合反応だけを進めることもできる。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
上記(i)の方法においては、重縮合反応を行う工程(A)の代わりに、予め重合した非晶質ポリエステル樹脂を用いてもよい。上記(iii)の方法において、工程(A)と工程(B)を並行して進行する際には、非晶質ポリエステル樹脂の原料モノマーを含有した混合物中に、スチレン系樹脂の原料モノマーを含有した混合物を滴下して反応させることもできる。
上記(i)~(iii)の方法は、同一容器内で行うことが好ましい。
複合樹脂におけるスチレン系樹脂と非晶質ポリエステル樹脂の質量比(スチレン系樹脂/非晶質ポリエステル樹脂)は、トナー粒子の粉砕性の観点から、好ましくは3/97以上、より好ましくは5/95以上であり、そして、好ましくは45/55以下、より好ましくは40/60以下、さらに好ましくは35/65以下、さらに好ましくは30/70以下、さらに好ましくは25/75以下である。なお、上記の計算において、ポリエステル樹脂の質量は、用いられるポリエステル樹脂の原料モノマーと両反応性モノマーの合計量である。また、スチレン系樹脂の量は、スチレン系樹脂の原料モノマーと重合開始剤の合計量である。
また、本発明において、非晶質ポリエステル樹脂は、アルコール成分由来の構成単位と、炭素数3以上18以下のα-オレフィン重合体の酸変性物Aを含むカルボン酸成分由来の構成単位とを有するポリエステル樹脂であってもよい。かかるポリエステル樹脂は、自己分散型の樹脂であるため、実質的に分散剤を用いていなくても、絶縁性液体中にトナー粒子を分散させることができる。アルコール成分と酸変性物以外のカルボン酸成分としては、前記の非晶質ポリエステル樹脂と同様のものを例示できる。
炭素数3以上18以下のα-オレフィン重合体としては、ポリプロピレン系重合体、ポリイソブテン系重合体、ポリ1-ブテン系重合体、ポリ1-ペンテン系重合体、ポリ1-ヘキセン系重合体、ポリ1-オクテン系重合体、ポリ4-メチルペンテン系重合体、ポリ1-ドデセン系重合体、ポリ1-ヘキサデセン系重合体、又はプロピレン-ヘキセン共重合体等が挙げられ、これらの中では、ポリイソブテン系重合体が好ましい。前記α-オレフィン重合体は、前記α-オレフィンの単独重合体であってもよく、前記α-オレフィンから選ばれる2種以上の共重合体であってもよく、前記α-オレフィンとその他のオレフィンとの共重合体であってもよい。また、共重合体は、ランダム共重合体、ブロック共重合体のいずれであってもよい。
ポリイソブテン系重合体としては、ポリイソブテン、イソブテンとその他オレフィンとの共重合体が挙げられる。その他のオレフィンとしては、エチレン、ブテン、ペンテン、ヘキセン、2-エチルヘキセン等が挙げられる。共重合体である場合、イソブテンの割合は、好ましくは60質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、そして、100質量%未満である。
一方、酸変性物としては、反応性の観点から、炭素数3以上18以下のα-オレフィン重合体が、マレイン酸、フマル酸、イタコン酸、及びこれらの酸の無水物からなる群より選ばれた少なくとも1種の酸により変性された酸変性物が好ましく、無水マレイン酸で変性された酸変性物がより好ましい。また、酸変性物としては、前記α-オレフィン重合体に酸がランダムにグラフトされ変性されたランダムグラフト型の酸変性物や、前記α-オレフィン重合体の末端が酸により変性された末端変性型の酸変性物等が挙げられるが、本発明では、低温定着性及び保存性の観点から、末端変性型の酸変性物が好ましく、炭素数3以上18以下のα-オレフィン重合体の片末端が酸により変性された片末端変性型の酸変性物がより好ましい。
ランダムグラフト型の酸変性物は、好ましくは重合体1分子中に1個以上の酸がグラフト化され変性されている。酸によって変性されているかは、一般的なスペクトル測定によって規定できる。例えば、無水マレイン酸によるランダムグラフト型酸変性物の場合、無水マレイン酸によって変性されると、無水マレイン酸の二重結合が単結合に変化するのでそのスペクトル変化を測定することで規定できる。
ランダムグラフト変性型の酸変性物は、例えば、α-オレフィン重合体の分子内にラジカルを発生させ、不飽和結合を有するカルボン酸化合物又はその無水物と反応させることで得られる。
末端変性型の酸変性物は、好ましくは重合体1分子中に1個(片末端)又は2個(両末端)酸によって変性される。酸によって変性されているかは、一般的なスペクトル測定によって規定できる。例えば、無水マレイン酸による片末端型酸変性物の場合、無水マレイン酸によって変性されると、無水マレイン酸の二重結合が単結合に変化するのでそのスペクトル変化を測定することで規定できる。またα-オレフィンの重合体側の被連結部分も結合前後でスペクトル変化を起こすのでこれを測定することで規定できる。
片末端型の酸変性物は、例えば、片末端に不飽和結合を有する前記α-オレフィン重合体に、酸をEne反応させることで得られる。片末端に不飽和結合を有する前記α-オレフィン重合体は、公知の方法により得られるが、例えば、バナジウム系触媒、チタン系触媒、ジルコニウム系触媒等を用いて製造することができる。
以上より、α-オレフィン重合体の酸変性物としては、片末端が無水マレイン酸で変性されたポリイソブテン無水コハク酸が好ましい。
酸変性物の重量平均分子量は、保存性の観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは900以上、さらに好ましくは1,100以上であり、そして、低温定着性の観点から、好ましくは5,000以下、より好ましくは4,000以下、さらに好ましくは3,000以下である。
酸変性物の含有量は、アルコール成分と酸変性物以外のカルボン酸成分の合計量100質量部に対して、帯電の立ち上がり及び吸湿性の観点から、好ましくは3質量部以上、より好ましくは4質量部以上、さらに好ましくは7質量部以上、さらに好ましくは9質量部以上、さらに好ましくは10質量部以上、さらに好ましくは15質量部以上、さらに好ましくは20質量部以上であり、そして、保存性の観点から、好ましくは40質量部以下、より好ましくは30質量部以下、さらに好ましくは25質量部以下である。
非晶質ポリエステル系樹脂APの軟化点は、保存安定性の観点から、好ましくは90℃以上、より好ましくは100℃以上であり、そして、低温定着性の観点から、好ましくは150℃以下、より好ましくは140℃以下である。
非晶質ポリエステル系樹脂APのガラス転移温度は、保存安定性の観点から、好ましくは40℃以上、より好ましくは50℃以上であり、そして、低温定着性の観点から、好ましくは80℃以下、より好ましくは70℃以下、さらに好ましくは65℃以下である。
非晶質ポリエステル系樹脂APの酸価は、トナーの帯電性を向上させる観点から、好ましくは2mgKOH/g以上、より好ましくは5mgKOH/g以上、さらに好ましくは10mgKOH/g以上であり、そして、トナーの分散安定性を向上させ保存安定性を向上させる観点から、好ましくは70mgKOH/g以下、より好ましくは50mgKOH/g以下、さらに好ましくは40mgKOH/g以下、さらに好ましくは30mgKOH/g以下である。
非晶質ポリエステル系樹脂APのSP値は、結晶性ポリエステル樹脂CPとの相溶性を適度に制御する観点から、好ましくは10.60以上、より好ましくは10.80以上、さらに好ましくは11.00以上であり、そして、好ましくは11.70以下、より好ましくは11.50以下、さらに好ましくは11.30以下である。SP値は、原料モノマーの種類とその比率等により調整することができる。
本発明において、SP値とは、Fedorsの方法による溶解度パラメータを意味し、〔Robert F. Fedors, Polymer Engineering and Science, 14, 147-154 (1974)〕に記載された下記の式に基づいて求められた値δである。
Fedorsの式:δ=(ΣΔei/ΣΔvi)1/2
〔単位:(cal/cm31/2
〔ここで、Δei:原子及び原子団の蒸発エネルギー(cal/mol)、Δvi:モル体積(cm3/mol)である。〕
結晶性ポリエステル樹脂CPは、エチレングリコールを50モル%以上含有するアルコール成分と炭素数が12以上16以下の長鎖脂肪族ジカルボン酸系化合物を50モル%以上含有するカルボン酸成分との重縮合物である。
エチレングリコールの含有量は、アルコール成分中、50モル%以上であり、好ましくは70モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、さらに好ましくは100モル%である。
エチレングリコール以外のアルコール成分としては、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、ネオペンチルグリコール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等の脂肪族ジオール、ビスフェノールAのアルキレンオキサイド付加物等の芳香族ジオール、ソルビトール、ペンタエリスリトール、グリセリン、トリメチロールプロパン等の3価以上のアルコール等が挙げられる。
長鎖脂肪族ジカルボン酸系化合物としては、ドデカン二酸(炭素数:12)、テトラデカン二酸(炭素数:14)、ヘキサデカン二酸(炭素数:16)、これらの酸の無水物、これらの酸の炭素数1以上3以下のアルキルエステル等が挙げられる。
長鎖脂肪族ジカルボン酸系化合物の炭素数は、疎水性の観点から、12以上であり、好ましくは13以上、より好ましくは14以上であり、そして、低温定着性の観点から、16以下である。
長鎖脂肪族ジカルボン酸系化合物の含有量は、カルボン酸成分中、50モル%以上であり、好ましくは70モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、さらに好ましくは100モル%である。
長鎖脂肪族ジカルボン酸系化合物以外のカルボン酸成分としては、炭素数11以下の脂肪族ジカルボン酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸、トリメリット酸、ピロメリット酸等の3価以上のカルボン酸、これらの酸の無水物、これらの酸の炭素数1以上3以下のアルキルエステル等が挙げられる。
結晶性ポリエステル樹脂CPのカルボン酸成分とアルコール成分の当量比(COOH基/OH基)は、保存性の観点から、好ましくは0.8以上、より好ましくは0.9以上であり、そして、低温定着性の観点から、好ましくは1.2以下、より好ましくは1.1以下である。
アルコール成分とカルボン酸成分との重縮合反応条件は、好適な反応温度が135℃以上210℃以下であること以外は、前記非晶質ポリエステル樹脂の反応条件の同様である。
結晶性ポリエステル樹脂CPの軟化点は、保存安定性の観点から、好ましくは50℃以上、より好ましくは65℃以上、さらに好ましくは70℃以上であり、そして、低温定着性の観点から、好ましくは120℃以下、より好ましくは110℃以下である。
結晶性ポリエステル樹脂CPの融点は、耐擦過性の観点から、好ましくは70℃以上、より好ましくは80℃以上であり、さらに好ましくは85℃以上、さらに好ましくは90℃以上であり、そして、低温定着性の観点から、好ましくは120℃以下、より好ましくは110℃以下である。得られるトナー粒子の融点(吸熱の最大ピーク温度)は、結晶性ポリエステル樹脂CPの融点よりも高くなるため、トナー粒子の融点が定着温度以上となるような融点の高い結晶性ポリエステル樹脂を選択することで、定着後も高い結晶性を維持することが可能であり、さらに耐擦過性が向上する。
結晶性ポリエステル樹脂CPのSP値は、非晶質ポリエステル樹脂との相溶性を適度に制御する観点から、好ましくは9.70以上、より好ましくは9.80以上であり、そして、好ましくは10.20以下、より好ましくは10.10以下、さらに好ましくは9.90以下である。SP値は、原料モノマーの種類とその比率等により調整することができる。
また、結晶性ポリエステル樹脂CPと非晶質ポリエステル樹脂のSP値の差は、好ましくは0.90以上、より好ましくは1.10以上、さらに好ましくは1.10以上、さらに好ましくは1.15以上、さらに好ましくは1.20以上であり、そして、好ましくは1.50以下、より好ましくは1.30以下、さらに好ましくは1.25以下である。非晶質ポリエステル樹脂とSP値が適度に離れていることで、両者の相溶性を適度に制御することができ、高結晶な塗膜層(画像)を得ることができる。
結晶性ポリエステル樹脂CPと非晶質ポリエステル系樹脂APの質量比(結晶性ポリエステル樹脂CP/非晶質ポリエステル系樹脂AP)は、耐擦過性の観点から、好ましくは10/90以上であり、そして、好ましくは60/40以下、より好ましくは50/50以下、さらに好ましくは40/60以下である。
結晶性ポリエステル樹脂CPと非晶質ポリエステル系樹脂APの総含有量は、結着樹脂中、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは100質量%である。結晶性ポリエステル樹脂CPと非晶質ポリエステル系樹脂AP以外の樹脂としては、例えば、ポリスチレン、スチレン-プロピレン共重合体、スチレン-ブタジエン共重合体、スチレン-塩化ビニル共重合体、スチレン-酢酸ビニル共重合体、スチレン-マレイン酸共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体等のスチレンもしくはスチレン置換体を含む単重合体又は共重合体であるスチレン系樹脂、エポキシ系樹脂、ロジン変性マレイン酸樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、フェノール系樹脂、ポリアミド樹脂、脂肪族又は脂環式炭化水素樹脂等が挙げられる。
結着樹脂の含有量は、トナー粒子中、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上、さらに好ましくは70質量%以上であり、そして、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下である。
着色剤としては、トナー用着色剤として用いられている染料、顔料等を使用することができる。例えば、カーボンブラック、フタロシアニンブルー、パーマネントブラウンFG、ブリリアントファーストスカーレット、ピグメントグリーンB、ローダミン-Bベース、ソルベントレッド49、ソルベントレッド146、ソルベントブルー35、キナクリドン、カーミン6B、イソインドリン、ジスアゾエロー等が挙げられる。なお、本発明において、トナー粒子は、黒トナー、カラートナーのいずれであってもよい。
着色剤の含有量は、画像濃度を向上させる観点から、結着樹脂100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、さらに好ましくは15質量部以上であり、そして、トナーの粉砕性を向上させて小粒径にできる観点、低温定着性を向上させる観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、結着樹脂100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、さらに好ましくは50質量部以下、さらに好ましくは30質量部以下である。
トナー粒子の製造方法としては、結着樹脂及び着色剤を含有するトナー原料を溶融混練し、得られた溶融混練物を粉砕して得る方法等が挙げられる。現像性及び定着性を向上させる観点から、トナー原料を溶融混練した後に粉砕する方法が好ましい。
先ず、結着樹脂、着色剤、必要に応じて用いる添加剤等を含有するトナー原料は、あらかじめヘンシェルミキサー、スーパーミキサー、ボールミル等の混合機で混合した後、混練機に供給することが好ましく、結着樹脂中での着色剤等の分散性を向上させる観点から、ヘンシェルミキサーがより好ましい。
ヘンシェルミキサーでの混合は、攪拌の周速度、及び攪拌時間を調整しながら行う。周速度は、着色剤等の分散性を向上させる観点から、好ましくは10m/sec以上30m/sec以下である。また、攪拌時間は、着色剤等の分散性を向上させる観点から、好ましくは1分以上10分以下である。
次いで、トナー原料の溶融混練は、密閉式ニーダー、一軸もしくは二軸の混練機、連続式オープンロール型混練機等の公知の混練機を用いて行うことができる。本発明においては、着色剤等の分散性を向上させる観点、及び粉砕後のトナー粒子の収率を向上させる観点から、オープンロール型混練機が好ましい。
オープンロール型混練機とは、溶融混練部が密閉されておらず開放されているものをいい、溶融混練の際に発生する混練熱を容易に放熱することができる。本発明で使用するオープンロール型混練機は、ロールの軸方向に沿って設けられた複数の原料供給口と混練物排出口を備えており、生産効率の観点から、連続式オープンロール型混練機であることが好ましい。
次いで、溶融混練物を粉砕が可能な程度に冷却した後、粉砕工程、及び必要に応じて分級工程等を経て、トナー粒子を得ることができる。
粉砕工程は、多段階に分けてもよい。例えば、溶融混練物を、約1~5mmに粗粉砕した後、さらに微粉砕してもよい。また、粉砕工程時の生産性を向上させるために、溶融混練物を疎水性シリカ等の無機微粒子と混合した後、粉砕してもよい。
粗粉砕に好適に用いられる粉砕機としては、例えば、アトマイザー、ロートプレックス等が挙げられるが、ハンマーミル等を用いてもよい。また、微粉砕に好適に用いられる粉砕機としては、流動層式ジェットミル、気流式ジェットミル、機械式ミル等が挙げられる。
分級工程に用いられる分級機としては、気流式分級機、慣性式分級機、篩式分級機等が挙げられる。なお、必要に応じて粉砕工程と分級工程とを繰り返してもよい。
この工程で得られるトナー粒子の体積中位粒径(D50)は、後述の湿式粉砕工程の生産性を向上させる観点から、好ましくは3μm以上、より好ましくは4μm以上であり、そして、好ましくは15μm以下、より好ましくは12μm以下である。なお、体積中位粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。なお、トナー粒子は、分散剤及び絶縁性液体と混合後、湿式粉砕等によりさらに微細化されることが好ましい。
湿式粉砕に供するトナー粒子の含有量は、絶縁性液体100質量部に対して、高速印刷性の観点から、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは30質量部以上、さらに好ましくは40質量部以上、さらに好ましくは50質量部以上であり、そして、分散安定性の向上の観点から、好ましくは100質量部以下、より好ましくは80質量部以下、さらに好ましくは70質量部以下、さらに好ましくは60質量部以下である。
本発明の液体現像剤は、さらに、分散剤を含有していてもよく、分散剤としては、ポリエステル系樹脂への吸着性が高い観点から、塩基性窒素含有基を有する塩基性分散剤が好ましい。塩基性窒素含有基としては、アミノ基(-NH2、-NHR、-NHRR’)、アミド基(-C(=O)-NRR’)、イミド基(-N(COR)2)、ニトロ基(-NO2)、イミノ基(=NH)、シアノ基(-CN)、アゾ基(-N=N-)、ジアゾ基(=N2)、及びアジ基(-N3)からなる群より選ばれた少なくとも1種が好ましい。ここで、R、R’は炭素数1~5の炭化水素基を表す。分散剤のトナー粒子への吸着性の観点からは、アミノ基及び/又はイミノ基が好ましく、トナー粒子の帯電性の観点からは、イミノ基がより好ましい。
塩基性窒素含有基以外に含まれる官能基としては、例えば、ヒドロキシ基、ホルミル基、アセタール基、オキシム基、チオール基等が挙げられる。
塩基性分散剤における塩基性窒素含有基の占める割合は、分散安定性の観点から、ヘテロ原子の個数換算で、好ましくは70個数%以上、より好ましくは80個数%以上、さらに好ましくは90個数%以上、さらに好ましくは95個数%以上、さらに好ましくは100個数%である。
塩基性分散剤は、液体現像剤の分散性の観点から、炭素数16以上の炭化水素、ハロゲン原子で一部置換された炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上の炭化水素、炭素数16以上のヒドロキシカルボン酸の重合体、炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体、炭素数16以上のアルキル(メタ)アクリレートの重合体、ポリオレフィン等に由来する基(以下、「分散性基」ともいう)を含んでいることが好ましい。
炭素数16以上の炭化水素としては、炭素数16以上24以下の炭化水素が好ましく、例えば、ヘキサデセン、オクタデセン、エイコサン、ドコサン等が挙げられる。
ハロゲン原子で一部置換された炭素数16以上の炭化水素としては、ハロゲン原子で一部置換された炭素数16以上24以下の炭化水素が好ましく、例えば、クロロヘキサデカン、ブロモヘキサデカン、クロロオクタデカン、ブロモオクタデカン、クロロエイコサン、ブロモエイコサン、クロロドコサン、ブロモドコサン等が挙げられる。
反応性の官能基を有する炭素数16以上の炭化水素としては、反応性の官能基を有する炭素数16以上24以下の炭化水素が好ましく、例えば、ヘキサデセニルコハク酸、オクタデセニルコハク酸、エイコセニルコハク酸、ドコセニルコハク酸、ヘキサデシルグリシジルエーテル、オクタデシルグリシジルエーテル、エイコシルグリシジルエーテル、ドコシルグリシジルエーテル等が挙げられる。
炭素数16以上のヒドロキシカルボン酸の重合体としては、炭素数16以上24以下のヒドロキシカルボン酸の重合体が好ましく、例えば、18-ヒドロキシステアリン酸の重合体等が挙げられる。
炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体としては、例えば、エチレングリコールとセバシン酸の重合体、1,4-ブタンジオールとフマル酸の重合体、1,6-ヘキサンジオールとフマル酸の重合体、1,10-デカンジオールとセバシン酸の重合体、1,12-ドデカンジオールと1,12-ドデカン二酸の重合体等が挙げられる。
炭素数16以上のアルキル(メタ)アクリレートの重合体としては、炭素数16以上24以下のアルキル(メタ)アクリレートの重合体が好ましく、例えば、ヘキサデシルメタクリレートの重合体、オクタデシルメタクリレートの重合体、ドコシルメタクリレートの重合体等が挙げられる。
ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリイソブテン、ポリメチルペンテン、ポリテトラデセン、ポリヘキサデセン、ポリオクタデセン、ポリエイコセン、ポリドコセン等が挙げられる。
塩基性分散剤は、トナー粒子の分散性の観点から、ポリオレフィン骨格を有することが好ましく、ポリプロピレン骨格及び/又はポリイソブテン骨格を有することがより好ましく、分散剤の絶縁性液体への溶解性の観点から、ポリイソブテン骨格を有することがさらに好ましい。従って、前記分散性基のなかでは、ポリオレフィンに由来する基が好ましく、ポリプロピレンに由来する基及び/又はポリイソブテンに由来する基がより好ましく、ポリイソブテンに由来する基がさらに好ましい。
塩基性分散剤は、特に限定されるものではないが、例えば、塩基性窒素含有基原料と分散性基原料とを反応させて得られる。
塩基性窒素含有基原料としては、ポリエチレンイミン等のポリアルキレンイミン、ポリアリルアミン、ポリジメチルアミノエチルメタクリレート等のポリアミノアルキルメタクリレート等が挙げられる。
塩基性窒素含有基原料の数平均分子量は、ポリエステル系樹脂の有する樹脂への吸着性の観点から、好ましくは100以上、より好ましくは500以上、さらに好ましくは1,000以上であり、そして、トナー粒子の分散性の観点から、好ましくは15,000以下、より好ましくは10,000以下、さらに好ましくは5,000以下である。
分散性基原料としては、ハロゲン化された炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上の炭化水素、炭素数16以上のヒドロキシカルボン酸の重合体、炭素数2以上22以下の二塩基酸と炭素数2以上22以下のジオールの重合体、反応性の官能基を有する炭素数16以上のアルキル(メタ)アクリレートの重合体、反応性の官能基を有するポリオレフィン等が挙げられる。これらのなかでは、原料の入手性及び反応性の観点から、ハロゲン化された炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上の炭化水素、反応性の官能基を有する炭素数16以上24以下のアルキル(メタ)アクリレートの重合体、又は反応性の官能基を有するポリオレフィンが好ましい。反応性の官能基としては、カルボキシ基、エポキシ基、ホルミル基、イソシアネート基等が挙げられ、これらの中では、安全性及び反応性の観点から、カルボキシ基又はエポキシ基が好ましい。従って、反応性の官能基を有する化合物としては、カルボン酸系化合物が好ましい。カルボン酸系化合物としては、フマル酸、マレイン酸、エタン酸、プロパン酸、ブタン酸、コハク酸、シュウ酸、マロン酸、酒石酸、それらの無水物、又はそれらの炭素数1以上3以下のアルキルエステル等が挙げられる。分散性基原料の具体例としては、クロロオクタデカン等のハロゲン化アルカン、エポキシ変性されたポリオクタデシルメタクリレート、ポリエチレン無水コハク酸、塩素化ポリプロピレン、ポリプロピレン無水コハク酸、ポリイソブテン無水コハク酸等が挙げられる。
分散性基原料におけるポリオレフィン骨格を有する化合物の含有量は、トナー粒子の分散性の観点から、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは100質量%である。
分散性基原料の数平均分子量は、トナー粒子の分散性の観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは900以上であり、そして、分散剤のトナー粒子への吸着性の観点から、好ましくは5,000以下、より好ましくは4,000以下、さらに好ましくは3,000以下である。
塩基性分散剤における塩基性窒素含有基と分散性基の質量比(塩基性窒素含有基/分散性基)は、トナー粒子への吸着性の観点から、好ましくは3/97以上であり、より好ましくは5/95以上であり、そして、トナー粒子の分散安定性の観点から、好ましくは20/80以下であり、より好ましくは15/85以下である。なお、塩基性分散剤における塩基性窒素含有基と分散性基の質量比は、塩基性分散剤のNMRで測定できるが、塩基性窒素含有基原料と分散性基原料とを反応させる塩基性分散剤の製造において、反応した原料化合物の質量比を、分散剤中の塩基性窒素含有基と分散性基の質量比(塩基性窒素含有基/分散性基)とみることもできる。
また、塩基性分散剤の数平均分子量は、低粘度化及び低温定着性の観点から、好ましくは2,000以上、より好ましくは2,500以上、さらに好ましくは3,000以上、さらに好ましくは3,500以上であり、そして、同様の観点から、好ましくは10,000以下、より好ましくは9,000以下、さらに好ましくは8,000以下である。
塩基性分散剤の含有量は、トナー粒子100質量部に対して、トナー粒子の分散安定性の観点から、好ましくは0.5質量部以上、より好ましくは1質量部以上、さらに好ましくは2質量部以上であり、そして、トナーの帯電性観点から、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは5質量部以下である。
本発明の液体現像剤には、前記塩基性分散剤以外の公知の分散剤が含まれていてもよいが、前記塩基性分散剤の含有量は、分散剤中、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは100質量%である。
本発明における絶縁性液体とは、電気が流れにくい液体のことを意味するが、本発明においては、絶縁性液体の導電率は、好ましくは1.0×10-11S/m以下、より好ましくは5.0×10-12S/m以下であり、そして、好ましくは1.0×10-13S/m以上である。
絶縁性液体としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素系絶縁性液体、ハロゲン化炭化水素、ポリシロキサン、植物油等が挙げられる。本発明における絶縁性液体は、これらの観点に加えて、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、絶縁性液体は、炭化水素系絶縁性液体を含有することが好ましい。炭化水素系絶縁性液体としては、非環状炭化水素系絶縁性液体が好ましく、脂肪族炭化水素系溶媒がより好ましく、分散安定性及び帯電性の観点から、ポリイソブテンがさらに好ましい。
ポリイソブテンの重合度は、液体現像剤の低温定着性を向上させる観点から、好ましくは8以下、より好ましくは6以下、さらに好ましくは5以下、さらに好ましくは4以下、さらに好ましくは3以下である。また、分散安定性の観点から、好ましくは2以上、より好ましくは3以上である。
ポリイソブテンの含有量は、分散安定性の観点から、観点から、絶縁性液体中、好ましくは5質量%以上、より好ましくは20質量%以上、さらに好ましくは40質量%以上、さらに好ましくは60質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上である。
ポリイソブテンを含有する絶縁性液体の市販品としては、「NAS-3」、「NAS-4」、「NAS-5H」(以上、いずれも日油(株)製)等が挙げられる。これらのうちの1種又は2種以上を組み合わせることができる。
絶縁性液体の沸点は、トナー粒子の分散安定性をより向上させて保存安定性を向上させる観点から、好ましくは120℃以上、より好ましくは140℃以上、さらに好ましくは160℃以上であり、そして、液体現像剤の低温定着性をより向上させる観点、湿式粉砕時にトナー粒子の粉砕性をより向上させて小粒径のトナー粒子を得る観点から、好ましくは300℃以下、より好ましくは280℃以下、さらに好ましくは260℃以下である。絶縁性液体を2種以上組み合わせる場合には、組み合わせた絶縁性液体混合物の沸点が上記範囲内であることが好ましい。
絶縁性液体の25℃における粘度は、現像性を向上させる観点、及び液体現像剤中でのトナー粒子の保存安定性を向上させる観点から、好ましくは1mPa・s以上であり、そして、好ましくは100mPa・s以下、より好ましくは50mPa・s以下、さらに好ましくは20mPa・s以下、さらに好ましくは10mPa・s以下、さらに好ましくは5mPa・s以下である。
液体現像剤は、結着樹脂、着色剤、分散剤、及び絶縁性液体に加えて、離型剤、荷電制御剤、荷電制御樹脂、磁性粉、流動性向上剤、導電性調整剤、繊維状物質等の補強充填剤、酸化防止剤、クリーニング性向上剤等の添加剤を適宜含有していてもよい。
液体現像剤は、トナー粒子を分散剤の存在下で絶縁性液体中に分散させて得られる。トナー粒子の粒径を小さくする観点、及び液体現像剤の粘度を低減する観点から、トナー粒子を絶縁性液体中に分散させた後、湿式粉砕して液体現像剤を得ることが好ましい。
トナー粒子、分散剤、及び絶縁性液体の混合方法としては、攪拌混合装置により攪拌する方法等が好ましい。
撹拌混合装置は、特に限定はされないが、トナー粒子分散液の生産性及び保存安定性を向上させる観点から、高速攪拌混合装置が好ましく、具体的には、デスパ(浅田鉄工(株)製)、T.K.ホモミクサー、T.K.ホモディスパー、T.K.ロボミックス(以上、いずれもプライミクス(株)製)、クレアミックス(エム・テクニック(株)製)、ケイディーミル(ケイディー・インターナショナル社製)等が好ましい。
高速攪拌混合装置による混合によって、トナー粒子が予備分散され、トナー粒子分散液を得ることができ、次の湿式粉砕による液体現像剤の生産性が向上する。
トナー粒子分散液の固形分濃度は、画像濃度を向上させる観点から、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは33質量%以上であり、そして、トナー粒子の分散安定性を向上させ保存安定性を向上させる観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
湿式粉砕とは、絶縁性液体中に分散させたトナー粒子を、絶縁性液体に分散した状態で機械的に粉砕処理する方法である。
使用する装置としては、例えば、アンカー翼等の一般に用いられている撹拌混合装置を用いることができる。撹拌混合装置の中では、デスパ(浅田鉄工(株)製)、T.K.ホモミクサー(プライミクス(株)製)等の高速攪拌混合装置、ロールミル、ビーズミル、ニーダー、エクストルーダ等の粉砕機又は混練機等が挙げられる。これらの装置は複数を組み合わせることもできる。
これらの中では、トナー粒子の粒径を小さくする観点、及びトナー粒子の分散安定性を向上させて保存安定性を向上させる観点、及びその分散液の粘度を低減する観点から、ビーズミルの使用が好ましい。
ビーズミルでは、用いるメディアの粒径や充填率、ローターの周速度、滞留時間等を制御することにより所望の粒径、粒径分布を持ったトナー粒子を得ることができる。
液体現像剤の固形分濃度は、画像濃度を向上させる観点から、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、そして、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
液体現像剤中のトナー粒子の体積中位粒径(D50)は、液体現像剤の粘度を低減する観点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは1.5μm以上であり、そして、液体現像剤の画質を向上させる観点から、好ましくは3μm以下、より好ましくは2.5μm以下である。
トナー粒子の吸熱の最大ピーク温度は、耐擦過性の観点から、好ましくは70℃以上、より好ましくは75℃以上、さらに好ましくは80℃以上であり、そして、低温定着性の観点から、好ましくは120℃以下、より好ましくは110℃以下、さらに好ましくは100℃以下である。
固形分濃度が25質量%の液体現像剤の25℃における粘度は、トナー粒子の分散安定性を向上させて保存安定性を向上させる観点から、好ましくは3mPa・s以上、より好ましくは5mPa・s以上、さらに好ましくは6mPa・s以上、さらに好ましくは7mPa・s以上であり、そして、液体現像剤の定着性を向上させる観点から、好ましくは50mPa・s以下、より好ましくは40mPa・s以下、さらに好ましくは37mPa・s以下、さらに好ましくは35mPa・s以下、さらに好ましくは32mPa・s以下、さらに好ましくは28mPa・s以下、さらに好ましくは24mPa・s以下、さらに好ましくは20mPa・s以下、さらに好ましくは16mPa・s以下である。なお、ここでいう固形分濃度が25質量%の液体現像剤の粘度とは、絶縁性液体の量を調整して液体現像剤の固形分濃度を25質量%に調整して測定した粘度を意味する。液体現像剤の固形分濃度は、25質量%より高い場合は、同じ絶縁性液体により希釈することにより、25質量%よりも低い場合は、絶縁性液体を濃縮等により除去することによって、それぞれ調整することができる。ここで、固形分濃度とは、結着樹脂、着色剤、及び絶縁性液体を含有する液体現像剤中の絶縁性液体以外の原料の割合を指す。絶縁性液体以外の原料には、結着樹脂及び着色剤以外に、必要に応じて用いられる、離型剤、荷電制御剤等の添加剤も含まれる。
以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。樹脂等の物性は、以下の方法により測定した。
〔α-オレフィン重合体の酸変性物の重量平均分子量(Mw)〕
(1) 試料溶液の調製
濃度が0.5g/100mLになるように、試料をテトラヒドロフランに溶解させた。次いで、この溶液をポアサイズ2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量分布測定
下記の測定装置と分析カラムを用い、溶離液としてテトラヒドロフランを、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(Mw 5.0×102)、A-1000(Mw 1.01×103)、A-2500(Mw 2.63×103)、A-5000(Mw 5.97×103)、F-1(Mw 1.02×104)、F-2(Mw 1.81×104)、F-4(Mw 3.97×104)、F-10(Mw 9.64×104)、F-20(Mw 1.90×105)、F-40(Mw 4.27×105)、F-80(Mw 7.06×105)、F-128(Mw 1.09×106))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:GMHXL+G3000HXL(東ソー(株)製)
〔樹脂の軟化点〕
フローテスター「CFT-500D」((株)島津製作所製)を用い、1gの試料を昇温速度6℃/minで加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出す。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とする。
〔樹脂の吸熱の最大ピーク温度〕
示差走査熱量計「Q-100」(ティー・エイ・インスツルメント・ジャパン(株)製)を用いて、試料0.01~0.02gをアルミパンに計量し、室温(20℃)から降温速度10℃/minで0℃まで冷却した試料をそのままの温度で1分間維持する。その後、昇温速度10℃/minで180℃まで昇温しながら吸熱ピークを測定する。観測される吸熱ピークのうち、ピーク面積が最大のピークの温度を吸熱の最大ピーク温度とする。
〔結晶性樹脂の融点及び融解熱量〕
結晶性樹脂においては、吸熱の最大ピーク温度を融点とする。融点以下、かつ最も融点に近いベースライン上の1点と、融点以上、かつ最も融点に近いベースライン上の1点を結んだ直線と観測された曲線で囲まれた面積を吸熱の最大ピーク面積とし、その面積に相当する熱量を結晶性樹脂の融解熱量とする。
〔樹脂のガラス転移温度〕
示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料0.01~0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却する。次に試料を昇温速度10℃/minで昇温し、吸熱ピークを測定する。吸熱の最大ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とする。
〔樹脂の酸価〕
JIS K0070の方法により測定する。但し、測定溶媒のみJIS K0070の規定のエタノールとエーテルの混合溶媒から、アセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))に変更する。
〔絶縁性液体と混合する前のトナー粒子の体積中位粒径〕
測定機:コールターマルチサイザーII(ベックマン・コールター(株)製)
アパチャー径:100μm
解析ソフト:コールターマルチサイザーアキュコンプ バージョン 1.19(ベックマン・コールター(株)製)
電解液:アイソトンII(ベックマン・コールター(株)製)
分散液:電解液にエマルゲン109P(花王(株)製、ポリオキシエチレンラウリルエーテル、HLB(グリフィン):13.6)を溶解して5質量%に調整したもの
分散条件:前記分散液5mLに測定試料10mgを添加し、超音波分散機(機械名:(株)エスエヌディー製US-1、出力:80W)にて1分間分散させる。その後、前記電解液25mLを添加し、さらに、超音波分散機にて1分間分散させて、試料分散液を調製する。
測定条件:前記電解液100mLに、3万個の粒子の粒径を20秒間で測定できる濃度となるように、前記試料分散液を加え、3万個の粒子を測定し、その粒度分布から体積中位粒径(D50)を求める。
〔塩基性窒素含有基原料の数平均分子量〕
以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量を求める。
(1) 試料溶液の調製
濃度が0.2g/100mLになるように、試料を0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液に溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
下記の測定装置と分析カラムを用い、溶離液として0.15mol/LでNa2SO4を1%酢酸水溶液に溶解させた溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の標準プルラン(昭和電工(株)製のP-5(Mw 5.9×103)、P-50(Mw 4.73×104)、P-200(Mw 2.12×105)、P-800(Mw 7.08×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8320GPC(東ソー(株)製)
分析カラム:α+α-M+α-M(東ソー(株)製)
〔分散性基原料の数平均分子量〕
(1) 試料溶液の調製
濃度が0.5g/100mLになるように、分散性基原料をテトラヒドロフランに溶解させる。次いで、この溶液をポアサイズ2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量分布測定
下記の測定装置と分析カラムを用い、溶離液としてテトラヒドロフランを、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(Mw 5.0×102)、A-1000(Mw 1.01×103)、A-2500(Mw 2.63×103)、A-5000(Mw 5.97×103)、F-1(Mw 1.02×104)、F-2(Mw 1.81×104)、F-4(Mw 3.97×104)、F-10(Mw 9.64×104)、F-20(Mw 1.90×105)、F-40(Mw 4.27×105)、F-80(Mw 7.06×105)、F-128(Mw 1.09×106))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:TSKgel GMHXL+TSKgel G3000HXL(東ソー(株)製)
〔分散剤の数平均分子量〕
以下に示す、ゲル浸透クロマトグラフィー(GPC)法により分子量分布を測定し、数平均分子量を求める。
(1) 試料溶液の調製
濃度が0.2g/100mLになるように、分散剤をクロロホルムに溶解させる。次いで、この溶液をポアサイズ0.2μmのフッ素樹脂フィルター「FP-200」(住友電気工業(株)製)を用いて濾過して不溶解成分を除き、試料溶液とする。
(2) 分子量測定
下記の測定装置と分析カラムを用い、溶離液として1.00mmol/LのファーミンDM2098(花王(株)製)のクロロホルム溶液を、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させる。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、予め作成した検量線に基づき算出する。このときの検量線には、数種類の単分散ポリスチレン(東ソー(株)製のA-500(Mw 5.0×102)、A-5000(Mw 5.97×103)、F-2(Mw 1.81×104)、F-10(Mw 9.64×104)、F-40(Mw 4.27×105))を標準試料として作成したものを用いる。括弧内は分子量を示す。
測定装置:HLC-8220GPC(東ソー(株)製)
分析カラム:K-804L(昭和電工(株)製)
〔絶縁性液体の導電率〕
絶縁性液体25gを40mL容のガラス製サンプル管「スクリューNo.7」((株)マルエム製)に入れ、非水系導電率計「DT-700」(Dispersion Technology社製)を用いて、電極を絶縁性液体に浸し、25℃で20回測定を行って平均値を算出し、導電率を測定する。数値が小さいほど高抵抗であることを示す。
〔絶縁性液体の沸点〕
示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料6.0~8.0mgをアルミパンに計量し、昇温速度10℃/minで350℃まで昇温し、吸熱ピークを測定する。最も高温側の吸熱ピークを沸点とする。
〔絶縁性液体及び液体現像剤の25℃における粘度〕
10mL容のスクリュー管に測定液を6~7mL入れ、回転振動式粘度計「ビスコメイトVM-10A-L」((株)セコニック製、検出端子:チタン製、φ8mm)を用い、検出端子の先端部の15mm上に液面が来る位置にスクリュー管を固定し、25℃にて粘度を測定する。
〔液体現像剤中のトナー粒子の体積中位粒径(D50)〕
レーザー回折/散乱式粒径測定装置「マスターサイザー2000」(マルバーン社製)を用いて、測定用セルにアイソパーL(エクソンモービル社製、イソパラフィン、25℃における粘度1mPa・s)を加え、散乱強度が5~15%になる濃度で、粒子屈折率1.58(虚数部0.1)、分散媒屈折率1.42の条件にて、体積中位粒径(D50)を測定する。
〔トナー粒子の吸熱の最大ピーク温度〕
示差走査熱量計「DSC210」(セイコー電子工業(株)製)を用いて、試料0.01~0.02gをアルミパンに計量し、70℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却する。次に試料を昇温速度10℃/minで昇温し、150℃まで昇温しながら吸熱ピークを測定する。観測される吸熱ピークのうち、ピーク面積が最大のピークの温度をトナー粒子の吸熱の最大ピーク温度とする。
樹脂製造例1
表1に示すポリエステル樹脂の原料モノマー、エステル化触媒、及びエステル化助触媒を窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、230℃に昇温した後、230℃にて8時間反応させ、さらに8.3kPaに減圧して1時間反応させた。170℃に降温し、表1に示すスチレン系樹脂の原料モノマー、両反応性モノマー及び重合開始剤を1時間かけて滴下した。170℃に保持したまま1時間付加重合反応を熟成させた後、210℃に昇温し、8.3kPaにて1時間スチレン系樹脂の原料モノマーの除去、及び両反応性モノマーとポリエステル樹脂部位の反応を行い、表1に示す軟化点に達するまで反応を行って、表1に示す物性を有する非晶質複合樹脂(樹脂A1)を得た。
樹脂製造例2
表1に示すポリエステル樹脂の原料モノマーを、窒素導入管、脱水管、攪拌機及び熱電対を装備した10L容の四つ口フラスコに入れ、235℃に昇温した。その後、表1に示すエステル化触媒とエステル化助触媒を添加し、235℃で8時間反応させた後、235℃、8.0kPaにてさらに1時間反応させた。160℃まで冷却し、表1に示す酸変性物を添加し、235℃まで昇温し、230℃で1時間重縮合反応させ、さらに230℃、8.0kPaにて表1に記載の軟化点に到達するまで反応させて、非晶質ポリエステル樹脂(樹脂A2)を得た。
Figure 2022039494000002
樹脂製造例3
表2に示すアルコール成分及びカルボン酸成分を、温度計、ステンレス製撹拌棒、流下式コンデンサー及び窒素導入管を装備した10L容の四つ口フラスコに入れ、窒素雰囲気にてマントルヒーター中で、135℃から200℃まで11時間半かけて昇温した後、200℃にて1時間反応させ、さらにエステル化触媒を投入し1時間反応させた後、8.0kPaにて表2に示す融点に達するまで反応を行い、結晶性ポリエステル樹脂(樹脂C1~C4)を得た。
樹脂製造例4
表2に示すアルコール成分、カルボン酸成分、エステル化触媒、及び重合禁止剤を窒素導入管、脱水管、攪拌器及び熱電対を装備した10L容の四つ口フラスコに入れ、160℃で5時間反応させた後、200℃に昇温して1時間反応させ、その後8.3kPaの減圧下、さらに1時間反応させて、結晶性ポリエステル樹脂(樹脂C5)を得た。
Figure 2022039494000003
分散剤の製造例1
塩基性窒素含有基原料として表3に示すポリエチレンイミン(ポリエチレンイミン600、純正化学(株)製)を冷却管、窒素導入管、撹拌機、脱水管及び熱電対を装備した2L容の四つ口フラスコに入れ、窒素ガスで反応容器内を置換した。撹拌しながら、分散性基原料として表3に示すポリイソブテン無水コハク酸(PIBSA)(H1000、Dover社製)を表3に示すキシレンに溶解した溶液を室温で1時間かけて滴下した。滴下終了後、30分間室温で保持した。その後、反応容器内を150℃に加温して1時間保持した後、160℃に昇温して1時間保持した。160℃で8.3kPaに減圧してキシレンを留去し、IR分析からPIBSA由来の酸無水物のピーク(1780cm-1)が消失し、イミド結合由来のピーク(1700cm-1)が生じた時点を反応終点として、表3に示す物性を有する分散剤Dを得た。
Figure 2022039494000004
実施例1、2及び比較例1~3
結着樹脂として、表4に示す非晶質ポリエステル系樹脂70質量部及び結晶性ポリエステル樹脂10質量部と、着色剤「ECB-301」(大日精化工業(株)製、フタロシアニンブルー15:3)20質量部を、予め20L容のヘンシェルミキサーを使用し、回転数1500r/min(周速度21.6m/sec)で3分間攪拌混合後、以下に示す条件で溶融混練した。
〔溶融混練条件〕
連続式二本オープンロール型混練機「ニーデックス」(日本コークス工業(株)製、ロール外径:14cm、有効ロール長:55cm)を使用した。連続式二本オープンロール型混練機の運転条件は、高回転側ロール(フロントロール)周速度75r/min(回転数32.4m/min)、低回転側ロール(バックロール)周速度35r/min(回転数15.0m/min)、混練物供給口側端部のロール間隙0.1mmであった。ロール内の加熱媒体温度及び冷却媒体温度は、高回転側ロールの原料投入側が90℃及び混練物排出側が85℃であり、低回転側ロールの原料投入側が35℃及び混練物排出側が35℃であった。また、原料混合物の上記混練機への供給速度は10kg/h、上記混練機中の平均滞留時間は約3分間であった。
得られた混練物を冷却ロールで圧延冷却した後、ハンマーミルを用いて1mm程度に粗粉砕した。得られた粗粉砕物を気流式ジェットミル「IDS」(日本ニューマチック(株)製)により微粉砕及び分級し、体積中位粒径(D50)が10μmのトナー粒子を得た。
得られたトナー粒子35質量部と絶縁性液体「NAS-4」(日油(株)製、ポリイソブテン、重合度:4、導電率:1.52×10-12S/m、沸点:247℃、25℃における粘度:2mPa・s)63.95質量部、及び分散剤D 1.05質量部を1L容のポリエチレン製容器に入れ、「T.K.ロボミックス」(プライミクス(株)製)を用いて、氷冷下、回転数7000r/minにて30分間攪拌を行い、固形分濃度36質量%のトナー粒子分散液を得た。
次に、得られたトナー粒子分散液を、直径0.8mmのジルコニアビーズを用いて、体積充填率60体積%にて、6筒式サンドミル「TSG-6」(アイメックス(株)製)で回転数1300r/min(周速度4.8m/sec)にて湿式粉砕した。ビーズをろ過により除去した後、ろ液100質量部に対し絶縁性液体「NAS-4」(日油(株)製)44質量部を加えて希釈し、固形分濃度を25質量%の、表4に示す物性を有する液体現像剤を得た。
実施例3
樹脂A1の代わりに樹脂A2を使用し、また、固形分濃度36質量%のトナー粒子分散液を得る際に、分散剤Dを使用せず、トナー粒子と混合する絶縁性液体の使用量を65質量部に変更した以外は、実施例1と同様にして、固形分濃度を25質量%の、表4に示す物性を有する液体現像剤を得た。
試験例〔耐擦過性〕
「OKトップコート紙」(王子製紙(株)製、坪量:127.9g/m2、紙厚:約103μm)に、バーコーター(卓上コーターTC-1型、三井電気精機(株)製)を用いて、25℃、50%RHの環境下で乾燥後の膜厚が3.5μmになるように液体現像剤を塗布し、70℃の乾燥機を用いて6分間定着した。
摩擦堅牢度試験機(RT-300、(株)大栄科学精器製作所製)に、被擦過物(前記の塗膜、15cm×4cm)と擦過物(OKトップコート紙、擦過面積は4cm2)を取り付け、25℃、50%RH環境下で200gfの荷重をかけながら、擦過物を被擦過物上で、1分あたり30回の速度で100回往復した。擦過後、塗膜の状態を目視にて確認し、下記の評価基準に従って耐擦過性を評価した。結果を表4に示す。
〔評価基準〕
A:塗膜に擦過による欠損が見られない。
B:塗膜に擦過による微小な欠損が見られる。
C:塗膜に擦過による大きな欠損が見られる。
Figure 2022039494000005
以上の結果より、実施例1~3の液体現像剤は、耐擦過性に優れていることが分かる。
これに対し、エチレングリコールとセバシン酸を重縮合させた結晶性ポリエステル樹脂を用いた比較例1では、非晶性ポリエステル樹脂と結晶性ポリエステル樹脂のSP値差が小さいために、結晶性ポリエステル樹脂と非晶性ポリエステル樹脂とが相溶し、結晶性が消失したことで擦過に耐え得る塗膜が得られていないものと推察される。
1,4-ブタンジオールとドデカン二酸を重縮合させた結晶性ポリエステル樹脂を用いた比較例2では、非晶性ポリエステル樹脂と結晶性ポリエステル樹脂のSP値差は最適であるが、トナーの融点(吸熱の最大ピーク温度)が定着温度未満であるため、定着時に結晶が融解し擦過に耐え得る塗膜を得られていないものと推察される。
1,6-ヘキサンジオールとフマル酸を重縮合させた結晶性ポリエステル樹脂を用いた比較例3では、結晶性ポリエステル樹脂の融解熱量が小さく、結晶性ポリエステル樹脂自体の結晶性が不十分であることに加え、非晶性ポリエステル樹脂と結晶性ポリエステル樹脂のSP値差が小さいために、結晶性ポリエステル樹脂と非晶性ポリエステル樹脂とが相溶しやすくなり、さらなる結晶性の低下を招いたため、擦過に耐え得る塗膜を得られなかったと推察される。
本発明の液体現像剤は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像等に好適に用いられるものである。

Claims (7)

  1. 結着樹脂及び着色剤を含有するトナー粒子と絶縁性液体を含有する液体現像剤であって、前記結着樹脂が、非晶質ポリエステル系樹脂APと、エチレングリコールを50モル%以上含有するアルコール成分と炭素数が12以上16以下の長鎖脂肪族ジカルボン酸系化合物を50モル%以上含有するカルボン酸成分との重縮合物である結晶性ポリエステル樹脂CPとを含有する、液体現像剤。
  2. トナー粒子の吸熱の最大ピーク温度が70℃以上である、請求項1記載の液体現像剤。
  3. 結晶性ポリエステル樹脂CPと非晶質ポリエステル系樹脂APのSP値の差が、0.90以上1.50以下である、請求項1又は2記載の液体現像剤。
  4. 非晶質ポリエステル系樹脂APのSP値が、10.60以上11.70以下である、請求項1~3いずれか記載の液体現像剤。
  5. 非晶質ポリエステル系樹脂APが、2価以上のアルコールを含むアルコール成分と2価以上のカルボン酸系化合物を含むカルボン酸成分との重縮合物である非晶質ポリエステル樹脂とスチレン系樹脂とを有する非晶質複合樹脂である、請求項1~4いずれか記載の液体現像剤。
  6. 結晶性ポリエステル樹脂CPと非晶質ポリエステル系樹脂APの質量比(結晶性ポリエステル樹脂CP/非晶質ポリエステル系樹脂AP)が、10/90以上60/40以下である、請求項1~5いずれか記載の液体現像剤。
  7. さらに、塩基性窒素含有基を有する塩基性分散剤を含有する、請求項1~6いずれか記載の液体現像剤。
JP2020144553A 2020-08-28 2020-08-28 液体現像剤 Pending JP2022039494A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020144553A JP2022039494A (ja) 2020-08-28 2020-08-28 液体現像剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020144553A JP2022039494A (ja) 2020-08-28 2020-08-28 液体現像剤

Publications (1)

Publication Number Publication Date
JP2022039494A true JP2022039494A (ja) 2022-03-10

Family

ID=80498496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020144553A Pending JP2022039494A (ja) 2020-08-28 2020-08-28 液体現像剤

Country Status (1)

Country Link
JP (1) JP2022039494A (ja)

Similar Documents

Publication Publication Date Title
JP6314282B1 (ja) 液体現像剤の製造方法
US10852655B2 (en) Liquid developer
WO2018043327A1 (ja) 液体現像剤
JP6986409B2 (ja) 乾式現像剤
JP7229865B2 (ja) トナー用結着樹脂組成物
JP2022039494A (ja) 液体現像剤
JP6822902B2 (ja) 液体現像剤
JP6838827B2 (ja) 液体現像剤
JP6000491B1 (ja) 液体現像剤
WO2019230481A1 (ja) 液体現像剤
JP7228484B2 (ja) トナー用結着樹脂組成物
JP6986941B2 (ja) 液体現像剤
JP2021173957A (ja) 液体現像剤
JP2022001914A (ja) 液体現像剤
JP7240273B2 (ja) トナー用結着樹脂組成物
JP2020086377A (ja) 液体現像剤
JP7229866B2 (ja) トナー用結着樹脂組成物
JP2022083282A (ja) 液体現像剤
JP2020086378A (ja) 液体現像剤
JP2020095214A (ja) 液体現像剤
JP2020079916A (ja) 液体現像剤
JP2018205484A (ja) 液体現像剤
JP2019066685A (ja) 液体現像剤
JP2022087651A (ja) 液体現像剤
JP2022072363A (ja) 液体現像剤