WO2019221236A1 - 吸水性樹脂粉末、及びその製造方法 - Google Patents

吸水性樹脂粉末、及びその製造方法 Download PDF

Info

Publication number
WO2019221236A1
WO2019221236A1 PCT/JP2019/019518 JP2019019518W WO2019221236A1 WO 2019221236 A1 WO2019221236 A1 WO 2019221236A1 JP 2019019518 W JP2019019518 W JP 2019019518W WO 2019221236 A1 WO2019221236 A1 WO 2019221236A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mass
absorbent resin
fine powder
fine
Prior art date
Application number
PCT/JP2019/019518
Other languages
English (en)
French (fr)
Inventor
剛 従野
直樹 片倉
弘喜 林
澄人 熊谷
井上 雅史
知幸 荒毛
舞 佐藤
亮太 若林
好啓 正保
伸哉 勝部
芳史 足立
智嗣 松本
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020207035702A priority Critical patent/KR102590297B1/ko
Priority to US17/055,153 priority patent/US20210115198A1/en
Priority to JP2020519920A priority patent/JP7083020B2/ja
Priority to EP19803772.3A priority patent/EP3795614A4/en
Priority to CN201980032452.9A priority patent/CN112119114A/zh
Publication of WO2019221236A1 publication Critical patent/WO2019221236A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a water absorbent resin powder and a method for producing the same.
  • this invention relates to the manufacturing method of the water absorbing resin powder which reduced the amount of fine powder generation
  • Water-absorbing resin (SAP / Super Absorbent Polymer) is a water-swellable, water-insoluble polymer gelling agent, absorbent articles such as paper diapers and sanitary napkins, water retaining agents for agriculture and horticulture, and industrial waterstops. It is widely used in various fields such as drugs.
  • the water-absorbent resin uses many monomers and hydrophilic polymers as raw materials. From the viewpoint of water absorption performance, polyacrylic acid (and acrylic acid and / or its salt as a monomer) is used. Salt) water-absorbing resins are most industrially produced.
  • the water-absorbing resin is required to have various functions (higher physical properties) as the paper diaper, which is the main application, has improved performance. Specifically, in addition to the basic physical properties, water absorption capacity without pressure and water absorption capacity under pressure, gel strength, water-soluble content, water content, water absorption speed, liquid permeability, particle size distribution, urine resistance, antibacterial properties Various properties such as damage resistance, powder flowability, deodorization, color resistance, low dust, and low residual monomer are required for the water-absorbing resin.
  • Such a water-absorbing resin can have various shapes such as a sheet shape, a fiber shape, and a film shape, but in general, it is often in a powder shape or a particle shape. It is known that the water-absorbing performance, handleability, and feeling of use vary depending on the particle diameter, particle size distribution, and the like of a powdered or particulate water-absorbing resin. Therefore, a powdered or particulate water-absorbing resin in which the particle size and particle size distribution are appropriately controlled is demanded.
  • a water-absorbent resin with a low content of fine powder fine particles having a particle diameter of less than 100 ⁇ m to less than 150 ⁇ m, particularly fine particles of less than 150 ⁇ m
  • a powder for example, a particle size distribution of 850 to 150 ⁇ m
  • Examples of the main production method of the powdery or particulate water-absorbing resin include an aqueous solution polymerization method and a reverse phase suspension polymerization method.
  • aqueous solution polymerization method in order to finally obtain a particulate water-absorbing resin, a water-soluble ethylenic polymer obtained by polymerization in which a water-soluble ethylenically unsaturated monomer is polymerized in an aqueous solution.
  • the amount of fine powder generated in the manufacturing process reaches 10 to several tens of mass% (for example, 20 to 30 mass%) of the entire production volume.
  • this fine powder is removed in the classification process, since the disposal of the removed fine powder is disadvantageous in cost, it is usually recovered after the granulation and before the classification process, especially before the drying process. .
  • Patent Document 5 fine powder is gelled with a large amount of warm water to firmly bind the fine powder (Patent Document 5), and the surface of the fine powder is treated with a basic solution, and the elution components such as soluble components are bound to the binder.
  • Patent Document 6 A method for firmly binding fine powders is proposed.
  • Patent Document 7 a method using water (aqueous liquid) and water vapor (Patent Document 7), and a hydrophobic powder (inorganic oxide)
  • Patent Document 8 A method using a mixture of particles) and fine powder and water (Patent Document 8) has been proposed.
  • the particle size of the fine granulated product obtained is as large as several mm or more (for example, 3 mm), and the particle size of the dried product is inevitably the desired product particle of the water absorbent resin. It becomes larger than the diameter (for example, 850 to 150 ⁇ m).
  • the fine powder granulate is recovered in the drying step of the pulverized water-containing gel, adhesion between the fine powder granulation materials or adhesion between the fine powder granulation material and the water-containing gel particles occurs, The particle size is further larger than the product particle size of the fine granulated product before drying or the intended water absorbent resin.
  • the water-absorbent resin fine granulated product (secondary particles) obtained from the water-absorbent resin fine powder after drying is relatively weak against mechanical damage. In some cases, the fine powder was regenerated due to the destruction of the granulated particles. Therefore, the water-absorbent resin obtained by fine-powder granulation as a fine-powder recycling method breaks down the fine-powder granulated product due to unintended mechanical damage due to friction in the production process and actual use of the final product (for example, paper diaper production). There was also a possibility of increasing the fine powder.
  • the problem of the present invention is that it is excellent in water absorption performance such as water absorption magnification under pressure, and the amount of fine powder generated and the amount of fine powder recovered in the production process is small, and the water absorbent resin powder can be efficiently produced with a compact device. Is to provide a method. Furthermore, this invention is providing the water absorbing resin powder which can suppress the reproduction
  • the present inventors have obtained a fine granulated product having an appropriate granulation strength and particle size by adding an adhesion control agent to the fine powder in the fine powder granulating step.
  • an adhesion control agent added to the fine powder in the fine powder granulating step.
  • the present invention includes a drying step of drying a particulate water-containing gel-like cross-linked polymer obtained by using an acid group-containing unsaturated monomer as a main component to obtain a dry polymer, a fine powder comprising a water-absorbent resin, and a binder. And an adhesion control agent to obtain a finely granulated product, and a fine powder granulated step, and the resulting fine powdered granulated product is recovered in a drying step or any step before the drying step It is a manufacturing method of conductive resin powder.
  • the water-absorbent resin powder of the present invention is obtained by using the above-described production method as an example of the production method.
  • a water-absorbent resin powder comprising a water-absorbent resin fine-powder granulated product is provided.
  • a fine powder granulated product having an appropriate granulation strength and particle size can be obtained in the fine powder granulation step.
  • the fine powder granulated product is recovered in any one of the drying step or the step before the drying step, and dried together with the particulate hydrogel cross-linked polymer, thereby preventing the resulting dried product from becoming large particles. Thereby, the mechanical damage in a subsequent process is reduced and the effect that the generation amount of fine powder decreases is acquired.
  • the amount of fine powder generated in the drying process is reduced as the amount of fine powder generated decreases. Improved physical properties. Furthermore, it becomes possible to make the manufacturing apparatus compact in the processes after the drying process. Furthermore, the water-absorbent resin powder according to the present invention includes an adhesion control agent (especially a surfactant) because the finely granulated product that is relatively weak against mechanical damage includes a practical use as a subsequent process or product of the water-absorbent resin powder. Mechanical damage due to friction in (for example, paper diaper manufacture) is reduced, and the effect of reducing the amount of fine powder generated becomes more remarkable.
  • an adhesion control agent especially a surfactant
  • FIG. 1 is a flowchart showing a manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a manufacturing method according to another embodiment of the present invention.
  • Water absorbent resin refers to a water-swellable, water-insoluble polymer gelling agent and satisfies the following physical properties. That is, the CRC (centrifuge retention capacity) defined by ERT441.2-02 as water swellability is 5 g / g or more, and Ext (water-soluble) defined by ERT470.2-02 as water-insoluble The polymer gelling agent whose (min) is 50 mass% or less.
  • the water-absorbent resin can be designed according to its use and purpose, and is not particularly limited, but is preferably a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group. Moreover, it is not limited to the form whose whole quantity is a crosslinked polymer, As long as each said physical property (CRC, Ext) satisfy
  • the “water-absorbent resin” may be surface-crosslinked (also known as post-crosslinking, secondary crosslinking) or may not be surface-crosslinked.
  • the water absorbent resin that has been subjected to the predetermined surface cross-linking treatment may be referred to as a surface cross-linked water absorbent resin.
  • the water absorbent resin adjusted to a predetermined moisture content and particle size is referred to as a water absorbent resin powder or a water absorbent.
  • Fine powder in the present invention means a particulate or powdery water-absorbing resin having a mass average particle diameter of less than 150 ⁇ m.
  • it means a fine powder composed of a water-absorbing resin whose main component is a poly (meth) acrylic acid (salt) -based crosslinked polymer. It may be surface-crosslinked or may not be surface-crosslinked.
  • fine powder may contain the additive as described in the addition process of water and the other additive mentioned later.
  • the “fine powder comprising a water-absorbent resin” according to the present invention is not limited to 100% water-absorbent resin (polymer having a water content of 0%), and the fine powder is a secondary material for water and water-absorbent resin powder.
  • Trace components eg, inorganic fine particles may be included.
  • poly (meth) acrylic acid (salt) refers to poly (meth) acrylic acid and / or a salt thereof, and (meth) acrylic acid and / or a salt thereof (hereinafter referred to as “(meta) ) (Also referred to as “acrylic acid (salt)”) as a repeating unit, and a cross-linked polymer containing a graft component as an optional component.
  • the “main component” is preferably used in an amount (content) of (meth) acrylic acid (salt) of 50 mol% to 100 mol%, more preferably based on the whole monomer used for polymerization. It means 70 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, particularly preferably substantially 100 mol%.
  • the poly (meth) acrylic acid (salt) may be unneutralized, but is preferably a partially or completely neutralized poly (meth) acrylate, more preferably a monovalent salt, More preferred are alkali metal salts or ammonium salts, even more preferred are alkali metal salts, and particularly preferred are sodium salts.
  • EDANA is an abbreviation for “European Disposables and Nonwovens Associations”.
  • ERT is an abbreviation for EDANA Recommended Test Methods and is a European standard that defines a method for measuring water-absorbing resin.
  • the physical properties of the water-absorbent resin are measured based on the original ERT (revised in 2002). For evaluation methods not described in the original ERT (revised in 2002), the measurement is carried out using the methods and conditions described in the examples.
  • CRC is an abbreviation for Centrifugation Retention Capacity (centrifuge retention capacity) and means the water absorption capacity of the water absorbent resin under no pressure (sometimes referred to as “water absorption capacity”). Specifically, 0.2 g of the water-absorbing resin was put in a non-woven bag, and then immersed in a large excess of 0.9 mass% sodium chloride aqueous solution for 30 minutes for free swelling, and then centrifuged (250G ) Is the water absorption capacity (unit: g / g) after draining for 3 minutes. In addition, about water-containing gel after superposition
  • Ext is an abbreviation for Extractables and means the water-soluble content of the water-absorbent resin (the amount of water-soluble polymer in the water-absorbent resin). Specifically, 1.0 g of water-absorbing resin is added to 200 ml of a 0.9% by mass sodium chloride aqueous solution, stirred for 16 hours at 500 rpm, and then the amount of substance dissolved in the aqueous solution (unit: mass%). . PH titration is used to measure the water-soluble content. In addition, about the water-containing gel after superposition
  • “Moisture Content” (ERT430.2-02) “Moisture Content” means the moisture content defined by the loss on drying of the water-absorbent resin. Specifically, it means a value (unit: mass%) calculated from a loss on drying when 4.0 g of the water absorbent resin is dried at 105 ° C. for 3 hours.
  • the water content of the water-absorbent resin after drying is defined by the loss of drying of 180 g of the water-absorbent resin at 180 ° C. for 3 hours, and the water content of the water-containing gel before drying is 2. It is defined as a loss on drying of 0 g at 180 ° C. for 24 hours.
  • PSD is an abbreviation for Particle Size Distribution, and means a particle size distribution of a water-absorbent resin measured by sieving.
  • the mass average particle diameter (D50) and the logarithmic standard deviation ( ⁇ ) of the particle size distribution are the same as the (3) mass average particle diameter (D50) and the logarithmic standard deviation of the particle size distribution of columns 27 to 28 of US Pat. No. 7,638,570. It is measured with a vibration classifier (power supply 60 Hz) in the same manner as described.
  • the particle size distribution (PSD) of the particulate hydrous gel is defined by wet sieving by the method described below.
  • the particle size ( ⁇ m) in terms of solid content of the particulate hydrogel is defined by the calculation method described later from the particle size ( ⁇ m) of the particulate hydrogel and the solid content rate (mass%).
  • AAP is an abbreviation for Absorption against Pressure, and means the water absorption capacity of a water absorbent resin under pressure. Specifically, 0.9 g of the water-absorbing resin was swollen with a large excess of 0.9 mass% sodium chloride aqueous solution for 1 hour under a load of 2.06 kPa (21 g / cm 2 , 0.3 psi). It refers to the subsequent water absorption ratio (unit: g / g). In the present specification, it is defined as a value measured by changing the load condition to 4.83 kPa (about 49 g / cm 2 , corresponding to about 0.7 psi).
  • “Residual Monomers” (ERT410.2-02) “Residual Monomers” means the ratio (unit: ppm) of the mass of the monomer (monomer) remaining in the water absorbent resin (hereinafter referred to as “residual monomer”) to the mass of the water absorbent resin. Specifically, 1.0 g of a water-absorbing resin is added to 200 ml of a 0.9% by mass sodium chloride aqueous solution, and the amount of monomer eluted after stirring for 1 hour is measured using high performance liquid chromatography. The residual monomer of the water-containing gel is a ratio (unit) of the residual monomer mass obtained by measuring by the method described later after the polymerization stopping operation such as forced cooling if necessary, to the resin solid content of the water-containing gel. ; Mass%).
  • Vortex in the present invention is an index representing the water absorption rate of the water-absorbent resin, and the time required for 2 g of the water-absorbent resin to absorb 50 ml of a 0.9 mass% sodium chloride aqueous solution to a predetermined state ( Unit; second).
  • X to Y indicating a range means “X or more and Y or less”.
  • t (ton) which is a unit of mass, means “Metric ton”
  • ppm means “mass ppm” or “weight ppm”.
  • mass and weight means “mass part” and “part by weight”, “mass%” and “wt%” are treated as synonyms.
  • ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
  • (meth) acryl means “acryl and / or methacryl”.
  • the production method according to the present invention is a drying method in which a particulate hydrogel crosslinked polymer obtained mainly from an acid group-containing unsaturated monomer is dried to obtain a dry polymer.
  • the water-absorbent resin powder is produced by collecting in any step prior to the drying step.
  • FIG. 1 is a flowchart for explaining a manufacturing method according to an embodiment of the present invention.
  • this production method includes a polymerization step, a gel grinding step (simultaneously or separately from the polymerization), a surface cross-linking step (simultaneously or separately from the drying), a (after and / or after drying) It has a sizing process (after surface cross-linking), a cooling process and a fine powder recovery process.
  • various known processes can be included depending on the purpose, such as a monomer aqueous solution adjustment process and various additive addition processes.
  • the manufacturing method of the present invention is not limited to FIG. 1, and at least a part of the steps after the drying step may be made compact or omitted from FIG. 1. A flowchart of this compact manufacturing process is shown in FIG. Details of FIG. 2 will be described later.
  • This step is a step of preparing an aqueous solution containing an acid group-containing unsaturated monomer as a main component (hereinafter referred to as “monomer aqueous solution”).
  • a monomer slurry liquid (dispersion liquid exceeding the saturation concentration of the monomer) can be used as long as the water absorption performance of the obtained water absorbent resin is not deteriorated.
  • the body aqueous solution will be described.
  • the “main component” means that the amount (content) of the acid group-containing unsaturated monomer is based on the whole monomer (excluding the internal cross-linking agent) used for the polymerization reaction of the water absorbent resin. Usually, it is 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more (the upper limit is 100 mol%).
  • (Acid group-containing unsaturated monomer) Although the acid group prescribed
  • the monomer other than the acid group-containing unsaturated monomer may be a compound that can be polymerized to become a water-absorbing resin.
  • amide group-containing unsaturated monomers such as (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide; N, N-dimethylaminoethyl (meth) acrylate, N, N
  • An amino group-containing unsaturated monomer such as dimethylaminopropyl (meth) acrylate and N, N-dimethylaminopropyl (meth) acrylamide; a mercapto group-containing unsaturated monomer; a phenolic hydroxyl group-containing unsaturated monomer;
  • lactam group-containing unsaturated monomers such as N-vinylpyrrolidone.
  • the monomer used for the polymerization preferably contains a small amount of a polymerization inhibitor in view of the stability of the polymerization.
  • a preferred polymerization inhibitor is p-methoxyphenol.
  • the amount of the polymerization inhibitor contained in the monomer (particularly acrylic acid and its salt) is usually from 1 ppm to 250 ppm, preferably from 10 ppm to 160 ppm, more preferably from 20 ppm to 80 ppm.
  • the salt of the acid group-containing unsaturated monomer is preferably a salt with a monovalent cation, more preferably at least one selected from alkali metal salts, ammonium salts and amine salts, An alkali metal salt is more preferable, at least one selected from a sodium salt, a lithium salt and a potassium salt is still more preferable, and a sodium salt is particularly preferable.
  • the neutralizing agent used for neutralizing the acid group-containing unsaturated monomer is not particularly limited, but includes inorganic salts such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonium carbonate, and amino groups. Or a basic substance such as an amine-based organic compound having an imino group is appropriately selected and used. Two or more basic substances may be used in combination as a neutralizing agent.
  • the monomer in this invention is the concept containing a neutralization salt unless there is particular notice.
  • the number of moles of the neutralized salt relative to the total number of moles of the acid group-containing unsaturated monomer and the neutralized salt is preferably 40 mol% or more, More preferably, it is 40 mol% to 80 mol%, still more preferably 45 mol% to 78 mol%, and particularly preferably 50 mol% to 75 mol%.
  • a method for adjusting the neutralization rate a method of mixing an acid group-containing unsaturated monomer and a neutralized salt thereof; a method of adding a known neutralizing agent to an acid group-containing unsaturated monomer; A method using a partially neutralized salt of an acid group-containing unsaturated monomer adjusted to a predetermined neutralization rate (that is, a mixture of an acid group-containing unsaturated monomer and a neutralized salt thereof); . Moreover, you may combine these methods.
  • the adjustment of the neutralization rate may be performed before the polymerization reaction of the acid group-containing unsaturated monomer is started, may be performed in the polymerization reaction of the acid group-containing unsaturated monomer, or may contain an acid group. You may carry out with respect to the hydrogel crosslinked polymer obtained after completion
  • an internal cross-linking agent In the method for producing a water absorbent resin powder, an internal cross-linking agent is preferably used.
  • the internal cross-linking agent adjusts the water absorption performance of the resulting water-absorbent resin, the gel strength during water absorption, and the like.
  • the internal cross-linking agent only needs to have a total of two or more unsaturated bonds or reactive functional groups in one molecule.
  • Poly propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, tri
  • Examples include allyl cyanurate, triallyl isocyanurate, and triallyl phosphate.
  • an internal cross-linking agent having a plurality of reactive functional groups (which can react with a monomer functional group (eg, carboxy group)) in the molecule, triallylamine, polyallyloxyalkane, (poly) ethylene glycol diglycidyl ether, Glycerol diglycidyl ether, ethylene glycol, polyethylene glycol, propylene glycol, glycerin, 1,4-butanediol, pentaerythritol, ethylenediamine, ethylene carbonate, propylene carbonate, polyethyleneimine, etc.
  • Cyclic carbonate is a cross-linking agent that further generates a functional group OH by reaction with a carboxyl group).
  • glycidyl (meth) acrylate etc. are mentioned as an internal crosslinking agent which has a polymerizable unsaturated group and a reactive functional group in a molecule
  • a compound having a plurality of polymerization unsaturated groups in the molecule is preferable, and a compound having a (poly) alkylene structural unit in the molecule is more preferable. More preferred is a compound having a polyethylene glycol structural unit, and particularly preferred is an acrylate compound having a polyethylene glycol structural unit.
  • Water-containing gels obtained using these internal cross-linking agents have a low water absorption ratio at the beginning of drying and have low adhesiveness. When the water-containing gel having low adhesiveness is dried by stirring, it is preferable because fusion and aggregation during drying can be reduced. Furthermore, the water-containing gel obtained using these internal cross-linking agents has an effect that the water absorption capacity is easily improved by drying.
  • the amount of the internal cross-linking agent used is appropriately set according to the type of monomer and internal cross-linking agent. From the viewpoint of gel strength of the resulting water-absorbent resin, the amount is preferably 0.001 mol% or more, more preferably 0.005 mol% or more, still more preferably 0.01 mol% or more based on the monomer. Moreover, from a viewpoint of the water absorption performance improvement of a water absorbing resin, Preferably it is 5 mol% or less, More preferably, it is 2 mol% or less. In the polymerization conditions in which the monomer self-crosslinking reaction is effective, the internal crosslinking agent may not be used.
  • chain transfer agents such as thiols, thiolic acids, secondary alcohols, amines and hypophosphites
  • foaming agents such as carbonates, bicarbonates, azo compounds, and bubbles
  • ethylenediamine Chelating agents such as tetra (methylenephosphinic acid) and its metal salt, ethylenediaminetetraacetic acid and its metal salt, diethylenetriaminepentaacetic acid and its metal salt
  • polyacrylic acid (salt) and cross-linked products thereof for example, fine powder made of water-absorbing resin)
  • Hydrophilic polymers such as starch, cellulose, starch-cellulose derivatives, polyvinyl alcohol, and the like.
  • Other substances may be used alone or in combination of two or more.
  • the amount of other substances used is not particularly limited, but the total concentration of the other substances is preferably 10% by mass or less, more preferably 0.001% by mass to 5% by mass, particularly preferably the monomer. Is 0.01% by mass to 1% by mass.
  • the quantity has preferable 30 mass% or less with respect to a monomer. Note that the fine powder granulated product recovered in this step may be either one that has not been surface-crosslinked or one that has been surface-crosslinked.
  • the monomer concentration may be referred to as “monomer concentration”.
  • the polymerization initiator used in the present invention is not particularly limited since it is appropriately selected depending on the polymerization form and the like.
  • a thermal decomposition polymerization initiator, a photodecomposition polymerization initiator, or a combination thereof, or a polymerization start is used.
  • a redox polymerization initiator combined with a reducing agent that accelerates the decomposition of the agent is used.
  • one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used.
  • a peroxide or an azo compound is preferably used, more preferably a peroxide, and still more preferably a persulfate.
  • the amount of the polymerization initiator used is preferably 0.001 mol% to 1 mol%, more preferably 0.001 mol% to 0.5 mol%, based on the monomer.
  • the amount of the reducing agent used in combination with the oxidizing agent is preferably 0.0001 mol% to 0.02 mol% with respect to the monomer.
  • the dissolved oxygen is preferably reduced to 5 ppm or less, more preferably 3 ppm or less, and particularly preferably 1 ppm or less.
  • bubbles can be dispersed in the monomer aqueous solution.
  • foam polymerization is performed in the polymerization reaction.
  • This step is a step in which the aqueous monomer solution is polymerized to obtain a hydrated gel-like crosslinked polymer (hereinafter sometimes referred to as “hydrated gel”).
  • the polymerization form is not particularly limited. From the viewpoint of water absorption performance, ease of polymerization control, etc., preferably droplet polymerization in the gas phase, aqueous solution polymerization, reverse phase suspension polymerization (here, droplet polymerization in a hydrophobic organic solvent is also an example of reverse phase suspension) More preferably aqueous solution polymerization, reverse phase suspension polymerization, and still more preferably aqueous solution polymerization.
  • continuous aqueous solution polymerization is particularly preferable, and examples thereof include continuous belt polymerization and continuous kneader polymerization.
  • “high temperature initiation polymerization” and “high concentration polymerization” can be mentioned.
  • “High temperature initiation polymerization” means that the temperature of the monomer aqueous solution is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, further preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher (the upper limit is the boiling point).
  • the “high concentration polymerization” means that the monomer concentration is preferably 30% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, and particularly preferably 45% by mass or more.
  • the upper limit is a saturation concentration.
  • the polymerization in the droplet polymerization in the gas phase, can be performed in an air atmosphere, but from the viewpoint of the color tone of the obtained water-absorbing resin, the polymerization is performed in an inert gas atmosphere such as nitrogen or argon. Is preferred. In this case, for example, it is preferable to control the oxygen concentration in the gas phase to 1% by volume or less.
  • the polymerization rate of the water-containing gel-like crosslinked polymer obtained in the polymerization step is the suppression of aggregation during drying of the particulate water-containing gel-like crosslinked polymer obtained in the next gel grinding step, and the residual monomer reduction in the resulting water-absorbent resin. From this viewpoint, it is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, and particularly preferably 99% by mass or more.
  • the polymerization reaction proceeds during drying, and the gel particle having a small particle size is changed to a large particle size.
  • Gel particles may be regenerated or by-produced.
  • unreacted monomers contained in a large amount in the pulverized gel particles are polymerized during drying, and the crushed gel particles are bonded to each other. There are cases where gel particles having a particle size are regenerated or by-produced.
  • the fine powder granulated material described later is collected in the gel pulverization step or the polymerization step, there is a possibility that the formation of large particles due to adhesion with the hydrogel particles having a low polymerization rate may occur.
  • the gel particles having a large particle size cause problems such as a decrease in the water absorption rate of the obtained water-absorbent resin, an increase in the size of the dried product, and generation of fine powder due to re-pulverization to the target product particle size.
  • the upper limit of the polymerization rate of the water-containing gel is not particularly limited, and 100% by mass is ideal, but a high polymerization rate requires a long polymerization time and severe polymerization conditions, leading to a decrease in productivity and physical properties.
  • the upper limit is 99.95% by mass, further 99.9% by mass, usually about 99.8% by mass. Typically, it is 98 to 99.99% by mass.
  • the CRC (centrifuge retention capacity) of the hydrogel crosslinked polymer obtained in the polymerization step is preferably 5 g / g to 80 g / g, more preferably 10 g / g to 50 g / g, more preferably in terms of solid content. Is 15 g / g to 45 g / g, particularly preferably 20 g / g to 40 g / g.
  • the water-soluble gel-like crosslinked polymer obtained in the polymerization step is preferably 1% by mass to 20% by mass, more preferably 2% by mass to 15% by mass, and further preferably 3% by mass in terms of solid content. % To 10% by mass.
  • the solid content conversion refers to a physical property (for example, a water content of 50% (solid content) obtained by measuring various physical properties such as CRC and water-soluble content in a water-containing gel and then converting to physical properties per water-absorbent resin solid content in the water-containing gel. If it is a 50% water-containing gel, the physical property measured with the water-containing gel is converted to 2 times).
  • a physical property for example, a water content of 50% (solid content) obtained by measuring various physical properties such as CRC and water-soluble content in a water-containing gel and then converting to physical properties per water-absorbent resin solid content in the water-containing gel. If it is a 50% water-containing gel, the physical property measured with the water-containing gel is converted to 2 times).
  • the CRC and / or water-soluble content exceeds the above range, the water-containing gel particles pulverized in the pulverization step described later exhibit adhesiveness, and the fluidity of the particulate water-containing gel decreases.
  • Gel pulverization step In this step, the hydrogel crosslinked polymer obtained in the polymerization step is pulverized at the same time and / or after the polymerization to form a particulate hydrogel crosslinked polymer (hereinafter referred to as “ It is a step of obtaining a particulate hydrous gel)). In order to obtain a particulate hydrogel having a predetermined particle size, this step may be carried out twice or more. Further, when a particulate hydrogel having a target particle size is obtained in the polymerization step, such as reverse phase suspension polymerization or gas phase polymerization, this step may not be performed.
  • the hydrogel crosslinked polymer is cut or roughly crushed into a size that can be charged into a gel pulverizer using a roller cutter, a guillotine cutter, or the like.
  • the shredding step is preferably performed when the polymerization step is belt polymerization and a sheet-like or block-like hydrous gel is obtained.
  • the hydrogel crosslinked polymer and the fine powder granulated product are put into a gel pulverizer sequentially or simultaneously.
  • the type of the gel crusher is not particularly limited as long as a particulate hydrogel having a predetermined particle size can be obtained without impairing the water absorption performance.
  • examples thereof include a gel crusher equipped with a plurality of rotary stirring blades, such as a batch type or continuous double arm type kneader, a single screw extruder, a twin screw extruder, and a meat chopper.
  • the temperature T1 of the hydrogel crosslinked polymer before pulverization of the gel is 50 ° C. or higher.
  • This temperature T1 is measured with a thermometer installed at the inlet of the gel crusher.
  • the temperature T1 is more preferably 60 ° C. or higher, further preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the temperature T1 is preferably 130 ° C. or lower, more preferably 110 ° C. or lower, and particularly preferably 105 ° C. or lower.
  • Solid content of hydrous gel As for the solid content rate (henceforth, gel solid content rate) of the water-containing gel provided to a gel grinding
  • a gel fluidizing agent may be added before and / or during the gel crushing step. Addition of the gel fluidizing agent suppresses adhesion between the water-containing gel particles in the drying step, which will be described later, or adhesion with the recovered fine powder granulated product, and improves the water absorption rate of the resulting water absorbent resin. Moreover, the load in the grinding
  • the gel fluidizer examples include anionic, cationic, nonionic and amphoteric surfactants, low molecular and high molecular surfactants, and polymeric lubricants.
  • the polymer lubricant is another name for a specific nonionic surfactant, and examples thereof include polyalkylene oxide and its modified maleic anhydride.
  • a surfactant (particularly a non-polymer surfactant) and a polymer lubricant may be used in combination.
  • an adhesion control agent described later may be used as a gel fluidizing agent.
  • the kind and addition amount of the gel fluidizing agent are appropriately adjusted in consideration of the fluidity of the particulate hydrous gel in the gel grinding step and the drying step.
  • the addition amount is preferably 0.001% by mass to 0.5% by mass, more preferably 0.01% by mass to 0%, based on the solid content of the hydrogel. .3% by mass, more preferably 0.02% by mass to 0.2% by mass.
  • the total addition amount is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, preferably Is 0.05% by mass or more, particularly preferably 0.1% by mass or more.
  • the water content of the particulate hydrogel is preferably 75% by mass or less, more preferably 60% by mass or less, and particularly preferably 55% by mass or less.
  • the mass average particle size d1 of the particulate hydrogel crosslinked polymer before drying is preferably 800 ⁇ m or less in terms of solid content. More preferably, it is 500 ⁇ m or less, more preferably 50 ⁇ m to 500 ⁇ m, still more preferably 100 ⁇ m to 400 ⁇ m, particularly preferably 100 to 300 ⁇ m, and most preferably 100 to 200 ⁇ m.
  • the average particle diameter d1 of the particulate water-containing gel in terms of solid content is the mass of the particulate water-containing gel by the method (i) described in the examples below (particle size of the particulate water-containing gel: wet classification of the water-containing gel). Calculated from the average particle size (D50).
  • the particle size of the particulate hydrogel is in the range of less than 150 ⁇ m, preferably 10% by mass or more, more preferably 25% by mass or more, and further preferably 40% by mass or more in terms of solid content.
  • the particle size of the particulate hydrous gel is preferably in the range of less than 1100 ⁇ m, preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, particularly preferably in terms of solid content. It is 95 mass% or more, and an upper limit is 100 mass%.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.2 to 1.0, more preferably 0.2 to 0.8, and still more preferably 0.2 to 0.7. With such a particle size, a water-absorbing resin powder having a higher water absorption rate can be obtained.
  • the CRC (centrifuge retention capacity) of the particulate hydrogel before drying is preferably 5 g / g to 80 g / g, more preferably 10 g / g to 50 g / g in terms of solid content (specified by the measurement method described later). g, more preferably 15 g / g to 45 g / g, particularly preferably 20 g / g to 40 g / g. Further, the water-soluble content (Ext) of the particulate hydrogel before drying is preferably 1% by mass to 15% by mass, more preferably 2% by mass to 10% in terms of solid content (specified by the measurement method described later).
  • This step is a step of drying a particulate hydrous gel (preferably containing a gel fluidizing agent) to a desired moisture content to obtain a dry polymer, preferably a particulate dry polymer. is there.
  • a fine granulated material to be described later is recovered in either the drying step or any step before the drying step. Accordingly, this step is specifically a step of drying the mixture of the particulate hydrous gel (preferably containing the gel fluidizing agent) and the fine granulated product to a desired moisture content.
  • the particulate hydrous gel used for this process is not limited to what is obtained through a gel grinding
  • the (particulate) dry polymer obtained in this step may include a granulated product (hereinafter, dry granulated product) formed by attaching a plurality of particles physically or chemically.
  • the temperature T2 of the particulate hydrogel subjected to the drying step is preferably 50 ° C or higher, more preferably 60 ° C or higher, and still more preferably. Is controlled to 70 ° C. or higher, particularly preferably 80 ° C. or higher, and most preferably 90 ° C. or higher.
  • the temperature T2 is preferably 130 ° C. or lower, more preferably 110 ° C. or lower, and further preferably 105 ° C. or lower. Typically, this temperature T2 is measured with a contact thermometer at the center of the material layer (particulate hydrous gel or dried product) (for example, a position around 5 cm when the thickness of the material is 10 cm). .
  • the drying method in the drying step of the present invention is not particularly limited, and stationary drying, stirring drying, fluidized bed drying and the like are appropriately used. Also, various drying methods such as heat drying, hot air drying, vacuum drying, infrared drying, microwave drying, drum dryer drying, azeotropic dehydration drying with hydrophobic organic solvents, and high humidity drying using high temperature steam are adopted. Can be done. From the viewpoint of drying efficiency, heat drying or hot air drying is preferable, and stirring-type heat drying and / or fluidized bed drying in which the material to be dried is dried while moving is more preferable.
  • the heating method is not particularly limited.
  • One type of a heat transfer conduction dryer, a radiation heat transfer dryer, a hot air heat transfer dryer, a dielectric heating dryer, or the like is used. Two or more kinds are appropriately selected. It may be a batch type or a continuous type. Further, a direct heating method or an indirect heating method may be used. Examples thereof include heat transfer type dryers such as a ventilation band type, a ventilation circuit type, a ventilation vertical type, a parallel flow band type, a ventilation tunnel type, a ventilation stirring type, a ventilation rotation type, a fluidized bed type, and an air flow type.
  • a large lump or block-shaped dried product is obtained.
  • this is pulverized and processed into a granular product particle size (for example, 850 to 150 ⁇ m), a large amount of fine powder ( (Especially less than 150 ⁇ m) may occur.
  • a flow means for flowing the material to be dried in the dryer for example, rotation of a stirring blade provided in the dryer or the dryer itself
  • a stirring dryer provided with one or more heating means
  • a particulate dried product (hereinafter sometimes referred to as a particulate dried polymer) is preferably obtained, and a continuous stirring dryer is more preferred.
  • the heating means is not particularly limited, but from the viewpoint of drying efficiency and reduction of thermal damage to the water-absorbent resin, direct heating by convective heat transfer and / or a heating surface of a dryer heated by a heating medium (to be dried) Heating means by indirect heat transfer by heat conduction from the contact surface with the object is preferred. More preferable heating means are aeration heating type for direct heat transfer, an outer wall heating type and a tubular heating type for indirect heat transfer.
  • Stirring method and form are not particularly limited, as long as the particulate water-containing gel and fine granulated product in the drying apparatus are flowed by stirring means such as a stirring blade or a rotating cylinder.
  • stirring is performed by rotating a cylindrical container that accommodates an object to be dried, that is, a dryer in which the stirring means is a rotating cylinder is referred to as a rotary dryer.
  • rotary dryers, rotary kilns, tube dryers and the like are mentioned as rotary dryers, and continuous stirring dryers not classified as rotary dryers are uniaxial or biaxial disk type dryers, A uniaxial or biaxial paddle type dryer may be used.
  • solid air manufactured by Hosokawa Micron Co., Ltd.
  • CD dryer manufactured by Kurimoto Steel Co., Ltd.
  • paddle dryer manufactured by Nara Machinery Co., Ltd.
  • rotary type Steam tube dryers manufactured by Kurimoto Seiko Co., Ltd.
  • steam tube dryers manufactured by Ube Industries Co., Ltd.
  • steam tube dryers manufactured by Tsukishima Kikai Co., Ltd.
  • steam tube dryers manufactured by Mitsui Engineering & Shipbuilding
  • a rotary kiln manufactured by Kurimoto Steel Co., Ltd.
  • a rotary dryer manufactured by Okawara Seisakusho Co., Ltd.
  • a preferable drying apparatus is a rotary dryer (a rotating container that accommodates and rotates the object to be dried (further a cylindrical container, particularly a horizontal cylindrical container such as a rotating drum). Dryer).
  • rotary drying having one or more heating means selected from aeration heating type for direct heat transfer, outer wall heating type and tubular heating type for indirect heat transfer. Machine.
  • aeration heating type for direct heat transfer
  • outer wall heating type for indirect heat transfer.
  • tubular heating type for indirect heat transfer.
  • problems such as scattering of dry matter due to ventilation and generation of a large amount of waste gas may occur.
  • the rotary dryer one or more heating means selected from an outer wall heating type and a tubular heating type are preferable for indirect heat transfer. Furthermore, the tubular heating type is more preferable because a heat transfer area inside the dryer can be increased by using a plurality of heating tubes, and thus efficient drying is possible.
  • An example of such a rotary dryer is a rotary dryer with a heating tube.
  • this rotary drier with a heating tube has a rotating container (especially a cylindrical container, and further a horizontal cylindrical container) that accommodates an object to be dried and is positioned inside the rotating container.
  • a plurality of heating tubes extending in the axial direction and rotating together with the rotating container are provided.
  • the material to be dried flows in the container mainly due to the rotation of the rotating container and the action of a plurality of heating tubes rotating together with the rotating container, so that there is little mechanical and thermal damage. Thereby, generation
  • this dryer since it is dried by indirect heat transfer from the heating tube, there is no scattering like hot air drying (aeration band type dryer or aeration heating type rotary kiln), and a large amount of waste gas treatment is not required.
  • hot air drying aeration band type dryer or aeration heating type rotary kiln
  • the heat transfer area inside the dryer can be increased by increasing the number of heating tubes. The large heat transfer area enables drying in a short time and also reduces the residence time inside the apparatus, further reducing thermal damage.
  • the rotary dryer is provided with heating means or heat retaining means on the outer peripheral surface of the rotary container.
  • the mixture of the particulate hydrogel and the fine granulated material accommodated therein is heated by contact with a plurality of heating tubes or heat conduction from the heating tubes by rotation of the rotating container.
  • the inner surface of the rotating container is also heated by radiant heat of a plurality of heating tubes, etc., but if necessary, the inner wall is further heated by the heating means or the heat retaining means located on the outer peripheral surface of the rotating container. Drying time is shortened by heat conduction from
  • the rotary dryer includes an addition means for adding an additive to the contents accommodated in the rotary container inside the rotary container.
  • An example of this adding means is a spraying device.
  • the surface additive is added as an additive to the mixture of the particulate hydrogel and the fine granulated product contained in the rotary container, and the mixture is brought into contact with a plurality of heating tubes.
  • the surface cross-linking step and the drying step which will be described later, are performed in one step, so that the manufacturing efficiency is improved.
  • the rotary dryer may be provided with other flow means for flowing the contents in addition to the stirring of the contents by the rotation of the rotating container.
  • other flow means include a scraping plate and a stirring blade installed on the inner surface of the rotating container.
  • the number of dryers that can be used in the drying step may be only one or two or more.
  • a plurality of dryers having different specifications may be used in combination. For example, you may use in combination with the rotary dryer mentioned above, the other agitation dryer which is not classified into this, the band dryer etc. which are classified into a material transfer type. It is preferable to include at least one stirring dryer, but the type and number of dryers to be combined are not limited.
  • a dryer having a function of introducing gas into the inside thereof preferably means for introducing and discharging gas
  • means for introducing and discharging gas include a gas inlet and outlet.
  • the gas acts as a carrier gas and accelerates drying by discharging water vapor generated during drying out of the apparatus.
  • the gas also acts as a heating medium and further promotes drying.
  • nitrogen, water vapor, a mixed gas of these and air, or the like is used.
  • a mixed gas containing water vapor hereinafter also referred to as a high-humidity mixed gas
  • the inside of the apparatus is in a low oxygen state, and oxidation and deterioration during drying are suppressed.
  • the performance improvement and low coloring of the water absorbent resin can be achieved.
  • it becomes possible to suppress aggregation and agglomeration of the particulate hydrogel and fine granulated product during drying it is preferable.
  • a dryer having a function of bringing the inside into a pressurized, normal pressure, or reduced pressure state may be used.
  • a pressurized state for example, it is adjusted by increasing the amount of carrier gas introduced into the dryer.
  • the degree of pressurization with respect to atmospheric pressure is a slight pressurization of more than 0 to 0.01 kPa.
  • the pressure reduction state it adjusts by the change of the suction
  • the degree of decompression with respect to atmospheric pressure is preferably slightly above 0 to 5 kPa, more preferably above 0 to 2 kPa, and even more preferably from 0.01 to 0.5 kPa.
  • the degree of reduced pressure within the above range, water vapor generated during drying can be efficiently removed without excessively depriving the heat quantity inside the dryer, and thus the drying time is shortened. Moreover, aggregation of the particulate hydrogel and the fine granulated product in the drying step is suppressed.
  • “the degree of pressurization with respect to atmospheric pressure” and “the degree of depressurization with respect to atmospheric pressure” mean a differential pressure from the atmospheric pressure, and are expressed as an absolute value of the difference from the atmospheric pressure. For example, when the atmospheric pressure is the standard atmospheric pressure (101.3 kPa) and the degree of pressure reduction with respect to the atmospheric pressure is 10 kPa, the actual atmospheric pressure is 91.3 kPa.
  • the atmospheric dew point inside the dryer may be adjusted by introducing the gas into the dryer from one or more locations. It is preferable to adjust the atmospheric dew point as appropriate mainly in accordance with the moisture content of the particulate hydrous gel charged into the dryer.
  • the atmospheric dew point is measured at the time of exhaust from the dryer, and is preferably 60 ° C. or higher, more preferably 65 ° C. or higher, and further preferably 70 ° C. or higher. Although an upper limit is not specifically limited, Preferably it is 100 degrees C or less.
  • the drying conditions are appropriately selected depending on the type of dryer and the moisture content of the particulate hydrogel, etc., but the drying temperature (material temperature or heating medium temperature) is preferably 100 ° C. to 300 ° C., preferably 150 ° C. to 250 ° C. More preferably, 160 ° C. to 220 ° C. is more preferable, and 170 ° C. to 200 ° C. is particularly preferable. If it falls below the above range, the drying time becomes excessively long, which is uneconomical. When exceeding the said range, since the physical-property deterioration and remarkable coloring of the water absorbent resin obtained arise, it is unpreferable.
  • the drying time is preferably 1 minute to 10 hours, more preferably 5 minutes to 2 hours, still more preferably 10 minutes to 120 minutes, and particularly preferably 20 minutes to 60 minutes.
  • it is necessary to make the drying temperature excessively high, which is not preferable because the physical properties of the water-absorbent resin are deteriorated and marked coloration occurs.
  • the drying apparatus becomes enormous, and the processing amount decreases, which is uneconomical.
  • the Froude number Fr is the ratio of the centrifugal acceleration ⁇ 2 * r acting on the material to be dried stirred in the rotating container to the gravitational acceleration g. ( ⁇ is the angular velocity of the rotating body: rad / sec, r is the representative radius of the rotating body: m).
  • the number of rotations of the rotating shaft is appropriately determined depending on the apparatus.
  • the rotation speed is set so that the fluid number Fr falls within the above range.
  • the rotation speed is usually in the range of 1 rpm to 10,000 rpm, more preferably 5 to 500 rpm, and still more preferably 10 to 300 rpm.
  • the peripheral speed (V) of the stirring blade defined by the following (Formula 1) is appropriately set depending on the apparatus, but is usually 0.15 m / s to 25 m / s.
  • Peripheral speed (V) (m / s) 2 ⁇ r ⁇ n / 60 (Formula 1)
  • V is the peripheral speed (unit; m / s) of the stirring blade
  • r is the diameter of the stirring blade (unit; m)
  • n is the rotation speed of the stirring blade per unit time (unit; rpm).
  • the number of rotations of the container is appropriately set depending on the apparatus size and the amount of drying treatment (the amount of drying per hour), but preferably 1 rpm to 250 rpm, More preferably, it is 1 rpm to 100 rpm, and further preferably 2 rpm to 50 rpm.
  • the maximum peripheral speed is not particularly limited, but is preferably 0.05 m / s to 10 m / s, more preferably 0.1 m / s to 8 m / s, and still more preferably 0.15 m / s to 5 m / s. is there.
  • filling rate of a rotary dryer (ratio of fill volume contained object to the effective volume of the rotating vessel (m 3) (m 3) ) is appropriately selected from the viewpoint of heat treatment efficiency, preferably 5%
  • the range is from -95%, more preferably from 6% to 50%, and still more preferably from 10% to 40%.
  • the heat transfer area with respect to the internal volume is defined as the ratio of the heat transfer area (m 2 ) to the effective volume (m 3 ) of the rotating container (heat transfer area / effective volume).
  • the larger this ratio the higher the heat transfer efficiency and the faster the rate of temperature rise of the contents. As a result, the drying time is shortened, so that thermal and mechanical damage is reduced and productivity is improved.
  • This ratio is appropriately set depending on the specification, form, and shape of the content of the dryer, but is preferably 10 m ⁇ 1 or more, more preferably 12 m ⁇ 1 , and even more preferably 15 m ⁇ 1 or more.
  • the effective volume is the internal volume of the rotating container in which the contents are accommodated, and the heat transfer area means the area of the heating surface that can add heat to the contents accommodated in the rotating container. Specifically, the sum of the area of the outer peripheral surface of the plurality of heating tubes and the area of the inner peripheral surface of the rotating container is the heat transfer area.
  • additive used in the drying step examples include a surface cross-linking agent (post-crosslinking agent) described later in addition to the gel fluidizing agent (surfactant, polymer lubricant, etc.) described above.
  • a surface cross-linking agent post-crosslinking agent
  • surfactant, polymer lubricant, etc. surfactant, polymer lubricant, etc.
  • the water-soluble content (Ext) of the (particulate) dry polymer is preferably larger than the water-soluble content of the particulate water-containing gel before drying.
  • the water-soluble content of the (particulate) dry polymer is preferably + 0.5% by mass or more, more preferably +1 to 20% by mass, more preferably +2 to 10% by mass in terms of solid content.
  • the crosslinking density of the hydrogel (particularly, the type and amount of the internal crosslinking agent), the heat drying conditions, and the like are adjusted so as to increase within the range.
  • the water-soluble content of the obtained (particulate) dry polymer is preferably 50% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass or less.
  • This step is a step of performing a cross-linking reaction in the surface layer portion (region having a depth of about several tens of ⁇ m from the particle surface) of the water-absorbent resin particles.
  • a surface cross-linking agent adding step of adding a surface cross-linking agent that reacts with a functional group (particularly a carboxyl group) of the water-absorbent resin to the particulate hydrogel or dry polymer,
  • a heat treatment step of heat-treating the particulate hydrogel or dry polymer containing the agent, and preferably a cooling step after the heat treatment step.
  • a sizing step described later in [2-7] is performed to obtain a particulate dry polymer having a preferable particle size.
  • a sizing step described later in [2-7] is performed to obtain a particulate dry polymer having a preferable particle size.
  • This step is a step of adding a surface crosslinking agent to the particulate hydrous gel and / or the particulate dry polymer.
  • the surface cross-linking agent is added to the particulate hydrogel before or during drying, or to the particulate dried polymer after drying or sizing.
  • the particulate water-containing gel and / or the particulate dry polymer may contain a fine powder granulated product to be described later.
  • the water content of the particulate water-containing gel when the surface crosslinking agent is added is preferably 10 to 50% by mass.
  • the range is preferably 15 to 45% by mass, more preferably 20 to 40% by mass.
  • the surface cross-linking step and the sizing step after the drying step can be omitted, so that the manufacturing process can be greatly simplified. Furthermore, it is preferable because the generation of fine powder and the destruction of the surface cross-linked structure resulting from process damage to the water-absorbent resin in the separately required surface cross-linking step and transport step do not occur.
  • the solid content of the (particulate) dry polymer upon addition of the surface cross-linking agent is preferably 80% by mass or more, more preferably 85% by mass to 99.8% by mass, more preferably 90% by mass to 99.7% by mass, even more preferably 92% by mass to 99.5% by mass, particularly preferably 96% by mass to 99.5% by mass, and most preferably 98% by mass. % By mass to 99.5% by mass.
  • the temperature of the water-absorbing resin used in the surface cross-linking step after the drying step is preferably 40 to 120 ° C., more preferably 60 to 100 ° C.
  • the temperature of the water-absorbing resin during drying is preferably 70 to 150 ° C., more preferably 80 to 130 ° C. It is a range. This temperature is measured in the same manner as the gel temperature described above in the drying step.
  • a surface cross-linking agent capable of reacting with a plurality of functional groups (preferably a plurality of carboxyl groups) of the water-absorbent resin, preferably a covalent bond or an ionic bond, and further a surface cross-linker capable of covalent bonding is used.
  • Alkylene carbonate compounds such as epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin and their polyvalent amine adducts; oxetane compounds; ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -amino Silane coupling agents such as propyltriethoxysilane; hydroxides such as zinc, calcium, magnesium, aluminum, iron and zirconium; polyvalent metal compounds such as chloride, sulfate, nitrate or carbonate; . Of these, two or more may be used in combination.
  • the surface cross-linking agents one or more selected from polyvalent metal ions, epoxy compounds, oxazoline compounds, and alkylene carbonate compounds are preferable.
  • the addition amount of the surface cross-linking agent is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less in terms of solid content with respect to the particulate hydrogel or particulate dry polymer. It is.
  • the lower limit is preferably 0.001% by mass.
  • the addition form of the surface cross-linking agent is preferably added as a solution dissolved in water or an organic solvent because of the ease of addition.
  • the concentration of the surface crosslinking agent solution is preferably 1% by mass or more, more preferably 2% by mass or more.
  • the total amount of the solvent selected from water and an organic solvent is preferably 0 to 10% by mass, more preferably 0.1% by mass to, in terms of solid content, with respect to the particulate hydrogel or particulate dry polymer. It is 8% by mass, more preferably 0.5% by mass to 5% by mass.
  • water is preferably the main component.
  • Heat treatment step This step is a step of obtaining a surface-crosslinked dry polymer by heat-treating the particulate hydrogel or particulate dry polymer containing a surface crosslinking agent.
  • the particulate hydrogel or particulate dry polymer containing a surface cross-linking agent may contain a fine granulated product described later.
  • a surface-crosslinked dry polymer By heating the particulate hydrogel or particulate dry polymer containing a surface cross-linking agent (optionally fine powder granulated product) to 100 ° C. or higher, a surface-crosslinked dry polymer is obtained.
  • the heating temperature is appropriately selected depending on the type of surface crosslinking agent to be added, but is preferably 100 ° C. to 250 ° C., more preferably 120 ° C. to 230 ° C., and still more preferably, from the viewpoint of heat treatment efficiency. 150 to 210 ° C.
  • Heating time The time for the heat treatment at the surface crosslinking temperature is appropriately set according to the moisture content of the particulate hydrogel or particulate dry polymer, the type of the surface crosslinking agent, and the like. As a temporary guide, heating may be performed until the water content of the resulting water-absorbent resin powder is 10% by mass or less, and the time is in the range of 10 minutes to 120 minutes, preferably 30 minutes to 90 minutes. .
  • the heating device used in the heat treatment step is not particularly limited, but from the viewpoint that heating unevenness is unlikely to occur, the heating device has a stirring mechanism in the form of conduction heat transfer by solid-solid contact (hereinafter, referred to as the heating device). (Sometimes referred to as a stirring type indirect heating type) is preferably used. Since the surface-crosslinked particulate dry polymer is obtained after the heat treatment, the above-described stirring dryer (preferably a rotary dryer) in the drying step is preferably used as a heating device for the heat treatment step. .
  • a drying step and a surface cross-linking step are performed simultaneously by adding a surface cross-linking agent as an additive 48 to the particulate hydrous gel and heating,
  • a particulate dry polymer adjusted to a predetermined water content (solid content) and surface-crosslinked is preferable because it can be obtained in one step.
  • the (particulate) dry polymer or the surface-crosslinked (particulate) dry weight is applied after the above-described drying step or heat treatment step and before the sizing step described later. It has a cooling step of forcibly cooling the coalesced and adjusting it to a desired temperature.
  • the surface cross-linking step and the drying step are performed in one step, the surface cross-linking treatment is appropriately performed in the rotating container 10, and the (particulate) dry polymer or surface cross-linked is obtained.
  • this cooling step is carried out before being subjected to the granulation step.
  • it is preferably (t-20) with respect to the temperature t ° C. of the (particulate) dry polymer after the drying step and / or the surface-crosslinked (particulate) dry polymer after the surface cross-linking step. It is forcibly cooled to not more than 0 ° C., more preferably not more than (t ⁇ 30) ° C., more preferably not more than (t ⁇ 40) ° C.
  • the temperature t of the (particulate) dry polymer and / or the surface-crosslinked (particulate) dry polymer is 150 to 250 ° C.
  • the (particulate) dry polymer and The surface-crosslinked (particulate) dry polymer is forcibly cooled to preferably 50 to 130 ° C, more preferably 60 to 100 ° C, and even more preferably 65 to 90 ° C.
  • the method for cooling the (particulate) dry polymer and / or the surface-crosslinked (particulate) dry polymer is not particularly limited.
  • a continuous cooler having an aeration heat transfer type or conduction heat transfer type cooling means is used.
  • the (particulate) dry polymer and / or the surface-crosslinked (particulate) dry polymer may be cooled in a stationary state or in a stirred state.
  • a material stirring type cooler is preferred, and continuous material stirring type cooling More preferred.
  • a fluidized bed cooler that is direct heat transfer can be used. Cool air cooling in a continuous belt type cooler may be used.
  • a stirring device having a rotating shaft can be used for stirring and cooling.
  • a mixer having a function of allowing an air current to aerate and cool an object to be cooled is widely used as a cooler.
  • the direction of the airflow is not particularly limited, and may be up and down or left and right.
  • Specific examples of such a cooler include a mixer (horizontal cylinder type, inclined cylinder type, V type, double cone type, regular cube type, S-shaped type, continuous V type in which the rotation axis is horizontal and the container itself rotates.
  • a mixer with a horizontal rotation axis and a fixed container may be used by ventilating an airflow.
  • a container-fixed type cooler that includes a rotary stirring blade for stirring the water-absorbent resin powder that is an object to be cooled and is ventilated with an air flow is used.
  • These coolers may be a continuous type or a batch type, but are preferably a continuous type.
  • This step is a step of adjusting the particle size of the dried polymer or the surface-crosslinked (particulate) dried polymer.
  • the sizing process includes a pulverization step and / or a classification step. More preferably, the sizing process includes a crushing step and / or a classification step. A sizing step in which the water-absorbent resin powder having a controlled particle diameter and particle size distribution is obtained only by the pulverization step or the crushing step is preferable. The resulting sizing process is ideal.
  • the pulverization step is, for example, a step of adjusting the particle size by pulverizing with a pulverizer a massive dry polymer or a strongly agglomerated particulate dry polymer obtained when standing drying is performed in a drying process or a heat treatment process.
  • This pulverization step is different from the gel pulverization step described above in that the dry polymer to be pulverized has undergone the drying step.
  • Examples of the pulverizer used in the pulverization step include a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, and a pin mill, a vibration mill, a knuckle type pulverizer, and a cylindrical mixer.
  • a preferable pulverizer is a roll mill.
  • the pulverization step is a step of adjusting the particle size by pulverizing the dried polymer (particulate) loosely aggregated through the drying process or the heat treatment process with a pulverizer.
  • the particle diameter can be adjusted by pulverization weaker than the above-described pulverization step.
  • pulverizer used in this pulverization step, those having little mechanical damage to the (particulate) dry polymer or the surface-crosslinked (particulate) dry polymer are preferable.
  • the classification step is a process of removing coarse particles and fine powder from a (particulate) dry polymer, a surface-crosslinked (particulate) dry polymer, or a pulverized product or a crushed product thereof using a classifier.
  • a classifier used in the classification step a vibration type or swing type sieve classifier using a sieve screen is used.
  • the size of the coarse particles and fine powder removed in the classification step of this sizing process is appropriately set according to the particle size and particle size of the water absorbent that is the final product.
  • the particle size of the coarse particles (specified by sieving classification) is 2000 ⁇ m or more, more preferably 850 ⁇ m or more.
  • the mass average particle diameter of the fine powder is less than 150 ⁇ m, preferably 10 to 150 ⁇ m.
  • the mass average particle diameter d2 of the (particulate) dry polymer or surface-crosslinked (particulate) dry polymer subjected to the sizing step is preferably 200 ⁇ m or more, more preferably. It is 300 ⁇ m or more, more preferably 400 ⁇ m or more, and particularly preferably 500 ⁇ m or more. From the viewpoint of increasing the efficiency of the crushing step, the mass average particle diameter d2 is preferably 2000 ⁇ m or less, more preferably 1500 ⁇ m or less, and 1000 ⁇ m or less.
  • the mass average particle diameter d3 of the water absorbent resin powder obtained through the sizing step is preferably 200 ⁇ m or more, more preferably 200 to 600 ⁇ m, still more preferably 250 to 550 ⁇ m, and particularly preferably 300. ⁇ 500 ⁇ m.
  • the main component of the water-absorbent resin powder is preferably particles having a particle diameter of 150 to 850 ⁇ m as defined by sieve classification.
  • the proportion of particles having a particle size of 150 to 850 ⁇ m contained in the water absorbent resin powder is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 97 to 100% by mass, and particularly preferably 99 to 100%. % By mass.
  • the ratio of particles having a particle size of less than 150 ⁇ m and more than 850 ⁇ m as defined by the sieve classification contained in the water-absorbent resin powder is preferably 10% by mass or less, more preferably 5% by mass or less, and further more preferably 3% by mass or less. 1% by mass is preferable.
  • Fine powder granulation step The production method according to the present invention includes this fine powder granulation step as an essential step.
  • the fine granulation step is a step of adding water and an adhesion control agent as a binder simultaneously or separately to fine powder comprising a water absorbent resin to obtain a fine granulated product, preferably as an adhesion control agent and moisture
  • This is a step of obtaining a fine granulated product.
  • the water-absorbent resin forming fine powder may be surface-crosslinked, may not be surface-crosslinked, or may be a mixture thereof (mixed fine powder). That is, in this step, the fine granulated product may be obtained only from fine powder that has been surface-crosslinked, may be obtained from fine powder that has not been surface-crosslinked, or may be obtained from surface-crosslinked fine powder that has been surface-crosslinked. It may be a fine granulated product obtained from a mixed fine powder consisting of no fine powder. Moreover, the fine powder by which surface crosslinking was carried out and the fine powder by which surface crosslinking was not carried out were granulated separately, and each granulated material may be further mixed.
  • the use ratio (weight ratio) of the fine powder having undergone surface crosslinking and the fine powder not having undergone surface crosslinking is 0: 100 to 100: 0, further 5:95 to 100: 0, and particularly 10:90 to 100: 0. It is determined as appropriate within the range.
  • a fine powder granulated product is an aggregate of a plurality of particles forming a fine powder (hereinafter referred to as a fine powder particle), and means a fine powder granulated product formed by physical or chemical adhesion.
  • the shape and particle size are appropriately determined, but usually the mass average particle size is 0.1 to 10 mm, and the aspect ratio is appropriately determined to be about 1 to 10, and further about 1 to 2.
  • the fine granulated product is usually obtained by adhering a plurality of fine powder particles using moisture as a binder.
  • the water serving as the binder may be solid water (ice), but is preferably added to the fine powder as water (liquid water) or water vapor (gaseous water).
  • the adhesion control agent when added as an aqueous solution, moisture may be added to the fine powder as water contained in the aqueous solution.
  • the fine powder particles to which moisture has been added become wet and become hydrous gel particles having adhesiveness.
  • the adhesion control agent adjusts the degree of tackiness of the hydrogel particles.
  • By adding the adhesion control agent excessive adhesion between the water-containing gel particles is suppressed, and a fine granulated product having an appropriate particle size and granulation strength can be obtained.
  • water when water is added as water vapor, it is uniformly absorbed in fine powder in a short time. As a result, since the total amount of water necessary for wetting the fine powder is reduced, the burden of collecting the fine granulated product in the drying step is reduced.
  • the granulation method used in this step is not particularly limited as long as a particulate granulated product is obtained. Extrusion granulation of a porous plate such as meat chopper such as stirring granulation method, fluidized bed granulation method, rolling granulation method, etc. Etc. are used as appropriate.
  • the granulation method may be a batch method or a continuous method. From the viewpoint of the particle size and granulation efficiency of the fine granulated product obtained, the stirring granulation method is preferable, and the continuous stirring granulation method is more preferable.
  • the granulating apparatus used in this step is not particularly limited.
  • a continuous stirring device can be used.
  • Spiral pin mixers manufactured by Taiheiyo Kiko Co., Ltd.
  • flow jet mixers manufactured by Gakken Powtex
  • Shugi granulation systems manufactured by Gakken Powtex
  • Illustrative examples of the horizontal continuous stirring device include an annular layer mixer (Drysberge) and a biaxial mixer (List).
  • a rotating disk mixer More preferably, it is a disk type mixer equipped with an impeller (radial flow type, mixed flow type, diagonal flow type, axial flow type, etc.) for stirring fine powder made of a water absorbent resin.
  • the granulator preferably includes a nozzle for injecting an adhesion control agent or an aqueous solution containing the adhesion control agent, water, water vapor, or the like into the apparatus. Furthermore, in the production method according to the present invention, a granulator that has a high hermeticity and can adjust the internal pressure is more preferable so that water vapor can be supplied smoothly.
  • the injection condition of the adhesion control agent or the aqueous solution containing the adhesion control agent, water, water vapor, etc. into the granulation apparatus is such that the desired water-absorbent resin powder can be obtained in consideration of the injection method and the type of granulation apparatus. It is adjusted appropriately.
  • the gauge pressure of water vapor injected into the apparatus is preferably 0.1 to 2.0 MPa, more preferably 0.1 to 1.5 MPa, and still more preferably 0.8. 1 to 0.8 MPa.
  • the gauge pressure When the gauge pressure is less than 0.1 MPa, it takes a long time to bind and granulate the powder made of the water-absorbent resin, which may result in granulated particles having low granulation strength. When the gauge pressure exceeds 2.0 MPa, the performance of the water absorbent resin may be deteriorated.
  • the vapor pressure is maintained at a constant gauge pressure up to the vicinity of the granulation apparatus, and is used in a pressure-released state inside the apparatus.
  • the number of injection ports for injecting the adhesion control agent or an aqueous solution containing the adhesion control agent, water, water vapor, etc. into the granulation apparatus may be one, or two or more.
  • the fine powder is made of a water-absorbing resin having a poly (meth) acrylic acid (salt) -based crosslinked polymer as a main component.
  • the content of poly (meth) acrylic acid (salt) in the fine powder is preferably 50 mol% to 100 mol%, more preferably 70 mol% to 100 mol%, still more preferably. Is from 90 mol% to 100 mol%.
  • the poly (meth) acrylic acid (salt) -based crosslinked polymer may be unneutralized or neutralized.
  • a partially neutralized or completely neutralized poly (meth) acrylic acid (salt) -based crosslinked polymer is preferred. More preferably, it is a poly (meth) acrylic acid (salt) -based crosslinked polymer neutralized with an alkali metal salt or an ammonium salt, particularly preferably an alkali metal salt, and particularly preferably a sodium salt.
  • the neutralization rate of the poly (meth) acrylic acid (salt) -based crosslinked polymer is appropriately adjusted by a known method, but is preferably 40 mol% or more, more preferably 40 mol% to 80 mol%, still more preferably. It is 45 mol% to 78 mol%, particularly preferably 50 mol% to 75 mol%.
  • a method for obtaining fine powder made of a water-absorbing resin is not particularly limited.
  • fine powder made of a water-absorbing resin may be produced so as to have physical properties and particle sizes described later.
  • the fine powder removed in the classification step of the sizing process described above is collected and used for this process.
  • the mass average particle diameter of the fine powder composed of the water-absorbent resin by sieving is preferably less than 150 ⁇ m, more preferably 10 to 150 ⁇ m, still more preferably 10 to 140 ⁇ m.
  • the proportion of particles having a particle diameter of less than 150 ⁇ m contained in the fine powder is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and ideally 100% by mass.
  • the solid content of the fine powder is preferably 75% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more. From the viewpoint of suppressing dust generation during granulation, the solid content of the fine powder is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and further preferably 99.0% by mass or less.
  • the measuring method of the solid content rate of a fine powder is mentioned later in an Example.
  • the CRC (centrifuge retention capacity) of the fine powder made of water-absorbent resin is preferably 5 to 70 g / g, more preferably 10 to 60 g / g, still more preferably 15 to 50 g / g, particularly preferably in terms of solid content. Is 18 to 40 g / g.
  • the water-soluble content of the fine powder is preferably 2 to 50% by mass, more preferably 4 to 25% by mass, and further preferably 6 to 20% by mass.
  • the adhesion control agent adjusts the tackiness of the hydrogel particles in the wet fine powder. By using this adhesion control agent, a fine granulated product having an appropriate particle size and granulation strength can be obtained.
  • the type of the adhesion control agent is not particularly limited as long as it has an effect of adjusting the tack of the hydrogel particles (preferably reducing the tack appropriately).
  • the adhesion control agent may be the same compound as the gel fluidizing agent described above, or may be different.
  • adhesion control agents include, for example, anionic, cationic, nonionic, and amphoteric surfactants and their low molecular (non-polymer) or high molecular surfactants.
  • Sucrose fatty acid ester polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxy Ethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester, Alkyl glucoside, N-alkyl gluconamides, polyoxyethylene Fatty acid amides, polyoxyethylene alkyl amines, phosphate esters of phosphoric acid ester and polyoxyethylene alkyl allyl ether of polyoxyethylene alkyl ether, non
  • polymer lubricant examples include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified ethylene / propylene / diene terpolymer (EPDM), maleic anhydride-modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, Polyalkylene such as ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene glycol Alkylene
  • Anionic surfactants such as monoalkali metal alkylalkyldiacetates such as monosodium laurylaminodiacetate, potassium laurylaminodiacetate, and sodium myristylaminodiacetate.
  • Cationic surfactants such as long-chain alkyldimethylaminoethyl quaternary salts.
  • the adhesion control agent is a surfactant (particularly a non-polymeric surfactant), more preferably an amphoteric surfactant, and particularly preferably a betaine-type amphoteric surfactant.
  • betaine double-sided activators include alkyldimethylaminoacetic acid betaine (R 1 —N + (CH 3 ) 2 —CH 2 COO ⁇ ), alkylamidopropyl betaine (R 1 —CO—NH (CH 2 ) 3 — N + (CH 3 ) 2 —CH 2 COO—), alkylhydroxysulfobetaine (R 1 —N + (CH 3 ) 2 —CH 2 CH (OH) CH 2 SO 3 —), alkylaminodiacetic acid monoalkali metal And alkylcarboxymethylhydroxyethyl imidazolinium betaine.
  • alkyldimethylaminoacetic acid betaines include capryldimethylaminoacetic acid betaine, lauryldimethylaminoacetic acid betaine, myristyldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, and the like. From the viewpoint of the particle size and physical properties of the finely granulated product, capryl dimethylaminoacetic acid betaine, lauryldimethylaminoacetic acid betaine or stearyldimethylaminoacetic acid betaine is preferred, and lauryldimethylaminoacetic acid betaine is more preferred.
  • alkylamidopropyl betaines include lauric acid amidopropyl betaine, coconut oil fatty acid amidopropyl betaine, and palm kernel oil fatty acid amidopropyl betaine. From the viewpoint of the particle size and physical properties of the fine granulated product, lauric acid amidopropyl betaine or coconut oil fatty acid amidopropyl betaine is preferable, and lauric acid amidopropyl betaine is more preferable.
  • alkylhydroxysulfobetaine examples include lauryl hydroxysulfobetaine. From the viewpoint of the particle size and physical properties of the fine granulated product, lauryl hydroxysulfobetaine is preferable.
  • alkyl alkali diacetate monoalkali metal examples include monosodium laurylaminodiacetate, potassium laurylaminodiacetate, and sodium myristylaminodiacetate. From the viewpoint of the particle size and physical properties of the fine granulated product, monosodium laurylaminodiacetate is preferable.
  • alkylcarboxymethylhydroxyethyl imidazolinium betaine examples include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine. From the viewpoint of the particle size and physical properties of the fine granulated product, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine is preferable.
  • a single compound may be used as the adhesion control agent, or a plurality of compounds may be used in combination.
  • the addition amount of the adhesion control agent is preferably 0.001 to 2.0% by mass, more preferably 0.010 to 1.5% by mass, and still more preferably 0% with respect to the solid content of the fine powder made of the water absorbent resin. 0.020 to 1.0% by mass, particularly preferably 0.025 to 0.8% by mass.
  • the addition amount is too small, the effect of reducing the amount of fine powder is small, and when the addition amount is excessive, there is a possibility that the granulation strength is lowered or the surface tension of the product is lowered.
  • the addition amount of the active ingredient shall be in the said range.
  • the total amount should just be in the said range.
  • a fine granulated product having an appropriate granulation strength and particle size can be obtained.
  • the fine powder granulated product is collected in the drying step or any step before the drying step, the resulting dried product is prevented from becoming large particles, and the amount of fine powder generated in the subsequent steps is reduced.
  • the fine powder granulated product recovered in the drying process and the like is also reduced as the amount of fine powder generated decreases.
  • the physical properties of the water absorbent resin powder are improved. Furthermore, it becomes possible to make the manufacturing apparatus compact in the processes after the drying process.
  • the adhesion control agent is added as an aqueous solution to fine powder made of a water-absorbing resin.
  • the water of the aqueous solution containing the adhesion control agent acts as a binder that wets the fine powder and adheres the plurality of hydrogel particles contained in the fine powder.
  • the degree of tackiness of the water-containing gel particles is adjusted by the concentration of the adhesion control agent in the aqueous solution and the amount added as the aqueous solution.
  • the concentration of the aqueous solution containing the adhesion control agent is preferably 0.001 to 40 from the viewpoint of suppressing the formation of large particles of the fine powder granulated product by the granulation strength and uniform mixing property.
  • % By mass, more preferably 0.005 to 30% by mass, still more preferably 0.010 to 20% by mass, particularly preferably 0.050 to 15% by mass.
  • the adhesion control agent is commercially available as a solution with a known concentration, it may be used as it is, preferably using a solution that is appropriately adjusted to a solution concentration within a desired range by dilution or the like. Also good.
  • the addition amount as an aqueous solution containing an adhesion control agent is usually 10% by mass or more, preferably 25% by mass or more, more preferably 40%, based on the solid content of the fine powder. It is at least mass%, more preferably at least 65 mass%. From the viewpoint of suppressing the increase in the size of the fine granulated product, the amount added as the aqueous solution is preferably 230% by mass or less, more preferably 185% by mass or less, and further preferably 150% by mass or less.
  • the aqueous solution containing the adhesion control agent may contain a hydrophilic organic solvent as a solvent or a diluent.
  • a hydrophilic organic solvent together with water as the solvent or diluent
  • the proportion of water in the solvent or diluent is preferably 60% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, ideal Specifically, it is 100 mass%.
  • the temperature of the adhesion control agent or the aqueous solution containing the adhesion control agent is usually in the range of 0 ° C. (more 10 ° C., 20 ° C.) to the boiling point, preferably 30 ° C or higher, more preferably 40 ° C or higher, still more preferably 45 ° C or higher, particularly preferably 50 ° C or higher.
  • the upper limit is not particularly limited, but is usually the boiling point of water.
  • the aqueous solution may be further heated by using water vapor (gaseous water) in combination with the aqueous solution (liquid water) as moisture.
  • the water vapor to be added is preferably saturated water vapor, more preferably 0.11 MPa or higher (102 ° C. or higher), further preferably The saturated water vapor is 0.12 MPa or more (105 ° C. or more).
  • the amount of water vapor added to the fine powder is preferably 1% by mass or more per unit time from the viewpoint of granulation strength and particle size of the fine granulated product. Preferably it is 3 mass% or more, More preferably, it is 7 mass% or more. From the viewpoint of suppressing the increase in particle size and drying efficiency, the amount of water vapor added is preferably 100% by mass or less, more preferably 50% by mass or less, and still more preferably 30% by mass or less. The total amount of the added water vapor does not have to be absorbed by the fine powder. After the water vapor is absorbed by the liquid water used for granulation, the water vapor may be absorbed by the fine powder, and a part of the water vapor is discharged from the mixer. Also good.
  • the temperature of the fine powder provided for this step is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, more preferably 45 ° C. or higher, particularly Preferably it is 50 degreeC or more.
  • a preferable temperature is 100 ° C. or less.
  • the solid content of the fine granulated product is preferably 30% by mass or more, more preferably 35% by mass or more, and further preferably 40% by mass or more. It is. From the viewpoint of granulation strength, the solid content is preferably 80% by mass or less, more preferably 70% by mass or less, and still more preferably 60% by mass or less. That is, the fine powder granulated product is preferably a hydrogel fine powder granulated product, and is further dried to obtain a water absorbent resin powder containing the dried fine powder granulated product.
  • the CRC (centrifuge retention capacity) of the fine granulated product is preferably 5 to 70 g / g, more preferably 10 to 60 g / g, still more preferably 15 to 50 g / g, and particularly preferably 18 in terms of solid content. ⁇ 40 g / g.
  • the water-soluble content of the fine granulated product is preferably 2 to 50% by mass, more preferably 4 to 25% by mass, and further preferably 6 to 20% by mass.
  • Fine powder recovery process This process is a process of collecting (recycling) by collecting the fine powder removed in the classification step of the sizing process and supplying it to any of the processes described above.
  • the fine powder collected in the sizing process is made into a fine powder granulated product (and also a hydrogel fine powder granulated product) in the fine powder granulating process, and then before the drying process or the drying process. It collect
  • the amount of the fine granulated product recovered in each step is appropriately adjusted.
  • the amount of the fine granulated product relative to the hydrous gel is preferably 30% by mass or less in terms of solid content. Preferably it is 28 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
  • the amount of the fine powder granulated product is preferably 30% by mass or less, more preferably 28% by mass or less, further preferably, based on the monomer. It is 20 mass% or less, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
  • the ratio (solid content ratio) of the primary particles derived from the water-containing gel and the water-absorbent resin fine powder granulated product derived from the fine powder recovery can be appropriately controlled.
  • it is the ratio of the above-mentioned hydrogel converted to solid content and fine granulated product.
  • a fine granulated product may be added to the above step as it is, or may be added in a state of swelling gelation with an appropriate amount of water.
  • fine particles and a granulated product water, a crosslinking agent, a binder other than water (eg, water-soluble polymer, thermoplastic resin), a polymerization initiator, a reducing agent, a chelating agent, an anti-coloring agent, etc. May be added.
  • water when water is added, it is used in an amount of 1 to 1000% by mass with respect to the fine granulated product, and when other compounds are added, it is used in an amount of 0.01 to 10% by mass with respect to the fine granulated product. It is preferable.
  • the temperature of the fine granulated product when adding the fine granulated product to the hydrogel is preferably 50 ° C. or higher and 100 ° C. or lower, more preferably 55 ° C. or higher, further preferably 60 ° C. or higher, and more preferably. Is 95 ° C. or lower, more preferably 90 ° C. or lower. If it is in such a temperature range, the effect of an adhesion control agent can be exhibited more and the coarsening of a dry matter can be prevented.
  • the fine granulated product in the above preferred embodiment is collected in any step before the drying step or the drying step, that is, the step of adding the fine granulated product will be described in detail.
  • the step of adding the fine granulated product is specifically during the polymerization step, after the polymerization step and before the gel grinding step, during the gel grinding step, after the gel grinding step and before the drying step, and the drying step. It is preferable to add the fine granulated product to at least one selected from the group consisting of the inside.
  • a granulated gel may be added during the polymerization step.
  • the polymer whose solid content of a polymer is less than 80 mass% in a drying process can be normally regarded as a hydrogel. That is, since a hydrous gel exists until the middle of the drying process, the granulated gel may be added during the drying process. It is preferably after the gel pulverization step and before the drying step or during the drying step, more preferably after the gel pulverization step and before adding the fine powder granulated product to the water-containing gel before the drying step. Thus, when a fine powder granulated material is added to the hydrated gel after pulverization, the particle size difference between the two is small, so that they are easy to mix and drying is unlikely to be uneven.
  • the hydrogel becomes a granulated shape, and therefore, more uneven drying can be suppressed.
  • a fine granulated product is added before or during the gel pulverization step, the load on the gel pulverizer may be increased, or the gel pulverization may become unstable, and the gel particle size may not be controlled.
  • “Before the process” and “after the process” include all processes before or after the process, and a fine granulated product is added in an arbitrary process such as a transport process or a storage process between the processes. Means that.
  • the term “after the gel pulverization step” includes the time during which the gel pulverization step is transported to the next step and the next step.
  • the solid content of the fine granulated product is preferably 30% by mass or more and 80% by mass or less as described above, but details will be described later.
  • the fine granulated product is added to the hydrogel, and the temperature of the fine granulated product and the temperature of the hydrogel at that time are both in the range of 50 ° C to 100 ° C, preferably It is 55 ° C. or higher, more preferably 60 ° C. or higher, preferably 95 ° C. or lower, more preferably 90 ° C. or lower. Within such a temperature range, a good mixed state of both can be obtained. If the temperature of the fine granulated product or the hydrogel is below 50 ° C., the fine granulated product may become hard, or if the hydrogel and the fine granulated product are mixed, an aggregate may be formed.
  • the hydrogel or fine powder granulates are further stuck together to form larger aggregates, resulting in poor mixing. Even if they can be mixed, if there is an aggregate during drying, poor drying, i.e., an undried product is likely to occur. Also, if heating is continued until the agglomerates have a desired moisture content, other finely granulated products and hydrogels that have already been dried become overdried, resulting in thermal degradation and increased soluble content. For example, the quality of the water-absorbing resin deteriorates. Such a problem occurs even when one temperature is 50 ° C. or higher and the other temperature is lower than 50 ° C. On the other hand, when the temperature of the fine granulated product or the hydrogel exceeds 100 ° C., the gel surface may be dried, and the gel may be hardened.
  • the temperature difference between the fine granulated product and the hydrogel is preferably as small as possible within the above temperature range, and the temperature difference between the two is preferably within 40 ° C, more preferably. Within 30 ° C, more preferably within 20 ° C.
  • the temperature of the fine granulated product and the temperature of the hydrated gel can be adjusted as appropriate by heating and holding in the production process, heating with hot air from the outside, or cooling, cooling with low-temperature air, or the like.
  • the amount of fine powder generated in the production process may be about 30% by weight (30% by weight or less), but is usually less than 20% by weight, preferably 15% by weight or less of the total production amount. .
  • the amount of fine powder generated by the conventional production method is greatly reduced as compared to 20 to 30% by mass. Thereby, the crushing step and the classification step in the sizing process can be simplified.
  • the collection of fine powder or fine granulated product may lead to a decrease in performance of the resulting water-absorbing agent (for example, a decrease in water absorption ratio).
  • the amount of fine powder generated is reduced, so the water absorption performance. It is possible to obtain an excellent water-absorbing agent.
  • Addition process of other additives This process is an optional process carried out for the purpose of imparting various additional functions to the water-absorbing agent and improving the water-absorbing performance.
  • This is a step of adding the following additives to the water-absorbent resin powder obtained. From the viewpoint of the effect of addition, the following additives are preferably present on the surface of each particle of the water absorbent resin powder. Therefore, this step is preferably performed simultaneously with or separately from the surface cross-linking step, more preferably after the surface cross-linking step.
  • additives include chelating agents, organic reducing agents, inorganic reducing agents, oxidizing agents, hydroxycarboxylic acid compounds, surfactants, compounds having phosphorus atoms, organic powders such as metal soaps, deodorants, antibacterial agents, pulp Examples thereof include thermoplastic fibers.
  • liquid permeability is mentioned as an example of the water absorption capability provided to a water absorbing agent, the following polyvalent metal salts, cationic polymers, and inorganic fine particles are exemplified as additives for improving the liquid permeability. Of these, the use of at least one kind is preferred.
  • Polyvalent metal salt Preferred examples of the polyvalent metal of the polyvalent metal salt include aluminum and zirconium.
  • the polyvalent metal salt that can be used is preferably aluminum lactate or aluminum sulfate, and more preferably aluminum sulfate.
  • the addition amount of the polyvalent metal salt is preferably less than 3.6 ⁇ 10 ⁇ 5 mol, more preferably less than 2.8 ⁇ 10 ⁇ 5 mol, and further preferably 1 g of the water-absorbent resin powder. Is less than 2.0 ⁇ 10 ⁇ 5 mol.
  • cationic polymer Preferred examples of the cationic polymer include compounds exemplified in US Pat. No. 7,098,284. Of these, vinylamine polymers are preferred.
  • the addition amount of the cationic polymer is preferably less than 2.5 parts by mass, more preferably less than 2.0 parts by mass, and even more preferably less than 1.0 parts by mass with respect to 100 parts by mass of the water absorbent resin powder. is there.
  • inorganic fine particles include talc, kaolin, fullerite, hydrotalcite, bentonite, activated clay, barite, natural asphalt, strontium ore, ilmenite, pearlite, and other mineral products; aluminum sulfate 14-18 water Salts (or anhydrides thereof), potassium aluminum sulfate 12 hydrate, sodium aluminum sulfate 12 hydrate, ammonium aluminum sulfate 12 hydrate, aluminum compounds such as aluminum chloride, polyaluminum chloride, aluminum oxide; other polyvalent compounds such as calcium phosphate Metal salts, polyvalent metal oxides and polyhydric metal hydroxides; hydrophilic amorphous silicas; silicon oxide / aluminum oxide / magnesium oxide composites, silicon oxide / aluminum oxide composites, silicon oxide / magnesium oxide composites, etc.
  • the amount of the inorganic fine particles added is preferably less than 2.0 parts by weight, more preferably less than 1.5 parts by weight, and even more preferably less than 1.0 part by weight with respect to 100 parts by weight of the water absorbent resin powder. .
  • the production method according to the present invention includes a cooling step, a rewetting step, a pulverization step, a classification step, a granulation step, a transportation step, and a storage step as necessary. Further, a packing process, a storage process, and the like may be included.
  • the process shown in FIG. 1 may be used, but as shown in FIG. 2, a more compact manufacturing method is possible.
  • stirring drying is used in the drying step, and surface crosslinking is performed simultaneously with the drying.
  • a water-absorbing resin powder having excellent physical properties can be efficiently produced.
  • a particulate dry polymer having a surface-crosslinked surface close to the target product particle size can be obtained even after the drying step in which surface crosslinking is performed simultaneously with drying.
  • the process can also be made compact.
  • Water-absorbent resin powder as a product and its physical properties As an example of the production of the above production method, the present invention relates to a water-absorbent resin powder (primary particles) and an adhesion control agent that are dried products of a hydrogel crosslinked polymer.
  • a water-absorbent resin powder comprising a water-absorbent resin fine powder granulated product containing
  • the primary particles mean a dried product of the hydrogel crosslinked polymer
  • the water-absorbent resin fine powder granulated product obtained from the water-absorbent resin fine powder after drying corresponds to the secondary particles.
  • the water-absorbent resin fine powder granulated product (secondary particles) obtained from the water-absorbent resin fine powder after drying is mechanically damaged compared to the water-absorbent resin powder (primary particles) that is a dried product of the hydrogel crosslinked polymer. Therefore, the fine powder may be regenerated due to the destruction of the granulated particles. Moreover, the powder fluidity may be lowered.
  • the water-absorbent resin powder obtained in the present invention is produced by mixing the particulate water-containing gel-like crosslinked polymer obtained by polymerizing the monomer and the fine granulated product as an example.
  • a water-absorbent resin powder comprising a water-absorbent resin powder (primary particles) which is a dried product of a hydrogel crosslinked polymer and a water-absorbent resin fine granulated product containing an adhesion control agent is provided. Since the water-absorbent resin powder contains an adhesion control agent in the fine powder granulated product, an effect of reducing the amount of fine powder generated due to the destruction of the water-absorbent resin fine powder granulated product is exhibited.
  • the adhesion control agent is preferably a surfactant.
  • the water-absorbent resin (primary particles) and the water-absorbent resin fine powder which are optionally dried products of the hydrogel crosslinked polymer may contain a gel fluidizing agent (surfactant).
  • the adhesion control agent (particularly the surfactant) is preferably 0.001 to 2.0% by mass, more preferably 0.010 to 1.5% by mass, and still more preferably 0.00% to the solid content of the fine powder. 020 to 1.0% by mass, particularly preferably 0.025 to 0.8% by mass is added.
  • the amount of surfactant in the water-absorbent resin fine powder granulated product is preferably larger in the above range than the amount of surfactant in the water-absorbent resin powder (primary particles) which is a dried product of the water-containing gel-like crosslinked polymer.
  • Water absorbent resin powder Preferably, in the present invention, the adhesion control agent is a surfactant, and the amount of the surfactant in the water-absorbent resin fine powder granulated product is more than the amount of the surfactant in the water-absorbent resin powder.
  • the preferred kind and amount (content) of the surfactant, the amount of fine powder granulated material, the water-absorbent resin fine powder granulated product containing the water absorbent resin powder (primary particles) and the adhesion control agent The ratio (mixing ratio) is in the above range.
  • an adhesion control agent surfactant
  • the water-absorbent resin powder containing the water-absorbent resin fine powder granulated product is also resistant to mechanical damage and has good powder flowability.
  • the water absorbent resin powder water absorbent obtained by the production method according to the present invention
  • the water absorbent resin powder when used for absorbent articles, particularly paper diapers, the following (3-1) to (3- Among the physical properties listed in 7), it is desired that at least one or more, preferably two or more, more preferably three or more, and still more preferably all physical properties are controlled within a desired range.
  • the effect of the present invention is not sufficiently obtained, and particularly in a so-called high-concentration paper diaper where a large amount of water-absorbing agent is used per paper diaper. There is a possibility that performance may not be demonstrated.
  • the water-absorbent resin powder obtained in the present invention is a mixture of the particulate hydrogel crosslinked polymer obtained by polymerizing the monomer in the fine granule addition step and the fine granule (preferably dried).
  • the above-described production method is used as an example of the production method, because it is mixed in any step before the step or the drying step, further mixed after the polymerization step, and more preferably after the gel pulverization step.
  • a water-absorbent resin powder comprising a water-absorbent resin fine powder granulated material containing primary resin particles and an adhesion control agent is provided.
  • the manufacturing method is not limited to the method of the present invention, and water-absorbing resin fine powder granules containing primary particles of the water-absorbing resin and an adhesion control agent are separately obtained. You may obtain by other manufacturing methods other than the manufacturing method of this invention, such as mixing.
  • the adhesion control agent is a surfactant
  • the amount of surfactant in the water-absorbent resin fine powder granulated product is a water-absorbent resin powder that is greater than the amount of surfactant in the water-absorbent resin.
  • the water absorbent resin powder of the present invention further has the following physical properties. A preferable amount of the adhesion control agent or fine granulated product is in the above range.
  • CRC centrifuge retention capacity
  • the CRC (centrifuge retention capacity) of the water absorbent resin powder (water absorbent) of the present invention is usually 5 g / g or more, preferably 15 g / g or more, more preferably 25 g / g or more.
  • the upper limit is not particularly limited, and higher CRC is preferable, but from the viewpoint of balance with other physical properties, it is preferably 70 g / g or less, more preferably 50 g / g or less, and still more preferably 40 g / g or less. .
  • CRC When the CRC is less than 5 g / g, the amount of absorption is small and it is not suitable as an absorbent body for absorbent articles such as paper diapers. In addition, when the CRC exceeds 70 g / g, the rate of absorbing body fluids such as urine and blood decreases, so that it is not suitable for use in a high water absorption rate type paper diaper.
  • CRC can be controlled by changing the type and amount of the internal cross-linking agent and surface cross-linking agent.
  • Water-soluble component (Ext) Ext is usually 1 to 40% by mass, preferably 2 to 35% by mass, more preferably 3 to 30% by mass, still more preferably 4 to 25% by mass, and particularly preferably 5 to 20% by mass.
  • Ext When Ext exceeds the above range, the gel strength is weak, and there is a possibility that the water absorption agent is inferior in absorption capacity under load and liquid permeability. If Ext is below the above range, CRC may be too low. In either case, since rewetting increases, it is not suitable as an absorbent body for absorbent articles such as paper diapers. Ext can be controlled by changing the type and amount of the internal cross-linking agent.
  • the water content of the water-absorbent resin powder is preferably more than 0% by mass and 20% by mass or less, more preferably 1 to 15% by mass, and still more preferably 2 to 13% by mass. Particularly preferred is 2 to 10% by mass.
  • a water-absorbing agent having excellent powder characteristics for example, fluidity, transportability, damage resistance, etc.
  • the mass average particle diameter d3 (D50) of the water absorbent resin powder (water absorbent) is as described above, preferably 200 ⁇ m or more, more preferably 200 to 600 ⁇ m, still more preferably 250 to 550 ⁇ m, particularly The thickness is preferably 300 to 500 ⁇ m.
  • the ratio of particles having a particle diameter of less than 150 ⁇ m is usually 15% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less. Further, the ratio of particles having a particle diameter exceeding 850 ⁇ m is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less.
  • This water-absorbing agent contains particles having a particle size of 150 to 850 ⁇ m, preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 97% by mass or more, and particularly preferably 99% by mass or more. Ideally, it is 100% by mass.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and still more preferably 0.27 to 0.35.
  • AAP Water absorption capacity under pressure
  • the AAP (water absorption capacity under pressure) of the water absorbent resin powder (water absorbing agent) is preferably 15 g / g or more, more preferably 20 g / g or more, still more preferably 23 g / g or more, particularly preferably 24 g / g or more, most preferably Preferably it is 25 g / g or more.
  • the upper limit is not particularly limited, but is preferably 30 g / g or less.
  • the amount of liquid returned when pressure is applied to the absorbent body may increase. Not suitable as an absorber.
  • AAP can be controlled by adjusting the particle size or changing the surface cross-linking agent.
  • Vortex water absorption speed
  • the Vortex (water absorption rate) of the water absorbent resin powder (water absorbing agent) is preferably 60 seconds or less, more preferably 50 seconds or less, still more preferably 40 seconds or less, particularly preferably 30 seconds or less, and most preferably 25 seconds or less. is there. Although it does not specifically limit about a lower limit, Preferably it is 5 second or more, More preferably, it is 10 second or more.
  • the surfactant content in the water-absorbent resin fine powder granulated product is larger than the average content of the surfactant in the water-absorbent resin powder (water absorbent). preferable.
  • the surfactant content contained in the water absorbent resin fine powder granulated product is more preferably 1.5 times or more, more preferably 2 with respect to the average content of the surfactant in the water absorbent resin powder (water absorbent). It is more than double. While the surfactant content in the water-absorbent resin fine granule is high, it prevents the water-absorbent resin fine granule from being broken due to friction during transportation, etc.
  • the present invention is evaluated by the following method using the fact that the water-absorbent resin fine powder granulated product is relatively brittle. .
  • the water absorbent resin powder (water absorbent) is classified for 5 minutes using a low-tap classifier (ES65 type power supply uses 100 V, 60 Hz, manufactured by Iida Seisakusho Co., Ltd.) using JIS standard sieves with openings of 850 ⁇ m and 150 ⁇ m.
  • a water-absorbing resin powder (water-absorbing agent) having a diameter of 850 to 150 ⁇ m is obtained.
  • 30 g of this water-absorbing resin powder (water-absorbing agent) was subjected to a (mechanical damage test) method described in JP-A No. 2000-302876 (corresponding US Pat. No. 6,562,879) with a vibration time of 10 minutes. ).
  • 30 g of water-absorbent resin powder (water-absorbing agent) is shaken for 10 minutes together with 10 g of glass beads in a paint shaker (manufactured by Toyo Seiki Seisakusho, No. 488 test disperser).
  • the water-absorbing resin powder (water-absorbing agent) after imparting damage is classified in the same manner as described above with the low-tap classifier using a JIS standard sieve having an opening of 150 ⁇ m to obtain a fine powder having a particle size of 150 ⁇ m or less.
  • the fine powder and the water-absorbent resin powder (water-absorbing agent) are swollen with 50 times (mass ratio) deionized water, and further contracted with 50 times (mass ratio) methanol to obtain a surfactant extract. This is quantified using HPLC to determine the surfactant content of the fine powder and the water-absorbent resin powder (water-absorbing agent).
  • the surfactant content of the fine powder is defined as the surfactant content of the water-absorbent resin fine powder granulated product.
  • water-absorbing resin powder water-absorbing agent
  • water-absorbing resin powder water-absorbing agent
  • the use of water-absorbing resin powder is not particularly limited, but is preferably used as an absorbent article for absorbent articles such as paper diapers, sanitary napkins, and incontinence pads. Is mentioned. In particular, it can be used as an absorbent for high-density paper diapers. Since the water-absorbent resin powder of the present invention contains a large amount of a fusion control agent (surfactant) in the fine granulated product, it is mechanically resistant to damage and is also resistant to mechanical damage in the diaper manufacturing process. It is also suitable for manufacturing absorbers. Furthermore, since the water-absorbing agent is excellent in water absorption time and the particle size distribution is controlled, a remarkable effect can be expected when used in the upper layer portion of the absorber.
  • a fusion control agent surfactant
  • an absorbent material such as pulp fiber can be used together with the water absorbing agent.
  • the content (core concentration) of the water-absorbing agent in the absorber is preferably 30% by mass to 100% by mass, more preferably 40% by mass to 100% by mass, and still more preferably 50% by mass to 100% by mass. Even more preferably, it is 60% by mass to 100% by mass, particularly preferably 70% by mass to 100% by mass, and most preferably 75% by mass to 95% by mass.
  • the absorbent article can be kept in a clean white state. Furthermore, since the absorbent body is excellent in diffusibility of body fluids such as urine and blood, the amount of absorption can be improved by efficient liquid distribution.
  • liter may be expressed as “l” or “L”
  • mass% or “weight%” may be expressed as “wt%”.
  • D Non Detected
  • CRC centrifuge retention capacity
  • the CRC (centrifuge retention capacity) of the water-absorbent resin was measured according to the EDANA method (ERT441.2-02).
  • the CRC (centrifuge retention capacity) of the hydrogel was the same as that of the EDANA method (ERT441.2-02) except that the hydrogel was changed to 0.4 g as a sample and the free swelling time was changed to 24 hours. The operation was performed.
  • the solid content ⁇ of the water-containing gel was measured separately to determine the dry mass of the water-absorbent resin in 0.4 g of the water-containing gel, and the CRC of the water-containing gel was calculated according to the following (Formula 2).
  • msi is the mass (unit; g) of the hydrogel before measurement
  • mb is the mass (unit; g) of Blank (nonwoven fabric only) after free swelling and dehydration
  • mwi is free
  • is the solid content ratio (unit: mass%) of the hydrogel before measurement.
  • Ext (water soluble component) of the hydrous gel was measured according to the EDANA method (ERT470.2-02). The same operation as in the EDANA method (ERT470.2-02) was performed except that the mass of the hydrogel as a sample was changed to 5.0 g and the stirring time was changed to 24 hours. Furthermore, the solid content ratio ⁇ of the hydrogel was measured separately, the dry mass in 5.0 g of the hydrogel was determined, and the Ext of the hydrogel was calculated according to the following (Formula 3).
  • VHCl. s is the amount of HCl (unit: ml) required to bring the filtrate containing the dissolved polymer from pH 10 to pH 2.7
  • VHCl. b is the amount of HCl (unit: ml) necessary to bring Blank (0.9 mass% sodium chloride aqueous solution) from pH 10 to pH 2.7
  • CHCl is the concentration of HCl solution (unit: mol / l)
  • Mw is acrylic The average molecular weight of monomer units in the acid (salt) polymer (unit: g / mol)
  • Fdir is the dilution of the filtrate containing the dissolved polymer
  • ms is the mass of the water-absorbent resin (unit: g) before measurement
  • is It is the solid content ratio (unit: mass%) of the water-absorbent resin before measurement.
  • (C) Water content and solid content of water-absorbing resin The water content of the dried water-absorbing resin (water-absorbing agent) was measured according to the EDANA method (ERT430.2-02). In the present invention, the measurement was performed by changing the sample amount to 1.0 g and the drying temperature to 180 ° C. The solid content (mass%) was determined by subtracting the moisture content (mass%) from 100 mass%.
  • the difference from the 150 pass rate of the water absorbent resin powder obtained by collecting the fine granulated product is , was determined as a ⁇ 150 pass rate. It means that the smaller the ⁇ 150 pass rate, the smaller the mechanical damage in the drying process and the processes after the drying process, and the generation of fine powder was suppressed.
  • the difference from the 2800 on rate of the dried polymer obtained by collecting the fine granulated product is expressed as ⁇ 2800 on. Calculated as a rate. A smaller ⁇ 2800 on rate means that coarsening in the drying process is suppressed.
  • m is the mass of the monomer (unit; g)
  • M is the mass of the hydrous gel (unit; g)
  • is the solid content of the hydrous gel (unit: mass%).
  • (H) Water content and solid content of water-containing gel The water content of the water-containing gel before drying was measured in the above (c) by setting the water-containing gel to 2.0 g and the drying time to 24 hours. First, 2.00 g of the hydrogel was put into an aluminum cup having a bottom diameter of 50 mm, and then the total mass W1 (g) of the sample (the hydrogel and the aluminum cup) was accurately weighed. Next, the sample was allowed to stand in an oven set at an atmospheric temperature of 180 ° C. After 24 hours, the sample was taken out from the oven, and the total mass W2 (g) was accurately weighed.
  • the mass of the hydrogel subjected to this measurement was M (g)
  • the water content (100- ⁇ ) (mass%) of the hydrogel was determined according to the following (Formula 5).
  • is the solid content rate (mass%) of the hydrogel.
  • aqueous sodium chloride solution (hereinafter referred to as “20% by mass”) containing 20 g of particulate hydrogel (solid content ⁇ mass%) at a temperature of 20 to 25 ° C. containing 0.08 mass% EMAL 20C (surfactant, manufactured by Kao Corporation).
  • the dispersion was added to 1000 g of an aqueous solution called “Emar aqueous solution” and stirred for 16 hours at 300 rpm using a stirrer chip having a length of 50 mm and a diameter of 7 mm.
  • the container used was a polypropylene cylindrical container (height 21 cm, diameter 8 cm, internal volume about 1.14 L).
  • the ratio (mass%) was calculated from the following (formula 6) from the mass of the hydrous gel remaining on each sieve.
  • the sieve opening after draining was calculated according to the following (formula 7), and the particle size distribution of the hydrogel was plotted on a logarithmic probability paper.
  • the particle diameter corresponding to 50% by mass on the integrated sieve on the plot was set as the mass average particle diameter (D50) of the hydrogel.
  • the logarithmic standard deviation ( ⁇ ) was obtained from the following (formula 8).
  • a smaller value of ⁇ means that the particle size distribution is narrower.
  • SolidD50 GelD50 ⁇ (GS / 100) 1/3 (Formula 9)
  • GelD50 mass average particle diameter of the hydrogel particles ( ⁇ m) GS; solid content ratio of hydrogel particles (% by mass)
  • Solid D50 mass average particle diameter ( ⁇ m) converted to a dried product of hydrogel particles It is.
  • Vortex (water absorption time) Vortex (water absorption time) of the water absorbent resin was measured according to the following procedure. First, after adding 0.02 part by weight of edible blue No. 1 (brilliant blue), which is a food additive, to 1000 parts by weight of physiological saline (0.9% by weight sodium chloride aqueous solution) prepared in advance, the liquid temperature is adjusted. Adjusted to 30 ° C.
  • edible blue No. 1 brilliant blue
  • the monomer aqueous solution adjusted to 38 ° C. was continuously supplied with a metering pump, and then 150.6 parts by mass of a 48% by mass sodium hydroxide aqueous solution was continuously line-mixed. At this time, the temperature of the aqueous monomer solution increased to 87 ° C. due to heat of neutralization.
  • the obtained hydrogel (1b) and 3.1% by mass lauryldimethylaminoacetic acid betaine aqueous solution were gel pulverized while simultaneously supplying to the screw extruder.
  • the supply amount of the lauryldimethylaminoacetic acid betaine aqueous solution was such that lauryldimethylaminoacetic acid betaine was 0.15% by mass with respect to the solid content of the hydrogel (1b).
  • a meat chopper having an outer diameter of a screw shaft of 86 mm and a perforated plate having a diameter of 100 mm, a hole diameter of 8.0 mm, and a thickness of 10 mm is used at the same time as the hydrogel (1b).
  • the obtained particulate hydrogel (1) has a solid content of 44% by mass (moisture content of 56% by mass), an average particle size d1 in terms of solid content of 130 ⁇ m, and a ratio of particles having a particle size of less than 150 ⁇ m of about 53%. It was mass%.
  • the particulate hydrogel (1) had a polymerization rate of 98.6%, CRC of 36 g / g, and water-soluble content of 6%.
  • the particulate water-containing gel (1) contains 1500 ppm of lauryldimethylaminoacetic acid betaine (surfactant) added as a gel fluidizing agent in a solid water-containing gel solid content.
  • the particulate hydrous gel (1) obtained in Production Example 1 was dried using an aeration band dryer. First, the particulate hydrous gel (1) was sprayed on the ventilation plate (punching metal) of the dryer so as to have a thickness of about 10 cm. Subsequently, hot air at 185 ° C. was passed through for 35 minutes to obtain a dry polymer (1). The dried polymer (1) obtained at the outlet of the dryer was integrated and solidified into a single plate block. The lateral width of the dried polymer (1) substantially corresponded to the width of the dried belt, the length was endless, and the thickness was several centimeters.
  • the obtained dried polymer (1) is air-cooled, then crushed by a crusher (first pulverizer) equipped with a rotating shaft having a plurality of blades, and then supplied to a three-stage roll mill (second pulverizer). By further grinding, water absorbent resin powder (1) was obtained.
  • the water-absorbent resin powder (1) contains lauryldimethylaminoacetic acid betaine derived from the particulate hydrogel (1) and has a mass average particle diameter (d2) of 350 ⁇ m and a ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass). Ratio) was 14.0% by mass, and the solid content was 97.6% by mass.
  • the hydrated gel during drying was found to be two donuts installed in the middle two locations of the rotating container. It was divided into three regions with a solid content ratio of about 90% by mass and about 95% by mass as a boundary by the shape barrier (opening ratio 50%).
  • the temperature of the dried polymer (2) collected at the outlet was 200 ° C., and most of the temperature was granulated particles.
  • the dried polymer (2) had a solid content of 98.5% by mass, and the ratio of particles that had not passed through the sieve having an opening of 2800 ⁇ m (2800 on rate) was 7.4% by mass in terms of solid content.
  • the dried polymer (2) discharged from the take-out port of the dryer is forcibly cooled to 80 ° C. or less with cold air, and then the cooled product is supplied to a one-stage roll mill (pulverizer).
  • the particle size was adjusted by pulverization to obtain a water absorbent resin powder (2).
  • the water-absorbent resin powder (2) contains lauryldimethylaminoacetic acid betaine derived from the particulate water-containing gel (1) and has a mass average particle diameter (d2) of 350 ⁇ m and a ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass). Rate) was 10.8% by mass, and the solid content was 97.5% by mass.
  • Fine powder (1) contains lauryldimethylaminoacetic acid betaine derived from the above particulate hydrous gel (1), and passes through a sieve having a solid content of 95.2% by mass, a mass average particle size (d3) of 102 ⁇ m, and an aperture of 150 ⁇ m.
  • the ratio of particles (150 pass rate) was 93.9% by mass, and the CRC was 37.2 g / g.
  • the dry polymer (4) had a solid content of 98.5% by mass and a ratio of particles not passing through a sieve having an opening of 2800 ⁇ m (2800 on rate) was 7.5% by mass in terms of solid content.
  • the water-absorbent resin powder (4) had a mass average particle diameter (d2) of 350 ⁇ m, a ratio of particles that passed through a sieve having an opening of 150 ⁇ m (150 pass rate) of 10.5% by mass, and a solid content of 97.8% by mass. .
  • hydrotalcite product name “DHT-6” manufactured by Kyowa Chemical Industry Co., Ltd., Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, volume average particle size 0 0.3 ⁇ m
  • the water-absorbent resin powder (4-2) was classified using JIS standard sieves having openings of 850 ⁇ m and 180 ⁇ m to obtain fine powder (2) passing through a sieve having openings of 180 ⁇ m.
  • Fine powder (2) contains lauryldimethylaminoacetate betaine derived from the above particulate hydrous gel (1) and passes through a sieve having a solid content of 95.4% by mass, a mass average particle size (d3) of 114 ⁇ m, and an aperture of 150 ⁇ m.
  • the proportion of particles (150 pass rate) was 90.9% by mass, and the CRC was 24.9 g / g.
  • Fine powder granulation was performed using a vertical rotary disk mixer (manufactured by Ganken Powtex) having an internal volume of 7 L (stirring unit effective volume: 5 L) equipped with stirring blades, crushing blades, discharge blades and nozzles.
  • the fine powder (1) obtained in Production Example 3 was supplied to a vertical rotating disk type mixer at 200 kg / hr using a quantitative feeder (manufactured by Accurate Inc).
  • a fine granulated product (2) was obtained in the same manner as in Production Example 6 except that water (50 ° C.) was used instead of the adhesion control agent aqueous solution.
  • the fine granulated product (2) had a solid content of 50% by mass.
  • the fine granulated product (6) had a solid content of 50% by mass.
  • Reference Example 1 The dry polymer (1) and water absorbent resin powder (1) obtained in Production Example 2 were referred to as Reference Example 1.
  • Reference Example 1 is a production method in which fine granulated material was not collected in the drying step, and is a reference product of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the results of Reference Example 1, Examples 1 and 2, and Comparative Examples 1 and 2 are summarized in Table 1.
  • Example 1 Particulate water-containing gel (1) obtained by polymerization and gel grinding in Production Example 1 (solid content 44% by weight) and fine powder granulated product obtained in Production Example 6 (1) (hydrated gel-like fine powder granulated product) (Solid content 50% by weight) was mixed so as to have a mass ratio of 85/15 (solid content ratio of about 87/13) to obtain a hydrogel mixture (1).
  • a dry polymer (5) and a water-absorbent resin powder (5) were obtained in the same manner as in Production Example 2, except that this hydrogel mixture (1) was used in place of the particulate hydrogel (1).
  • the temperatures of the particulate hydrogel (1) and the fine granulated product (1) immediately before the mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the dry polymer (5) was integrated and solidified into a single plate block.
  • the lateral width of the dried polymer (5) substantially corresponded to the width of the dried belt, the length was endless, and the thickness was several centimeters.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) is 18.2% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 1 as a reference product, is 4. It was 2 mass%.
  • the water-absorbent resin powder (5) is composed of a water-absorbent resin structure derived from the fine powder granulated product (1) containing the primary particle 83% of the water-absorbent resin derived from the particulate hydrogel (1) and the adhesion control agent. This is a water-absorbent resin powder composed of 17% of particle particles.
  • 2200 ppm of the surfactant added in Production Example 6 was added to the water absorbent resin fine powder granulated product to absorb the surfactant. 2200 ppm more than the primary particles of the conductive resin.
  • Example 2 The particulate hydrous gel (1) obtained in Production Example 1 (solid content rate: 44% by weight) and the fine granulated product (4) obtained in Production Example 9 (solid content rate: 50% by weight) were in a mass ratio of 85. / 15 (solid content ratio of about 83/17) to obtain a hydrous gel mixture (2).
  • a dry polymer (6) and a water-absorbent resin powder (6) were obtained in the same manner as in Production Example 2, except that this hydrogel mixture (2) was used in place of the particulate hydrogel (1).
  • the temperatures of the particulate hydrogel (1) and the fine granulated product (4) immediately before mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the dry polymer (6) was integrated and solidified into a single plate block.
  • the lateral width of the dried polymer (6) substantially corresponded to the width of the dried belt, the length was endless, and the thickness was several centimeters.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) is 18.5% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 1 as a reference product, is 4. It was 5 mass%.
  • the water-absorbent resin powder (6) is a granulated particle derived from a fine powder granulated product (4) containing primary particles 83% of the water-absorbent resin derived from the particulate hydrous gel (1) and an adhesion control agent.
  • This is a water-absorbent resin powder comprising 17%.
  • the water-absorbent resin fine powder granulated product is obtained by adding the surfactant to the primary particles of the water-absorbent resin by using 2200 ppm of the surfactant added in Production Example 9 in addition to the surfactant 1500 ppm contained in the water-absorbent resin fine powder (2). 2200ppm more compared to.
  • the dry polymer (12) was integrated and solidified into a single plate block.
  • the lateral width of the dried polymer (12) substantially corresponds to the width of the dried belt, the length was endless, and the thickness was several centimeters.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) is 19.2% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 1 as a reference product, is 5. It was 2 mass%.
  • the water absorbent resin powder (12) is composed of 83% of the primary particles of the water absorbent resin derived from the particulate hydrous gel (1) and the water absorbent derived from the fine granulated product (2) to which no adhesion control agent is added.
  • Water-absorbent resin powder comprising 17% of the water-soluble resin granulated particles, and the water-absorbent resin granulated particles contain the same amount of surfactant as the primary particles of the water-absorbent resin.
  • the dry polymer (13) was integrated and hardened into a single plate block.
  • the lateral width of the dried polymer (13) substantially corresponded to the width of the dried belt, the length was endless, and the thickness was several centimeters.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 19.5% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 1 as a reference product, was 5. It was 5 mass%.
  • the water absorbent resin powder (13) is composed of 83% of the primary particles of the water absorbent resin derived from the particulate hydrous gel (1) and the water absorptive powder derived from the fine granulated product (6) to which no adhesion control agent is added. It is a water-absorbing resin powder composed of 17% resin granulated particles, and the water-absorbing resin fine powder granulated product does not contain an additional adhesion control agent.
  • Reference Example 2 The dry polymer (2) and water absorbent resin powder (2) obtained in Production Example 3 were referred to as Reference Example 2.
  • Reference Example 2 is a production method in which the fine granulated product was not collected in the drying process, and is a reference product of Example 3-6 and Comparative Examples 3 and 4.
  • the results of Reference Example 2, Example 3-6 and Comparative Examples 3 and 4 are summarized in Table 2.
  • Example 3 The particulate water-containing gel (1) obtained in Production Example 1 and the fine powder granulated product (1) obtained in Production Example 6 have a mass ratio of 85/15 (solid content ratio of about 83/17). By mixing, a hydrogel mixture (3) was obtained. A dry polymer (7) and a water absorbent resin powder (7) were obtained in the same manner as in Production Example 3, except that this hydrogel mixture (3) was used in place of the particulate hydrogel (1). The temperatures of the particulate hydrogel (1) and the fine granulated product (1) immediately before the mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the ratio of particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 12.1% by mass, and the ⁇ 2800 on rate, which is the difference from the reference example 2 as the reference product, is 4.7. It was mass%.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 14.1% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as a reference product, was 3. It was 3 mass%.
  • the water-absorbent resin powder (7) is a water-absorbent resin derived from finely granulated product (1) containing primary particles 83% of the water-absorbent resin derived from the particulate hydrogel (1) and an adhesion control agent. It is a water-absorbent resin powder comprising 15% of granulated particles.
  • the water-absorbent resin fine powder granulated product is obtained by adding the surfactant to the primary particles of the water-absorbent resin by 2200 ppm of the surfactant added in Production Example 6 in addition to the surfactant 1500 ppm contained in the water-absorbent resin fine powder (1). 2200ppm more compared to.
  • Example 4 The particulate water-containing gel (1) obtained in Production Example 1 and the fine powder granulated product (3) obtained in Production Example 8 are in a mass ratio of 85/15 (solid content ratio of about 83/17). By mixing, a hydrogel mixture (4) was obtained. A dry polymer (8) and a water-absorbent resin powder (8) were obtained in the same manner as in Production Example 3, except that this hydrogel mixture (4) was used in place of the particulate hydrogel (1). The temperatures of the particulate hydrogel (1) and the fine granulated product (3) immediately before mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the ratio of particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 7.7 mass%, and the ⁇ 2800 on rate, which is the difference from the reference example 2 as the standard product, is 0.3. It was mass%.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 14.1% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as a reference product, was 3. It was 3 mass%.
  • the water-absorbent resin powder (8) is a water-absorbent resin derived from a fine powder granulated product (3) containing primary particles 83% of the water-absorbent resin derived from the particulate hydrogel (1) and an adhesion control agent.
  • This is a water-absorbent resin powder comprising 17% of granulated particles.
  • the granulated product of the water absorbent resin fine powder is obtained by adding the surfactant to the primary particles of the water absorbent resin by adding 800 ppm of the surfactant added in Production Example 8 to 1500 ppm of the surfactant contained in the water absorbent resin fine powder (2). More than 800 ppm.
  • Example 5 The particulate water-containing gel (1) obtained in Production Example 1 and the fine powder granulated product (4) obtained in Production Example 9 have a mass ratio of 85/15 (solid content ratio of about 83/17). By mixing, a hydrogel mixture (5) was obtained. A dry polymer (9) and a water-absorbent resin powder (9) were obtained in the same manner as in Production Example 3, except that this hydrogel mixture (5) was used in place of the particulate hydrogel (1). The temperatures of the particulate hydrogel (1) and the fine granulated product (4) immediately before mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the ratio of the particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 4.8% by mass, and the ⁇ 2800 on rate, which is the difference from the reference example 2 as the reference product, is minus 2. It was 6% by mass.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) is 13.7% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as a reference product, is 2. It was 9% by mass.
  • the water-absorbent resin powder (9) is a water-absorbent resin derived from a fine powder granulated product (4) containing primary particles 83% of the water-absorbent resin derived from the particulate hydrogel (1) and an adhesion control agent.
  • This is a water-absorbent resin powder comprising 17% of granulated particles.
  • the water-absorbent resin fine powder granulated product is obtained by adding the surfactant to the primary particles of the water-absorbent resin by using 2200 ppm of the surfactant added in Production Example 9 in addition to the surfactant 1500 ppm contained in the water-absorbent resin fine powder (2). 2200ppm more compared to.
  • Example 6 The particulate hydrous gel (1) obtained in Production Example 1 and the fine powder granulated product (5) obtained in Production Example 10 are in a mass ratio of 85/15 (solid content ratio of about 83/17). By mixing, a hydrogel mixture (6) was obtained. A dry polymer (10) and a water-absorbent resin powder (10) were obtained in the same manner as in Production Example 3, except that this hydrogel mixture (6) was used in place of the particulate hydrogel (1). The temperatures of the particulate hydrogel (1) and the fine granulated product (5) immediately before the mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the ratio of particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 3.5% by mass, and the ⁇ 2800 on rate, which is a difference from the reference example 2 as a reference product, is minus 3. It was 9% by mass.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 13.8% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as a reference product, was 3. It was 0 mass%.
  • the water-absorbent resin powder (10) is a water-absorbent resin derived from the fine powder granulated product (5) containing the primary particles 83% of the water-absorbent resin derived from the particulate hydrogel (1) and the adhesion control agent.
  • This is a water-absorbent resin powder comprising 17% of granulated particles.
  • the water-absorbent resin fine powder granulated product is obtained by adding the surfactant to the primary particles of the water-absorbent resin by 5000 ppm of the surfactant added in Production Example 10 in addition to the surfactant 1500 ppm contained in the water-absorbent resin fine powder (2). More than 5000 ppm.
  • the ratio of the particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 22.3 mass%, and the ⁇ 2800 on rate, which is the difference from the reference example 2 which is the standard product, is 14.9. It was mass%.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 15.9% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as a reference product, was 5. It was 1% by mass.
  • the water-absorbent resin powder (14) is composed of 83% of the primary particles of the water-absorbent resin derived from the particulate hydrous gel (1) and the water-absorbent resin derived from the fine granulated product (2) containing no adhesion control agent.
  • This is a water-absorbent resin powder composed of 17% resin granulated particles.
  • the water-absorbent resin fine powder granulated product contains a surfactant to the same extent as the primary particles of the water-absorbent resin.
  • the ratio of the particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 16.9% by mass, and the ⁇ 2800 on rate, which is a difference from the reference example 2 as the reference product, is 9.5. It was mass%.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 15.2% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as the reference product, was 4. It was 4% by mass.
  • the water-absorbent resin powder (15) is composed of 83% of the primary particles of the water-absorbent resin derived from the particulate hydrous gel (1) and the water-absorbent resin derived from the fine granulated product (6) containing no adhesion control agent.
  • This is a water-absorbent resin powder composed of 17% resin granulated particles.
  • the water-absorbent resin fine powder granulated product contains a surfactant to the same extent as the primary particles of the water-absorbent resin.
  • Reference Example 3 The dry polymer (2) obtained in Production Example 3 and the water absorbent resin powder (3) obtained in Production Example 4 were used as Reference Example 3.
  • Reference Example 3 is a production method in which the fine granulated product was not collected in the drying process, and is a reference product of Example 7 and Comparative Example 5.
  • the results of Reference Example 3, Example 7 and Comparative Example 5 are summarized in Table 3.
  • Example 7 The particulate water-containing gel (1) obtained in Production Example 1 and the fine powder granulated product (4) obtained in Production Example 9 have a mass ratio of 85/15 (solid content ratio of about 83/17).
  • a hydrogel mixture (7) was obtained.
  • a dry polymer (11) was obtained in the same manner as in Production Example 3, except that this hydrogel mixture (7) was used in place of the particulate hydrogel (1).
  • a water absorbent resin powder (11) was obtained.
  • the temperatures of the particulate hydrogel (1) and the fine granulated product (4) immediately before mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the ratio of particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 4.8% by mass, and the ⁇ 2800 on rate, which is the difference from the reference example 3 as the reference product, is minus 2. It was 6% by mass.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) is 10.0% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 3 as the reference product, is 2. It was 2 mass%.
  • the water-absorbent resin powder (11) is a water-absorbent resin derived from a fine powder granulated product (4) containing primary particles 83% of the water-absorbent resin derived from the particulate hydrogel (1) and an adhesion control agent.
  • This is a water-absorbent resin powder comprising 17% of granulated particles.
  • the water-absorbent resin fine powder granulated product is obtained by adding the surfactant to the primary particles of the water-absorbent resin by using 2200 ppm of the surfactant added in Production Example 9 in addition to the surfactant 1500 ppm contained in the water-absorbent resin fine powder (2). 2200ppm more compared to.
  • the ratio of the particles that have not passed through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 16.9% by mass, and the ⁇ 2800 on rate, which is a difference from the reference example 3 as the reference product, is 9.5. It was mass%.
  • the ratio of particles passing through a sieve having an aperture of 150 ⁇ m (150 pass rate) was 12.1% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 3 as a reference product, was 4. It was 3 mass%.
  • the water-absorbent resin powder (16) is composed of 83% of the primary particles of the water-absorbent resin derived from the particulate hydrous gel (1) and the water-absorbent resin derived from the fine granulated product (6) containing no adhesion control agent.
  • This is a water-absorbent resin powder composed of 17% resin granulated particles.
  • the water-absorbent resin fine powder granulated product contains a surfactant to the same extent as the primary particles of the water-absorbent resin.
  • Reference Example 4 The dry polymer (4) and water absorbent resin powder (4) obtained in Production Example 5 were referred to as Reference Example 4.
  • Reference Example 4 is a production method in which the fine granulated product was not collected in the drying process, and is a reference product of Example 8 and Comparative Example 6.
  • the results of Reference Example 4, Example 8, and Comparative Example 6 are summarized in Table 4.
  • Example 8 The particulate water-containing gel (1) obtained in Production Example 1 and the fine powder granulated product (4) obtained in Production Example 9 have a mass ratio of 85/15 (solid content ratio of about 83/17). By mixing, a hydrogel mixture (13) was obtained. A dry polymer (17) and a water-absorbent resin powder (17) were obtained in the same manner as in Production Example 5, except that this hydrogel mixture (13) was used in place of the particulate hydrogel (1). The temperatures of the particulate hydrogel (1) and the fine granulated product (4) immediately before mixing were 95 ° C. and 60 ° C., respectively, by heating.
  • the ratio of the particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 5.1% by mass, and the ⁇ 2800 on rate, which is the difference from the reference example 4 as the reference product, is minus 2. It was 4% by mass.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 13.2% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 4 as a reference product, was 2. It was 6% by mass.
  • the water-absorbent resin powder (17) is a water-absorbent resin derived from finely granulated product (4) containing primary particles 83% of the water-absorbent resin derived from the particulate hydrogel (1) and an adhesion control agent.
  • This is a water-absorbent resin powder comprising 17% of granulated particles.
  • the water-absorbent resin fine powder granulated product is obtained by adding the surfactant to the primary particles of the water-absorbent resin by using 2200 ppm of the surfactant added in Production Example 9 in addition to the surfactant 1500 ppm contained in the water-absorbent resin fine powder (2). 2200ppm more compared to.
  • the ratio of particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 17.2% by mass, and the ⁇ 2800 on rate, which is a difference from the reference example 4 as the reference product, is 9.7. It was mass%.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) was 14.8% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 4 as a reference product, was 4. It was 2 mass%.
  • the water-absorbent resin powder (18) is composed of 83% of the primary particles of the water-absorbent resin derived from the particulate hydrous gel (1) and the water-absorbent resin derived from the fine granulated product (6) containing no adhesion control agent.
  • This is a water-absorbent resin powder composed of 17% resin granulated particles.
  • the water-absorbent resin fine powder granulated product contains a surfactant to the same extent as the primary particles of the water-absorbent resin.
  • Reference Example 2 The dry polymer (2) and water absorbent resin powder (2) obtained in Production Example 3 were referred to as Reference Example 2.
  • Reference Example 2 is a production method in which the fine powder granulated material was not collected in the gel pulverization step, and is a reference product of Example 9 and Comparative Example 7.
  • the results of Reference Example 2, Example 9 and Comparative Example 7 are summarized in Table 5.
  • Example 9 The strip-shaped water-containing gel (1b) obtained in Production Example 1 and the fine granulated product (4) obtained in Production Example 9 have a mass ratio of 85/15 (solid content ratio of about 85/15).
  • a hydrogel mixture 15
  • This water-containing gel mixture 15.1% by mass lauryldimethylaminoacetic acid betaine aqueous solution, water and 0.6 MPa of water vapor were subjected to gel pulverization while simultaneously supplying them to the screw extruder.
  • the supply amount of the lauryldimethylaminoacetic acid betaine aqueous solution was such that lauryldimethylaminoacetic acid betaine was 0.15% by mass relative to the solid content of the hydrous gel mixture (15).
  • a gel crush (first gel pulverization) was used using a meat chopper having an outer diameter of a screw shaft of 86 mm and a tip having a perforated plate having a diameter of 100 mm, a hole diameter of 8.0 mm, and a thickness of 10 mm.
  • the pulverized gel obtained by the first gel pulverization was further subjected to gel pulverization (second gel pulverization) by changing to a porous plate having a pore diameter of 4.7 mm.
  • the obtained particulate hydrogel (2) has a solid content of 45% by mass (moisture content of 55% by mass), an average particle size d1 in terms of solid content of 125 ⁇ m, and a ratio of particles having a particle size of less than 150 ⁇ m of about 54. It was mass%.
  • a dry polymer (19) and a water-absorbent resin powder (19) were prepared in the same manner as in Production Example 3, except that the obtained particulate hydrogel (2) was used in place of the particulate hydrogel (1). Obtained.
  • the temperature of the strip-like hydrogel (1b) and the fine granulated product (4) immediately before the mixing was 60 ° C. by heating.
  • the ratio of particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 7.8% by mass, and the ⁇ 2800 on rate, which is the difference from the reference example 2 as the standard product, is 0.4. It was mass%.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) is 13.5% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as a reference product, is 2. It was 7 mass%.
  • the water-absorbent resin powder (19) is a water-absorbent resin derived from the finely granulated product (4) containing primary particles 85% of the water-absorbent resin derived from the particulate hydrous gel (2) and an adhesion control agent.
  • a water-absorbing resin powder comprising 15% fine granulated material.
  • the water-absorbing resin granulated particles contain lauryldimethylaminobetaine derived from the adhesion control agent (concentration: 0.253%) added in Production Example 9. 2200 ppm in addition to the primary particles.
  • a gel crush (first gel pulverization) was used using a meat chopper having an outer diameter of a screw shaft of 86 mm and a tip having a perforated plate having a diameter of 100 mm, a hole diameter of 8.0 mm, and a thickness of 10 mm.
  • the pulverized gel obtained by the first gel pulverization was further subjected to gel pulverization (second gel pulverization) by changing to a porous plate having a pore diameter of 4.7 mm.
  • the obtained particulate hydrogel (3) has a solid content of 45% by mass (moisture content of 55% by mass), an average particle size d1 in terms of solid content of 128 ⁇ m, and a ratio of particles having a particle size of less than 150 ⁇ m of about 54%. It was mass%.
  • the dried polymer (20) and the water-absorbent resin powder (20) were prepared in the same manner as in Production Example 3 except that the obtained particulate hydrous gel (3) was used instead of the particulate hydrous gel (1). Obtained.
  • the temperature of the strip-like hydrogel (1b) and the fine granulated product (6) immediately before the mixing was 60 ° C. by heating.
  • the ratio of the particles not passing through the sieve having an opening of 2800 ⁇ m (2800 on rate) is 17.8% by mass, and the ⁇ 2800 on rate, which is the difference from the reference example 2 as the reference product, is 10.4. It was mass%.
  • the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass rate) is 15.3% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as the reference product, is 4. It was 5 mass%.
  • the monomer aqueous solution had a monomer concentration of 43% by mass, a neutralization rate of 71 mol%, a PEGDA concentration of 0.07 mol% (with respect to the monomer), and a NaPS concentration of 0.05 mol% (with respect to the single concentration). (Mer).
  • the polymerization reaction started immediately after the addition of the aqueous sodium persulfate solution, and a band-like hydrogel (2a) was obtained after 3 minutes.
  • the particulate hydrous gel (4) obtained in the gel pulverization step is laminated on a 20-mesh wire mesh so that the average thickness is 5 cm, and a ventilation dryer (manufactured by Satake Chemical Machinery Co., Ltd .: No. 71-S6) and dried. Drying conditions were as follows: a hot polymer at 190 ° C. was passed through for 20 minutes to dry, and a dry polymer (21) was obtained. The drying was completed without any problem, and no undried product was found in the dried polymer. The water content of the dry polymer was 5% by mass.
  • the aeration dryer used in this example has almost the same drying behavior as the aeration band dryer except for the difference between the batch type and the continuous type, and therefore the present results can be applied to the aeration band dryer.
  • the dried polymer (21) obtained in the drying step was pulverized with a roll mill and then classified using two types of sieves having openings of 850 ⁇ m and 150 ⁇ m.
  • the dried polymer remaining on the sieve having an opening of 850 ⁇ m was repeatedly pulverized and classified until the entire amount passed through the sieve having an opening of 850 ⁇ m.
  • a water-absorbent resin powder (21) before surface cross-linking on the powder remaining on the sieve having an opening of 150 ⁇ m and fine powder (3) passing through the sieve having an opening of 150 ⁇ m were obtained.
  • a surface crosslinking agent aqueous solution consisting of 0.3 parts by mass of ethylene carbonate, 0.5 parts by mass of propylene glycol and 2.7 parts by mass of deionized water was prepared. While stirring 100 parts by mass of the water absorbent resin (21) before surface crosslinking, 3.5 parts by mass of the surface crosslinking agent aqueous solution was sprayed and mixed. Thereafter, the obtained mixture was heat-treated at 200 ° C. for 40 minutes to carry out surface crosslinking.
  • the surface-crosslinked water-absorbent resin (21) obtained by the above operation was classified using two types of sieves having openings of 850 ⁇ m and 150 ⁇ m. Aggregate-like water-absorbent resin remaining on the sieve having an opening of 850 ⁇ m was deagglomerated and classified until the entire amount passed through the sieve having an opening of 850 ⁇ m. By this operation, the water-absorbent resin (21) remaining on the sieve having an opening of 150 ⁇ m and fine powder (4) passing through the sieve having an opening of 150 ⁇ m were obtained.
  • the water absorbent resin (21) has a water absorption capacity (CRC) of 27 g / g under no pressure, a water absorption capacity (AAP) of 24 g / g at 0.7 psi, and a saline flow conductivity (SFC) of 120 ⁇ 10. It was ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 .
  • the fine powder (3) and fine powder (4) were mixed at a ratio of 17: 3 to obtain fine powder (5).
  • the mass average particle diameter (d3) of the fine powder (5) was 91 ⁇ m.
  • Example 10 80 g of the fine granulated product (7) obtained in Production Example (13) is transported in a cylindrical plastic container (diameter: 8 cm) assuming a pipe or bucket conveyor, and the fine powder (5) and deionized water was added to 360 g of the particulate hydrous gel (4) obtained in Production Example 12 after 2.5 minutes had elapsed from the start of granulation.
  • the temperatures of the fine granulated product (7) and the particulate hydrogel (4) immediately before mixing with the mortar mixer were 67 ° C. and 55 ° C., respectively.
  • the container was mixed for 10 seconds with a mortar mixer (manufactured by West Japan Testing Machine Co., Ltd.) in which the container was heated to 80 ° C. to obtain a hydrous gel mixture (17).
  • the water-absorbent resin powder (22) is a water-absorbent resin derived from a fine powder granulated product (7) containing primary particles 78% of the water-absorbent resin derived from the particulate hydrous gel (1) and an adhesion control agent. It is a water-absorbent resin powder composed of 22% granulated particles.
  • polyoxyethylene sorbitan monostearate derived from the adhesion control agent added in Production Example 13 is used as the primary particle of the water-absorbent resin. In comparison, it contains an additional 200 ppm.
  • Example 11 In Example 10, except that the fine granulated product (7) was changed to the fine granulated product (8), the same operation as in Example 10 was carried out to obtain a hydrogel mixture (18), a dry polymer (23), and Water-absorbent resin powder (23) was obtained. In the water absorbent resin powder (23), the ratio of particles passing through a sieve having an opening of 150 ⁇ m (150 pass ratio) was 9.2% by mass. The temperatures of the fine granulated product (8) and the particulate hydrogel (4) immediately before mixing with the mortar mixer were 65 ° C. and 55 ° C., respectively.
  • the water-absorbent resin powder (23) is a water-absorbent resin derived from the finely granulated product (8) containing the primary particles 78% of the water-absorbent resin derived from the particulate hydrogel (1) and the adhesion control agent.
  • a water-absorbent resin powder composed of 22% of granulated particles, and lauryldimethylaminobetaine derived from the adhesion control agent added in Production Example 14 is added to the water-absorbent resin fine powder granulated product as compared with the primary particles of the water-absorbent resin. Containing 1000 ppm.
  • Production Example 15 In Production Example 9, the active ingredient concentration of the adhesion control agent aqueous solution was 1.15% by mass, and the addition amount of the adhesion control agent was 5000 ppm with respect to the solid content of the fine powder (2), as in Production Example 6. Thus, a fine powder granulated product (9) was obtained. The fine granulated product (9) had a solid content of 64% by mass.
  • Example 12 95 ° C. particulate hydrogel (1) obtained in Production Example 1 (solid content rate: 44% by weight) and 60 ° C. fine granulated product obtained in Production Example 15 (9) (solid content rate: 64% by mass) ) And a mass ratio of 85/15 (solid content ratio of about 80/20) to obtain a hydrogel mixture (19).
  • a dry polymer (24) and a water absorbent resin powder (24) were obtained in the same manner as in Production Example 3, except that this hydrogel mixture (19) was used in place of the particulate hydrogel (1).
  • the ratio of particles not passing through a sieve having an opening of 2800 ⁇ m (2800 on rate) is 8.2% by mass, and the ⁇ 2800 on rate, which is a difference from the reference example 2 as a standard product, is 0.8. It was mass%.
  • the ratio of particles that passed through a sieve having an opening of 150 ⁇ m (150 pass rate) was 12.1% by mass, and the ⁇ 150 pass rate, which is a difference from the reference example 2 as a reference product, was 1. It was 3 mass%.
  • the solid content of the water absorbent resin powder (24) is 98.3% by mass, and the mass average particle diameter (d2) is 343 ⁇ m.
  • the water-absorbent resin powder (24) is a water-absorbent resin derived from finely granulated product (9) containing 80% primary particles of the water-absorbent resin derived from the particulate hydrous gel (1) and an adhesion control agent. It is a water-absorbent resin powder composed of 20% fine granulated product.
  • 5000 ppm of the surfactant added in Production Example 15 was added to the water absorbent resin fine powder granulated product to absorb the surfactant. It contains an additional 5000 ppm compared to the primary particles of the conductive resin.
  • Example 1 (Summary) In Table 1, the fine powder granulated product (1) granulated by adding an adhesion control agent to the fine powder (1) is collected and dried together with the particulate hydrous gel (1) in an aeration band dryer, and pulverizing step
  • the ⁇ 150 pass rate of Example 1 obtained through the above is smaller than the ⁇ 150 pass rate of Comparative Example 1 using the fine granulated product (2) granulated without adding the adhesion control agent. From the comparison between Example 1 and Comparative Example 1, it can be seen that the addition of an adhesion control agent is important for reducing the amount of fine powder generated.
  • the fine powder granulated product (4) granulated by adding an adhesion control agent to the fine powder (2) is collected and dried together with the particulate hydrous gel (1) in an aeration band dryer, and pulverizing step
  • the ⁇ 150 pass rate of Example 2 obtained through the above is smaller than the ⁇ 150 pass rate of Comparative Example 2 using the fine powder granulated product (6) granulated without adding the adhesion control agent. From the comparison between Example 2 and Comparative Example 2, it can be seen that the addition of an adhesion control agent is important for reducing the amount of fine powder generated.
  • Example 3 the implementation was obtained by collecting the fine granulated product (1) granulated by adding an adhesion control agent to the fine powder (1) and drying it with a rotary dryer together with the particulate hydrous gel (1)
  • the ⁇ 2800 on rate of the dry polymer of Example 3 is smaller than the ⁇ 2800 on rate of Comparative Example 3 using the fine powder granulated product (2) granulated without adding the adhesion control agent.
  • the ⁇ 150 pass rate of Example 3 obtained by pulverizing the dry polymer is smaller than the ⁇ 150 pass rate of Comparative Example 3. From the comparison between Example 3 and Comparative Example 3, it can be seen that the addition of an adhesion control agent is important in order to suppress the formation of large particles and reduce the amount of fine powder generated during fine powder granulation.
  • the fine powder granulated product (3)-(5) granulated by changing the addition amount of the adhesion control agent to the fine powder (2) was collected, and was pulverized together with the particulate hydrous gel (1) with a rotary dryer.
  • the ⁇ 2800 on rate of the dried polymer of Example 4-6 obtained by drying is smaller than the ⁇ 2800 on rate of Comparative Example 4 using the fine granulated product (6) granulated without adding the adhesion control agent.
  • the ⁇ 150 pass rate of Example 4-6 obtained by pulverizing the dry polymer is smaller than the ⁇ 150 pass rate of Comparative Example 4. From the comparison between Example 4-6 and Comparative Example 4, it can be seen that the addition of an adhesion control agent is important in order to suppress the formation of large particles and reduce the amount of fine particles generated during granulation.
  • the fine powder granulated product (4) granulated by adding an adhesion control agent to the fine powder (2) was recovered and dried with a rotary drier together with the particulate hydrous gel (1).
  • the ⁇ 2800 on rate of the dry polymer of Example 7 is smaller than the ⁇ 2800 on rate of Comparative Example 5 using the fine granulated product (6) granulated without adding the adhesion control agent.
  • the ⁇ 150 pass rate of Example 7 obtained by pulverizing the dry polymer is smaller than the ⁇ 150 pass rate of Comparative Example 5.
  • Example 7 From the comparison between Example 7 and Comparative Example 5, it is understood that the addition of an adhesion control agent is important for suppressing the increase in the size of fine particles during granulation and reducing the amount of fine powder generated, regardless of the strength of the pulverization process. .
  • the fine powder granulated product (4) granulated by adding an adhesion control agent to the fine powder (2) was collected and dried with a rotary dryer together with the particulate hydrous gel (1)
  • the ⁇ 2800 on rate of the dried polymer of Example 8 is smaller than the ⁇ 2800 on rate of Comparative Example 6 using the fine granulated product (6) granulated without adding the adhesion control agent.
  • the ⁇ 150 pass rate of Example 8 obtained by pulverizing the dry polymer is smaller than the ⁇ 150 pass rate of Comparative Example 6.
  • Example 8 From the comparison between Example 8 and Comparative Example 6, it can be seen that the addition of an adhesion control agent is important for suppressing the increase in the size of fine particles during granulation and reducing the amount of fine particles generated regardless of the presence or absence of surface crosslinking. . Moreover, in Example 8, since the fine powder generation amount shown by the 150 pass rate decreases, AAP (water absorption performance under pressure) is improved, and the same performance as Reference Example 4 obtained without collecting the fine granulated product. showed that.
  • AAP water absorption performance under pressure
  • ⁇ 2800on rate of the dry polymer of Example 9 obtained by collecting the fine powder granulated product (4) granulated by adding an adhesion control agent to the fine powder (2) in the gel pulverization step is It is smaller than the ⁇ 2800 on rate of Comparative Example 7 using the fine granulated product (6) granulated without adding the control agent.
  • the ⁇ 150 pass rate of Example 9 obtained by pulverizing the dry polymer is smaller than the ⁇ 150 pass rate of Comparative Example 7. From the comparison between Example 9 and Comparative Example 7, in the embodiment in which the fine granulated product is recovered in the gel pulverization step, an adhesion control agent is used for the purpose of suppressing large particles and reducing the amount of fine powder generated during fine granulation. It can be seen that the addition is important.
  • a granulated gel having high fluidity can be obtained by adding an aqueous liquid (warm water) heated to a fine powder as shown by the results of the degree of cohesive disintegration, and further adding an aqueous surfactant solution and granulating. I understand.
  • Examples 10 and 11 show that not only the amphoteric surfactant lauryldimethylaminoacetic acid betaine but also the nonionic polyoxyethylene sorbitan monostearate can be used as the surfactant of the present invention.
  • Example 12 shows that even if the solid content rate of a fine granulated material is high (solid content rate 64 mass%), it can implement.
  • the water-absorbent resin powder obtained in the present invention is a water-absorbent resin powder comprising a water-absorbent resin fine powder granulated product containing primary particles of water-absorbent resin and an adhesion control agent, and is relatively weak to mechanical damage. Since the adhesion control agent (surfactant) is added to the fine granulated product (added more than the primary particles of the water absorbent resin derived from the dried product of the hydrogel), the water absorbent resin containing the fine water granulated product It is resistant to mechanical damage as a powder and also has good powder flowability.
  • the adhesion control agent surfactant
  • the water-absorbent resin powder obtained in the above production examples, examples and comparative examples is a water-absorbent resin powder which is not the final product before performing the classification step in the granulating step.
  • the water-absorbent resin powder obtained by the present invention is suitable for use as an absorbent material for sanitary goods such as paper diapers.

Abstract

微粉発生量及び微粉回収量を低減した吸水性樹脂粉末およびその製造方法の提供することを課題とし、本発明の製造方法は、乾燥工程と、微粉造粒工程とを含んでいる。乾燥工程は、酸基含有不飽和単量体を主成分として得られる粒子状含水ゲル状架橋重合体を乾燥して乾燥重合体を得る工程である。微粉造粒工程は、吸水性樹脂からなる微粉にバインダーと接着制御剤を添加して、微粉造粒物を得る工程である。この製造方法では、得られた微粉造粒物を、乾燥工程又は乾燥工程前のいずれかの工程に回収する。

Description

吸水性樹脂粉末、及びその製造方法
 本発明は、吸水性樹脂粉末、及びその製造方法に関する。詳細には、本発明は、製造工程における微粉発生量を従来よりも低減した吸水性樹脂粉末の製造方法に関する。
 吸水性樹脂(SAP/Super Absorbent Polymer)は、水膨潤性水不溶性の高分子ゲル化剤であり、紙オムツや生理用ナプキン等の吸収性物品、農園芸用の保水剤、工業用の止水剤等、様々な分野で多用されている。
 上記吸水性樹脂は、その原料として多くの単量体や親水性高分子が使用されているが、吸水性能の観点から、アクリル酸及び/又はその塩を単量体として用いたポリアクリル酸(塩)系吸水性樹脂が、工業的に最も多く生産されている。
 上記吸水性樹脂には、主用途である紙オムツの高性能化に伴い、様々な機能(高物性化)が求められている。具体的には、基本物性である無加圧下吸水倍率や加圧下吸水倍率の他に、ゲル強度、水可溶分、含水率、吸水速度、通液性、粒度分布、耐尿性、抗菌性、耐ダメージ性、粉体流動性、消臭性、耐着色性、低粉塵、低残存モノマー等の様々な物性が吸水性樹脂に対して要求されている。
 このような吸水性樹脂は、シート状、繊維状、フィルム状等、様々な形状とすることができるが、一般的には、粉末状又は粒子状とすることが多い。粉末状又は粒子状の吸水性樹脂では、その粒子径や粒度分布等によって吸水性能や取扱性、使用感が変動することが知られている。そのため、粒子径や粒度分布が適正に制御された粉末状又は粒子状の吸水性樹脂が求められている。特に、紙オムツ等衛生用品の用途では、加圧下吸水倍率や通液性などの観点から、微粉(粒径100μm未満ないし150μm未満の微粒子、特に150μm未満の微粒子)の含有量が少ない吸水性樹脂粉末(例えば粒度分布が850~150μm)が好ましいとされている。
 上記粉末状又は粒子状の吸水性樹脂の主な製造方法として、水溶液重合法や逆相懸濁重合法が挙げられる。特に、該水溶液重合法では、通常、粒子状の吸水性樹脂を最終的に得るために、水溶性エチレン性不飽和単量体を水溶液重合する重合工程、重合で得られた含水ゲル状重合体を粉砕するゲル粉砕(細粒化)工程、粉砕ゲルを乾燥する乾燥工程、乾燥物を粉砕する粉砕工程、粉砕物を適正な粒度範囲に調整する分級工程、分級された吸水性樹脂粉末に表面架橋剤を混合する混合工程、混合物を加熱し表面架橋反応を起こさせる加熱工程といった多くの製造工程を必要としている(非特許文献1及び特許文献1~4)。
 上記製造プロセスにおいて発生する微粉量は、生産量全体の10~数10質量%(例えば20~30質量%)に達する。この微粉は分級工程において除去されるが、除去された微粉の廃棄はコスト的に不利であるため、通常、造粒された後、分級工程以前の工程、特に乾燥工程以前の工程に回収される。
 微粉を造粒して回収する際に、微粉造粒物の強度が不足していると、例えば、乾燥工程、粉砕工程及び分級工程において再び微粉が発生することになり、その結果として、製造プロセス全体で発生する微粉量が増加する。これまで、微粉造粒物の強度を改善するための種々の提案がなされている。
 例えば、多量の温水で微粉をゲル化させることにより、微粉同士を強固に結着させる方法(特許文献5)、及び塩基性溶液で微粉の表面を処理し、可溶分等の溶出成分をバインダーとして微粉同士を強固に結着させる方法(特許文献6)が提案されている。また、微粉に水分を均一に供給することで、微粉同士を均一に強固に結着させる方法として、水(水性液)及び水蒸気を用いる方法(特許文献7)、及び疎水性粉末(無機酸化物粒子)と微粉との混合物と、水とを用いる方法(特許文献8)が提案されている。
 しかし、いずれの方法によっても、得られる微粉造粒物の粒径が数mm以上(例えば、3mm)と大きくなり、必然的に、その乾燥物の粒径も目的とする吸水性樹脂の製品粒径(例えば850~150μm)よりも大きくなる。例えば、微粉造粒物を、粉砕された含水ゲルの乾燥工程に回収する場合、微粉造粒物同士の接着や、微粉造粒物と含水ゲル粒子との接着が生じて、得られる乾燥物の粒径が乾燥前の微粉造粒物や目的とする吸水性樹脂の製品粒径よりもさらに大きくなる。この場合、微粉造粒物自体が十分な強度を有していたとしても、微粉造粒物及びその乾燥物が大粒子化またはブロック状に一体化することで、目的とする製品粒径へのその後の粉砕工程における負荷が大きくなり、かえって微粉の発生量が増加するという問題があった。また、無機酸化物粒子を用いる特許文献8の方法の場合、吸水性樹脂微粉との混合工程において粉塵が発生するため、取扱性の問題も有している。さらに重合ゲルの乾燥物である吸水性樹脂粉末(一次粒子)に比べ、乾燥後の吸水性樹脂微粉から得られる吸水性樹脂微粉造粒物(2次粒子)は機械的ダメージに比較的弱いため、造粒粒子の破壊に伴う微粉の再生が起こることもあった。よって、微粉リサイクル方法として微粉造粒で得られた吸水性樹脂はその製造工程や最終製品の実使用(例えば紙おむつ製造)での摩擦により、意図せぬ機械的ダメージによって、微粉造粒物の破壊により微粉増加する可能性もあった。
欧州特許1130045A2号 国際公開WO2009/113678号 国際公開WO2009/113679号 国際公開WO2009/113673号 特開平11-106514号 国際公開WO2015/041432号 国際公開WO2009/031701号 韓国特許公開1020170092314号
Modern Superabsorbents Polymer Chemistry(1998),p69-103
 本発明の課題は、加圧下吸水倍率等の吸水性能に優れ、かつ、製造工程での微粉発生量及び微粉回収量が少なく、コンパクトな装置で効率的に吸水性樹脂粉末を製造することができる方法を提供することである。さらに、本発明は機械的ダメージに比較的弱い造粒粒子の破壊に伴う微粉の再生を抑制しうる吸水性樹脂粉末およびその製造方法を提供することである。
 本発明者らは、鋭意検討した結果、微粉造粒工程において、接着制御剤を微粉に添加することで、適度な造粒強度と粒度とを有する微粉造粒物が得られ、この微粉造粒物を乾燥工程に回収した場合に、得られる乾燥物の大粒子化が抑制されることにより、その後の工程における機械的ダメージが低減され、微粉発生量が減少することを見出し、本発明を完成した。
 即ち、本発明は、酸基含有不飽和単量体を主成分として得られる粒子状含水ゲル状架橋重合体を乾燥して乾燥重合体を得る乾燥工程と、吸水性樹脂からなる微粉に、バインダーと接着制御剤を添加して、微粉造粒物を得る微粉造粒工程と、を含んでおり、得られた微粉造粒物を、乾燥工程又は乾燥工程前のいずれかの工程に回収する吸水性樹脂粉末の製造方法である。また、上記課題を解決するため、本発明の吸水性樹脂粉末は上記製造方法を製造方法の一例として、含水ゲル状架橋重合体の乾燥物である吸水性樹脂粉末(一次粒子)および接着制御剤を含む吸水性樹脂微粉造粒物を含む吸水性樹脂粉末を提供する。
 本発明に係る製造方法では、微粉造粒工程において、適度な造粒強度と粒度とを有する微粉造粒物が得られる。この微粉造粒物を乾燥工程又は乾燥工程前のいずれかの工程に回収して、粒子状含水ゲル架橋重合体とともに乾燥することで、得られる乾燥物の大粒子化が回避される。これにより、その後の工程における機械的ダメージが低減され、微粉発生量が減少するという効果が得られる。特に、乾燥工程において、内容物の転動を伴う攪拌乾燥機を用いて、微粉造粒物を粒子状含水ゲルとともに乾燥する場合には、微粉造粒物同士又は微粉造粒物と含水ゲル粒子との接着による粗粒化が抑制されるため、その後の工程における微粉発生量の減少という効果がより顕著になる。
 また、主として製造工程で発生する微粉を微粉造粒工程に供する実施形態では、微粉発生量の減少にともなって、乾燥工程等に回収する微粉造粒物も減少するため、得られる吸水性樹脂粉末の物性が向上する。さらに、乾燥工程以降の工程における製造装置をコンパクト化することが可能になる。さらに、本発明に係る吸水性樹脂粉末は、機械的ダメージに比較的弱い微粉造粒物が接着制御剤(特に界面活性剤)を含むため、その後の工程や吸水性樹脂粉末の製品として実使用(例えば、紙おむつ製造)での摩擦による機械的ダメージが減少し、微粉発生量の減少という効果がより顕著になる。
図1は、本発明の一実施形態に係る製造方法を示すフローチャートである。 図2は、本発明の他の実施形態に係る製造方法を示すフローチャートである。
 以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下に例示する以外にも、本発明の趣旨を損なわない範囲内で適宜変更して、実施することが可能である。また、本発明は、以下の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。複数の実施形態についてそれぞれ開示された技術的手段を、適宜組み合わせて得られる他の実施形態についても、本発明の技術的範囲に含まれる。
 〔1〕用語の定義
 〔1-1〕「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、下記の物性を満たすものをいう。即ち、水膨潤性としてERT441.2-02で規定されるCRC(遠心分離機保持容量)が5g/g以上であり、かつ、水不溶性としてERT470.2-02で規定されるExt(水可溶分)が50質量%以下である高分子ゲル化剤を指す。
 上記吸水性樹脂は、その用途・目的に応じた設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、全量が架橋重合体である形態に限定されず、上記の各物性(CRC、Ext)が上記数値範囲を満たす限り、添加剤等を含んだ組成物であってもよい。
 本発明における「吸水性樹脂」は表面架橋(別称;後架橋、2次架橋)されたものであってもよく、表面架橋されていないものであってもよい。なお、本発明では所定の表面架橋処理が完了した吸水性樹脂を、別途、表面架橋された吸水性樹脂と称することもある。また、所定の含水率及び粒度に調整された吸水性樹脂を、吸水性樹脂粉末又は吸水剤と称する。
 〔1-2〕「微粉」
 本発明における「微粉」とは、粒子状又は粉末状の吸水性樹脂であって、その質量平均粒子径が150μm未満のものを意味する。好ましくは、ポリ(メタ)アクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂からなる微粉末を意味する。表面架橋されたものであっても良く、表面架橋されていないものであってもよい。また、微粉が、水や後述するその他の添加剤の添加工程に記載の添加剤を含んでもよい。すなわち、本発明である「吸水性樹脂からなる微粉」とは、100%が吸水性樹脂(含水率0%の重合体)に限らず、微粉は水や吸水性樹脂粉末の副原料であるその他微量成分(例;無機微粒子など)を含んでもよい。
 〔1-3〕「ポリ(メタ)アクリル酸(塩)」
 本発明における「ポリ(メタ)アクリル酸(塩)」とは、ポリ(メタ)アクリル酸及び/又はその塩を指し、主成分として(メタ)アクリル酸及び/又はその塩(以下、「(メタ)アクリル酸(塩)」とも称する)を繰り返し単位として含み、任意成分としてグラフト成分を含む架橋重合体を意味する。
 上記「主成分」とは、(メタ)アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体全体に対して、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%、更に好ましくは90モル%~100モル%、特に好ましくは実質100モル%であることを意味する。
 ここで、ポリ(メタ)アクリル酸(塩)は、未中和でもよいが、好ましくは部分中和または完全中和されたポリ(メタ)アクリル酸塩であり、より好ましくは一価の塩、さらに好ましくはアルカリ金属塩又はアンモニウム塩、よりさらに特に好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。
 〔1-4〕評価方法の定義
 「EDANA」は、European Disposables and Nonwovens Associationsの略称である。また、「ERT」は、EDANA Recommended Test Methodsの略称であり、吸水性樹脂の測定方法を規定した欧州標準である。本発明では、特に断りのない限り、ERT原本(2002年改定)に準拠して、吸水性樹脂の物性を測定する。ERT原本(2002年改定)に記載のない評価方法に関しては、実施例に記載された方法及び条件で測定する。
 〔1-4-1〕「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、吸水性樹脂の無加圧下での吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間、水切りした後の吸水倍率(単位;g/g)のことをいう。なお、重合後及び/又はゲル粉砕後の含水ゲルについては、含水ゲル0.4gを使用し、測定時間を24時間に変更し、且つ固形分補正してCRCを求める。
 〔1-4-2〕「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分(吸水性樹脂中の水可溶分ポリマー量)を意味する。具体的には、吸水性樹脂1.0gを0.9質量%塩化ナトリウム水溶液200mlに添加し、500rpmで16時間攪拌した後、水溶液に溶解した物質の量(単位;質量%)のことをいう。水可溶分の測定には、pH滴定が用いられる。なお、重合後及び/又はゲル粉砕後の含水ゲルについては、含水ゲル2.0gを使用して測定し、固形分当たりの水可溶分の質量%として算出する。
 〔1-4-3〕「Moisture Content」(ERT430.2-02)
 「Moisture Content」は、吸水性樹脂の乾燥減量で規定される含水率を意味する。具体的には、吸水性樹脂4.0gを105℃で3時間乾燥した際の乾燥減量から算出した値(単位;質量%)を意味する。なお、本発明において、乾燥後の吸水性樹脂の含水率は、吸水性樹脂1.0gの180℃、3時間の乾燥減量で規定され、乾燥前の含水ゲルの含水率は、含水ゲル2.0gの180℃、24時間の乾燥減量で規定される。
 〔1-4-4〕「PSD」(ERT420.2-02)
 「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される吸水性樹脂の粒度分布を意味する。なお、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ)は、米国特許第7638570号のカラム27~28の(3)質量平均粒子径(D50)及び粒度分布の対数標準偏差に記載された方法と同様の方法で振動分級機(電源60Hz)にて測定される。なお、本発明において粒子状含水ゲルの粒度分布(PSD)は後述の方法で湿式に篩分級することで規定される。さらに、粒子状含水ゲルの固形分換算の粒子径(μm)は、粒子状含水ゲルの粒子径(μm)とその固形分率(質量%)から後述の計算方法で規定される。
〔1-4-5〕「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、吸水性樹脂の加圧下における吸水倍率を意味する。具体的には、吸水性樹脂0.9gを大過剰の0.9質量%塩化ナトリウム水溶液に対して、1時間、2.06kPa(21g/cm、0.3psi)の荷重下で膨潤させた後の吸水倍率(単位;g/g)のことをいう。本願明細書では荷重条件を4.83kPa(約49g/cm、約0.7psiに相当)に変更して測定した値として定義される。
 〔1-4-6〕「Residual Monomers」(ERT410.2-02)
 「Residual Monomers」は、吸水性樹脂中に残存する単量体(モノマー)質量(以下、「残存モノマー」と称する)の、吸水性樹脂の質量に対する割合(単位;ppm)を意味する。具体的には、吸水性樹脂1.0gを0.9質量%塩化ナトリウム水溶液200mlに添加し、1時間攪拌した後に溶出したモノマー量を、高速液体クロマトグラフィーを用いて測定する。尚、含水ゲルの残存モノマーは、必要により強制冷却等の重合停止操作を行った後、後述する方法にて測定して得られる残存モノマー質量の、含水ゲルの樹脂固形分の質量に対する割合(単位;質量%)とする。
 〔1-4-7〕「Vortex」
 本発明における「Vortex」とは、吸水性樹脂の吸水速度を表す指標であり、2gの吸水性樹脂が50mlの0.9質量%の塩化ナトリウム水溶液を所定の状態まで吸水するのに要する時間(単位;秒)を意味する。
 〔1-5〕その他
 本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、質量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味し、「ppm」は「質量ppm」又は「重量ppm」を意味する。更に、「質量」と「重量」、「質量部」と「重量部」、「質量%」と「重量%」はそれぞれ同義語として扱う。また、「~酸(塩)」は「~酸及び/又はその塩」、「(メタ)アクリル」は「アクリル及び/又はメタクリル」をそれぞれ意味する。
 〔2〕吸水性樹脂粉末の製造方法
 本発明に係る製造方法は、酸基含有不飽和単量体を主成分として得られる粒子状含水ゲル状架橋重合体を乾燥して乾燥重合体を得る乾燥工程と、吸水性樹脂からなる微粉に、バインダーと接着制御剤を添加して、微粉造粒物を得る微粉造粒工程と、を含んでおり、得られた微粉造粒物を、乾燥工程又は乾燥工程前のいずれかの工程に回収して吸水性樹脂粉末を製造するものである。
 図1は、本発明の一実施形態に係る製造方法を説明するためのフローチャートである。この製造方法は、乾燥工程及び微粉造粒工程の他に、重合工程、(重合と同時または別途の)ゲル粉砕工程、(乾燥と同時または別途の)表面架橋工程、(乾燥後の及び/又は表面架橋後の)整粒工程、冷却工程及び微粉回収工程を有している。その他には、単量体水溶液の調整工程、各種添加剤の添加工程等、目的に応じて各種の公知の工程を含むことができる。後述のように、本発明の製造方法では、図1に限定されず、図1から乾燥工程以後の少なくとも一部の工程をコンパクト化ないし省略してもよい。このコンパクト化した製造工程のフローチャートが、図2に示されている。図2の詳細については後述する。
 以下、適宜図面を参照しつつ、各工程について詳細に説明する。
 〔2-1〕単量体水溶液の調製工程
 本工程は、酸基含有不飽和単量体を主成分として含む水溶液(以下、「単量体水溶液」と称する)を調製する工程である。なお、得られる吸水性樹脂の吸水性能が低下しない範囲で、単量体のスラリー液(単量体の飽和濃度を超えた分散液)を使用することもできるが、本項では便宜上、単量体水溶液について説明を行う。
 また、上記「主成分」とは、酸基含有不飽和単量体の使用量(含有量)が、吸水性樹脂の重合反応に供される単量体(内部架橋剤は除く)全体に対して、通常50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上(上限は100モル%)であることをいう。
 (酸基含有不飽和単量体)
 本発明に規定する酸基は、特に限定されないが、カルボキシル基、スルホン基、リン酸基等が例示される。この酸基含有不飽和単量体の例としては、(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等が挙げられる。吸水性能の観点から、好ましくは(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸であり、より好ましくは(メタ)アクリル酸である。
 (酸基含有不飽和単量体以外の単量体)
 酸基含有不飽和単量体以外の単量体としては、重合して吸水性樹脂となり得る化合物であればよい。例えば、(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体;メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;N-ビニルピロリドン等のラクタム基含有不飽和単量体等が挙げられる。
 (重合禁止剤)
 重合に使用される単量体は、重合の安定性から、好ましくは少量の重合禁止剤を含む。好ましい重合禁止剤はp-メトキシフェノールである。単量体(特にアクリル酸及びその塩)中に含まれる重合禁止剤の量は、通常1ppm~250ppm、好ましくは10ppm~160ppm、より好ましくは20ppm~80ppmである。
 (中和塩)
 本発明において、酸基含有不飽和単量体に含まれる酸基の一部又は全部が中和された中和塩を用いることができる。この場合、酸基含有不飽和単量体の塩としては一価のカチオンとの塩であることが好ましく、アルカリ金属塩、アンモニウム塩及びアミン塩から選ばれる少なくとも1種であることがより好ましく、アルカリ金属塩であることが更に好ましく、ナトリウム塩、リチウム塩及びカリウム塩から選ばれる少なくとも1種であることがより更に好ましく、ナトリウム塩が特に好ましい。
 (塩基性物質)
 上記酸基含有不飽和単量体を中和するために使用される中和剤としては、特に限定されないが、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸アンモニウム等の無機塩や、アミノ基やイミノ基を有するアミン系有機化合物等の塩基性物質が適宜選択されて用いられる。中和剤として、2種以上の塩基性物質が併用されてもよい。なお、本発明における単量体は、特に断りのない限り、中和塩を含む概念である。
 (中和率)
 吸水性能の観点から、酸基含有不飽和単量体とその中和塩の合計モル数に対する中和塩のモル数(以下、「中和率」と称する)は、好ましくは40モル%以上、より好ましくは40モル%~80モル%、更に好ましくは45モル%~78モル%、特に好ましくは50モル%~75モル%である。
 上記中和率を調整する方法としては、酸基含有不飽和単量体とその中和塩とを混合する方法;酸基含有不飽和単量体に公知の中和剤を添加する方法;予め所定の中和率に調整された酸基含有不飽和単量体の部分中和塩(即ち、酸基含有不飽和単量体とその中和塩との混合物)を用いる方法;等が挙げられる。また、これらの方法を組み合わせてもよい。
 上記中和率の調整は、酸基含有不飽和単量体の重合反応開始前に行ってもよいし、酸基含有不飽和単量体の重合反応中で行ってもよいし、酸基含有不飽和単量体の重合反応終了後に得られる含水ゲル状架橋重合体に対して行ってもよい。また、重合反応開始前、重合反応中又は重合反応終了後のいずれか一つの段階を選択して中和率を調整してもよいし、複数の段階で中和率を調整してもよい。なお、紙オムツ等の吸収性物品等、人体に直接接触する可能性のある用途では、好ましくは重合反応の開始前及び/又は重合反応の期間中、より好ましくは重合反応の開始前に、中和率を調整すればよい。
 (内部架橋剤)
 吸水性樹脂粉末の製造方法において、好ましくは内部架橋剤が用いられる。該内部架橋剤によって、得られる吸水性樹脂の吸水性能や吸水時のゲル強度等が調整される。
 上記内部架橋剤としては、1分子内に合計2以上の不飽和結合又は反応性官能基を有していればよい。例えば、分子内に(単量体と共重合しうる)重合性不飽和基を複数有する内部架橋剤として、N,N-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリン(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェートなどが挙げられる。分子内に(単量体の官能基(例;カルボキシ基)と反応しうる)反応性官能基を複数有する内部架橋剤として、トリアリルアミン、ポリアリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミンなどが挙げられる(なお、ここで、エチレンカーボネートなどの環状カーボネートはカルボキシル基との反応によってさらに官能基OHを生成する架橋剤である)。また、分子内に重合性不飽和基及び反応性官能基を有する内部架橋剤として、グリシジル(メタ)アクリレート等が挙げられる。これらのうち、2種以上を併用してもよい。
 これら内部架橋剤の中でも、本発明の効果の面から、好ましくは、分子内に重合不飽和基を複数有する化合物であり、より好ましくは、分子内に(ポリ)アルキレン構造単位を有する化合物であり、さらに好ましくはポリエチレングリコール構造単位を有する化合物であり、特に好ましくは、ポリエチレングリコール構造単位を有するアクリレート化合物である。これら内部架橋剤を用いて得られる含水ゲルは、乾燥初期では低吸水倍率であり、粘着性が低い。この粘着性の低い含水ゲルを撹拌乾燥する場合、乾燥時の融着や凝集を低減できるため好ましい。更に、これらの内部架橋剤を用いて得られる含水ゲルでは、乾燥により吸水倍率が向上しやすいという効果が得られる。
 上記内部架橋剤の使用量は、単量体及び内部架橋剤の種類等に応じて適宜設定される。得られる吸水性樹脂のゲル強度の観点から、単量体に対して、好ましくは0.001モル%以上、より好ましくは0.005モル%以上、更に好ましくは0.01モル%以上である。また、吸水性樹脂の吸水性能向上の観点から、好ましくは5モル%以下、より好ましくは2モル%以下である。なお、単量体の自己架橋反応が有効な重合条件においては、上記内部架橋剤を使用しなくともよい。
 (その他の物質)
 本発明に係る製造方法において、本発明の目的が達成される範囲内で、以下に例示する物質(以下、「その他の物質」と称する)を単量体水溶液に添加することもできる。
 その他の物質の具体例として、チオール類、チオール酸類、2級アルコール類、アミン類、次亜リン酸塩類等の連鎖移動剤;炭酸塩、重炭酸塩、アゾ化合物、気泡等の発泡剤;エチレンジアミンテトラ(メチレンホスフィン酸)やその金属塩、エチレンジアミン4酢酸やその金属塩、ジエチレントリアミン5酢酸やその金属塩等のキレート剤;ポリアクリル酸(塩)及びこれらの架橋体(例えば吸水性樹脂からなる微粉)、澱粉、セルロース、澱粉-セルロース誘導体、ポリビニルアルコール等の親水性高分子等が挙げられる。その他の物質は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 その他の物質の使用量は、特に限定されないが、その他の物質の全濃度としては、好ましくは単量体に対して10質量%以下、より好ましくは0.001質量%~5質量%、特に好ましくは0.01質量%~1質量%である。また、後述する微粉造粒物が、本工程に回収される場合には、その量は、単量体に対して30質量%以下が好ましい。なお、本工程に回収される微粉造粒物は、表面架橋されていないものでも、表面架橋されたものであってもよい。
 (単量体水溶液中の単量体濃度)
 本工程において、単量体水溶液中の単量体濃度(=総単量体量/(総単量体量+総重合溶媒量(通常は水))は、吸水性樹脂の物性及び生産性の観点から、好ましくは10質量%~90質量%、より好ましくは20質量%~80質量%、更に好ましくは30質量%~70質量%、特に好ましくは40質量%~60質量%である。以下、単量体濃度を「モノマー濃度」と称する場合がある。
 (重合開始剤)
 本発明で使用される重合開始剤は、重合形態等によって適宜選択されるため、特に限定されないが、例えば、熱分解型重合開始剤、光分解型重合開始剤、若しくはこれらの併用、又は重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられる。具体的には、米国特許第7265190号に開示された重合開始剤のうち、1種又は2種以上が用いられる。なお、重合開始剤の取扱性や吸水性樹脂の物性の観点から、好ましくは過酸化物又はアゾ化合物、より好ましくは過酸化物、更に好ましくは過硫酸塩が使用される。
 該重合開始剤の使用量は、単量体に対して、好ましくは0.001モル%~1モル%、より好ましくは0.001モル%~0.5モル%である。また、必要によりレドックス重合を行う場合、酸化剤と併用される該還元剤の使用量は、単量体に対して、好ましくは0.0001モル%~0.02モル%である。
 (溶存酸素量)
 なお、重合前の単量体水溶液中の溶存酸素を、昇温又は不活性ガスとの置換により低減させることも好ましい。例えば、溶存酸素は、好ましくは5ppm以下、より好ましくは3ppm以下、特に好ましくは1ppm以下に低減される。
 また、単量体水溶液に気泡(特に上記不活性ガス等)を分散させることもできる。この場合には、重合反応において発泡重合となる。
 〔2-2〕重合工程
 本工程は、前記単量体水溶液を重合して、含水ゲル状架橋重合体(以下、「含水ゲル」と称する場合がある)を得る工程である。
 なお、上記重合開始剤を添加することで重合反応を行う方法以外に、放射線、電子線、紫外線等の活性エネルギー線を照射する方法がある。また、重合開始剤を添加したうえで、活性エネルギー線の照射を併用してもよい。
 (重合形態)
 重合形態としては、特に限定されない。吸水性能や重合制御の容易性等の観点から、好ましくは気相中の液滴重合、水溶液重合、逆相懸濁重合(ここで疎水性有機溶媒中の液滴重合も逆相懸濁の一例に含む)、より好ましくは水溶液重合、逆相懸濁重合、更に好ましくは水溶液重合が挙げられる。中でも、連続水溶液重合が特に好ましく、その例として、連続ベルト重合、連続ニーダー重合が挙げられる。連続水溶液重合を採用することで、吸水性樹脂の生産効率が向上する。
 また、上記連続水溶液重合の好ましい形態として、「高温開始重合」や「高濃度重合」が挙げられる。「高温開始重合」とは、単量体水溶液の温度を好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上、特に好ましくは50℃以上(上限は沸点)の温度で重合を開始する形態をいい、「高濃度重合」とは、単量体濃度を好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上、特に好ましくは45質量%以上(上限は飽和濃度)で重合を行う形態をいう。これらの重合形態を併用することもできる。
 なお、気相中の液滴重合においては、空気雰囲気下で重合を行うこともできるが、得られる吸水性樹脂の色調の観点から、窒素やアルゴン等の不活性ガス雰囲気下で重合を行うことが好ましい。この場合、例えば、気相中の酸素濃度を1容積%以下に制御することが好ましい。
 (含水ゲルの重合率)
 重合工程で得られる含水ゲル状架橋重合体の重合率は、次のゲル粉砕工程で得られる粒子状含水ゲル状架橋重合体の乾燥中の凝集抑制や、得られる吸水性樹脂中の残存モノマー低減の観点から、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上、特に好ましくは99質量%以上である。重合工程後に、重合率の低い含水ゲルを粉砕して、多量の未反応モノマーを含む状態で乾燥工程を実施すると、乾燥中に重合反応が進行して、粒子径の小さいゲル粒子から大粒子径のゲル粒子が再生又は副生される場合がある。また、重合と同時にゲル粉砕を行う実施形態でも、粉砕されたゲル粒子中に多量に含まれる未反応モノマーが乾燥中に重合して、粉砕されたゲル粒子同士を接着するため、乾燥中に大粒子径のゲル粒子が再生又は副生される場合がある。さらには、後述する微粉造粒物をゲル粉砕工程又は重合工程に回収する場合に、重合率の低い含水ゲル粒子との接着による大粒子化が生じる恐れがある。この大粒子径のゲル粒子によって、得られる吸水性樹脂の吸水速度の低下、乾燥物の大粒子化、目的とする製品粒度への再粉砕による微粉発生等の問題が発生する。この問題を回避するために、含水ゲルの重合率を上記範囲とすることが好ましい。
 含水ゲルの重合率の上限は特に限定されず、100質量%が理想的であるが、高い重合率には長い重合時間や厳しい重合条件が必要であり、生産性や物性面の低下を招くこともあり、上限は99.95質量%、さらに99.9質量%、通常99.8質量%程度で十分である。代表的には98~99.99質量%である。
 (含水ゲルの物性)
 重合工程で得られる含水ゲル状架橋重合体のCRC(遠心分離機保持容量)は、固形分換算で、好ましくは5g/g~80g/g、より好ましくは10g/g~50g/g、さらに好ましくは15g/g~45g/g、特に好ましくは20g/g~40g/gである。また、重合工程で得られる含水ゲル状架橋重合体の水可溶分は、固形分換算で好ましくは1質量%~20質量%、より好ましくは2質量%~15質量%、さらに好ましくは3質量%~10質量%である。なお、固形分換算とは、含水ゲルでCRCや水可溶分などの諸物性を測定後、含水ゲル中の吸水性樹脂固形分あたりの物性に換算した物性(例えば、含水率50%(固形分50%)の含水ゲルなら、含水ゲルでの物性測定値×2倍に換算)のことである。
 CRC及び/又は水可溶分が上記範囲を上回る場合には、後述する粉砕工程で粉砕された含水ゲル粒子に粘着性が発現して、粒子状含水ゲルの流動性が低下する。これにより、細粒化された含水ゲル粒子同士の付着、回収された微粉造粒物同士の接着又は含水ゲル粒子と微粉造粒物との接着等が生じて、吸水速度の低下、乾燥物の大粒子化、再粉砕による微粉発生等の問題が生じるため、好ましくない。また、上記範囲を下回る場合には、得られる吸水性樹脂の吸水倍率が過度に低下したり、重合条件の制御が困難となるため好ましくない。
 〔2-3〕ゲル粉砕工程
 本工程は、上記重合工程で得られた含水ゲル状架橋重合体を、重合と同時及び/又は重合後に粉砕して粒子状含水ゲル状架橋重合体(以下、「粒子状含水ゲル」)を得る工程である。所定の粒子径の粒子状含水ゲルを得るために、本工程を2回以上実施してもよい。また、逆相懸濁重合又は気相重合のように、重合工程で目的とする粒度の粒子状含水ゲルが得られる場合には、本工程を実施しなくてもよい。また、必要な場合には、重合工程後ゲル粉砕工程前に、ローラーカッター、ギロチンカッター等を用いて、含水ゲル状架橋重合体を、ゲル粉砕装置に投入可能な大きさに切断又は粗砕する細断工程を実施してもよい。特に、重合工程がベルト重合であり、シート状又はブロック状の含水ゲルが得られる場合に、細断工程を実施することが好ましい。ゲル粉砕工程に、後述する微粉造粒物を回収する場合、含水ゲル状架橋重合体と微粉造粒物とが、順次又は同時にゲル粉砕装置に投入される。
 (ゲル粉砕装置)
 本発明の製造方法において、吸水性能を損なうことなく、所定の粒度の粒子状含水ゲルが得られる限り、ゲル粉砕装置の種類は特に限定されない。例えばバッチ式又は連続式の双腕型ニーダー等、複数の回転撹拌翼を備えたゲル粉砕機、1軸押出機、2軸押出機、ミートチョッパー等が挙げられる。
 (含水ゲルの温度)
 好ましくは、ゲル粉砕前の含水ゲル状架橋重合体の温度T1は50℃以上である。この温度T1は、ゲル粉砕装置の投入口に設置された温度計にて測定される。温度T1を50℃以上とすることにより、ゲル粉砕された含水ゲル粒子同士の付着が防止される。さらには、後述する微粉造粒物を本工程に回収する場合に、微粉造粒物同士の接着防止又は含水ゲル粒子と微粉造粒物との接着による大粒子化が抑制される。この観点から、温度T1は、60℃以上がより好ましく、70℃以上がさらに好ましく、80℃以上が特に好ましい。過度の乾燥を抑制する観点から、温度T1は130℃以下が好ましく、110℃以下がより好ましく、105℃以下が特に好ましい。
 (含水ゲルの固形分率)
 ゲル粉砕工程に供される含水ゲルの固形分率(以下、ゲル固形分率)は、25質量%以上が好ましい。ゲル粉砕後の含水ゲル粒子同士の凝集抑制、回収された微粉造粒物の接着防止、粉砕に要するエネルギー、乾燥効率及び吸収性能の観点から、ゲル固形分率は25質量%~75質量%がより好ましく、30質量%~70質量%がさらに好ましく、35質量%~65質量%がよりさらに好ましく、40質量%~60質量%が特に特に好ましい。ゲル固形分率は、後述する実施例に記載の方法にて測定される。
 (ゲル流動化剤)
 本発明に係る製造方法において、ゲル粉砕工程前及び/又はゲル粉砕工程中に、ゲル流動化剤を添加してもよい。ゲル流動化剤の添加により、後述する乾燥工程における含水ゲル粒子同士の付着又は回収された微粉造粒物との接着が抑制され、得られる吸水性樹脂の吸水速度が向上する。また、後述する乾燥後の粉砕工程における負荷が低減され、微粉発生量が減少する。さらに、乾燥工程において攪拌乾燥を行う場合には、製品粒度に近い粒子状の乾燥重合体が得られるという効果がある。なお、ゲル粉砕工程を要しない実施形態においても、乾燥工程前に粒子状含水ゲルにゲル流動化剤を添加することにより、上記効果が得られる。
 このゲル流動化剤の例として、アニオン性、カチオン性、ノニオン性及び両性の界面活性剤、これらの低分子型及び高分子型界面活性剤、並びに高分子滑剤が挙げられる。高分子滑剤は、特定のノニオン性界面活性剤の別称であり、その例としては、ポリアルキレンオキサイド及びその無水マレイン酸変性物等が例示される。界面活性剤(特に非高分子界面活性剤)と高分子滑剤とを併用してもよい。ゲル流動化剤として、後述する接着制御剤を使用してもよい。
 ゲル流動化剤の種類と添加量とは、ゲル粉砕工程及び乾燥工程における粒子状含水ゲルの流動性等を考慮して適宜調整される。ゲル流動化剤として界面活性剤を用いる場合、その添加量は、含水ゲルの固形分に対して、好ましくは0.001質量%~0.5質量%、より好ましくは0.01質量%~0.3質量%、更に好ましくは0.02質量%~0.2質量%である。界面活性剤(特に非高分子界面活性剤)と高分子滑剤とを併用する場合、その合計添加量は、好ましくは1.0質量%以下、より好ましくは0.5質量%以下であり、好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。
 (粒子状含水ゲルの含水率)
 粒子状含水ゲルの含水率(%)は、下記実施例の(h)に記載した測定方法(含水ゲルの含水率:180℃、24時間での乾燥減量)によって求められる。また、含水率(%)=100-固形分(%)である。後述する乾燥工程における含水ゲル粒子同士の付着抑制又は回収された微粉造粒物との接着防止及び造粒強度の観点から、粒子状含水ゲルの含水率は通常15質量%以上、25質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上がさらに好ましく、40質量%以上が特に好ましく、43質量%以上が極めて好ましい。乾燥効率及び吸収性能の観点から、粒子状含水ゲルの含水率は、75質量%以下が好ましく、60質量%以下がより好ましく、55質量%以下が特に好ましい。
 (粒子状含水ゲルの粒度)
 得られる吸水性樹脂の吸水速度及び粒子径、並びに粉砕時の微粉発生抑制の観点から、乾燥前の粒子状含水ゲル架橋重合体の質量平均粒子径d1は、固形分換算で、好ましくは800μm以下、より好ましくは500μm以下、さらに好ましくは50μm~500μm、よりさらに好ましくは100μm~400μm、特に好ましくは100~300μm、極めて好ましくは100~200μmである。なお、固形分換算の粒子状含水ゲルの平均粒子径d1は、下記実施例に記載の(i)の方法(粒子状含水ゲルの粒度:含水ゲルの湿式分級)により、粒子状含水ゲルの質量平均粒子径(D50)から算出される。
 また、粒子状含水ゲルの粒度は、150μm未満の範囲にあるものが、固形分換算で、好ましくは10質量%以上、より好ましくは25質量%以上、更に好ましくは40質量%以上である。また、粒子状含水ゲルの粒度は、1100μm未満の範囲にあるものが、固形分換算で、好ましくは80質量%以上、より好ましくは85%質量以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上、上限は100質量%である。粒度分布の対数標準偏差(σζ)は、好ましくは0.2~1.0、より好ましくは0.2~0.8、更に好ましくは0.2~0.7である。かかる粒径によって、より高吸水速度の吸水性樹脂粉末が得られる。
 (粒子状含水ゲルの物性)
 乾燥前の粒子状含水ゲルのCRC(遠心分離機保持容量)は、固形分換算(後述する測定方法で規定)で、好ましくは5g/g~80g/g、より好ましくは10g/g~50g/g、更に好ましくは15g/g~45g/g、特に好ましくは20g/g~40g/gである。また、乾燥前の粒子状含水ゲルの水可溶分(Ext)は、固形分換算(後述する測定方法で規定)で、好ましくは1質量%~15質量%、より好ましくは2質量%~10質量%、さらに好ましくは3質量%~5質量%である。粒子状含水ゲルのCRC及び/又は水可溶分が上記範囲を上回る場合には、特に攪拌乾燥時に、含水ゲル粒子同士又は回収された微粉造粒物との接着が進行するため、好ましくない。また、上記範囲を下回る場合には、得られる吸水性樹脂の吸水倍率が過度に低下したり、重合条件の制御が困難となるため好ましくない。
 〔2-4〕乾燥工程
 本工程は、粒子状含水ゲル(好ましくはゲル流動化剤を含む)を所望の含水率にまで乾燥させて乾燥重合体、好ましくは粒子状乾燥重合体を得る工程である。本発明に係る製造方法では、この乾燥工程又は乾燥工程以前のいずれかの工程に、後述する微粉造粒物が回収される。従って、本工程は、詳細には、粒子状含水ゲル(好ましくはゲル流動化剤を含む)と、微粉造粒物との混合物を、所望の含水率にまで乾燥させる工程である。なお、本工程に供される粒子状含水ゲルは、ゲル粉砕工程を経て得られるものに限定されず、例えば逆相懸濁重合により得られてもよい。また、本工程で得られる(粒子状)乾燥重合体が、複数の粒子が物理的又は化学的に付着することで形成された造粒物(以下、乾燥造粒物)を含んでもよい。
 (粒子状含水ゲルの温度)
 粒子状含水ゲル及び微粉造粒物の接着による大粒子化防止の観点から、乾燥工程に供される粒子状含水ゲルの温度T2を、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、特に好ましくは80℃以上、最も好ましくは90℃以上に制御する。また、被乾燥物の着色や性能低下抑制の観点から、この温度T2は好ましくは130℃以下、より好ましくは110℃以下、さらに好ましくは105℃以下である。代表的には、この温度T2は、材料層(粒子状含水ゲルや乾燥物)の中心部(例えば、材料の厚みが10cmの場合は5cm前後の位置)において、接触温度計にて測定される。
 本発明の乾燥工程における乾燥方法としては、特に制限はなく、静置乾燥、攪拌乾燥、流動層乾燥等が適宜用いられる。また、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水乾燥、高温の水蒸気を用いた高湿乾燥等、種々の乾燥方法が採用されうる。乾燥効率の観点から、加熱乾燥又は熱風乾燥が好ましく、被乾燥物を移動しながら乾燥させる攪拌式加熱乾燥及び/または流動層乾燥がより好ましい。
 (乾燥装置)
 乾燥工程で使用される乾燥装置としては、加熱方法は特に限定されず、伝熱伝導型乾燥機、輻射伝熱型乾燥機、熱風伝熱型乾燥機、誘電加熱型乾燥機等の1種又は2種以上が適宜選択される。バッチ式でもよく、連続式でもよい。また、直接加熱式でもよく、間接加熱式でもよい。例えば、通気バンド式、通気回路式、通気縦型式、平行流バンド式、通気トンネル式、通気攪拌式、通気回転式、流動層式、気流式等の伝熱型乾燥機が挙げられる。
 静置状態で乾燥させるバンド式等の場合、大きな塊状又はブロック状の乾燥物が得られるため、これを粉砕して粒子状の製品粒度(例えば850~150μm)に加工する際に多量の微粉(特に150μm未満)が発生することがある。一方、乾燥機中で被乾燥物を流動させる流動手段(例えば、乾燥機に備えた撹拌翼や乾燥機自体の回転)と、1又は2以上の加熱手段を備えた攪拌乾燥機を用いれば、粒子状の乾燥物(以下、粒子状乾燥重合体と称する場合がある)が得られるため好ましく、連続式の攪拌乾燥機がより好ましい。
 加熱手段としては、特に限定されないが、乾燥効率及び吸水性樹脂への熱的ダメージ低減の観点から、対流伝熱による直接伝熱及び/又は熱媒で加熱された乾燥機の加熱面(被乾燥物との接触面)からの熱伝導による間接伝熱による加熱手段が好ましい。より好ましい加熱手段は、直接伝熱では通気加熱式、間接伝熱では外壁加熱式、管状加熱式である。
 攪拌方式及び形態は特に限定されず、該乾燥装置内の粒子状含水ゲル及び微粉造粒物が攪拌翼や回転円筒等の攪拌手段により流動される形態であればよい。本願明細書において、被乾燥物を収容する円筒型の容器が回転することにより攪拌を行う、つまりは、攪拌手段が回転円筒による乾燥機を、回転型乾燥機と称する。本発明に係る製造方法において、例えば、回転型乾燥機としてロータリードライヤー、ロータリーキルン、チューブドライヤ等が挙げられ、回転型乾燥機に分類されない連続攪拌乾燥機として、一軸又は二軸のディスク型乾燥機、一軸又は二軸のパドル型乾燥機等が挙げられる。具体的には、回転型乾燥機ではない連続攪拌乾燥機としてソリッドエアー(ホソカワミクロン株式会社製)、CDドライヤー(株式会社栗本鐵工所製)、パドルドライヤー(株式会社奈良機械製作所製)、回転型乾燥機としてスチームチューブドライヤー(株式会社栗本鐵工所製)、スチームチューブドライヤー(宇部興産機械株式会社製)、スチームチューブドライヤー(月島機械株式会社製)、スチームチューブドライヤー(三井造船株式会社製)、ロータリーキルン(株式会社栗本鐵工所製)、ロータリードライヤー(株式会社大川原製作所製)等を使用することができる。
 被乾燥物への機械的ダメージ低減の観点から、好ましい乾燥装置は、回転型乾燥機(被乾燥物を収容して回転する回転容器(さらに円筒容器、特に回転ドラムなどの横置き円筒容器)による乾燥機)である。熱的及び機械的ダメージ低減の観点から、より好ましくは、直接伝熱では通気加熱式、間接伝熱では外壁加熱式及び管状加熱式から選択される1又は2以上の加熱手段を有する回転型乾燥機である。また回転型乾燥機のうち、ロータリーキルンのように通気加熱式のみで加熱する場合、例えば、通気による乾燥物の飛散、大量の廃ガスの発生等といった問題が生じる場合がある。よって、回転型乾燥機としては、間接伝熱では外壁加熱式及び管状加熱式から選択される1又は2以上の加熱手段が好ましい。さらに、管状加熱式は、複数の加熱管を用いることで、乾燥機内部の伝熱面積を大きくできるため、効率的な乾燥が可能になるためより好ましい。このような回転型乾燥機として、加熱管付き回転型乾燥機が挙げられる。
 例えば、この加熱管付き回転型乾燥機は、その内部に被乾燥物を収容して回転する回転容器(特に円筒容器、さらに横置き円筒容器)と、この回転容器の内部に位置して、その軸方向に延在し、かつこの回転容器とともに回転する複数の加熱管とを備えている。この回転型乾燥機では、主として、回転容器の回転及びこの回転容器とともに回転する複数の加熱管の作用によって、被乾燥物が容器内で流動するため、機械的及び熱的ダメージが少ない。これにより、乾燥工程における微粉発生及び物性劣化が抑制される。また、この乾燥機では、加熱管からの間接伝熱により乾燥されるため、熱風乾燥(通気バンド式乾燥機や通気加熱式ロータリーキルン)のような飛散もなく、大量の廃ガス処理も要しないという利点がある。さらに、この乾燥機では、加熱管の数を増加することにより、乾燥機内部の伝熱面積を大きくすることができる。大きな伝熱面積によって、短時間での乾燥が可能となり、かつ装置内部での滞留時間も短縮されるため、熱的ダメージがさらに低減される。
 好ましくは、回転型乾燥機は、その回転容器の外周面に、加熱手段又は保温手段を備えている。この乾燥機では、回転容器の回転によって、その内部に収容された粒子状含水ゲルと微粉造粒物との混合物が複数の加熱管との接触又は加熱管からの熱伝導によって、加熱される。複数の加熱管の輻射熱等により回転容器内面も加熱されるが、必要に応じて、この混合物は、回転容器の外周面に位置する加熱手段又は保温手段により、さらに内壁も加熱されるため、内壁からの熱伝導によって乾燥時間が短縮される。
 好ましくは、回転型乾燥機は、回転容器の内部に、この回転容器に収容された内容物に添加剤を添加するための添加手段を備えている。この添加手段の例として、噴霧装置が挙げられる。添加手段を有する回転型乾燥機によれば、回転容器に収容した粒子状含水ゲル及び微粉造粒物の混合物に、添加剤として表面添加剤を添加して混合し、複数の加熱管との接触又は熱伝導により加熱処理するとともに乾燥することも可能である。この場合、後述する表面架橋工程と乾燥工程とが一工程で実施されるため、製造効率が向上する。
 本発明の目的が阻害されない限り、回転型乾燥機が、回転容器の回転による内容物の撹拌に加え、内容物を流動させる他の流動手段を備えてもよい。この他の流動手段の例として、回転容器内面に設置された掻揚げ板、攪拌翼等が挙げられる。
 本発明の目的が達成される限り、乾燥工程に使用されうる乾燥機の数は、1基のみでもよく、2基以上の複数でもよい。仕様の異なる複数の乾燥機を組み合わせて用いてもよい。例えば、前述した回転型乾燥機と、これに分類されない他の攪拌乾燥機や、材料移送型に分類されるバンド乾燥機等と組み合わせて用いてもよい。少なくとも1基の攪拌乾燥機を含んでいるのが好ましいが、組み合わせる乾燥機の種類及び数は、限定されない。
 好ましくは、乾燥工程において、その内部にガスを導入する機能(好ましくはガスを導入及び排出する手段)を備えた乾燥機が用いられる。ガスを導入及び排出する手段として、ガスの導入口及び排出口が挙げられる。ガスはキャリアーガスとして作用し、乾燥時に発生した水蒸気等を装置外に排出することで乾燥を促進する。さらに、加熱したガスを使用する場合、ガスは熱媒としても作用し、さらに乾燥を促進する。好ましくは、窒素、水蒸気、及びこれらと空気との混合気体等が用いられる。水蒸気を含む混合気体(以下、高湿混合気体とも称される)を用いる場合、該装置内が低酸素状態となり、乾燥時の酸化や劣化が抑制される。その結果として、吸水性樹脂の性能向上と低着色を達成することができる。更に、乾燥中の粒子状含水ゲル及び微粉造粒物の凝集・塊状化を抑制することが可能となるため、好ましい。
 乾燥工程において、その内部を加圧、常圧、又は減圧状態とする機能を備えた乾燥機を用いてもよい。加圧状態とする場合、例えば、乾燥機に導入するキャリアーガスを増量することで調整される。好ましくは、大気圧に対する加圧度は、0超~0.01kPaの微加圧である。また、減圧状態とする場合、例えば、乾燥機からの排出ガス(導入するキャリアーガス、乾燥中に発生する水蒸気等)の吸引量の変更により調整される。大気圧に対する減圧度は、好ましくは0超5kPa以下、より好ましくは0超~2kPa、更に好ましくは0.01~0.5kPaの微減圧である。上記減圧度を上記範囲内とすることで、過度に乾燥機内部の熱量を奪うことなく、乾燥時に発生する水蒸気等を効率的に除去できるため、乾燥時間が短縮される。また、乾燥工程における粒子状含水ゲル及び微粉造粒物の凝集が抑制される。なお、「大気圧に対する加圧度」及び「大気圧に対する減圧度」とは、大気圧との差圧を意味し、大気圧との差の絶対値として表記する。例えば、大気圧が標準大気圧(101.3kPa)で大気圧に対する減圧度が10kPaの場合、実際の気圧は91.3kPaである。
 乾燥工程において、上記ガスを一箇所又は複数箇所から乾燥機に導入することで、この乾燥機の内部の雰囲気露点を調整してもよい。主として、この乾燥機に投入する粒子状含水ゲルの含水率等に応じて、雰囲気露点を適宜調整することが好ましい。雰囲気露点は、この乾燥機からの排気時に測定され、好ましくは60℃以上、より好ましくは65℃以上、更に好ましくは70℃以上である。上限は特に限定されないが、好ましくは100℃以下である。該露点を上記範囲とすることで、乾燥が促進されるとともに、得られる(粒子状)乾燥重合体の含水率が所定範囲に調整され、吸水性能が向上する。
 乾燥条件は、乾燥機の種類や粒子状含水ゲル等の含水率により、適宜選択されるが、乾燥温度(材料温度または熱媒温度)は100℃~300℃が好ましく、150℃~250℃がより好ましく、160℃~220℃がさらに好ましく、170℃~200℃が特に好ましい。上記範囲を下回る場合、乾燥時間が過度に長くなるため不経済である。上記範囲を上回る場合、得られる吸水性樹脂の物性劣化や顕著な着色が生じるため好ましくない。また、乾燥時間は、好ましくは1分~10時間、より好ましくは5分~2時間、さらに好ましくは10分~120分、特に好ましくは20分~60分である。上記範囲を下回る場合、乾燥温度を過度に高くする必要があり、吸水性樹脂の物性劣化や顕著な着色が生じるため好ましくない。上記範囲を上回る場合、乾燥装置が巨大化し、また処理量が低下するため不経済である。
 本発明に係る製造方法において、乾燥効率の観点から、乾燥装置が回転型乾燥機である場合には、そのフルード数(Fr=ω*r/g)は装置サイズや乾燥処理量(時間あたりの乾燥量)によって適宜設定されるが、好ましくは0.001~1、より好ましくは0.005~0.5、さらに好ましくは0.01~0.3、特に好ましくは0.02~0.2の範囲である。フルード数Frとは、回転容器中で攪拌される被乾燥物に作用する遠心加速度ω*rの、重力加速度gに対する比である。(ωは回転体の角速度:rad/sec、rは回転体の代表半径:mである)。
 また、アーム、羽根、パドル、カットディスク(CD)等の攪拌翼を具備した回転軸で被乾燥物を攪拌する攪拌手段を有する攪拌乾燥機の場合、その回転軸の回転数は、装置によって適宜設定されるが、フルード数Frが上記の範囲内になるように回転数が設定されることが好ましい。具体的な回転数としては、通常1rpm~10000rpm、より好ましくは5~500rpm、さらに好ましくは10~300rpmの範囲である。
 また、下記(式1)で定義される攪拌翼の周速(V)は、装置によって適宜設定されるものであるが、通常、0.15m/s~25m/sである。
 周速(V)(m/s)=2πr×n/60 ・・・ (式1)
 ここで、(式1)中、Vは攪拌翼の周速(単位;m/s)、rは攪拌翼の径(単位;m)、nは単位時間当たりの攪拌翼の回転数(単位;rpm)である。
 被乾燥物を収容する容器自体が回転する回転型攪拌機の場合、その容器の回転数は、装置サイズや乾燥処理量(時間あたりの乾燥量)によって適宜設定されるが、好ましくは1rpm~250rpm、より好ましくは1rpm~100rpm、更に好ましくは2rpm~50rpmである。また、最大周速としては特に限定されないが、好ましくは0.05m/s~10m/s、より好ましくは0.1m/s~8m/s、更に好ましくは0.15m/s~5m/sである。
 また、回転型乾燥機での充填率(回転容器の有効容積(m)に対する収容物の充填容積(m)の比)は適宜選択されるが、熱処理効率の観点から、好ましくは5%~95%、より好ましくは6%~50%、さらに好ましくは10%~40%の範囲である。
 さらに、回転型乾燥機を用いる場合、回転容器の内容物への伝熱を効率よく行うために、その内容積に対する伝熱面積を大きくすることが好ましい。この内容積に対する伝熱面積は、回転容器の有効容積(m)に対する伝熱面積(m)の比(伝熱面積/有効容積)として定義される。この比が大きいほど、伝熱効率が向上して、内容物の昇温速度が速くなる。その結果、乾燥時間が短縮されるので、熱的及び機械的ダメージが低減され、かつ生産性が向上する。この比は、乾燥機の仕様、形態、内容物の形状等によって、適宜設定されるが、好ましくは10m-1以上、より好ましくは12m-1、さらに好ましくは15m-1以上である。なお、有効容積とは、内容物が収容される回転容器の内容積であり、伝熱面積とは、回転容器に収容された内容物に熱量を付加できる加熱面の面積を意味する。具体的には、複数の加熱管の外周面の面積と、回転容器の内周面の面積との和が伝熱面積である。
 (添加剤)
 乾燥工程において用いられる添加剤の例としては、前述のゲル流動化剤(界面活性剤、高分子滑剤等)の他に、後述する表面架橋剤(後架橋剤)が挙げられる。乾燥前さらには乾燥途中に表面架橋剤を添加することにより、攪拌乾燥時の付着を低減でき、さらに一般的な乾燥後の表面架橋効果(例えば加圧下吸水倍率の向上)も示すため、乾燥工程後の表面架橋工程も省略できるという利点がえられる。
 (乾燥重合体の物性)
 (粒子状)乾燥重合体の水可溶分(Ext)は、好ましくは、乾燥前の粒子状含水ゲルの水可溶分より大きい。(粒子状)乾燥重合体の水可溶分は、固形分換算で、好ましくは+0.5質量%以上増加、より好ましくは+1~20質量%の範囲で増加、さらに好ましくは+2~10質量%の範囲で増加するように、含水ゲルの架橋密度(特に内部架橋剤の種類や量)や加熱乾燥条件などが調整される。
 (粒子状)乾燥重合体の水可溶分を粒子状含水ゲルより増加させることで、乾燥後の吸水倍率が向上する。これにより、乾燥中の付着や凝集を防止できるため好ましい。得られる(粒子状)乾燥重合体の水可溶分は、好ましくは50質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下、特に好ましくは15質量%以下である。
 〔2-5〕表面架橋工程
 本工程は、吸水性樹脂からなる粒子の表層部(粒子表面から深さ数十μm程度の領域)において、架橋反応を行う工程である。典型的には、本工程は、粒子状の含水ゲル又は乾燥重合体に、吸水性樹脂の官能基(特にカルボキシル基)と反応する表面架橋剤を添加する表面架橋剤添加工程と、この表面架橋剤を含む粒子状の含水ゲル又は乾燥重合体を加熱処理する熱処理工程とを含み、好ましくは、熱処理工程後に冷却工程を含む。尚、必要な場合には、乾燥工程後、表面架橋工程前に、〔2-7〕で後述する整粒工程を実施して、好ましい粒度の粒子状乾燥重合体とする。例えば、乾燥工程で静置乾燥を行う場合には、得られる乾燥重合体に比較的大きな凝集物が含まれるため、表面架橋工程前に整粒工程を実施することが好ましい。
 〔2-5-1〕表面架橋剤添加工程
 本工程は、粒子状含水ゲル及び/又は粒子状乾燥重合体に、表面架橋剤を添加する工程である。表面架橋剤は、乾燥前もしくは乾燥途中の粒子状含水ゲル、又は、乾燥後もしくは整粒後の粒子状乾燥重合体に対して添加される。粒子状含水ゲル及び/又は粒子状乾燥重合体が、後述する微粉造粒物を含んでもよい。
 ゲル粉砕工程で得られた粒子状含水ゲルが、乾燥途中で表面架橋工程に供される場合、表面架橋剤の添加時の粒子状含水ゲルの含水率は、好ましくは10~50質量%、より好ましくは15~45質量%、さらに好ましくは20~40質量%の範囲である。かかる範囲で表面架橋剤を添加することで、乾燥時の過度の凝集や付着が低減される。さらに、乾燥工程後に表面架橋工程を実施することで得られる加圧下吸収倍率向上効果が、乾燥と同時に表面架橋をおこなう場合にも発揮されるため好ましい。このように乾燥と同時の表面架橋をおこなう場合、乾燥工程後の表面架橋工程及び整粒工程を省略できるため、製造工程を大幅に簡略化することができる。さらに、別途必要な表面架橋工程や輸送工程における吸水性樹脂へのプロセスダメージに由来する微粉発生や表面架橋構造の破壊も実質的には生じないため好ましい。
 また、乾燥工程後に、別途表面架橋工程が実施される場合、表面架橋剤の添加時の(粒子状)乾燥重合体の固形分率は、好ましくは80質量%以上、より好ましくは85質量%~99.8質量%、更に好ましくは90質量%~99.7質量%、よりさらに好ましくは92質量%~99.5質量%、特に好ましくは96質量%~99.5質量%、極めて好ましくは98質量%~99.5質量%である。
 乾燥工程後の表面架橋工程に供される吸水性樹脂の温度、即ち、表面架橋剤添加時の(粒子状)乾燥重合体の温度は、好ましくは40~120℃であり、より好ましくは60~100℃である。また乾燥と同時に表面架橋をおこなう場合、乾燥途中の吸水性樹脂の温度、即ち、表面架橋剤添加時の粒子状含水ゲルの温度は、好ましくは70~150℃、より好ましくは80~130℃の範囲である。この温度は、乾燥工程において前述したゲル温度と同様にして測定される。
 (表面架橋剤)
 上記表面架橋剤として、吸水性樹脂の複数の官能基(好ましくは複数のカルボキシル基)と反応しうる表面架橋剤、好ましくは共有結合またはイオン結合、さらには共有結合しうる表面架橋剤が使用される。具体的には、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,2-シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール化合物;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールポリグリシジルエーテル、グリシドール、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等の多価アミン化合物及びこれらの無機塩又は有機塩;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;ポリアジリジン等のアジリジン化合物;1,2-エチレンビスオキサゾリン、ビスオキサゾリン、ポリオキサゾリン等の多価オキサゾリン化合物;尿素、チオ尿素、グアニジン、ジシアンジアミド、2-オキサゾリジノン等の炭酸誘導体;1,3-ジオキソラン-2-オン、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物及びこれらの多価アミン付加物;オキセタン化合物;γ-グリシドキシプロピルトリメトキシシラン、γ-アミノブロピルトリエトキシシラン等のシランカップリング剤;亜鉛、カルシウム、マグネシウム、アルミニウム、鉄、ジルコニウム等の水酸化物、塩化物、硫酸塩、硝酸塩又は炭酸塩等の多価金属化合物;等が挙げられる。これらのうち、2種以上を併用してもよい。上記表面架橋剤の中でも、多価金属イオン、エポキシ系化合物、オキサゾリン系化合物、アルキレンカーボネート化合物から選択された1又は2以上が好ましい。
 (表面架橋剤溶液)
 上記表面架橋剤の添加量は、粒子状含水ゲル又は粒子状乾燥重合体に対して、固形分換算で、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。また、下限値としては好ましくは0.001質量%である。
 上記表面架橋剤の添加形態としては、添加の容易さから、水又は有機溶媒に溶かした溶液として添加するのが好ましい。この表面架橋剤溶液の濃度は好ましくは1質量%以上、より好ましくは2質量%以上である。水及び有機溶媒から選択される溶媒の合計量は、粒子状含水ゲル又は粒子状乾燥重合体に対して、固形分換算で、好ましくは0~10質量%、より好ましくは0.1質量%~8質量%、更に好ましくは0.5質量%~5質量%である。水と有機溶媒とを併用する場合、水が主成分であることが好ましい。
 〔2-5-2〕熱処理工程
 本工程は、表面架橋剤を含む粒子状含水ゲル又は粒子状乾燥重合体を加熱処理して、表面架橋された乾燥重合体を得る工程である。本発明に係る製造方法によれば、表面架橋剤を含む粒子状含水ゲル又は粒子状乾燥重合体が、後述する微粉造粒物を含む場合がある。
 (表面架橋温度)
 表面架橋剤(場合により、微粉造粒物)を含む粒子状含水ゲル又は粒子状乾燥重合体を100℃以上に加熱することにより、表面架橋された乾燥重合体が得られる。この加熱温度(表面架橋温度)は、添加する表面架橋剤の種類により適宜選択されるが、熱処理効率の観点から、好ましくは100℃~250℃、より好ましくは120℃~230℃、さらに好ましくは150℃~210℃である。
 (加熱時間)
 上記表面架橋温度で加熱処理する時間は、粒子状含水ゲル又は粒子状乾燥重合体の含水率、表面架橋剤の種類等に応じて適宜設定される。一応の目安としては、得られる吸水性樹脂粉末の含水率が10質量%以下になるまで加熱すればよく、時間としては10分間~120分間の範囲であり、好ましくは30分間~90分間である。
 (加熱形態)
 本発明の目的が達成される限り、熱処理工程で用いる加熱装置は特に限定されないが、加熱ムラが発生しにくいとの観点から、固体-固体接触による伝導伝熱形式で撹拌機構を有する(以下、撹拌型の間接加熱式と称することがある)が好適に用いられる。熱処理後に、表面架橋された粒子状の乾燥重合体が得られることから、好ましくは、乾燥工程において前述した攪拌乾燥機(好ましくは、回転型乾燥機)が、熱処理工程の加熱装置としても用いられる。例えば、前述した加熱管付き回転型乾燥機100を用いて、粒子状含水ゲルに、添加剤48として表面架橋剤を添加して加熱することにより、乾燥工程と表面架橋工程とが同時に実施され、所定の含水率(固形分率)に調整され、かつ表面架橋された粒子状乾燥重合体が一工程で得られるため好ましい。
 〔2-6〕冷却工程
 本発明に係る製造方法では、前述の乾燥工程又は熱処理工程後、後述する整粒工程前に、(粒子状)乾燥重合体又は表面架橋された(粒子状)乾燥重合体を強制冷却して、所望の温度に調整する冷却工程を有している。前述の乾燥機100において、表面架橋工程と乾燥工程とが一工程で実施される場合には、回転容器10において、表面架橋処理が適正になされ、かつ(粒子状)乾燥重合体又は表面架橋された(粒子状)乾燥重合体の固形分率又は含水率が所望の範囲に調整された後、整粒工程に供される前に、この冷却工程が実施される。
 具体的には、乾燥工程後の(粒子状)乾燥重合体及び/又は表面架橋工程後の表面架橋された(粒子状)乾燥重合体の温度t℃に対して、好ましくは(t-20)℃以下、より好ましくは(t-30)℃以下、さらに好ましくは(t-40)℃以下に強制冷却される。例えば、(粒子状)乾燥重合体及び/又は表面架橋された(粒子状)乾燥重合体の温度tが150~250℃の場合、整粒工程に供する前に、(粒子状)乾燥重合体及び/又は表面架橋された(粒子状)乾燥重合体を、好ましくは50~130℃、より好ましくは60~100℃、さらに好ましくは65~90℃に強制冷却する。この温度範囲に冷却することにより、整粒工程において解砕時の作業性及び分級精度が向上し、得られる吸水性樹脂粉末の物性が改善される。
 (冷却方法)
 冷却工程において、(粒子状)乾燥重合体及び/又は表面架橋された(粒子状)乾燥重合体を冷却する方法は、特に限定されない。好ましくは、通気伝熱式又は伝導伝熱式の冷却手段を有する連続冷却機が用いられる。
 (粒子状)乾燥重合体及び/又は表面架橋された(粒子状)乾燥重合体を静置状態で冷却してもよく、攪拌状態で冷却してもよい。(粒子状)乾燥重合体及び/又は表面架橋された(粒子状)乾燥重合体全体が均等に、速やかに冷却されるという観点から、材料撹拌型冷却機が好ましく、連続式の材料撹拌型冷却機がより好ましい。例えば、直接伝熱である流動層冷却機が挙げられる。連続ベルト式冷却機における冷風冷却でもよい。
 好ましくは、攪拌冷却には回転軸を有する攪拌装置が用いられうる。例えば、被冷却物に気流を通気させかつ冷却する機能を有する混合機が、広く冷却機として使用される。本発明の効果が得られる限り、その気流の方向は特に限定されず、上下でもよく、左右でもよい。このような冷却機の具体例としては、回転軸が水平で且つ容器自体が回転する混合機(水平円筒型、傾斜円筒型、V型、2重円錐型、正立方体形、S字形、連続V型等)、回転軸が水平で容器自体は固定された混合機(リボン型、スクリュー型、円錐スクリュー型、溝型撹拌型、高速流動形、回転円盤型、マラー型、パドル型、ロータリー型、ディスク型等)等に、気流を通気して使用するものが挙げられる。好ましくは、被冷却物である吸水性樹脂粉末を攪拌するための回転攪拌翼を備え、かつ気流を通気させた容器固定型冷却機が用いられる。これらの冷却機は、連続式でもよく、バッチ方式でもよいが、好ましくは連続式である。
 〔2-7〕整粒工程
 本工程は、乾燥重合体又は表面架橋された(粒子状)乾燥重合体の粒度を調整する工程である。表面架橋工程後に整粒工程をおこなうことにより、粒子径又は粒度分布が高レベルで制御された吸水性樹脂粉末が得られる。
 好ましくは、整粒工程は、粉砕ステップ及び/又は分級ステップを含む。より好ましくは、整粒工程は、解砕ステップ及び/又は分級ステップを含む。粉砕ステップ又は解砕ステップのみで、粒子径及び粒度分布が制御された吸水性樹脂粉末を得る整粒工程が好ましく、解砕ステップのみで、粒子径及び粒度分布が制御された吸水性樹脂粉末を得る整粒工程が理想的である。
 粉砕ステップは、例えば、乾燥工程又は熱処理工程で静置乾燥を行う場合に得られる塊状の乾燥重合体又は強く凝集した粒子状乾燥重合体を粉砕機で粉砕して粒子径を整えるステップである。なお、この粉砕ステップは、粉砕対象である乾燥重合体が乾燥工程を経ている点で、前述のゲル粉砕工程とは異なる。
 粉砕ステップで用いる粉砕機として、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が例示される。なかでも、粒度分布の制御がしやすいとの観点から、好ましい粉砕機はロールミルである。
 解砕ステップは、乾燥工程又は熱処理工程を経て緩く凝集した(粒子状)乾燥重合体を解砕機で解して粒子径を整えるステップである。解砕ステップでは、前述の粉砕ステップよりも弱い粉砕で、粒子径を整えることができる。
 この解砕ステップで用いる解砕機としては、(粒子状)乾燥重合体又は表面架橋された(粒子状)乾燥重合体への機械的ダメージが少ないものが好ましく、具体的にはロールグラニュレーター(株式会社マツボー)、グラニュレータ(株式会社栗本鐵工所)やランデルミル(株式会社徳寿工作所)等が挙げられる。
 分級ステップは、分級機を用いて、(粒子状)乾燥重合体、表面架橋された(粒子状)乾燥重合体、又はそれらの粉砕物或いは解砕物から、粗大粒子及び微粉を除去する工程である。分級ステップに用いる分級機としては、篩網を用いた振動式または揺動式の篩分級機が用いられる。
 この整粒工程の分級ステップで除去される粗大粒子及び微粉の大きさは、最終製品である吸水剤の粒子径及び粒度に応じて適宜設定される。好ましくは、粗大粒子の粒子径(篩分級で規定)は、2000μm以上であり、より好ましくは、850μm以上である。代表的には、微粉の質量平均粒子径は150μm未満であり、好ましくは10~150μmである。
 (乾燥重合体又は表面架橋された乾燥重合体の粒度)
 微粉低減の観点から、整粒工程に供される(粒子状)乾燥重合体又は表面架橋された(粒子状)乾燥重合体の質量平均粒子径d2は、好ましくは200μm以上であり、より好ましくは300μm以上であり、更に好ましくは400μm以上、特に好ましくは500μm以上である。解砕ステップの効率化の観点から、質量平均粒子径d2は2000μm以下、さらには1500μm以下、1000μm以下が好ましい。
 (吸水性樹脂粉末の粒度)
 吸水性能の観点から、整粒工程を経て得られる吸水性樹脂粉末の質量平均粒子径d3は、好ましくは200μm以上であり、より好ましくは200~600μm、さらに好ましくは250~550μm、特に好ましくは300~500μmである。
 得られる吸水剤の高品質化の観点から、吸水性樹脂粉末の主成分が、篩分級で規定される粒子径150~850μmの粒子であることが好ましい。吸水性樹脂粉末に含まれる粒子径150~850μmの粒子の割合は、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは97~100質量%、特に好ましくは99~100質量%である。吸水性樹脂粉末に含まれる篩分級で規定される粒径150μm未満及び850μm超の粒子の割合は、いずれも、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましく、1質量%が特に好ましい。
 〔2-8〕微粉造粒工程
 本発明に係る製造方法は、必須工程として、この微粉造粒工程を有している。微粉造粒工程とは、吸水性樹脂からなる微粉に、バインダーとして水と接着制御剤を同時または別々に添加して、微粉造粒物を得る工程であり、好ましくは接着制御剤と、水分として液体の水と水蒸気(気体の水)とを添加して微粉造粒物(特に含水ゲル状微粉造粒物)を得る工程であり、より好ましくは接着制御剤を含む水溶液と水蒸気とを添加して微粉造粒物を得る工程である。本発明において微粉をなす吸水性樹脂は表面架橋されていてもよく、表面架橋されていなくてもよいし、それらの混合物(混合微粉)でもよい。すなわち、本工程において、微粉造粒物が、表面架橋された微粉のみから得られてもよく、表面架橋されていない微粉のみから得られてもよいし、表面架橋された微粉と表面架橋されていない微粉からなる混合微粉から得られた微粉造粒物でもよい。また、表面架橋された微粉と表面架橋されていない微粉を別々に造粒し、それぞれの造粒物をさらに混合してもよい。本発明において、表面架橋された微粉と表面架橋されていない微粉の使用比率(重量比)は0:100~100:0、さらには5:95~100:0、特に10:90~100:0の範囲で適宜決定される。
 微粉造粒物とは、微粉をなす複数の粒子(以下、微粉粒子と称する)の集合体であって、物理的又は化学的に付着することにより形成されたものを意味する微粉造粒物の形状や粒径は適宜決定されるが、通常、質量平均粒径で0.1~10mmであり、そのアスペクト比は1~10、さらに1~2程度で適宜決定される。微粉造粒物は、通常、水分をバインダーとして、複数の微粉粒子を付着することにより得られる。本発明に係る製造方法では、バインダーとなる水分は、固体の水(氷)でもよいが、好ましくは水(液体の水)又は水蒸気(気体の水)として微粉に添加される。また、接着制御剤を水溶液として添加する場合には、その水溶液に含まれる水として、微粉に水分を添加されてもよい。水分を添加された微粉粒子は、湿潤して、粘着性を有する含水ゲル粒子となる。この製造方法では、接着制御剤は、含水ゲル粒子の粘着性の程度を調整する。接着制御剤の添加により、含水ゲル粒子同士の過剰な付着が抑制され、適正な粒度及び造粒強度の微粉造粒物が得られる。また、水分を水蒸気として添加する場合、短時間で均一に微粉に吸収される。その結果として、微粉の湿潤に必要な総水分量が低減されるため、この微粉造粒物を乾燥工程に回収する場合の負担が軽減される。
 (造粒装置)
 本工程で用いる造粒方法は粒子状造粒物が得られれば特に限定されず、攪拌造粒法、流動層造粒法、転動造粒法等、ミートチョッパーなどの多孔板の押し出し造粒などが適宜用いられる。また、造粒方法は、バッチ式でもよく、連続式でもよい。得られる微粉造粒物の粒度及び造粒効率の観点から、攪拌造粒法が好ましく、連続式の攪拌造粒法がより好ましい。
 所定の微粉造粒物が得られる限り、本工程で使用する造粒装置は特に限定されない。例えば、攪拌造粒法により実施する場合、連続式の撹拌装置が用いられ得る。連続式撹拌装置としては縦型及び横型があり、縦型の連続式撹拌装置として、スパイラルピンミキサー(太平洋機工社製)、フロージェットミキサ及びシュギ式造粒システム(粉研パウテックス社製)等が例示され、横型の連続式撹拌装置として、アンニュラーレイヤーミキサー(ドライスベルケ社製)及び2軸ミキサ(List社製)等が例示される。本発明に係る製造方法では、回転円盤型混合機を用いて、吸水性樹脂からなる微粉を結着させて造粒することが好ましい。より好ましくは、吸水性樹脂からなる微粉を撹拌するための羽根車(半径流型、混流型、斜流型、軸流型等)を備えた円盤型混合機である。
 造粒装置は、好ましくは、接着制御剤又は接着制御剤を含む水溶液、水、水蒸気等を、装置内に注入するためのノズル等を備えている。さらに、本発明に係る製造方法においては、水蒸気の供給がスムーズに行えるように、密閉性が高く内部圧力の調整が可能な造粒装置がより好ましい。
 造粒装置内への接着制御剤又は接着制御剤を含む水溶液、水、水蒸気等の注入条件は、注入方法及び造粒装置の種類等を考慮して、所望の吸水性樹脂粉末が得られるように、適宜調整される。特に限定されないが、例えば、水蒸気を注入する場合、装置内に注入する水蒸気のゲージ圧は、好ましくは0.1~2.0MPa、より好ましくは0.1~1.5MPa、さらに好ましくは0.1~0.8MPaである。ゲージ圧が0.1MPa未満の場合、吸水性樹脂からなる粉末の結着及び造粒に長時間を要し、造粒強度が低い造粒粒子となるおそれがある。ゲージ圧が2.0MPaを超える場合、吸水性樹脂の性能が劣化するおそれがある。なお、蒸気圧については、造粒装置近傍まで一定のゲージ圧に保たれ、装置内部で圧開放状態にて使用される。
 また、造粒装置内に、接着制御剤又は接着制御剤を含む水溶液、水、水蒸気等を注入する注入口は、1カ所であってもよく、2カ所以上であってもよい。
 (微粉)
 好ましくは、微粉は、ポリ(メタ)アクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂からなる。得られる吸水剤の吸水性能の観点から、微粉におけるポリ(メタ)アクリル酸(塩)の含有量は、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%、更に好ましくは90モル%~100モル%である。
 ポリ(メタ)アクリル酸(塩)系架橋重合体は、未中和でもよく、中和されたものであってもよい。好ましくは部分中和または完全中和されたポリ(メタ)アクリル酸(塩)系架橋重合体である。より好ましくはアルカリ金属塩又はアンモニウム塩、さらに特に好ましくはアルカリ金属塩、特に好ましくはナトリウム塩で中和されたポリ(メタ)アクリル酸(塩)系架橋重合体である。
 ポリ(メタ)アクリル酸(塩)系架橋重合体の中和率は、既知の方法により適宜調整されるが、好ましくは40モル%以上、より好ましくは40モル%~80モル%、更に好ましくは45モル%~78モル%、特に好ましくは50モル%~75モル%である。
 本発明に係る製造方法において、吸水性樹脂からなる微粉を得る方法は特に限定されない。既知の製造方法及び製造条件に従って、後述する物性及び粒度となるように吸水性樹脂からなる微粉を製造してもよい。好ましくは、前述した整粒工程の分級ステップにおいて除去された微粉が採取されて、本工程に供される。
 (微粉の粒度)
 微粉造粒物の大粒子化を抑制する観点から、吸水性樹脂からなる微粉の、篩分級による質量平均粒子径は、好ましくは150μm未満であり、より好ましくは10~150μm、さらに好ましくは10~140μmである。この微粉に含まれる粒子径150μm未満の粒子の割合は、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、理想的には100質量%である。
 (微粉の固形分率)
 流動性及び混合性の観点から、微粉の固形分率は、好ましくは75質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上である。微粉造粒時の粉塵発生抑制の観点から、微粉の固形分率は、好ましくは99.9質量%以下、より好ましくは99.5質量%以下、さらに好ましくは99.0質量%以下である。なお、微粉の固形分率の測定方法は、実施例において後述する。
 (微粉の物性)
 吸水性樹脂からなる微粉のCRC(遠心分離機保持容量)は、固形分換算で、好ましくは5~70g/g、より好ましくは10~60g/g、さらに好ましくは15~50g/g、特に好ましくは18~40g/gである。また、微粉の水可溶分は、好ましくは2~50質量%、より好ましくは4~25質量%、さらに好ましくは6~20質量%である。
CRC及び/又は水可溶分が上記範囲を上回る場合には、微粉造粒工程において過度の粘着性が発現して、大粒子径の微粉造粒物が形成される可能性がある。また、上記範囲を下回る場合には、接着制御剤との均一混合が困難となるため好ましくない。
 (接着制御剤)
 接着制御剤は、湿潤した微粉中の含水ゲル粒子の粘着性を調整する。この接着制御剤の使用により、粒度及び造粒強度が適正な微粉造粒物が得られる。本工程において、含水ゲル粒子の粘着性を調整(好ましくは粘着性を適度に低減)する作用を有する限り、接着制御剤の種類は特に限定されない。接着制御剤は前述のゲル流動化剤と同じ化合物でもよく、異なってもよい。
 接着制御剤の例として、例えば、アニオン性、カチオン性、ノニオン性、両性の界面活性剤及びこれらの低分子型(非高分子)又は高分子型の界面活性剤が挙げられる。
 (界面活性剤)
 具体的には、接着制御剤に用いられる界面活性剤として、下記(1)~(4)が例示される。
 (1)ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル、高分子滑剤等のノニオン性界面活性剤。
 ここで、高分子滑剤の具体例としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性エチレン・プロピレン・ジエン三元共重合体(EPDM)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレングリコールのようなポリアルキレンオキサイド等が挙げられる。これらの重量平均分子量は、好ましくは200~200万、より好ましくは400~100万の範囲で適宜選択される。
 (2)カプリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン、ミリスチルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等のアルキルジメチルアミノ酢酸ベタイン;ラウリン酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、パーム核油脂肪酸アミノプロピルベタイン等のアルキルアミドプロピルベタイン;ラウリルヒドロキシスルホベタイン等のアルキルヒドロキシスルホベタイン、2-アルキル-N-カルボキシメチルーN-ヒドロキシエチルイミダゾリニウムベタイン等のアルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン等の両性界面活性剤。
 (3)ラウリルアミノジ酢酸モノナトリウム、ラウリルアミノジ酢酸カリウム、ミリスチルアミノジ酢酸ナトリウム等のアルキルアミノジ酢酸モノアルカリ金属等のアニオン性界面活性剤。
 (4)長鎖アルキルジメチルアミノエチル4級塩等のカチオン性界面活性剤。
 好ましくは、接着制御剤は、界面活性剤(特に非高分子界面活性剤)であり、より好ましくは両性界面活性剤であり、特に好ましくは、ベタイン型両性界面活性剤である。ベタイン型両面活性剤の例としては、アルキルジメチルアミノ酢酸ベタイン(R-N(CH-CHCOO)、アルキルアミドプロピルベタイン(R-CO-NH(CH-N(CH-CHCOO-)、アルキルヒドロキシスルホベタイン(R-N(CH-CHCH(OH)CHSO-)、アルキルアミノジ酢酸モノアルカリ金属、アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。
 アルキルジメチルアミノ酢酸ベタインの具体例として、カプリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン、ミリスチルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。微粉造粒物の粒度及び物性の観点から、カプリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン又はステアリルジメチルアミノ酢酸ベタインが好ましく、ラウリルジメチルアミノ酢酸ベタインがより好ましい。
 アルキルアミドプロピルベタインの具体例として、ラウリン酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、パーム核油脂肪酸アミドプロピルベタイン等が挙げられる。微粉造粒物の粒度及び物性の観点から、ラウリン酸アミドプロピルベタイン又はヤシ油脂肪酸アミドプロピルベタインが好ましく、ラウリン酸アミドプロピルベタインがより好ましい。
 アルキルヒドロキシスルホベタインの具体例として、ラウリルヒドロキシスルホベタイン等が挙げられる。微粉造粒物の粒度及び物性の観点から、ラウリルヒドロキシスルホベタインが好ましい。
 アルキルアミノジ酢酸モノアルカリ金属の具体例として、ラウリルアミノジ酢酸モノナトリウム、ラウリルアミノジ酢酸カリウム、ミリスチルアミノジ酢酸ナトリウム等が挙げられる。微粉造粒物の粒度及び物性の観点から、ラウリルアミノジ酢酸モノナトリウムが好ましい。
 アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタインの具体例として、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインが挙げられる。微粉造粒物の粒度及び物性の観点から、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインが好ましい。
 本発明の目的が達成される限り、上記接着制御剤として、単一の化合物を使用してもよく、複数の化合物を併用してもよい。
 (接着制御剤の添加量)
 接着制御剤の添加量は、吸水性樹脂からなる微粉の固形分に対して、好ましくは0.001~2.0質量%、より好ましくは0.010~1.5質量%、更に好ましくは0.020~1.0質量%、特に好ましくは0.025~0.8質量%である。添加量が過少な場合は微粉量低減の効果が少なく、また過剰な添加は造粒強度の低下や製品の表面張力の低下などの可能性がある。なお、接着制御剤を水溶液として添加する場合は、その有効成分の添加量を上記範囲内とする。また、接着制御剤として複数の化合物を併用する場合には、その合計量が上記範囲内となっていればよい。接着制御剤を上記範囲で添加することにより、造粒強度及び粒度が適正な微粉造粒物が得られる。その結果として、この微粉造粒物を乾燥工程又は乾燥工程前のいずれかの工程に回収したときに、得られる乾燥物の大粒子化が回避され、その後の工程における微粉発生量が低減される。また、吸水性樹脂粉末の製造工程で発生する微粉を微粉造粒工程に供する実施形態では、微粉発生量の減少にともなって、乾燥工程等に回収する微粉造粒物も減少して、得られる吸水性樹脂粉末の物性が向上する。さらには、乾燥工程以降の工程における製造装置をコンパクト化することも可能になる。
 (接着制御剤添加方法)
 前述した通り、好ましくは、接着制御剤は、水溶液として、吸水性樹脂からなる微粉に添加される。微粉造粒工程において、この接着制御剤を含む水溶液の水は、微粉を湿潤させ、この微粉に含まれる複数の含水ゲル粒子を接着するバインダーとして作用する。この水溶液における接着制御剤の濃度及び水溶液としての添加量によって、含水ゲル粒子の粘着性の程度が調整される。
 接着制御剤を水溶液として微粉に添加する場合、造粒強度及び均一混合性による微粉造粒物の大粒子化抑制の観点から、接着制御剤を含む水溶液の濃度は、好ましくは0.001~40質量%、より好ましくは0.005~30質量%、さらに好ましくは0.010~20質量%、特に好ましくは0.050~15質量%である。接着制御剤が、濃度既知の溶液として市販されている場合はその濃度のままで使用してもよく、好ましくは、希釈等により、所望する範囲内の溶液濃度に適宜調整したものを使用してもよい。
 造粒効率及び造粒強度の観点から、接着制御剤を含む水溶液としての添加量は、微粉の固形分に対して、通常10質量%以上であり、好ましくは25質量%以上、より好ましくは40質量%以上、さらに好ましくは65質量%以上である。微粉造粒物の大粒子化抑制の観点から、この水溶液としての添加量は、好ましくは230質量%以下、より好ましくは185質量%以下、さらに好ましくは150質量%以下である。
 本発明の効果が阻害されない限り、接着制御剤を含む水溶液が、溶媒又は希釈剤として親水性有機溶媒を含んでもよい。溶媒又は希釈剤として、水とともに親水性有機溶媒を用いる場合、溶媒又は希釈剤における水の割合が、好ましくは60質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、理想的には100質量%である。
 (接着制御剤又は接着制御剤を含む水溶液の温度)
 吸水性樹脂からなる微粉との混合性の観点から、接着制御剤又は接着制御剤を含む水溶液の温度は、通常0℃(さらには10℃、20℃)~沸点の範囲であり、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは45℃以上、特に好ましくは50℃以上である。上限値は特に限定されないが、通常は水の沸点である。なお、水分として水溶液(液体の水)に水蒸気(気体の水)を併用することで、水溶液をさらに加熱してもよい。
 (水蒸気)
 本工程において、微粉に接着制御剤とともに水蒸気を添加する場合、水蒸気は、吸水性樹脂からなる微粉を湿潤させ、この微粉に含まれる複数の含水ゲル粒子のバインダーとして作用する。微粉全体に、速やかにかつ均一に吸収されるとの観点から、添加する水蒸気は、好ましくは飽和水蒸気であり、より好ましくは0.11MPa以上(102℃以上)の飽和水蒸気であり、さらに好ましくは0.12MPa以上(105℃以上)の飽和水蒸気である。
 本工程において、微粉に接着制御剤とともに水蒸気を添加する場合、微粉造粒物の造粒強度及び粒度の観点から、微粉に対する水蒸気の添加量は、単位時間当たり、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは7質量%以上である。大粒子化抑制及び乾燥効率の観点から、水蒸気の添加量は、好ましくは100質量%以下、より好ましくは50質量%以下、さらに好ましくは30質量%以下である。なお、添加した水蒸気は全量が微粉に吸収されなくてもよく、造粒に使用する液体の水に水蒸気が吸収されたのち、微粉に吸収されてもよく、混合機から一部が排出されてもよい。
 (微粉の温度)
 接着制御剤又は接着制御剤を含む水溶液との混合性の観点から、本工程に供される微粉の温度は、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは45℃以上、特に好ましくは50℃以上である。吸水性樹脂からなる微粉の熱劣化防止の観点から、好ましい温度は100℃以下である。
 (微粉造粒物の固形分率)
 乾燥工程に回収した場合の乾燥効率及び大粒子化抑制の観点から、微粉造粒物の固形分率は、好ましくは30質量%以上、より好ましくは35質量%以上、さらに好ましくは40質量%以上である。造粒強度の観点から、固形分率は、好ましくは80質量%以下、より好ましくは70質量%以下、さらに好ましくは60質量%以下である。すなわち、かかる微粉造粒物は好ましくは含水ゲル状微粉造粒物であり、以下、さらに乾燥されて乾燥微粉造粒物を含む吸水性樹脂粉末とされる。
 (微粉造粒物の物性)
 微粉造粒物のCRC(遠心分離機保持容量)は、固形分換算で、好ましくは5~70g/g、より好ましくは10~60g/g、さらに好ましくは15~50g/g、特に好ましくは18~40g/gである。また、微粉造粒物の水可溶分は、好ましくは2~50質量%、より好ましくは4~25質量%、さらに好ましくは6~20質量%である。CRC及び/又は水可溶分が上記範囲を上回る場合には、乾燥工程又は乾燥工程前のいずれかの工程に回収した場合に、粒子状含水ゲル又は乾燥重合体との付着により大粒子化する可能性がある。また、上記範囲を下回る場合には、得られる吸水剤の性能が低下する可能性がある。
 〔2-9〕微粉回収工程
 本工程は、整粒工程の分級ステップで除去された微粉を採取して、前述したいずれかの工程に供給することにより回収(リサイクル)する工程である。本発明に係る製造方法では、整粒工程で採取した微粉は、前述の微粉造粒工程で微粉造粒物(さらには含水ゲル状微粉造粒物)とされた後、乾燥工程又は乾燥工程前のいずれかの工程に回収され、さらに乾燥される。
 乾燥工程前の工程に回収する場合、例えば重合前の単量体水溶液、重合中又はゲル粉砕中の含水ゲル等に添加されて混合される。各工程に回収する微粉造粒物の量は、適宜調整される。微粉造粒物を含水ゲルと混合する場合、得られる吸水剤の吸水性能や生産性の観点から、含水ゲルに対する微粉造粒物の量は、固形分換算で、好ましくは30質量%以下、より好ましくは28質量%以下、さらに好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。また、微粉造粒物を単量体水溶液に添加する場合、微粉造粒物の量は、単量体に対して、好ましくは30質量%以下、より好ましくは28質量%以下、さらに好ましくは、20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。かかる範囲によって含水ゲル状微粉造粒物が得られたのち、含水ゲル状微粉造粒物を乾燥工程または乾燥工程よりの前の工程へ回収されたのち、重合工程での粒子状含水ゲル状重合体と一緒に乾燥することで、本発明の吸水性樹脂粉末が得られる。かかる混合比によって、得られた吸水性樹脂粉末においても、含水ゲルに由来する一次粒子と微粉回収に由来する吸水樹脂微粉造粒物の割合(固形分比)は適宜制御できる。好ましくは上記の固形分換算した含水ゲルと微粉造粒物の比である。
 添加の形態として、微粉造粒物(特に含水ゲル状微粉造粒物)をそのまま上記工程に添加してもよく、さらに、適量の水で膨潤ゲル化した状態で添加してもよい。本発明の効果が阻害されない限り、微粉造粒物とともに、水、架橋剤、水以外のバインダー(例;水溶性ポリマー、熱可塑性樹脂)、重合開始剤、還元剤、キレート剤、着色防止剤などを添加してもよい。例えば、水を添加する場合、微粉造粒物に対して1~1000質量%、その他の化合物を添加する場合は、微粉造粒物に対して0.01~10質量%の量で使用されることが好ましい。
 微粉造粒物を含水ゲルに添加する際の微粉造粒物の温度は、好ましくは50℃以上100℃以下であり、より好ましくは55℃以上、さらに好ましくは60℃以上であって、より好ましくは95℃以下、さらに好ましくは90℃以下である。このような温度範囲内であれば接着制御剤の効果をより発揮し、乾燥物の粗大化を防ぐことができる。
 [微粉造粒物添加工程]
 上記好ましい実施態様における微粉造粒物を乾燥工程または乾燥工程前のいずれかの工程に回収、すなわち、微粉造粒物の添加工程について詳述する。
 微粉造粒物を添加する工程は具体的に前記重合工程中、前記重合工程後かつ前記ゲル粉砕工程前、前記ゲル粉砕工程中、前記ゲル粉砕工程後かつ前記乾燥工程前、及び、前記乾燥工程中よりなる群から選ばれる少なくとも1以上に微粉造粒物を添加することが好ましい。なお、前記重合工程中でも含水ゲルが得られるため、該重合工程中に造粒ゲルを添加してもよい。また、乾燥工程のうち重合体の固形分が80質量%未満の重合体は通常含水ゲルとみなせる。すなわち、乾燥工程の途中までは含水ゲルが存在するため、該乾燥工程中に造粒ゲルを添加してもよい。好ましくは前記ゲル粉砕工程後かつ前記乾燥工程前、又は、前記乾燥工程中であり、より好ましくはゲル粉砕工程後、乾燥工程前の含水ゲルに微粉造粒物を添加することである。このように粉砕後の含水ゲルに微粉造粒物を添加すると、両者の粒度差が小さいため混合しやすく、乾燥が不均一になり難い。特にゲル粉砕エネルギーを制御した粉砕を行うと含水ゲルが造粒形状となるため、より一層不均一な乾燥を抑制できる。一方、ゲル粉砕工程前、又は工程中に微粉造粒物を添加すると、ゲル粉砕機の負荷を上げたり、ゲル粉砕が不安定になって、ゲル粒子径が制御できなくなる場合がある。なお、「工程前」、「工程後」とは当該工程前、或いは当該工程後の全ての工程を含み、また工程間の輸送工程や貯蔵工程等、任意の工程において微粉造粒物を添加することを意味する。例えばゲル粉砕工程後とは、ゲル粉砕工程から次工程に輸送される間、及び次工程を含む。
 微粉造粒物添加工程において、微粉造粒物の固形分は上記したように好ましくは30質量%以上、80質量%以下であるが詳細は後述する。微粉造粒物添加工程において、微粉造粒物の固形分と共に造粒ゲルの温度を制御することが好ましい。
 (温度)
 本発明では微粉造粒物を含水ゲルに添加するが、その際の該微粉造粒物の温度、及び該含水ゲルの温度は、いずれも50℃以上100℃以下の範囲内であり、好ましくは55℃以上、より好ましくは60℃以上であって、好ましくは95℃以下、より好ましくは90℃以下である。このような温度範囲内であれば両者の良好な混合状態が得られる。微粉造粒物や含水ゲルの温度が50℃を下回ると微粉造粒物が硬くなったり、含水ゲルと微粉造粒物を混合すると凝集物を形成することがある。すなわち、混合時に凝集物が形成されると更に含水ゲルや微粉造粒物がくっついてより巨大な凝集物を形成されて混合状態が不良となる。また混合できたとしても、乾燥する際に凝集物が存在すると乾燥不良、すなわち未乾燥物を生じやすい。また該凝集物を所望の含水率になるまで加熱を継続して乾燥させると、既に乾燥されている他の微粉造粒物や含水ゲルは過乾燥状態となり、熱劣化して可溶分が増加する等、吸水性樹脂の品質が劣化する。このような問題は一方の温度が50℃以上、他方の温度が50℃未満の場合でも生じる。一方、微粉造粒物や含水ゲルの温度が100℃を超えるとゲル表面が乾燥してしまい、かえってゲルが硬くなることがある。
 また本発明では不均一な乾燥を低減する観点から、前記温度範囲内において微粉造粒物の温度と含水ゲルの温度差は小さい程好ましく、両者の温度差は好ましくは40℃以内、より好ましくは30℃以内、更に好ましくは20℃以内である。微粉造粒物の温度と含水ゲルの温度の調整は製造過程における加熱、及び保温、或いは外部から熱風等による加熱、或いは放冷、低温空気等による冷却によって適宜調整できる。
 本発明の製造方法によれば、製造工程における微粉発生量は、30重量%程度(30重量%以下)でもよいが、通常、全製造量の20質量%未満、好ましくは15質量%以下である。本発明に係る製造方法では、従来の製造方法による微粉発生量20~30質量%に比べて、大幅にその量が低減される。これにより、整粒工程における解砕ステップ及び分級ステップが簡略化できる。また、最終的には微粉回収工程及び微粉造粒工程も省力化することが可能である。通常、微粉又は微粉造粒物の回収は、得られる吸水剤の性能低下(例えば、吸水倍率の低下)をもたらす場合があるが、本発明によれば微粉発生量が低減されるため、吸水性能に優れた吸水剤を得ることができる。
 〔2-10〕その他添加剤の添加工程
 本工程は、吸水剤に様々な付加機能を付与し、また吸水性能を向上させることを目的として実施される任意の工程であり、表面架橋工程を経て得られる吸水性樹脂粉末に、下記添加剤を添加する工程である。添加効果の観点から、下記添加剤は吸水性樹脂粉末の各粒子表面に存在させることが好ましい。従って、本工程は、好ましくは、表面架橋工程と同時又は別途実施され、より好ましくは表面架橋工程後に実施される。
 その他添加剤としては、キレート剤、有機還元剤、無機還元剤、酸化剤、ヒドロキシカルボン酸化合物、界面活性剤、リン原子を有する化合物、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプ、熱可塑性繊維等が例示される。なお、吸水剤に付与する吸水性能の一例として通液性が挙げられるが、当該通液性を向上させる添加剤として、以下の多価金属塩、カチオン性ポリマー、無機微粒子が例示され、これらのうち、少なくとも1種以上の使用が好ましい。
 (多価金属塩)
 多価金属塩の多価金属として、好ましくはアルミニウム、ジルコニウム等が挙げられる。また、使用できる多価金属塩として、好ましくは乳酸アルミニウム及び硫酸アルミニウムであり、より好ましくは硫酸アルミニウムである。
 この多価金属塩の添加量としては、吸水性樹脂粉末1gに対して、金属カチオンが好ましくは3.6×10-5モル未満、より好ましくは2.8×10-5モル未満、さらに好ましくは2.0×10-5モル未満である。
 (カチオン性ポリマー)
 カチオン性ポリマーとして、好ましくは米国特許第7098284号に例示される化合物が挙げられる。なかでもビニルアミンポリマーが好ましい。このカチオン性ポリマーの添加量としては、吸水性樹脂粉末100質量部に対して、好ましくは2.5質量部未満、より好ましくは2.0質量部未満、さらに好ましくは1.0質量部未満である。
 (無機微粒子)
 無機微粒子として、具体的には、タルク、カオリン、フラー土、ハイドロタルサイト、ベントナイト、活性白土、重晶石、天然アスファルタム、ストロンチウム鉱石、イルメナイト、パーライト等の鉱産物;硫酸アルミニウム14~18水塩(又はその無水物)、硫酸カリウムアルミニウム12水塩、硫酸ナトリウムアルミニウム12水塩、硫酸アンモニウムアルミニウム12水塩、塩化アルミニウム、ポリ塩化アルミニウム、酸化アルミニウム等のアルミニウム化合物類;リン酸カルシウム等のその他の多価金属塩、多価金属酸化物及び多価金属水酸化物;親水性のアモルファスシリカ類;酸化ケイ素・酸化アルミニウム・酸化マグネシウム複合体、酸化ケイ素・酸化アルミニウム複合体、酸化ケイ素・酸化マグネシウム複合体等の酸化物複合体類;等が挙げられる。これらのうち、2種以上を併用してもよい。この無機微粒子の添加量としては、吸水性樹脂粉末100質量部に対して、好ましくは2.0質量部未満、より好ましくは1.5質量部未満、さらに好ましくは1.0質量部未満である。
 〔2-11〕その他の工程
 本発明に係る製造方法は、上述した各工程以外に、必要に応じて、冷却工程、再湿潤工程、粉砕工程、分級工程、造粒工程、輸送工程、貯蔵工程、梱包工程、保管工程等を更に含んでもよい。
 (その他添加剤)
 本発明に係る製造方法においては、上記表面架橋剤、ゲル流動化剤、接着制御剤以外にも、その他添加剤として、乾燥前又は乾燥後に、無機微粒子、粉塵防止剤、乾燥した吸水性樹脂(微粉)、通液性向上剤等を、更に加えることが可能である。
 〔2-12〕好ましい実施形態
 前述した通り、本発明の製造方法によれば、微粉造粒工程において接着制御剤を用いることにより、造粒強度及び粒度が適正な微粉造粒物が得られる。この微粉造粒物を、乾燥工程又は乾燥工程前のいずれかの工程に回収することにより、得られる乾燥重合体の大粒子化が抑制される。これにより、図1に示すフローチャートのように、乾燥工程で得られる乾燥重合体を、コンパクト化した整粒工程で所定の粒度に調整することができる。
 また、乾燥工程において攪拌乾燥を用いる場合には、図1の工程でもよいが、図2に示す通り、さらにコンパクト化した製造方法が可能となる。図2に示される製造方法では、乾燥工程において、攪拌乾燥が用いられ、乾燥と同時に表面架橋を実施する。この乾燥工程後に得られる表面架橋された粒子状乾燥重合体を整粒工程で所定の粒度に調整することで、物性に優れた吸水性樹脂粉末を効率良く製造することができる。さらに、本発明に係る製造方法によれば、乾燥と同時に表面架橋を実施する乾燥工程後にも、目的とする製品粒度に近い表面架橋された粒子状乾燥重合体が得られるため、その後の整粒工程のコンパクト化も可能である。
 〔3〕製品としての吸水性樹脂粉末、およびその物性
 上記製造方法を製造の一例として、本発明は、含水ゲル状架橋重合体の乾燥物である吸水性樹脂粉末(一次粒子)と接着制御剤を含む吸水性樹脂微粉造粒物を含む吸水性樹脂粉末を提供する。なお、ここで一次粒子とは含水ゲル状架橋重合体の乾燥物を意味し、さらに、乾燥後の吸水性樹脂微粉から得られる吸水性樹脂微粉造粒物は2次粒子に相当する。
 従来、含水ゲル状架橋重合体の乾燥物である吸水性樹脂粉末(一次粒子)に比べ、乾燥後の吸水性樹脂微粉から得られる吸水性樹脂微粉造粒物(2次粒子)は機械的ダメージに比較的弱いため、造粒粒子の破壊に伴う微粉の再生が起こることもあった。また粉体流動性の低下が起こることもあった。かかる課題を解決するため、本発明で得られる吸水性樹脂粉末は、単量体を重合して得られる粒子状含水ゲル状架橋重合体と微粉造粒物を混合させる本発明の製造を一例として、本発明では含水ゲル状架橋重合体の乾燥物である吸水性樹脂粉末(一次粒子)および接着制御剤を含む吸水性樹脂微粉造粒物からなる吸水性樹脂粉末を提供する。かかる吸水性樹脂粉末には微粉造粒物が接着制御剤を含んでいるため、吸水性樹脂微粉造粒物の破壊による微粉発生量の減少という効果を示す。ここで接着制御剤は界面活性剤であることが好ましい。
 本発明では任意に含水ゲル状架橋重合体の乾燥物である吸水性樹脂(一次粒子)や吸水性樹脂微粉はゲル流動化剤(界面活性剤)を含んでもよいが、本発明では吸水性樹脂からなる微粉の固形分に対してさらに接着制御剤(特に界面活性剤)が好ましくは0.001~2.0質量%、より好ましくは0.010~1.5質量%、更に好ましくは0.020~1.0質量%、特に好ましくは0.025~0.8質量%が追加されている。よって、好ましくは吸水性樹脂微粉造粒物中の界面活性剤量が含水ゲル状架橋重合体の乾燥物である吸水性樹脂粉末(一次粒子)中の界面活性剤量より上記範囲で多く含有された吸水性樹脂粉末である。好ましくは本発明で接着制御剤が界面活性剤であり、吸水性樹脂微粉造粒物中の界面活性剤量が吸水性樹脂粉末中の界面活性剤量より多い吸水性樹脂粉末である。本発明の吸水性樹脂粉末において好ましい界面活性剤の種類および量(含有量)、微粉造粒物の量、吸水性樹脂粉末(一次粒子)と接着制御剤を含む吸水性樹脂微粉造粒物の割合(混合比)などは上記の範囲である。本発明の吸水性樹脂微粉造粒物を含む吸水性樹脂粉末は、機械的ダメージに比較的弱い微粉造粒物に接着制御剤(界面活性剤)が添加(含水ゲル状架橋重合体の乾燥物である吸水性樹脂(一次粒子)より多く添加)されているため、吸水性樹脂微粉造粒物を含む吸水性樹脂粉末としても機械的ダメージにも強く、また粉体流動性も良好である。
 本発明に係る製造方法で得られる吸水性樹脂粉末(吸水剤)については、該吸水性樹脂粉末を吸収性物品、特に紙オムツに使用する場合に、下記の(3-1)~(3-7)に掲げた物性のうち、少なくとも1つ以上、好ましくは2つ以上、より好ましくは3つ以上、更に好ましくは全ての物性が、所望する範囲に制御されることが望まれる。以下の全ての物性が下記の範囲を満たさない場合、本発明の効果が十分に得られず、特に、紙オムツ一枚当たりの吸水剤の使用量が多い、所謂、高濃度紙オムツにおいて十分な性能を発揮しないおそれがある。
 また、本発明で得られる吸水性樹脂粉末は、上記微粉造粒物添加工程にて単量体を重合して得られる粒子状含水ゲル状架橋重合体と微粉造粒物が混合(好ましくは乾燥工程又は乾燥工程前のいずれかの工程で混合、さらには重合工程以降、さらにはより好ましくはゲル粉砕工程後で混合)されているため、本発明は、上記製造法を製法の一例として、吸水性樹脂一次粒子および接着制御剤を含む吸水性樹脂微粉造粒物からなる吸水性樹脂粉末を提供する。なお、本発明の吸水性樹脂粉末の製造方法として、その製造方法は本発明の方法に限定されず、吸水性樹脂一次粒子および接着制御剤を含む吸水性樹脂微粉造粒物を別々に得て混合するなど、本発明の製造方法以外の他の製造方法で得てもよい。好ましくは、本発明で接着制御剤が界面活性剤であり、吸水性樹脂微粉造粒物中の界面活性剤量が吸水性樹脂中の界面活性剤量より多い吸水性樹脂粉末である。かかる本発明の吸水性樹脂粉末はさらに、以下の物性を有する。好ましい接着制御剤や微粉造粒物の量は上記の範囲である。
 〔3-1〕CRC(遠心分離機保持容量)
 本発明の吸水性樹脂粉末(吸水剤)のCRC(遠心分離機保持容量)は、通常5g/g以上であり、好ましくは15g/g以上、より好ましくは25g/g以上である。上限値については特に限定されず、より高いCRCが好ましいが、他の物性とのバランスの観点から、好ましくは70g/g以下、より好ましくは50g/g以下、更に好ましくは40g/g以下である。
 上記CRCが5g/g未満の場合、吸収量が少なく、紙オムツ等の吸収性物品の吸収体としては適さない。また、上記CRCが70g/gを超える場合、尿や血液等の体液等を吸収する速度が低下するため、高吸水速度タイプの紙オムツ等への使用に適さない。なお、CRCは、内部架橋剤や表面架橋剤等の種類や量を変更することで制御することができる。
〔3-2〕水可溶分(Ext)
 Extは、通常1~40質量%であり、好ましくは2~35質量%、より好ましくは3~30質量%、さらに好ましくは4~25質量%、特に好ましくは5~20質量%である。
 Extが上記範囲を上回る場合、ゲル強度が弱く、加圧下吸収倍率や液透過性に劣った吸水剤となるおそれがある。Extが上記範囲を下回る場合、CRCが低くなりすぎるおそれがある。どちらの場合も、リウェットが多くなるため、紙オムツ等の吸収性物品の吸収体としては適さない。なお、Extは、内部架橋剤等の種類や量の変更により制御することができる。
 〔3-3〕含水率
 吸水性樹脂粉末(吸水剤)の含水率は、好ましくは0質量%を超えて20質量%以下、より好ましくは1~15質量%、更に好ましくは2~13質量%、特に好ましくは2~10質量%である。この含水率を上記範囲内とすることで、粉体特性(例えば、流動性、搬送性、耐ダメージ性等)に優れた吸水剤が得られる。
 〔3-4〕粒度
 吸水性樹脂粉末(吸水剤)の質量平均粒子径d3(D50)は前述した通りであり、好ましくは200μm以上、より好ましくは200~600μm、さらに好ましくは250~550μm、特に好ましくは300~500μmである。また、粒子径150μm未満の粒子の割合は、通常15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。また、粒子径850μm超の粒子の割合は、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。この吸水剤は、粒子径150~850μmの粒子を、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは97質量%以上、特に好ましくは99質量%以上含む。理想的には100質量%である。粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、更に好ましくは0.27~0.35である。
 〔3-5〕AAP(加圧下吸水倍率)
 吸水性樹脂粉末(吸水剤)のAAP(加圧下吸水倍率)は、好ましくは15g/g以上、より好ましくは20g/g以上、更に好ましくは23g/g以上、特に好ましくは24g/g以上、最も好ましくは25g/g以上である。上限値については特に限定されないが、好ましくは30g/g以下である。
 AAPが15g/g未満の場合、吸収体に圧力が加わった際の液の戻り量(「Re-Wet(リウェット)」と称する場合がある)が多くなるので、紙オムツ等の吸収性物品の吸収体としては適さない。なお、AAPは、粒度の調整や表面架橋剤の変更等により制御することができる。
 〔3-6〕Vortex(吸水速度)
 吸水性樹脂粉末(吸水剤)のVortex(吸水速度)は、好ましくは60秒以下、より好ましくは50秒以下、更に好ましくは40秒以下、特に好ましくは30秒以下、最も好ましくは25秒以下である。下限値については特に限定されないが、好ましくは5秒以上、より好ましくは10秒以上である。
 Vortexを上記範囲とすることで、短時間で所定量の液を吸収することができるようになる。紙オムツ等の吸収性物品の吸収体に使用した際に、使用者が肌の濡れを感じる時間が少なくなり、不快感を与えにくくなるとともに、漏れ量も減少することができる。
 〔3-7〕界面活性剤の分布
 吸水性樹脂粉末(吸水剤)中の界面活性剤の平均含有量に対して、吸水性樹脂微粉造粒物に含まれる界面活性剤含有量が多いことが好ましい。吸水性樹脂粉末(吸水剤)中の界面活性剤の平均含有量に対して、吸水性樹脂微粉造粒物に含まれる界面活性剤含有量がより好ましくは1.5倍以上、さらに好ましくは2倍以上である。吸水性樹脂微粉造粒物に含まれる界面活性剤含有量が多いことにより、運搬時などの摩擦により吸水性樹脂微粉造粒物が壊れることを防止する一方、界面活性剤による吸水性樹脂微粉造粒物以外の粒子(一次粒子)への悪影響を抑えることができる。
 なお、吸水性樹脂粉末(吸水剤)から吸水性樹脂微粉造粒物のみを抜き出すのは難しいため、本発明では吸水性樹脂微粉造粒物が比較的脆いことを利用し、下記方法で評価する。
 吸水性樹脂粉末(吸水剤)を目開きが850μmと150μmのJIS標準篩を用いてロータップ式分級機(ES65型 電源は100V、60Hzを使用 (株)飯田製作所製)で5分間分級し、粒子径が850~150μmの吸水性樹脂粉末(吸水剤)を得る。この吸水性樹脂粉末(吸水剤)30gを特開2000-302876号(対応米国特許6562879号)に記載の(機械的ダメージ試験)方法にて振動時間を10分間として、吸水性樹脂粉末(吸水剤)にダメージを与える。具体的にはペイントシェーカー(東洋精機製作所社製、No.488試験用分散機)で吸水性樹脂粉末(吸水剤)30gをガラス玉10gとともに10分間振とうする。ダメージ付与後の吸水性樹脂粉末(吸水剤)を目開きが150μmのJIS標準篩を用いて前記ロータップ式分級機で前記と同様に分級し、粒子径が150μm以下の微粉を得る。微粉と吸水性樹脂粉末(吸水剤)を50倍(質量比)の脱イオン水で膨潤させ、さらに50倍(質量比)のメタノールで収縮させて界面活性剤の抽出液を得る。これを、HPLCを用いて定量することにより、微粉と吸水性樹脂粉末(吸水剤)の界面活性剤含有量を求める。ここでこの微粉の界面活性剤含有量を吸水性樹脂微粉造粒物の界面活性剤含有量とする。
 〔4〕吸水性樹脂粉末(吸水剤)の用途
 吸水性樹脂粉末(吸水剤)の用途は、特に限定されないが、好ましくは紙オムツ、生理用ナプキン、失禁パッド等の吸収性物品の吸収体用途が挙げられる。特に、高濃度紙オムツの吸収体として使用することができる。本発明の吸水性樹脂粉末は微粉造粒物に融着制御剤(界面活性剤)を多く含むため、機械的にダメージに強く、おむつ製造工程での機械的ダメージにも強く高濃度紙オムツの吸収体の製造にも適している。更に、吸水剤は、吸水時間に優れ、かつ粒度分布が制御されているので、上記吸収体の上層部に使用する場合に、顕著な効果が期待できる。
 また、上記吸収体の原料として、上記吸水剤と共にパルプ繊維等の吸収性材料を使用することもできる。この場合、吸収体中の吸水剤の含有量(コア濃度)としては、好ましくは30質量%~100質量%、より好ましくは40質量%~100質量%、更に好ましくは50質量%~100質量%、更により好ましくは60質量%~100質量%、特に好ましくは70質量%~100質量%、最も好ましくは75質量%~95質量%である。
 上記コア濃度を上記範囲とすることで、該吸収体を吸収性物品の上層部に使用した場合に、この吸収性物品を清浄感のある白色状態に保つことができる。更に、該吸収体は尿や血液等の体液等の拡散性に優れるため、効率的な液分配がなされることにより、吸収量の向上が見込める。
 本願は、2018年5月16日に出願された日本国特許出願第2018-094788号、2018年11月8日に出願された日本国特許出願第2018-210731号に基づく優先権の利益を主張するものである。2018年5月16日に出願された日本国特許出願第2018-094788号、2018年11月8日に出願された日本国特許出願第2018-210731号の明細書の全内容が、本願に参考のため援用される。
 以下の実施例・比較例に従って本発明をより具体的に説明するが、本発明はこれらの説明に限定解釈されるものではなく、各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も、本発明の範囲に含まれるものとする。
 なお、実施例及び比較例で使用する電気機器(吸水性樹脂の物性測定用機器も含む)には、特に注釈のない限り、60Hzで200V又は100Vの電源を使用した。また、本発明の吸水性樹脂の諸物性は、特に注釈のない限り、室温(20℃~25℃)、相対湿度50%RH±10%の条件下で測定された。
 また、便宜上、「リットル」を「l」又は「L」、「質量%」又は「重量%」を「wt%」と表記することがある。微量成分の測定を行う場合、検出限界以下をN.D(Non Detected)と表記する場合がある。
 [含水ゲル及び吸水性樹脂の物性測定方法]
 (a)CRC(遠心分離機保持容量)
 吸水性樹脂のCRC(遠心分離機保持容量)を、EDANA法(ERT441.2-02)に準拠して測定した。また、含水ゲルのCRC(遠心分離機保持容量)は、試料として含水ゲルを0.4gに、自由膨潤時間を24時間に、それぞれ変更した以外はEDANA法(ERT441.2-02)と同様の操作を行った。更に、別途含水ゲルの固形分率αを測定し、含水ゲル0.4g中の吸水性樹脂の乾燥質量を求め、下記(式2)にしたがって含水ゲルのCRCを算出した。
 含水ゲルのCRC(g/g)={(mwi-mb)-msi×(α/100)}/{msi×(α/100)} ・・・ (式2)
 ここで、(式2)中、msiは測定前の含水ゲルの質量(単位;g)、mbは自由膨潤し、脱水した後のBlank(不織布のみ)の質量(単位;g)、mwiは自由膨潤し、脱水した後の含水ゲルの質量(単位;g)、αは測定前の含水ゲルの固形分率(単位;質量%)である。
 (b)Ext(水可溶分)
 含水ゲルのExt(水可溶分)を、EDANA法(ERT470.2-02)に準拠して測定した。試料であるして含水ゲルの質量を5.0gに、攪拌時間を24時間に、それぞれ変更した以外はEDANA法(ERT470.2-02)と同様の操作を行った。更に、別途含水ゲルの固形分率αを測定し、含水ゲル5.0g中の乾燥質量を求め、下記(式3)にしたがって含水ゲルのExtを算出した。
 含水ゲルのExt(質量%)={(VHCl.s-VHCl.b)×CHCl×Mw×Fdil×100}/ms×(α/100)×1000 ・・・ (式3)
 ここで、(式3)中、VHCl.sは溶解したポリマーを含む濾液をpH10からpH2.7にするのに必要なHCl量(単位;ml)、VHCl.bはBlank(0.9質量%塩化ナトリウム水溶液)をpH10からpH2.7にするのに必要なHCl量(単位;ml)、CHClはHCl溶液の濃度(単位;モル/l)、Mwはアクリル酸(塩)ポリマー中のモノマーユニットの平均分子量(単位;g/モル)、Fdilは溶解したポリマーを含む濾液の希釈度、msは測定前の吸水性樹脂の質量(単位;g)、αは測定前の吸水性樹脂の固形分率(単位;質量%)である。
 (c)吸水性樹脂の含水率及び固形分率
 乾燥された吸水性樹脂(吸水剤)の含水率を、EDANA法(ERT430.2-02)に準拠して測定した。なお、本発明においては、試料量を1.0g、乾燥温度を180℃にそれぞれ変更して測定した。固形分率(質量%)は、100質量%から含水率(質量%)を引くことで求めた。
 (d)吸水性樹脂の粒度
 吸水性樹脂粉末又は粒子状乾燥重合体の粒度(質量平均粒子径(D50)及び対数標準偏差(σζ))を、米国特許第7638570号のカラム27及び28に記載された方法に準拠して測定した。
 (e)150pass率(目開き150μmの篩通過率)及びΔ150pass率
 上記(d)に記載の質量平均粒子径(D50)の測定方法と同様の分級操作を行って、目開き150μmの篩を通過した粒子の割合(質量%)を、150pass率として求めた。
 また、乾燥工程に微粉造粒物を回収せずに得られた吸水性樹脂粉末の150pass率を基準とし、微粉造粒物を回収して得られた吸水性樹脂粉末の150pass率との差を、Δ150pass率として求めた。Δ150pass率が小さいほど、乾燥工程及び乾燥工程以降の工程における機械的ダメージが少なく、微粉の発生が抑制されたことを意味する。
 (f)2800on率(目開き2800μmの篩未通過率)及びΔ2800on率
 目開き4000μm、2800μm、2000μm、1400μm、1000μm及び850μmのJIS標準篩を使用した以外は、上記(d)に記載の質量平均粒子径(D50)の測定方法と同様の分級操作を行って、目開き4000μm及び2800μmの篩を通過しなかった粒子の割合(質量%)を、2800on率として求めた。
 また、乾燥工程に微粉造粒物を回収せずに得られた乾燥重合体の2800on率を基準とし、微粉造粒物を回収して得られた乾燥重合体の2800on率との差を、Δ2800on率として求めた。Δ2800on率が小さいほど、乾燥工程での粗粒化が抑制されたことを意味する。
 (g)含水ゲルの重合率
 イオン交換水1000gに含水ゲル1.00gを投入し、300rpmで2時間攪拌した後に、ろ過することにより、不溶分を除去した。上記操作で得られたろ液中に抽出された単量体の量を、液体クロマトグラフを用いて測定した。得られたデータについて、下記(式4)に従ってゲル固形分補正を行い、重合率C(単位;質量%)を算出した。
 重合率C(質量%)=100×{1-m/(α・M/100)} ・・・ (式4)
 ここで、(式4)中、mは単量体の質量(単位;g)、Mは含水ゲルの質量(単位;g)、αは含水ゲルの固形分率(単位;質量%)である。
 (h)含水ゲルの含水率及び固形分率
 乾燥前の含水ゲルの含水率について、上記(c)において、含水ゲルを2.0gとしさらに乾燥時間を24時間として測定した。始めに、底面の直径が50mmのアルミカップに含水ゲル2.00gを投入した後、試料(含水ゲル及びアルミカップ)の総質量W1(g)を正確に秤量した。次に、上記試料を、雰囲気温度180℃に設定されたオーブン内に静置した。24時間経過後、該試料を上記オーブンから取り出し、総質量W2(g)を正確に秤量した。本測定に供された含水ゲルの質量をM(g)としたときに、下記(式5)にしたがって、含水ゲルの含水率(100-α)(質量%)を求めた。なお、下記(式5)中、αは含水ゲルの固形分率(質量%)である。
 (100-α)(質量%)={(W1-W2)/M}×100 ・・  (式5)
 (i)粒子状含水ゲルの粒度
 粒子状含水ゲルの粒度(質量平均粒子径(D50)及び対数標準偏差(σζ))を以下の方法で測定した。
 温度20~25℃の粒子状含水ゲル(固形分率α質量%)20gを、0.08質量%エマール20C(界面活性剤、花王株式会社製)を含む20質量%塩化ナトリウム水溶液(以下、「エマール水溶液」と称する)1000g中に添加して分散液とし、長さ50mm×直径7mmのスターラーチップを用いて、300rpmで16時間攪拌した。使用した容器は、ポリプロピレン製の円柱状容器(高さ21cm、直径8cm、内容積約1.14L)である。
 攪拌終了後、回転盤の上に設置したJIS標準の篩(直径21cm、篩の目開き;8mm/4mm/2mm/1mm/0.60mm/0.30mm/0.15mm/0.075mm)の中央部に、上記分散液を投入した。エマール水溶液100gを使用して全含水ゲルを篩上に洗い出した後、上部からエマール水溶液6000gを、篩を手で回転させながら(20rpm)、30cmの高さからシャワー(孔72個、液量;6.0[L/min])を使って注水範囲(50cm)が篩全体にいきわたるよう満遍なく注ぐ作業を4回繰り返し、含水ゲルを分級した。分級した一段目の篩上の含水ゲルを約2分間水切り後、秤量した。二段目以降の篩についても同様の操作で分級し、水切り後にそれぞれの篩の上に残留した含水ゲルを秤量した。なお、上記篩はゲル粒径によって適宜変更した。例えば、含水ゲル粒径が細かく、目開き0.15mmや0.075mmの篩で目詰まりが発生した場合には、より直径の大きいJIS標準篩(直径30cm、目開き0.15mm、0.075mm)に置き換えて分級した。
 各篩の上に残留した含水ゲルの質量から下記(式6)より、その割合(質量%)を算出した。水切り後の篩の目開きを下記(式7)に従って算出して、含水ゲルの粒度分布を対数確率紙にプロットした。プロットの積算篩上%Rが50質量%に相当する粒子径を、含水ゲルの質量平均粒子径(D50)とした。又、上記プロットから、積算篩上%R=84.1%に相当する粒子径(これをX1とする)と、積算篩上%R=15.9%に相当する粒子径(これをX2とする)とを求め、下記(式8)により、対数標準偏差(σζ)を求めた。σζの値が小さいほど粒度分布が狭いことを意味する。
 X(%)=(w/W)*100        (式6)
 R(α)(mm)=(20/W)1/3*r   (式7)
 ここで、(式6)及び(式7)中、
 X;分級、水切り後に各篩上に残留した含水ゲルの質量%(%)
 w;分級、水切り後に各篩上に残留した含水ゲルのそれぞれの質量(g)
 W;分級、水切り後に各篩上に残留した含水ゲルの総質量(g)
 R(α);固形分率α質量%の吸水性樹脂に換算したときの篩の目開き(mm)
 r;20質量%塩化ナトリウム水溶液中で膨潤した含水ゲル状架橋重合体(含水ゲル粒子)が分級された篩の目開き(mm)である。
 σζ=0.5×ln(X2/X1)      (式8)
(j)含水ゲルの固形分換算の質量平均粒子径
 上記(h)含水ゲルの含水率及び(i)粒子状含水ゲルの質量平均粒子径から、下記(式9)に従って、固形分換算の質量平均粒子径(含水ゲル粒子の乾燥後の質量平均粒子径)を求めた。
 SolidD50=GelD50×(GS/100)1/3   (式9)
 ここで、(式9)中、
 GelD50;含水ゲル粒子の質量平均粒子径(μm)
 GS;含水ゲル粒子の固形分率(質量%)
 SolidD50;含水ゲル粒子の乾燥物に換算した質量平均粒子径(μm)
である。
 (k)Vortex(吸水時間)
 吸水性樹脂のVortex(吸水時間)は、以下の手順にしたがって測定した。先ず、予め調整された生理食塩水(0.9質量%塩化ナトリウム水溶液)1000質量部に、食品添加物である食用青色1号(ブリリアントブルー)0.02質量部を添加した後、液温を30℃に調整した。
 続いて、容量100mlのビーカーに、上記生理食塩水50mlを量り取り、長さ40mm、直径8mmのスターラーチップを用いて600rpmで攪拌しながら、吸水性樹脂2.0gを投入した。吸水性樹脂の投入時を始点とし、その吸水性樹脂が生理食塩水を吸液してスターラーチップを覆うまでの時間をVortex(吸水時間)(単位;秒)として、測定した。
 (l)吸水性樹脂のAAP(加圧下吸水倍率)
 吸水性樹脂のAAP(加圧下吸水倍率)を、EDANA法(ERT442.2-02)に準拠して測定した。なお、測定に当たり、荷重条件を4.83kPa(0.7psi)に変更した。
 (m)微粉造粒物の流動性評価
 各実施例において微粉に水性液を添加して造粒して得られた微粉造粒物(100g)を造粒後直ちに円筒型プラスチック容器(内壁:フッ素樹脂コーティング、高さ:12cm、底面直径:8cm)に投入した。所定時間経過後、該容器投入口をバットで塞いで該容器を上下逆さまにして静置した後、円筒型プラスチック容器を上方向に引き上げて3分間放置した。その後、自重によりバット上に広がった微粉造粒物の最も長い幅を測定して凝集崩壊度(単位:cm)とし、該凝集崩壊度に基づいて微粉造粒物の流動性を評価した。
 (評価基準)
 凝集崩壊度:不良:10cm以下:ほぐしにくい
 凝集崩壊度:良 :11cm以上、15cm以下:ほぐしやすい
 凝集崩壊度:優良:16cm以上:かなりほぐしやすい
 (粒子状含水ゲルの製造)
 [製造例1]
 アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数9)0.61質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、脱イオン水273.2質量部からなる単量体水溶液を作成した。
 次に、38℃に調温した上記単量体水溶液を定量ポンプで連続供給した後、更に48質量%水酸化ナトリウム水溶液150.6質量部を連続的にラインミキシングした。尚、この時、中和熱によって単量体水溶液の液温は87℃まで上昇した。
 更に、4質量%過硫酸ナトリウム水溶液14.6質量部を連続的にラインミキシングした後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚みが10mmとなるように連続的に供給した。その後、重合(重合時間3分間)が連続的に行われ、含水ゲル状架橋重合体である帯状の含水ゲル(1a)を得た。得られた帯状の含水ゲル(1a)を重合ベルトの進行方向に対して幅方向に、切断長が300mmとなるように等間隔に連続して切断することで、短冊状の含水ゲル(1b)を得た。
 スクリュー押出機に、得られた含水ゲル(1b)と、3.1質量%ラウリルジメチルアミノ酢酸ベタイン水溶液とを、同時に供給しながらゲル粉砕した。ラウリルジメチルアミノ酢酸ベタイン水溶液の供給量は、含水ゲル(1b)の固形分に対してラウリルジメチルアミノ酢酸ベタインが0.15質量%となるようにした。該スクリュー押出機として、スクリュー軸の外径が86mmであり、先端部に直径100mm、孔径8.0mm、厚さ10mmの多孔板が備えられたミートチョッパーを使用し、含水ゲル(1b)と同時に水及び水蒸気を供給しながらゲル粉砕(第1ゲル粉砕)を行った。次に、孔径4.7mmの多孔板に変更して、水及び水蒸気を供給しながら、第1ゲル粉砕で得られた粉砕ゲルをさらにゲル粉砕(第2ゲル粉砕)した。得られた粒子状含水ゲル(1)は、固形分率が44質量%(含水率が56質量%)、固形分換算の平均粒子径d1が130μm、粒子径150μm未満の粒子の割合が約53質量%であった。また粒子状含水ゲル(1)の重合率は98.6%、CRCは36g/g、水可溶分は6%であった。粒子状含水ゲル(1)はゲル流動化剤として添加したラウリルジメチルアミノ酢酸ベタイン(界面活性剤)1500ppmを対粒子状含水ゲル固形分で含む。
 (バンド乾燥)
 [製造例2]
 製造例1で得られた粒子状含水ゲル(1)を、通気バンド式乾燥機を用いて乾燥した。始めに、この乾燥機の通気板(パンチングメタル)に、厚み約10cmになるように粒子状含水ゲル(1)を散布した。続いて185℃の熱風を35分間通気して、乾燥重合体(1)を得た。乾燥機の出口で得られた乾燥重合体(1)は一体化しており、一枚板のブロック状に固まっていた。乾燥重合体(1)の横幅はほぼ乾燥ベルトの幅に相当し、長さはエンドレスであり、厚みは数cmであった。
 得られた乾燥重合体(1)を空冷した後、複数の羽根を有する回転軸を備えた解砕機(第1粉砕機)で粗砕した後、3段のロールミル(第2粉砕機)に供給してさらに粉砕することにより、吸水性樹脂粉末(1)を得た。吸水性樹脂粉末(1)は、上記粒子状含水ゲル(1)に由来するラウリルジメチルアミノ酢酸ベタインを含み、質量平均粒子径(d2)350μm、目開き150μmの篩を通過した粒子の割合(150pass率)が14.0質量%、固形分率97.6質量%であった。
 (攪拌乾燥)
 [製造例3]
 製造例1で得られた粒子状含水ゲル(1)を、回転型乾燥機を用いて乾燥した。この乾燥機は、その内部に回転軸方向に延在する10本の加熱管と2枚の障壁(中心部に一つの円形開口部を有するドーナツ状の仕切り板、開口率50%)とを有する円筒状の回転容器(容積100L)を備えており、投入部から取り出し口に向かって、0.6°の下向きの傾斜が付けられている。回転容器内の取り出し口側の端部には、中心に一つの円形開口部(開口率24%)を有するドーナツ状の仕切り板(別称;排出堰)を有している。
 はじめに、各加熱管に2.7MPa(温度228.1℃)の水蒸気を導入して、回転容器内部(接触温度計で規定)を予め200℃超に加熱した後、さらに回転容器の外壁もトレスで十分に加熱した。次いで、乾燥機に製造例1で得られた95℃の粒子状含水ゲル(1)を15kg/hで供給し、フルード数Fr0.07となるように回転容器を回転させて、平均滞留時間50分で連続乾燥を行った。乾燥時、回転容器の内部の外気に対する気圧差が-20Paであり、排気露点が90℃となるように、空気(キャリアーガス;140℃)の供給量及び排気量を調整した。なお、乾燥機の複数箇所から、回転容器内部の含水ゲルをサンプリングして、その固形分率を測定したところ、乾燥中の含水ゲルは、回転容器の中間2箇所に設置された2枚のドーナツ状の障壁(開口率50%)により、固形分率約約90質量%及び約95質量%を境界として、3つの領域に区分されていた。乾燥後、取り出し口で採取した乾燥重合体(2)の温度は200℃であり、その大部分が造粒粒子であった。乾燥重合体(2)は、固形分率98.5質量%であり、目開き2800μmの篩未通過の粒子の割合(2800on率)が固形分換算で7.4質量%であった。
 続いて、乾燥機の取り出し口から排出された乾燥重合体(2)を、冷風により、強制的に80℃以下に冷却した後、その冷却物を1段のロールミル(粉砕機)に供給して粉砕することにより粒度を調整して、吸水性樹脂粉末(2)を得た。吸水性樹脂粉末(2)は、上記粒子状含水ゲル(1)に由来するラウリルジメチルアミノ酢酸ベタインを含み、質量平均粒子径(d2)350μm、目開き150μmの篩を通過した粒子の割合(150pass率)10.8質量%、固形分率97.5質量%であった。
 続いて、目開き850μm及び180μmのJIS標準篩を用いて、吸水性樹脂粉末(2)を分級し、目開き180μmの篩通過物である微粉(1)を得た。微粉(1)は、上記粒子状含水ゲル(1)に由来するラウリルジメチルアミノ酢酸ベタインを含み、固形分率95.2質量%、質量平均粒子径(d3)102μm、目開き150μmの篩を通過した粒子の割合(150pass率)93.9質量%、CRCが37.2g/gであった。
 [製造例4]
 製造例3で得られた乾燥重合体(2)を、冷風により、強制的に80℃以下に冷却した後、その冷却物を1段のロールミル(粉砕機)に供給し、粉砕条件を変更して粉砕することにより粒度を調整して、吸水性樹脂粉末(3)を得た。吸水性樹脂粉末(3)は、上記粒子状含水ゲル(1)に由来するラウリルジメチルアミノ酢酸ベタインを含み、質量平均粒子径(d2)420μm、目開き150μmの篩を通過した粒子の割合(150pass率)7.8質量%、固形分率97.6質量%であった。
 (攪拌乾燥時の表面架橋)
 [製造例5]
 製造例3の回転型乾燥機において、乾燥途中の粒子状含水ゲル(1)に対して、エチレングリコールジグリシジルエーテル0.16質量%及び水2質量%を含む表面架橋剤溶液2.6質量%を噴霧添加した以外は、製造例3と同様にして、乾燥重合体(4)及び吸水性樹脂粉末(4)を得た。表面架橋剤溶液添加時の粒子状含水ゲル(1)は、含水率30質量%、温度110℃であった。乾燥重合体(4)は、固形分率98.5質量%、目開き2800μmの篩未通過の粒子の割合(2800on率)が固形分換算で7.5質量%であった。吸水性樹脂粉末(4)は、質量平均粒子径(d2)350μm、目開き150μmの篩を通過した粒子の割合(150pass率)10.5質量%、固形分率97.8質量%であった。
 30gの吸水性樹脂粉末(4)を、ハイドロタルサイト(協和化学工業株式会社製の製品名「DHT-6」、MgAl(OH)16CO・4HO、体積平均粒子径0.5μm)を、100質量部の吸水性樹脂粉末(4)に対して0.3質量部添加した。
 続いて、目開き850μm及び180μmのJIS標準篩を用いて、吸水性樹脂粉末(4-2)を分級し、目開き180μmの篩通過物である微粉(2)を得た。微粉(2)は、上記粒子状含水ゲル(1)に由来するラウリルジメチルアミノ酢酸ベタインを含み、固形分率95.4質量%、質量平均粒子径(d3)114μm、目開き150μmの篩を通過した粒子の割合(150pass率)90.9質量%、CRCが24.9g/gであった。
 (微粉造粒物の製造)
 [製造例6]
 攪拌羽根、解砕羽根、排出羽根及びノズルを備えた、内容積7L(攪拌部有効容積5L)の縦型回転円盤型混合機(粉研パウテックス製)を用いて、微粉造粒を行った。製造例3で得た微粉(1)を、定量供給機(アキュレートInc製)を用いて、200kg/hrで縦型回転円盤型混合機に供給した。続いて、撹拌羽根を1060rpmで回転させて微粉(1)を撹拌しながら、ミキサー(粉研パウテックス製、連続噴射混合機フロージェットミキサMW-F-300型(回転円盤上のピンを除去した改良型))を用いて、接着制御剤水溶液(ラウリルジメチルアミノ酢酸ベタイン水溶液、有効成分濃度0.253質量%、温度50℃)及び水蒸気(ゲージ圧0.6MPa、ミキサー内圧解放)を注入して、連続的に混合することにより、接着制御剤ラウリルジメチルアミノ酢酸ベタインを含む微粉造粒物(1)を得た。接着制御剤の添加量は、微粉(1)の固形分に対し2200ppmであり、水蒸気の注入速度は、15kg/hrであった。微粉造粒物(1)は、固形分率50質量%であった。
 [製造例7]
 接着制御剤水溶液に代えて水(50℃)を用いた以外は製造例6と同様にして、微粉造粒物(2)を得た。微粉造粒物(2)は、固形分率50質量%であった。
 [製造例8]
 微粉(1)に代えて製造例5で得た微粉(2)を用い、接着制御剤水溶液の有効成分濃度を0.092質量%とし、接着制御剤の添加量を、微粉(2)の固形分に対して800ppmとした以外は、製造例6と同様にして、接着制御剤ラウリルジメチルアミノ酢酸ベタインを含む微粉造粒物(3)を得た。微粉造粒物(3)は、固形分率50質量%であった。
 [製造例9]
 微粉(1)に代えて製造例5で得た微粉(2)を用い、接着制御剤水溶液の有効成分濃度を0.252質量%とし、接着制御剤の添加量を、微粉(2)の固形分に対して2200ppmとした以外は、製造例6と同様にして、接着制御剤ラウリルジメチルアミノ酢酸ベタインを含む微粉造粒物(4)を得た。微粉造粒物(4)は、固形分率50質量%であった。
 [製造例10]
 微粉(1)に代えて製造例5で得た微粉(2)を用い、接着制御剤水溶液の有効成分濃度を0.573質量%とし、接着制御剤の添加量を、微粉(2)の固形分に対して5000ppmとした以外は、製造例6と同様にして、接着制御剤ラウリルジメチルアミノ酢酸ベタインを含む微粉造粒物(5)を得た。微粉造粒物(5)は、固形分率50質量%であった。
 [製造例11]
 微粉(1)に代えて製造例5で得た微粉(2)を用い、接着制御剤水溶液に代えて水(50℃)を用いた以外は製造例6と同様にして、微粉造粒物(6)を得た。微粉造粒物(6)は、固形分率50質量%であった。
 [参考例1]
 製造例2で得られた乾燥重合体(1)及び吸水性樹脂粉末(1)を、参考例1とした。参考例1は、乾燥工程に微粉造粒物を回収しなかった製造方法であり、実施例1及び2並びに比較例1及び2の基準品である。参考例1、実施例1及び2並びに比較例1及び2の結果を、表1にまとめて示す。
 [実施例1]
 製造例1の重合及びゲル粉砕で得られた粒子状含水ゲル(1)(固形分44重量%)と製造例6で得られた微粉造粒物(1)(含水ゲル状微粉造粒物)(固形分50重量%)とを質量比85/15(固形分比では約87/13)となるように混合して、含水ゲル混合物(1)を得た。この含水ゲル混合物(1)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例2と同様にして、乾燥重合体(5)及び吸水性樹脂粉末(5)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(1)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(5)は一体化して、一枚板のブロック状に固まっていた。乾燥重合体(5)の横幅はほぼ乾燥ベルトの幅に相当し、長さはエンドレスであり、厚みは数cmであった。吸水性樹脂粉末(5)は、目開き150μmの篩を通過した粒子の割合(150pass率)が18.2質量%であり、基準品である参考例1との差であるΔ150pass率が4.2質量%であった。
 なお、吸水性樹脂粉末(5)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(1)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物には、吸水性樹脂微粉(1)に含まれていた界面活性剤1500ppmに加え、製造例6で加えた界面活性剤を2200ppm加えたことにより、界面活性剤を吸水性樹脂の一次粒子に比べて2200ppm多く含む。
 [実施例2]
 製造例1で得られた粒子状含水ゲル(1)(固形分率44重量%)と製造例9で得られた微粉造粒物(4)(固形分率50重量%)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(2)を得た。この含水ゲル混合物(2)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例2と同様にして、乾燥重合体(6)及び吸水性樹脂粉末(6)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(4)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(6)は一体化して、一枚板のブロック状に固まっていた。乾燥重合体(6)の横幅はほぼ乾燥ベルトの幅に相当し、長さはエンドレスであり、厚みは数cmであった。吸水性樹脂粉末(6)は、目開き150μmの篩を通過した粒子の割合(150pass率)が18.5質量%であり、基準品である参考例1との差であるΔ150pass率が4.5質量%であった。
 ここで、吸水性樹脂粉末(6)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(4)に由来する造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、吸水性樹脂微粉(2)に含まれていた界面活性剤1500ppmに加え、製造例9で加えた界面活性剤2200ppmにより、界面活性剤を吸水性樹脂の一次粒子に比べて2200ppm多く含む。
 [比較例1]
 製造例1で得られた粒子状含水ゲル(1)と製造例7で得られた微粉造粒物(2)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(8)を得た。この含水ゲル混合物(8)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例2と同様にして、乾燥重合体(12)及び吸水性樹脂粉末(12)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(2)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(12)は一体化して、一枚板のブロック状に固まっていた。乾燥重合体(12)の横幅はほぼ乾燥ベルトの幅に相当し、長さはエンドレスであり、厚みは数cmであった。吸水性樹脂粉末(12)は、目開き150μmの篩を通過した粒子の割合(150pass率)が19.2質量%であり、基準品である参考例1との差であるΔ150pass率が5.2質量%であった。
 ここで、吸水性樹脂粉末(12)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を未添加の微粉造粒物(2)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末であり、吸水性樹脂造粒粒子は吸水性樹脂の一次粒子に対して同等量の界面活性剤を含む。
 [比較例2]
 製造例1で得られた粒子状含水ゲル(1)と製造例11で得られた微粉造粒物(6)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(9)を得た。この含水ゲル混合物(9)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例2と同様にして、乾燥重合体(13)及び吸水性樹脂粉末(13)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(6)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(13)は一体化して、一枚板のブロック状に固まっていた。乾燥重合体(13)の横幅はほぼ乾燥ベルトの幅に相当し、長さはエンドレスであり、厚みは数cmであった。吸水性樹脂粉末(13)は、目開き150μmの篩を通過した粒子の割合(150pass率)が19.5質量%であり、基準品である参考例1との差であるΔ150pass率が5.5質量%であった。
 ここで、吸水性樹脂粉末(13)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤未添加の微粉造粒物(6)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末であり、吸水性樹脂微粉造粒物には追加の接着制御剤を含まない。
Figure JPOXMLDOC01-appb-T000001
 [参考例2]
 製造例3で得られた乾燥重合体(2)及び吸水性樹脂粉末(2)を、参考例2とした。参考例2は、乾燥工程に微粉造粒物を回収しなかった製造方法であり、実施例3-6並びに比較例3及び4の基準品である。参考例2、実施例3-6並びに比較例3及び4の結果を、表2にまとめて示す。
 [実施例3]
 製造例1で得られた粒子状含水ゲル(1)と製造例6で得られた微粉造粒物(1)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(3)を得た。この含水ゲル混合物(3)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(7)及び吸水性樹脂粉末(7)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(1)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(7)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が12.1質量%であり、基準品である参考例2との差であるΔ2800on率が4.7質量%であった。吸水性樹脂粉末(7)は、目開き150μmの篩を通過した粒子の割合(150pass率)が14.1質量%であり、基準品である参考例2との差であるΔ150pass率が3.3質量%であった。
 ここで、吸水性樹脂粉末(7)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(1)に由来する吸水性樹脂造粒粒子15%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、吸水性樹脂微粉(1)に含まれていた界面活性剤1500ppmに加え、製造例6で加えた界面活性剤2200ppmにより、界面活性剤を吸水性樹脂の一次粒子に比べて2200ppm多く含む。
 [実施例4]
 製造例1で得られた粒子状含水ゲル(1)と製造例8で得られた微粉造粒物(3)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(4)を得た。この含水ゲル混合物(4)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(8)及び吸水性樹脂粉末(8)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(3)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(8)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が7.7質量%であり、基準品である参考例2との差であるΔ2800on率が0.3質量%であった。吸水性樹脂粉末(8)は、目開き150μmの篩を通過した粒子の割合(150pass率)が14.1質量%であり、基準品である参考例2との差であるΔ150pass率が3.3質量%であった。
 ここで、吸水性樹脂粉末(8)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(3)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、吸水性樹脂微粉(2)に含まれていた界面活性剤1500ppmに加え、製造例8で加えた界面活性剤800ppmにより、界面活性剤を吸水性樹脂の一次粒子に比べて800ppm多く含む。
 [実施例5]
 製造例1で得られた粒子状含水ゲル(1)と製造例9で得られた微粉造粒物(4)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(5)を得た。この含水ゲル混合物(5)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(9)及び吸水性樹脂粉末(9)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(4)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(9)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が4.8質量%であり、基準品である参考例2との差であるΔ2800on率がマイナス2.6質量%であった。吸水性樹脂粉末(9)は、目開き150μmの篩を通過した粒子の割合(150pass率)が13.7質量%であり、基準品である参考例2との差であるΔ150pass率が2.9質量%であった。
 ここで、吸水性樹脂粉末(9)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(4)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、吸水性樹脂微粉(2)に含まれていた界面活性剤1500ppmに加え、製造例9で加えた界面活性剤2200ppmにより、界面活性剤を吸水性樹脂の一次粒子に比べて2200ppm多く含む。
 [実施例6]
 製造例1で得られた粒子状含水ゲル(1)と製造例10で得られた微粉造粒物(5)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(6)を得た。この含水ゲル混合物(6)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(10)及び吸水性樹脂粉末(10)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(5)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(10)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が3.5質量%であり、基準品である参考例2との差であるΔ2800on率がマイナス3.9質量%であった。吸水性樹脂粉末(10)は、目開き150μmの篩を通過した粒子の割合(150pass率)が13.8質量%であり、基準品である参考例2との差であるΔ150pass率が3.0質量%であった。
 ここで、吸水性樹脂粉末(10)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(5)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、吸水性樹脂微粉(2)に含まれていた界面活性剤1500ppmに加え、製造例10で加えた界面活性剤5000ppmにより、界面活性剤を吸水性樹脂の一次粒子に比べて5000ppm多く含む。
 [比較例3]
 製造例1で得られた粒子状含水ゲル(1)と製造例7で得られた微粉造粒物(2)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(10)を得た。この含水ゲル混合物(10)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(14)及び吸水性樹脂粉末(14)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(2)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(14)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が22.3質量%であり、基準品である参考例2との差であるΔ2800on率が14.9質量%であった。吸水性樹脂粉末(14)は、目開き150μmの篩を通過した粒子の割合(150pass率)が15.9質量%であり、基準品である参考例2との差であるΔ150pass率が5.1質量%であった。
 ここで、吸水性樹脂粉末(14)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含まない微粉造粒物(2)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、界面活性剤を吸水性樹脂の一次粒子と同程度含む。
 [比較例4]
 製造例1で得られた粒子状含水ゲル(1)と製造例11で得られた微粉造粒物(6)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(11)を得た。この含水ゲル混合物(11)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(15)及び吸水性樹脂粉末(15)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(6)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(15)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が16.9質量%であり、基準品である参考例2との差であるΔ2800on率が9.5質量%であった。吸水性樹脂粉末(15)は、目開き150μmの篩を通過した粒子の割合(150pass率)が15.2質量%であり、基準品である参考例2との差であるΔ150pass率が4.4質量%であった。
 ここで、吸水性樹脂粉末(15)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含まない微粉造粒物(6)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、界面活性剤を吸水性樹脂の一次粒子と同程度含む。
Figure JPOXMLDOC01-appb-T000002
 [参考例3]
 製造例3で得られた乾燥重合体(2)及び製造例4で得られた吸水性樹脂粉末(3)を、参考例3とした。参考例3は、乾燥工程に微粉造粒物を回収しなかった製造方法であり、実施例7及び比較例5の基準品である。参考例3、実施例7及び比較例5の結果を、表3にまとめて示す。
 [実施例7]
 製造例1で得られた粒子状含水ゲル(1)と製造例9で得られた微粉造粒物(4)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(7)を得た。この含水ゲル混合物(7)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(11)を得た。続いて、製造例4の粉砕工程と同様にして、吸水性樹脂粉末(11)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(4)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(11)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が4.8質量%であり、基準品である参考例3との差であるΔ2800on率がマイナス2.6質量%であった。吸水性樹脂粉末(11)は、目開き150μmの篩を通過した粒子の割合(150pass率)が10.0質量%であり、基準品である参考例3との差であるΔ150pass率が2.2質量%であった。
 ここで、吸水性樹脂粉末(11)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(4)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、吸水性樹脂微粉(2)に含まれていた界面活性剤1500ppmに加え、製造例9で加えた界面活性剤2200ppmにより、界面活性剤を吸水性樹脂の一次粒子に比べて2200ppm多く含む。
 [比較例5]
 製造例1で得られた粒子状含水ゲル(1)と製造例11で得られた微粉造粒物(6)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(12)を得た。この含水ゲル混合物(12)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(16)を得た。続いて、製造例4の粉砕工程と同様にして、吸水性樹脂粉末(16)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(6)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(16)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が16.9質量%であり、基準品である参考例3との差であるΔ2800on率が9.5質量%であった。吸水性樹脂粉末(16)は、目開き150μmの篩を通過した粒子の割合(150pass率)が12.1質量%であり、基準品である参考例3との差であるΔ150pass率が4.3質量%であった。
 ここで、吸水性樹脂粉末(16)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含まない微粉造粒物(6)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、界面活性剤を吸水性樹脂の一次粒子と同程度含む。
Figure JPOXMLDOC01-appb-T000003
 [参考例4]
 製造例5で得られた乾燥重合体(4)及び吸水性樹脂粉末(4)を、参考例4とした。参考例4は、乾燥工程に微粉造粒物を回収しなかった製造方法であり、実施例8及び比較例6の基準品である。参考例4、実施例8及び比較例6の結果を、表4にまとめて示す。
 [実施例8]
 製造例1で得られた粒子状含水ゲル(1)と製造例9で得られた微粉造粒物(4)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(13)を得た。この含水ゲル混合物(13)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例5と同様にして、乾燥重合体(17)及び吸水性樹脂粉末(17)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(4)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(17)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が5.1質量%であり、基準品である参考例4との差であるΔ2800on率がマイナス2.4質量%であった。吸水性樹脂粉末(17)は、目開き150μmの篩を通過した粒子の割合(150pass率)が13.2質量%であり、基準品である参考例4との差であるΔ150pass率が2.6質量%であった。
 ここで、吸水性樹脂粉末(17)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含む微粉造粒物(4)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、吸水性樹脂微粉(2)に含まれていた界面活性剤1500ppmに加え、製造例9で加えた界面活性剤2200ppmにより、界面活性剤を吸水性樹脂の一次粒子に比べて2200ppm多く含む。
 [比較例6]
 製造例1で得られた粒子状含水ゲル(1)と製造例11で得られた微粉造粒物(6)とを質量比85/15(固形分比で約83/17)となるように混合して、含水ゲル混合物(14)を得た。この含水ゲル混合物(14)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例5と同様にして、乾燥重合体(18)及び吸水性樹脂粉末(18)を得た。なお、上記混合直前の粒子状含水ゲル(1)と微粉造粒物(6)の温度は加熱により、夫々95℃、60℃であった。
 乾燥重合体(18)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が17.2質量%であり、基準品である参考例4との差であるΔ2800on率が9.7質量%であった。吸水性樹脂粉末(18)は、目開き150μmの篩を通過した粒子の割合(150pass率)が14.8質量%であり、基準品である参考例4との差であるΔ150pass率が4.2質量%であった。
 ここで、吸水性樹脂粉末(18)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子83%および、接着制御剤を含まない微粉造粒物(6)に由来する吸水性樹脂造粒粒子17%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物は、界面活性剤を吸水性樹脂の一次粒子と同程度含む。
Figure JPOXMLDOC01-appb-T000004
 [参考例2]
 製造例3で得られた乾燥重合体(2)及び吸水性樹脂粉末(2)を、参考例2とした。参考例2は、ゲル粉砕工程に微粉造粒物を回収しなかった製造方法であり、実施例9及び比較例7の基準品である。参考例2、実施例9及び比較例7の結果を表5にまとめて示す。
 [実施例9]
 製造例1で得られた短冊状の含水ゲル(1b)と製造例9で得られた微粉造粒物(4)とを質量比85/15(固形分比で約85/15)となるように混合して、含水ゲル混合物(15)を得た。この含水ゲル混合物(15)と、3.1質量%ラウリルジメチルアミノ酢酸ベタイン水溶液、水及び0.6MPaの水蒸気を、同時にスクリュー押出機に供給しながらゲル粉砕を行った。ラウリルジメチルアミノ酢酸ベタイン水溶液の供給量は、含水ゲル混合物(15)の固形分に対してラウリルジメチルアミノ酢酸ベタインが0.15質量%となるようにした。該スクリュー押出機として、スクリュー軸の外径が86mmであり、先端部に直径100mm、孔径8.0mm、厚さ10mmの多孔板が備えられたミートチョッパーを使用し、ゲル粉砕(第1ゲル粉砕)を行った。次に、孔径4.7mmの多孔板に変更して、第1ゲル粉砕で得られた粉砕ゲルをさらにゲル粉砕(第2ゲル粉砕)した。得られた粒子状含水ゲル(2)は、固形分率が45質量%(含水率が55質量%)、固形分換算の平均粒子径d1が125μm、粒子径150μm未満の粒子の割合が約54質量%であった。得られた粒子状含水ゲル(2)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(19)及び吸水性樹脂粉末(19)を得た。なお、上記混合直前の短冊状含水ゲル(1b)と微粉造粒物(4)の温度は加熱により、いずれも60℃であった。
 乾燥重合体(19)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が7.8質量%であり、基準品である参考例2との差であるΔ2800on率が0.4質量%であった。吸水性樹脂粉末(19)は、目開き150μmの篩を通過した粒子の割合(150pass率)が13.5質量%であり、基準品である参考例2との差であるΔ150pass率が2.7質量%であった。
 ここで、吸水性樹脂粉末(19)は、粒子状含水ゲル(2)に由来する吸水性樹脂の一次粒子85%および、接着制御剤を含む微粉造粒物(4)に由来する吸水性樹脂微粉造粒物15%からなる吸水性樹脂粉末であり、吸水性樹脂造粒粒子には製造例9で加えた接着制御剤(濃度0.253%)に由来するラウリルジメチルアミノベタインを吸水性樹脂の一次粒子に比べて追加で2200ppm含む。
 [比較例7]
 製造例1で得られた短冊状の含水ゲル(1b)と製造例11で得られた微粉造粒物(6)とを質量比85/15(固形分比で約85/15)となるように混合して、含水ゲル混合物(16)を得た。この含水ゲル混合物(16)と、3.1質量%ラウリルジメチルアミノ酢酸ベタイン水溶液、水及び0.6MPaの水蒸気を、同時にスクリュー押出機に供給しながらゲル粉砕を行った。ラウリルジメチルアミノ酢酸ベタイン水溶液の供給量は、含水ゲル混合物(16)の固形分に対して0.15質量%であった。該スクリュー押出機として、スクリュー軸の外径が86mmであり、先端部に直径100mm、孔径8.0mm、厚さ10mmの多孔板が備えられたミートチョッパーを使用し、ゲル粉砕(第1ゲル粉砕)を行った。次に、孔径4.7mmの多孔板に変更して、第1ゲル粉砕で得られた粉砕ゲルをさらにゲル粉砕(第2ゲル粉砕)した。得られた粒子状含水ゲル(3)は、固形分率が45質量%(含水率が55質量%)、固形分換算の平均粒子径d1が128μm、粒子径150μm未満の粒子の割合が約54質量%であった。得られた粒子状含水ゲル(3)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(20)及び吸水性樹脂粉末(20)を得た。なお、上記混合直前の短冊状含水ゲル(1b)と微粉造粒物(6)の温度は加熱により、いずれも60℃であった。
 乾燥重合体(20)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が17.8質量%であり、基準品である参考例2との差であるΔ2800on率が10.4質量%であった。吸水性樹脂粉末(20)は、目開き150μmの篩を通過した粒子の割合(150pass率)が15.3質量%であり、基準品である参考例2との差であるΔ150pass率が4.5質量%であった。
Figure JPOXMLDOC01-appb-T000005
 [製造例12]
 (重合工程)
 アクリル酸、48.5質量%の水酸化ナトリウム水溶液、ポリエチレングリコールジアクリレート(PEGDA、平均分子量:523)及び脱イオン水を混合し、得られた混合液の温度を90℃に保った。続いて、当該混合液を攪拌しながら、3質量%の過硫酸ナトリウム(NaPS)水溶液を添加することで、単量体水溶液とした。当該単量体水溶液は、単量体濃度が43質量%、中和率が71モル%、PEGDA濃度が0.07モル%(対単量体)、NaPS濃度が0.05モル%(対単量体)であった。
 前記過硫酸ナトリウム水溶液の添加後直ぐに重合反応が開始し、3分後には帯状の含水ゲル(2a)を得た。
 (ゲル粉砕工程)
 前記重合工程で得られた帯状の含水ゲル(2a)は、ミートチョッパーを用いてゲル粉砕された。なお、帯状の含水ゲル(2a)をミートチョッパーに投入する際、温度が80℃の温水を添加した。また、ミートチョッパーの排出口の先端には孔径が7.5mmの多孔板を設置した。製造例1におけるゲル粉砕後の含水ゲル(以下、「粒子状含水ゲル(4)」という)は、質量平均粒子径(D50)が1.7mmであり、含水率は53質量%であった。
 (乾燥工程)
 前記ゲル粉砕工程で得られた粒子状含水ゲル(4)は、目開き20メッシュの金網上に平均の厚みが5cmとなるように積層し、通気乾燥機(サタケ化学機械工業(株)製:品番 71-S6)を用いて乾燥した。乾燥条件は190℃の熱風を20分間通気させることで乾燥し、乾燥重合体(21)とした。当該乾燥は問題なく終了し、乾燥重合体中に未乾燥物は見られなかった。乾燥重合体の含水率は5質量%であった。なお、本実施例で用いた通気乾燥機は、通気バンド乾燥機とはバッチ式と連続式の違い以外の乾燥挙動はほぼ同じであるため、本結果は通気バンド乾燥機にも適用できる。
 (粉砕工程、分級工程)
 前記乾燥工程で得られた乾燥重合体(21)は、ロールミルで粉砕した後、目開きが850μm及び150μmの2種類の篩を用いて分級した。目開き850μmの篩上に残留した乾燥重合体は、その全量が目開き850μmの篩を通過するまで、粉砕及び分級を繰り返した。この操作によって、目開き150μmの篩上に残留した粉末上の表面架橋前の吸水性樹脂粉末(21)と、目開き150μmの篩を通過した微粉(3)を得た。
 (表面架橋工程、表面改質剤の添加工程)
 エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.7質量部からなる表面架橋剤水溶液を作成した。前記表面架橋前の吸水性樹脂(21)100質量部を攪拌しながら、当該表面架橋剤水溶液3.5質量部を噴霧して混合した。その後、得られた混合物を200℃で40分間、熱処理することで表面架橋をした。
 続いて、攪拌冷却しながら、27質量%の硫酸アルミニウム水溶液1質量部、60質量%の乳酸ナトリウム水溶液0.2質量部からなる添加剤水溶液を添加して、表面架橋後の吸水性樹脂粉末(21)とした。
 (整粒工程)
 前記操作で得られた表面架橋後の吸水性樹脂(21)を目開きが850μm及び150μmの2種類の篩を用いて分級した。目開き850μmの篩上に残留した凝集体状の吸水性樹脂は、その全量が目開き850μmの篩を通過するまで、凝集を解し、分級を繰り返した。この操作によって、目開き150μmの篩上に残留した吸水性樹脂(21)と、目開き150μmの篩を通過した微粉(4)を得た。
 吸水性樹脂(21)は無加圧下吸水倍率(CRC)が27g/g、0.7psiでの加圧下吸水倍率(AAP)が24g/g、生理食塩水流れ誘導性(SFC)が120×10-7×cm×s×g-1であった。
 前記微粉(3)と微粉(4)とを17:3の割合で混合し、微粉(5)とした。微粉(5)の質量平均粒子径(d3)は91μmであった。
 (微粉造粒物の製造)
 [製造例13]
 製造例12で得られた微粉(5)60gを75℃に加熱した後、オーブンで80℃に加熱しておいたフードカッターで微粉(5)を攪拌しながら3秒で82℃の脱イオン水を28g添加し、続いて2秒で25℃の0.1質量%ポリオキシエチレンソルビタンモノステアラート(TWEEN60)水溶液12g、すなわち、微粉(5)に対しポリオキシエチレンソルビタンモノステアラート200ppmを添加して微粉造粒した。得られた微粉造粒物(7)の固形分率は60質量%であった。
 [製造例14]
 製造例12で得られた微粉(5)60gを78℃に加熱した後、オーブンで80℃に加熱しておいたフードカッターで微粉(5)を攪拌しながら4秒で79℃の水を28g添加し、続いて2秒で25℃の1質量%ラウリルジメチルアミノ酢酸ベタイン水溶液6g、すなわち、微粉(5)に対しラウリルジメチルアミノ酢酸ベタイン1000ppmを添加して微粉造粒した。得られた微粉造粒物(8)の固形分率は60質量%であった。
 [実施例10]
 製造例(13)で得られた微粉造粒物(7)80gを、配管又はバケットコンベアを想定した円筒型プラスチック容器(直径:8cm)に入れて輸送し、前記微粉(5)と脱イオン水を混合し始めた時点、すなわち、造粒開始から2.5分経過後に製造例12で得られた粒子状含水ゲル(4)360gに加えた。なお、前記モルタルミキサーで混合する直前の微粉造粒物(7)及び粒子状含水ゲル(4)の温度は、それぞれ67℃、55℃であった。その後すぐに、容器を80℃に加熱しておいたモルタルミキサー(西日本試験機社製)で10秒間混合し、含水ゲル混合物(17)を得た。
 (乾燥工程)
 その後、含水ゲル混合物(17)を目開き20メッシュの金網上に積層し、製造例12と同じ通気乾燥機を用いて乾燥した。乾燥条件は熱風温度が190℃であり、乾燥時間は20分間であった。また、金網上の平均厚みは5cmであった。当該乾燥は問題なく終了し、乾燥重合体(22)中に未乾燥物はなかった。乾燥重合体(22)の含水率は5質量%であった。なお、この乾燥工程は製造例12の乾燥工程を模擬したものであり、製造例12と同一条件とした。
 前記乾燥工程で得られた乾燥重合体(22)について、製造例12の粉砕工程と同様の操作を行って吸水性樹脂粉末(22)を製造した。吸水性樹脂粉末(22)は、目開き150μmの篩を通過した粒子の割合(150pass率)が9.5質量%であった。
 ここで、吸水性樹脂粉末(22)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子78%および、接着制御剤を含む微粉造粒物(7)に由来する吸水性樹脂造粒粒子22%からなる吸水性樹脂粉末であり、吸水性樹脂微粉造粒物には製造例13で加えた接着制御剤に由来するポリオキシエチレンソルビタンモノステアラートを吸水性樹脂の一次粒子に比べて追加で200ppm含む。
 [実施例11]
 実施例10において、微粉造粒物(7)から微粉造粒物(8)に変更した以外は実施例10と同様に操作して、含水ゲル混合物(18)、乾燥重合体(23)、および、吸水性樹脂粉末(23)を得た。吸水性樹脂粉末(23)は、目開き150μmの篩を通過した粒子の割合(150pass率)が9.2質量%であった。なお、前記モルタルミキサーで混合する直前の微粉造粒物(8)及び粒子状含水ゲル(4)の温度は、それぞれ65℃、55℃であった。
 ここで、吸水性樹脂粉末(23)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子78%および、接着制御剤を含む微粉造粒物(8)に由来する吸水性樹脂造粒粒子22%からなる吸水性樹脂粉末であり、吸水性樹脂微粉造粒物には製造例14で加えた接着制御剤に由来するラウリルジメチルアミノベタインを吸水性樹脂の一次粒子に比べて追加で1000ppm含む。
Figure JPOXMLDOC01-appb-T000006
 [製造例15]
 製造例9において、接着制御剤水溶液の有効成分濃度を1.15質量%とし、接着制御剤の添加量を、微粉(2)の固形分に対して5000ppmとした以外は、製造例6と同様にして、微粉造粒物(9)を得た。微粉造粒物(9)は、固形分率64質量%であった。
 [実施例12]
 製造例1で得られた95℃の粒子状含水ゲル(1)(固形分率44重量%)と製造例15で得られた60℃の微粉造粒物(9)(固形分率64質量%)とを質量比85/15(固形分比で約80/20)となるように混合して、含水ゲル混合物(19)を得た。この含水ゲル混合物(19)を、粒子状含水ゲル(1)に代えて用いた以外は、製造例3と同様にして、乾燥重合体(24)及び吸水性樹脂粉末(24)を得た。
 乾燥重合体(24)は、目開き2800μmの篩未通過の粒子の割合(2800on率)が8.2質量%であり、基準品である参考例2との差であるΔ2800on率が0.8質量%であった。吸水性樹脂粉末(24)は、目開き150μmの篩を通過した粒子の割合(150pass率)が12.1質量%であり、基準品である参考例2との差であるΔ150pass率が1.3質量%であった。なお、吸水性樹脂粉末(24)の固形分率は98.3質量%、質量平均粒子径(d2)は343μmである。
 ここで、吸水性樹脂粉末(24)は、粒子状含水ゲル(1)に由来する吸水性樹脂の一次粒子80%および、接着制御剤を含む微粉造粒物(9)に由来する吸水性樹脂微粉造粒物20%からなる吸水性樹脂粉末である。吸水性樹脂微粉造粒物には、吸水性樹脂微粉(2)に含まれていた界面活性剤1500ppmに加え、製造例15で加えた界面活性剤を5000ppm加えたことにより、界面活性剤を吸水性樹脂の一次粒子に比べて追加で5000ppm含む。
Figure JPOXMLDOC01-appb-T000007
 (まとめ)
 表1において、微粉(1)に接着制御剤を添加して造粒した微粉造粒物(1)を回収して、粒子状含水ゲル(1)とともに通気バンド式乾燥機で乾燥し、粉砕工程を経て得られた実施例1のΔ150pass率は、接着制御剤を添加せずに造粒した微粉造粒物(2)を用いた比較例1のΔ150pass率より小さい。実施例1と比較例1との対比から、微粉発生量低減のために、接着制御剤の添加が重要であることがわかる。
 表1において、微粉(2)に接着制御剤を添加して造粒した微粉造粒物(4)を回収して、粒子状含水ゲル(1)とともに通気バンド式乾燥機で乾燥し、粉砕工程を経て得られた実施例2のΔ150pass率は、接着制御剤を添加せずに造粒した微粉造粒物(6)を用いた比較例2のΔ150pass率より小さい。実施例2と比較例2との対比から、微粉発生量低減のために、接着制御剤の添加が重要であることがわかる。
 表1及び2において、実施例1と実施例3との対比及び実施例2と実施例4との対比から、通気バンド式乾燥機を用いて得られた吸水性樹脂粉末のΔ150pass率よりも、回転型乾燥機を用いて得られた吸水性樹脂粉末のΔ150pass率が小さく、回転型乾燥機の使用が好ましいことがわかる。
 表2において、微粉(1)に接着制御剤を添加して造粒した微粉造粒物(1)を回収して、粒子状含水ゲル(1)とともに回転型乾燥機で乾燥して得た実施例3の乾燥重合体のΔ2800on率は、接着制御剤を添加せずに造粒した微粉造粒物(2)を用いた比較例3のΔ2800on率より小さい。さらに、乾燥重合体を粉砕して得た実施例3のΔ150pass率は、比較例3のΔ150pass率より小さい。実施例3と比較例3との対比から、微粉造粒時の大粒子化抑制及び微粉発生量低減のために、接着制御剤の添加が重要であることがわかる。
 表2において、微粉(2)に接着制御剤の添加量を変えて造粒した微粉造粒物(3)-(5)を回収して、粒子状含水ゲル(1)とともに回転型乾燥機で乾燥して得た実施例4-6の乾燥重合体のΔ2800on率は、接着制御剤を添加せずに造粒した微粉造粒物(6)を用いた比較例4のΔ2800on率より小さい。さらに、乾燥重合体を粉砕して得た実施例4-6のΔ150pass率は、比較例4のΔ150pass率より小さい。実施例4-6と比較例4との対比から、微粉造粒時の大粒子化抑制及び微粉発生量低減のために、接着制御剤の添加が重要であることがわかる。
 表3において、微粉(2)に接着制御剤を添加して造粒した微粉造粒物(4)を回収して、粒子状含水ゲル(1)とともに回転型乾燥機で乾燥して得た実施例7の乾燥重合体のΔ2800on率は、接着制御剤を添加せずに造粒した微粉造粒物(6)を用いた比較例5のΔ2800on率より小さい。さらに、乾燥重合体を粉砕して得た実施例7のΔ150pass率は、比較例5のΔ150pass率より小さい。実施例7と比較例5との対比から、粉砕工程の強度によらず、微粉造粒時の大粒子化抑制及び微粉発生量低減のために、接着制御剤の添加が重要であることがわかる。
 表4において、微粉(2)に接着制御剤を添加して造粒した微粉造粒物(4)を回収して、粒子状含水ゲル(1)とともに回転型乾燥機で乾燥して得た実施例8の乾燥重合体のΔ2800on率は、接着制御剤を添加せずに造粒した微粉造粒物(6)を用いた比較例6のΔ2800on率より小さい。さらに、乾燥重合体を粉砕して得た実施例8のΔ150pass率は、比較例6のΔ150pass率より小さい。実施例8と比較例6との対比から、表面架橋の有無によらず、微粉造粒時の大粒子化抑制及び微粉発生量低減のために、接着制御剤の添加が重要であることがわかる。また、実施例8では、150pass率で示される微粉発生量が減少するため、AAP(加圧下吸水性能)が向上し、微粉造粒物を回収せずに得られる参考例4と同程度の性能を示した。
 表5において、微粉(2)に接着制御剤を添加して造粒した微粉造粒物(4)を、ゲル粉砕工程に回収して得た実施例9の乾燥重合体のΔ2800on率は、接着制御剤を添加せずに造粒した微粉造粒物(6)を用いた比較例7のΔ2800on率より小さい。さらに、乾燥重合体を粉砕して得た実施例9のΔ150pass率は、比較例7のΔ150pass率より小さい。実施例9と比較例7との対比から、微粉造粒物をゲル粉砕工程に回収する実施態様においても、微粉造粒時の大粒子化抑制及び微粉発生量低減のために、接着制御剤の添加が重要であることがわかる。
 表6において、凝集崩壊度の結果が示す様に微粉に加熱した水性液(温水)を添加し、更に界面活性剤水溶液を添加して造粒すると高い流動性を有する造粒ゲルが得られることがわかる。
 実施例10及び11から、本発明の界面活性剤として両性界面活性剤のラウリルジメチルアミノ酢酸ベタインだけでなく、ノニオン性のポリオキシエチレンソルビタンモノステアラートも同様に使用可能であることがわかる。
 実施例12から、微粉造粒物の固形分率が高くとも(固形分率64質量%)実施可能であることがわかる。
 さらに、本発明のおいて得られた吸水性樹脂粉末は、吸水性樹脂一次粒子および接着制御剤を含む吸水性樹脂微粉造粒物からなる吸水性樹脂粉末であり、機械的ダメージに比較的弱い微粉造粒物に接着制御剤(界面活性剤)が添加(含水ゲルの乾燥物に由来する吸水性樹脂一次粒子より多く添加)されているため、吸水性樹脂微粉造粒物を含む吸水性樹脂粉末としても機械的ダメージにも強く、また粉体流動性もよい。
 なお、上記製造例、実施例及び比較例で得られる吸水性樹脂粉末は、整粒工程における分級ステップを行う前の、最終製品ではない吸水性樹脂粉末である。
 本発明によって得られる吸水性樹脂粉末は、紙オムツ等の衛生用品の吸収体用途に適している。

Claims (17)

  1.  酸基含有不飽和単量体を主成分として得られる粒子状含水ゲル状架橋重合体を乾燥して乾燥重合体を得る乾燥工程と、
     吸水性樹脂からなる微粉にバインダーと接着制御剤を添加して、微粉造粒物を得る微粉造粒工程と、を含んでおり、
     上記微粉造粒物を、上記乾燥工程又は上記乾燥工程前のいずれかの工程に回収する吸水性樹脂粉末の製造方法。
  2.  上記微粉造粒工程において、上記バインダーとして水蒸気を添加する請求項1に記載の製造方法。
  3.  上記接着制御剤が界面活性剤である請求項1または2に記載の製造方法。
  4.  上記乾燥工程における乾燥方法が攪拌乾燥である請求項1から3のいずれかに記載の製造方法。
  5.  上記微粉の主成分が、ポリ(メタ)アクリル酸(塩)系架橋重合体であり、
     上記微粉の質量平均粒子径が、150μm未満である請求項1から4のいずれかに記載の製造方法。
  6.  上記粒子状含水ゲル状架橋重合体及び/又は乾燥重合体を表面架橋する表面架橋工程と、
     上記乾燥重合体及び/又は表面架橋された乾燥重合体の粒度を調整する整粒工程と、
    をさらに有しており、
     上記微粉が、上記整粒工程において得られる請求項1から5のいずれかに記載の製造方法。
  7.  上記微粉造粒物が、表面架橋された微粉を含んでいる請求項1から6のいずれかに記載の製造方法。
  8.  上記接着制御剤の添加量が、上記微粉に対して、固形分換算で0.001~2.0質量%である請求項1から7のいずれかに記載の製造方法。
  9.  上記微粉造粒工程において、上記接着制御剤を水溶液として添加する請求項1から8のいずれかに記載の製造方法。
  10.  上記微粉に対して、上記水蒸気を、単位時間当たり1質量%以上100質量%以下添加する請求項1から9のいずれかに記載の製造方法。
  11.  上記微粉造粒物の固形分率が30質量%以上80質量%以下である請求項1から10のいずれかに記載の製造方法。
  12.  上記乾燥工程において、通気加熱式、外壁加熱式及び管状加熱式から選択される1又は2以上の加熱手段を有する攪拌乾燥機を用いる請求項1から11のいずれかに記載の製造方法。
  13.  上記乾燥工程における攪拌乾燥機内部の雰囲気露点が60~100℃である請求項12に記載の製造方法。
  14.  上記微粉造粒物が回収される上記乾燥工程又は上記乾燥工程前のいずれかの工程において、上記微粉造粒物、及び上記粒子状含水ゲル状架橋重合体の温度が50℃以上、100℃以下である請求項1~13のいずれかに記載の製造方法。
  15.  請求項1から14のいずれかに記載の製造方法により得られる吸水性樹脂粉末。
  16.  前記吸水性樹脂粉末は接着制御剤を含む吸水性樹脂微粉造粒物を含有し、
     前記接着制御剤は界面活性剤であり、
     前記吸水性樹脂微粉造粒物中の界面活性剤量が前記吸水性樹脂粉末中の界面活性剤の平均量よりも多いものである請求項15に記載の吸水性樹脂粉末。
  17.  前記吸水性樹脂粉末に含まれる粒子径150μm未満の粒子の割合は15質量%以下である請求項15または16に記載の吸水性樹脂粉末。
PCT/JP2019/019518 2018-05-16 2019-05-16 吸水性樹脂粉末、及びその製造方法 WO2019221236A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207035702A KR102590297B1 (ko) 2018-05-16 2019-05-16 흡수성 수지 분말, 및 그의 제조 방법
US17/055,153 US20210115198A1 (en) 2018-05-16 2019-05-16 Water-absorbent resin powder and production method thereof
JP2020519920A JP7083020B2 (ja) 2018-05-16 2019-05-16 吸水性樹脂粉末、及びその製造方法
EP19803772.3A EP3795614A4 (en) 2018-05-16 2019-05-16 WATER-ABSORBENT RESIN POWDER AND METHOD FOR PRODUCTION THEREOF
CN201980032452.9A CN112119114A (zh) 2018-05-16 2019-05-16 吸水性树脂粉末及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-094788 2018-05-16
JP2018094788 2018-05-16
JP2018210731 2018-11-08
JP2018-210731 2018-11-08

Publications (1)

Publication Number Publication Date
WO2019221236A1 true WO2019221236A1 (ja) 2019-11-21

Family

ID=68539686

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/019518 WO2019221236A1 (ja) 2018-05-16 2019-05-16 吸水性樹脂粉末、及びその製造方法
PCT/JP2019/019517 WO2019221235A1 (ja) 2018-05-16 2019-05-16 吸水性樹脂の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019517 WO2019221235A1 (ja) 2018-05-16 2019-05-16 吸水性樹脂の製造方法

Country Status (6)

Country Link
US (1) US20210115198A1 (ja)
EP (2) EP3795613A4 (ja)
JP (2) JP6931744B2 (ja)
KR (2) KR102590297B1 (ja)
CN (2) CN112119112B (ja)
WO (2) WO2019221236A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021158910A1 (en) * 2020-02-07 2021-08-12 Healthall Laboratory, Inc. Superabsorbent material and methods of making the same
JP2022521063A (ja) * 2019-12-20 2022-04-05 エルジー・ケム・リミテッド 高吸水性樹脂組成物
WO2022128619A1 (de) 2020-12-16 2022-06-23 Basf Se Verfahren zur herstellung von superabsorberpartikeln
JP2022531945A (ja) * 2020-01-20 2022-07-12 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
WO2024009541A1 (ja) * 2022-07-07 2024-01-11 Sdpグローバル株式会社 吸水性樹脂組成物の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123443A (ko) 2020-01-06 2022-09-06 가부시키가이샤 닛폰 쇼쿠바이 흡수체, 흡수성 수지 및 흡수성 물품
WO2021246244A1 (ja) * 2020-06-01 2021-12-09 住友精化株式会社 吸水性樹脂粒子を製造する方法
JPWO2021246243A1 (ja) * 2020-06-04 2021-12-09
JPWO2022024787A1 (ja) * 2020-07-28 2022-02-03
JPWO2022071503A1 (ja) * 2020-10-02 2022-04-07
JPWO2022075289A1 (ja) * 2020-10-06 2022-04-14
WO2022075256A1 (ja) * 2020-10-06 2022-04-14 住友精化株式会社 吸水性樹脂粒子の製造方法
JP7058787B1 (ja) 2021-05-12 2022-04-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106514A (ja) 1997-06-18 1999-04-20 Nippon Shokubai Co Ltd 吸水性樹脂造粒物の製造方法
JP2000302876A (ja) 1999-02-15 2000-10-31 Nippon Shokubai Co Ltd 吸水性樹脂粉末の製造方法、吸水性樹脂粉末、およびその用途
US6228930B1 (en) * 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
EP1130045A2 (en) 2000-02-29 2001-09-05 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and production process therefor
US6562879B1 (en) 1999-02-15 2003-05-13 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and use
JP2004002891A (ja) * 1994-10-26 2004-01-08 Nippon Shokubai Co Ltd 吸水性樹脂の造粒粒子およびこれを含む吸収性物品ならびに吸水性樹脂の造粒粒子の製造方法
JP2005054151A (ja) * 2003-08-07 2005-03-03 Nippon Shokubai Co Ltd 粒子状吸水性樹脂の製法
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
WO2009031701A1 (en) 2007-09-07 2009-03-12 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
WO2009113673A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009119754A1 (ja) * 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂の製造方法
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
WO2011136301A1 (ja) * 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2015041432A1 (ko) 2013-09-17 2015-03-26 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20170092314A (ko) 2016-02-03 2017-08-11 주식회사 엘지화학 초흡수성 응집체를 제조하는 방법
JP2018094788A (ja) 2016-12-13 2018-06-21 セイコーエプソン株式会社 印刷装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105448A (ja) 1982-12-08 1984-06-18 アンネ株式会社 吸収性物品
JPS60158861A (ja) 1984-01-31 1985-08-20 株式会社日本触媒 吸水剤
DE3544770A1 (de) 1985-12-18 1987-06-19 Stockhausen Chem Fab Gmbh Verfahren und vorrichtung zum kontinuierlichen herstellen von polymerisaten und copolymerisaten der acrylsaeure und/oder methacrylsaeure
JPH01130045A (ja) 1987-11-13 1989-05-23 Nippon Carbureter Co Ltd 気化器の補助燃料供給装置
JPH0241155A (ja) 1988-07-29 1990-02-09 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収性物品
US5064582A (en) 1989-09-15 1991-11-12 The Dow Chemical Company Process and apparatus for recycling aqueous fluid absorbents fines
US5350799A (en) 1990-05-31 1994-09-27 Hoechst Celanese Corporation Process for the conversion of fine superabsorbent polymer particles into larger particles
JP3148220B2 (ja) 1990-05-31 2001-03-19 ストックハウゼン、ルイジアナ、リミテッド 超吸収性ポリマー微粉の再生法
JP3877195B2 (ja) 1997-04-14 2007-02-07 株式会社日本触媒 耐圧性吸水性樹脂とそれを用いた紙おむつ並びに吸水性樹脂とその製法
JP4199330B2 (ja) 1997-06-23 2008-12-17 株式会社日本触媒 吸水性樹脂組成物の製造方法
JP4236745B2 (ja) 1998-01-09 2009-03-11 株式会社日本触媒 粉体の連続造粒方法
JP4162746B2 (ja) 1998-02-24 2008-10-08 株式会社日本触媒 吸水剤組成物及びそれを用いた吸収性物品
JPH11240959A (ja) 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd 吸水性ポリマー組成物およびその製法
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US6720389B2 (en) 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
JP4422509B2 (ja) 2003-03-10 2010-02-24 株式会社日本触媒 吸水性樹脂組成物、その用途およびその製造方法
JP2005036100A (ja) 2003-07-14 2005-02-10 Nippon Shokubai Co Ltd 吸水性樹脂を製造する方法
DE602004020159D1 (de) 2003-09-19 2009-05-07 Nippon Catalytic Chem Ind Wasserabsorbierendes Harz mit behandelten Oberflächen und Verfahren zu seiner Herstellung
AU2006216015A1 (en) * 2005-02-15 2006-08-24 Nippon Shokubai Co., Ltd. Water absorbing agent, water absorbing article and method for production of water absorbing agent
JP5046522B2 (ja) 2005-02-15 2012-10-10 株式会社日本触媒 吸水性樹脂及びその製造方法
EP1878761B1 (en) 2005-03-14 2018-10-17 Nippon Shokubai Co.,Ltd. Water absorbent and process for producing the same
DE102005014291A1 (de) 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
CN101218260B (zh) 2005-07-04 2010-05-19 住友精化株式会社 吸水性树脂的制造方法
EP1928956B1 (en) 2005-09-30 2014-02-26 Nippon Shokubai Co., Ltd. Water-absorbing agent having water-absorbent resin as a main component and production method of the water-absorbing agent
CN101772355B (zh) 2007-07-27 2013-06-12 巴斯夫欧洲公司 吸水性聚合物颗粒及其制备方法
JP5616346B2 (ja) 2009-08-28 2014-10-29 株式会社日本触媒 吸水性樹脂の製造方法
US8875415B2 (en) 2010-03-08 2014-11-04 Nippon Shokubai, Co., Ltd. Method for drying granular water-containing gel-like cross-linked polymer
WO2011115216A1 (ja) * 2010-03-17 2011-09-22 株式会社日本触媒 吸水性樹脂の製造方法
EP2371869A1 (en) * 2010-03-30 2011-10-05 Evonik Stockhausen GmbH A process for the production of a superabsorbent polymer
JP5676572B2 (ja) 2010-04-07 2015-02-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
US20130130017A1 (en) 2010-08-19 2013-05-23 Sumitomo Seika Chemicals Co., Ltd. Water-absorbing resin
JP6234668B2 (ja) 2011-09-14 2017-11-22 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP2013213083A (ja) 2012-03-30 2013-10-17 Kao Corp 改質吸水性樹脂粒子
KR101559081B1 (ko) 2012-11-15 2015-10-08 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조되는 고흡수성 수지
CN105492505B (zh) * 2013-08-28 2018-11-20 株式会社日本触媒 凝胶粉碎装置、及聚丙烯酸(盐)系吸水性树脂粉末的制造方法、以及吸水性树脂粉末
US9873104B2 (en) * 2014-03-03 2018-01-23 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbing resin
WO2016056867A1 (ko) * 2014-10-08 2016-04-14 주식회사 엘지화학 고흡수성 수지 조립체의 제조 방법
US9975979B2 (en) * 2014-10-08 2018-05-22 Lg Chem, Ltd. Method of preparing superabsorbent polymer
KR101855353B1 (ko) * 2015-06-09 2018-05-08 주식회사 엘지화학 고흡수성 수지의 미분 재조립체를 포함하는 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR101949994B1 (ko) * 2015-10-14 2019-02-19 주식회사 엘지화학 고흡수성 수지 조립체 및 이의 제조 방법
EP3473664B1 (en) * 2016-06-20 2023-02-22 Nippon Shokubai Co., Ltd. Method for producing water absorbent agent
JP6913107B2 (ja) * 2016-11-16 2021-08-04 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002891A (ja) * 1994-10-26 2004-01-08 Nippon Shokubai Co Ltd 吸水性樹脂の造粒粒子およびこれを含む吸収性物品ならびに吸水性樹脂の造粒粒子の製造方法
US6228930B1 (en) * 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
JPH11106514A (ja) 1997-06-18 1999-04-20 Nippon Shokubai Co Ltd 吸水性樹脂造粒物の製造方法
JP2000302876A (ja) 1999-02-15 2000-10-31 Nippon Shokubai Co Ltd 吸水性樹脂粉末の製造方法、吸水性樹脂粉末、およびその用途
US6562879B1 (en) 1999-02-15 2003-05-13 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and use
EP1130045A2 (en) 2000-02-29 2001-09-05 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and production process therefor
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
JP2005054151A (ja) * 2003-08-07 2005-03-03 Nippon Shokubai Co Ltd 粒子状吸水性樹脂の製法
WO2009031701A1 (en) 2007-09-07 2009-03-12 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
WO2009113673A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009113679A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009113678A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009119754A1 (ja) * 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂の製造方法
WO2011136301A1 (ja) * 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2015041432A1 (ko) 2013-09-17 2015-03-26 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20170092314A (ko) 2016-02-03 2017-08-11 주식회사 엘지화학 초흡수성 응집체를 제조하는 방법
JP2018094788A (ja) 2016-12-13 2018-06-21 セイコーエプソン株式会社 印刷装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERN SUPERABSORBENTS POLYMER CHEMISTRY, 1998, pages 69 - 103

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521063A (ja) * 2019-12-20 2022-04-05 エルジー・ケム・リミテッド 高吸水性樹脂組成物
JP2022531945A (ja) * 2020-01-20 2022-07-12 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
JP7297371B2 (ja) 2020-01-20 2023-06-26 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
WO2021158910A1 (en) * 2020-02-07 2021-08-12 Healthall Laboratory, Inc. Superabsorbent material and methods of making the same
US11096974B1 (en) 2020-02-07 2021-08-24 Healthall Laboratory, Inc. Superabsorbent materials and methods of making the same
US11819527B2 (en) 2020-02-07 2023-11-21 Simeon Investment, Inc. Superabsorbent materials and methods of making the same
WO2022128619A1 (de) 2020-12-16 2022-06-23 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2024009541A1 (ja) * 2022-07-07 2024-01-11 Sdpグローバル株式会社 吸水性樹脂組成物の製造方法

Also Published As

Publication number Publication date
JP7083020B2 (ja) 2022-06-09
EP3795614A1 (en) 2021-03-24
KR20210010503A (ko) 2021-01-27
KR102589018B1 (ko) 2023-10-16
JPWO2019221235A1 (ja) 2021-03-18
JPWO2019221236A1 (ja) 2021-04-08
WO2019221235A1 (ja) 2019-11-21
EP3795613A1 (en) 2021-03-24
CN112119112B (zh) 2024-02-27
US20210115198A1 (en) 2021-04-22
EP3795614A4 (en) 2022-03-02
KR102590297B1 (ko) 2023-10-18
JP6931744B2 (ja) 2021-09-08
CN112119114A (zh) 2020-12-22
CN112119112A (zh) 2020-12-22
US20210147637A1 (en) 2021-05-20
KR20210010504A (ko) 2021-01-27
EP3795613A4 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
WO2019221236A1 (ja) 吸水性樹脂粉末、及びその製造方法
JP6800998B2 (ja) 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法
WO2019221154A1 (ja) 吸水性樹脂粒子の製造方法
JP5635397B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP5064032B2 (ja) 吸水性樹脂造粒物の製造方法および吸水性樹脂造粒物
JP5047616B2 (ja) 吸水剤およびその製造方法
EP2546286B1 (en) Method for manufacturing a water-absorbing resin
KR102554051B1 (ko) 흡수성 수지를 주성분으로 하는 흡수제 및 그의 제조 방법
WO2022065365A1 (ja) 吸水性樹脂粉末の製造方法
JPWO2019124536A1 (ja) 発熱体組成物用吸水性樹脂粉末、及び発熱体組成物
JP2005081204A (ja) 吸水性樹脂組成物の製造方法
JP6722507B2 (ja) 吸水性樹脂の製造方法
KR20210041070A (ko) 흡수성 수지 분말의 제조 방법 및 흡수성 수지 분말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035702

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019803772

Country of ref document: EP

Effective date: 20201216